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 المستخلص

 

م هذه الرساله دراسه عن جريان غير مستقر لمائع لانيوتيني ,لزج ,غير قابل تقد 

مقطع عرضي مستطيل تحت تأثير ضغط متدرج. تم   يللأ نضغاط , في أنبوب منحني ذ

تركيز دراستنا على حمالتين , مسمتطيل عرضمي لطمولي. نامام ايحمداثياع المتقاممده قمد 

كممل حالممه للجممد ان ثممل ثممئ مقممالي  هممي رقمم  ديممن لمقلمممئ أسممتمدم لو ممك حركممئ المممائع ل

 اللنيوتينين لمقلمئ التردد تحك  مقادلاع الحركه.

لكل حاله أشمت  كتغيمراع أهتزاةيمئ  الحلول للجريان الثانوي لالسرعه المحوريه 

علممى انبمموب مسممتقي  أللا ة بدلالممئ رقمم  ديممن لثانيمماة نةممرت بدلالممئ مقلمممئ التممردد. مقممادلاع 

لكمل حالمه. قمد   الزمنالتغيراع ايهتزاةيئ حُلت بطريقئ كالركين بقد حذف الاعتماد على 

حُلمت المقمادلاع ,توافقيممه لثنائيمئ التواف ,بأسمتمدام ايحممداثياع الديكارتيمئ. همذه الدراسممه 

 تضمنت أيضاة حلول الحاله المستقره لكلتا الحالتين.  

ج التي تمص الطريقه المسمتمدمه فمي سك السريع أستمدمت لكتابئ البراميئ البلغ 

اسمتمدم لرسم  أشمكال دالمئ الجريمان لالسمرعه  MATLABالحل بينما البرنامج الجماهز 

المحوريه. في نهايئ دراستنا  قمنا بدراسئ تأثير المقمالي  عديممئ ايبقماد التمي ذكمرت اعمله 

 ل الجريان في مركز المستوي.  على الحركه الثانويه لالسرعه المحوريه
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Introduction 
 

 Fluid mechanics is that branch of applied mathematics which 

deals with behavior of fluid at rest and in motion. Fluid is that state 

of matter which is capable of changing shape and is capable of 

flowing. Each fluid characterized by an equation that relates stress 

to rate of strain, known as "state equation ". Fluid may be classified 

as "viscous" or "perfect" according to whether the fluid is capable 

of exerting shear stress or not. Viscous fluid is called Newtonian if 

the relation between stress and rate of strain, in state equation, is 

linear, otherwise it is called non-Newtonian fluid.  

Viscous flow through straight ducts of various cross-section 

forms is well understood. The flow in a gently curved duct may be 

considered as a modification of straight axial flow in which the 

effect of centrifugal forces must be considered. 

 Dean, (1927),[7] is the first researcher who worked in flow 

analysis of Newtonian fluids in curved pipes. He introduced a 

toroidal coordinate system to show that the relation between 

pressure gradient and the rate of flow through a curved pipe with 

circular cross-section of incompressible Newtonian fluid is 

dependant on the curvature. In that paper he could not show this 

dependence but he did it in his second paper (1928),[8] where he 

modified his analysis by including higher order terms to be able to 

show that the rate of flow is slightly reduced by curvature. 

Dean and Harst (1957),[10] obtained an approximate 

solution of Newtonian fluid flow in a curved pipe with rectangular 

cross- section assuming that the secondary motion is a uniformly 

stream from inner to outer bend. They modeled the equations of 

motion by using cylindrical coordinates. This assumption enabled 
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them to obtain Bessel’s function solution. They argued that the 

secondary motion decreases the rate of flow produced by a given 

pressure gradient and causes an outward movement at the region 

where the prime motion is the greatest.  

In his paper Jones (1960),[17] makes a theoretical analysis 

of the flow of incompressible Non-Newtonian viscous liquid in a 

curved pipe with circular cross-section keeping only the first order 

terms. He shows that the secondary motion consists of two 

symmetrical vortices and the distance of the stream lines from the 

central plane decreases as the Non-Newtonian parameter increases. 

Past work on fully developed flow in a curved square duct 

includes numerical studies by Mori, Uchida & Ukon (1971),[23] 

who obtained a numerical solution by using boundary-layer 

approximation (valid for large Dean numbers); Cheng. Lin & Ou 

(1976),[7], Ghia & Shokhey (1977),[14] and Joseph Smith & Adler 

(1975),[18] who obtained solutions which predicted the existence 

of a weak second vortex pair near the outer wall above a certain 

value of the Dean number. This second vortex pair was found to 

rotate in the opposite manner to the primary vortex pair. Cheng et 

al (1976),[7] predicted the onset of second vortex pair to occur 

when a Dean number is >150. 

Ghia & Sokhey,[14] predict in it to occur above a Dean 

number of 143 while the calculations of Joseph et al,[18], give a 

threshold Dean number of 152 since the curvature ratio (whose 

effect is embedded in the Dean number) may itself play an 

important role for highly curved ducts. The suitability of the Dean 

number as the sole parameter to characterize the onset of the 

second vortex pair is unclear. 
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      For curved rectangular ducts Cheng et al (1976),[7] 

performed calculations for duct aspect ratio (defined as the ratio of 

height H  to the width B ) of 0.5, 2 and 5 for the range of the Dean 

number 15.9 to 312.7 at curvature ratios of 100 and 30. They 

reported that for an aspect ratio of 0.5 at L=176 there were no 

additional vortices and at L=200 there was a pair of very weak 

vortices close to the outer wall. In addition they found that for an 

aspect ratio of 5 a pair of secondary vortices appeared at a rather 

low Dean number of 76 and the eye of the primary vortex moved 

toward the upper and the lower walls with the increase of Dean 

number.  

Winter, K. H. (1987),[34] considers the bifurcation of 

secondary solutions for fully developed laminar flow in curved 

rectangular ducts. The study is based on finite-element analysis and 

shows the existence of the multiple solutions arising from the non-

linear equations for the range of aspect ratio from 0.8 to 1.6.  

Ravi Sankar, Nandakumar & Masliyah (1988),[24] consider 

the related problems of developing flow in curved ducts. They have 

shown that for a range of curvature ratios and Dean numbers the 

flow develop into previously known two-and four- cell patterns 

based on fully three-dimensional calculations using the parabolized 

form of the Navier-Stokes equations. They have also shown that 

for loosely coiled ducts (of curvature ratio of 100) outside a narrow 

range of Dean number the solution exhibits sustained oscillations 

in the axial direction and that no stable steady solutions could be 

predicted. 

Thangam and Hur,(1990),[30] show that the secondary flow 

of incompressible viscous fluid in a curved duct is studied by using 

a finite-volume method. It is shown that as Dean number is 



Introduction 

 IV 

increased the secondary flow structure evolves into a double vortex 

pair for low -aspect- ratio duct and roll cell for duct of high aspect 

ratio. They found that for ducts of high curvature the onset of 

transition from single vortex pair to a double vortex pair or roll 

cells depends on the Dean number and the curvature ratio while for 

ducts of small curvature the onset can be characterized by Dean 

number alone. 

     Jing-Wu Wang and Andrews, in (1995),[16] use a non-

orthogonal coordinate system to study the effect of the pitch ratio 

and curvature on the velocity distribution of fully developed 

laminar flow of an incompressible fluid in a helical duct with 

rectangular cross-section. They used a numerical method to solve 

the motion equations, they find that the pitch ratio affects the 

pattern of the secondary flow, two-vortex become a single vortex if 

the pitch ratio is greater than 10 and for a certain level there will be 

four vortexes to appear on the plan of the cross-section. 

Yakhot  A., et al (1999),[35] studied a pulsating laminar 

flow of a viscous, incompressible liquid in a rectangular duct . The 

motion is induced under an imposed pulsating pressure difference. 

The problem is solved numerically. Difference flow regimes are 

characterized by non- dimensional parameters based on the 

frequency of the imposed pressure gradient oscillation and the 

width of the duct. The influence of the aspect ratio of the 

rectangular duct and the pulsating pressure gradient frequency on 

the phase lag, the amplitude of the induced oscillating velocity, and 

the wall shear were analyzed. 

Abdul-Hadi A. M.(2000),[1] studied the unsteady flow of 

incompressible non-Newtonian fluid in a curved pipe with a square 

cross-section. He used a Galerkin method which is a variational 
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method to solve the equations of Navier-Stokes. He shows that a 

secondary motion depends on three dimensional parameters 

namely Dean number, non-Newtonian and frequency parameters, 

also he studied the effect of these three parameters on the 

secondary flow, axial velocity and some other relation. 

AL-Musawy A. Z. H. (2004),[2] studied the flow of non-

Newtonian fluid in a curved duct with varying aspect ratio. In his 

computation he used a Galerkin method and finite-difference to 

solve the equations of Navier-stokes. He shows that a secondary 

motion depends on two dimensional parameters, also he studied the 

effect of non-Newtonian and aspect ratio parameters on the 

secondary flow and axial velocity. 

Our work will be generalized to chapter tow of Abdul-Hadi 

A. M. work. This thesis contains four chapters:- 

Chapter one devoted to study some of fluid properties and basic 

concepts. 

Chapter two deals with unsteady flow of viscous, incompressible, 

non-Newtonian fluid in curved pipe with rectangular cross-section. 

An orthogonal coordinates system has been formed to describe the 

fluid motion. In this chapter we are going to study two cases, wide 

rectangular and longitudinal rectangular. In each case the motion 

equations are controlled by three parameters namely, Dean number, 

non-Newtonian parameter and frequency parameter. In each case, 

solution of the secondary flow and the axial velocity are described 

by perturbations over straight pipe appearing the Dean number. 

Chapter three contains solutions of the problem for case1 

and case2. These solutions are firstly expanded in terms of Dean 

number (chapter two) and secondly in terms of frequency 



Introduction 

 VI 

parameter. Perturbations equations are solved by Galerkin method 

after eliminating the dependence on time. 

   In chapter four we study the effect of the parameters 

mentioned above on the flow in the central plane, the secondary 

motion and the axial velocity for each case. This chapter ended 

with studying a comparison between case1 and case2.  
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CHAPTER ONE 

Some Definitions and Basic Concepts 
 

Introduction 

The study of fluid dynamics is of closed link with the 

physical properties of fluids such as density, viscosity, pressure 

…etc. As an introduction to some of the issues in the mechanics of 

fluid, this chapter will include a preliminary discussion of a few 

such properties fluids flows. 
  

1.1 Density  

           The density of a fluid, denoted by , in unit of 3/ mKg is 

defined as the mass per unit volume of the fluid, 

          
V

m
                                                                          .… (1-1) 

where m  is the mass and V  the volume. According to this property, 

fluids can be classified into compressible and incompressible. 

When the density is constant, the fluid is known as incompressible 

but when it changes with time, the fluid is known as compressible. 

[28] 
 

1.2 Viscosity 

          A viscosity of fluid is that characteristic of real fluid which 

exhibits a certain resistance to change of form. Some of viscous  

fluids “Newtonian fluids” obeys the linear relationship given by 

Newton’s law of viscosity. 

          
dy

du
T                                                                       …. (1-2) 
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where T  is the shear stress ( force per unit area ), 
dy

du
  is called as 

velocity gradient and      is the coefficient  of dynamic viscosity or 

simply called viscosity. [28] 

 

1.2.1 Coefficient of Dynamic Viscosity:  

        The viscosity is defined as the tangential force required per 

unit area to sustain a unit velocity gradient. [28]            
      

1.2.2 Kinematic Viscosity:   

        Kinematic viscosity, denoted by , in units of m
2
/s is defined 

as the ratio of dynamic viscosity to mass density. [28] 

          



                                                                           .… (1-3) 

 

1.3 Pressure 

        Pressure, denoted by P, in units Kg/m.s^
2
 is defined as the 

local normal force per unit area, 

          
A

F
P n                                                                         .… (1-4)     

where 
n

F  is the normal forces to surface with area A. [28] 

 

1.4 Fluid Flow 

Historically, flow phenomena have been studied by the most 

famous thinkers of antiquity and, more recently, by the most 

notable mathematicians and experimenters. In internal flow 

through pipes, channels …etc, the flow is established and sustained 

by to overcome the resistance of flow.  

           It is possible –and useful-to classify the type of flow which 

is being examined into small number of groups. If we look at a 

fluid flowing under normal circumstances –a river for example –
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the conditions at one point will vary from those at another point 

(e.g. different velocity) we have unsteady flow. 

Under some circumstances the flow will not be as 

changeable as this. In what follow, we are going to define the terms 

describing the states which are used to classify flow. [3] 

 

1.4.1 Uniform Flow: 

If the flow velocity is same in magnitude and direction at 

every point in the fluid, then the flow is said to be uniform. [3], 

[28], [29] 

 

1.4.2 Non – Uniform Flow : 

        If at a given instant, the velocity is not same at every point 

then the flow is non-uniform flow. [3], [28], [29] 

 

1.4.3 Steady Flow:    

        A steady flow is one in which one of the following (velocity, 

pressure and cross- section) may differ from point to point but do 

not change with time. [3], [28], [29]  

 

1.4.4 Unsteady Flow:  

         If at any point in the fluid, the condition change with time, 

then the flow is described as unsteady. [3], [28], [29] 

 

1.4.5 Laminar Flow:  

         If the fluid particles move along smooth, regular paths, then 

the flow is called laminar flow. [28]. 

 

1.4.6 Turbulent Flow:  

         If the fluid particles move randomly, then the flow is called 

turbulent flow. [28]                                   
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1.5 Reynolds' Number  

         The dimensionless expression ηvdρ /  where dvρ ,,  and η  

are density, mean velocity, diameter and dynamic viscosity 

respectively, is called Reynolds number .The value of Reynolds 

number help us to predict the change in flow type. If its value  less 

than about 2000 then the flow is laminar, if greater than 4000 then 

the flow is turbulent and in between these then in the transition 

state from laminar to turbulent. [3], [28], [29] 

 

1.6 Continuity Equation  

        The continuity equation simply expresses the law of 

conservation of mass (the mass per unit time entering the tube must 

be flow out at the same rate) in mathematical form. [3], [28],        

[29] 

 

1.7 Motion Equations   

        The motion equations are non-linear (or linear sometime) 

partial differential equations which expressed the Newton's second 

law in mathematical form. Thus the motion equations can be 

eveloped from consideration of the force acting on a small element 

of the fluid, including the shear stresses generated by fluid motion 

and viscosity. [28], [29] 

 

1.8 Stream Function  

         Let A be a fixed point in the plane of motion, and ABP, ACP 

are two curves joining A to an arbitrary point P, Fig.(1). 

 

 

                                                         

 

Fig.(1), Stream function 

A 

P 
C 

B 
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According to the continuity equation the flux through ABP is 

equal to the flux through ACP. If we denote the flux by the 

functionψ , then ψ depends on the position of P and time, i.e. 

),,( tyxψ .The functionψ  is called stream function. [28] 

         

Fig.(2), illustrate the relation between the stream function  

)0,,( zxψ  and the velocity field. 

 

 

 

 

 

 

 

 
 

Fig. (2),Stream function and velocity field  

From the continuity equation we have         

 The flux through 
31

PP =flux through 
21

PP +flux through
32

PP  

           WdxUdyd                                                       …. (1-5) 

since  ),( yx  ,then by chain rule we have  

           dy
y

dx
x

d











                                                 …. (1-6) 

from (1-5) and (1-6) we get  

           
x

W
y

U











,                                                 …. (1-7) 

 

 

 

 

d 

 d 

 

  

3 
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X 

Y 

P1 P2

 P1  
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1.8.1 Streamline: 

A streamline is an imaginary line drawn through the flow 

field such that the tangent at any point is in the direction of the 

velocity vector. [3], [28], [29] 
 

1.8.2 Theorem:  

  A steam function is constant along a streamline. [28] 
 

 

1.9 Stress and Strain  

        Fluid particles in motion deform, and therefore, can conform 

to complex geometries and shapes. In practical terms, deformation 

is represents the different ways in which particles can change shape 

or position under the influence of external forces. This deformation 

defined as “strain”. The external forces when transmitted in the 

fluid particles develop to internal forces. For convenience, internal 

forces are expressed in terms of stresses denoted by T, and stress is 

defined as the force per unit area along which the force acting on.  

Consequently, stress and force are equivalent concept. 

 In Fig.(3) we noted that stresses are distinguished as normal 

and tangential. 

 

 

 

Fig.(3),Normal and Tangential Stresses 

 

Tyy 

Tyx 

Txx 

Txy 

Tyx 

Tyy 

Txy 

Txx 
y 

x 
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the subscripts xy or yx on the tangential stresses indicate respectively 

the face and direction the stresses are applied to. To guarantee 

static equilibrium for the free body diagram in Fig.(3) and, 

therefore, to ensure that   0F   and   0M , where F and M 

respectively the force and moment vectors, we must have Txy=Тyx. 

 By including the third direction, the stress state at a 

particular point in a three-dimensional flow is given by the tensor:- 

                 T=

















zzzyzx

yzyyyx

xzxyxx

TTT

TTT

TTT

 

      Again, for static equilibrium,
zyyzzxxzyxxy

TTTTTT  ,, , which 

makes the stress tensor symmetric (i.e. off-diagonal terms are  

equal ). [3] 

1.10 Curvature   

      If T


is the unit tangent vector of a smooth curve, the curvature 

function of the curve is  

           
ds

Td
sc



)(                                                                 …. (1-8). 

     If 
ds

Td


 is large, the curvature at p is large, if 
ds

Td


 is close to 

zero, the curvature at p is smaller. Fig.(4), describe the  curvature. 

[3] 

 



Chapter One                                                         Definitions and Basic Concepts                                             

 8 

 

 

 

 

   

 

 

1.11 Dimensional Analysis  

 Any physical phenomena can be described by certain 

quantitative properties e.g. length, velocity, area, volume…etc. 

These are known as dimensions. Of course dimensions are of no 

use without a magnitude being attached. We must know more than 

that something has a length. It must also have a standardized unit-

such as a meter, a foot …etc. 

 Dimensions are properties which can be measured. Units are 

the standard elements we use to quantify these dimensions. In 

dimensional analysis we are only concerned with the nature of the 

dimension i.e. it's quantity. Thus, the dimensional analysis is a 

method to describe natural phenomena by a dimensionally correct 

equation among certain variables which affect the phenomena. 

There are several methods in the dimensional analysis; one of these 

methods is described in the following subsection. [3], [28] 

 

 

 

Fig.(4),The Curvature  

P P0 
s T


Ť  

Y 

X 
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1.11.1 Scaling and Order-of-Magnitude Analysis:  

 This method consists of two steps 

Step1:  

 Scale the flow variables using quantities characteristic of the 

flow. For example in the flow in pipes the choice for characterizing 

length and velocity scales are respectively the diameter D of the 

pipe and free stream velocity V, then u =
V

u
 and v =

V

v
 are 

dimensionless quantities. 

Step2: 

 Extend the scaling procedure to all terms in the governing 

equation. 

The above procedure leads naturally into the non-

dimensionalization of the continuity and motion equations.  
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CHAPTER TWO  

Formulation of the Problem 
 

Introduction  

The problem under consideration is an unsteady flow of 

viscose, incompressible, non-Newtonian fluid in a curved pipe with 

rectangular cross-section. To describe the flow a cylindrical 

coordinates, orthogonal coordinates, are used. It is shown that the 

dimensionless motion equations are controlled by three parameters 

namely Dean number D , non-Newtonian parameter   and the 

frequency parameter k . The linearization of motion equations has 

been done by using a series solution of ascending power of Dean 

number. 

 

2.1 A Mathematical Consideration  

        Unsteady flow of non-Newtonian fluid in a curved pipe is 

considered. The non-Newtonian fluid is characterized by equation 

of state of the form: 

jkijikik
eeeT  42  .  .

3,2,13,2,13,2,1  kji
                      …(2-1) 

where 
ik

T ,
ik

e ,  and  are the stress, rate of strain, viscosity 

coefficient and normal stress respectively. [26] 

        Fig.(5), illustrates the coordinates system that has been used. 

OZ is the axis of the circle formed by the wall of the pipe. C is the 

center of the section of the pipe by a plane through OZ making an 

angle  with a fixed axial plane. CO is the perpendicular drawn 

from C upon OZ and is of length R .The plane through O 

perpendicular to OZ and the line traced out by C will be called the 

central plane and the center line of the pipe respectively. Cartesian 

coordinates x and z are drawn in the section of the pipe, where x is 
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parallel to OC and z parallel to OZ. The position of any point Q is 

then specified by cylindrical coordinate (x,, z), -d  x  d and       

-h  z  h      where d and h are  the length and height of the cross-

section respectively. The Cartesian system  ZYX ,,  is related to 

the coordinate system in the cross-section by the relations  

        z=  Z), Sin(x+R=Y   ), Cos(x+R=X θθ     .… (2-2) 

where         2o π.        

        Two cases will be examined for convenient length: 

case1, when 2,3  hd , see fig.(5) and case2, when 3,2  hd , 

see fig.(6).  

 

 

 

 

 

                                  

Fig.(5), Coordinates system 

 

 

 

 

 

                                    

 

 

 
 

Fig.(6),Coordinates system 
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  The line element is given by  

22222 )()()()()( dzθdxRdxds                          .... (2-3) 

It is clear from (2-3) that the coordinate system ),,( ZX   is 

orthogonal system. So it is possible to use the curvilinear 

coordinate to write down the continuity equation and motion 

equations  

The line element in curvilinear coordinate is given by, [27] 

2

3

2

2

2

1

2 )()()()(
h

dz

h

dy

h

dx
ds                                       .… (2-4) 

where
321

11
,

1

h
and

hh
are the coefficient of dzanddydx, respectively.  

Then in comparison equation (2-3) with equation (2-4) we 

have  

1,
1

,1
321



 h

xR
hh .    

 

2.2 The Curvilinear Coordinates of the Stress and Rate of 

Strain Components 

       Let ),,( WVU  be the velocity component in the direction 

coordinates ),,( zθx . Then physical components of the rate of strain 

are, [27]  
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 By using equation of (2-1) and (2-5) the physical 

components stress can be written as                                               
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2.3 The Continuity and Motion Equations 

…. (2-6) 
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        The continuity and motion equations for non-Newtonian fluid 

are (28), 
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   In equations (2-7)-(2-10), we assume that the fluid is 

incompressible (  =constant) and the velocity component            

(U, V, W) are independent of   but the pressure p is not. 

 

 

 

 

 

 

 

 

 

 

Substituting equations (2-6) in (2-8)-(2-10) gives  
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The boundary conditions are  

                        U=V=W=0 on the boundary. 
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By using the stream function, equation (1-7), for the velocity 

components U, W and eliminating the pressure from equations    

(2-11) and (2-13) we obtain 
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The last equations, (2-15) and (2-16), can be simplified to   
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2

22

2

2

2

22

2

2

2

2

1

z

V

x

V

zx

ψ

ρ

ξ

x

ψ

z

ψ

zx

V

ρ

ξ
ψ

xz

V

zx

V

ρ

ξ

V
xz

ψ

zx

ψ

t

V

ρ

P

θR
Vυ

 

…. (2-15) 

…. (2-16) 

.... (2-18) 

…. (2-17) 
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










boundarytheonv

boundarytheon
z

ψ

x

ψ
ψ

,0

,0
                     …. (2-19) 

where 

                    
2

2

2

2
2

zx 







 ,       

4

4

22

4

4

4

4 2
zzxx 












  

        We impose a sinusoidal pressure gradient in time with zero 

mean on the flow in the form of      

)(
1

tCosVJ
P

R
o
















                                …. (2-20) 

for convenient computation we will choose .31.2J   

where JVo   is the amplitude of the applied pressure gradient  and 

   is the angular frequency. 
 

2.4 Non-Dimensional Form of Motion Equation for the Case1 

        It is possible to write the motion equations (2-17) - (2-19) in 

non-dimensional form through using the following new quantities  

0

11
,,,,

V

V
v

v
ft

d

z
z

d

x
x 


                 …. (2-21)  

Equations (2-17) - (2-19), then become  



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v

x

v
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f
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v
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t
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
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













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2

1

2

2

1

2
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2

2

1

2

2

1

2
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2

2

1111
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222

2

2

)(31.2

z

v

x

v

zx

f
β

x

f

z

f

zx

V
βf

xz

v

zx

v
β

v
xz

f

zx

f

τ

v
κτCosκv

                                           

…. (2-22) 

…. (2-23) 
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




















boundarytheonv

boundarytheon
z

f

x

f
f

,0

,0
11

                       …. (2-24) 

         These equations can be seen to be controlled by three 

parameters, a non-dimensional frequency parameter, 

2











υ

α
dk , 

the non-Newtonian parameter 
2dρ

ξ
β    and Dean number 

2

32

0
2

R

dV
L   . 

In what follows we shall omit the index of coordinate 

system, it is understood that all variables are in non-dimensional 

form. To solve the above system, (2-22)-(2-24), we will use 

successive approximation method, which is equivalent to the 

perturbation solutions of f  and v in ascending powers of L . So the 

solution of the above system can be developed by using 









),,(),,(),,(),,(

),,(),,(),,(

2

2

1

2

2

1

tzxvLtzxLvtzxvtzxv

tzxfLtzxLftzxf

o

...(2-25)  

Where   0,,
0

tzxf  in a straight pipe. We will limit 

ourselves to find the solution up to the first order in L , similar 

procedures can be used for higher order solutions, and the first 

order solution provide goods accuracy for the purpose. If we 

substitute (2-25) in (2-22) - (2-24), and equate coefficients of equal 

powers in L ; we obtain a series of relations from which 

vo, 1
f ,v1,...can be successively found .The equations are 

)(31.2 222 τCosκ
τ

v
κv o

o





                         …. (2-26) 
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
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
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 ...(2-27) 
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...(2-28) 

The boundary conditions associated with the above 

equations, (2-26) – (2-28) are: - 






















boundarytheononv

boundarytheon
z

f

x

f
f

n
,1,,0

011

1

                …. (2-29) 

 

2.5 Non-Dimensional Form of Motion Equation for the Case2 

 By similar procedure, with exception that h  is the 

characteristic length instead of ,d  the non-dimensional parameters 

are defined as  

0

11
,,,,

V

V
v

v
ft

h

z
z

h

x
x 


             …. (2-30) 

Equations (2-17) - (2-19) become   

)(31.2 222 τCosκ
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o
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  ... (2-33) 
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where

2











υ

α
hk , 

2h


   and

2

32

0
2

R

hV
L   , and the boundary 

conditions associated with this system, (2-31)-(2-33), are  
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Chapter Three 

A Variational Method for Solving the Problem 
 

Introduction 

In this chapter, an approximate solution to the problem is 

obtained through a variational method, Galerkin's method, [4], 

[12], [25], for both cases. 

Actually, the variational methods including Galerkin give an 

analytic approximate solution for partial differential equations 

which describe a fluid mechanics problem. Since it is difficult to 

find an exact solution we resort to consider approximate solution 

for these equations. 

This chapter, also include the solutions of steady state for the 

two cases under consideration. 

3.1 Galerkin's Method 

In 1915, B.G. Galerkin presented a new variational method 

to solve boundary value problems which was of a wide interest to 

researchers in the field of Applied Mathematics and Engineering 

Applications. 

The method is summarized in finding the solution of the 

equation   fuL  ,  GLu 2 , where L  is a differential operator in 

two variables and f  is a given continuous function in two 

variables defined on a region G . We shall seek an approximate 

solution of the problem in the form  

   yxcyx
n

i

iinu ,,
1




                 …. (3-1) 

Where   niyxi ...3,2,1,,   is a system of functions (which 

is usually, called a base of coordinates) chosen before hand and is 

satisfying a certain conditions  

a) It should be linearly independent in L2(G).  

b) It should be complete in this space.  



Chapter Three                                              Variation Method for Solving the Problem 

 22 

And the coefficients ic  are to be determined. Our aim is to 

find the ic  values such that  yxnu ,  is close to the exact solution in 

the sense that fL nu   is orthogonal to i , ni ...,3,2,1 . i.e. 

      

     






























 





0,,,

0,,,

0

dxdyyxyxfyxcL

dxdyyxyxfyxLu

i

G

n

j
jj

G

in

 

 

This is an algebraic system of equations for the unknowns 

ic , ni ,...,3,2,1  when we solve the above system by one of the 

direct numerical methods like “Gauss elimination, Gauss Jordan” 

or iterative numerical methods like “Gauss-sidel method or 

successive over-relaxation method” we get ic  and substitute in 

(3.1) to get the thn  approximate solution  yxun , .[25] 
 

3.2 solution of Case1 

Galerkin's method is employed to solve the equations (2-26)-

(2-28) subjected to the associated boundary conditions (2-29). 

3.2.1 Solution for v0:   

If we substitute for v0 in equation (2-26) by the expression  

 10

04

8

03

6

02

4

01

2  Ovvvvv
o

                 …. (3-3)         

and equate the coefficient of equal powers in k for equation (2-26), 

then the following set of equations are obtained         

  

τ

v
v

τ

v
v

τ

v
v

τCosv


















03

04

2

02

03

2

01

02

2

01

2 )(31.2

 

 

with v0i =0,  i=1,2,3,4 on the boundary.                                       … (3-8) 

 …. (3-4) 

 …. (3-5) 

 …. (3-6) 

 …. (3-7) 

ni ,...,1
…….(3-2) 
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 Solution of (3-4) can be developed by assuming that  

    Coszxvv ,
01101

                                               …. (3-9) 

If substitute equation (3-9) in (3-4) we get 

 31.2
011

2  v                                           …. (3-10) 

So the employed Galerkin's method is equivalent to the 

assuming of solution in the form  

   







 22

0011
9

4
1 zxav                                          …. (3-11) 

where 
0

a is a constant to be determined. It is found that the solution 

of (3-11) is  

   







 22

011
9

4
1 zxv                                               …. (3-12) 

 Thus the complete zeroth order solution is  

    Coszxv 







 22

01
9

4
1                                  …. (3-13) 

If we substitute equation v01 in equation (3-5) and using the 

procedure of Galerkin's method, the solution of v02 is found to be of 

the form  

      Sinzxazaxaazxv 22

4

2

3

2

21

22

02
9

4
1 








 ...(3-14) 

where a1, a2, a3 and a4 are constant. 

 Similarly, solution for v03 and v04 can be found. Finally zero 

order solution for v0 thus obtained. 
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 The substituting of these solutions into equation (3-3) give 

the solution for v0 which is   

)()]()

()()

()()

()()[
9

4
)(1(
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14

6

13

6

12

26

11

6

10

44
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7
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2

3
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4

2

3

2

21

2222
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


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OSinzxc

zxczxczczxczxcxc

zxczxczczxcxczxczc

xccCoszxbzxbzbzxb

xbzxbzbxbbSinzxa

zaxaaCoszxv
o













 

 

3.2.2 Solution for f1: 

     The equation (2-27) contains the function v0, which is now 

known through the solution (3-15). If we substitute of v0   into      

(2-27), then that equation will contain only one unknown function  

which is
1

f , the solution for f1 is obtained as a perturbation in terms 

of the  parameter   as follows: - 

 )( 8

12

6

11

4

1
 Offf                                   …. (3-16) 

The recursive equations for ,
1i

f i=1, 2 are obtained on 

equating the coefficients of equal powers in   these equations are

 
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and the boundary conditions are: 

 

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…. (3-18) 

 

…(3-15) 
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 Again, we proceed to eliminate the time variable and 

generate a solution as an expansion in non-dimensional parameter 

 .The solution for 
1

f  is found to be of the form 

   

)()(

)()(
8

122121

62

112111

4

1





OSin

CosffCosfff




  …. (3-20) 

 

3.2.3 Solution for v1: 

 Similarly, we assume that 

  )( 10

12

8

11

6

1
κOvκvκv                                        .... (3-21) 

The solution (3-21) is substituted into (2-28) and we make 

use of the solutions (3-15) and (3-20), the recursive equations are 
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the boundary condition are 

 












bondarytheoniv

bondarytheoni
z

f

x

f
f

i

ii

i

2,1,0

2,1,0
∂

∂

∂

∂

1

11

1

     …. (3-24) 

By similar procedure the solution for v1 is found to be of the     

form 

…(3-23) 

…(3-22) 
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


...(3-25) 

Finally, substitute the solutions 
10

, fv and 
1

v  into (2-25), the 

stream function and the axial velocity can be written in a convent 

form  

),,(),,(
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where all the above sf ' and sv' are polynomials in x and z. 

If f and v are independent of t and 1k the system (2-22) -     

(2-24) will be reduced to corresponding system in case of steady 

state, which is  
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and the associated  boundary conditions are: 





















ytheboundaronv
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,0

,0
                      …. (3-30) 

 

….(3-28) 

….(3-29) 

.... (3-26) 

.... (3-27) 
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In substituting (2-25) in system (3-28) - (3-30), and equate 

coefficients of equal power in L, we obtain  
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The boundary conditions associated with system (3-31) –   

(3-33), are: 





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1
     …. (3-34) 

The solution of system (3-31) – (3-33) subjected to the 

boundary condition (3-34) is 
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where  .,...,,,...,
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constrealareggee  
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1211

22
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vβvβvLzxv
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

 

In addition to that if we set 0β  in (3-35) and (3-36) we 

obtained the solution in case of Newtonian fluid. [10] 

.... (3-32) 

.... (3-33) 

.... (3-35) 

.... (3-36) 

.... (3-31) 



Chapter Three                                              Variation Method for Solving the Problem 

 28 

3.3 Solution of case2 

 By similar procedure the solution of motion equations for 

case2 is found and Galerkin's method is employed. 

3.3.1 Solution for vo: 

 We assume the solution of v0 is   

 )( 10
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2 κOvκvκvκvκv
o

              …. (3-37) 

 

where 
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 The solution for v03 and v04 are obtained by the same way. 

Thus the solution for v0 is  
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3.3.2 Solution for f1:  

 The solution for 1f  is found to be  
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             .... (3-41) 

 

…. (3-40) 
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3.3.3 Solution for v1: 

 Similarly, the solution for v1 is  
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 Finally, in substituting the solution 10 , fv  and 1v  into (2-25), 

the stream function and the axial velocity can be written in a 

convent form  
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where all the above sf '  and sv'  are polynomials in x and z. 

 If f and v are independent of t and 1k , then the liner 

motion equations for the case of steady state, are     
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The boundary conditions associated with system (3-45) -   

(3-47), are: 
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1 ...(3-48) 

.... (3-46) 

.... (3-47) 

.... (3-42) 

.... (3-43) 

.... (3-44) 

…. (3-45) 
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  And the solution of system (3-45) – (3-47) subjected to the 

boundary condition (3-48), is  
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 Also, if we set 0β  in (3-49) and (3-50), we obtained the 

solution in case of Newtonian fluid. [10] 

.... (3-49) 

.... (3-50) 
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CHAPTER FOUR 

Results and Discussion 
 

Introduction 

 In this chapter, the analysis of the solutions, for both cases, 

is considered. The effect of parameters that control the motion 

equations on various important flow characteristic, (i.e. the 

secondary flow and the axial velocity) is studied for different 

values of these parameters.  

 We explain the effect of these parameters through drawing 

the projection of streamline in the central plane and in the cross-

section of the pipe. A comparison between the values of stream 

function and the value of the axial velocity, for both cases, is given. 

 Also, in our analysis we consider the case of flow of 

Newtonian fluid in curved pipes.  
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4.1 Secondary Flow 

 The secondary flow occurs in curved ducts or curved pipes. 

Physically the parameter L  (Dean number) can be considered as 

the ratio of the centrifugal force induced by circular motion of the 

fluid to viscous force when a fluid flows through a curved pipe. 

Pressure gradient directed towards the center of curvature, is setup 

across the pipe to balance the centrifugal force arising from 

curvature. The fluid near the wall of the pipe is moving more 

slowly than the fluid some way from the wall owing to viscosity 

and therefore require small pressure gradient to balance the local 

centrifugal force. As a result of these different pressure gradients, 

the faster-flowing fluid moves outwards, whilst the slower-flowing 

fluid moves inward.  

This flow is known as the secondary flow and it is superposed on 

the main stream region towards the outer wall and creating a much 

thicker layer of slowly moving fluid at the inner wall, however, 

owing the enhanced mixing and momentum transfer due to the 

secondary flow, the total frictional loss of energy near the wall 

increases and the fluid experiences more resistance in posing 

through the pipe. 

 

4.2 Streamline Projection for Case1 

 The differential equations of the streamline is, [29]  

 
W

dZ

V

dxR

U

dX






                                                …. (4-1) 

The velocity components, (U, V, W) are to be obtained from 

equations (3-35) and (3-36). 
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Up to sufficient accuracy equation (4-1) may be written as 

  W
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z
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xV
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
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4

1

                             …. (4-2) 

It is clear that all the variables are in the dimensional form.  

 

4.2.1 Streamline Projection in the Central Pane: 

 The motion of the liquid in the central plane of the pipe is of 

special simplicity .At any point on OC we have z = 0 and 

0/  xψ , -1  x  1 which mean that w vanishes; (i.e. the liquid 

particles located in the central plane do not possess the w 

component of velocity which is responsible of moving them out of 

this (x = 0) plane). As a result the direction of the velocity at such 

point in the liquid lies in the central plane. Thus the motion in the 

upper half of the pipe is quite distinct from that in the lower half 

and it is clear that the central plane is the plane of symmetry for the 

motion. 

 The differential equation of the streamline in the central 

plane is 

 22
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2

xd
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h
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U
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o





                                                  …. (4-3) 

From the dimensional analysis we have  

d

uv
U                                                                    …. (4-4) 

Then by using equations (4-4) and (2-25) we obtain 

01 
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U                                        …. (4-5) 
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Substituting equation (4-5) into equation (4-3) we obtain  
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where /dVR
oe

 , is Reynolds number which determine the 

nature of flow. 

 Substituting for 1f  from (3-35) into (4-6) and solving the 

resulting differential equation we obtain  
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where 044.016.00
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Here   is measured from the point where the streamline 

cross the central plane )0( x . The ),( x  relation is independent 

of the dimension of the cross-section.  

 For a given value of x , the range of   varies with the 

dimensionless parameters 
e

R and  ; in the case of Newtonian fluid 

)0(  the range of   varies inversely with 
e

R  and for a fixed 

value of 
e

R the range of   increase as   decreases. It is found that 

an increase in   leads to a decrease in the curvature of the 

streamlines in the central plane.  
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 It is noted that the value of   increases steadily with x and 

tends to infinity as x  tends to unity and   tends to minus infinity as 

x  tends to minus one. 

 Numerical illustration are now given for a particular 

boundary and Reynolds number considered by Dean [8], namely 

3

1
,3.63 

R

d
R

e
 and for different values of the parameters Lkβ ,,  

and time τ . 

Fig.(7, 8), illustrate the streamline projection in the central 

plane. The streamline grows smoothly along the central plane and 

merges with the outer wall of the pipe. This shape is greatly 

affected by the non-linear stresses. The non-linear stresses force the 

flow to be around the inner wall for a quite angular distance, the 

flow centrifugal force forces the direction to sharply move in a 

radial direction but the flow steers near the outer wall again. This 

phenomenon becomes very clear as , the non-Newtonian 

parameter, increase through the interval (  , )\ [-0.16, 0.044], 

see Fig.(7). Inversely it is disappear as   varies from -0.16 to 

0.044 Fig.(8) 
 

4.2.2 Streamline Projection on the Cross-Section of the Pipe: 

 The streamline projection on the cross-section for a curved 

pipe are represented by 


1

f Constant  

Where 1f is given by (3-20), which is combination of the 

radial and vertical velocity. The nature of the closed curved 

streamline for various fluid changes because of the non-Newtonian 

parameter.  
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The factors that affected on the secondary flow and  -

component velocity as can be seen from equations (3-26) and      

(3-27), are the frequency parameter k , the non-Newtonian 

parameter  , Dean number D  and the time  . 

Sixty nine cases have been studied to cover the effect of each 

of these factors on the secondary flow and  -component velocity. 

 All figures (11-34) show that, there are two symmetrical 

regimes of secondary flow to appear in the cross-section in curved 

pipe. Also, it is noted that the intensity of the secondary flow is 

stronger in the middle of each of the upper and lower of the cross-

section and becomes weaker when the more toward the boundary 

and the central plane. 

 For   increase through the interval (−∞, ∞)\[-0.16,0.044], 

77.1k  and 01.0L  it is found that there is small vertical 

displacement away from the central plane, and the intensity of the 

secondary flow increases, see Fig.(11, 12).  

In Fig.(13-16) when 1  and for k  and L greater than zero, 

it is noted that the effect of k and L  on the displacement of the 

secondary flow is the same as the effect of  and the intensity of 

secondary flow increase as k and L  increase, but when β is small, 

e.g. 044.0  and different values of  k  and L , there is no 

displacement but there is change in intensity of the stream function, 

see Fig.(17-20).  

Fig.(21-34) illustrated the effect of time on the streamline 

projection on the cross-section in curved pipe. In Fig.(21-28), the 

values of  , k and L  are 1, 1.77, and 0.01 respectively and τ  varies 

from 0 to 6.28. As τ  varies from 0 to 2.05 ( τ  is measured in 



Chapter Four                                                                           Results and Discussion 

 37 

radian) there is displacement toward the central plane and the 

streamline become thicker near the central plane, see Fig.(21-23).  

The transition stage from a two-vortex structure to a four-

vertex structure occurs at 061.2 ; where two additional vortices 

start to grow near the corner of the inner and outer walls, see     

Fig.(24). They are clearer at 07.2 , see Fig.(25) and the twin 

vortices rotating in opposite direction of the main vortices appear. 

Also, at τ  increase it is noted that there are two stagnation regions 

near the corner of the inner and outer walls, Fig.(24), moving 

toward the center of the cross-section, Fig.(25). As   increases, it is 

observed that the vortices in upper and lower half of cross-section 

near the corner of the inner and outer walls of the pipe expand and 

make another secondary flow, because of continuity displacement 

of the main vortices toward the central plane as   increase, the 

new vortices control to the flow in pipe and become the main 

vortices, Fig.(26-28).  

When the value of   is small, e. g. 0.044, and for the same 

values of k and L  (i.e. 77.1k and 01.0L ), the increasing in τ  

from 0 to 6.28 lead to growth one vertex in each halve of the cross-

section (upper and lower the central plane) near the boundaries, the 

vertices appear at 753.1τ  , Fig.(30), and its direction opposite to 

main vortices. At τ  varies from 0 to 6.28, the main vertices displace 

to the central plane. So it reach to stagnation regions, inversely the 

vertices that appear in upper and lower cross-section growth to take 

the location of the main vertices, see Fig.(29-34). 
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4.2.3 The Effect of Parameters, ( Lkβ ,, )and Time ) on  -

Component Velocity:  

The effect of parameters, ( Lkβ ,, and ) on  -component 

velocity illustrated in Fig.(35-47). It is noted that,  parameters  , 

k and  have weak effect on the location of center of axial 

velocity, and the increase in  and k leads to an increase on the 

value of the axial velocity. For increasing L  there is horizontal 

displacement in the center of the axial velocity toward the outer 

wall of the pipe, see Fig.(35-42). In Fig.(44-47) we noted that for 

small value for β , ( 044.0 ), and the increase in k  leads to 

increase in the intensity of the axial velocity but the increase in β  

and L  have not effected, see Fig.(45,46).  

 

4.3  Streamline Projection for Case2 

 As in case1, the differential equations of the streamline are  

 
W

dZ

V

dxR

U

dX






                                          …. (4-9) 

The velocity components, (U, V, W) are to be obtained from 

equations (3-49) and (3-50). 

Up to sufficient accuracy equation (4-9) may be written as 

 

  W

dZ

zx
h

d
V

θdhR

U

dX

o






22

2

2

4

1)(

                           …. (4-10) 

Also the expressions here appear in dimensional form. 
 

4.3.1 Streamline Projection in the Central Pane: 

 This section has the same properties in the previous section 

(4.2.1) and the differential equation of the streamline in the central 

plane is 



Chapter Four                                                                           Results and Discussion 

 39 

)( 22

2

xdV

θdhR

U

dx

o


                                                     …. (4-11) 

In case2 equation (4-4) becomes  

h

uv
U                                                                 …. (4-12) 

Using equations (4-12) and (2-25), we obtain   

01 



 zat

z

f

h

Lv
U                                   …. (4-13) 

where  









R

h
RL

e

22   

Substituting equation (4-13) into equation (4-11), gives  

0

1

2

12

2

1
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2











z

e

z

f

x
h

d

R

θd

dx
                                       …. (4-14) 

 Substituting for 1f  from (3-49) into (4-14) and solving the 

resulting differential equation gives  
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
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where    025.0,64.0\,0
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It noted that   has the same properties as in section (4.2.1), 

but it tends to infinity as x  tends to 
3

2  and it is tend to minus 

infinity as x  tends to 
3

2 .  

From Fig.(9, 10), we noted that the stream line projection in 

the center plane has the same phenomenon describe in section 

(4.2.1) associated with similar effect of   but in slowly form.  

 

4.3.2 Streamline Projection on the Cross-Section of the pipe: 

 Figures (48-64) illustrate the effect of  , k , L  and   on the 

stream line projection on the cross-section in a curved pipe. It is 

found that there is no displacement in a secondary flow as  , 

k and L increase. 

 In addition, it is found that the intensity of the secondary 

flow increases as  , k and L increase, see Fig.(48-53). Also, it is 

noted that there are two stagnation regions near the inner and outer 

walls moving toward the center of cross-section as  , 

k and L increase.  

 As   increases and the values of  , k and L  are 10, 1.77 and 

0.01 respectively, there is displacement toward the boundaries and 

the streamlines become  thicker near the boundaries, Fig.(54). The 

transition stage from a stage from a two-vortex structure to a four-

vertex structure occurs at 85.1 ; where two additional vortices 

start to grow near the inner and outer walls, see Fig.(55), the twin 

vortices rotating in opposite direction of the main vortices appear. 

Also, at τ  increase it is noted that there are two stagnation regions 

near the inner and outer walls moving toward the center of the 

cross-section, see Fig.(54).  
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 For 85.1τ , the stagnation regions start to move toward the 

center of cross-section causes displacement to main vortices toward 

the boundaries with the new vortices near the inner and outer walls 

move toward the center of cross-section to reach the main vortices, 

see Fig.(56-58). 

Fig.(59-64), illustrate the effect of k , L  and   when  is 

small such as 024.0 , it is noted that there is small 

displacement toward the central plane as β , k , L  and   increases 

and the intensity increase as these factors increase.  

Finally, it is observed that the effect of each of the factors 

( , k , L  and  ) on θ -component velocity have the same effect in 

case1 (except L  has stronger effected than in case1) see        

Fig.(65-79).   

For steady state (time derivative is zero), in both cases, it 

noted that the effect of   and L have same effect as in unsteady 

state but in different level see Fig.(80-113). 

Fig.(43, 73) explain the Newtonian type of fluid.   

 

4.4 Comparison between Case1 and Case2 and Conclusion 

For streamline projection in a central plane of the pipe, it is 

noted that as   increases, the effect in case1 is stronger than     

case 2. 

Regarding streamline projection in the cross-section, in 

case1 it is noted that the increase in  , k and L  lead to a weak 

displacement away from center plane and the intensity increases as 

these factors increase, where in case2, the increase in these factors 

lead to increase in the intensity (different from that in case1) of the 

secondary flow but there is no displacement. 
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 In addition to that, in case1 the increase in   leads to a 

displacement toward the central plane and the streamline become 

thicker near central plane.  

 At 061.2  there exist four-vortex structure near the corner 

of the inner and outer walls of the pipe; while in case 2, the 

displacement was toward the boundaries occur and the streamline 

become thicker near the boundaries as τ  increase. The four-vortex 

structure near the inner and outer wall appear at 85.1 . Also, for 

small values of  , in case1 it is noted that there exist two-vortex 

structure and the displacement toward the central plane  but there is 

no such they in case2.  
 

4.5 Further Study   

 In what follow we give some suggestions for further study  

1- The pressure in our problem is imposed. One can calculate 

the pressure by solving Possion’s equation for pressure.  

2- This work can be extended for helical pipe in which torsion 

is not equal to zero (in our problem torsion is zero). 

3- This work can be extended for pipe with varying curvature. 

4- Our problem can be resolving by using boundary layer 

method. 
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Abstract 

   
This thesis is concerned with the study of unsteady flow of 

non-Newtonian, viscous, incompressible fluid in a curved pipe with 

rectangular cross-section, under the action of pressure gradient. 

Consideration is given to two cases, wide and longitudinal 

rectangular. An orthogonal coordinates system has been used to 

describe the fluid motion for each case and it is found that the 

motion equations are controlled by three parameters namely; Dean 

number, non-Newtonian parameter and frequency parameter. 

 For each case, solution for the secondary flow and the axial 

velocity are drived as perturbation over straight pipe. Firstly the 

expansion was in terms of Dean number and secondly in terms of 

frequency parameter. Perturbation equations are solved by using a 

variational method namely, Galerkin's method after eliminating the 

dependence on time for each case. The solutions have been 

developed in Cartesian coordinates for harmonic and biharmonic 

equations. In This study we covered the steady state for both cases 

under consideration.  

 QBASIC language is used to make the numerical 

computations of these solutions, while the MATLAB package is 

used to draw the figures of stream function and axial velocity. Our 

study is ended with studying the effect of the non –dimensional 

parameters mentioned above on the secondary flow, the axial 

velocity and the flow in the central plane. 
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ََ ب   ََ ََ ََ ََ ََ ََ ََ ََ ََ ََ ََ ََ ََ ََ ََ ََ ََ  لل  أ ـ  مــسَ

 ََ  مـ  يــــح  الرَ  ن  مَ ــــحالرَ
 

 ة  ـب  ي  ط    ة  ر  ـج  ش  ك    ةا ـب  ي  ط    ةا ـم  ل  ك   لا  ـ ثم    لله أ ب  ر  ـض    يف   ـ ك   ر ـ م ت  ل  أ"

َ  ـا ف  ه  ـفرعه و    ت  اب  ـا ثه  هــ صلأ  َ  َ  َ  َ  َ  َ  "ء  آــمي الس َ 

  

     يم  ظ  لله الع  أ ق  د  ص                                                        

  24إبراهيم                                                           
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 رــــكر وتقديــش

 



علممي بالللهيمما   ل  ني بالنعاممف  امأبسمم   الممر ال المر يم ح الللهاممد لله المم   اب مد

 واوجدني مل العدم ثم رزقني ورباني الى ان وصلت ما وصلت اليه ...

واصلي واسلم على رسوله ال   به اه ديت الى الديل الللهق وهو الم    ننمي 

 .الطاهريل وصللهبه أجاعيل على طلب العلم مللهاد بل عبد  وعلى اله

الكمريايل ...  الد   واقدم شكر  وام ناني الى نبع الاود  والر اف والعطف و

الى مل تعاهدا هم   الجمةر  اليمعيبف بالسماي والرعايمف المى ان انجمد عودهما 

واينعممت ثاارهمما والممى اين لممم ي ر اهمما ...  مم   رمنممي   مممل همم ا النبممع 

 الابارك.

 وشكر  وتادير  الى اخوتي ايعزاء والى عائل ي الكرياف.

سممممات   قسممممم علمممموم واقممممدم  شممممكر  و ثنممممائي واع ممممزاز  الممممى رئممممي  وا 

الرياضمميا. ... وان  انممت  لامما. الجممكر عمماجز  عممل تاديممف  ا مممح ولكنممي 

 تيانت باول الجاعر:

 وان اويك ذو  يل جاي                                

  كل بالجكر منطلق اللسان                                              

 

ات تي الم يل اعمانوني  نيمراح  يسمروا وه ا قلاي ولساني ينطلاان بالجكر يسم

 لي العسير وقربوا لي البعيد   ى تاكنت بعون   مل انةاز ه ا العال. 

وي انسى مواقمف  يمر  المد  ور الباضمل عبمد المر ال  ايمد رئمي   قسمم 

الرياضمميا. وممما قممدم لممي مممل تسمم ي .ح  ةممزا    خيممر جممزاء الاللهسممنيل... 

باضل ال   اشرف علمى اطرو  مي المد  ور و  لك ي انسى ج ود اس اذ  ال

 ا اد مولود  جكر   سعيه وي انساني  يله ما بايت.

واخص بالجكر وال ادير ايس اذ الد  ور رياض شا ر نعوم والمد  ور  بنينمف 

سمال   أعلى ما ابديا  لي مل عون وال    انا سبباً  مي أسم ارار دراسم ي و

 ان يللهبظ م مل  ل سوء. 

صدقائي الم يل ممدوا لمي يمد العمون وسماعدوني  نيمرا ... ولله در واشكر  ل ا

 مل قال :

 دعوى ايخاء على الرخاء  نير            

 بل  ي الجدائد تعرف ايخوان                                                     

و ممي الا ممام ييسممعني اي ان ا ممرر شممكر  وتاممدير  لكممل مممل اعممانني علممى 

 .ا العال والللهاد لله اوي واخراه انةاز 
 محـمــد علـي مـراد                                                          
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