
Introduction
محاضرة مادة المترجمات

 م . شیماء طھ احمد
للمرحلة الثالثة حاسبات /كلیة التربیة الاساسیة

1

Compilers

PDF Compressor Free Version

Outlines

฀Overview and History 1.1
฀?What Do Compilers Do 1.2

฀The Structure of a Compiler 1.3
฀ The Syntax and Semantics of 1.4

Programming Languages
฀ Compiler Design and Programming 1.5

Language Design
฀Compiler Classifications 1.6

฀Influences on Computer Design 1.7

2
PDF Compressor Free Version

Overview and History

฀.Compilers are fundamental to modern computing

฀ They act as translators, transforming human-oriented programming languages
.into computer-oriented machine languages

3

Programming
Language
(Source)

Compiler
Machine
Language
(Target)

PDF Compressor Free Version

Overview and History (Cont’d)

฀The first real compiler
฀FORTRAN compilers of the late 1950s
฀person-years to build 18

฀ Compiler technology is more broadly applicable
 and has been employed in rather unexpected

.areas
฀ Text-formatting languages, like nroff and troff;

preprocessor packages like eqn, tbl, pic
฀Silicon compiler for the creation of VLSI circuits
฀Command languages of OS
฀Query languages of Database systems

4
PDF Compressor Free Version

?What Do Compilers Do

฀ Compilers may be distinguished according to the kind of target
:code they generate

฀Pure Machine Code

฀Augmented Machine Code

฀Virtual Machine Code

฀JVM, P-code

5
PDF Compressor Free Version

What Do Compilers Do? (Cont’d)

฀ Another way that compilers differ from one another is in the
format of the target machine code they generate

฀Assembly Language Format

฀Relocatable Binary Format

฀A linkage step is required

฀Memory-Image (Load-and-Go) Format

6
PDF Compressor Free Version

What Do Compilers Do? (Cont’d)

฀ Another kind of language processor, called an
 interpreter, differs from a compiler in that it executes

programs without explicitly performing a translation

฀Advantages and Disadvantages of an interpreter
฀See page 6 & 7

7

Source
Program
Encoding

OutputInterpreter

Data

PDF Compressor Free Version

The Structure of a Compiler

฀Any compiler must perform two major tasks

฀Analysis of the source program

฀Synthesis of a machine-language program

8
PDF Compressor Free Version

The Structure of a Compiler (Cont’d)
9

Scanner Parser Semantic
Routines

Code
Generator

Optimizer

Source
Program

(Character
Stream)

Tokens Syntactic

Structure

Intermediate
Representation

Target Machine
Code

Symbol and
Attribute

Tables

(Used by all
Phases of
The Compiler)

The structure of a Syntax-Directed Compiler

PDF Compressor Free Version

 The Structure of a Compiler
(Cont’d)

฀Scanner
฀ The scanner begins the analysis of the source program by reading the

 input, character by character, and grouping characters into individual
words and symbols (tokens)

฀ The tokens are encoded and then are fed to the parser for syntactic
analysis

฀.For details, see the bottom of page 8 and page 9

฀Scanner generators

10
PDF Compressor Free Version

 The Structure of a Compiler
(Cont’d)

฀Parser
฀ Given a formal syntax specification (typically as a

 context-free [CFG] grammar), the parse reads tokens
 and groups them into units as specified by the

.productions of the CFG being used
฀ While parsing, the parser verifies correct syntax, and if

.a syntax error is found, it issues a suitable diagnostic
฀ As syntactic structure is recognized, the parser either

 calls corresponding semantic routines directly or builds
.a syntax tree

11
PDF Compressor Free Version

 The Structure of a Compiler
(Cont’d)

฀Semantic Routines
฀Perform two functions

฀Check the static semantics of each construct
฀Do the actual translation

฀The heart of a compiler
฀Optimizer

฀ The IR code generated by the semantic routines is
 analyzed and transformed into functionally equivalent

.but improved IR code
฀This phase can be very complex and slow
฀Peephole optimization

12
PDF Compressor Free Version

 The Structure of a Compiler
(Cont’d)

฀One-pass compiler

฀No optimization is required

฀ To merge code generation with semantic routines and eliminate the
use of an IR

฀Compiler writing tools

฀Compiler generators or compiler-compilers

฀E.g. scanner and parser generators

13
PDF Compressor Free Version

 Compiler Design and Programming
Language Design

฀ An interesting aspect is how programming language design and
.compiler design influence one another

฀ Programming languages that are easy to compile have many
advantages

฀ .See the 2nd paragraph of page 16

14
PDF Compressor Free Version

 Compiler Design and
 Programming Language Design
(Cont’d) ฀ Languages such as Snobol and APL are usually

considered noncompilable
฀ What attributes must be found in a programming

?language to allow compilation
฀ Can the scope and binding of each identifier reference

be determined before execution begins
฀ Can the type of object be determined before execution

?begins
฀ Can existing program text be changed or added to

?during execution

15
PDF Compressor Free Version

Compiler Classifications

฀Diagnostic compilers

฀Optimizing compilers

฀Retargetable compiler

16
PDF Compressor Free Version

11

PDF Compressor Free Version

2

Plan

• Introduction
• Lexical analysis
• Syntax analysis
• Symbol tables

PDF Compressor Free Version

3

Language processing systemIntroduction

To create an executable target program several programs may
be required

Collecting the source
Program (modules,

macros, etc.)

Assembly-language
program

PDF Compressor Free Version

44

-In order to reduce the complexity of designing and building
computers, nearly all of these are made to execute relatively
simple commands (but do so very quickly).

-A program for a computer must be built by combining these very
simple commands into a program in what is called machine
language.

-Most programming is done using a high-level programming
language -> But this language can be very different from the
machine language that the computer can execute.

===>This is where the compiler comes in

Introduction
PDF Compressor Free Version

5

• Using a high-level language for programming has a large impact
on how fast programs can be developed:

– Compared to machine language, the notation used by
programming languages is closer to the way humans think
about problems,

– The compiler can spot some obvious programming mistakes,
– Programs written in a high-level language tend to be shorter

than equivalent programs written in machine language
– The same program can be compiled to many different

machine languages and, hence, be brought to run on many
different machines.

Introduction
PDF Compressor Free Version

6

 A compiler translates a program written in a high-level
programming language that is suitable for human
programmers into the low-level machine language that is
required by computers

 +
spots and reports obvious programmer mistakes.

6

What’s a compiler ?
Introduction

PDF Compressor Free Version

7

Running the target program
• If the target program is an executable machine-language

program, it can then be called by the user to process inputs
and produce outputs.

7

Introduction
PDF Compressor Free Version

8

What’s an interpreter ?
• An interpreter is another way of implementing a programming

language.
• Interpretation shares many aspects with compiling (Lexing,

parsing and type-checking)
 ฀ But

Instead of producing a target program as a translation, an
interpreter appears to directly execute the operations specified
in the source program on inputs supplied by the user

8

Introduction
PDF Compressor Free Version

9

Compiler vs. Interpreter
• An interpreter may need to process the same piece of the

syntax tree (for example, the body of a loop) many times ฀
interpretation is slower than executing a compiled program.

• An interpreter executes the source program statement by
statement ฀ it can usually give better error diagnostics than
a compiler.

9

Introduction
PDF Compressor Free Version

11

PDF Compressor Free Version

2

Plan

• Introduction
• Lexical analysis
• Syntax analysis
• Symbol tables

PDF Compressor Free Version

3

The Structure of a Compiler

3

Introduction
PDF Compressor Free Version

44

Dividing into tokens (symbols :
variable name, keyword or number)

Producing a tree-structure that
reflects the structure of the
program.

Determining if the program
violates certain consistency requirements (if a
variable is used but not declared, use a boolean
value as a function pointer)

Translating the intermediate language to
assembly language (a textual representation of
machine code) for a specific machine
architecture.

Translating the assembly-language code into
binary representation and addresses of
variables, functions are determined.

PDF Compressor Free Version

55

PDF Compressor Free Version

6

Symbol Table Management
- The symbol table is a data structure containing a record for each

variable name, with fields for the attributes of the name
(storage allocated for a name, its type, its scope where in the
program its value may be used), and for procedure names
(number and types of its arguments, the method of passing
each argument and the type returned).

- The data structure should be designed to allow the compiler to
find the record for each name quickly and to store or retrieve
data from that record quickly.

6

Introduction
PDF Compressor Free Version

7

Introduction
ExamplePDF Compressor Free Version

8

Introduction
PDF Compressor Free Version

9

Introduction
PDF Compressor Free Version

10

Introduction
PDF Compressor Free Version

11

Introduction
PDF Compressor Free Version

12

Introduction
PDF Compressor Free Version

