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1. Chapter one: Introduction 

1.1 Introduction 

         The word ceramic is derived from the Greek words ‘kéramos’ - ground, clay; 

kerameoús - made of clay. The term covers inorganic non-metallic materials that 

have been permanently hardened by firing at a high temperature [1]. 

       The first step in ceramic processing is preparing the ceramic powder, the 

second step is moulding (forming). There are many methods of forming ceramics, 

mainly depending on the final desired shape of a product. The most widespread 

methods of forming ceramics can be divided into several groups as shown in figure 

(1-1) [1]. 

    Some of the mechanical properties of ceramics have always been attractive to 

manufacturers. Their hardness, durability, and ability to operate effectively at high 

temperatures are unsurpassed by any metal, but their brittleness and difficulty in 

manufacturing complex shapes have been repelling factors to manufacturers [2].
 

      Slip casting is an old and traditional process which comprises casting a slip 

(slurry) of particles such as ceramic particles, metallic particles, etc. which can be 

used as long as they are insoluble in solvents, and in particularly it is a method 

suitable for forming a cast article of high quality complex shaped bodies [3]. 

     The common casting methods involve drain casting and solid casting; hollow 

bodies such as crucibles are prepared by drain casting whereas non hollow bodies 

are prepared by solid casting. Casting process begins by filling a mould with 

ceramic slurry having a pourable consistency. The cast is produced when a 

physical and/or thermal changes causes the slurry to develop a yield strength. 

These common casting methods are based on colloidal system in which removal of 

the liquid is used to consolidate particles suspended in slurry. slip casting 



INTRODUCTION 
 

Chapter 1 Page - 2 - 
 

consolidation of particles is accomplished as the liquid flows through a porous 

medium under a pressure gradient [4]. 

 

 

 

Figure (1-1): The most widespread ceramics forming methods. 
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       The Alumina (Al2O3) is old and a tremendous amount of research work has 

been done over the years. For example, a database (INSPEC) search with the 

keywords “alumina” or “Al2O3” results in (91,700) hits from (1969-2013), i.e., 

more than (5) published works per day for the last (44 years). However, alumina 

was known long before that. Even in antiquity several naturally occurring forms of 

alumina were known, such as the mineral corundum and the gemstones emery, 

ruby, and sapphire [5]. Due to this long history of research most intrinsic properties 

of alumina are known, but even today a significant part of the published work deals 

with alumina materials science on a fundamental level. The main reason is 

arguably the complexity (and usefulness) of the alumina polymorphs (i.e., 

crystalline phases). The most important, and common, polymorphs are denoted α, 

γ, θ, and κ). In addition to these, there are reports on more than twenty other 

crystalline phases [5].The (α) phase is the thermodynamically stable polymorph 

and occurs naturally as corundum or sapphire, while the other phases are 

metastable in bulk form (but can still be produced in certain processes where 

thermal equilibrium is not reached, e.g., thin film growth) [6]. 

       Aluminum oxide (alumina; Al2O3) has advantages such as its thermal, 

chemical, and physical properties when compared with several ceramics materials, 

and is widely used for firebricks, abrasives and integrated circuit (IC) packages. 

Industrially, more than about (45 million) tons of (Al2O3) are produced in the 

world, which are mainly manufactured by the Bayer method using bauxite, and 

about (40 million) tons are consumed for refining aluminum [7]. Furthermore 

about (5 million) tons of (Al2O3) are produced as chemical grade and used for 

various purposes.  Moreover about (1.5 million) ton (Al2O3) is used as raw powder 

in the world [7, 8]. 
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1.2 Previous Studies: 

      A. Tsetsekou et al (2000) [9] identified the conditions for the preparation of 

stable alumina slurries with high solids content for the production of slip-cast 

objects with improved properties, as well as to correlate the slurry properties to the 

final object properties. For slurry stabilization, three commercial dispersants were 

compared. It was found that for each dispersant there exists an optimum 

concentration range within which low viscosity is achieved for a slurry of high 

solids content. In addition to the slurry solids content, the choice of a particular 

dispersant also affects the slurry viscosity and through that the casting rate. The 

combination of high slurry solids content and slower casting rate results in objects 

with higher densities both in the green and fired state. 

 

       C. Y. Chen et al (2000) [10] mullite specimens and mullite/alumina 

composites are prepared by reaction sintering kaolinite and alumina at a 

temperature above (1000 ºC). The phase and microstructural evolution of the 

specimens and their mechanical properties are investigated. Primary mullite 

appears at a temperature around (1200 ºC). The alumina particles are inert to the 

formation of primary mullite. Alumina starts to react with the silica in glassy phase 

to form secondary mullite above (1300 ºC). The formation of secondary mullite 

decreases the amount of glassy phase. Furthermore, the addition of alumina 

reduces the size of mullite grains and their aspect ratio. The strength and toughness 

of the resulting mullite increase with the increase of alumina content; however, the 

mechanical properties of the mullite and mullite/alumina composites are lower 

than those of alumina for their relatively low density. 
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    Y. Zhang and J. Binner (2001) [11] Raising the slip temperature during slip 

casting is known to increase the casting rate, this is believed to be via a decrease in 

water viscosity. However, differences have been observed when using convection 

and microwave heating to raise the temperature. In the present work, it has been 

found that the use of short-pulses of microwave energy to heat the casting system 

dynamically causes a greater degree of acceleration than when using conventional 

radiant heating. The increased uptake of water from the slip by the porous mould is 

believed to be indicative of a vaporisation–condensation cycle mechanism. A 

negative pressure would be created during the condensation stage of the cycle, 

acting as an additional suction force to the capillary action and hence accelerating 

the casting process.  

 

      L. Braginsky et al (2004) [12] the temperature dependence of the thermal 

conductivity of porous, nanostructured alumina has been measured. It is shown that 

this dependence can be described with a single parameter, the value of which 

depends on the intergrain boundary structure and is independent of the grain size 

and porosity 

 

       M. Hashiba et al (2005) [13] the dispersion and fluidity of aqueous platelet 

(γ) alumina slurries were enhanced by addition of ammonium polyacrylate (PAA) 

as a dispersant at (PH 10). Magnesia powder was mixed with the slurries using a 

planetary mixer for (150 s) after ball milling of the slurries for (24 h). A porosity of 

about (60%) and strength of (45 MPa) were obtained in bodies fired at (1300 ºC) 

and the mean pore diameter was (0.6 µm). 

 

      J. M. Andersson (2005) [6] in this work, physical phenomena related to the 

growth and phase formation of alumina, (Al2O3), are investigated by experiments 
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and computer calculations. The metastable phases are involved in transition 

sequences, which all irreversibly end in the transformation to the stable (α) phase 

at about (1050 °C). As a consequence, the metastable aluminas, which can be 

grown at low temperatures, cannot be used in high temperature applications, since 

they are destroyed by the transformation into (α). 

 

      Y. Shin et al (2006) [14] investigate and report the effects of a cationic 

polyelectrolyte, polydiallydimethylammonium chloride (PDADMAC), on the 

stability of nano-sized alumina (α-Al2O3) suspension. Free (PDADMAC) 

electrolyte in suspension results in increasing viscosity of (α- Al2O3) suspensions 

dispersed with (PDADMAC) at alkaline and neutral (pH). However, non-adsorbed 

free (PDADMAC) in suspension do not contribute to viscosity increase in acidic 

(α- Al2O3) suspensions and (α- Al2O3) suspensions dispersed with (PDADMAC) 

show the best flow behavior at acidic (pH). 

 

     I. ZEDNIKOVÁ et al (2007) [15] prepared functionally graded zirconia-

alumina ceramics. The important factor in the preparation of these ceramics is the 

study of length changes. The first part of this work focuses on the preparation of 

bodies with variable zirconia-alumina composition. The optimal deflocculant 

content was proposed based on colloidal and rheological properties of the (Al2O3–

ZrO2) systems. It was observed that increasing volume of deflocculant causes the 

temperature of shrinkage to rise. In the next part two characteristics were studied 

on zirconia samples - whether the difference in dilatation changes is caused by 

firing of deflocculant or by porosity of bodies. It was observed that dilatation 

changes are caused by the porosity and distribution of pores within the dried 

samples at the low temperature range. The content of deflocculant influences the 

size of linear changes. 
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       S. Cava et al (2007) [16] Show that nanocrystalline (Al2O3) powders have 

been synthesized by the polymeric precursor method. A study of the evolution of 

crystalline phases of obtained powders was accomplished through X-ray 

diffraction, micro-Raman spectroscopy and refinement of the structures through 

the Rietveld method. The results obtained allow the identification of three steps on 

the (Ɣ-Al2O3) to (α-Al2O3) phase transition. The single phase (α-Al2O3) powder 

was obtained after heat-treatment at (1050 ◦C) for (2 h). A study of the morphology 

of the particles was accomplished through measures of crystallite size, specific 

surface area and transmission electronic microscopy. The particle size is closely 

related to (Ɣ-Al2O3) to (α-Al2O3) phase transition. 

 

       P. Silakate et al (2008) [17] have prepared tubular alumina filters by a slip 

casting process. The flocculation of alumina slip was studied as a function of (pH) 

and (PAM) concentrations. The particle size and viscosity of alumina slip were 

determined by using laser diffraction technique and Brookfield (DV III+) 

viscometer, respectively. Pore size and pore size distribution of the alumina filters 

were measured by using Mercury Porosimeter. From the experimental results, the 

isoelectric point (i.e.p.) of the alumina slip showed at (pH 7) and gave the largest 

particle size. Furthermore, the flocculation by (PAM) increased particle sizes, 

particle size distribution and viscosity of alumina slip due to polymer bridging on 

surface of particles. However, the addition of electrolyte in (PAM) solutions 

facilitate flocculation of particles due to the compression of electrical double layer 

and increase in the van der Waals attractive forces. The larger floc size resulted in 

bigger pore size in the filter. The average pore size of fired filter at (1500
o
C) is in 

the range of (0.32 – 0.34) μm. 
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       C. Falamaki and M. Beyhaghi (2009) [18] present slip casting process for 

the manufacture of tubular alumina microfiltration membranes. An initial powder 

of an average particle size of (2 μm) and broad size distribution (up to 10 μm) for 

imparting initial large pores during the slip casting process was used. The 

dispersing ability of sodium carboxymethylcellulose (Na-CMC) and Tiron 

(C6H4O8S2Na2·H2O) for slips containing (40, 50 and 60 wt. %) of alumina was 

studied. They show that (Na-CMC) is not able to act as a proper dispersant. The 

kinetics of the slip casting process and time dependences of cast twodimensional 

profile were investigated in function of slip concentration. The effect of sintering 

temperature on the pore microstructure of the final products was investigated.  

 

       S. Yi-hua et al (2009) [19] optimize the conditions of (ZnO-Al2O3) aqueous 

suspensions and slip casting to obtain dense green compacts and further to obtain 

high density (ZnO -Al2O3) ceramic composites. The Zeta potential of raw powders 

was measured. (ZnO and Al2O3) powders have lower Zeta potential than (−45 mV) 

commonly at (pH 8−10.3) with polyacrylic acid (PAA) added. They have 

investigate the influence of (pH) and the mass fraction of the additives on the 

stability and fluidity of the suspensions added with (PAA) and polyethylene glycol 

(PEG) by experiments of viscosity and sedimentation.  

 

       L. Zhang et al (2010) [20] have processed Textured (α-alumina) ceramics by 

slip casting suspensions with different mean-sized particles in a strong magnetic 

field of (9.4 T), followed by pressure less sintering at (1650 ºC) for (2 h) in air. The 

dispersed crystalline particles in the colloidal suspensions could be oriented in a 

strong magnet when the energy of the crystal anisotropy overcomes the thermal 

motion energy. They confirmed by the experimental results that the orientation in 

the green deposit increased with the increasing starting powder size. After 
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sintering, however, anisotropic grain growth accompanied with excellent texture 

formation was observed for the ceramic fabricated from the finest starting powder 

grade, whereas the modest orientation factor of the largest starting powder-based 

ceramic hardly changed after sintering. 

 

 

1.3 Aims of Study  

 Preparing ceramic bodies from alumina powder by slip casting technique with 

high porosity as well as good mechanical properties and low thermal 

conductivity to make a possibility of using it in the thermal insulation, filters, 

light Blocks, spark plugs and furnaces lining. 

 Using a plastic ceramic powder as a binder for alumina powder. 

 Studying the effect of solid content on the physical properties. 

  Studying the effects of kaolinite addition on the mechanical & physical 

properties. 

 Studying the effects of nanoparticle alumina on the mechanical & physical 

properties. 

 Studying the effects of porosity on the thermal conductivity & mechanical 

properties. 

 Studying the effects of sintering temperature on the physical & mechanical 

properties. 
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2. Chapter Two: Theoretical Concept 

2.1 Advanced Ceramics 

       Ceramic materials are utilized for many different applications in a variety of 

fields. There are many types of ceramics, each with unique individual properties. 

Some examples of common ceramics include glasses, cermets, heavy clays, 

abrasives, and some dielectric materials. Advanced ceramics have been used in 

many applications for the last (50 years). The possible uses of these ceramics are 

seemingly limitless [21]. 

       These materials are compounds that are usually composed of metallic and 

nonmetallic elements. The classification of a ceramic falls into one of three 

categories: Oxides, such as alumina and zirconia; non-oxides, which include 

nitrides, borides, and silicides, and composites, which are reinforced combinations 

of oxides and non-oxides [22]. 

       In order to use a ceramic for any application, ceramic materials must be 

formed into a desired shape by some processing method. This process is done by 

utilizing fine powders. There are many methods to obtain a desired ceramic 

structure of varying size and shape such as: Dry Pressing (Uniaxial Die Pressing 

and Isostatic Pressing), Spraying, Injection and Extrusion and Slurry Casting 

(Pressure Casting, Gel Casting, slip casting and Tape Casting), Each method 

utilizes various equipment and ingredients to create a desired result [23]. 

       This research was specifically related to the slip casting technique. 
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2.2 Slip casting forming method  

       Slip-casting of ceramics has made it possible to create complex shapes while 

maintaining the desirable characteristics of the ceramic. Slip-casting is a relatively 

simple and inexpensive method used to produce ceramics. The alumina powder is 

dispersed in an aqueous solution then poured into a gypsum mould. The mould 

removes the water from the solution leaving the powder in a tightly packed green 

state. Because of the diversity in the sizes and shapes of the moulds, the ceramic 

bodies can take on any number of shapes [3].
 

 

 

Figure (2-1): Show the sample preparation steps by slip casting technique [3]. 
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2.2.1 Mould making   

       The most commonly used porous mould material for slip casting is gypsum 

(CaSO4.2H2O) formed from the reaction between Plaster of Paris (CaSO4. 0.5H2O) 

and water [4]: 

CaSO4. 0.5H2O + 1.5 H2O →   CaSO4.2H2O     

       This technology is used because of the ability to fabricate moulds with good 

surface smoothness and details, short setting time, small dimensional expansion 

(about 0.17%) on setting which aids release from models and relatively low cost. A 

range of (60/100) to (80/100) water/plaster weight ratio is used in slurries for 

production moulds [3].  

     The mould must satisfy the following three requirements:- 

1. The casting mould must be so porous as to absorb a liquid such as water, 

alcohol, etc. as a solvent for the slip, though it is not a disadvantage that a part of 

the casting mould fails to absorb the solvent [3]. 

2. Mould material must have such strength above a given level as to ensure the 

mould-making work, for example, compression strength of at least (3-4kgf/cm
2
) 

[3]. 

3. The strength of the casting mould must be considerably lowered within a shape 

maintainable range by heating. More specifically, a compression strength of about 

(1kgf/cm
2
) can be maintained [3]. 
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2.2.2 Slurry preparation 

       The next important thing required in case of casting process is to disperse the 

ceramic powders in an aqueous medium which has to fulfill several requirements 

such as suspended particles should not be settle fast under the effect of gravity and 

should be able to remain in suspended state or else segregation can occur and may 

cause density inhomogeneities in the casted bodies [24].  

       Secondly, the slurries should be easily reproduced and must be insensitive to 

slight variations in solids content, chemical composition and time durations. For 

the casting of alumina based bodies generally slip with high solid content is 

preferred which not only ensures reasonable casting rates but also reduce energy 

consumption, which is required, in the subsequent drying stages due to the lower 

moisture content that has to be removed [25]. 

       The use of very fine particles, which is the prevailing trend in ceramic 

processing, enhances sintering rates of the bodies. However use of both fine 

powder and high solid content in the slip leads to increase in the viscosity because 

the increases of particle-particle interactions that increase complexities [4].
 

        

       The tendency of ceramic powders to agglomerate which is due to the intra-

particle Vander Waals forces made unstable, but that can be eliminated with the 

addition of appropriate dispersants which alter the powder surface properties and 

made a stable slurry as shown in the figure (2-2) [26].
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Figure (2-2): (A) unstable and (B) stable colloidal dispersion [26]. 
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         These dispersants modify net Charge at the particle surface and that 

development affects the distribution of ions in the neighboring interfacial region, 

resulting in an increased concentration of (counter ions – ions) of Charge opposite 

to that of the particle - close to the surface. Thus an electrical double layer is 

formed in the region of the particle-liquid interface [27]. 

       The double layer (figure (2-4)) may be considered to consist of two parts [27]: 

• An inner region of strongly bound ions known as the Stern layer 

• An outer layer of loosely associated ions called the diffuse layer.  

The potential in this region, therefore, decays as the distance from the surface 

increases until, at sufficient distance, it reaches the bulk solution value, 

conventionally taken as zero [27]. 

      As the particle moves through solution, due to gravity or an applied voltage, 

the ions move with it. At some distance from the particle there exists a boundary, 

beyond  which ions do not move with the particle. This is known as the surface of 

hydrodynamic shear, or the slipping plane, and exists  somewhere within the diffuse 

layer. It is the potential that exists at the slipping plane that is defined as the zeta 

potential (figure (2-4)) [27]. 

The velocity of a particle in an electric field is dependent on [27]: 

 the strength of the electric field 

 the dielectric constant of the liquid 

 the viscosity of the liquid 

 the zeta potential 

By directly measuring the electrophoretic mobility of a particle, the zeta potential 

may then be determined using the Henry Equation [27]: 
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       Where (є) is the dielectric constant, (z) is the zeta potential, (f (Ka)) is Henry’s 

function, and (η) is the viscosity. Henry’s function generally has value of either 

(1.5) or (1.0). If measuring zeta potential in a non-polar solvent, the Huckel 

approximation is used, where f(Ka) is set to (1.0). 

       The zeta potential is crucial in determining the stability of a colloidal 

suspension. When all the particles have a large negative or large positive they will 

repel each other, and so the suspension will be stable. If the zeta potential is low 

the tendency for flocculation is increased. Another important consideration when 

discussing zeta potentials is pH as shown in figure (2-3); in fact,  quoting a zeta 

potential without an accompanying pH is almost meaningless [27].   

 

 

Figure (2-3): Zeta potential vs. pH for slurries [27]. 
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Figure (2-4): Double layer collodical process [27, 28]. 

       These modifications ensure the suspension of particles within the slurry 

without being getting settled or forming thick lumpy masses [26]. 

Combining the attractive van der Waals interaction and the repulsive double-layer 

repulsion is the foundation of the well-known (DLVO) theory, which provides an 

overall net interaction energy, as illustrated in figure (2-5) [28, 29]. 
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Figure (2-5): Schematic energy versus distance curves for double layer 

repulsion and van der Waals attraction [28]. 

 

       Various dispersants are available for the stabilization of oxide powder slurries 

(alumina, titania, zirconia, etc.) but Sodium carboxymethylcellulose (Na-CMC) 

was used. This was performed according to the existing reports claiming the 

effectiveness of (Na- CMC) in slip casting of high purity alumina, acting as a 

deflocculant, binder and fluxing agent with low residual sodium upon burnout, 

albeit for sub-micron powders [30, 31]. 
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2.2.3 Casting the slurry 

       The slurry is then poured into a porous mold that removes the liquid (it 

diffuses out through the mold) and leaves a particulate compact in the mold. This 

process is known as slip casting [23, 33].
 

       When the slip is poured into the mould, the plaster begins to absorb the water 

out of the slip (figure (2-6)) at a rate controlled by release agents on the surface of 

the mold, the moisture content of the mold, and by the ambient relative humidity in 

the casting shop. The absorption causes the clay to form and thicken where it is in 

contact with the surfaces of the mould, removing deleterious air gaps and 

controlling shrinkage of the casting. The cast piece remains in the mould until it 

dries sufficiently to attain a “leathery” consistency. At this point, the clay casting 

will separate easily from the plaster surfaces and can be removed from the mould 

[34]. 

 

Figure (2-6): Water distribution in slip casting [34].
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       The common casting methods involve drain casting and solid casting; hollow 

bodies such as crucibles are prepared by drain casting where consolidated layer of 

solids, referred to as a cast, forms on the walls of the mold (Figure (2-7)). After a 

sufficient thickness of the cast is formed, the surplus slip is poured out and the 

mold and cast are allowed to dry. Normally, the cast shrinks away from the mold 

during drying and can be easily removed [33, 34].
 

       In a solid cast mould, ceramic objects such as handles and platters are 

surrounded by plaster on all sides with a reservoir for slip, and are removed when 

the solid piece is held within (figure (2-8)) [34].
 

 

 

 

Figure (2-7): Schematic diagram of the drain casting system: (a) initial system 

(b) after the formation of a thin cast [34].
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Figure (2-8): Schematic diagram of the solid casting system [34]: 

(a) The plaster of Paris mould 

(b) Initial system 

(c) The mould absorb the water from the slip  

(d) The solid piece is taken out  
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2.3 Crystal Structure of Materials 

2.3.1 Alumina 

       Polycrystalline alumina, (Al2O3) is a ceramic material. The alumina exists with 

different phases depending on the alumina purity and its mechanical and physical 

properties [35]. Alumina (α–phase) is a thermodynamically stable phase, which 

can be used as a coating to keep the material surface safe from wear. Alumina has 

other properties for example; mechanical properties, chemical inertness, and 

thermal stability and these properties provide useful applications for the alumina 

[36]. Polycrystalline alumina was used as catalyst and catalyst support due to the 

alumina having a small grain size and high surface area [35, 37]. 

       The alumina phases are (γ, θ, and α phase) which represent the crystalline 

phases that are important in the alumina structure. The α–phase is stable at high 

temperature (i.e. melting temperature for this phase is (2051 °C)) but the other 

phases do not always exist in the alumina [35]. 

       The polycrystalline alumina (α–phase), is formed at the high temperature of 

about (1000 °C). The properties for the (α–alumina) are not the same for other 

phases, which gives the alumina phases a wide range for applications [35]. Table 

(2-1) shows the melting temperature for these phases. 

    The (α–alumina) has a hexagonal structure but the (γ–alumina) has a spinel 

structure. 
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Table 2-1: The phases of the alumina and their physical properties at different 

melting temperatures [21]. 

 

       The (α–phase) alumina is stable at high temperatures and also, other phases are 

transformed to α–phase at high temperature. At the specific temperature the (γ and 

θ) phases are transformed to the corundum phase as shown in Figure (2-9). The (α–

alumina) does not change to the (γ) and (θ) phases and the (α–phase) is 

thermodynamically stable at (1000 °C) [35, 38]. 

 

Figure (2-9): The alumina phases (i.e. α, γ, and θ phases) and the transition 

stages at different temperatures [35]. 

 

Alumina phase Density kg/m
3 

Melting point ºC 

α alumina  3980 2051 

γ alumina 3200 γ→δ: 700–800 

θ alumina 3560 θ → α: 1050 
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2.3.1.1 γ-Alumina 

       The (γ–Al2O3) phase is an unstable phase and it is transformed to the (θ–

alumina) phase at a temperature of (700–800) °C. This phase of alumina was used 

as a catalyst and catalyst support as the (γ–Al2O3) unit cell has a large specific area 

and also has a low surface energy [39]. This phase is not used in the high 

temperature applications because this phase transforms to the stable phase at high 

temperature (i.e. α–alumina) [40].  

       The lattice structure for the (γ–Al2O3) phase has two different lattices, the first 

lattice is comprised of aluminium ions and it is formed from octahedral and 

tetrahedral interstitial locations and the oxygen lattice is formed with the face 

centre cubic structure are shown in figure (2-10) [40]. 

 

Figure (2-10): The face centre cubic structure for the oxygen lattice and the 

octahedral and tetrahedral structure for the aluminium lattice. The whole 

structure forms the (γ–alumina) phase structure [41]. 
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2.3.1.2 α–Alumina 

       Polycrystalline (α–phase alumina) is used as a structural ceramic due to it 

having good mechanical properties and also excellent thermal properties at high 

temperatures. Polycrystalline alumina also has a high strength and these properties 

are provided during developing, processing, and optimizing the polycrystalline 

alumina. The alumina was used in parts for many applications instead of the other 

ceramics due to its high strength [42]. There are many ceramics that have been 

used as structural ceramics for example Titania (TiO2), Zirconia (ZrO2), Magnesia 

(MgO), Yttria (Y2O3) and alumina–magnesia spinel (MgAl2O4). In gas turbine 

applications, non-oxide ceramics have been used, for example, silicon carbide 

(SiC), and silicon nitride (Si3N4) [38]. When the (α–Al2O3) phase is single crystal, 

it is called sapphire and has also been used in structural ceramics [38]. The 

polycrystalline alumina lattice for the α–phase has large oxygen ions with 

arrangement (A–B–A–B) to form the (HCP) sublattice as shows in figure (2-11) 

[8]. 

 

Figure (2-11): Shows the unit cell for the (α–alumina) phase [8]. 
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2.3.2 Kaolin 

       Very pure kaolins have compositions of Al2O3.2SiO2.2H2O called "Kaolinite", 

formed by weathering of feldspathic rocks, granites, etc. The kaolin raw material 

contains besides clay mineral "Kaolinite", other oxide fluxes such as TiO2, MgO, 

Fe2O3, K2O, Na2O, CaO, etc. [43]. 

       Kaolinite consists of a single silica tetrahedral sheet and a single alumina 

octahedral sheet combined to form the kaolinite unit layer (Figure (2-12)).These 

unit layers are stacked on top of each other [44]. The kaolinite structure doesn't 

have interlayer cations, this leads to no swelling, and the water (H2O) is 

chemically-bound in the structure as (OH) ions [45]. There is no substitution in 

these layers. Therefore the layers have no charge and no adsorbed cations (Figure 

(2-13)) [46]. 

       The crystal structure of kaolinite is triclinic, with cell data: a = 5.15 A
o
, b = 

8.95 A
o
, c = 7.39 A

o
 and α= 91.8

o
, β= 104.5

o
, γ = 90

o
 [47]. 

       The plastic property of clay occurs because of the crystal structure of kaolinite, 

the unit cell being a hexagonal assembly of thin ionic and covalently bonded layers 

(Figure (2-14)). Thus with water added to the clay, the plates of the crystal can be 

made to slide easily over each other [48]. 
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Figure (2-12): Structure of kaolinite [45]. 

 

 

 

 

 

Figure (2-13): Schematic 

representation of kaolinite 

structure [46].
 

Figure (2-14): Kaolinite Plates [48].
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2.4 Characteristic of α- alumina  

       Polycrystalline alumina has good mechanical properties and these properties 

provide alumina with significant applications [49]. The melting temperature for α-

alumina is about (2050 ± 4 °C). It has a good creep resistance due to alumina being 

stable at high temperature and it also has excellent compressive strength [49]. 

Polycrystalline alumina is used in medical and high temperature applications and 

electronics applications [42].
 

Table (2.2): (99.9%) alumina mechanical and physical properties [32, 50]. 

Properties  Units of Measure value 

Density g/cc 3.93  

Porosity % (%) 0 

Color — ivory 

Flexural Strength MPa 410 

Compressive Strength MPa 2900 

Elastic Modulus GPa 385 

Poisson’s Ratio — 0.23 

Hardness Kg/mm
2
 1440 

Thermal Conductivity W/m•°K 31 

Specific Heat capacity J/kg-K 840 
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2.5 Mullite  

       The mullite is the only stable crystalline phase in the alumosilicate system 

under normal atmospheric pressure. The crystal structure of mullite is 

orthorhombic. It consists of (AlO6) octahedral chains, parallel to the (c-axis), 

which are cross-linked by the ((Al,Si)O4) tetrahedral chains [51, 52]. 

       The high levels of the functional properties of alumosilicate ceramics depend 

on the general content of mullite, on its structural and morphological state [53, 54]. 

The industrial methods for producing alumosilicate ceramics are based on the 

highest formations of mullite quantity. This is achieved by using the refractory 

clays with high amount of SiO2 and (Al2O3). The kaolin is an example of such clay 

[55, 56]. The mullite ceramic can be achieved from alumina and silica oxides 

mixing with refractory clay in certain ratios [56, 57]. 

       The flow complex of physical-chemical processes is important at the time of 

sintering at the high temperatures. These are dehydration, decomposition of the 

components of the mass, combustion of organic impurities, the reaction between 

the components of the mass with the formation of other crystalline phases and 

polymorphic transformations [58]. 

       The kaolinite and other minerals of clay are converted into mullite and 

cristobalite, quartz into various modifications of silica. When kaolin is heated, its 

important minerals – kaolinite is transformed to mullite by several steps according 

to the following reaction scheme (figure (2-15)) [51]. 
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Figure (2-15): Kaolinite phases transformation in the time of kaolin heating 

[51]. 

       The mullite ceramics have high mechanical strength, chemical stability and 

high refractoriness. The mullites are produced by heat treatment of the starting 

materials, essentially via solid-state reactions. These mullites tend to have 

“stechiometric”, i.e., (3/2-composition) (3Al2O3•2SiO2) [58]. 
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2.6 Physical Properties 

2.6.1 Density of Powder  

       Pycnometer method is a very precise procedure for determining the density of 

powders and this method is more labor-intensive and far more time-consuming 

than the buoyancy and displacement methods. The density of powder calculated by 

applied the following equation [59]:   

 

 

Where: 

ρs : the density of the soil solids g/cm
3
, 

ρw,t : the density of water at the test temperature (Tt), g/ml or g/cm3. 

Ms : the mass of the oven dry soil solids (g). 

Mρws,t : the mass of pycnometer, water and soil solids at the test temperature,(Tt), g. 

      In this test we use the pycnometer assimilates (25ml) and sensitive balance 

max (350g) as shown in (Figure (2.16)) (ASTM D854-10) [60].  

(2-1) 
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 Figure (2-16):  Pycnometer [60].   

 

2.6.2 Mass Losses 

       In alumina slip casting ceramic the mass losses are often referred to as 

‘moisture’ (MOI) and ‘loss on ignition’ (LOI) respectively [61]. Total losses for 

sample are calculated by [62]: 

 

 

Where;  

mo: Sample wet mass 

m: Sample fired mass 

      Loss calculation on ignition is very important to the evaluation of density after 

firing of product [62]. 

(2-2)        
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2.6.3 Shrinkage 

       Shrinkage occurs because the particles approach together.Volume Calculation 

or linear shrinkage is necessary to find out the amount of the decreasing or 

increasing in the dimension to be taken into consideration when designing the 

mould or die [50]. 

       Total linear shrinkage (L.S) after drying and firing of ceramic specimens as a 

percentage of plastic length, is as follows [62]:  

 

 

Where Lo: initial length of test specimen (before firing) 

L: fired length of test specimen. 

Also (ASTM C326) [63]: 

 

 

 

 

  

(2-3) 

%                          
   

   
    (2-4) 

%                   
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2.6.4 Density, Porosity and Water absorption 

       Archimedes Principle states that the buoyant force on a submerged object is 

equal to the weight of the fluid that is displaced by the object [64]. 

      Density, porosity and water absorption (BD , AP and A) can be measured using 

the Archimedes buoyancy technique with dry weights (Wd), soaked weights (Ws) 

and immersed weights (Wi) in water (mercury, xylene or denatured alcohol if the 

refractory is water sensitive) (Figure (2-17)) [64]. 

       Various standard test methods are based on this procedure (ISO 5017, ASTM 

C20, BS 1902- 308, and SANS 5905 using mercury). 

 

 

Figure (2-17): Laboratory Archimedes setup [65]. 
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2.6.4.1 Bulk density 

      Bulk (or Apparent) density (BD) is mass divided by bulk volume where bulk 

volume is the volume of solid and of open and closed porosity. 

     Bulk Density can be calculated as follows (ASTM C20 – 00) [65]: 

 

 

2.6.4.2. Apparent porosity 

       Apparent porosity (% AP) is open pore volume as a percentage of Bulk 

Volume. 

The apparent porosity calculates from the Dry, Soaked and Suspended weights as 

follows (ASTM C20 – 00) [65]: 

 

 

 

2.6.4.3 Water absorption  

      This property is particularly important in ceramic, as well as being important 

for durability. It can be used to predict ceramic durability to resist corrosion. 

      The water absorption is determined by dividing the specimens change in 

weight by their dry weight (ASTM C20 – 00) [65]. 

 

 

(2-5) 

(2-6) 

(2-7) 
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2.6.5 Thermal conductivity 

       The thermal conductivity measurements (K in W/m.k units) are carried out by 

using Lee’s method [66]. Lee's disk method is used to measure the thermal 

conductivity of the specimen whose thickness (ds) is small relative to its diameter 

(D). Since the crosssectional area of the disk, (A = 4πD
2
) is large compared with 

the exposed area of the edge ( s a=π Dd ), the aspect ratio removes the need to 

account for heat loss from the edge of the die. Using a thin specimen also means 

that the system will reach thermal equilibrium more quickly [62]. 

The heat transfer (Q) across the thickness of the specimen (Ignoring heat losses 

from the edge of the disk) is given by [62]: 

 

 

       Where, (Tu – Tm) is the temperature difference across the specimen (figure 

(2-18 a). The thin specimen is placed between two brass disks in conjunction with 

a heat source in figure (2-18b) [62]. 

      Because of the low thermal conductivity of the ceramic compared with that of 

brass, the temperature of brass disk (1) can be assumed to be very close to that of 

one surface of the ceramic specimen. Similarly, the temperature of brass disk (2) 

can be assumed to approach that of the other surface of the specimen. In this way 

the temperature difference across the specimen, (TU – TM), can be measured [62]. 

       At equilibrium, heat entering the brass disk (2) equals the rate of heat loss due 

to cooling. The heat loss can be determined by measuring the cooling rate at the 

equilibrium temperature (Tm) (with the brass disk (2) covered with a pad of 

    
       

  
 (2-8) 
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insulation as in Fig. (2-18c)). If the disk cools at a rate of (dt/dT) then the rate of 

heat loss is given by [62]: 

 

 

       Where (m) is the mass of the brass disk and (Cp) is the specific heat capacity 

of brass [67]. 

       Assuming, that the heat flow in the specimen is the mean of the quantities of 

heat flowing into it and out of it, therefore [62]: 

 

 

where, (TU): temperature of disk (U), (TM): temperature of disk (M), (r): radius of 

the disk, (dM): thickness of the disk( M), (ds): thickness of the disk (S) (specimen) 

and (h): heat loss per (second/cm
2
) for one degree in excess of temperature of disk 

over that of the enclosure, determined from following equation [62]: 

 

       Where dc and Tc: thickness and temperature of disk(c) respectively. 

       Lee’s disk system is isolated from external effects by using glass desiccator's. 

When the system is linked to an electric power supply; then the power in watt is 

[62]: 

 

  

  
    

  

  
 (2-9) 

 
       

  
       

 

 
(   

 

 
  )    

 

  
      (2-10) 

(2-11) 

        (2-12) 
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      Where V: is The Voltage (6 V) and (I) is the current equal to 0.25 A. 

The dimensions of device is (r =20.7 mm) and (dM= dU= dC= 13 mm). 
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Figure (2-18): Lee's Disk, for measurement of the thermal conductivity [62]: 

(a) Heat transfer, Q, a cross the thickness(x) of the specimen. (b) Diagram of 

Lee's Disk apparatus. (c) Measuring heat loss. 
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2.7 mechanical Properties 

2.7.1 Hardness 

       Hardness is a key parameter in the choice of ceramic for abrasives, tool bits, 

bearings, wear resistant applications, and resistance to particulate erosion and 

ballistic impact [68]. 

       The hardness of a material is related to the material characteristics which give 

stiffness and strength. Hardness is an important characteristic of a material, as it 

contributes to resistance to erosion/wear processes. At high temperature, however, 

engineering alloys become "Softer" and so ceramics are often used to give wear 

resistance [69]. The hardness of a material may be specified in terms of some 

standard test [48]. 

       Shore hardness is a general method for measuring the bulk hardness of a 

material. Although hardness testing does not give a direct measurement of any 

performance properties, hardness correlates with strength, wear resistance, and 

other properties. Hardness testing is widely used for material evaluation due to its 

simplicity and low cost relative to direct measurement of many properties (ASTM 

D2240 – 05) [70]. 

      The Shore A scale is used for 'softer' rubber samples while the Shore D scale is 

used for 'harder' ones, and it’s used here because of the high porosity in the slip 

casting ceramics. Shore hardness is tested with an instrument called Durometer. 

Durometer utilizes an indenter loaded by a calibrated spring. 

The measured hardness is determined by the penetration depth of the indenter 

under the load [70]. 
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       Two different indenter shapes and two different spring loads are used for two 

Shore scales (A and D). The loading forces of Shore A: (822 g), Shore D: (4536 g) 

as shown in figure (2.19) [70]. 

 

Figure (2-19): Durometer hardness testers (A and D) [70]. 

 

2.7.2 Strength and Compressive Strength 

       For compressive stresses, there is no stress amplification associated with any 

existent flaws. For this reason, brittle ceramics display much high strengths in 

compression than in tension (on the order of a factor of 10), and they are generally 

utilized when load conditions are compressive [71]. 

       Tensile testing of ceramics is not only time consuming but it is also expensive 

to fabricate the specimens. Therefore, the easier to- handle transverse bending or 

flexure test is commonly used for determining the strength of ceramics [72]. 
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      The stress distribution should be independent of length, provided a uniform 

compression stress applied [62].
 

Compressive Strength can be calculated from this equation [62]: 

 

 

     Where: (F) is the applied load and (A) is the area of the spacemen. 

 

Figure (2-20): Compression strength test [82]. 

 

2.7.3 Bending Strength 

      The stress at fracture using flexure test is known as the flexural strength, 

modulus of rupture, fracture strength, or bend strength, an important mechanical 

parameter for brittle ceramics [71]. 

      In ceramic materials, the conventional tensile test cannot be used because of 

the problems of preparing suitable test pieces and effectively holding them in the 

test machines. The materials are in the forms of beams and bent by three-point 

bending figure (2-21). 

 

(2-13)                       
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      For a rectangular cross-section specimen [62]: 

 

 

Where: 

 b: is the breadth of the section and (d) its depth 

      Flexural strength values for materials tend to be about twice their tensile 

strength values. Because cracks and flaws tend to close up in compression, brittle 

materials tend to be much stronger in compression than tension [43]. 

 

Figure (2-21): Three Point loading for modulus of rupture test [62]. 

      During bending, a specimen is subjected to both compressive and tensile 

stresses [71]. Although bending strength is independent of the orientation of the 

test specimen, higher values are obtained in the pressing direction [72]. 

  

(2-14)                   
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2.8 Factors Affecting Mechanical Properties 

      The strength of ceramic bodies depends on a number of factors including the 

mechanical testing method, strain rate, temperature, impurity level and size 

distribution of microstructural defects [62]. 

 

2.8.1 Grain size and distribution: 

      Flexural strength of a sintered body is strongly dependent on particles and 

grain size distribution [72]. Agglomerates and large grains cause degradation in 

strength. During sintering, the rapid densification regions containing agglomerates 

can induce stresses within the surrounding compact facilitating the formation of the 

voids and cracks. Isotropic large grains often produce mismatch in thermal 

expansion and elastic modulus and act as flaws in a homogenous matrix. 

       Typically, the strength of ceramics shows an inverse correlation to the average 

grain size G. The strength can be expressed as [73]: 

 

      Where (σ) is true strength, (σo) is strength with no micropores, (k1) and (n) are 

constants, (G) is grain size, and (P) is porosity. 

       A schematic of the dependence is shown in figure (2-22) where the fracture 

strength is plotted versus (G
-0.5

) [74]. 

(2-15) 
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Figure (2-22): Schematic relationship between grain size and strength for a 

number of ceramics [62].
 

 

2.8.2 Porosity Effects 

       The major effect of the structure in most ceramics is the result of porosity. 

Pores are usually quite deleterious to the strength of ceramics not only because 

they reduce the crosssectional area over which the load is applied, but more 

importantly because they act as stress concentrators (for an isolated spherical pore, 

the stress is increased by factor of 2). Experimentally, it is found that the strength 

of porous ceramics is decreased in a way that is nearly exponential with porosity. 

Various specific analytical relationships have been suggested for the effect of 

porosity. An empirical suggestion by Ryskewitsch is [75]: 
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Where: 

(P), (σp) and (σo) are respectively, the volume fraction of the pores and the strength 

of the specimen with and without porosity. (B) is a constant and depends on the 

distribution and morphology of the pores, (where B is in the range 4 to 7). Data for 

several wall-characterized materials illustrating the strong effect of porosity are 

included in Figure (2-23) [75]. 

       For strength, the pore size is sometimes a more important parameter than the 

amount of porosity [76]. For many materials the flaw size can be related to the 

grain size or pore size. It is the largest flaw that affects strength and thus the 

relative sizes of pores and grains dictate which of these are important. In fully 

dense materials there are no large pores and the flaw size is usually related to the 

grain size [77]. 

       The degree of the influence of pore volume on flexural strength is 

demonstrated in Figure (2-24) [71]. 

       Hardness decreases when porosity increases [54], in relation to the fracture of 

the walls between contiguous pores. No firm theoretical analysis exists to explain 

H=f(P) but empirical exponential law Soroka and Sereda generally has proved 

valid [62]: 

 

 

(2-16) 

(2-17) 
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      Where (Ho), (H) hardness of dense material and porous and (A ≈ 10), it must 

also be pointed out that (H) depends on the load applied to the indenter. This 

dependence becomes more pronounced when (P) increases. To reduce the 

scattering of data the size of the indentation must be much larger than the size of 

the pores [78]. 

      Few bibliographical data on the influence of (P) on hardness are available [76]. 

 

 

  

Figure 2-23: Effect of 

porosity on the fracture 

strength of ceramics [75]. 

Figure 2-24: The influence of 

porosity on the flexural strength 

for ceramics (Al2O3) [71]. 
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3. Chapter Three: Experimental Procedure 

 

3.1 Introduction 

        Powder processing is a collective term for technologies which produce 

objects starting from fine powders without melting and consolidate them by 

sintering. The temperature of sintering is generally no more than about two-thirds 

of the melting point [62]. 

       Powder processing technologies are used generally in the manufacturing of 

ceramics, because of their high melting point, producing hard and brittle ceramic 

components [79]. 

       For the preparation of samples through slip casting: fine powders were used 

such as micro alumina, nano alumina and kaolinite; Dispersant used is Sodium 

carboxymethylcellulose (Na-CMC); Solvent used is distilled water and moulds 

prepared from Plaster of Paris were used for the casting. The flow chart of the 

overall experiment has been shown in two different flow chart refer figure (3-1) 

and figure (3-2) 
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Evolution of alpha 

phase alumina. 

Optimization of 

dispersion 

Preparation and 

degassing of the 

slurry. 

 

Slip casting 

Demoulding of the casted 

body which is then kept 

for drying. 

Preparation of 

preform for mould 

making. 

Mould making 

using plaster 

of paris. 

Firing at different 

temperatures. 

Removing of the 

preform and keeping 

the mould in air for 

drying. 

Characterization of the 

fired samples. 

Optimize the solid 

loading. 

Figure (3-1): Flow chart of the overall experimentation. 



Experimental Procedure 

 

Chapter 3 Page 50 
 

 

 

   

 

 

 

 

 

  

  

Dispersion Liquid Powder + Dopant 

Part removal 

Drying 

Slip preparation 

Mould Preparation 

Draining & Stiffening 

Slip casting 

Figure (3-2): Flow chart of the slip casting process in general. 

Firing 
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3.2 Materials 

3.2.1 Micro Alumina 

       The raw materials used for this work were a commercial micro Aluminum 

dioxide powder (Al2O3) German origin, prepared by Merck Company. The figure 

(3-3) represents x-ray analysis (XRD-6000, SHIMADZU) of the micro alumina 

powder and the specifications are shown in table (3-1) [16]. 

 

Table (3-1): Specifications of micro alumina *. 

Density Purity% Mean particle size Type Color 

3.22 (g/cm
3
) 99.99 10 (μm) γ White 

 

 

Figure (3-3): XRD pattern for the micro gamma alumina powder. 

* By the Merck Company. 
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3.2.2 Nano Alumina Powder  

       Nano Aluminum dioxide powder (Al2O3) an English origin, prepared by 

Nanoshell Company. The figure (3-4) represents x-ray analysis (XRD-6000, 

SHIMADZU) of the nano alumina powder and the specifications are shown in 

table (3-2) [16]. 

Table (3-2): Specifications of nano alumina by the manufacturer. 

Al2O3 (white powder, alpha type, crystalline structure) Product 

30 nm Particle size 

SOL-GEL Mfg. method 

99.99 Purity 

3.97 g/cm
3

 True density 

Spherical   Morphology 

~25 m
2
/g Specific surface area 

 

 

Figure (3-4): XRD pattern for the nano alpha alumina powder. 

* By the Merck Company. 
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3.2.3 Kaolinite 

       Kaolinite micro powder (Al2Si2O5 (OH)4), prepared by (LTD Chemicals 

Dearborn) Company. The figure (3-5) represents x-ray analysis (XRD-6000, 

SHIMADZU) of the micro Kaolinite powder and the specifications are shown in 

table (3-3) [52]. 

Table (3-3): Specifications of micro Kaolinite *. 

Kaolinite powder (Al2Si2O5 (OH)4) Product 

Grayish white Color 

20 μm Particle size 

2.57 g/cm
3
 Calculated density 

 

 

Figure (3-5): XRD pattern for the micro kaolinite powder fired at 1300 °C. 

* By the LTD Chemicals Dearborn Company. 
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3.3 Obtainment of Alpha Phase Alumina 

       All alumina phases involved in transformation sequences, which all have in 

common that they end in the (α phase) at high temperature. The transformations to 

the (α phase) are irreversible and typically take place at above (1000 °C) [68, 69]. 

       Figure (3-6) represents x-ray analysis (XRD-6000, SHIMADZU) of the (α) 

phase alumina which transformed from (γ) alumina at (1100 °C) [16]. 

 

       Figure (3-6): X-rayanalysisofthe(α phase) micro alumina. 

  



Experimental Procedure 

 

Chapter 3 Page 55 
 

3.4 Green Body Fabrication by slip casting 

3.4.1 Mould Making 

       (ASTM C59 / C59M - 00) was used as standard to make the Gypsum mould 

[88]. 

 The mixture is prepared using water and Plaster of Paris in the ratio (3:4) such that 

the negative imprint can be casted over the mould.  

        A glass plate is taken over in which the Vaseline oil is applied. This Vaseline 

oil acts as a lubricant and does not allow the mould to stick on the glass. Then a 

hollow cubic made from plywood was used as a container which puts over the 

glass plate, piece of rubber takes the form of the sample (preforms) put over the 

glass plate at the center of the hollow cubic and this helps in uniform drying during 

the casting process Vaseline oil is also applied over the preforms. 

       Artificial clay was used to cover the gap between the cubic and the glass plate 

to avoid leakage of slurry from the holes as seen in figure (3-7). Then the prepared 

mixture was slowly poured into the hollow cubical box to a certain height 

predefined. The body is kept for air drying for about (2 h). After (2 h) the body is 

removed from the wood box and kept for air drying for (24 h). Then the mould was 

kept in a drier at (60 to 70) 
o
C for complete removal of water deposited at the 

pores. 

       Thereafter the preforms were carefully removed using a blade and forceps as 

seen in figure (3-7). The mould inner surface was polished using a sand paper after 

drying. 
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3.4.2 Optimization of the Slurry 

       Optimization of the slip is necessary as it controls the stability, viscosity and 

many other casting phenomenon such casing rates, defects generated during 

casting process and many more. The slurry is optimized by studying its properties 

so as to get a slip which is stable i.e. the suspended particles do not agglomerate or 

do not settle with changing time. The slip is obtained by preparing samples with 

different dispersants and different percentage of dispersant. We were found 

experimentally that (Na-CMC) is the most preferred dispersant at the value of 

(0.33 ml) for each gram of powder (figures (3-8) and (3-9)), when the density of 

(Na-CMC) solution is (1.17 g/cm
3
). 

 

 

 

 

 

Figure (3-7): Pictures of mould preparation and the mould prepared for a 

bar sample. 
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Figure (3-8): Obtainment of the preferable dispersant. 

 

 

Figure (3-9): Obtainment of the preferable value of (Na-CMC) dispersant. 
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       Three different alumina slurries are made with different solid content (50 – 70) 

wt. % by the addition of powder and dispersant slowly to the distilled water and 

mixing them by magnetic stirrer for (45 minutes) as shown in figure (3-10). 

       The alumina – kaolinite slurries solid content chosen to be (60 wt. %), three 

different weight percentage of kaolinite (mean particle size 20 μm) to alumina 

(mean particle size 10 μm) ((5, 10 and 15) wt. %) was used. By addition of nano 

alumina powder (mean particle size 30 nm) to (alumina – kaolinite) slurries the 

solid content chosen to be (50 wt. %) because of the large number of particles that 

available in the Nano powders. Table (3-4) shows the samples names, solid content 

and the raw materials composition of each sample type. 

 

TABLE (3-4): The raw materials compositions of samples. 

Samples 

type 

Solid Content 

wt.% 

Fine Alumina 

(~10μm)wt.% 

Nano Alumina 

(30 nm) wt.% 

Fine Kaolinite 

(~ 20μm)wt.% 

A 50 50 - - 

B 60 60 - - 

C 70 70 - - 

B1 60 55 - 5 

B2 60 50 - 10 

B3 60 45 - 15 

B4, B5 50 25 25 10 
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Figure (3-10): Pictures depicting the slip preparation. 

3.4.3 Casting Process and De-moulding 

       Once the slip prepared, it casted in the plaster moulds, the casting method that 

used here is both the solid casting and the drain casting methods. 

       After casting the body, the casted body was kept away from an air draft or 

under direct sunlight to dry at room temperature. After (24 h) the mould is tapped 

slowly so as to remove the casted bodies (figure (3-11 A and B)). 

 

 

 

 

 

Figure (3-11): The cast A) in the mould. B) After de-moulding. 
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3.5 Drying and Shaping 

       The casted body is kept for air drying either under direct sunlight or at room 

temperature depending on the initial strength of the body. Then the sample is 

transferred to oven (made by (JRAD) company) for oven drying which is kept at 

about (60 
o
C) for (24 h) [2]. So the overall drying process takes nearly about (2-3) 

days. After the bodies have dried up they are brought into shape by polishing their 

surfaces using a sand paper. Now the sample is ready to be fired. 

 

 

Figure (3-12): Samples oven drying. 
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3.6 Firing Program 

      The samples were fired in an English origin furnace made by (carbolite) 

company (figure (3-13) in three steps: 

 The first step: Temperature rising from the room temperature with a heating 

rate of (10 °C/min) and Settled at (500 °C) for (2 hours). 

 The second step: Temperature rising with a heating rate of (10 °C/min) from 

(500 °C) and Settled at (1100 °C) for (2 hours). 

 The third step: Temperature rising from (1100 °C) with heating rate of (6 

°C/min) and Settled at (1600 °C) for (2 hours) for the samples ( A, B, C, B1, B2 

and B3), but Settled at (1450 and 1550) °C for (2 hours) for (B4 and B5) 

samples respectively.  

       Figure (3-14) shows the Firing Program of this work, the sintering 

temperature of each sample’s type is shown in table (3-5). 

 

Figure (3-13): Samples firing. 
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Table (3-5):Thesinteringtemperatureofeachsample’stype. 

Samples Type Sintering temperature °C 

A 1600 

B 1600 

C 1600 

B1 1600 

B2 1600 

B3 1600 

B4 1450 

B5 1550 

 

 

Figure (3-14): The firing program. 
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3.7 Procedure of Measurements 

       All the tests were calculated by taking the average of over (4) specimens. 

3.7.1 Physical Testing 

3.7.1.1 Mass Losses 

       (AS 2879.1—2000) was used as a standard to test this determination of loss of 

mass on heating of aluminum oxide at (60°C) and further loss of mass on ignition 

at sintering temperature . These mass losses are often referred to as moisture 

(MOI) and loss on ignition (LOI) respectively [61]. Equation (2-2) is used to 

calculate it. 

 

3.7.1.2 Linear Shrinkage 

       (ASTM C326 – 09) was used as standard to test the linear shrinkage of the 

specimens, and the (L.S.) is calculated by equation (2-3). 

 

3.7.1.3 Bulk Density (BD) 

       This test was determined according to the (ASTM C20 – 00). The Bulk 

Density was calculated by using equation (2-5). 

 

3.7.1.4 Apparent Porosity (% AP) 

       This test was determined according to the (ASTM C20 – 00). The apparent 

porosity (% AP) was calculated by using equation (2-6). 
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3.7.1.5 Water Absorption 

       This test was determined according to the (ASTM C20 – 00). The water 

absorption was calculated by using equation (2-7). 

 

3.7.1.6 Thermal Conductivity 

       Lee's disk method is used to measure the thermal conductivity of the 

specimens. The Lee’s disk apparatus   made by (Griffin and George) company was 

used (figure (3-15). The thermal conductivity is calculated by the equation (2-10). 

 

 

Figure (3-15): TheLee’sdiskapparatus. 
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3.7.1.7 Density of Powder  

       This test was determined according to the (ASTM D854-10). The pycnometer 

assimilates (25ml) and sensitive balance max (350g) was used as shown in figure (3-

16). 

 

The experimental procedure is:  

 

1. Determine the weight of empty, dry pycnometer  

2. Fill about (1/3) of pycnometer volume with the powder and measure the            

weight. 

3. Empty pycnometer and fill it with distilled water only. Use the filter paper to dry 

the spare water again and measure the weight. 

4. Fill the pycnometer with the powder and water and as well as the capillary hole 

of pycnometer and measure the total weight. 

5. Apply equation (2-1). 

 

Figure (3-16): Pycnometer (25ml). 
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3.7.2 Mechanical Testing 

3.7.2.1 Compressive Strength 

       (ASTM standard-C773) was used as a standard to test the compressive strength of 

ceramic specimens [82], and this compressive strength is calculated from the equation 

(2-13). The force was applied perpendicular and continuously on the specimen by using 

hydraulic testing compression machine, maximum force (7.5 kN) as shown in figure (3-

17). 

 

 

 

Figure (3-17): Hydraulic testing compression machine. 
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3.7.2.2 Flexural Strength 

       Flexural strength was measured in a (3-point bending) test (figure (3-18)) [46]. 

The dimensions of bar-shaped specimens are (6×2×1 cm
3
), and equation (2-14) 

was used to calculate the bending strength for the specimens (ASTM C1674 – 11) 

[83]. 

 

 

 

Figure (3-18): A (3-Point) bending tester. 
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3.7.2.3 Hardness 

       (TH210) Shore (D) hardness tester (figure (3-19)) was used to measure the 

hardness of the high porous specimens (ASTM D2240 – 05). The hardness was 

calculated by taking the average of each surface hardness value of the specimens. 

 

Figure (3-19): Shore (D) hardness tester. 
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4. Chapter Four: Results and Discussion 

 

4.1 Introduction  

       This chapter deals with the experimental results and discussion of the effects 

of four parameters (solid concentration, kaolinite addition, nano  ezis alumina 

addition and sintering temperature) on physical (linear shrinkage (L.S.), loss on 

ignition (L.O.I), bulk density (BD), apparent porosity, water absorption (W.A) and 

thermal conductivity (K)) and mechanical (hardness, compressive strength and 

bending strength) properties of the samples. 

  

4.2 Effects of Solid Concentration 

       The figures (4-1), (4-2), (4-3) and (4-4) explain the effect of solid 

concentration (specimens (A, B and C)) on the linear shrinkage, bulk density, 

apparent porosity and water absorptionrespectively. 

       Linear shrinkage percentage varies with solid concentration for the samples, 

the dimensions shrinkage increase slightly when solid concentration is increased, 

this increasing is due to the lower compaction during forming process in case of 

higher solid concentration which lead to increase the distance among the particles 

and that causes a higher shrinkage value in the higher solid concentration samples 

[18, 84]. 
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Figure (4-1): Effect of solid concentration  on the linear shrinkage. 

       The bulk density is decreasing in a small amount by the increasing of solid 

concentration. In the case of apparent porosity and water absorption, they are 

decreasing in a small amount withincreasing of the solid concentration [18]. This 

decreasing of bulk density, apparent porosity and water absorption is due to the 

decreasing of casting rate yrres nna stability which leads to make sediments and 

conglomerates in the cast of higher solid concentration [11, 84]. 
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Figure (4-2): Effect of solid concentration  on the bulk density. 

 

 

Figure (4-3): Effect of solid concentration  on the apparent porosity. 
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Figure (4-4): Effect of solid concentration  on the water absorption. 
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4.3 Effects of Kaolinite Additions 

       Physical and mechanical properties were measured to explain the effects of 

kaolinite additions on micro alumina samples (B, B1, B2 and B3). 

 

4.3.1 Linear Shrinkage  

       Figure (4-5), shows the linear shrinkage percentage variations with kaolinite  

additions. Clearly, dimension shrinkage increases when kaolinite addition is 

increased. This is due to high shrinkage of kaolinite (28%) in comparison with that 

of alumina (less than 1%) [85, 86]. 

 

 

Figure (4-5): Effect of kaolinite percentage additions on shrinkage. 
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4.3.2 ssMM Loss 

       Mass loss is shown in figure (4-6) for the specimens, it is decreasing with 

increasing kaolinite additions, this is natural situation because of the decreasing of 

moisture by increasing of kaolinite ratio [61]. 

 

 

Figure (4-6): Effect of kaolinite percentage additions on loss on ignition. 
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4.3.3 Density, Porosity and Water Absorption  

       Lower density of additive materials leads to decreasing the density of the 

specimen. But here in the case of (alumina – kaolinite) cast the contrary was 

occurred, and that is a normal situation because of two main reasons; the first is the 

low percentage addition of kaolinite (5 – 15)%, and the second is the effect of  

casting rate which increase by the increasing of kaolinite ratio because of the 

plastic property of clay,  and that leads to increase in the density because of the 

high reduction of porosity during forming process [11, 18].Therefor the density is 

increasing with increasing of kaolinite and that is clear in figure (4-7). Figure (4-8) 

and (4-9) shows the decreases of  porosity and water absorption respectively with 

kaolin additions for the same reason. 

 

 

Figure (4-7): Effect of kaolinite percentage additions on bulk density. 
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Figure (4-8): Effect of kaolinite percentage additions on apparent porosity. 

 

 

Figure (4-9): Effect of kaolinite percentage additions on water absorption. 
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4.3.4 Thermal Conductivity  

       Thermal conductivity of alumina samples, naturally, decreases with clay 

additions [62]. But here the thermal conductivity increases with kaolinite additions, 

the main cause is the increase in kaolinite ratio which leads to decrease the 

porosity and consequently increases thermal conductivity (figure (4-10)) [62]. 

 

 

Figure (4-10): Effect of kaolinite percentage additions on thermal 

conductivity. 
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4.3.5 Mechanical Properties 

       The compressive strength increase with increasing kaolinite content (figure (4-

11)). This increasing start with comparatively large value  (at 5% addition) then 

increase in kaolinite addition leads to increase in the strength of ceramic products, 

because of the bigger amount of glass phase and higher density at the highr 

percentage of kaolinite [87]. 

 

 

Figure (4-11): Effect of kaolinite percentage additions on compressive 

strength . 
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       Bending Strength increases with clay addition which increases with a semi-

linear form as shown in figure (4-12), this is due to lower porpsity and higher 

density at the highr percentage of kaolinite [62, 87]. 

 

 

Figure (4-12): Effect of kaolinite percentage additions on bending strength. 
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       Figure (4-13), shows the shore (D) hardness variations with kaolinite  

additions. Clearly, hardness increases when kaolinite addition is increased. Raising 

and lowering hardness can be explained on the basis of decreasing and increasing 

the porosity [62]. This is an important factor affecting the hardness. This 

increasing of hardness lead to increase wear resistance in addition to increase 

abarasive resistance of ceramic products. 

 

 

Figure (4-13): Effect of kaolinite percentage additions on hardness. 
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4.4 Effects of Nano Powder 

        Nano alumina powder has strong effect on all physical and mechanical 

properties. Table (4-1) represent a comparison between the samples (B2 and B5) 

in order to understand the  effects of nano powder (nano alumina) on the (alumina-

kaolinite) samples. 

       Loss of mass for (nano- micro) powder (B5 samples) is lower than that of 

micro powder (B2 samples). And the same case for shrinkge, porosity and water 

absorption. Density increasing for (nano- micro) powder, that increasing in density 

lead to increase the thermal conductivity and mechanical properties [62, 87]. This 

is a natural situation because of the reduction of porosity during casting process 

where high compaction of (nano-micro) powders occurs [62]. 

Table (4-1): Effects of nano alumina on the (alumina-kaolinite) samples. 

No. Properties Units of Measure 
Value 

B5 B2 

1 Loss On Ignition % 9.064 10.888 

2 Linear Shrinkage % 14.325 15.467 

3 Bulk Density g/cm
3 

1.739 1.514 

3 Apparent Porosity % 51.416 56.445 

5 Water Absorption % 29.543 37.276 

6 Thermal Conductivity W/m °C 1.293 1.134 

7 Bending Strength MPa 20 12.02 

8 Compressive Strength MPa 33.8  15.898 

9 Hardness Shore D 85.5 71.86 

 



Results and Discussion 

 

Chapter 4 Page 82 
 

4.5 Effects of Sintering Temperature 

       Sintering temperature is one of the most effective parameters on all properties 

of ceramic bodies. Table (4-2) represent a comparison   between the samples (B4

and B5) in order to understand the  effects of sintering temperature on the 

(alumina-kaolinite) samples where (B4) samples sintered at (1450 °C) and (B5) 

samples sintered at (1550 °C). 

       Mass loss percentage increases with increasing the sintering temperature. And 

the dimension shrinkage increases when sintering temperature is increased. The 

bulk density increases by the increasing of the sintering temperature, so that the 

mechanical properties increases [62, 86].  

The contrary occurs in the case of apparent porosity and water absorption where 

they are decreasing with increasing of sintering temperature. This is a natural 

situation because of the higher amount of liquid phase and the higher sintering 

thyt’eocc nezrthspyntzcsse [62]. 
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Table (4-2): Effects of sintering temperature  on the (alumina-kaolinite) 

samples. 

 

No. 

 

Properties 

 

Units of Measure 

Value 

B4 (1450 °C) B5 (1550 °C) 

1 Loss On Ignition % 8.550 9.064 

2 Linear Shrinkage % 9.102 14.325 

3 Bulk Density g/cm
3 

1.402 1.739 

3 Apparent Porosity % 63.603 51.416 

5 Water Absorption % 45.348 29.543 

6 Thermal Conductivity W/m °C 0.821 1.293 

7 Bending Strength MPa 11.7 20 

8 Compressive Strength MPa 15.449 33.8  

9 Hardness Shore D 70.3 85.5 
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5. Chapter Five:  

Conclusions and Recommendations 

 

5.1 Conclusions 

The following conclusions were found during this study: 

 The high porosity of samples as well as their good mechanical properties 

and low thermal conductivity make a possibility of using it in the thermal 

insulation, filters, light Blocks, spark plugs and furnaces lining. 

 Among many dispersants available here the (Na-CMC) was act as a good 

dispersant and binder, the best ratio of (Na-CMC) solution (density 1.17 

g/cm
3
) is found to be (o.33 ml) for each gram of solid. 

 The Kaolinite acts as a binder for the alumina particle. 

 The decreasing of casting rate lead to increase the density and decrease the 

porosity. 

 The increasing of kaolinite additions lead to decrease the casting rate 

because of its plastic property. 

 The use of nano particle and the kaolinite additions improve the mechanical 

properties of the samples.  

  



Conclusions and Recommendations 

 

Chapter 5 Page 85 
 

5.2 Recommendations 

 Studying other properties of the samples such as structural, electrical, 

thermal and other mechanical properties. 

 Studying the rheological properties of slurries. 

 Studying the effect of Zeta potential of slurries on the physical properties 

and showing the relation between zeta potential and pH of the slurries. 

 Using another dispersant such as (darvan C) and compare it with (Na-CMC). 

 Using other dopants such as Zirconia, Magnesia and Titania. 

 Appling a magnetic field during the casting and show its effects. 

 Using a different mixing ratio of water to plaster to show its effects on the 

casting rate. 

 Determining the particle size of powders by laser diffraction method. 
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       In this work, physical phenomena related to the growth and phase formation of 

alumina, (Al2O3), are investigated by experiments and computer calculations. 

       The specimens were formed by slip casting technique.  These specimens were 

fired at various temperatures of (500, 1100, 1450, 1550 and 1600) °C. 

       Alumina samples with different dopant percentage were prepared to study 

their various mechanical and physical properties. Before casting, slurries with 

different particles size gradation were prepared with different solid content (50 - 

70) wt. % and different percentage of dopant additions. The primary dopant used 

here is kaolinite with a (0, 5, 10 and 15) percentage addition, where kaolinite is one 

of many types of raw materials that have plasticity and advantage of securing. 

       Sodium carboxymethylcellulose (Na-CMC) solution was used as dispersant. 

The stability of the slip which clearly depends on the percentage of dispersant 

added and the best ratio is found to be (0.33 ml) for each gram of solids. 

       Increasing the solid concentration percentage leads to decrease the porosity, 

density, and water absorption, and leads to increase the shrinkage. 

       Kaolinite percentage increases lead to decreasing the porosity, water 

absorption and mass losses.  But it leads to increase thermal conductivity, density, 

shrinkage and mechanical properties (compressive strength, bending strength and 

hardness).  

       Also, the effect of particle size (nano size of particles) on the physical and 

mechanical properties is studied together with sintering temperature. 
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في هذه الدراسة, تم تحقيق ظواهر فيزيائيةة تعلققةة نااءةات وتحةوط ار ةوار الةقوريةة لءلاةحوم ارلويء ةا        

(Al2O3) .تن خلاط العجارب والحلاانات 

ة تةةم تيةةايع اللي ةةات ناسةةعخداا  ريقةةة ال.ةةا ارازرذةةي. واارذةةر هةةذه اللي ةةات نةةدر ات اةةرار  تخعق ةة      

 در ة سيقيزية.  (0055, 0005, 0505, 0055, 055)

اضرت عي ةات ارلوتي ةا ن لاةا تيةويا تخعق ةة لدراسةة صة اتكا الءيااايايةة وال يزيائيةة الءعلةدد . ذةةع        

(%, 05 – 05عءقيةةة ال.ةةا, تةةم تحضةةير عوالةةق تةةن ااجةةاا اةيةيةةة تخعق ةةة وتراديةةز ن لاةةا و ايةةة تعلةةدد  )

, 0, 5ة تخعق ةة )ون لاةة تيويا تعلدد . الءيوب ارساسي الءلاعخدته هو تلاةحوم الااوولي ايةر ن لاةا تيةوي

 العي تءعقك ص ة القدواة وتيز  الرنط.(%, ايث ان الاائولي اير ااد الءواد الخاا 00و 05

. ايةث ان اسةعقرارية اللةالق تلعءةد نيةاع (Na-CMC)الءاد  الءيععة العي تةم اسةعخجاتكا هةي تحقةوط        

 غراا وااد تن الءاد  ال.قةة.تع( لاع 5.00تةاشر عقى الاةة اضافة الءيعر, افضع الاةة اضافة داار )

 ياد  العرديز ال.قا في اللوالق يؤدي الى اق.ان الاثافة والءلااتية واتع.اية الءةات, ني ءةا يةؤدي الةى        

  يد  في العققص الحاصع في الليااات.

ة. ني ءةا  ياد  الاا اضةافة الااوولي ةات يةؤدي الةى اق.ةان فةي الءلاةاتيةي اتع.ةاية الءةات وال قةدان نالاعقة      

الاثافةةةي الةةعققص وال.ةة ات الءيااايايةةة ) تقاوتةةة اراضةة ا ي تقاوتةةة يةةؤدي الةةى  يةةد  العوصةةيقية الحراريةةةي 

 اراح ات وال.لا (.

وتةةم ايضةةا دراسةةة تةةمنير دةةع تةةن الحجةةم الحةيةةةي ال ةةااوي ودر ةةة اةةرار  العقةيةةة عقةةى دةةع تةةن ال.ةة ات        

 ال يزيائية والءياااياية.

 الخلاصة


