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Introduction

Fluid mechanics is that branch of applied mathematics which
deals with behavior of fluid at rest and in motion. Fluid is that state
of matter which is capable of changing shape and is capable of
flowing. Each fluid characterized by an equation that relates stress
to rate of strain, known as "state equation ". Fluid may be classified
as "viscous" or "perfect” according to whether the fluid is capable
of exerting shear stress or not. Viscous fluid is called Newtonian if
the relation between stress and rate of strain, in state equation, is
linear, otherwise it is called non-Newtonian fluid.

Viscous flow through straight ducts of various cross-section
forms is well understood. The flow in a gently curved duct may be
considered as a modification of straight axial flow in which the
effect of centrifugal forces must be considered.

Dean, (1927),[7] is the first researcher who worked in flow
analysis of Newtonian fluids in curved pipes. He introduced a
toroidal coordinate system to show that the relation between
pressure gradient and the rate of flow through a curved pipe with
circular cross-section of incompressible Newtonian fluid is
dependant on the curvature. In that paper he could not show this
dependence but he did it in his second paper (1928),[8] where he
modified his analysis by including higher order terms to be able to
show that the rate of flow is slightly reduced by curvature.

Dean and Harst (1957),[10] obtained an approximate
solution of Newtonian fluid flow in a curved pipe with rectangular
Ccross- section assuming that the secondary motion is a uniformly
stream from inner to outer bend. They modeled the equations of

motion by using cylindrical coordinates. This assumption enabled
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them to obtain Bessel’s function solution. They argued that the
secondary motion decreases the rate of flow produced by a given
pressure gradient and causes an outward movement at the region
where the prime motion is the greatest.

In his paper Jones (1960),[17] makes a theoretical analysis
of the flow of incompressible Non-Newtonian viscous liquid in a
curved pipe with circular cross-section keeping only the first order
terms. He shows that the secondary motion consists of two
symmetrical vortices and the distance of the stream lines from the
central plane decreases as the Non-Newtonian parameter increases.

Past work on fully developed flow in a curved square duct
includes numerical studies by Mori, Uchida & Ukon (1971),[23]
who obtained a numerical solution by using boundary-layer
approximation (valid for large Dean numbers); Cheng. Lin & Ou
(1976),[7], Ghia & Shokhey (1977),[14] and Joseph Smith & Adler
(1975),[18] who obtained solutions which predicted the existence
of a weak second vortex pair near the outer wall above a certain
value of the Dean number. This second vortex pair was found to
rotate in the opposite manner to the primary vortex pair. Cheng et
al (1976),[7] predicted the onset of second vortex pair to occur
when a Dean number is >150.

Ghia & Sokhey,[14] predict in it to occur above a Dean
number of 143 while the calculations of Joseph et al,[18], give a
threshold Dean number of 152 since the curvature ratio (whose
effect is embedded in the Dean number) may itself play an
important role for highly curved ducts. The suitability of the Dean
number as the sole parameter to characterize the onset of the

second vortex pair is unclear.
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For curved rectangular ducts Cheng et al (1976),[7]
performed calculations for duct aspect ratio (defined as the ratio of
height H to the width B) of 0.5, 2 and 5 for the range of the Dean
number 15.9 to 312.7 at curvature ratios of 100 and 30. They
reported that for an aspect ratio of 0.5 at L=176 there were no
additional vortices and at L=200 there was a pair of very weak
vortices close to the outer wall. In addition they found that for an
aspect ratio of 5 a pair of secondary vortices appeared at a rather
low Dean number of 76 and the eye of the primary vortex moved
toward the upper and the lower walls with the increase of Dean
number.

Winter, K. H. (1987),[34] considers the bifurcation of
secondary solutions for fully developed laminar flow in curved
rectangular ducts. The study is based on finite-element analysis and
shows the existence of the multiple solutions arising from the non-
linear equations for the range of aspect ratio from 0.8 to 1.6.

Ravi Sankar, Nandakumar & Masliyah (1988),[24] consider
the related problems of developing flow in curved ducts. They have
shown that for a range of curvature ratios and Dean numbers the
flow develop into previously known two-and four- cell patterns
based on fully three-dimensional calculations using the parabolized
form of the Navier-Stokes equations. They have also shown that
for loosely coiled ducts (of curvature ratio of 100) outside a narrow
range of Dean number the solution exhibits sustained oscillations
in the axial direction and that no stable steady solutions could be
predicted.

Thangam and Hur,(1990),[30] show that the secondary flow
of incompressible viscous fluid in a curved duct is studied by using

a finite-volume method. It is shown that as Dean number is
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increased the secondary flow structure evolves into a double vortex
pair for low -aspect- ratio duct and roll cell for duct of high aspect
ratio. They found that for ducts of high curvature the onset of
transition from single vortex pair to a double vortex pair or roll
cells depends on the Dean number and the curvature ratio while for
ducts of small curvature the onset can be characterized by Dean
number alone.

Jing-Wu Wang and Andrews, in (1995),[16] use a non-
orthogonal coordinate system to study the effect of the pitch ratio
and curvature on the velocity distribution of fully developed
laminar flow of an incompressible fluid in a helical duct with
rectangular cross-section. They used a numerical method to solve
the motion equations, they find that the pitch ratio affects the
pattern of the secondary flow, two-vortex become a single vortex if
the pitch ratio is greater than 10 and for a certain level there will be
four vortexes to appear on the plan of the cross-section.

Yakhot A., et al (1999),[35] studied a pulsating laminar
flow of a viscous, incompressible liquid in a rectangular duct . The
motion is induced under an imposed pulsating pressure difference.
The problem is solved numerically. Difference flow regimes are
characterized by non- dimensional parameters based on the
frequency of the imposed pressure gradient oscillation and the
width of the duct. The influence of the aspect ratio of the
rectangular duct and the pulsating pressure gradient frequency on
the phase lag, the amplitude of the induced oscillating velocity, and
the wall shear were analyzed.

Abdul-Hadi A. M.(2000),[1] studied the unsteady flow of
incompressible non-Newtonian fluid in a curved pipe with a square

cross-section. He used a Galerkin method which is a variational
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method to solve the equations of Navier-Stokes. He shows that a
secondary motion depends on three dimensional parameters
namely Dean number, non-Newtonian and frequency parameters,
also he studied the effect of these three parameters on the
secondary flow, axial velocity and some other relation.

AL-Musawy A. Z. H. (2004),[2] studied the flow of non-
Newtonian fluid in a curved duct with varying aspect ratio. In his
computation he used a Galerkin method and finite-difference to
solve the equations of Navier-stokes. He shows that a secondary
motion depends on two dimensional parameters, also he studied the
effect of non-Newtonian and aspect ratio parameters on the
secondary flow and axial velocity.

Our work will be generalized to chapter tow of Abdul-Hadi
A. M. work. This thesis contains four chapters:-
Chapter one devoted to study some of fluid properties and basic
concepts.
Chapter two deals with unsteady flow of viscous, incompressible,
non-Newtonian fluid in curved pipe with rectangular cross-section.
An orthogonal coordinates system has been formed to describe the
fluid motion. In this chapter we are going to study two cases, wide
rectangular and longitudinal rectangular. In each case the motion
equations are controlled by three parameters namely, Dean number,
non-Newtonian parameter and frequency parameter. In each case,
solution of the secondary flow and the axial velocity are described
by perturbations over straight pipe appearing the Dean number.

Chapter three contains solutions of the problem for casel
and case2. These solutions are firstly expanded in terms of Dean

number (chapter two) and secondly in terms of frequency
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parameter. Perturbations equations are solved by Galerkin method
after eliminating the dependence on time.

In chapter four we study the effect of the parameters
mentioned above on the flow in the central plane, the secondary
motion and the axial velocity for each case. This chapter ended

with studying a comparison between casel and case2.

Vi
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CHAPTER ONE

Some Definitions and Basic Concepts

Introduction

The study of fluid dynamics is of closed link with the
physical properties of fluids such as density, viscosity, pressure
...etc. As an introduction to some of the issues in the mechanics of
fluid, this chapter will include a preliminary discussion of a few

such properties fluids flows.

1.1 Density
The density of a fluid, denoted by p, in unit of Kg/m?®is

defined as the mass per unit volume of the fluid,

p=0 . (1)

where m is the mass and v the volume. According to this property,
fluids can be classified into compressible and incompressible.
When the density is constant, the fluid is known as incompressible
but when it changes with time, the fluid is known as compressible.
[28]

1.2 Viscosity

A viscosity of fluid is that characteristic of real fluid which
exhibits a certain resistance to change of form. Some of viscous
fluids “Newtonian fluids” obeys the linear relationship given by

Newton’s law of viscosity.

T=n— ....(1-2)



Chapter One Qeftnivions and SBasig Goncepls

where T is the shear stress ( force per unit area ), g_u is called as
y

velocity gradient and 7 is the coefficient of dynamic viscosity or

simply called viscosity. [28]

1.2.1 Coefficient of Dynamic Viscosity:

The viscosity is defined as the tangential force required per

unit area to sustain a unit velocity gradient. [28]

1.2.2 Kinematic Viscosity:

Kinematic viscosity, denoted byo, in units of m*/s is defined

as the ratio of dynamic viscosity to mass density. [28]

v="1 .. (1-3)
2,

1.3 Pressure

Pressure, denoted by P, in units Kg/m.s" is defined as the
local normal force per unit area,
P=—" ... (1-4)
where F_is the normal forces to surface with area A. [28]

1.4 Fluid Flow

Historically, flow phenomena have been studied by the most

famous thinkers of antiquity and, more recently, by the most
notable mathematicians and experimenters. In internal flow
through pipes, channels ...etc, the flow is established and sustained
by to overcome the resistance of flow.

It is possible —and useful-to classify the type of flow which
IS being examined into small number of groups. If we look at a

fluid flowing under normal circumstances —a river for example —
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the conditions at one point will vary from those at another point
(e.g. different velocity) we have unsteady flow.

Under some circumstances the flow will not be as
changeable as this. In what follow, we are going to define the terms

describing the states which are used to classify flow. [3]

1.4.1 Uniform Flow:

If the flow velocity is same in magnitude and direction at

every point in the fluid, then the flow is said to be uniform. [3],
[28], [29]

1.4.2 Non — Uniform Flow :
If at a given instant, the velocity is not same at every point
then the flow is non-uniform flow. [3], [28], [29]

1.4.3 Steady Flow:

A steady flow is one in which one of the following (velocity,

pressure and cross- section) may differ from point to point but do
not change with time. [3], [28], [29]

1.4.4 Unsteady Flow:
If at any point in the fluid, the condition change with time,
then the flow is described as unsteady. [3], [28], [29]

1.4.5 Laminar Flow:

If the fluid particles move along smooth, regular paths, then

the flow is called laminar flow. [28].

1.4.6 Turbulent Flow:
If the fluid particles move randomly, then the flow is called
turbulent flow. [28]
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1.5 Reynolds' Number

The dimensionless expression pvd/#n where p,v,d and z

are density, mean velocity, diameter and dynamic viscosity
respectively, is called Reynolds number .The value of Reynolds
number help us to predict the change in flow type. If its value less
than about 2000 then the flow is laminar, if greater than 4000 then
the flow is turbulent and in between these then in the transition
state from laminar to turbulent. [3], [28], [29]

1.6 Continuity Equation

The continuity equation simply expresses the law of
conservation of mass (the mass per unit time entering the tube must
be flow out at the same rate) in mathematical form. [3], [28],
[29]

1.7 Motion Equations

The motion equations are non-linear (or linear sometime)
partial differential equations which expressed the Newton's second
law in mathematical form. Thus the motion equations can be
eveloped from consideration of the force acting on a small element
of the fluid, including the shear stresses generated by fluid motion
and viscosity. [28], [29]

1.8 Stream Function
Let A be a fixed point in the plane of motion, and ABP, ACP

are two curves joining A to an arbitrary point P, Fig.(1).

P
‘ﬂ
A

Fig.(1), Stream function
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According to the continuity equation the flux through ABP is
equal to the flux through ACP. If we denote the flux by the

functiony , then y depends on the position of P and time, i.e.

w(X,y,t).The functiony is called stream function. [28]

Fig.(2), illustrate the relation between the stream function
w(x,z,0) and the velocity field.

Y A

P

o

Fig. (2),Stream function and velocity field

From the continuity equation we have

The flux through PP, =flux through PP, +flux through P,P,

dy =-Udy +Wdx .... (1-5)
since w =w/(X,Y),then by chain rule we have
oy oy
dy =——dx+—/d ... (1-6
V=" oy y (1-6)

from (1-5) and (1-6) we get
U 9% .o

5 W3 o (1°7)
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1.8.1 Streamline:

A streamline is an imaginary line drawn through the flow
field such that the tangent at any point is in the direction of the
velocity vector. [3], [28], [29]

1.8.2 Theorem:

A steam function is constant along a streamline. [28]

1.9 Stress and Strain

Fluid particles in motion deform, and therefore, can conform
to complex geometries and shapes. In practical terms, deformation
IS represents the different ways in which particles can change shape
or position under the influence of external forces. This deformation
defined as “strain”.The external forces when transmitted in the
fluid particles develop to internal forces. For convenience, internal
forces are expressed in terms of stresses denoted by T, and stress is
defined as the force per unit area along which the force acting on.

Consequently, stress and force are equivalent concept.

In Fig.(3) we noted that stresses are distinguished as normal

and tangential.

- y
=
TW

Fig.(3),Normal and Tangential Stresses
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the subscripts x, or yx on the tangential stresses indicate respectively
the face and direction the stresses are applied to. To guarantee
static equilibrium for the free body diagram in Fig.(3) and,
therefore, to ensure that > F =0 and > M =0, where F and M

respectively the force and moment vectors, we must have Ty, =Ty

By including the third direction, the stress state at a

particular point in a three-dimensional flow is given by the tensor:-

Again, for static equilibrium, T =T T =T,T, =T, , which

! 7y !

makes the stress tensor symmetric (i.e. off-diagonal terms are
equal ). [3]

1.10 Curvature

If T is the unit tangent vector of a smooth curve, the curvature
function of the curve is

c(s) =

dT
—= ... (1-8).
™ (1-8)

If is close to

r is large, the curvature at p is large, if
S

ds

zero, the curvature at p is smaller. Fig.(4), describe the curvature.

[3]
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Y 4

»

POSP

Fig.(4),The Curvature

1.11 Dimensional Analysis

Any physical phenomena can be described by certain
quantitative properties e.g. length, velocity, area, volume...etc.
These are known as dimensions. Of course dimensions are of no
use without a magnitude being attached. We must know more than
that something has a length. It must also have a standardized unit-
such as a meter, a foot ...etc.

Dimensions are properties which can be measured. Units are
the standard elements we use to quantify these dimensions. In
dimensional analysis we are only concerned with the nature of the
dimension i.e. it's quantity. Thus, the dimensional analysis is a
method to describe natural phenomena by a dimensionally correct
equation among certain variables which affect the phenomena.
There are several methods in the dimensional analysis; one of these

methods is described in the following subsection. [3], [28]
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1.11.1 Scaling and Order-of-Magnitude Analysis:

This method consists of two steps
Stepl:

Scale the flow variables using quantities characteristic of the
flow. For example in the flow in pipes the choice for characterizing

length and velocity scales are respectively the diameter D of the
pipe and free stream velocity V, then G=\% and \_/=\¥ are

dimensionless quantities.
Step2:

Extend the scaling procedure to all terms in the governing
equation.

The above procedure leads naturally into the non-

dimensionalization of the continuity and motion equations.
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CHAPTER TWO

Formulation of the Problem

Introduction

The problem under consideration is an unsteady flow of
viscose, incompressible, non-Newtonian fluid in a curved pipe with
rectangular cross-section. To describe the flow a cylindrical
coordinates, orthogonal coordinates, are used. It is shown that the
dimensionless motion equations are controlled by three parameters
namely Dean number D, non-Newtonian parameter £ and the
frequency parameterk . The linearization of motion equations has
been done by using a series solution of ascending power of Dean

number.

2.1 A Mathematical Consideration

Unsteady flow of non-Newtonian fluid in a curved pipe is
considered. The non-Newtonian fluid is characterized by equation
of state of the form:

T, =2ne, +4lee, . ..(2-1)

i=1,2,3 j=1,2,3 k=1,2,3"

where T,,e,,

nand & are the stress, rate of strain, viscosity
coefficient and normal stress respectively. [26]

Fig.(5), illustrates the coordinates system that has been used.
OZ is the axis of the circle formed by the wall of the pipe. C is the
center of the section of the pipe by a plane through OZ making an
angle 6 with a fixed axial plane. CO is the perpendicular drawn
from C upon OZ and is of length R .The plane through O
perpendicular to OZ and the line traced out by C will be called the
central plane and the center line of the pipe respectively. Cartesian

coordinates x and z are drawn in the section of the pipe, where X is
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parallel to OC and z parallel to OZ. The position of any point Q is
then specified by cylindrical coordinate (x,0, z), -d < x < d and
-h<z<h wheredand h are the length and height of the cross-
section respectively. The Cartesian system (X,Y,Z) Is related to
the coordinate system in the cross-section by the relations

X=(R+x)Cos(@), Y=(R+x)Sin(®), Z=z ... (2-2)
where 0<0<2m

Two cases will be examined for convenient length:

casel, when d =3 ,h =2, see fig.(5) and case2, when d =2,h =3,
see fig.(6).

ZA
d
—
AZ }h
R X -
oo C i
Fig.(5), Coordinates system
ZA
A
Z
h
R
X_,
oNJe c

Fig.(6),Coordinates system

AR
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The line element is given by
(ds)? = (dx)* + (R + x)*(dO)? + (dz)? . (2-3)
It is clear from (2-3) that the coordinate system (X,6,Z) is

orthogonal system. So it is possible to use the curvilinear
coordinate to write down the continuity equation and motion
equations
The line element in curvilinear coordinate is given by, [27]
dx dz

2 _ (YA\2 ﬂz Y _
(“)—(m)+%3-ﬂm) o (2-4)

wherehl, hiand lare the coefficient of dx,dyand dz respectively.

1 2 3
Then in comparison equation (2-3) with equation (2-4) we

have

R+ X

2.2 The Curvilinear Coordinates of the Stress and Rate of

Strain Components

Let (U,V,W) be the velocity component in the direction
coordinates (x,6,z) . Then physical components of the rate of strain

are, [27]

8U 1 (oV oW
exx - ' 679 _+U ’ezz = '
R+ x\ 06 0z
B 1 W v
- R+x 00 oz

... (2-5)

B (au awj
XZ Z

1
2
1(0oV 1 ouU
E(ax R+ X R+x89j

'Y
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By using equation of (2-1) and (2-5) the physical

components stress can be written as

'Y
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;

T_2;76—U 458U 58_V_V N 1 ou
OX oX R+x R+x00
(GU 8Wj
+ —+—
0z oOX
T, =2 1 (ﬁ j é[ V N 1 ou
R+ x\ 06 OX R+x R+x 06

N L)
(R+x) R+x 00 oz

T - 2neaw (au awj (1 w a_vj
0z

R+x 00 oz
oW
+4
(%)

;

0z

R+x 00 oz

oXx R+x R+x 00

T,=T,= (—1 aﬂ+a—vj+5(a—v— v + 1 6UJ

o oW 1 (oV 1 oW oV
—t— |42 —| —+U || ——+—
0z OX R+ x\ 06 R+x 00 oz

( j( 1 oW avj
+2¢ +—
0z \R+x 00 oz

=T DB uaf 2 2.0,
0z OX OX 0z OX

1 ow av)*
—__l__
R+Xx 00 o

NV o1 auj ( j(au
oX R+x R+x06 0z

T_T_[av V N 1 auj (_uj
e oX R+x R+x 06 i

oW j
OX

(av V 1 an (8V \% 1 8Uj
+ +28 —- +

oX R+x R+x 00

R+ x\ 06 0z OX R+x 00

ox R+x R+xo00

*L[ij%(ahawj( 1 aw+aa_\z/)

2.3 The Continuity and Motion Equations

V¢

..(2-6)
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The continuity and motion equations for non-Newtonian fluid
are (28),
ou oW
" _

—+—=0 e (2-7
OX 02 2-7)

2
p(au RIS _v_j__ap+&+i T

— 2z _ % (2-8)
OX 0z R oX  OX 0z R

p(é_v+ua_v+wa_vj:_la_l:)+a-r_w+% (2_9)

ot OX 0z Ro6 ox 15/4

p(aw +U ow +W 8W):_@+ P + M ....(2-10)
ot OX 0z 0z OX 0z

In equations (2-7)-(2-10), we assume that the fluid is
incompressible (p=constant) and the velocity component

(U, V, W) are independent of & but the pressure p is not.

Substituting equations (2-6) in (2-8)-(2-10) gives

Yo
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i [ IR V1Y B +86—
ot OX oz R OX 6x OX OX*

2 2 2
B TS

(au ou . ou sz oP azu oU o°U
W =——+2

0z OX oxoz  ox° oxoz\ 0z oOX
2 2

ga_uau oW, ,, oW (au aw] 5_
0> oxoz oz’ \ oz ox

2 2 2 2
OV OW p iy s0Y 4oy 20V 211
0z°  Oxoz R* R X’ R? R 0z°

2 2
p(av+uav+wav)_ 18P 6\£+256Uﬂ
ot OX 0z R 89 ax ox* OX
ouJ oV oV (o U oW oV

+2& —+ +—; 2
OX OX 0z \ Oxoz oX OX0z
(6U 8Wj oV oV (0°U oW o°W

+ +& + +2
0z  OX 0z° 010X 0z°

d 0z° OX
av Y oW 8%V . (2-12)
az oz o0z°

(aw oW awj oP KaZU aZWj

—+ + +

+U +W = n
ot OX 0z oz oxoz  ox°

2 2
zgag(au+awj+2§aw(au awj é—
OX 0z OX oxoz\ oz OX

o’'U o'W o°W oU oW\ o U oW
+—— |+ 2n—+2& + —+
OX0Z  OX 0z 0z oOx N\ oz OX0Z
oV 82V oW o0°W

+282 el
ég8 0z° g62 0z°

... (2-13)

The boundary conditions are

U=V=W=0 on the boundary. ... (2-14)

V1
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By using the stream function, equation (1-7), for the velocity

components U, W and eliminating the pressure from equations

(2-11) and (2-13) we obtain

_V + I
o VT sz x oz R oz
Oydy Oy Oy \_ , Jw Oy
oz o°x  ox aorx) Tarroxr Tart
2 4
EN OV NNV 'y )

£ LIV _5& "
R OXx 0zoX R oz oz° ox*

And equation (2-12) become

3
ot 0z Ox OX o0z R 06 OX“0Z OX
o'y oV | Oy oV N 0w oV P 0’y o0V N
OXOz OX° OXoz° ox ox® oz 07° oxoz
2 2 3 2 2
R O AP i 2o AP 'O
OX° OXoz 07° OX R o0z° oz R 0z oz
2 3 3
gOW OV Oy N L Ty N (g6
oxoz oz° 0Z0X> OX 0z°0X 0z

The last equations, (2-15) and (2-16), can be simplified to

o gvg{agﬁa Oy ajvzw

Viy=—Viy+ e AN S
PYVESRY Y TR o Tk ar oz ox

-2 ¢ VOV -2 ¢ 8V8\£ ... (2-17)
pR ox oxoz  pR 0z oz

10 [P]ﬂ{fﬂ_wg_a_ngw

oVV - = —| —
RoO\ p ot OX 0L 07 OX

A e e (RN
p\OX 0z 0L OX p\oxoz )\ 0z oX

2E[Ow oV oV ... (2-18)
p\oxoz \ ox*  oz°
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Oy _ Oy
=—-=—"=0, on the bounda
YT a Y ... (2-19)

v =0, on the boundary

where

ap_ 62 v4 B 84 84 84

V2=

—t+—, +2 +
ox* oz’ ox*  ox*oz® o1’
We impose a sinusoidal pressure gradient in time with zero

mean on the flow in the form of

_li E =J V., aCos(at) ....(2-20)
RoOO\ p

for convenient computation we will choose J =2.31.
where JVo« is the amplitude of the applied pressure gradient and

a is the angular frequency.

2.4 Non-Dimensional Form of Motion Equation for the Casel

It is possible to write the motion equations (2-17) - (2-19) in

non-dimensional form through using the following new quantities

XX =—,2=—, 7=ta,f=%, v=— ....(2-21)

Al | :Kzévzf +Lvﬂ+ aqo_ oo Vit -
ot 0z, \0OX 0z, 0z, OX,
AL o 0% +ﬂ o%v
ox, ox,0z, 6z, oz,° ... (2-22)

2 2 2
f 02D g gy OV (3 20,
OX, 0z, 0z, OX, ox,0z,\ 0z, OX

1

25 0 f 82v_82v 593
6)(1821 8X12 az 2 PP ( = )

1
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— o — o =0, on the boundary
OX, Oz

v =0, on the boundary

. (2-24)

1

These equations can be seen to be controlled by three

2
parameters, a non-dimensional frequency parameter, kzd(gj :

(Y]
the non-Newtonian parameter ﬁ:% and Dean number
Jo,
L:2V02d‘°’ |
Rv’

In what follows we shall omit the index of coordinate
system, it is understood that all variables are in non-dimensional
form. To solve the above system, (2-22)-(2-24), we will use
successive approximation method, which is equivalent to the

perturbation solutions of f and v in ascending powers of L. So the

solution of the above system can be developed by using

f(x,z,t) = Lf (x,z,t) + L f,(x,Z,t) +--- (2-25)

V(X,z,t) =V, (X,z,t) + Lv,(X,Z,t) + LV, (X, Z,t) +---

Where f (x,z,t)=0 in a straight pipe. We will limit
ourselves to find the solution up to the first order in L, similar
procedures can be used for higher order solutions, and the first
order solution provide goods accuracy for the purpose. If we
substitute (2-25) in (2-22) - (2-24), and equate coefficients of equal
powers inL; we obtain a series of relations from which

Vo, f,,V1,...can be successively found .The equations are

Vv, =k’ %VT" —2.31x*Cos(z) ....(2-26)

14
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2 2
V4f1=K2£V2fl+VOaV°— 8v08v0+av06v20
or OX OX01 01 01

..(2-27
. j (2-27)
VZV :K%+[@g_%gjvo+ﬁ(8vog_%gj

Yooor \oxar oz ox ox 01 o1 ox
...(2-28
) ov (0%f, 0°f, o' f (0%, 0% (2-28)
Vi +2—° - +20 - ——
oxoz\ oz°  ox’ oxoz\ ox* oz’

The boundary conditions associated with the above
equations, (2-26) — (2-28) are: -

fl=i=%:0 on theboundary
ox 01 120
v,=0,n=0l-- on theboundary - (2-29)

2.5 Non-Dimensional Form of Motion Equation for the Case?2

By similar procedure, with exception that h is the

characteristic length instead of d, the non-dimensional parameters

are defined as

xlzz, zl:E, r=ta, f =2, v:l ....(2-30)
h h v V,
Equations (2-17) - (2-19) become
2 2 8\/ 2
Vv, =x"—>—2.31x"°Cos(z) ....(2-31)
ot
2 2
Vit =kt Doprg oy, Yo gl Xo OVo OV} (5 55y
ot 0z OX OX0Z 07 0z
Vzvl :K%-F @g_igjvo _|_ﬁ 8\/0 g_%é V2 'f1
or \0Xo0L 01 oX OX 07 07 OX

2 2 2 2 2 2
9 0 v, 0 f1 _6 f1 492 0 fl 0 v, _6 v, (2_33)
oxoz\ 0z ox? oxoz\ ox* oz’
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2 2143
wherek:h(gJ, B= 52 andL:M , and the boundary
v oh Ro

conditions associated with this system, (2-31)-(2-33), are

f, = M = oM =0 on theboundary
oX oz ... (2-34)

v.=0,n=01--- on theboundary

AR
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Chapter Three
A Variational Method for Solving the Problem

Introduction

In this chapter, an approximate solution to the problem is
obtained through a variational method, Galerkin's method, [4],
[12], [25], for both cases.

Actually, the variational methods including Galerkin give an
analytic approximate solution for partial differential equations
which describe a fluid mechanics problem. Since it is difficult to
find an exact solution we resort to consider approximate solution
for these equations.

This chapter, also include the solutions of steady state for the
two cases under consideration.

3.1 Galerkin's Method

In 1915, B.G. Galerkin presented a new variational method
to solve boundary value problems which was of a wide interest to
researchers in the field of Applied Mathematics and Engineering
Applications.

The method is summarized in finding the solution of the
equation L(u)=f, ueL,(G), where L is a differential operator in

two variables and f is a given continuous function in two

variables defined on a region G. We shall seek an approximate
solution of the problem in the form
U,(x,y)=2 c®;(x,y) e (3-1)
i=1
Where {®;(x, y),i=12,3..n} is a system of functions (which
is usually, called a base of coordinates) chosen before hand and is
satisfying a certain conditions
a) It should be linearly independent in L,(G).
b) It should be complete in this space.

AR
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And the coefficients c; are to be determined. Our aim is to
find the ¢, values such that U, (x,y) is close to the exact solution in
the sense that LU, — f is orthogonal to @;, 1=123...,n.i.e.

II [Lu, (x,y)— f (x y)lo, (x, y)dxdy =0 »

ﬂ’{ [ZC @ (X, y))— f(x, y)} (%, y)dxdy =0

This is an algebraic system of equations for the unknowns
¢, 1=123,...,n when we solve the above system by one of the

direct numerical methods like “Gauss elimination, Gauss Jordan”
or iterative numerical methods like “Gauss-sidel method or
successive over-relaxation method” we get ¢; and substitute in

(3.1) to get the ™ approximate solution u, (x, y).[25]

3.2 solution of Casel

Galerkin's method is employed to solve the equations (2-26)-
(2-28) subjected to the associated boundary conditions (2-29).

3.2.1 Solution for vg:

If we substitute for v, in equation (2-26) by the expression
V, = K2V, + KV, + KV, + &V, +O(x™) ... (3-3)
and equate the coefficient of equal powers in k for equation (2-26),

then the following set of equations are obtained

V?y,, =-2.31Cos(z) ... (3-4)
.0
vy, = Mo .. (3-5)
ot
ov
Vi, = at"z .. (3-6)
2 OV,
ViV =77 e (377)
with vy =0, i=1,2,3,4 on the boundary. ... (3-8)

Yy
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Solution of (3-4) can be developed by assuming that

Vy, = V,,,(X, 2)Cos(7) ... (3-9)
If substitute equation (3-9) in (3-4) we get
Vi, =-2.31 ....(3-10)

So the employed Galerkin's method is equivalent to the

assuming of solution in the form

vm:ao(l—xz{g—zzj ... (3-11)

where 3 is a constant to be determined. It is found that the solution

of (3-11) is

vonz(l—xz{ﬂ—zzj ... (3-12)

9

Thus the complete zeroth order solution is
Vo, = (1—- xz)(g - ZZ]COS(T) ... (3-13)

If we substitute equation vy, in equation (3-5) and using the
procedure of Galerkin's method, the solution of vg, is found to be of

the form
_ 2 4 2 2 2 252\Qj -
vy, =(1-x 92 (a, +a,x* +a,2> +a,x*z2)Sin(z) ...(3-14)

where a;, a,, az and a4 are constant.
Similarly, solution for vy; and vo, can be found. Finally zero

order solution for v, thus obtained.
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The substituting of these solutions into equation (3-3) give

the solution for vy which is
4
v, = xz(l—xz)(g— 2*)[Cos(zr) + x*(a, +a,x* +a,2* +
a,x’z%)Sin(z)+ x* (b, +b,x* +b,z* +b,x*z* + b, x* +
4,2 4 2,4 4,4 6 2
b,x*z° +b,z" +b,x"z" + b,x"z")Cos(r) + k" (c, + C, X" +
c,z’+c, Xz  +cxt +c x'z’ +c, 2t + e x*zt + e xfzt +
c, X° +c, X2 +c¢,X°z+c,z° +¢, X 2° +¢, X'2°+
c,.X°2°)Sin(z)]+O(x") ...(3-15)

3.2.2 Solution for f;:

The equation (2-27) contains the function vy, which is now

known through the solution (3-15). If we substitute of v, into
(2-27), then that equation will contain only one unknown function

which is f,, the solution for f; is obtained as a perturbation in terms
of the parameter « as follows: -
f=w*f, +x°f, +O(x") .... (3-16)
The recursive equations for f,, -3 , are obtained on

equating the coefficients of equal powers in x these equations are

VL=V, Noy _ B Ny O Voy , Noy O Vo, ... (3-17)
0z OX Oxoz oz oz7°
2

Ve f12 :gvz f11 + Vo avoz Voo aVOl _ﬁ avm o A +

ot 0z 0z OX OXozZ

aVOZ azVOl aVOl 62VOZ a\/02 82VOl

+ + -
oX oxoz 01 o618 07 o1° - (3-18)
and the boundary conditions are:
d. 4, :
f.=—"=—"=0,1=12 on the bonda
1T Tx T a Y ... (3-19)

v,; =0, 1=1,2 on the bondary
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Again, we proceed to eliminate the time variable and
generate a solution as an expansion in non-dimensional parameter
f .The solution for f, is found to be of the form

f, = K4(Tm + ﬂfm)COSZ (z)+ K6(f121 + Ib’fm)COS(T) ... (3-20)
Sin(r) + O(x*)

3.2.3 Solution for v;:
Similarly, we assume that
v, =k°V,, +x°V, +O(x") ... (3-21)
The solution (3-21) is substituted into (2-28) and we make

use of the solutions (3-15) and (3-20), the recursive equations are

VZVM = (aaf)l(l;;_afllajvm +ﬂ(a\/ma_a\/01aJvz f +

0z OX OX 07 07 OX H
5 v, (0 f, o°f, 9 ', (0%, OV ...(3-22)
oxoz\ o6z2  ox? oxoz\ ox* oz°

ot OX 07 07 OX

+ﬁ 8\/012_8\/012 V2f12+IB aVOZ g_%g VZfll
OX 07 07 OX OX 07 07 OX
o’v . (o0*f., o0*f ov (o°f, o°f
+ 2 01 12 _ 12 + 2 02 11 _ 11 +
g axaz( oz*  ox’ ) g oxoz ( oz*  ox’ j

o*f, (0%, 0%V o*f, (0%, oV
2 11 02 02 |49 12 01 o1 | (3-23
s OX0z ( ox* oz’ j p OX0z ( ox* oz’ j (3-23)

v, -2, (B0 MDY, (0 2, 0),

the boundary condition are

d, 4,

f.=—L=—2=0,i=12 on the bondary
&

... (3-24)
v, =0, =12 on the bondary

By similar procedure the solution for v, is found to be of the
form

Yo
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V1 = KG [(Vlll + IB\/nz + ﬂzvllsﬁoss (T) + KZ (V121 + ﬂvlzz ) (3_25)
+ B?V,,,)C08s? (7)Sin(z) + O(x*)]

Finally, substitute the solutions v, f, and v, into (2-25), the

stream function and the axial velocity can be written in a convent
form
f(x,z,7) =Lf (X 2,7)
f(x,z,7)=L[x*(f,,+ B f,,)Co8*(z) + x°(f,,+ B f,,)
Cos(7)Sin(7)] ... (3-26)
V=V, + Ly,
v=rx?V,, + kv, + kv, + k°v,, + Lk°(v,,, + BV, + B7v,,)Cos’ () +
L’ (v, + BV, + BV,,,) ¥Cos(7)? Sin(7) .. (3-27)

where all the above f'sand v'sare polynomials in x and z.
If f and v are independent of t and k =1the system (2-22) -
(2-24) will be reduced to corresponding system in case of steady

state, which is

Vit = V@+(ig_qgjvzf_ﬁL(@j oV |_
0z OX0Z 010X OX \ 0xoz

ov ) o%v
A ....(3-28)
(G&
Vzv:—2.31+(i£—qgjv+ﬁ(@£—@g)wf +
OX 0Z 0Z OX OX 07z 01 oX
Zﬁ[a\/)(a f o fj+25(a f](av_av] ....(3-29)
oxoz \ oz*  ox? oxoz \ ox*  oz?
and the associated boundary conditions are:

of of
f =—=—=0, onthebounda
X oz Y ... (3-30)

v =0, ontheboundary
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In substituting (2-25) in system (3-28) - (3-30), and equate
coefficients of equal power in L, we obtain

Vi, =-2.31 ... (3-31)
oV ov. oV ov_ 0%V

Vif =v —— 0 o _ 0 0 ... (3-32

0oz p OX OXoz p 07 6z° (3-32)

Vzvl—(aflg_@gjv +'8(6V g_ﬂijv f
OX 07 07 OX OX 07 07 0OX

ov, \(o°f, o°f o', d%,
zﬂ[axﬁzj( oz*  ox° j (6xazj( oz’ ] - (3-33)

The boundary conditions associated with system (3-31) —
(3-33), are:

f, = oty ot _ 0, 1=12 ontheboundary
ox oz ... (3-34)
v. =0, n=0,1 ontheboundary

The solution of system (3-31) — (3-33) subjected to the
boundary condition (3-34) is
f(x,z,7) =Lf (X z,7)

f(x,z,7)=L(Q- xz)(g - zz))z[(elz +e,X’z+ez2° +e,x2° +
ex‘z+ex'7%) + B9, X2+ 9,X*2° + ¢,2 + §,X"z)] - (3-35)

where e,....e,, 0,,...,0, are real const.

v=v,+Lv,

vo(l- xz)(g— )L+ L(v,, + Bv,, + B7V,,)] ... (3-36)

In addition to that if we set f=0 in (3-35) and (3-36) we

obtained the solution in case of Newtonian fluid. [10]
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3.3 Solution of case?

By similar procedure the solution of motion equations for
case?2 is found and Galerkin's method is employed.

3.3.1 Solution for v,:

We assume the solution of vg is

V. =k, +x'V,, +x°V,, + kv, +O(x") .. (3-37)
where

Vo :(g—xzj(l—zz)Cos(r) ... (3-38)

V,, = (g— xzj(l— 27 )i, +i,X% +i,2% +i,x?2)Sin(z) ..(3-39)

The solution for vg; and v, are obtained by the same way.

Thus the solution for vg is

4 . .

v, :xz(g— XY —z?)[Cos(z) + x2(i, +i,x* +i,2° +
i,X°28)Sin(z)+ x* (j, + ,X* + j,2° + j,x°2° + j.x" +
jX'z2?+ gzt + jxPzt + jyx*z*)Cos(z) + x°(m, + m,x* +
m,z° + m,x’z* + mx* + m.x*z* + m,z* + mx®z* + mx*z* +

6 62 6 6 2,6 4,6
m, x°* +m, x°z* + m,x°z + m,z° + m,x*z° + m,.x"z° +
m,x°z°)Sin(z)]+ O(x") ... (3-40)

3.3.2 Solution for f;:
The solution for f, is found to be

fl:K4(flll+ﬁf112)cosz(r)+K6(f121+ﬂf122)
Cos(z)Sin(z) + O(x*) o (3-41)
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3.3.3 Solution for v;:

Similarly, the solution for v, is

Vl = KG (Vlll + ﬁvllz + IBZVMBkOS3 (T) + K8 (V121 + ﬁVlZZ + ﬁ2V123)
Cos?(7)Sin(z) +O(x*°) ... (3-42)

Finally, in substituting the solution v,, f, and v, into (2-25),

the stream function and the axial velocity can be written in a
convent form

f(x,z,7) =Lf (X z,7)
f(x,z,7)=L[«*(f,,+ B f,,)Cos’(z) + x°(f,,+ B f.,,)
Cos(7)Sin(7)] ... (3-43)
V=V, +Lv,
v=r’v, +kv, +x’v,, +K°v,, + Li® (v, + v, + B?V,,,)C0s® (1) +
Lic® (Vyp, + BV, + BV,,,)COS (1) Sin(z) ... (3-44)

where all the above f's and v's are polynomials in x and z.

If f and v are independent of t and k=1, then the liner

motion equations for the case of steady state, are

Viv, =-231 ....(3-45)
2 2

vit =y, Mo pNe OVo _ g OV, OV ... (3-46)
0z OX 0OX0Z 07 01

VZVl :(a_flg _%i)vo + ﬁ %2 _%EJVZ fl +
OX 02 07 OX OX 07 07 OX

o'y, Y o'f, o°f o°f, o, o
2 0 1 _ 1 + 2 1 o o ]
ﬁ(@x@zj{ o0z°  ox’ ] ﬁ(@x@zj{ e o j ... (3-47)

The boundary conditions associated with system (3-45) -
(3-47), are:

of, of, :
f,=—"=—=0,1=12 onthebounda
Yoox o oz i ...(3-48)
v. =0, n=12 ontheboundary

Y4



Shaprer Three Diariation Mathod for Obobaing the Broblem

And the solution of system (3-45) — (3-47) subjected to the
boundary condition (3-48), is
f(x,z,7) =Lf (X z,7)

f(x,z,7)= L((g - x*)1- 22))2[(qlz +0,X°2+0,2° +q,x°2° +

0. X'Z+0X'2%) + B Xz +0,x° 20 + 1,z +1,x'7)| ... (3-49)

where q,,...,q;, I,,...I,are real const.

V=V, +Lv,

= (g —x3) (- 221+ L(v,, + By, + BV,,)] ... (3-50)

Also, if we set =0 in (3-49) and (3-50), we obtained the

solution in case of Newtonian fluid. [10]
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CHAPTER FOUR

Results and Discussion

Introduction

In this chapter, the analysis of the solutions, for both cases,
Is considered. The effect of parameters that control the motion
equations on various important flow characteristic, (i.e. the
secondary flow and the axial velocity) is studied for different
values of these parameters.

We explain the effect of these parameters through drawing
the projection of streamline in the central plane and in the cross-
section of the pipe. A comparison between the values of stream
function and the value of the axial velocity, for both cases, is given.

Also, in our analysis we consider the case of flow of

Newtonian fluid in curved pipes.
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4.1 Secondary Flow

The secondary flow occurs in curved ducts or curved pipes.
Physically the parameter L (Dean number) can be considered as
the ratio of the centrifugal force induced by circular motion of the
fluid to viscous force when a fluid flows through a curved pipe.
Pressure gradient directed towards the center of curvature, is setup
across the pipe to balance the centrifugal force arising from
curvature. The fluid near the wall of the pipe is moving more
slowly than the fluid some way from the wall owing to viscosity
and therefore require small pressure gradient to balance the local
centrifugal force. As a result of these different pressure gradients,
the faster-flowing fluid moves outwards, whilst the slower-flowing
fluid moves inward.

This flow is known as the secondary flow and it is superposed on
the main stream region towards the outer wall and creating a much
thicker layer of slowly moving fluid at the inner wall, however,
owing the enhanced mixing and momentum transfer due to the
secondary flow, the total frictional loss of energy near the wall
increases and the fluid experiences more resistance in posing

through the pipe.

4.2 Streamline Projection for Casel

The differential equations of the streamline is, [29]

dX _(R+x)do _dz
U Y W

The velocity components, (U, V, W) are to be obtained from
equations (3-35) and (3-36).

... (4-])
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Up to sufficient accuracy equation (4-1) may be written as

X _ Rddo  _dz e (42)

It is clear that all the variables are in the dimensional form.

4.2.1 Streamline Projection in the Central Pane:

The motion of the liquid in the central plane of the pipe is of
special simplicity .At any point on OC we have z = 0 and

owl0ox=0, -1 < x <1 which mean that w vanishes; (i.e. the liquid

particles located in the central plane do not possess the w
component of velocity which is responsible of moving them out of
this (x = 0) plane). As a result the direction of the velocity at such
point in the liquid lies in the central plane. Thus the motion in the
upper half of the pipe is quite distinct from that in the lower half
and it is clear that the central plane is the plane of symmetry for the
motion.

The differential equation of the streamline in the central

plane is
Gx___Rd'ds e
V. (d?-x?
(o] d2 ( )
From the dimensional analysis we have
vu
U=—o ... (44
. (4-4)
Then by using equations (4-4) and (2-25) we obtain
U:Ei at z=0 ....(4-5)
d oz

where L=2R’ (9)
R
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Substituting equation (4-5) into equation (4-3) we obtain

dx, -2R, of
do h’

... (4-6)

where R, =V, d/v , is Reynolds number which determine the

nature of flow.
Substituting for f, from (3-35) into (4-6) and solving the

resulting differential equation we obtain

1 1+x\' (h—x
0= In ( ) ( H (4-7)
fRe (a, + pb)h(h* ~1) { 1=xJ e x

where 7= a+ph <0 and  pe(—o0,0)\[-0.16,0.044]
a, +pb,

and

—h? 1+x) X
0= In (—j +2tan1(—)] ..(4-8)
1:Re (a, + Ab) A (R +1) [ 1-x h

where h:[a1+—ﬂt)3j> 0 and —0.16 < 3<0.044
a2 +ﬂbl

Here ¢ is measured from the point where the streamline
cross the central plane (x=0). The (x,8) relation is independent

of the dimension of the cross-section.
For a given value of x, the range of & varies with the

dimensionless parameters R and £; in the case of Newtonian fluid
(f=0)the range of @ varies inversely with R, and for a fixed
value of R_the range of ¢ increase as £ decreases. It is found that
an increase in S leads to a decrease in the curvature of the

streamlines in the central plane.
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It is noted that the value of ¢ increases steadily with xand
tends to infinity as x tends to unity and ¢ tends to minus infinity as
x tends to minus one.

Numerical illustration are now given for a particular
boundary and Reynolds number considered by Dean [8], namely

R, =63.3, %:% and for different values of the parameters f,k,L

and time z.

Fig.(7, 8), illustrate the streamline projection in the central
plane. The streamline grows smoothly along the central plane and
merges with the outer wall of the pipe. This shape is greatly
affected by the non-linear stresses. The non-linear stresses force the
flow to be around the inner wall for a quite angular distance, the
flow centrifugal force forces the direction to sharply move in a
radial direction but the flow steers near the outer wall again. This
phenomenon becomes very clear as/f, the non-Newtonian
parameter, increase through the interval (—oo,)\ [-0.16, 0.044],
see Fig.(7). Inversely it is disappear as £ varies from -0.16 to

0.044 Fig.(8)

4.2.2 Streamline Projection on the Cross-Section of the Pipe:

The streamline projection on the cross-section for a curved
pipe are represented by

f,= Constant

Where f, is given by (3-20), which is combination of the
radial and vertical velocity. The nature of the closed curved
streamline for various fluid changes because of the non-Newtonian

parameter.
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The factors that affected on the secondary flow and &-
component velocity as can be seen from equations (3-26) and
(3-27), are the frequency parameter k, the non-Newtonian
parameter 3, Dean number D and the time 7.

Sixty nine cases have been studied to cover the effect of each
of these factors on the secondary flow and &-component velocity.

All figures (11-34) show that, there are two symmetrical
regimes of secondary flow to appear in the cross-section in curved
pipe. Also, it is noted that the intensity of the secondary flow is
stronger in the middle of each of the upper and lower of the cross-
section and becomes weaker when the more toward the boundary
and the central plane.

For g increase through the interval (—oo, o0)\[-0.16,0.044],
k=177 and L=0.01 it is found that there is small vertical
displacement away from the central plane, and the intensity of the
secondary flow increases, see Fig.(11, 12).

In Fig.(13-16) when =1 and for k and L greater than zero,
it is noted that the effect of kandL on the displacement of the
secondary flow is the same as the effect of gand the intensity of
secondary flow increase as kand L increase, but when £is small,
e.g. f=0.044 and different values of k andL, there is no
displacement but there is change in intensity of the stream function,
see Fig.(17-20).

Fig.(21-34) illustrated the effect of time on the streamline
projection on the cross-section in curved pipe. In Fig.(21-28), the

values of g,kandL are 1, 1.77, and 0.01 respectively and ¢ varies

from 0 to 6.28. As ¢ varies from 0 to 2.05 (¢ is measured in

36



Chaprer ~Sfour Results and isoussion

radian) there is displacement toward the central plane and the
streamline become thicker near the central plane, see Fig.(21-23).

The transition stage from a two-vortex structure to a four-
vertex structure occurs at = =2.061; where two additional vortices
start to grow near the corner of the inner and outer walls, see
Fig.(24). They are clearer at r =2.07, see Fig.(25) and the twin
vortices rotating in opposite direction of the main vortices appear.
Also, at 7 increase it is noted that there are two stagnation regions
near the corner of the inner and outer walls, Fig.(24), moving
toward the center of the cross-section, Fig.(25). As 7 increases, it is
observed that the vortices in upper and lower half of cross-section
near the corner of the inner and outer walls of the pipe expand and
make another secondary flow, because of continuity displacement
of the main vortices toward the central plane as 7 increase, the
new vortices control to the flow in pipe and become the main
vortices, Fig.(26-28).

When the value of g is small, e. g. 0.044, and for the same
values of kandL (i.e. k=1.77andL =0.01), the increasing in t
from 0 to 6.28 lead to growth one vertex in each halve of the cross-
section (upper and lower the central plane) near the boundaries, the
vertices appear at 2 1753 , Fig.(30), and its direction opposite to
main vortices. At 7 varies from 0 to 6.28, the main vertices displace
to the central plane. So it reach to stagnation regions, inversely the
vertices that appear in upper and lower cross-section growth to take

the location of the main vertices, see Fig.(29-34).
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4.2.3 The Effect of Parameters, (f,k,L)and Timer) on @-

Component Velocity:

The effect of parameters, (p,k,Landz) on @-component
velocity illustrated in Fig.(35-47). It is noted that, parameters £,

kandz have weak effect on the location of center of axial

velocity, and the increase in fand kleads to an increase on the

value of the axial velocity. For increasing L there is horizontal
displacement in the center of the axial velocity toward the outer
wall of the pipe, see Fig.(35-42). In Fig.(44-47) we noted that for

small value for £, (8 =0.044), and the increase in k leads to
increase in the intensity of the axial velocity but the increase in g

and L have not effected, see Fig.(45,46).

4.3 Streamline Projection for Case2

As in casel, the differential equations of the streamline are
dX _(R+x)d¢ _dZ
U Vv W
The velocity components, (U, V, W) are to be obtained from
equations (3-49) and (3-50).
Up to sufficient accuracy equation (4-9) may be written as

dX Rh'dg dz

0 o)

2

... (4-9)

... (4-10)

Also the expressions here appear in dimensional form.

4.3.1 Streamline Projection in the Central Pane:

This section has the same properties in the previous section
(4.2.1) and the differential equation of the streamline in the central

plane is
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dx__Rhdo . (4-11)
U V,(d>-x)

In case2 equation (4-4) becomes

u=24 ... (4-12)
h

Using equations (4-12) and (2-25), we obtain
_vLaf,
h oz

where L =2R? (Ej
R

Substituting equation (4-13) into equation (4-11), gives

dx, -2R, 6f1|
d d° ,. oz|”
F_Xl)

Substituting for f, from (3-49) into (4-14) and solving the

at z=0 ... (4-13)

. (4-14)

resulting differential equation gives

+ X
o= : 4|2 [/ ] [h J (4-15)
4. Re(a2+ﬁbl)h(h2—9j 23X X

where h:(a1+—ﬁb3J< 0 and fe(—oo,0)\[-0.64,0.025]

aZ +ﬂbl

and

0= il [/HJ +2tan” [j ..(4-16)
y 2 i

R, (az+ﬂb1)h(h2+gj 23-x

where h:(al+—’8b3j> 0 and —0.64< 3<0.025

a’2+ﬂbl
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It noted that ¢ has the same properties as in section (4.2.1),

but it tends to infinity as x tends to % and it is tend to minus

infinity as x tends to —%.

From Fig.(9, 10), we noted that the stream line projection in
the center plane has the same phenomenon describe in section

(4.2.1) associated with similar effect of g but in slowly form.

4.3.2 Streamline Projection on the Cross-Section of the pipe:
Figures (48-64) illustrate the effect of £, k,L and z on the

stream line projection on the cross-section in a curved pipe. It is
found that there is no displacement in a secondary flow as £,
k and L increase.

In addition, it is found that the intensity of the secondary
flow increases as f, kandLincrease, see Fig.(48-53). Also, it is
noted that there are two stagnation regions near the inner and outer
walls moving toward the center of cross-section as S,
k and L increase.

As 7 increases and the values of g, kandL are 10, 1.77 and
0.01 respectively, there is displacement toward the boundaries and
the streamlines become thicker near the boundaries, Fig.(54). The
transition stage from a stage from a two-vortex structure to a four-
vertex structure occurs at 7 =1.85; where two additional vortices
start to grow near the inner and outer walls, see Fig.(55), the twin
vortices rotating in opposite direction of the main vortices appear.
Also, at 7 increase it is noted that there are two stagnation regions
near the inner and outer walls moving toward the center of the

cross-section, see Fig.(54).
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For 7 >1.85, the stagnation regions start to move toward the
center of cross-section causes displacement to main vortices toward
the boundaries with the new vortices near the inner and outer walls
move toward the center of cross-section to reach the main vortices,
see Fig.(56-58).

Fig.(59-64), illustrate the effect of k,L and r when gis
small such as £=0.024, it is noted that there is small

displacement toward the central plane as £, k, L and z increases

and the intensity increase as these factors increase.

Finally, it is observed that the effect of each of the factors
(B, k,L and 7) on §-component velocity have the same effect in
casel (except L has stronger effected than in casel) see
Fig.(65-79).

For steady state (time derivative is zero), in both cases, it
noted that the effect of £ and Lhave same effect as in unsteady
state but in different level see Fig.(80-113).

Fig.(43, 73) explain the Newtonian type of fluid.

4.4 Comparison between Casel and Case2 and Conclusion

For streamline projection in a central plane of the pipe, it is
noted that as S increases, the effect in casel is stronger than
case 2.

Regarding streamline projection in the cross-section, in
casel it is noted that the increase in £, kand L lead to a weak
displacement away from center plane and the intensity increases as
these factors increase, where in case2, the increase in these factors
lead to increase in the intensity (different from that in casel) of the

secondary flow but there is no displacement.
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In addition to that, in casel the increase in z leads to a
displacement toward the central plane and the streamline become
thicker near central plane.

At 7 =2.061 there exist four-vortex structure near the corner
of the inner and outer walls of the pipe; while in case 2, the
displacement was toward the boundaries occur and the streamline
become thicker near the boundaries as 7 increase. The four-vortex
structure near the inner and outer wall appear at 7 =1.85. Also, for
small values of £, in casel it is noted that there exist two-vortex
structure and the displacement toward the central plane but there is

no such they in case2.

4.5 Further Study

In what follow we give some suggestions for further study

1- The pressure in our problem is imposed. One can calculate
the pressure by solving Possion’s equation for pressure.

2- This work can be extended for helical pipe in which torsion
is not equal to zero (in our problem torsion is zero).

3- This work can be extended for pipe with varying curvature.

4- Our problem can be resolving by using boundary layer

method.
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Abstract

This thesis is concerned with the study of unsteady flow of
non-Newtonian, viscous, incompressible fluid in a curved pipe with
rectangular cross-section, under the action of pressure gradient.
Consideration is given to two cases, wide and longitudinal
rectangular. An orthogonal coordinates system has been used to
describe the fluid motion for each case and it is found that the
motion equations are controlled by three parameters namely; Dean
number, non-Newtonian parameter and frequency parameter.

For each case, solution for the secondary flow and the axial
velocity are drived as perturbation over straight pipe. Firstly the
expansion was in terms of Dean number and secondly in terms of
frequency parameter. Perturbation equations are solved by using a
variational method namely, Galerkin's method after eliminating the
dependence on time for each case. The solutions have been
developed in Cartesian coordinates for harmonic and biharmonic
equations. In This study we covered the steady state for both cases
under consideration.

QBASIC language is used to make the numerical
computations of these solutions, while the MATLAB package is
used to draw the figures of stream function and axial velocity. Our
study is ended with studying the effect of the non —dimensional
parameters mentioned above on the secondary flow, the axial

velocity and the flow in the central plane.
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