## SETSANDELEMENTS

Aset is a collection ofobjects called theelementsormembers oftheset. Theordering ofthe elements is not important and repetition of elements is ignored, for example $\{1$, $3,1,2,2,1\}=\{1,2,3\}$.
Oneusuallyuses capital letters, $\mathrm{A}, \mathrm{B}, \mathrm{X}, \mathrm{Y}, \ldots$, todenotesets, and lowercaseletters, a, $\mathrm{b}, \mathrm{x}, \mathrm{y}, \ldots$, to denoteelements ofsets.
Belowyou'll seejust asamplingofitems that could be considered as sets:

- Theitems in astore
- The English alphabet
- Even numbers

Aset could haveas manyentries asyou would like.
It could haveoneentry, 10 entries, 15 entries, infinitenumberof entries, orevenhave no entries at all!
For example, in the abovelist the English alphabet would have26 entries, whilethe set of even numbers would have an infinitenumberof entries.

Each entryinaset is known as an elementormember
Sets are written usingcurlybrackets" $\{$ "and" $\}$ ",with their elements listed in between.
For examplethe English alphabet could bewrittenas
$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$
and even numbers couldbe $\{0,2,4,6,8,10, \ldots\}$ (Note: thedots at the end indicatingthat theset goes on infinitely)

## Principles:

$\in$ belongto
$\notin$ not belongto
$\subseteq$ subset
c propersubset,For example, $\{a, b\}$ is apropersubset of $\{a, b, c\}$, but $\{a, b, c\}$ is not apropersubset of $\{a, b, c\}$.
$\not \subset$ not subset
So we could replacethestatement "ais belongto the alphabet"with $\mathrm{a} \in\{$ alphabet $\}$ and replacethestatement" 3 is notbelongto theset of evennumbers" with3 $\notin\{$ Even numbers $\}$

Nowif wenamed oursets we couldgo even further.
Givetheset consistingofthealphabetthename A, andgivetheset consistingof even numbers thenameE.

We could now write
$a \in A$
and
$3 \notin \mathrm{E}$.

## Problem

Let $A=\{2,3,4,5\}$ andC $=\{1,2,3, \ldots, 8,9\}$, Showthat Ais apropersubset ofC.

## Answer

Each element ofAbelongs toC so $\mathrm{A} \subseteq \mathrm{C}$. On theotherhand, $1 \in \mathrm{C}$ but $1 \notin \mathrm{~A}$. Hence $A \neq C$. ThereforeAis apropersubset ofC.

Therearethreeways to specifyaparticularset:

1) Bylist its members separated bycommas andcontained in braces $\}$, (ifit is possible), for example, $\quad A=\{a, e, i, o, u\}$
2) Bystatethosepropertieswhich characterizethe elements in theset, for example, $\quad A=\{x: x i s$ aletterin the English alphabet, xis avowel $\}$
3) Venn diagram: (Agraphical representation ofsets).


Example (1)
$A=\{x: x i s$ aletterin the English alphabet, $x i s$ avowel $\}$ e
$\in \mathrm{A}$ (eisbelongto A )
$\mathrm{f} \notin \mathrm{A}$ (fisnot belongtoA)
Example (2)
Xis theset $\{1,3,5,7,9\}$
$3 \in X \quad$ and $4 \notin X$
Example (3)
Let $\mathrm{E}=\left\{\mathrm{x} \mid \mathrm{x}^{2}-3 \mathrm{x}+2=0\right\} \rightarrow(\mathrm{x}-2)(\mathrm{x}-1)=0 \rightarrow \mathrm{x}=2 \& \mathrm{x}=1$
$\mathrm{E}=\{2,1\}$, and $\quad 2 \in \square$

## Universalset,emptyset:

Inanyapplication ofthetheoryofsets, themembers of all sets underinvestigation usuallybelongto some fixed largeset called theuniversal set. For example, in human population studies theuniversal set consists of allthepeoplein the world. We will let thesymbol Udenotes theuniversal set.
Thesetwithnoelements is calledtheemptysetor nullsetandisdenotedby $\varnothing$ or $\}$

## Subsets:

Everyelement in asetAis also an element ofaset B, then Ais called asubset ofB. We also saythatBcontains A.This relationship is written:

$$
\mathrm{A} \subset \mathrm{~B} \quad \text { or } \quad \mathrm{B} \supset \mathrm{~A}
$$

IfAis not asubset ofB,i.e. if at least oneelement ofAdosenot belongto $B$, we writeA $\not \subset B$.
Example4:
Considerthesets.
$\mathrm{A}=\{1,3,4,5,8,9\} \quad \mathrm{B}=\{1,2,3,5,7\}$ and $\mathrm{C}=\{1,5\}$
ThenC $\subset A$ and $C \subset B$ since1 and 5 , theelementofC, are also members of $A$ andB.
ButB $\not \subset$ Asincesomeofits elements, e.g. 2and7, do not belongto A.Furthermore, sincethe elements ofA,Band C must also belongto theuniversal set U, wehavethat Umust at least theset $\{1,2,3,4,5,7,8,9\}$.

| $\mathrm{A} \subset \mathrm{B}:\{\forall x \in \mathrm{~A}$ | $\Rightarrow$ | $\mathrm{x} \in \mathrm{B}$ |
| ---: | :--- | :--- |
| $\mathrm{A} \not \subset \mathrm{B}:\{\exists \mathrm{x} \in \mathrm{A}$ | but | $\mathrm{x} \notin \mathrm{B}$ |

Thenotion ofsubsets is graphicallyillustrated below:


Ais entirelywithin BsoA $\subset B$.

$A$ and $B$ aredisjointor $(\mathrm{A} \cap \mathrm{B}=\varnothing)$ so wecouldwrite $\mathrm{A} \not \subset \mathrm{B}$ andB $\not \subset \mathrm{A}$.

## Setofnumbers:

Several sets areused so often, theyaregiven special symbols.
$\mathbf{N}=$ theset ofnatural numbers orpositiveintegers

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

$\mathbf{Z}=$ theset ofall integers: $\ldots,-2,-1,0,1,2, \ldots$

$$
\mathbb{Z}=\mathbb{N} \cup\{\ldots,-2,-1\}
$$

$\mathbf{Q}=$ theset of rational numbers

$$
\begin{aligned}
& \mathbb{Q}=\mathbb{Z} \cup\{\ldots,-1 / 3,-1 / 2,1 / 2,1 / 3, \ldots, 2 / 3,2 / 5, \ldots\} \\
& \text { Where } \mathrm{Q}=\{\mathrm{a} / \mathrm{b}: \mathrm{a}, \mathrm{~b} \in \mathrm{Z}, \mathrm{~b} \neq 0\}
\end{aligned}
$$

$\mathbf{R}=$ theset ofreal numbers

$$
\mathbb{R}=\mathbb{Q} \cup\{\ldots,-\pi,-\sqrt{2}, \sqrt{2}, \pi, \ldots\}
$$

$\mathbf{C}=$ theset of complexnumbers

$$
\begin{aligned}
\mathbb{C}= & \mathbb{R} \cup\{i, 1+i, 1-i, \sqrt{2}+\pi i, \ldots\} \\
& \text { Where } \mathrm{C}=\{\mathrm{x}+\mathrm{iy} ; \mathrm{x}, \mathrm{y} \in \mathrm{R} ; \mathrm{i}=\sqrt{ }-1\} \text { Observethat } \mathbf{N}
\end{aligned}
$$

$\subset \mathbf{Z} \subset \mathbf{Q} \subset \mathbf{R} \subset \mathbf{C}$.

## Theorem1:

For anyset A, B, C:
$1-\varnothing \subset A \subset U$.
$2-\mathrm{A} \subset \mathrm{A}$.

3- IfA $\subset B$ andB $\subset C$, then $A \subset C$.
4- $\mathrm{A}=$ Bifand onlyifA $\subset$ BandB $\subset \mathrm{A}$.

## Setoperations:

## 1) UNION:

Theunion of twosets $A$ and $B$, denotedby $A \cup B$, isthesetof allelementswhich belongto $A$ orto $B$;

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

Example
$\mathrm{A}=\{1,2,3,4,5\} \quad \mathrm{B}=\{5,7,9,11,13\}$
$A \cup B=\{1,2,3,4,5,7,9,11,13\}$

$A \cup B$

## 2)INTERSECTION

Theintersectionoftwosets $A$ and $B$, denotedby $A \cap B$, isthesetofelementswhichbelongtoboth $A$ and $B$;
$A \cap B=\{x: x \in$ Aand $x \in B\}$.

$A \cap B$
Example1
$\mathrm{A}=\{1,3,5,7,9\} \quad \mathrm{B}=\{2,3,4,5,6\}$
The elements theyhavein common are3 and 5
$\mathrm{A} \cap \mathrm{B}=\{3,5\}$
Example2
$\mathrm{A}=$ \{The English alphabet $\} \quad \mathrm{B}=$ \{vowels $\}$
SoA $\cap B=\{$ vowels $\}$

Example3
$\mathrm{A}=\{1,2,3,4,5\} \quad \mathrm{B}=\{6,7,8,9,10\}$
Inthiscase A andBhave nothingin common. $\mathrm{A} \cap \mathrm{B}=\varnothing$

## 3) THE DIFFERENCE:

Thedifferenceoftwo sets A\Bor A-Bis those elements which belongtoAbut which do not belongtoB.
$A \backslash B=\{x: x \in A, x \notin B\}$


A-B
4) COMPLEMENT OFSET:Complement ofset $A^{c}$ or $A^{\prime}$, is theset ofelements which belongto Ubut which do not belongto A .

$$
A^{c}=\{x: x \in U, x \notin A\}
$$



Example: let $A=\{1,2,3\}$
$\mathrm{B}=\{3,4\}$
$\mathrm{U}=\{1,2,3,4,5,6\}$
Find:

$$
\begin{aligned}
& A \cup B=\{1,2,3,4\} \\
& A \cap B=\{3\} \\
& A-B=\{1,2\} \\
& A^{c}=\{4,5,6\}
\end{aligned}
$$

## 5) Symmetricdifferenceofsets

Thesymmetricdifferenceofsets A andB, denoted by $A \oplus B$, consists ofthose elements which belongto AorBbut not to both. That is,
$A \oplus B=(A \cup B) \backslash(A \cap B)$ or $\quad A \oplus B=(A \backslash B) \cup(B \backslash A)$

$A \oplus B$
Example: SupposeU $=\mathrm{N}=\{1,2,3, \ldots$. istheuniversalset.
Let $A=\{1,2,3,4\}, B=\{3,4,5,6,7\}, C=\{2,3,8,9\}, \mathrm{E}=\{2,4,6,8, \ldots\}$
Then:
$A^{c}=\{5,6,7, \ldots\}, B^{c}=\{1,2,8,9,10, \ldots\}, C^{c}=\{1,4,5,6,7,10, \ldots\} E^{c}=\{1,3,5,7, \ldots\}$
$\mathrm{A} \backslash \mathrm{B}=\{1,2\}, \mathrm{A} \backslash \mathrm{C}=\{1,4\}, \mathrm{B} \backslash \mathrm{C}=\{4,5,6,7\}, \mathrm{A} \backslash \mathrm{E}=\{1,3\}$,
$B \backslash A=\{5,6,7\}, C \backslash A=\{8,9\}, C \backslash B=\{2,8,9\}, \mathrm{E} \backslash \mathrm{A}=\{6,8,10,12, \ldots\}$.
Furthermore:

$$
\begin{array}{cc}
\mathrm{A} \oplus \mathrm{~B}=(\mathrm{A} \backslash \mathrm{~B}) \cup(\mathrm{B} \backslash \mathrm{~A})=\{1,2,5,6,7\}, & \mathrm{B} \oplus \mathrm{C}=\{2,4,5,6,7,8,9\}, \\
\mathrm{A} \oplus \mathrm{C}=(\mathrm{A} \backslash \mathrm{C}) \cup(\mathrm{B} \backslash \mathrm{C})=\{1,4,8,9\}, & \mathrm{A} \oplus \mathrm{E}=\{1,3,6,8,10, \ldots\} .
\end{array}
$$

## Theorem2 :

$\mathrm{A} \subset \mathrm{B}, \mathrm{A} \cap \mathrm{B}=\mathrm{A}, \mathrm{A} \cup \mathrm{B}=\mathrm{B} \quad$ are equivalent

## Theorem3:(Algebra ofsets)

Sets underthe aboveoperations satisfyvarious laws oridentities which arelisted below:
$1-\mathrm{A} \cup \mathrm{A}=\mathrm{AA}$
$\cap \mathrm{A}=\mathrm{A}$

| $2-(A \cup B) \cup C=A \cup(B \cup C)$ | Associativelaws |
| :--- | :--- |
| $(A \cap B) \cap C=A \cap(B \cap C)$ |  |


| 3- $A \cup B=B \cup A$ | Commutativity |
| :--- | :--- |
| $A \cap B=B \cap A$ |  |


| $4-A \cup(B C)$ | $=(A \cup B) \cap(A C)$ | Distributivelaws |
| ---: | :--- | ---: | :--- |
| $A \cap(B C)$ | $=(A \cap B) \cup(A \subset C)$ |  |


| 5- $A \cup \varnothing=A$ | Identitylaws |
| ---: | ---: |
| $A \cap U=A$ |  |
| 6- A $\cup U=U$ | Identitylaws |
| $A \cap \varnothing=\varnothing$ |  |

7- $\left(\mathrm{A}^{\mathrm{c}}\right)^{\mathrm{c}}=\mathrm{A}$ Double complements

| $8-\mathrm{A} \cup \mathrm{A}^{\mathrm{c}}=\mathrm{U}$ | Complement intersections <br> and unions |
| :---: | :---: |
| $\mathrm{A} \cap \mathrm{A}^{\mathrm{c}}=\varnothing$ |  |

$$
\begin{aligned}
9-U^{\mathrm{c}} & =\varnothing \\
\varnothing^{\mathrm{c}} & =\mathrm{U}
\end{aligned}
$$

10- $(\mathrm{A} \cup \mathrm{B})^{\mathrm{c}} \quad=\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$
DeMorgan's laws
$(A \cap B)^{c} \quad=A^{c} \cup B^{c}$

Wediscuss two methods ofproving equations involvingset operations. The first is to break downwhat it means for an object xto be anelement ofeach side, andthe second is to use Venn diagrams.
For example, considerthe first of DeMorgan's laws:
$(A \cup B)^{c} \quad=A^{c} \cap B^{c}$
Wemust prove: $\quad 1)(A \cup B)^{c} \subset A^{c} \cap B^{c}$
2) $A^{c} \cap B^{c} \subset(A \cup B)^{c}$

We first showthat $\quad(A \cup B)^{c} \subset A^{c} \cap B^{c}$

Let's pickanelementat random $x \in(A \cup B)^{c}$. We don'tknowanything aboutx, it could beanumber, a function. All wedo know about x , isthat:

```
x\in(A\cupB)}\mp@subsup{)}{}{c},s
x}\not\inA\cup
```

becausethat'swhat complement means. Therefore

$$
x \notin \text { Aand } \quad x \notin B \text {, }
$$

bypulling apart theunion. Applyingcomplements again weget

$$
x \in A^{c} \text { and } x \in B^{c}
$$

Finally, ifsomethingis in 2 sets, it must bein theirintersection, so

$$
\mathrm{x} \in \mathrm{~A}^{\mathrm{c}} \cap \mathrm{~B}^{\mathrm{c}}
$$

So,anyelementwe pickatrandomfrom: $(\mathrm{A} \cup \mathrm{B})^{\mathrm{c}} \quad$ isdefinitelyin, $\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$ , so bydefinition

$$
(A \cup B)^{c} \subset A^{c} \cap B^{c}
$$

Next weshowthat $\quad\left(A^{c} \cap B^{c}\right) \subset(A \cup B)^{c}$.
This follows averysimilar way.Firstly,wepickan element at random from the first set, $x \in\left(A^{c} \cap B^{c}\right)$

Usingwhat weknowabout intersections, that means

$$
\mathrm{x} \in \mathrm{~A}^{\mathrm{c}} \text { and } \mathrm{x} \in \mathrm{~B}^{\mathrm{c}}
$$

Now, usingwhat weknow about complements,

$$
x \notin A \text { and } \quad x \notin B .
$$

Ifsomethingis in neitherAnorB, it can't bein theirunion, so

```
x}\not\inA\cupB
```

And finally

$$
\therefore \quad x \in(A \cup B)^{c}
$$

Wehaveprovethateveryelement of $\quad(A \cup B)^{c}$ belongsto $A^{c} \cap B^{c}$ andthat everyelementof $A^{c} \cap B^{c} \quad$ belongsto $\left.A \cup B\right)^{c}$. Together, these inclusionsprove that thesets havethesame elements, i.e. that $(A \cup B)^{\mathfrak{c}} \quad=A^{c} \cap B^{c}$

## Powerset

Thepowerset ofsomeset S , denoted $\mathrm{P}(\mathrm{S})$, is theset of all subsets ofS (includingS itself and the emptyset)

Example1: Let $A=\{1,23\}$

$$
\text { Powerset ofset } \mathrm{A}=\mathrm{P}(\mathrm{~A})=[\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{ \}, \mathrm{A}]
$$

Example2: $\mathrm{P}(\{0,1\})=\{\{ \},\{0\},\{1\},\{0,1\}\}$
Classes ofsets:Collection ofsubset ofaset with someproperties Example:
SupposeA=\{1,23\}, let Xbethe class ofsubsets ofA which contain exactlytwo elements ofA. Then

$$
\text { class } X=[\{1,2\},\{1,3\},\{2,3\}]
$$

## Cardinality

The cardinalityofaset S , denoted $|\mathbf{S}|$, is simplythenumberofelements aset has. So $|\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}|=4$, and so on.The cardinalityofaset need not be finite: somesets have infinite cardinality.

## Thecardinality ofthe powerset

Theorem: $I f|A|=n$ then $|P(A)|=2^{n}$ (Everyset with $n$ elements has $2^{n}$ subsets)

## Problemset

writethe answers to thefollowingquestions.

1. $|\{1,2,3,4,5,6,7,8,9,0\}|$
2. $|\mathrm{P}(\{1,2,3\})|$
3. $\mathrm{P}(\{0,1,2\})$
4. $\mathrm{P}(\{1\})$

## Answers

1. 10
2. $2^{3}=8$
3. $\{\},\{0\},\{1\},\{2\},\{0,1\},\{0,1,2\},\{0,2\},\{1,2\}\}$
4. $\{\},\{1\}\}$

## TheCartesianproduct

TheCartesian Product oftwo sets is theset of all tuples made from elements oftwo sets. We writetheCartesian Product oftwo sets Aand BasA $\times$ B.It is defined as:

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

It maybe clearerto understand from examples;

$$
\begin{aligned}
& \{0,1\} \times\{2,3\}=\{(0,2),(0,3),(1,2),(1,3)\} \\
& \{a, b\} \times\{c, d\}=\{(a, c),(a, d),(b, c),(b, d)\} \\
& \{0,1,2\} \times\{4,6\}=\{(0,4),(0,6),(1,4),(1,6),(2,4),(2,6)\}
\end{aligned}
$$

Example:IfA $=\{1,2,3\}$ and $B=\{\mathrm{x}, \mathrm{y}\}$ then
A. $B=\{(1, x),(1, y),(2, x),(2, y),(3, x),(3, y)\}$
B. $A=\{(x, 1),(x, 2),(x, 3),(y, 1),(y, 2),(y, 3)\}$

It is clearthat, thecardinalityoftheCartesian product oftwo sets A andB is:

$$
|A \times B|=|A||B|
$$

ACartesian Product oftwo sets A andBcan beproduced bymakingtuples of each element ofA with each element ofB; this can bevisualized as agrid(which Cartesian implies)ortable: if, e.g., $\mathrm{A}=\{0,1\}$ and $\mathrm{B}=\{2,3\}$, thegrid is

| $\times$ |  | A |  |
| :---: | :---: | :---: | :---: |
|  |  | 0 | 1 |
| B | 2 | $(0,2)$ | $(1,2)$ |
|  | 3 | $(0,3)$ | $(1,3)$ |

## Problemset

Answerthefollowingquestions:

1. $\{2,3,4\} \times\{1,3,4\}$
2. $\{0,1\} \times\{0,1\}$
3. $|\{1,2,3\} \times\{0\}|$
4. $|\{1,1\} \times\{2,3,4\}|$

## Answers

1. $\{(2,1),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)\}$
2. $\{(0,0),(0,1),(1,0),(1,1)\}$
3. 3
4. 6

## Partitionsofset:

Let $S$ beanynonemptyset. A partition ( $\Pi$ )ofSis asubdivisionofS into nonoverlapping, nonemptysubsets. Apartition ofS is a collection $\{\mathrm{Ai}\}$ ofnon-empty subsets ofS such that:

1) $\mathrm{Ai} \neq \varnothing$,
wherei $=1,2,3, \ldots \ldots$.
2) Thesets of $\{\mathrm{Ai}$ \}aremutuallydisjoint
or $\mathrm{Ai} \cap \mathrm{Aj}=\varnothing \quad$ where $\mathrm{i} \neq \mathrm{j}$.
3) $U A_{i 1}=S$, where $A_{1} \cup A_{2} \cup$. $\qquad$ $\cup A_{i}=S$
Thepartition ofaset intofive cells, A1, A2,A3,A4,A5,can berepresented byVenn diagram


Example1: let $\mathrm{A}=\{1,2,3, \mathrm{n}\}$

$$
\mathrm{A} 1=\{1\}, \mathrm{A} 2=\{3, \mathrm{n}\}, \mathrm{A} 3=\{2\}
$$

$\Pi=\{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3\}$ isapartition on Abecauseit satisfythethreeabove conditions.
Example2 :Considerthe following collectionsofsubsets ofS $=\{1,2,3,4,5,6,7,8,9\}$ (i)

$$
[\{1,3,5\},\{2,6\},\{4,8,9\}]
$$

(ii) $[\{1,3,5\},\{2,4,6,8\},\{5,7,9\}]$
(iii) $[\{1,3,5\},\{2,4,6,8\},\{7,9\}]$

Then
(i) is not apartition ofS since7 in S does not belongto anyofthesubsets.
(ii) is not apartition ofS since $\{1,3,5\}$ and $\{5,7,9\}$ arenot disjoint.
(iii) is apartition ofS.

## FINITE SETS, COUNTING PRINCPLE:

Aset is said to be finiteifit contains exactlym distinct elements wheremdenotes somenonnegativeinteger. Otherwise, aset is saidto beinfinite. For example, the emptyset $\varnothing$ andthesetoflettersofEnglishalphabetare finitesets, whereasthesetof even positiveintegers, $\{2,4,6, \ldots .$.$\} , is infinite.$
Ifaset Ais finite, welet $n(\mathrm{~A})$ or\#(A)denotethenumberofelements of A .
Example:IfA $=\{1,2, \mathrm{a}, \mathrm{w}\}$ then

$$
n(\mathrm{~A})=\#(\mathrm{~A})=|\mathrm{A}|=4
$$

Lemma:IfAandBarefinitesetsanddisjointThenA $\cup$ Bisfinitesetand:

$$
n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})
$$

Theorem(Inclusion-Exclusion Principle):SupposeA andBare finitesets. Then $A \cup B$ and $A \cap B$ arefiniteand

$$
|\mathrm{A} \cup \mathrm{~B}|=|\mathrm{A}|+|\mathrm{B}|-|\mathrm{A} \cap \mathrm{~B}|
$$

That is, we find thenumberof elements in AorB (orboth)byfirst adding $\mathrm{n}(\mathrm{A})$ and $\mathrm{n}(\mathrm{B})$ (inclusion) and thensubtractingn $(\mathrm{A} \cap \mathrm{B})($ exclusion)sinceits elements were counted twice.
We can applythis result to obtain asimilar formula forthreesets:

## Corollary:

If $A, B, C$ arefinitesets then
$|\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}|=|\mathrm{A}|+|\mathrm{B}|+|\mathrm{C}|-|\mathrm{A} \cap \mathrm{B}|-|\mathrm{A} \cap \mathrm{C}|-|\mathrm{B} \cap \mathrm{C}|+|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|$

## Example (1):

$\mathrm{A}=\{1,2,3\}$
$B=\{3,4\}$
$C=\{5,6\}$
$A \cup B \cup C=\{1,2,3,4,5,6\}$
$|A \cup B \cup C|=6$
$|\mathrm{A}|=3 \quad,|\mathrm{~B}|=2,|\mathrm{C}|=2$
$A \cap B=\{3\} \quad,|A \cap B|=1$
$\mathrm{A} C=\{ \} \quad,|\boldsymbol{A C}|=0$
$\mathrm{B} \cap \mathrm{C}=\{ \} \quad,|\mathrm{B} \cap \mathrm{C}|=0$
$\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}=\{ \} \quad,|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|=0$
$|\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}|=|\mathrm{A}|+|\mathrm{B}|+|\mathrm{C}|-|\mathrm{A} \cap \mathrm{B}|-|\mathrm{A} \cap \mathrm{C}|-|\mathrm{B} \cap \mathrm{C}|+|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|$
$|\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}|=3+2+2-1-0-0+0=6$

## Example (2):

Supposealist A contains the 30 students in amathematics class, andalist Bcontains the 35 students in an English class, and supposethereare 20 names on both lists. Find thenumberofstudents:
(a)onlyon list A
(b)onlyon list B
(c)onlistA $\cup \mathrm{B}$

Solution:
(a) List Ahas 30 names and 20 areon list B ; hence $30-20=10$ namesareonlyon list A.
(b) Similarly, $35-20=15$ areonlyon list B.
(c) Weseekn $(A \cup B)$. By inclusion-exclusion,

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)=30+35-20=45 .
$$

## Example (3):

Supposethat 100 of120 computersciencestudents at a collegetake at least oneof languages: French,German, and Russian and:
65 studyFrench(F).
45 studyGerman (G).
42 studyRussian (R).

20studyFrench\&GermanFnG.
25studyFrench\& RussianF $\cap$ R.
15studyGerman\& RussianG $\cap$ R.
Find thenumberofstudents who study:

1) Allthreelanguages $(F \cap G \cap R)$
2) Thenumberofstudents in each ofthe eight regions ofthe Venn diagram


Solution:
$|\mathrm{F} \cup \mathrm{G} \cup \mathrm{R}|=|\mathrm{F}|+|\mathrm{G}|+|\mathrm{R}|-|\mathrm{F} \cap \mathrm{G}|-|\mathrm{F} \cap \mathrm{R}|-|\mathrm{G} \cap \mathrm{R}|+|\mathrm{F} \cap \mathrm{G} \cap \mathrm{R}| 100$
$+45+42$ - $20 \quad-\quad 25-15+|F \cap G \cap R|$
$100 \quad=92 \quad+|F \cap G \cap R|$
$\therefore|\mathrm{F} \cap \mathrm{G} \cap \mathrm{R}|=8$ studentsstudythe3languages
$20-8=12 \quad(\mathrm{~F} \cap \mathrm{G})-\mathrm{R}$
$25-8=17 \quad(F \cap R)-G$
$15-8=7 \quad(\mathrm{G} \cap \mathrm{R})-\mathrm{F}$
$65-12-8-17=28$ students studyFrench only
$45-12-87=18 \quad$ students studyGerman only
$42-17-87=10 \quad$ students studyRussian only
$120-100=20 \quad$ students do not studyanylanguage

## Mathematicinduction:

It is usefulforprovingpropositions that must betrue for all integers or forarangeof integer.
Proposition: is anystatement $\mathrm{P}(\mathrm{n})$ which can beeithertrueorfalse foreach n in N .
SupposeP has the followingtwo properties.
(i) $\mathrm{P}(1)$ is true
(ii) $\quad \mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true

ThenPistrueforeverypositiveinteger $\forall \mathrm{n} \geq \mathrm{k}$.
Example1: Let P betheproposition that thesumofthe first n odd numbers is $\mathrm{n}^{2}$; that is,

$$
\mathrm{P}(\mathrm{n}): \quad 1+3+5+\ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}
$$

ProveP $($ forn $\geq 1)$

## Solution:

(Thenth odd numberis $2 \mathrm{n}-1$, and thenext odd numberis $2 \mathrm{n}+1$.) Observethat $\mathrm{P}(\mathrm{n})$ is true forn $=1$,
(i) $\mathrm{n}=1 ; \quad \mathrm{P}(1): \quad 2 * \mathrm{n}-1=1^{2}$
(ii) $\mathrm{n}=\mathrm{k}$; Assuming $\mathrm{P}(\mathrm{k})$ is true,

We add $(2 \mathrm{k}-1)+2=2 \mathrm{~K}+1$ to bothsides ofP $(\mathrm{k})$, obtaining:

$$
\begin{aligned}
1+3+5+\ldots+(2 \mathrm{k}-1)+(2 \mathrm{k}+1)=\mathrm{k}^{2}+ & (2 \mathrm{k}+1) \\
& =(\mathrm{k}+1)^{2}
\end{aligned}
$$

Which is $\mathrm{P}(\mathrm{k}+1)$. That is, $\mathrm{P}(\mathrm{k}+1)$ is true wheneverP( k$)$ is true. Bytheprincipleof mathematicalinduction, Pistrueforalln $\geq$.k.

## Example2:

$$
\mathrm{P}(\mathrm{n}): \quad 1+2+3+4+\ldots . .+\mathrm{n}=1 / 2 \mathrm{n}(\mathrm{n}+1)
$$

or

$$
\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}=1 / 2 \mathrm{n}(\mathrm{n}+1)
$$

ProveP (forn $\geq 1$ )

## solution:

$\mathrm{n}=1 \quad$ (i) $\mathrm{P}(1): \quad$ left side $=1$

$$
\text { Right side }=1 / 2 * 1 *(2)=1
$$

(ii)let $\mathrm{P}(\mathrm{k})$ is true; $\mathrm{n}=\mathrm{k}$
$1+2+3+4+\ldots . .+\mathrm{k}=1 / 2 * \mathrm{k} *(\mathrm{k}+1)$
to provethat $\mathrm{P}(\mathrm{k}+1)$ is true

$$
\begin{aligned}
& 1+2+3+4+\ldots . .+\mathrm{k}+(\mathrm{k}+1)=1 / 2 * \mathrm{k} *(\mathrm{k}+1)+(\mathrm{k}+1) \\
& k(k+1)+2(k+1) \\
& \text { = ----------------------------- }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(k+1)(k+2)}{=---------} 2 \\
& =1 / 2(k+1)(k+2)
\end{aligned}
$$

SoPistrueforalln $\geq k$

## Example3:

Provethe followingproposition (forn $\geq 0$ ):

$$
P(n): 1+2+2^{2}+2^{3}+\ldots+2^{n}=2^{n+1}-1
$$

solution :
(i) $\mathrm{P}(0)$ : leftside $=1$

Right side $=2^{1}-1=1$
(ii) AssumingP(k)is true; $\mathrm{n}=\mathrm{k}$

$$
P(k): 1+2+2^{2}+2^{3}+\ldots+2^{k}=2^{k+1}-1
$$

We add $2 \mathrm{k}+1$ to both sides ofP $(\mathrm{k})$, obtaining

$$
\begin{aligned}
1+2+2^{2}+2^{3}+\ldots+2^{k}+2^{k+1}=2^{k+1}-1 & +2^{k+1} \\
& =2\left(2^{k+1}\right)-1=2^{k+2}-1
\end{aligned}
$$

which is $\mathrm{P}(\mathrm{k}+1)$. That is, $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true. Bytheprincipleof induction, $\mathrm{P}(\mathrm{n})$ is true forall n .

## Homework:

Provebyinduction:

1) $2+4+6+\ldots \ldots+2 n=n(n+1)$
2) $1+4+7+\ldots \ldots+(3 n-2)=1 / 2 n(3 n-1)$

## Relations

## Binary relation:

Therearemanyrelationsin mathematics :"less than","is parallel to","is asubset of", etc. Theserelations considerthe existenceornonexistenceofacertain connection between pairs ofobjects taken in adefiniteorder.Wedefinearelation simplyin terms ofordered pairs ofobjects.

## Productsets:

Considertwo arbitrarysets A and B. Theset of allordered pairs ( $\mathrm{a}, \mathrm{b}$ ) wherea $\in$ Aand $\mathrm{b} \in \mathrm{Bis}$ called theproduct, or cartesianproduct, of A and B .
$A \times B=\{(a, b): a \in$ Aand $b \in B\}$
Example:Let $A=\{1,2\}$ and $B=\{a, b, c\}$ then

$$
\mathrm{A} \times \mathrm{B}=\{(1, \mathrm{a}),(1, \mathrm{~b}),(1, \mathrm{c}),(2, \mathrm{a}),(2, \mathrm{~b}),(2, \mathrm{c})\}
$$

Also, $\mathrm{A} \times \mathrm{A}=\{(1,1),(1,2),(2,1),(2,2)\}$

- Theorderin which thesets are considered is important,so $A \times B \neq B \times A$.

LetAandBbesets. Abinaryrelation, $R$, from Ato Bis asubset of $\times \operatorname{B} . \operatorname{If}(x, y) \in R$, wesaythat xis R-relatedtoyand denotethis by $\quad$ xRy
$\operatorname{if}(\mathrm{x}, \mathrm{y}) \notin \mathrm{R}$, wewrite $\quad{ }_{\mathrm{x}} \not R_{\mathrm{y}} \quad$ and saythat xis not R-related toy. ifR is a relation from Ato A,i.e. $R$ is asubset of $A \times A$, then wesaythat $R$ is a relation on A.
Thedomain ofa relationR is theset of all first elements oftheordered pairs which belongto $R$, and therangeofR is theset ofsecond elements.

## Example1:

Let $A=\{1,2,3,4\}$. Definea relation $R$ on Abywriting $(x, y) \in R$ ifx $<y$.Then $R=\{(1$,

$$
\text { 2), (1, 3),(1, 4), (2, 3),(2, 4), (3, 4)\}. }
$$

## Example2:

let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{R}=\{(1,2),(1,3),(3,2)\}$. Then Ris a relation on Asinceit is a subset of $\mathrm{A} \times \mathrm{A}$ with respect to this relation:

$$
1 R 2,1 R 3,3 R 2 \text { but }(1,1) \notin R \&(2,1) \notin R
$$

Thedomain ofR is $\{1,3\}$ and
The rangeofR is $\{2,3\}$

## Example3:

Let $A=\{1,2,3\}$.DefinearelationRonAbywriting $(x, y) \in R$,suchthat $a \geq b$, list the element ofR
$\mathrm{aRb} \leftrightarrow \mathrm{a} \geq \mathrm{b}, \mathrm{a}, \mathrm{b} \in \mathrm{A}$
$\therefore \mathrm{R}=\{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)\}$.

## Example4:

A relation on thesetZofintegers is " m divides n ." A common notation forthis relation is to writem|nwhen $m$ divides $n$. Thus $6 \mid 30 \quad$ but $7 \nmid 25$.

## Representation ofrelations:

1) Bylanguage
2) Byordered pairs
3) Byarrow form
4) Bymatrixform
5) Bycoordinates
6) By graphform

## Example:

Let $A=\{1,2,3\}$, therelation $R$ on Asuch that: $a R b \leftrightarrow a>b ; \quad a, b \in A$

1) Bylanguage:

$$
\mathrm{R}=\{(\mathrm{a}, \mathrm{~b}): \mathrm{a}, \mathrm{~b} \in \mathrm{~A} \text { and } \mathrm{aRb} \leftrightarrow \mathrm{a}>\mathrm{b}\}
$$

2) Byordered pairs

$$
\mathrm{R}=\{(2,1),(3,1),(3,2)\}
$$

3) Byarrowform

4) Bymatrixform

|  | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 |
| 3 | 1 | 1 | 0 |

5) Bycoordinates

6) By graphform


## TYPESOF RELATIONS:

## Properties ofrelations:

Let R bea relation on theset A

1) Reflexive:Risreflexiveif: $\forall a \in A \rightarrow a R a o r(a, a) \in R ; \forall a, b \in A$..ThusR isnot reflexiveifthereexists $a \in$ Asuch that $(a, a) \notin R$.
2) Symmetric: $\mathrm{aRb} \rightarrow \mathrm{bRa} \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$. ifwhenever $(a, b) \in R$ then $(b, a) \in R$. Thus $R$ is not symmetricifthere exists $a, b \in \operatorname{Asuch}$ that $(a, b) \in \operatorname{Rbut}(b, a) \notin R$.
3) Transitive: $\mathrm{aRb} \wedge \mathrm{bRc} \rightarrow \mathrm{aRc}$.thatis, ifwhenever $(a, b),(b, c) \in R$ then $(a, c) \in R$. Thus $R$ is not transitiveifthereexist $a, b, c \in R$ such that $(a, b),(b$, $c) \in \operatorname{Rbut}(a, c) \notin R$.
4) Equivalence relation :it is Reflexive\&Symmetric\&Transitive. That is,Ris an equivalence relation on Sifit has the followingthreeproperties:
a-For every $a \in S, a R a$. b-
If $a R b$, then $b R a$.
$c-I f a R b$ and $b R c$, then $a R c$.
5) Irreflexive: $\forall \mathrm{a} \in \mathrm{A}(\mathrm{a}, \mathrm{a}) \notin \mathrm{R}$
6) AntiSymmetric:ifaRbandbRa $\rightarrow a=b$
therelations $\geq$, $\leq$ and $\subseteq$ areantisymmetric
Example5: Considertherelation ofC ofset inclusion on anycollection ofsets:
7) $A \subset$ Aforanyset,so $\subset$ is reflexive
8) $A \subset B d o s e n o t ~ i m p l y B ~ \subset A$,so $\subset$ is notsymmetric
9) If $A \subset B a n d B \subset C$ then $A \subset C$, so $\subset$ is transitive
10) $\subset$ is reflexive, notsymmetric\&transitive, so $\subset$ isnot equivalencerelations
11) $\mathrm{A} \subset \mathrm{A}$, so $\subset$ is notIrreflexive
12) If $\mathrm{A} \subset \mathrm{BandB} \subset \mathrm{A}$ then $\mathrm{A}=\mathrm{B}$, so $\subset$ is anti-symmetric

Example6:IfA $=\{1,2,3\}$ and $\mathrm{R}=\{(1,1),(1,2),(2,1),(2,3)\}$
Is $R$ equivalence relation?

1) 2 is in $\operatorname{Abut}(2,2) \notin R$,so $R$ is not reflexive
2) $(2,3) \in R$ but $(3,2) \notin R$,so $R$ isnot symmetric
3) $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$, so is nottransitive So

R is not Equivalence relation

Example7 :What is theproperties oftherelation=?

1) $a=$ afor anyelement $a \in A$, so =is reflexive
2) $\mathrm{Ifa}=\mathrm{b}$ thenb $=\mathrm{a}$, so $=$ is symmetric
3) Ifa $=$ band $b=c$ then $a=c$, so $=$ is transitive
4) $=$ is (reflexive + symmetric + transitive), so $=$ is equivalence
5) $a=a, s o=i s ~ n o t I r r e f l e x i v e ~$
6) Ifa $=$ band $b=a$ then $a=b$, so $=$ is anti-symmetric

Remark:Thepropertiesofbeingsymmetric and being antisymmetricarenot negatives ofeach other.For example, therelation $R=\{(1,3),(3,1),(2,3)\}$ is neither symmetricnorantisymmetric. On theotherhand,the relation $R=\{(1,1),(2,2)\}$ is both symmetric andantisymmetric.

## -ReflexiveClosures

Let $R$ bearelation on aset $A$. Then:
$R \cup\{(a, a) \mid a \in A\}$ isthe reflexive closure of $R$.Inother words,reflexive $(\boldsymbol{R})$ is obtained bysimplyaddingto $R$ those elements $(a, a)$ in thediagonal whichdo not alreadybelongto $R$.

## -SymmetricClosures

$R \cup R^{-1}$ isthe symmetric closure of $R$.inother words, $\operatorname{symmetric}(\boldsymbol{R})$ isobtainedby addingto Rall pairs $(b, a)$ whenever $(a, b)$ belongs to $R$.
EXAMPLE :Considerthe relation $R=\{(1,1),(1,3),(2,4),(3,1),(3,3),(4,3)\}$ on theset $A=\{1,2,3,4\}$.Then
reflexive $(R)=R \cup\{(2,2),(4,4)\}$ and
symmetric $(R)=R \cup\{(4,2),(3,4)\}$

## -TransitiveClosure

$R$ is thetransitive closureof $R$, where:

$$
\mathrm{R}^{*}=\mathrm{R} \cup \mathrm{R}^{2} \cup \mathrm{R}^{3} \cup \ldots \cup \mathrm{R}^{\mathrm{n}} \text { and } R^{2}=R \circ R \text { and } R^{n}=R^{n-1} \circ R
$$

Theorm: Suppose $A$ is afiniteset with $n$ elements andLet $R$ bearelationon aset $A$ with $n$ elements. Then : $\quad \operatorname{transitive}(R)=R \cup \mathrm{R}^{2} \cup \mathrm{R}^{3} \cup \ldots \cup \mathrm{R}^{\mathrm{n}}$
EXAMPLE:Considertherelation $R=\{(1,2),(2,3),(3,3)\}$ on $A=\{1,2,3\}$. Then:
$R 2=R \circ R=\{(1,3),(2,3),(3,3)\}$ and
$R 3=R 2 \circ R=\{(1,3),(2,3),(3,3)\}$ then
$\operatorname{transitive}(R)=\{(1,2),(2,3),(3,3),(1,3)\}$

## Inverse relations:

$\mathrm{R}^{-1}=\{(\mathrm{b}, \mathrm{a}):(\mathrm{a}, \mathrm{b}) \in \mathrm{R}\}$
Example1:
Let R bethe followingrelation on $\mathrm{A}=\{1,2,3\} \mathrm{R}$
$=\{(1,2),(1,3),(2,3)\}$
$\therefore \mathrm{R}^{-1}=\{(2,1),(3,1),(3,2)\}$
ThematrixforR :

$$
\mathrm{MR}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
M_{R}^{-1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

$\mathrm{MR}^{-1}$ is thetransposeofmatrix $R$

## Composition ofrelations:

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ besets and let :

$$
\begin{array}{ll}
\mathrm{R}: \mathrm{A} \rightarrow \mathrm{~B} & (\mathrm{R} \subset \mathrm{~A} \times \mathrm{B}) \\
\mathrm{S}: \mathrm{B} \rightarrow \mathrm{C} & (\mathrm{~S} \subset \mathrm{~B} \times \mathrm{C})
\end{array}
$$

Thereis arelation fromAto C denoted by

$$
\mathrm{R}^{\circ} \mathrm{S} \text { (compositionofRandS): } \mathrm{A} \rightarrow \mathrm{C}
$$

$$
\mathrm{R}^{\circ} S=\{(\mathrm{a}, \mathrm{c}): \exists \mathrm{b} \in \mathrm{~B} \text { forwhich }(\mathrm{a}, \mathrm{~b}) \in \mathrm{R} \text { and }(\mathrm{b}, \mathrm{c}) \in \mathrm{S}\}
$$

Example: let $\mathrm{A}=\{1,2,3,4\}$

$$
\mathrm{B}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\}
$$

$$
C=\{x, y, z\}
$$

$$
\begin{aligned}
& \mathrm{R}=\{(1, \mathrm{a}),(2, \mathrm{~d}),(3, \mathrm{a}),(3, \mathrm{~d}),(3, \mathrm{~b})\} \\
& \mathrm{S}=\{(\mathrm{b}, \mathrm{x}),(\mathrm{b}, \mathrm{z}),(\mathrm{c}, \mathrm{y}),(\mathrm{d}, \mathrm{z})\}
\end{aligned}
$$

FindR ${ }^{\circ}$ S?
Solution :

1) The first waybyarrow form


Thereis anarrow(path)from 2 to d which is followed byan arrowfrom d to z

$$
2 \mathrm{Rd} \quad \text { and } \quad \mathrm{dSz} \Rightarrow 2\left(\mathrm{R}^{\circ} \mathrm{S}\right) \mathrm{z}
$$

and3 ( $\mathrm{R} \cdot \mathrm{S}$ ) xand $3(\mathrm{R} \cdot \mathrm{S}) \mathrm{z}$
so $\mathrm{R}^{\circ} \mathrm{S}=\{(3, \mathrm{x}),(3, \mathrm{z}),(2, \mathrm{z})\}$
2) Thesecond waybymatrix:

$$
\begin{aligned}
& \mathrm{MR}=\begin{array}{c}
\mathrm{a} \\
\mathbf{1} \\
\mathbf{1} \\
2 \\
3 \\
4
\end{array}\left[\begin{array}{cccc}
1 & 0 & 0 & \mathbf{c} \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \mathbf{M S}=\begin{array}{c}
\mathbf{a} \\
\mathrm{b} \\
c \\
d
\end{array}\left[\begin{array}{ccc}
\mathbf{x} & \mathrm{y} & z \\
0 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$\mathrm{R}^{\circ} \mathrm{S}=\mathrm{M}_{\mathrm{R}} \cdot \mathrm{M}_{\mathrm{S}}=$

$$
\begin{aligned}
& \\
& 1 \\
& 2 \\
& 2 \\
& \mathbf{3}
\end{aligned}\left[\begin{array}{ccc}
\mathbf{x} & \mathbf{y} & z \\
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\mathrm{R}^{\circ} \mathrm{S}=\{(2, \mathrm{z}),(3, \mathrm{x}),(3, \mathrm{z})\}
$$

Theorem 2.1:Let A,B,C and Dbesets. SupposeR is a relation from AtoB, S is a relation fromBto C , and Tis a relation from C toD. Then ( R $\left.{ }^{\circ} \mathrm{S}\right) \circ \mathrm{T}=\mathrm{R}{ }^{\circ}(\mathrm{S} \circ \mathrm{T})$
n-ARY RELATIONS
All the relations discussed above werebinaryrelations. Byan $n$-aryrelation, we mean aset ofordered $n$-tuples. For anyset $S$, asubset oftheproduct set $S^{n}$ is called an $n$ aryrelation on $S$.In particular, asubset of $S^{3}$ is called aternaryrelation on $S$. EXAMPLE (a) Let $L$ bealinein theplane. Then "betweenness"is aternaryrelation Ron the pointsof $L$; that is, $(a, b, c) \in R$, if $b$ lies between $a$ and con $L$.
(b) The equation $x 2+y 2+z 2=1$ determines aternaryrelation $T$ on theset Rof real numbers. That is, atriple $(x, y, z)$ belongs to $T \mathrm{if}(x, y, z)$ satisfies theequation, which means $(x, y, z)$ is the coordinates ofapoint in $\mathbf{R} 3$ on thesphere $S$ with radius 1 and centerat theorigin $O=(0,0,0)$.

## Homework:

1) Considerthe followingrelations on theset $A=\{1,2,3\}$ :
$R=\{(1,1),(1,2),(1,3),(3,3)\}$,
$S=\{(1,1)(1,2),(2,1)(2,2),(3,3)\}$,
$T=\{(1,1),(1,2),(2,2),(2,3)\}$
$\varnothing=$ emptyrelation
$A \times A=$ universal relation

Determine whetherornot each oftheaboverelations on $A$ is:
(a) reflexive; (b)symmetric; (c)transitive; (d) antisymmetric.
2) fortherelation $R=\{(a, a),(a, b),(b, c),(c, c)\}$ on theset $A=\{a, b, c\}$. Find: (a)reflexive $(R) ;(b)$ symmetric $(R) ;(c)$ transitive $(R)$.

## Function:

Function is an importantclass of relation.
Definition:
Let A,Bbe two nonemptysets,afunction $\mathrm{F}: \mathrm{A} \rightarrow$ Bis a rule whichassociates with each element ofAauniqueelement in B .
Theset Ais called thedomain ofthefunction, and theset Bis called therangeofthe function.

## Example1:

Considerthefunction $f(x)=x$, i.e., $f$ assignstoeachrealnumberitscube.Thentheimage of2is8,andso
we maywrite $f(2)=8$.

## Example2:

considerthe followingrelation on theset $\mathrm{A}=\{1,2,3\}$
$\mathrm{F}=\{(1,3),(2,3),(3,1)\}$
Fis a function

$\mathrm{G}=\{1,2\},(3,1)\}$
Gis not a function fromAto A

$\mathrm{H}=\{(1,3),(2,1),(1,2),(3,1)\}$
His not a function


## One-to-one ,onto andinvertiblefunctions :

1) One-to-one : afunctionF: $\mathrm{A} \rightarrow$ Bis saidto be one-to-oneifdifferentelements in thedomain (A)havedistinct images.
Or If $F(a)=F\left(a^{\prime}\right) \quad \Rightarrow \quad a=a^{\prime}$
2) Onto : $\mathrm{F}: \mathrm{A} \rightarrow$ Bis said tobe anonto function if each element ofBistheimageof some element of $A$.
$\forall b \in B \quad \exists \quad a \in A: F(a)=b$
3) Invertible (One-to-onecorrespondence)
$\mathrm{F}: \mathrm{A} \rightarrow$ Bisinvertible if itsinverse relationf ${ }^{-1}$ isa function $\mathrm{F}: \mathrm{B} \rightarrow \mathrm{A}$
$\mathrm{F}: \mathrm{A} \rightarrow$ Bis invertible ifandonlyifFisboth one-to-one and onto
$\mathrm{F}^{-1}:\{(\mathrm{b}, \mathrm{a}) \forall(\mathrm{a}, \mathrm{b}) \in \mathrm{F}\}$



notonetoone\&notonto

## Graphofa function:

Byareal polynomial function, wemeana function $f: \mathbf{R} \rightarrow \mathbf{R o f t h e}$ form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

wheretheaiarereal numbers. SinceRis an infiniteset, it would beimpossibleto plot each point ofthegraph.However, thegraph ofsuch a function can beapproximated by first plottingsomeofits points and then drawing asmooth curvethough thesepoints. The tablepoints areusuallyobtained from atable wherevarious values are assigned to xand the correspondingvalueof $f(x)$ computed.

Example1: let $f: R \rightarrow R$ and $f(x)=x^{3}$, find $f(x)$

$$
\begin{aligned}
& f(3)=3^{3}=27 \\
& f(-2)=(-2)^{3}=-8
\end{aligned}
$$

| $x$ | $f(x)$ |
| :---: | ---: |
| -4 | -27 |
| 2 | 8 |
| 1 | -1 |
| 0 | 0 |
| 1 | 1 |
| 2 | 3 |
| 3 | 27 |



Example2: let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $f(x)=x 2-2 x-3$, find $\mathrm{f}(\mathrm{x})$

| $x$ | $f(x)$ |
| ---: | ---: |
| -2 | 5 |
| -1 | 0 |
| 0 | -3 |
| 1 | -4 |
| 2 | 3 |
| 3 | 0 |
| 4 | 5 |



## Geometrical CharacterizationofOne-to-OneandOnto Functions

Forthe functions oftheform $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$. thegraphs ofsuch functions maybeplotted in theCartesian planeand functions maybeidentified with theirgraphs, so the concepts of beingone-to-oneand onto havesomegeometricalmeaning:
(1) $f: R \rightarrow R$ is said to beone-to-oneifthere areno 2 distinct pairs (a1,b)and (a2,b)in the graph one-to-oneorifeach horizontal lineintersects thegraph offin at most onepoint.

(2) $f: R \rightarrow R$ is an onto function if each horizontal lineintersects thegraphoffat oneor morepoints (atleast once)


$$
f_{3}(x)=x^{3}-2 x^{2}-5 x+6
$$

(3) iffis both one-to-one and onto, i.e. invertible, then each horizontal line will intersect thegraph offatexactlyonepoint.


$$
f_{4}(x)=x^{3}
$$



## $f(x)$ NOT (ONE-TO-ONE)\& NOT (ONTO)

## Compositionoffunction:

Letf: $\mathrm{A} \rightarrow \mathrm{B}$ andg: $\mathrm{B} \rightarrow \mathrm{C}$,tofind the composition functiongof: $\mathrm{A} \rightarrow \mathrm{C}$
$(\mathrm{gof})(\mathrm{a})=\mathrm{g}(\mathrm{f}(\mathrm{a}))=\mathrm{g}(\mathrm{y})=\mathrm{t}$
(gof)(b) $=g(f(b))=g(x)=s$
$(\mathrm{gof})(\mathrm{c})=\mathrm{g}(\mathrm{f}(\mathrm{c}))=\mathrm{g}(\mathrm{y})=\mathrm{t}$


## SEQUENCES OFSETS

Asequenceis a function from theset $\mathbf{N}=\{1,2,3, \ldots\}$ ofpositiveintegersinto aset $A$. Thenotation $a_{n}$ is used to denotetheimageoftheintegern. Thus asequenceis usually denoted by

$$
a 1, a 2, a 3, \ldots
$$

A finitesequenceoveraset Ais a function from $\{1,2, \ldots, m\}$ into $A$,Such a finite sequenceiscalled alist.

## EXAMPLE

(a) The followingaretwo familiarsequences:
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ which may be defined by $a_{n}=\frac{1}{n}$;

$$
1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \text { which may be defined by } b_{n}=2^{-n}
$$

Notethat the first sequencebegins with $n=1$ and thesecond sequencebegins with $n=0$.
(b) Thesequence $1,-1,1,-1, \ldots$ maybedefined by $a n=(-1)^{n}$ wherethesequencebegins with $n=0$.

## Summation Symbol, Sums

Hereweintroduce thesummationsymbol $\sum$ (theGreeklettersigma).Considera sequence $a 1, a 2, a 3, \ldots$..Then wedefinethe following:

$$
\sum_{J=1}^{\mathrm{n}} a j=a 1+a 2+\cdots \cdot+a n
$$

## EXAMPLE :

5
$\sum j^{2}=2^{2}+3^{2}+4^{2}+5^{2}=4+9+16+25=54$
$j=2$
$n$
$\sum j=1+2+\cdots+n=n(n+1) / 2, \quad$ forexample, $1+2+\cdots+50=(50 \times 51) / 2=1275$ $j=1$

## RECURSIVELY DEFINEDFUNCTIONS

A function is said to berecursivelydefined ifthefunction definition refers to itself.In order forthedefinition not to be circular, the function definition must havethe following two properties:
(1) Theremust be certainarguments, called basevalues, for which thefunction does not referto itself.
(2) Each timethefunction does referto itself, theargument ofthe function must be closer to abasevalue.
A recursive function with thesetwo properties is said to bewell-defined.

## FactorialFunction

Theproduct ofthepositiveintegers from 1 to $n$, inclusive, is called " $n$ factorial" and is usuallydenoted byn $!$. That is,

$$
n!=n(n-1)(n-2) \cdot \cdot 3 \cdot 2 \cdot 1
$$

where $0!=1$, so that thefunction is defined forall nonnegativeintegers. Thus:
$0!=1$,
$2!=2.1=2$,
$4!=4.3 .2 .1=24$
$1!=1$,
$3!=3.2 .1=6$,
$6!=6.5 .4 .3 .2 .1=720$

This is true for everypositiveintegern; that is,

$$
n!=n \cdot(n-1)!
$$

Accordingly, thefactorial function mayalso bedefined as follows:

## Definition ofFactorialFunction:

(a) If $n=0$, then $n!=1$.
(b) If $n>0$, then $n!=n \cdot(n-1)$ !

Thedefinition of $n$ !is recursive, sinceit refers to itself when it uses $(n-1)$ !. However:
(1) Thevalueof $n$ !is explicitlygiven when $n=0$ (thus 0 is abasevalue).
(2) Thevalueof $n$ !forarbitrary $n$ is defined in terms ofasmallervalueof $n$ which is closerto thebasevalue0.
Accordingly, thedefinition is not circular, or, in other words, the function is well-defined.
EXAMPLE :the4!Canbe calculated in 9 stepsusingtherecursivedefinition .
(1) $4!=4 \cdot 3$ !

$$
\begin{equation*}
3!=3 \cdot 2! \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
2!=2 \cdot 1! \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
1!=1 \cdot 0! \tag{4}
\end{equation*}
$$

$$
\begin{array}{r}
0!=1 \\
1!=1 \cdot 1=1 \tag{6}
\end{array}
$$

$$
\begin{equation*}
2!=2 \cdot 1=2 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
3!=3 \cdot 2=6 \tag{8}
\end{equation*}
$$

(9) $4!=4 \cdot 6=24$

## Fibonacci Sequence

TheFibonacci sequence(usuallydenoted byF0,F1, F2, . . .)is as follows:

$$
0,1,1,2,3,5,8,13,21,34,55, \ldots
$$

That is, $\mathrm{F} 0=0$ andF1 $=1$ and each succeedingterm is thesum ofthetwo preceding terms.
Forexample, thenext two terms ofthesequenceare

$$
34+55=89 \text { and } 55+89=144
$$

Fibonacci Sequence canbedefined:
(a) $\mathrm{Ifn}=0$, orn $=1$, thenFn $=\mathrm{n}$.
(b) Ifn $>1$, then $\mathrm{Fn}=\mathrm{F}_{\mathrm{n}-2}+\mathrm{F}_{\mathrm{n}-1}$.

Where: Thebasevaluesare 0 and 1 ,and thevalueofFn is defined in terms ofsmaller values ofn whicharecloserto thebasevalues.
Accordingly, this function is well-defined.

## Logicandpropositional calculus

Aproposition (orstatement)is adeclarativestatement which is trueorfalse, but not both. Example:the followingsixsentences:
(1) Ice floats in water.
(2) Chinais in Europe.
(3) $2+2=4$
(4) $2+2=5$
(5) Whereareyougoing?
(6) Doyourhomework.

The first fourarepropositions, thelast two arenot. Also, (1) and (3) aretrue, but (2) and(4)are false.

## CompoundPropositions

It is theproposition thatcomposed ofsubpropositions and various connectives.
Primitiveproposition istheproposition that cannot bebroken down into simplerpropositions. For example, the abovepropositions areprimitivepropositions, while:
"Roses arered and violets areblue."and
"John is smart orhestudies everynight.",Arecompound.

## BASICLOGICAL OPERATIONS

1-Conjunction, $p^{\wedge} q$
2-Disjunction, $p \vee q$
3-Negation, $\neg p$

| $p$ | $q$ | $p \wedge q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | F |


| $p$ | $q$ | $p \vee q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |


| $p$ | $\neg p$ |
| :---: | :---: |
| T | F |
| F | T |

(a) " $p$ and $q$ "
(b) " $p$ or $q$ "
(c) "not $p$ "

EXAMPLE:Considerthefollowingfourstatements:
(i) Icefloats in waterand $2+2=4$.
(ii) Icefloats in waterand $2+2=5$.
(iii) Chinais in Europeand $2+2=4$.
(iv) Chinais in Europeand $2+2=5$.

Onlythefirst statement is true. Each oftheothersis falsesince at least oneofits substatements is false.

EXAMPLE:Considerthefollowingfourstatements:
(i) Icefloats in wateror $2+2=4$.
(ii) Icefloats in wateror $2+2=5$.
(iii) Chinais in Europeor2 $+2=4$.
(iv) Chinais in Europeor2 $+2=5$.

Onlythelast statement (iv)is false. Each oftheothers is truesinceat leastoneofits substatements is true.

EXAMPLE:Considerthefollowingsix statements:
(a1)Ice floats in water. (a2)It is falsethat ice floats in water. (a3)Icedoes not float in water. (b1) $2+2=5$
(b2)It is falsethat $2+2=5$. (b3) $2+2 \neq 5$

Then (a2) and (a3) areeach thenegation of $(a 1)$; and ( $b 2$ ) and ( $b 3$ ) are eachthenegation of ( $b 1$ ). Since (a1) is true, (a2) and (a3) are false;and since (b1)is false, (b2) and (b3) aretrue.

## PROPOSITIONS ANDTRUTH TABLES

Thetruth table forthe compoundproposition $\neg(\mathrm{p} \wedge \neg \mathrm{q})$ is:

| $p$ | $q$ | $\neg q$ | $p \wedge \neg q$ | $\neg(p \wedge \neg q)$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | F | F | T |
| T | F | T | T | F |
| F | T | F | F | T |
| F | F | T | F | T |

## TAUTOLOGIES AND CONTRADICTIONS

Somepropositions $\mathrm{P}(\mathrm{p}, \mathrm{q}, \ldots)$ contain onlyTin thelast column oftheirtruth tables or, in other words, theyaretrueforanytruth values oftheirvariables. Such propositions arecalled tautologies. Analogously, aproposition $\mathrm{P}(\mathrm{p}, \mathrm{q}, \ldots)$ is called acontradictionifit contains onlyF in thelast column ofits truth tableor, in other words, ifit is false for anytruth values ofits variables.For example, theproposition "p ornot p,"that is, $p \vee \neg p$, is atautology, and the proposition "p and not p ,"that is, $\mathrm{p} \wedge \neg \mathrm{p}$, is a contradiction.

| $p$ | $\neg p$ | $p \vee \neg p$ |
| :---: | :---: | :---: |
| T | F | T |
| F | T | T |

(a) $p \vee \neg p$

| $p$ | $\neg p$ | $p \wedge \neg p$ |
| :---: | :---: | :---: |
| T | F | F |
| F | T | F |

(b) $p \wedge \neg p$

Notethat thenegation ofatautologyis acontradiction sinceit is always false, and thenegation of a contradiction is atautologysinceit is always true.

## LOGICAL EQUIVALENCE

Two propositions $\mathrm{P}(\mathrm{p}, \mathrm{q}, \ldots)$ and $\mathrm{Q}(\mathrm{p}, \mathrm{q}, \ldots)$ aresaid to belogicallyequivalent, or equal, denoted $\operatorname{byP}(\mathrm{p}, \mathrm{q}, \ldots) \equiv \mathrm{Q}(\mathrm{p}, \mathrm{q}, \ldots)$ ) fth eyhaveidentical truth tables.

| $p$ | $q$ | $p \wedge q$ | $\neg(p \wedge q)$ |
| :---: | :---: | :---: | :---: |
| T | T | T | F |
| T | F | F | T |
| F | T | F | T |
| F | F | F | T |

(a) $\neg(p \wedge q)$

| $p$ | $q$ | $\neg p$ | $\neg q$ | $\neg p \vee \neg q$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | F | F | F |
| T | F | F | T | T |
| F | T | T | F | T |
| F | F | T | T | T |

(b) $\neg p \vee \neg q$
for example, thetruth tables of $\neg(\mathrm{p} \wedge \mathrm{q})$ and $\neg \mathrm{p} \vee \neg \mathrm{q}$, both truth tables arethesame, that is, both propositions are falsein the first case and truein theotherthree cases.Accordingly, we can write:

$$
\neg(\mathrm{p} \wedge \mathrm{q}) \equiv \neg \mathrm{p} \vee \neg \mathrm{q}
$$

## ALGEBRAOF PROPOSITIONS

| Idempotent laws: | (1a) $p \vee p \equiv p$ | (1b) $p \wedge p \equiv p$ |
| :--- | :--- | :--- |
| Associative laws: | (2a) $(p \vee q) \vee r \equiv p \vee(q \vee r)$ | (2b) $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$ |
| Commutative laws: | (3a) $p \vee q \equiv q \vee p$ | (3b) $p \wedge q \equiv q \wedge p$ |$|$| Distributive laws: | (4a) $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$ | (4b) $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ |
| :--- | :--- | :--- |
| Identity laws: | (5a) $p \vee F \equiv p$ <br> (6a) $p \vee T \equiv T$ | (5b) $p \wedge T \equiv p$ <br> (6b) $p \wedge F \equiv F$ |
| Involution law: | (7) $\neg \neg p \equiv p$ | (8b) $p \wedge \neg p \equiv F$ <br> (9b) $\neg F \equiv T$ |
| Complement laws: | (8a) $p \vee \neg p \equiv T$ <br> (9a) $\neg T \equiv F$ | (10b) $\neg(p \wedge q) \equiv \neg p \vee \neg q$ |
| DeMorgan's laws: | (10a) $\neg(p \vee q) \equiv \neg p \wedge \neg q$ |  |

## CONDITIONAL ANDBICONDITIONAL STATEMENTS

Manystatements, particularlyin mathematics, areofthe form "Ifp then q." Such statements are called conditional statements and aredenoted by: $\quad \mathrm{p} \rightarrow \mathrm{q}$
The conditional $\mathrm{p} \rightarrow \mathrm{q}$ is frequentlyread " p implies q "or "p onlyifq."
Another common statement is ofthe form "p ifand onlyifq." Such statements arecalled biconditional statementsandare denotedby $\mathrm{p} \leftrightarrow \mathrm{q}$

| $p$ | $q$ | $p \rightarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |

(a) $p \rightarrow q$

| $p$ | $q$ | $p \leftrightarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | T |

(b) $p \leftrightarrow q$
(a) Theconditional $\mathrm{p} \rightarrow \mathrm{q}$ is falseonlywhen thefirst part p is true and thesecond part q is false. Accordingly, when $p$ is false, the conditional $p \rightarrow q$ is true regardless ofthetruth valueofq.
(b) Thebiconditionalp $\leftrightarrow q$ istrue whenever pand qhavethe sametruthvaluesand false otherwise.
Notethat thetruth tableofp $\rightarrow \mathrm{q}$ and $\neg \mathrm{p} \vee \mathrm{q}$ and areidentical, that is, theyarebothfalseonly in thesecond case. Accordingly, $\mathrm{p} \rightarrow \mathrm{q}$ is logicallyequivalent to $\neg \mathrm{p} \vee \mathrm{q}$; that
is, $\mathrm{p} \rightarrow \mathrm{q} \equiv \neg \mathrm{p} \vee \mathrm{q}$

| $p$ | $q$ | $\neg p$ | $\neg p \vee q$ |
| :---: | :---: | :---: | :---: |
| T | T | F | T |
| T | F | F | F |
| F | T | T | T |
| F | F | T | T |

(c) $\neg p \vee q$

| $p$ | $q$ | $p \rightarrow q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |
| (a) $p \rightarrow q$ |  |  |

