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Preface

We are pleased that our text has been sufficiently well received to justify this fourth
edition. Students and instructors who use the text like the coupling of the rigorous
and structured treatment of probability and statistics with real-world case studies and
examples, The users of the book have been helpful in pointing ocut ways 1o improve our
presentation. The changes found in this fourth edition reflect the many helpful suggestions
we have received, as well as our own experience in teaching from the text.

Qur first goal in writing this fourth edition was to continue strengthening the bridge
between theory and practice. To that end, we have added sections at the end of each
chapter called Taking a Second Look at Statistics. These sections discuss practical problems
in applying the ideas in the chapter and also deal with common misunderstandings or
faulty approaches. We also have included a new section on Bayesian estimation that
integrates well into Chapter 5 on estimation and gives another view of how estimation
can be applied. It introduces students to Bayesian ideas and also serves to reinforce the
main concepts of estimation.

Some ideas that are useful and important lie beyond the mathematicalscope of the text.
To explore such topics within the mathematical context of the book, we have increased
and enhanced the material on simulation and on the use of Monte Carlo studies. Since
MINITAB is the main tool for simulations and demonstrating computer computations,
the MINITAB sections have been rewritten to conform to Version 14, the latest release.

A barrier to efficient coverage of the book has been the length of time required to cover
Chapters 2 and 3. One of the major changes in the fourth edition is a substantial revision
of basic probability material. Chapters 2 and 3 have been reorganized and rewritten with
the goal of a streamlined presentation. These chapters are now easier to teach and can be
covered in less time, yet without loss of rigor.

in that same spirit, we have also improved and streamlined the development of the ¢,
chi square and F distributions in Chapter 7, the heart of the book. The material there has
been rewritten to simplify the development of the chi square distribution. In addition, we
have made a much better division between the theoretical results and their applications.

Because of the efficiencies in the new edition, covering Chapters 1-7 plus other
additional topics in one semester is now possible.

All in all, we feel that this new edition furthers our objective of writing a book that
emphasizes the interrelation between probability theory, mathemaiical statistics, and
data analysis. As in previous editions, real-world case studies and historical anecdotes
provide valuable tools to effect the integration of these three areas. Our experience in
the classroom has strengthened our belief in this approach. Students can better grasp the
importance of each area when seen in the context of the other two.

vii
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CHAPTER 1

Introduction

1.1 A BRIEF HISTORY
1.2 SOME EXAMPLES
1.3 A CHAPTER SUMMARY

Francis Galten

“Some people hate the very name of statistics, but | find them full of beauty
and interest. Whenever they are not brutalized, but delicately handled by
the higher methods, and are warily interpreted, their power of dealing
with complicated phenomena is extraordinary. They are the only tools by
which an opening can be cut through the formidable thicket of difficufties
that bars the path of those who pursue the Science of man.”

—TFrancis Galton



2 Chapter 1

Introduction

1.1 A BRIEF HISTORY

Statistics is the science of sampling. How one set of measurements differs from another and
what the implications of those differences might be are its primary concerns. Conceptually,
the subject is rooted in the mathematics of probability, but its applications are everywhere.
Statisticians are as likely to be found in a research Iab or a field station as they are in a
government office, an advertising firm, or a college classroom.

Properly applied, statistical techniques can be enormously effective in clarifying and
quantifying natural phenomena. Figure 1.1.1illustrates acase in point. Pictured at the top is
a facsimile of the kind of data routinely recorded by a seismograph—listed chronologically
are the occurrence times and Richter magnitudes for a series of earthquakes. Viewed in
that format, the numbers are largely meaningless: No patterns are evident, nor is there
any obvious connection between the frequencies of tremors and their severities.

By way of contrast, the bottom of Figure 1.1.1 shows a statistical summary (using some
of the regression techniques we will learn later) of a set of seismograph data recorded

Episode number Date Time Severity (Richter scale)
217 6/19 453 pM 27
218 72 607 AM. 31
219 4 819 Am. 2.0
220 &7 1:10 aM. 4.1
221 817 10:46 p.M. 36
.
=
g W
£
~1981R
é _—— N=80338.16¢
;f 0
e
g
B
2 o}
©
&
s
< . - -
A 1 1 1 — T

&5
L
o

Magnitade on Richter scale, R

FIGURE 1.1.1



Section 1.1 A Brief History 3

in southern California (66). Plotted above the Richter (R) value of 4.0, for example, is the
average number (N) of earthquakes occurring per year in that region having magnitudes
in the range 3.75 to 4.25. Similar points are included for R-values centered at 4.5, 5.0,
5.5, 6.0, 6.5, and 7.0. Now we can see that the two variables are related: Describing the
(N, RY's exceptionally well is the equation N = 80,338.16¢ 198K

In general, statistical techniques are employed either to (1) describe what did happen
or (2) predict what might happen. The graph at the bottom of Figure 1.1.1 does both.
Having “fit” the model N = foe A% to the observed set of minor tremors (and finding
that 8y = 80,338.16 and By = —1.981), we can then use that same equation to predict the
likelihood of events not represented in the data set. f R = 8.0, for example, we would
expect N to equal 0.01:

N = 80,338.16¢ 1 M GO
=0.01

{which implies that Californians can expect catastrophic earthquakes registering on the
order of 8.0 on the Richter scale to occur, on the average, once every 100 years).

1t is unarguably true that the interplay between description and prediction—similar to
what we see in Figure 1.1.1—is the single most important theme in statistics. Additional
examples highlighting other aspects of that connection will be discussed in Section 1.2.
To set the stage for the rest of the text, though, we will conclude Section 1.1 with brief
histories of probability and statistics. Both are interesting stories, replete with large casts
of unusual characters and plots that have more than a few unexpected twists and turns.

Probability: The Early Years

No one knows where or when the notion of chance first arose; it fades into our prehistory.
Nevertheless, evidence linking early humans with devices for generating random events is
plentiful: Archaeological digs, for example, throughout the ancient world consisiently turn
up a curious overabundance of astragali, the heel bones of sheep and other vertebrates.
Why should the frequencies of these bones be so disproportionately high? One could
hypothesize that our forbears were fanatical foot fetishists, but two other explanations
seem more plausible: The bones were used for religious ceremonies and for gambling.
Astragali have six sides but are not symmetrical (see Figure 1.1.2). Those found
in excavations typically have their sides numbered or engraved. For many ancient

Sheep astragalus

FIGURE 1.1.2
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ctvilizations, astragali were the primary mechanism through which oracles solicited the
opinions of their gods. In Asia Minor, for example, it was customary in divination rites to
roll, or cast, five astragali. Each possible configuration was associated with the name of a
god and carried with it the sought-after advice. An outcome of (1, 3, 3, 4, 4), for instance,
was said to be the throw of the savior Zeus, and its appearance was taken as a sign of
encouragement {36):

One one, two threes, two fours
The deed which thou meditatest, go do it boldly.
Fut thy hand to it. The gods have given thee
favorable omens
Shrink not from it in thy mind, for no evil
shall befall thee,

A (4, 4, 4, 6, 6), on the other hand, the throw of the child-eating Cronos, would send
everyone scurrying for cover:

Three fours and two sixes. God speaks as follows.
Abide in thy house, nor go elsewhere,
Lest a ravening and destroying beast come nigh thee,
For I see not that this business is safe. But bide

thy time.

Gradually, over thousands of years, astragali were replaced by dice, and the latter
became the most common means for generating random events. Pottery dice have been
found in Egyptian tombs built before 2000 s.c; by the time the Greek civilization was
in full flower, dice were everywhere. (Loaded dice have also been found. Mastering the
mathematics of probability would prove to be a formidable task for our ancestors, but
they quickly learned how to cheat!)

The lack of historical records blurs the distinction initially drawn between divination
ceremonies and recreational gaming. Among more recent societies, though, gambling
emerged as a distinct entity, and its popularity was irrefutable. The Greeks and Romans
were consummate gamblers, as were the early Christians (91).

Rules for many of the Greek and Roman games have been lost, but we can recognize
the lineage of certain modern diversions in what was played during the Middle Ages.
The most popular dice game of that period was called hazard, the name deriving from the
Arabic al zhar, which means ““a die.” Hazard is thought to have been brought to Europe
by soldiers returning from the Crusades; its rules are much like those of our modern-day
craps, Cards were first introduced in the fourteenth century and immediately gave rise to
a game known as Primero, an eatly form of poker. Board games, such as backgammon,
were also popular during this period.

Given this rich tapestry of games and the obsession with gambling that characterized
so much of the Western world, it may seem more than a little puzzling that a formal
study of prebability was not undertaken sooner than it was. As we will see shortly, the
first instance of anyone conceptualizing probability, in terms of a mathematical model,
occurred in the sixteenth century. That means that more than 2000 years of dice games,
card games, and board games passed by before someone finally had the insight to write
down even the simplest of probabilistic abstractions.
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Historians generally agree that, as a subject, probability got off to a rocky start because
of its incompatibility with two of the most dominant forces in the evolution of our Western
culture, Greek philosophy and early Christian theology. The Greeks were comfortable
with the notion of chance (something the Christians were not), but it went against their
nature to suppose that random events could be quantified in any vseful fashion. They
believed that any attempt to reconcile mathematically what did happen with what should
have happened was, in their phraseology, an improper juxtaposition of the “earthly plane”
with the “heavenly plane.”

Making matters worse was the antiempiricism that permeated Greek thinking. Knowl-
edge, to them, was npot something that should be derived by experimentation. It was better
to reason out a question logically than to search for its explanation in a set of numerical
observations. Together, these two attitudes had a deadening effect: The Greeks had no
motivation to think about probability in any abstract sense, nor were they faced with
the problems of interpreting data that might have peinted them in the direction of a
probability calculus.

If the prospects for the study of probability were dim under the Greeks, they became
even worse when Christianity broadened its sphere of influence. The Greeks and Romans
at least accepted the existence of chance. They believed their gods to be either unable or
unwilling to get involved in matters so mundane as the outcome of the roll of a die. Cicero
writes:

Nothing is so uncertain as a cast of dice, and yet there is no one who plays often who does
not make a Venus-throw! and occasionally twice and thrice in succession. Then are we, like
fools, to prefer to say that it happened by the direction of Venus rather than by chance?

For the early Christians, though, there was no such thing as chance: Every event that
happened, no matter how trivial, was perceived to be a direct manifestation of God’s
deliberate intervention. In the words of St. Augustine:

Nos eas causas quae dicuntur fortuitac . . . non dicimus
nullas, sed Iatentes; casque tribuimus vel veri Dei. ..
{We say that those causes that arc said to be by chance
are not non-existent but are hidden, and we altribute
them 10 the will of the true God. .}

Taking Augustine’s position makes the study of probability moot, and it makes a proba-
bilist a heretic. Not surprisingly, nothing of significance was accomplished in the subject
for the next fifteen hundred years.

it was in the sixteenth century that probability, like a mathematical Lazarus, arose
from the dead. Orchestrating its resurrection was one of the most eccentric figures in
the entire history of mathematics, Gerolamo Cardano. By his own admission, Cardano
personified the best and the worst-—the Jekyll and the Hyde—of the Renaissance man.
He was born in 1501 in Pavia. Facts about his personal life are difficult to verify. He wrote
an autobiography, but his penchant for lying raises doubts about much of what he says.

1When rolling four astragali, cach of which is numbered on four sides, a Venus-throw was having each of the
four numbers appear.
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Whether true or not, though, his ““one-sentence” self-assessment paints an interesting
portrait (133):

Nature has made me capable in all manual work, it has given me the spirit of a philosopher
and ability in the sciences, taste and good manners, voluptuousness, gaiety, it has made
me pious, faithful, fond of wisdom, meditative, inventive, courageous, fond of Jearning and
teaching, eager to equal the best, to discover new things and make independent progress, of
modest character, a student of medicine, interested in curiosities and discoveries, cunning,
crafty, sarcastic, an initiate in the mysterious lore, industrious, diligent, ingenious, living only
from day to day, impertinent, contemptuous of religion, grudging, envious, sad, treacherous,
magician and sorcerer, miserable, hateful, lascivious, obscene, lying, obsequious, fond of
the prattle of old men, changeable, irresolute, indecent, fond of women, quarrelsome, and
because of the conflicts between my nature and soul I am not understood even by those with
whom | associate most frequently.

Formally trained in medicine, Cardano’s interest in probability derived from his
addiction to gambling. His love of dice and cards was so all-consuming that he is
said to have once sold all his wife’s possessions just to get table stakes! Fortunately,
something positive came out of Cardano’s obsession. He began looking for a mathematical
model that would describe, in some abstract way, the cutcome of a random event.
What he eventually formalized is now called the classical definition of probability: If the
total number of possible outcomes, all equally likely, associated with some action is n,
and if m of those n result in the occurrence of some given event, then the probability
of that event is m/n. If a fair die is rolled, there are n = 6 possible outcomes. If the
event “outcome is greater than or equal to 5” is the one in which we are interested,
then m = 2 (the outcomes 5 and 6) and the probability of the event is %, or % (see
Figure 1.1.3).

Cardano had tapped into the most basic principle in probability. The model he dis-
covered may seem trivial in retrospect, but it represented a giant step forward: His was
the first recorded instance of anyone computing a theoretical, as opposed to an empirical,
probability. Still, the actual impact of Cardano’s work was minimal. He wrote a book in
1525, but its publication was delayed until 1663. By then, the focus of the Renaissance, as
well as interest in probability, had shifted from lItaly to France.

The date cited by many historians (those who are not Cardano supporters) as the
“beginning” of probability is 1654. In Paris a well-to-do gambler, the Chevalier de Méré,

*1 .2 —~—= Qutcomes greater
than or equal to
3 -4 5; probahility = 2/6
(TR
Possible outcornes

FAGURE 1.1.3
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asked several prominent mathematicians, including Blaise Pascal, a series of questions,
the best-known of which was the problem of points:

Two people, A and B, agree to play a series of fair games until one person has won six games.
They each have wagered the same amount of money, the intention being that the winner
will be awarded the entire pot. But suppose, for whatever reason, the series is prematurely
{erminated, at which point A has won five games and B three. How should the stakes be
divided?

{The correct answer is that A should receive seven-eighths of the total amount wagered.
(Hint: Suppose the contest were resumed. What scenarios would lead to A’s being the
first person to win six games?)]

Pascal was intrigued by de Méré’s questions and shared his thoughts with Pierre Fermat,
a Toulouse civil servant and probably the most brilliant mathematician in Europe. Fermat
gractousty replied, and from the now famous Pascal-Fermat correspondence came not
only the solution Lo the problem of points but the foundation for more general results.
More significantly, news of what Pascal and Fermat were working on spread quickly.
Others got involved, of whom the best known was the Dutch scientist and mathematician
Christiaan Huygens. The delays and the indifference that plagued Cardano a century
earfier were not going to happen again.

Best remembered for his work in optics and astronomy, Huygens, early in his career,
was inirigued by the problem of points. In 1657 he published De Ratiociniis in Aleae Ludo
(Calculations in Games of Chance), a very significant work, far more comprehensive
than anything Pascal and Fermat had done. For almost fifty years it was the standard
“textbook™ in the theory of probability. Not surprisingly, Huygens has supporters who
feel that he should be credited as the founder of probability.

Almost all the mathematics of probability was still waiting to be discovered. What
Huygens wrole was only the humblest of beginnings, a set of fourteen propositions
bearing little resemblance to the topics we teach today. But the foundation was there. The
mathematics of probability was finally on firm footing.

Statistics: From Aristotle to Quetelet

Historians generally agree that the basic principles of statistical reasoning began to
coalesce in the middle of the nineteenth century. What triggered this emergence was the
union of three different “sciences,” each of which had been developing along more or
less independent lines (206).

The first of these sciences, what the Germans called Staarenkunde, involved the
collection of comparative information on the history, resources, and miitary prowess
of nations. Although efforts in this direction peaked in the seventeenth and eighteenth
centuries, the concept was hardly new: Aristotle had done something similar in the fourth
century sc. Of the three movements, this one had the least influence on the development
of modern statistics, but it did contribute some terminology: The word statistics, itself, first
arose in connection with studies of this type.

The second movement, known as political arithmetic, was defined by one of its early
proponents as “the art of reasoning by figures, upon things relating to government.” Of
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more recent vintage than Staatenkunde, political arithmetic’s roots were in seventeenth-
century England. Making population estimates and constructing mortality tables were
two of the problems it frequently dealt with. In spirit, political arithmetic was similar to
what is now called dentography.

The third component was the development of a calculus of probability. As we saw
earlier, this was a movement that essentially started in seventeenth-century France in
response to certain gambling questions, but it quickly became the “‘engine’” for analyzing
all kinds of data.

Staatenkunde: The Comparative Description of States

The need for gathering information on the customs and resources of nations has been
obvious since antiquity. Aristotle is credited with the first major effort toward that
objective: His Politeiai, written in the fourth century s.c., contained detailed descriptions
of some 158 different city-states, Unfortunately, the thirst for knowledge that led to the
Politeiai fell victim to the intellectual drought of the Dark Ages, and almost 2000 years
elapsed before any similar projects of like magnitude were undertaken.

The subject resurfaced during the Renaissance, and the Germans showed the most
interest. They not only gave it a name, Staatenkunde, meaning the comparative description
of states, but they were also the first {in 1660) to incorporate the subject into a university
curriculum. A leading figure in the German movement was Gottfried Achenwall, who
taught at the University of Gottingen during the middle of the eighteenth century.
Among Achenwall’s claims to fame is that he was the first to use the word statistics in
print. It appeared in the preface of his 1749 book Abriss der Statswissenschaft der heutigen
vornehmsten europaishen Reiche und Republiken. (The word comes from the Italian root
stato, meaning “state,” implying that a statistician is someone concerned with government
affairs.) As terminology, it seerns 1o have been well-received: For almost one hundred
years the word statistics continued to be associated with the comparative description of
states. In the middle of the nineteenth century, though, the term was redefined, and
statistics became the new name for what had previously been called political arithmetic.

How important was the work of Achenwall and his predecessors to the development of
statistics? That would be difficult to say. To be sure, their contributions were more indirect
than direct. They left no methodology and no general theory. But they did point out the
need for collecting accurate data and, perhaps more importantly, reinforced the notion
that something complex—even as complex as an entire nation—can be effectively studied
by gathering information on its component parts. Thus, they were lending important
support to the then growing belief that induction, rather than deduction, was a more sure-
footed path to scientific truth.

Political Arithmetic

In the sixteenth century the English government began to compile records, called bills
of mortality, on a parish-to-parish basis, showing numbers of deaths and their underlying
causes. Their motivation largely stemmed from the plague epidemics that had periodicatly
ravaged Europe in the not-too-distant past and were threatening to become a problem in
England. Certain government officials, including the very influential Thomas Cromwell,
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FIGURE 1.14
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felt that these bills would prove invaluable in helping to control the spread of an epidemic.
At first, the bills were published only occasionally, but by the early seventeenth century
they had become a weekly institution.2

Figure 1.1.4 (155) shows a portion of a bill that appeared in London in 1665. The gravity
of the plague epidemic is strikingly apparent when we look at the numbers at the top: Out
of 97,306 deaths, 68,596 (over 70%) were caused by the plague. The breakdown of certain
other afflictions, though they caused fewer deaths, raises some interesting questions. What

2 An interesting account of the bills of mertality is given m Duniel Defoe’s A Journal of the Plague Year,
which purportediy chronicles the London plague outbreak of 1663,
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happened, for example, to the 23 people whe were *frighted” or to the 397 who suffered
from “rising of the lights™?

Among the faithful subscribers to the bills was John Graunt, a London merchant.
Graunt not only read the hills, he staudied them intently. He looked for patterns, com-
puted death rates, devised ways of estimating population sizes, and even sel up a primilive
life table. His results were published in the 1662 treatise Natural and Political Observations
wupon the Bills of Mortality. This work was a landmark: Graunt had launched the twin sci-
ences of vital statistics and demography, and, although the name came later, it also signaled
the beginning of political arithmetic. (Graunt did not have to wait long for accolades: in the
year his book was published, he was elected to the prestigious Royal Society of London,)

High on the list of innovations that made Graunt’s work unigue were his objectives.
Not content simply to describe a situation, although he was adept at doing so, Graunt often
sought to go beyond his data and make generalizations {or, in current statistical terminol-
ogy, draw inferences). Having been blessed with this particular turn of mind, he almost
certainly qualifies as the world’s first statistician. All Graunt really lacked was the prob-
ability theory that would have enabled him to frame his inferences more mathematically.
That theory, though, was just beginning to unfold several hundred miles away in France.

Other seventeenth-century writers were quick to follow through on Graunt’s ideas.
William Petty's Politicael Arithmetick was published in 1690, although it was probably
written some fifteen years earlier. (It was Petty who gave the movement its name.)
Perhaps even more significant were the contributions of Edmund Halley (of “Halley’s
comet” fame). Principally an astronomer, he also dabbled in political arithmetic, and in
1693 wrote An Estimate of the Degrees of the Mortality of Mankind, drawn from Curious
Tables of the Births and Funerals at the city of Breslaw; with an attempt to ascertain
the Price of Annuities upon Lives. (Book titles were longer then!) Halley shored up,
mathematically, the etforts of Graunt and others to construct an accurate mortality table.
In doing so, he laid the foundation for the important theory of annuities. Today, all life
insurance companies base their premium schedules on methods similar to Halley's. (The
first company to follow his lead was The Equitable, founded in 1765.)

For all its initial flurry of activity, political arithmetic did not fare particularly well in the
eighteenth century, at least in terms of having its methodology fine-tuned. Still, the second
half of the century did see some notable achievements for improving the guality of the
databases: Several countries, including the United States in 1790, established a periodic
census. To some extent, answers to the guestions that interested Graunt and his followers
had to be deferred until the theory of probability could develop just a little bit more.

Quetelet: The Catalyst

With political arithmetic furnishing the data and many of the questions, and the theory
of probability holding out the promise of rigorous answers, the birth of statistics was at
hand. All that was needed was a catalyst—someone to bring the two together. Several
individuals served with distinction in that capacity. Karl Friedrich Gauss, the superb
German mathematician and astronomer, was especially helpful in showing how statistical
concepts could be useful in the physical sciences. Similar efforts in France were made
by Laplace. But the man who perhaps best deserves the title of “matchmaker” was a
Belgian, Adolphe Quetelet.



Section 1.2 Some Examples 11

Quetelet was a mathematician, astronomer, physicist, sociologist, anthropologist, and
poet. One of his passions was collecting data, and he was fascinated by the regularity of
social phenomena. In commenting on the nature of criminal tendencies, he once wrote
(69):

Thus we pass from one year to another with the sad perspective of seeing the same crimes
reproduced in the same order and calling down the same punishments in the same proportions.
Sad condition of humanity!... We might enumerate in advance how many individuals will
stain their hands in the blood of their fellows, how many will be forgers, how many will be
poisoners, almost we can enumerate in advance the births and deaths that should occur. There
is a budpet which we pay with a frightful regularity; it is that of prisons, chains and the scaffold.

Given such an orientation, it was not surprising that Quetelet would see in probability
theory an elegant means for expressing human behavior. For much of the nineteenth
century he vigorously championed the cause of statistics, and as a member of more than
one hundred learned societies his influence was enormous. When he died in 1874, statistics
had been brought to the brink of its modern era.

1.2 S50ME EXAMPLES

Do stock markets rise and fall randomly? Is there a common element in the aesthetic
standards of the ancient Greeks and the Shoshoni Indians? Can external forces, such as
phases of the moon, affect admissions to mental hospitals? What kind of relationship
exists between exposure to radiation and cancer mortality?

These guestions are quite diverse in content, but they share some important similarities.
They are all difficult or impossible to study in a laboratory, and none are likely to yield
to deductive reasoning. Indeed, these are precisely the sorts of questions that are usually
answered by collecting data, making assumptions about the conditions that generated the
data, and then drawing inferences about those assumptions.

CASE 5TUDY 1.2.1

Each evening, radio and TV reporters offer a bewildering array of averages and
indices that presumably indicate the state of the stock market. But do they? Are these
numbers conveying any really useful information? Some financial analysts would say
“No,” arguing that speculative markets tend to rise and fall randomly, much as though
some hidden roulette wheel were spinning out the figures. How might that “theory”
be tested statistically?

We would begin by constructing a model that should describe the behavior of the
market if the (random) hypothesis were true. To that end, the notion of “random
movement” would be translated into two assumptions:

a. The chances of the market’s rising or falling on a given day are unaffected by its
actions on any previous days.

b. The market is equally likely to go up or down.

{Continued on next page}
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(Case Study 1.2.1 contined)

Measuring the day-to-day randomness, or its absence, in the market’s movements
can be accomplished by looking at the lengths of runs. By definition, a run of downturns
of length k 1s a sequence of days starting with a rise, followed by k consecutive declines,
then followed by a rise. So, for example, a daily sequence of the form (rise, fall, fall,
rise) is a run of length two,

If the actual behavior of the market’s run lengths differs markedly from the
predictions of assumptions (a) and (b), the random-movement hypothesis can be
rejected. Fortunately, calculating the “expected” number of (randomly-generated)
runs is straightforward.

Suppose a rise has occurred followed by a fall. For a run of length one, the market
must next rise. By assumptions (a) and (b), this happens half the time, so a probabxhty
of 1 5 would be assigned to a run of length one. The notation for this will be P(1) = 2
The other half of the time the market falls, giving the sequence (rise, fall, fall). A run
of length two occurs if there is now a rise. Again, this happens half the time, making
its probability half of the half represented by the (nse fall, fall) sequence. Thus, the
probability of a run of length two is P(2) = 2 . 2 = 1. Continuing in this manner, it

follows that a run of length & has probablhty (3 ) . Furthermore, if there are 7 total

runs, it seems reasonable to expect T - 3) of them to be of length k.

Table 1.2.1 gives the distribution of 120 runs of downturns observed in daily closing
prices of the Standard and Poor’s 500 stock index between February 17, 1994 and
February 9, 1996. The third column gives the corresponding expected numbers, as
calculated from the expression T - (%)k where T = 120.

Notice that the agreement between actual and predicted run frequencies seems
good enough to lend at least some credence to assumptions (a) and (b). However, the
expected numbers of longer runs (4, 5, and 64) do not fit the distribution particularly
well. The reason for that might be that the “equally likely” provision in assumption (b)
is too restrictive and should be replaced by the probability p as given in assumption (c):

¢. The likelihood of a fall in the market is some number p, where 0 < p < 1.

TABLE 1.2.1: Runs in the Closing Prices for the S&P 500 Stock Index

Run Length, k Observed Expected
1 67 6(.00
2 28 30.00
3 18 15.00
4 3 7.50
5 2 3.875
6+ 2 375
120 120.0

Invoking assumptions {(a) and {c), then, allows for the run length probabilities to be
recalculated. For example, following a (rise, fall) sequence, a rise would be expected
{Continued on next page)
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180(1 — p)% of-the time, so P(1) =1 — p. Another fall, of course, would occur the
remaining p% of the time. Since the chance of the next change being ariseis1 — p,
the probability of the sequence (rise, fall, fall, rise}—that is, a run of length two—is
P(2) = p(1 — p).Ingeneral, P(k) = p*~1(1 — p).

Two questions now arise. Whichever of the two is more important for further study
depends on the needs and interests of the model maker.

1. Is the initial assumption p = % justified?
2. Given the observed data, what is the best choice (or estimate) for p?

To answer Question 1, we must decide whether the discrepancies between observed
and expected run lengths are small encugh to be attributed to chance or large enough
to render the model invalid. One way to answer Question 2 is to seek the value of p that
best “explains” the observations, in terms of maximizing their likelihood of occurring,
For the data from which Table 1.2.1 was derived, this type of estimate turns out to
be p = 0.43. The corresponding expected values, based on P(k) = p* (1 — p) =
(0.43Y 1(0.57), are given in column 3 of Table 1.2.2.

TABLE 1.2.2: Runs in the CUosing Prices for the S&P 500 Stock Index

Run Length, & Observed Expected [p = 0.43]

1 67 68.4
2 28 29.4
3 18 12.6
4 3 5.4
5 2 23
6+ 2 19

120 120.0

Has assumption {c) provided a noticeably better fit? Yes. For five of the six run-
length categories, the expected frequencies in Table 1.2.2 are closer to the correspond-
ing observed frequencies than was true for their counterparts in Table 1.2.1. Moreover,
both models—p = % and0 < p < 1—arein substantial agreement with the hypothesis
that up-and-down movements in the market look very much like a random sequence.

CASE STUDY 1.2.2

Not all rectangles are created equal. Since antiquity, societies have expressed aesthetic
preferences for rectangles having certain width (w) to length ¢) ratios. Plato, for ex-
ample, wrote that rectangles whose sides were in a 1:4/3 ratio were especially pleasing.
(These are the rectangles formed from the two halves of an equilateral triangle.)

' {Continued on next page}
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{Case Study 1.2.2 continuied)

Another “standard” calls for the width-to-length ratio to be equal to the ratio of
the length to the sum of the width and the length. That is,

!
? (1.2.1)

Tw 1
Equation 1.2.1 implies that the width is %(«/5 — 1), or approximately 0.618, times as
long as the length. The Greeks called this the golden rectangle and used it often in
their architecture (see Figure 1.2.1). Many other cultures were similarly inclined. The
Egyptians, for example, built their pyramids out of stones whose faces were goiden
rectangles. Today, in our society, the golden rectangle remains an architectural and

artistic standard, and even items such as drivers’ licenses, business cards, and picture
frames often have w/ ! ratios close to 0.618.

i

w i
AGURE 1.2.1: A golden rectangie (T = m)

The fact that many societies have embraced the golden rectangle as an aesthetic
standard has two possible explanations. One, they “learned” to like it because of the
profound influence that Greek writers, philosophers, and artists have had on cultures
all over the world. Or two, there is something unique about human perception that
predisposes a preference for the golden rectangle.

Researchers in the field of experimental aesthetics have tried to test the plausibility
of those two hypotheses by seeing whether the golden rectangle is accorded any
special status by societies that had no contact whatsoever with the Greeks or with
their legacy. One such study {39) examined the w/! ratios of beaded rectangles sewn
by the Shoshoni Indians as decorations on their blankets and clothes. Table 1.2.3 lists
the ratios found for twenty such rectangles.

If, indeed, the Shoshonis also had a preference for golden rectangles, we would
expect their ratios to be “close” to0.618. The average value of the entries in Table 1.2.3,
though, is 0.661. What does that imply? Is 0.661 close enough to 0.618 1o support the
position that liking the golden rectangle is a human characteristic, or is 0.661 so far
from 0.618 that the only prudent conclusion is that the Shoshonis did nof agree with
the aesthetics espoused by the Greeks?

{Continted on next page)
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TABLE 1.2 .3: Width-To-Length Raties of Shoshoni Rectangles

0.693 0.749 0.654 0.670
0.662 0.672 0.615 0.606
0.690 0.628 0.668 0.611
0.606 0.609 0.601 (.553
0.570 0.844 0.576 0.933

Making that judgment is an example of hypothesis testing, one of the predominant
formats used in statistical inference. Mathematically, hypothesis testing is based on
a variety of probability results covered in Chapters 2 through 5. The Shoshonis and
their rectangles, then, will have to be put on hold until Chapter 6, where we learn how
to interpret the difference between a sample mean (= 0.661) and a hypothesized mean
(= 0.618).

Comment, Like x ande, the ratio w/! for golden rectangles (more commonly referred
to as either phi or the golden ratio), is a transcendental number with all sorts of fascinating
properties and connections. Indeed, entire books have been written on phi—see, for
example (106).

Algebraically, the solution of the equation

I w41
is the continued fraction
w 1
P 1
! + .
1+
1
1+
1
1+ —
14+ .-

Among the curiosities associated with phi is its relationship with the Fibonacci series.
The latter, of course, is the famous sequence where each term is the sum of its two
predecessors—that is,

1 1 2 3 5 8 13 21 34 55 89
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Quotients of successive terms in the Fibonacci sequence alternate above and below phi

and they converge to phi:

171 = 1.000000

271 = 2.000000

3/2 = 1.500000

5/3 = 1.666666

8/5 = 1.600000

13/8 = 1.625000

21713 = 1.615385

34/21 = 1.619048

55/34 = 1.617647
89/55 = 1.618182

But phi is not just about numbers—it has cosmological significance as well. Figure 1.2.2
shows a golden rectangle (of width w and length [), where a w X w square has been
nscribed in its left-hand-side. What remains is a golden rectangle on the right, inscribed
in which is an ! — w X I — w square. Below that is another polden rectangle with a
w— ({ — w) Xw — (! — w)square inscribed on its right-hand-side. Each such square
leaves another golden rectangle, which can be inscribed with yet another square, and so
on ad infinitum. Connecting the points where the squares touch the golden rectangles
yields a logarithmic spiral, the beginning of which is pictured. These curves are quite
common in nature and describe, for example, the shape of spiral palaxies, one of which
being our own Milky Way (see Figure 1.2.3).

w tw

FIGURE 1.2.2

What does all this have to do with the Shoshonis? Absolutely nothing, but mathematical
relationships like these are just too good to pass up! The famous astronomer Joannes
Kepler once wrote (106):

“(ieometry has two great treasures; one is the Theorem of Pythagoras; the other [is the
golden ratic]. The first we may compare to a measure of gold; the second we may name a
precious jewel.”
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FIGURE 1.2.3

CASE STUDY 1.2.3

In folklore, the full moon is often portrayed as something sinister, a kind ol evil force
possessing the power to control our behavior. Over the centurics. many prominent
writers and philosophers have shared this beliel (132). Milton, in Puwradise Lost,
refers to

Demoniac frenzy, moping melancholy
And moon-struck madness.

And Othello, after the murder of Desdemona, Inments:

Itis the very error of the moon,
She comes more near the earth than she was wont
And makes men mad.

On a more scholarly level, Sir William Biackstone, the renowned eighteenth-century
Lnglish barrister, defined a ~lunatic™ as

one who hath ., lost the use of his reason and who hath lucid intervals, sometimes
enjoying his senses and sometimes not, and that frequently depending upon changes of
the moon.

The possibility of lunar phascs influcncing human affairs is a theory not without
supporters among the scientific commumity. Studies by reputable medical researchers
have attempted to link the “Transylvania effect.” as it has come to be known. with
higher suicide rates, pyromania, and cven epilepsy.

The relationship between Iunar cycles and mental breakdowns has also been
studied. Table 1.2.4 shows the admission rates to the cmergeney room of a Virginia
mental health clinic before, during, and after the twelve tull moons from August 1971
to July 1972 (13).

(Continied on next page)
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{Case Study 1.2.3 continued)

TABLE 1.2.4: Admission Rates (Patients/Day)

Month Before Full Moon  During Full Moon  After Full Moon

Aung, 6.4 50 5.8
Sept, 7.1 13.0 92
Oct. 6.5 140 7.9
Nov. 8.6 12.0 7.7
Dec. 8.1 6.0 11.0
Tan. 104 9.0 12.9
Feb. 115 13.0 135
Mar. 138 16.0 131
Apr. 15.4 25.0 15.8
May 15.7 13.0 133
June 1.7 14.0 12.8
July 15.8 200 14.5
Averapes 10.9 133 11.5

For these data, the average admission rate “during” the full moon is higher than
the “before” and “after” admission rates: 13.3 versus 10.9 and 11.5. Does that imply
that the Transylvania effect is real? Not necessarily. The question that needs to be
addressed is whether sample means as different as 13.3,10.9, and 11.5 could reasonably
have occurred by chance if, in fact, the Transylvania effect does not exist. We will
learn in Chapter 13 that the answer to that question appears to be *“no.”

CASE STUDY 1.2.4

The oil embargo of 1973 raised some very serious questions about energy policies in
the United States. One of the most controversial is whether auclear reactors should
assume a more central role in the production of electric power. Those in favor point to
their efficiency and to the availability of nuclear material; those against warn of nuclear
“incidents” and emphasize the health hazards posed by low-level radiation. Ittustrating
the opponents’ position was a serious safety lapse that occurred some years ago at a
government facility located in Hanford, Washington. What happened there is what
environmentalists fear will be a recurring problem if nuclear reactors are proliferated.
{Jntil recently, Hanford was responsible for producing the plutonium used in
nuclear weapens. One of the major safety problems encountered there was the storage
of radioactive wastes. Over the years, significant quantities of strontium 90 and cesium
137 leaked from their open-pit storage areas into the nearby Columbia River, which
{Continued on next page)




Section 1.2 Some Examples 19

fAows along the Washington-Oregon border and eventually empties into the Pacific
Ocean. The question raised by public health officials was whether exposure to that
contamination contributed to any serious medical problems. And if so, to what extent?
As a starting point, an index of exposure was calculated for each of the nine Oregon
counties having frontage on either the Columbia River or the Pacific Ocean. It was
based on several factors, including the county’s stream distance from Hanford and the
average distance of its population from any water froniage. As a covariate, the cancer
mortality rate was determined for each of the same counties (see Table 1.2.5) (42).

TABLE 1.2.5: Radioactive Contamination and Cancer Mortality in Oregon

County Index of Exposure  Cancer Mortality per 100,000
Umatilla 2.49 1471
Morrow 2.57 130.1
Gilliam 341 129.9
Sherman 1.25 1135
Wasco 1.62 1375
Hood River 383 162.3
Portland 11.64 2075
Columbia 6.41 1779
Clatsop 8.34 210.3

A graph of the data (see Figure 1.2.4) suggests that radiation exposure (x) and
cancer mortality (y) are related and that the two vary linearfy—that is y = gy + Bix.
Finding the numerical values of gy and gy that orient the line in such a way that
it “best™ fits the data is a frequently-encountered problem in an arca of statistics
known as regression analysis. Here, the optimal line, based on methods described in
Chapter 11, has the equation y = 114.72 + 9.23x.
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1.3 A CHAPTER SUMMARY

The concepts of probability lie at the very heart of all statistical problems, the case
studies of Section 1.2 being typical examples. Acknowledging that fact, the next two
chapters take a close look at some of those concepts. Chapter 2 states the axioms
of probability and investigates their consequences. It also covers the basic skills for
algebraically manipulating probabilities and gives an introduction to combinatorics, the
mathematics of counting. Chapter 3 reformulates much of the material in Chapter 2 in
terms of randont variables, the latter being a concept of great convenience in applying
probability to statistics. Over the years, particular measures of probability have emerged
as being especially useful: The most prominent of these are profiled in Chapter 4.

Our study of statistics proper begins with Chapter 5, which is a first look at the theory of
parameter estimation. Chapter 6 introduces the notion of hypothesis testing, a procedure
that, in one form or another, commands a major share of the remainder of the book. From
a conceptual standpoint, these are very important chapters: Most formal applications of
statistical methodology will involve either parameter estimation or hypothesis testing, or
both.

Among the probability functions featured in Chapter 4, the normal distribution—more
familiarly known as the bell-shaped curve—is sufficiently important to merit even further
scrutiny. Chapter 7 derives in some detail many of the properties and applications of the
normal distribution as well as those of several related probability functions. Much of the
theory that supports the methodology appearing in Chapters 9 through 13 comes from
Chapter 7.

Chapter 8 describes some of the basic principles of experimental “design.” Its purpose
is to provide a framework for comparing and contrasting the various statistical procedures
profiled in Chapters 9 through 14.

Chapters 9, 12, and 13 continue the work of Chapter 7, but with the emphasis being
on the comparison of several populations, similar to what was done in Case Study 1.2.3.
Chapter 10 looks at the important problem of assessing the level of agreement between
a set of data and the values predicted by the probability model from which those data
presumably came (recall Case Study 1.2.1). Linear relationships, such as the one between
radiation exposure and cancer mortality in Case Study 1.2.4, are examined in Chapter 11.

Chapter 14 is an introduction to nonparametric statistics. The objective there is
to develop procedures for answering some of the same sorts of questions raised in
Chapters 8,9, 11, and 12, but with fewer initial assumptions.

As a general format, each chapter contains numerous examples and case studies,
the latter being actual experimental data taken from a variety of sources, primarily
newspapers, magazines, and technical journals. We hope that these apphcations will make
it abundantly clear that, while the general orientation of this text is theoretical, the
consequences of that theory are never too far from having direct relevance to the “real
world.”
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FPierre de Fermat

One of the most influential of seventeenth-century mathematicians, Fermat
earned his living as a lawyer and administrator in Toulouse. He shares
credit with Descartes for the invention of analytic geometry, but his most
important work may have been in number theory. Fermat did not write
for publication, preferring instead to send letters and papers to friends. His
correspondence with Pascal was the starting point for the development of
a mathematical theory of probability. —Pierre de Fermat (1601-1665)

Pascal was the son of a nobleman. A prodigy of sorts, he had already
published a treatise on conic sections by the age of sixteen. He also
invented one of the early calcuiating machines to help his father with
accounting work, Pascal’s cantributions to probability were stimulated by
his correspondence, 1n 1654, with Fermat. Later that year he retired to a
life of religious meditation. —Biaise Pascal (1623-1662)
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2.1 INTRODUCTION

Experts have estimated that the likelihood of any given UFO sighting being genuine is
on the order of one in one hundred thousand. Since the carly 1950s, some ten thousand
sightings have been reported to civil authorities. What is the probability that at least one
of those objects was, in fact, an alien spacecraft? In 1978, Pete Rose of the Cincinnati
Reds set a National League record by batting safely in forty-four consecutive games. How
unlikely was that event, given that Rose was a lifetime .303 hitter? By definition, the mean
free path is the average distance a molecule in a gas travels before colliding with another
molecule. How likely is it that the distance a molecule travels between collisions will be
at feast twice its mean free path? Suppose a boy’s mother and father both have genetic
markers for sickle cell anemia, but neither parent exhibits any of the discase’s symptoms.
What are the chances that their son will also be asymptomatic? What are the odds that a
poker player is dealt a full house or that a craps shooter makes his “point™? If a woman
has lved to age seventy, how likely is it that she will die before her nineticth birthday?
In 1994, Tom Foley was Speaker of the House and running for re-election. The day after
the election, his race had still not been “called” by any of the networks: he trailed his
Republican challenger by 2174 votes, but 14,000 absentee ballots remained to be counted.
Foley, however, conceded. Should he have waited for the absentee ballots to be counted,
or was his defeat at that point a virtual certainty?

As the nature and variety of those questions would suggest, probability is a subject with
an extraordinary range of real-world, everyday applications. What began as an exercise
in understanding games of chance has proven to be useful everywhere. Maybe even more
remarkable is the fact that the solutions to all of these diverse questions are rooted in just
a handful of definitions and theorems. Those results, together with the problem-solving
techniques they empower, are the sum and substance of Chapter 2. We begin, though,
with a bit of history.

The Evolution of the Definition of Probability

Over the years, the definition of probability has undergone several revisions. There is
nothing contradictory in the multiple definitions—the changes primarily reflected the
need for greater generality and more mathematical rigor. The first formulation {often
referred to as the classical definition of probability) is credited to Gerolamo Cardano
(recall Section 1.1). It applies only to situations where (1) the number of possible outcomes
is finite and (2) all outcomes are equally-likely. Under those conditions, the probability
of an event comprised of s outcomes is the ratio m/n, where n is the total number of
(cqually-likely) outcomes. Tossing a fair, six-sided dic, for example, gives m/n = 2— as the
probability of rolling an ¢ven number (that is, cither 2, 4, or 6).

While Cardano's model was well-suited to gambling scenarios (for which it was
intended). it was obviously inadequate for more general problems, where outcomes were
not equally likely and/or the number of outcomes was not finite. Richard von Mises, a
twentieth-century German mathematician, is often credited with avoiding the weaknesses
in Cardano’s model by defining “empirical” probabilities. In the von Mises approach, we
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n = numbgrs of trials

FIGURE 2.1.1

imagine an experiment being repeated over and over again under presumably identical
conditions. Theoretically, a running tally could be kept of the number of times (m) the
outcome belonged to a given event divided by #, the total number of times the experiment
was performed. According to von Mises, the probability of the given event is the limit
{as » goes to infinity) of the ratio m/. Figure 2.1.1 illustrates the empirical probability of
getting a head by tossing a fair coin: as the number of tosses continues to increase, the
ratio mjn converges to 1.

The von Mises approach definitely shores up some of the inadequacies seen in
the Cardano model, but it is not without shortcomings of its own. There is some
conceptual inconsistency, for example, in extolling the limit of m/: as a way of delining
a probability empirically, when the very act of repeating an experiment under identical
conditions an infinite number of times is physically impossible. And left unanswered is
the question of how large » must be in order for mp to be a good approximation for
lim myn.

Andrei Kolmogorov, the great Russian probabilist, took a different approach. Aware
that many twentieth-century mathematicians were having success developing subjects
axiomatically, Kolmogorov wondered whether probability might similarly be defined
operationally, rather than as a ratio (like the Cardano model) or as a limit (like the von
Mises model). His efforts culminated in a masterpiece of mathematical elegance when he
published Grundbegriffe der Wahrscheinlichkeitsrechnung (Foundations of the Theory of
Probability) in 1933, In essence, Kolmogorov was able to show that a maximum of four
simple axioms was necessary and sufficient 1o define the way any and all probabilities
must behave. (These will be our starting point in Section 2.3.)

We begin Chapter 2 with some basic (and, presumably, familiar) definitions from
set theory. These are important because probability will eventually be defined as a set
function—that is, a mapping from a set 10 a number. Then, with the help of Kolmogorov’s
axioms in Section 2.3, we will learn how to calculate and manipulate probabilities. The
chapter concludes with an introduction to combinatorics—the mathematics of systematic
counting—and its application to probability.
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2.2 SAMPLE SPACES AND THE ALGEBRA OF SETS

The starting point for studying probability is the definition of four key terms: experirment,
sample outcome, sample space, and event. The latter three, all carryovers from classical set
theory, give us a familiar mathematical framework within which to work; the former is what
provides the conceptual mechanism for casting real-world phenomena into probabilistic
{erms.

By an experiment we will mean any procedure that (1) can be repeated, theoretically,
an infinite number of times; and (2) has a well-defined set of possible outcomes. Thus,
rolling a pair of dice qualifies as an experiment; so does measuring a hyperiensive’s blood
pressure or doing a spectrographic analysis to determine the carbon content of moon
rocks. Asking a would-be psychic to draw a picture of an image presumably transmitted
by another would-be psychic does rot qualify as an experiment, because the set of possible
outcomes cannot be listed, characterized, or otherwise defined.

Each of the potential eventualities of an experiment is referred Lo as a sample outcome,
s, and their totality is called the sample space, S. To signify the membership of s in
8, we write s € §. Any designated collection of sample outcomes, including individual
outcomes, the entire sample space, and the null set, constitutes an event. The latter is said
to occur if the outcome of the experiment is one of the members of the event.

EXAMPLE 2.2.1
Consider the experiment of flipping a coin three times. What is the sample space? Which
sample outcomes make up the event A: Majority of coins show heads?

Think of each sample outcome here as an ordered triple, its components representing

the outcomes of the first, second, and third tosses, respectively. Altogether, there are
eight different triples, so those eight comprise the sample space:

S = {(HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
By inspection, we see that four of the sample outcomes in § constitute the event A:

A = {HHH, HHT, HTH, THH}

EXAMPLE 2.2.2

Imagine rolling two dice, the first one red, the second one green. Each sample outcome
is an ordered pair (face showing on red die, face showing on green die), and the entire
sample space can be represented as a 6 X 6 matrix (see Figure 2.2.1).

Gamblers are often interested in the event A that the sum of the faces showing is a 7.
Notice in Figure 2.2.1 that the sample outcomes contained in A are the six diagonal
entries, (1, 6), (2,5), (3,4), (4,3),(5,2), and (6, 1).
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Face showing on red die

FIGURE 2.2.1

EXAMPLE 2.2.3

A focal TV station advertises two newscasting positions. If three women (Wy, Wa, W3) and
two men (My, M5) apply, the “experiment” of hiring two coanchors generates a sample
space of 10 outcomes:

§ = {(W1, Wa), (W1, W3), (W, Wa), (W1, My), (W1, Ma), (Wa, M),
(Wy, M), (W3, M1}, (W3, M2), (M1, M2)}
Does it matter here’that the two positions being filled are equivalent? Yes. If the station
were seeking to hire, say, a sports announcer and a weather forecaster, the number of

possible outcomes would be 20: (W2, M), for example, would represent a different staffing
assignment than (M, W),

EXAMPLE 2.2.4

The number of sample outcomes associated with an experiment need not be finite. Suppose
that a coin is tossed until the first tail appears. If the first toss is itself a tai}, the outcome
of the experiment is T if the first tail occurs on the second toss, the outcome is HT; and
so on. Theoretically, of course, the first tail may never occur, and the infinite nature of S
is readily apparent:

S = {T, HT, HHT, HHHT, ...)

EXAMPLE 2.2.5

There are three ways to indicate an experiment’s sample space. If the number of possibie
outcomes is small, we can simply list them, as we did in Examples 2.2.1 through 2.2.3. In
some cases it may be possible to characterize a sample space by showing the structure its
outcomes necessarily possess. This is what we did in Example 2.2.4. A third option is to
state a mathematical formula that the sample outcomes must satisfy.
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A computer programmer is running a subroutine that solves a general quadratic equa-
tion, ax? 4 bx + ¢ = 0. Her “experiment” consists of choosing values for the three
coefficients a, b, and c. Define (1) § and (2) the event A: Equation has two equal
roots,

First, we must determine the sample space. Since presumably no combinations of finite
a, b, and ¢ are inadmissible, we can characterize § by writing a series of inequalities:

S={abcr—w<a<cx-~x0<h<oo-00<c <00

Defining A requires the well-known result from algebra that a quadratic equation has
equal roots if and only if its discriminant, b* -~ dac, vanishes. Membership in A, then, is
contingent on a, b, and ¢ satisfying an equation:

A= {(a, b,k b* — 4ac =0}

QUESTIONS

2.21. A graduating engineer has signed up for three job interviews. She intends to categorize
each one as being either a “success”™ or a “failure” depending on whether it leads to a
plant trip. Write out the appropriate sample space. What outcomes are in the event A:
Second success occurs on third interview? In B: First success never occurs? (Hint:
Notice the similarity between this situation and the coin-tossing experiment described
in Example 2.2.1.)

2.2.2. Three dice are tossed, one red, one blue, and one green. What outcomes make up the
event A that the sum of the three faces showing equals five?

2.2.3. An urn contains six chips numbered 1 through 6. Three are drawn out. What outcomes
are in the event “‘Second smallest chip is a 3”? Assume that the order of the chips is
irrelevant.

2.2.4. Suppose that two cards are dealt from a standard 52-card poker deck. Let A be the
event that the sum of the two cards is eight (assume that aces have a numerical value
of one). How many outcomes are in A?

2.2.5. In the lingo of craps-shooters (where two dice are tossed and the underlying sample
space is the matrix pictured in Figure 2.2.1) is the phrase “making a hard eight.” What
might that mean?

v 22.6. A poker deck consists of fifty-two cards, representing thirteen denominations (2
through Ace) and four suits (diamonds, hearts, clubs, and spades). A five-card hand is
called a flush if all five cards are in the same suit, but not all five denominations are
consecutive. Pictured next is a flush in hearts. Let N be the set of five cards in hearts
that are not flushes. How many outcomes are in N7 Note: In poker, the denominations
{A, 2,3, 4, 5) are considered to be consecutive (in addition 1o sequences such as (8, 9,
10,J, Q).

Denominations
2 3 4567 8910 QKA

. X X X X X
Suits

wo mU




2.7,

2.28.

2.2.9,

2.2.10.

2.2.11.

2.2.12.

2,213,

2.2.14.
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Let P be the set of right triangles with a 5" hypotenuse and whose height and length
are a and b, respectively. Characterize the outcomes in P.

Suppose a baseball player steps to the plate with the intention of trying to “coax” a

base on balls by never swinging at a pitch. The umpire, of course, will necessarily call

each pitch either a ball (B) or a strike (). What outcomes make up the event A, that

a batter walks on the sixth pitch? Note: A batter “walks” if the fourth bal is called

before the third strike,

A telemurketer is planning to set up a phone bank to bilk widows with a Ponzi scheme.

His past experience (prior to his nost recent incarceration) suggests that each phone

will be in use half the time. For a given phone at a given time, led ¢ indicate that

the phone is available and let 7 indicate that a caller is on the line. Suppose that the

telemarketer’s “bank™ is comprised of four telephones.

{2} Write out the outcomes in the sample space.

(b) What outcomes would make up the event that exactly two phones were being
used?

(¢} Suppose the telemarketer had k phones. How many outcomes would allow for the
possibility that at most one more call could be received?

Two darts are thrown at the following target:

(a) Let (x, v} denote the outcome that the first dart lands in region 1 and the second
dart, in region v. List the sample space of (x4, v)'s.

(b) List the outcomes in the sample space of sums, v + v.

A woman has her purse snatched by two teenagers. She is subsequently shown a police

fineup consisting of five suspects, including the two perpetrators. What is the sample

space associated with the experiment “Woman picks two suspeets out of lineup”?

Which outcomes are in the event A: She makes at least one incorrect identification?

Consider the experiment of choosing coeflicients for the quadratic equation ax® +
bx + ¢ = U. Characterize the values of a, b, and ¢ associated with the event A: Equation
has imaginary roots.

In the game of craps, the person rolling the dice (the shoofer) wins outright if his first toss
isa7oran 11. If his first toss is 2, 3, or 12, he loses outright. if his first roll is something
else, say, a 9, that number becomes his “point”” and he keeps rolling the dice until he
either rolls another 9, in which case he wins, or a 7, in which case he loses. Characlerize
the sample outcomes contained in the event “Shooter wins with a point of 9.”

A probability-minded despot offers a convicted murderer z final chance (o gain his
release. The prisoner is given twenty chips, ten white and ten black. All twenty are to
be placed into two urns, according to any allocation scheme the prisoner wishes, with
the one proviso being that each urn contain at least one chip. The executioner will
then pick one of the two urns at random and from that urn, one chip at random. If the
chip sclected is white, the prisoner will be set free; if it is black, he “buys the farm.”
Characterize the sample space describing the prisoner’s possible allocation options.
(Intuitively, which allocation affords the prisoner the greatest chance of survival?)
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2.2.15. Suppose that ten chips, numbered 1 through 10, are put into an urn at one minute to
midnight, and chip number 1 is quickly removed. At one-half minute to midnight, chips
numbered 11 through 20 are added to the urn, and chip number 2 is quickly removed.
Then at cne-fourth minute to midnight, chips numbered 21 to 30 are added to the urn,
and chip number 3 is quickly removed. If that procedure for adding chips to the umn
continues, how many chips will be in the urn at midnight (152)?

Unions, Intersections, and Complements

Associated with events defined on a sample space are several operations collectively
referred to as the algebra of sets. These are the rules that govern the ways in which one
event can be combined with another. Consider, for example, the game of craps described
in Question 2.2.13. The shooter wins on his initial roll if he throws either a7 or an 11. In
the language of the algebra of sets, the event “shooter rolls a 7 or an 117 is the union of
two simpler events, “shooter rolls a 7 and “shooter rolls an 11.”” If £ denotes the union
and if A and B denote the two events making up the union, we write £ = A U B. The
next several definitions and examples illustrate those portions of the algebra of sets that
we will find particularly useful in the chapters ahead.

Definition 2.2.1. Let A and B be any two events defined over the same sample space
S. Then

a. The intersection of A and B, written A N B, is the event whose outcomes belong
to both A and B.

b. The union of A and B, written A U B, is the event whose outcomes belong to
either A or B or both.

EXAMPLE 2.2.6
A single card is drawn from a poker deck. Let A be the event that an ace is selected:

A == {ace of hearts, ace of diamonds, ace of clubs, ace of spades}
Let B be the event “Heart is drawn’:
B == {2 of hearts, 3 of hearts, ..., ace of hearts)
Then
A N B = {ace of hearts}
and

A U B ={2 of hearts, 3 of hearts, ..., ace of hearts, ace of diamonds, ace of clubs,
ace of spades]

(Let C be the event “club is drawn.” Which cards arein B U C?In B N C?)
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EXAMPLE 2.2.7
Let A be the set of x’s for which x2 + 2x = 8;let B be the set for which x2 + x = 6. Find
AN Band AU B.

Since the first equation factorsinto (x + Hx — 2) =0, its solution set is 4 =
Similarly, the second equation can be written (x + 3}(x — 2) = 0, making B =
Therefore,

{—4,2}.
{—3,2}
AN B=1{2}

and

AUB=1{-4-312

EXAMPLE 2.2.8

Consider the electrical circuit pictured in Figure 2.2.2. Let A; denote the event that swilch
i fails to close, i = 1,2, 3,4. Let A be the event “Circuit is not completed.” Express A in
terms of the A;’s.

ONENO)
@{ @( '

FIGURE 2.2.2

Call the (D) and (2) switches line a; call the () and (@) switches line b. By inspection, the
circuit fails only if both line a and line b fail. But line 4 fails only if either 0 or @) (or both)
fail. That is, the event that line a fails is the union Ay U Aj;. Similarly, the failure of line b
is the union A3 U Ay. The event that the circuit fails, then, is an intersection:

A=(A1 U Az) N (A3 U Ag)

Definition 2.2.2. Events A and B defined over the same sample space are said to be
mutually exclusive if they have no outcomes in common—that is,if A N B = @, where
# is the null set.

EXAMPLE 2.2.9

Consider a single throw of two dice. Define A to be the event that the sum of the taces
showing is odd. Let B be the event that the two faces themselves are odd. Then clearly
the intersection is empty, the sum of two odd numbers necessarily being even. In symbols,
A N B =§. (Recall the event B N C asked for in Example 2.2.6.)
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Definition 2.2.3. Let A be any event defined on a sample space S. The complemernt
of A, written AC, is the event consisting of all the ocutcomes in § other than those
contained in A.

EXAMPLE 2.2.10
Let A be the set of (x, y)’s for which x2 4 y? < 1. Sketch the region in the xy-plane
corresponding to AC.

From analytic geometry, we recognize that x> + y? < 1 describes the interior of a
circle of radius 1 centered at the origin. Figure 2.2,.3 shows the complement—the points
on the circumference of the circle and the points outside the circle.

¥

~ A ytza

A X

FGURE 2.2.3

The notions of union and intersection can easily be extended to more than two events.
For example, the expression A1 U Az U --- U A; defines the set of outcomes belonging
to any of the A;’s (or to any combination of the A;’s). Similarly, Aj N A2 N -+ N Ay is
the set of outcomes belonging to all of the A;’s.

EXAMPLE 2.2.11
Suppose the events Ay, Ap, ..., A are intervals of real numbers such that

Ai={x O=<x < /i), i=412,...,k

Describe the sets Ay U Ay U --- U Akme Adiand Ay N Az N - N Ag =ﬂf.‘xlA,-.

Notice that the A;’s are telescoping sets. That s, A is the interval 0 < x < 1, Az isthe
interval 0 < x < % and so on. It follows, then, that the urion of the k A;’s is simply A
while the intersection of the A;’s (that is, their overlap) is Ar.

QUESTIONS
2.2.16. Sketch the regions in the xy-plane correspondingto A U Band A N Bif

A={,y)0<x <30 <y <3}
and

B={x,y):2 <x <42 <y <4
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2.2.17. Referring to Example 2.2.7,find A N B and A U B if the two equations were replaced
by inequalities: ¥ + 2x <8andx? + x <6.

2B FndANBNCifA={xx0<x <4, B={x12<x<6land C ={x: x =
0,1,2,...}

2.2.19. An electronic system has four components divided into two pairs. The two components
of each pair are wired in parallel; the two pairs are wired in series. Let A, denote the
event “ith component in jth pair fails,” / = 1,2; j = 1, 2. Let A be the event “System
fails.” Write A in terms of the 4;;’s.

I\ PN

N/ h—4

N N
b_...m\..:/_—.__._.c i——.....\':/_._a

j=1 j=2

2220. Define A={x: 0<x <1}, B={x:0<x<3,and C = {x: -1 < x < 2}. Draw
diagrams showing each of the following sets of points:
@ A°nNnBnNnC '
M ASUEMNO
() AnBnNCC
W) (AU BN COF

2.2.21. Let A be the set of five-card hands dealt from a 52-card poker deck, where the
denominations of the five cards are all consecutive—for example, (7 of Hearts, 8 of
Spades, 9 of Spades, 10 of Hearts, Jack of Diamonds). Let B be the set of five-card
hands where the suits of the five cards are all the same. How many outcomes are in the
event A N B?

2.2.22. Suppose that each of the twelve letters in the word

T E § §S EL L AT I ON

is written on a chip. Define the events F, R, and C as follows:

F: letters in first half of alphabet
R: letters that are repeated
V: letters that are vowels

‘Which chips make up the following events:
(@ FNRNYV

®m FEnRNve

(© FNRCnNy
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2.2.23. Let A, B, and C be any three events defined on a sample space §. Show that
(a) the outcomesin A U (B N C) are the same as the outcomesin (A U BY N (A U )
(b) theoutcomesin A M (B U ) are the same as the outcomesin (A O B) U (B N C).

2.2.24. Let Ay, Az, . ... Ay be any set of events defined on a sample space S. What outcomes
belong to the event

(AL U Az U -~ U AY U (AY n Al n-onAD)

2.2.25. Let A, B, and C be any three events defined on a sample space 5. Show that the
operations of union and intersection are associative by proving that
(@ AUBUCO=(AUBUC=AUBUC
M ANBNO=ANRKHNC=A0BNC
2.2.26. Suppose that three events—aA, B, and C—are defined on a sample space S. Use the
union, intersection, and complement operations 1o represent each of the following
events;
(a) none of the three events occurs
(b) all three of the events occur
(¢) only event A occurs
{d) exactly one event occurs
{e) exacily two events occur
2.2.27. What must be true of events A and B if
{8) AUB=BE
by ANB=A

2.2.28. Let events A and B and sample space § be defined as the following intervals:

S={x 0=<x=<16)
A={x 0 < x < 5}
B={x 3=<x =<7}

Characterize the following events:
(a) AC
i) AnBEA
© AURB
y An KBS
(e) A UB
® A“n B¢
2,2.29, A coinistossed four times and the resulting sequence of Heads and/or Tails is recorded.
Define the events A, B, and C as follows:

A: Exactly two heads appear
B: Heads and tails alternate
C: First two tosses are heads

(a#) Which events, if any, are mutually exclusive?
{(b) Which events, if any, are subsets of other sets?



Section 2.2 Sample Spaces and the Algebra of Sets 33

2.2.30. Pictured below are two organizational charts describing the way upper-management
vets new proposals, For both models, three vice presidents—I1, 2, and 3—each voice an
opinion.

@ ~O—O—Cr

(b) -

ORONG,

For (a}, all three must concur if the proposal is to pass; if any one of the three favors
the proposal in (b) it passes. Let A; denote the event that vice-president i favors the
proposal, i = 1,2, 3, and let A denote the event that the proposal passes. Express A in
terms of the A;’s for the two office protocols. Under what sorts of situations might one
system be preferable to the other?

Expressing Events Graphically: Venn Diagrams

Relationships based on two-or more events can sometimes be difficult to express using
only equations or verbal descriptions. An alternative approach that can be highly effective
is to represent the underlying events graphically in a format known as a Venn diagram.
Figure 2.2.4 shows Venn diagrams for an intersection, a union, a compiement, and for
two events that are mutually exclusive. In each case, the shaded interior of a region
corresponds to the desired event.

Venn diagrams

ANBA

FIGURE 2.2.4

EXAMPLE 2.2.12

When two events A and B are defined on a sample space, we will frequently need
to consider

a. the event that exactly one {of the two) occurs
b. the event that af most one (of the two} occurs
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Getting expressions for each of these is easy if we visualize the corresponding Venn
diagrams.

The shaded area in Figure 2.2.5 represents the event F that either A or B, but not both,
oocurs (that is, exactly one oceurs).

FIGURE 2.2.5

Just by looking at the diagram we can formulate an expression for E. The portion of
A, for example, included in E is A N BC. Similarly, the portion of B included in E is
B N AC. It follows that E can be written as a union:

E=(An B U BN A
(Convince yourself that an equivalent expression for E is (A N BYY N (A U B).)

Figure 2.2.6 shows the event F that at most one (of the two events) occurs. Since the
Iatter includes every cutcome except those belonging to both A and B, we can write

F=(AN B¢

FIGURE 2.2.6

EXAMPLE 2.2.13
When Swampwater Tech’s Class of '64 held its fortieth reunton, one hundred grads
attended. Fifteen of those alumni were lawyers and rumor had it that thirty of the one
hundred were psychopaths. H ten alumni were both lawyers and psychopaths, how many
suffered from neither of those afflictions?

Let L be the set of lawyers and H, the set of psychopaths. If the symbol N(Q) is defined
to be the number of members in set ¢, then

N(S) = 100
N(L) =15
N(H) = 30

N(LM HYy=10
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FIGURE 2.2.7

Summarizing all this information is the Venn diagram in Figure 2.2.7. Notice that

N(L U H) = number of alumni suffering from at least one affliction
=54+ 10+ 20
= 35

which implies that 100 — 35, or 65 were neither lawyers nor psychopaths. In effect,

N(L U H)=N(L) + N(H) — N(L N H) [=15 + 30 — 10 =35]

QUESTIONS

2.2.31. During orientation week, the latest Spiderman movie was shown twice at State
University. Among the entering class of 6000 freshmen, 850 went {o see it the first time,
690 the second time, while 4700 failed to see it either time. How many saw it twice?

2.2.32. Let A and B be any two events. Use Venn diagrams 1o show that
(a) the complement of their infersection is the union of their complements:

(A N B = A€ U B¢
(b) the complement of their union is the intersection of their complements:
(AU B =4a%n B¢

{These two results are known as DeMorgan’s laws.)
2.2.33. Let A, B, and C be any three events. Use Venn diagrams to show that
M ANBUO=ANKHUMANO
b)) AUBNO=AUBNAUD
22.34. Let A, B, and C be any three events. Use Venn diagrams o show that
@ AUBUO=(AUBUC
) ANBNO=ANBNC
2.235. Let A and B be any two events defined on a sample space S. Which of the following
sets are necessarily subsets of which other sets?

A B AUB ANB A°nsB
AN BY  (AY U BOC
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2.2.36. Use Venn diagrams to suggest an equivalent way of representing the following events:
@ (An BO
(b) BU AU B
€ AN(AnNB°

2.2.37. A total of twelve hundred graduates of State Tech have gotten into medical school in
the past several years. Of that number, one thousand earned scores of twenty-seven or
higher on the MCAT and four hundred had GPAs that were 3.5 or higher. Moreover,
three hundred had MCATS that were twenty-seven or higher and GPAs that were 3.5
or higher. What proportion of those twelve hundred graduates got into medical school
with an MCAT lower than twenty-seven and a GPA below 3.37

2.2.38. Let A, B, and C be any three events defined on a sample space §. Let N{A), N(B),
N, N(AN B, NNANCYy, N(B N C),and N(A N B N €) denote the numbers
of outcomes in all the different intersections in which A, B, and C are involved. Use
a Venn diagram to suggest a formula for N(A U B 4 C). Hint: Start with the sum
N(A) + N(B) + N(C) and use the Venn diagram to identify the “adjustments” that
need to be made to that sum before it canequal N(A U B U C). As a precedent, recall
from p. 35 that N(A U B) = N(4) + N(B) — N(A N B). There, in the case of two
events, subtracting N(A N B) is the “adjustment.”

2.2.39. A poll conducted by a potential presidential candidate asked two questions: (1) Do

you support the candidate’s position on taxes? and {2} Do you support the candidate’s

position on homeland security? A total of twelve hundred responses were received; six

hundred said “yes” to the first question and four hundred said “yes” to the second. If

three hundred respondents said “no” to the taxes question and “yes” to the homeland

security question, how many said “yes” to the taxes question but ““no” to the homeland

security question?

For two events A and B defined on asamplespace S, N(A 1 B€) = 15, N(AY N B) = 50,

and N(A N BY = 2. Given that N(S) = 120, how many cutcomes belong to neither A

nor B?

2.2.40

2.3 THE PROBABILITY FUNCTION

Having introduced in Section 2.2 the twin concepts of “experiment” and “sample space,”
we are now ready to pursue in a formal way the all-important problem of assigning a
probability to an experiment’s outcome-and, more generally, to an event. Specifically, if
A is any event defined on a sample space S, the symbol P(A) will denote the probability
of A, and we will refer to P as the probability function. It is, in effect, a mapping from
a set (i.e., an event) to a number. The backdrop for our discussion will be the unions,
intersections, and complements of set theory; the starting point will be the axioms referred
to in Section 2.1 that were originally set forth by Kolmogorov.

If § has a finite number of members, Kolmogorov showed that as few as three axioms
are necessary and sufficient for characterizing the probability function P:

Axtom 1. Let A be any event defined over S. Then P(A) = 0.
Axiom2. P(S) =1
Axiom 3. Let A and B be any two mudually exclusive events defined over S. Then

P(A U B)=FP(A) + P(B)
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When S has an infinite number of members, a fourth axiom is needed:
Axiom 4. Let Ay, Az,..:, be events defined over S. If A; N Aj =1 for eachi # j, then
oo oo
PilJa ] =) P
i==1 i==]

From these simple statements come the general rules for manipulating the probability
function that apply no matter what specific mathematical form it may take in a particular
context.

Some Basic Properties of P

Some of the immediate consequences of Kolmogorov’s axioms are the results given in
Theorems 2.3.1 through 2.3.6. Despite their simplicity, several of these properties—as we
witl soon see—prove to be immensely useful in solving all soris of problems.

Theorem 2.3.1. P(AC) =1 ~ P(A).
Proof. By Axiom 2 and Definition 2.2.3,
P(S)=1=P(A U A9
But A and A€ are mutually exclusive, so
P(A U A% = P(A) + P(A)
and the result follows. O
Theorem 2.3.2. P()) = (0.
Proof, Since =3¢, P =P =1 - P(S) =0. |
Theorem 2.3.3. If A C B, then P(A) < P(B).
Proof. Note that the event B may be written in the form
B=AU (B n A%
where A and (B N AY) are mutually exclusive. Therefore,
P(B) = P(A) + P(B n A%)
which implies that P(B) > P(A) since P(B n A®) > 0. O
Theorem 2.3.4. Forany event A, P(A) < 1.

Proof. The proof follows immediately from Theorem 2.3.3 because A C § and
PGS =1 O
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Theorem 2.3.5. Let Ay, A3...., A, be events defined over S. If A; N Aj = @ fori # j, then

n n
PllUa ] =) P
i=1 i=1

Proof. The proof is a straightforward induction argument with Axiom 3 being the
starting point. O

Theorem 2.3.6. P(A U B) = P(A) + P(B) — P(A N B).

Progf. The Venn diagram for A U B certainly suggests that the statement of the
theorem is true (recall Figure 2.2.4). More formally, we have from Axiom 3 that

P(A)= P(AN B%) + P(AN B)
and
PBY=P(B N AY) + P(AN B)
Adding these two equations gives
P(A) + P(By=[P(An B + P(B N A) + P(A N B)] + P(A N B)

By Theorem 2.3.5, the sum in the bracketsis P(A U B). If we subtract P(A N B) from
both sides of the equation, the result follows. (|

EXAMPLE 2.3.1

Let A and B be two events defined on a sample space S such that P(A) = 0.3, P(B) = 0.5,
and P(A U B) =0.7. Find (a) P(A N B), (b) P(A€ U B), and (c) P(AC N B).

a. Transposing the terms in Theorem 2.3.6 yields a general formula for the probability
of an intersection:
P(A 0 B)= P(A) + P(B) — P(AU B)

Here

P(AN B)=03 + 05 — 0.7
=101

b. ‘The two cross-hatched regions in Figure 2.3.1 correspond to A¢ and B®. The union
of A® and B® consists of those regions that have cross-hatching in either or both
directions. By inspection, the only portion of § not included in A U B€ is the
intersection, A M B. By Theorem 2.3.1, then,

PAC U BY=1 - P(AN B)
=1-01
=09



Section 2.3  The Probability Function 39

i 3 T T :
A P P =
N z Y
- LY
/ \ E( ) }
C I
REE =R ARY e /
I A Gy P i v AP N b
5 s
FGURE 2.3.1 FIGURE 2.3.2

¢. Theevent AC N B corresponds to the region in Figure 2.3.2 where the cross-hatching
extends in both directions—that is, everywhere in B except the intersection with A.

Therefore,
P(A N B)=P(B) — P(AN B)
=05 — 0.1
=04
EXAMPLE 2.3.2
Show that

P(A N B)>1 — P(AS) — P(BY)

for any two events A and B defined on a sample space S.
From Example 2.3.1a and Theorem 2.3.1,

P(A N B)=P(A) + P(B) — P(AU B)
=1—-PASY+1 - PBS - P(AU B

But P(A U B) < 1 from Theorem 2.3.4, so

P(AN B)>1— P(AY) — P(BS

EXAMPLE 2.3.3
Two cards are drawn from a poker deck without replacement. What is the probability
that the second is higher in rank than the first?

Let Aj, Az, and A3 be the events “First card is lower in rank,” “First card is higher
in rank,” and “Both cards have same rank,” respectively. Clearly, the three A;’s are
mutually exclusive and they account for all possible outcomes, so from Theorem 2.3.5,

P(A1 U Az U A3) = P(A}) + P{A2) + P(A3)=P(§) =1
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Once the first card is drawn, there are three choices for the second that would have the
same rank--that is, P{A3) = % Moreover, symmetry demands that P{A1) = P(A42), so

3
2P(A — =
(z)—i—51 1

implying that P(A7) = {57«

EXAMPLE 2.34

In a newly released martial arts film, the actress playing the lead role has a stunt double
who handles all of the physically dangerous action scenes. According to the script, the
actress appears in 40% of the film’s scencs, her double appears in 30%, and the two of
them are together 5% of the time. What is the probability that in a given scene (a) only
the stunt double appears and (b} neither the lead actress nor the double appears?

a. If Listhe event “Lead actress appears in scene” and D is the event “Double appears
in scene,” we are given that P(L) = 0.40, P(D) = 0.30, and P(L N D) = 0.05. It
follows that

P (Only double appears) = P(D) — P(L N D)
= .30 — 0.05
= .25

(recall Example 2.3.1c).

b. Theevent “Neither appears™ is the complement of the event “At least one appears.”
But P(At least one appears) = P(L U D). From Theorems 2.3.1 and 2.3.6, then,

P(Neither appears) =1 — P(L U D)
=1 - [P(LYy + P(D) — P(L N D)}
=1 — [0.40 + 030 — 0.05]
=135

EXAMPLE 2.3.5
Having endured (and survived) the mental trauma that comes from taking two years of
chemistry, a year of physics, and a year of biology, Biff decides 1o test the medical schocl
waters and sends his MCATS to two colleges, X and Y. Based on how his friends have
fared, he estimates that his probability of being accepted at X is 0.7, and at ¥ is 0.4. He
also suspects there is a 75% chance that at least one of his applications will be rejected.
What is the probability that he gets at least one acceptance?

Let A be the event “School X accepts him” and B, the event “school ¥ accepts him.”
We are given that P(A) = 0.7, P(B) = 0.4, and P(AC U BY) = (.75. The question is
asking for (A U B).
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From Theorem 2.3.6,

P(A U B)= P(A) + P(B) — P(AN B)

Recall from Question 2.2.32 that A® U B¢ = (4 n B)".so

PANB=1- PHAN B ]=1 - 075=025

It follows that Biff’s prospects are not all that bleak—he has an 85% chance of getting in
somewhere:

P(AU By=07 + 04 — 0.25
=0.85

Comment. Notice that P(A U B) varies directly with P(AC U BC):

P(A U B) = P(A) + P(B) — (1 — P(AY U BYY)
= P(A) + P(B) — 1 + P(A® U BY)

If P(A) and P(B), then, are fixed, we get the curious result that Biff’s chances of getting
at least one acceptance increase if his chances of at least one rejection increase.,

QUESTIONS

23.1.

2.3.2.

2.33.

2.34.

23.5

2.3.6.

239,

2.38.

According to a family-oriented lobbying group, there is too much erude language and
violence on television. Forty-two percent of the programs they screened had language
they found offensive, 27% were oo violent, and 10% were considered excessive in
both language and viclence. What percentage of programs did comply with the group’s
standards?

Let A and B be any two events defined on §. Suppose that P{A) = 0.4, P(B) = 0.5, and
FP(A N B} = 0.1. What is the probability that A or B but pot both occur?

Express the following probabilities in terms of P(A), P{B), and P{(A N B).

(a) PAC U BG

(b) P(AY (AU BY

Let A and B be two events defined on 5. If the probability that at least one of them
oceurs is 0.3 and the probability that A oecurs but B does not occur is 0.1, what is P(B)?
Suppose that three fair dice are tossed. Let A; be the event that a 6 shows on the ith die,
i=1273Does P(A; U Az U A3) =17 Explain,

Events A apd B are defined on a sample space S such that PA U B)Y) = 0.6 and
P{A 1 B) = 0.2. What is the probability that either A or B but not both will cecur?
Let Ay, Az, ..., Apbeaseriesofeventsforwhich A; NA; =@ifi # jand Ay U4 U -~ U
An = 8. Let B be any event defined on §. Express B as a union of intersections.

Draw the Venn diagrams that would correspond to the equations (a) P(A N BY = P(B)
and (b} P(A U B) = P(B).

23.9. In the game of “odd man out™ each player tosses a fair coin. If all the coins turn up the

same except for one, the player tossing the different coin is declared the odd man out
and is eliminated from the contest. Suppose that three people are playing. What is the
probability that someone will be eliminated on the first toss? {(Hint: Use Theorem 2.3.1.)
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2,3.10.

2.3.11.

2.3.2.

2313,

2.3.14,

2.3.15.

2,3.16.

2317,

2.3.18.

An urn contains twenty-four chips, numbered 1 through 24. One is drawn at random,
Let A be the event that the number is divisible by two and let B be the event that the
number is divisible by three. Find P(A U B).

If State’s {ootball team has a 10% chance of winning Saturday’s game, a 30% chance
of winning two weeks from now, and a 65% chance of losing both games, what are
their chances of winning exactly once?

Events Ay and A; are such that A4y U Az = § and Ay 0 Ay = 4, Find p if
P(A1) = p1. P(A2) = pa, and 3p — pp = 3.

Consolidated Industries has come under considerable pressure to eliminate its seem-
ingly discriminatory hiring practices. Company officials have agreed that during the
next five years, 60% of their new employees will be females and 30% will be minorities.
One out of four new employees, though, will be white males. What percentage of their
new hires will be minority females?

Three events—A, B, and C—are defined on a sample space, §. Given that P(A) = (.2,
P(B) = 0.1, and P(C) = (.3, what is the smallest possible value for P{(A U B U ()¢]?
A coin is to be tossed four times. Define events X and ¥ such that

X: first and last coins have opposite faces
Y: exactly two heads appear

Assume that each of the sixteen Head/Tail sequences has the same probability.
Evaluate

(a) P(XC YY)

®d P(X N Y

Two dice are tossed. Assume that each possible outcome has a % probability. Let A
be the event that the sum of the faces showing is 6, and let B be the event that the face
showing on one die is twice the {ace showing on the other. Calculate P(A N B%).

Let, A, B, and C be three events defined on a sample space. §. Arrange the probabilities
of the following events from smallest to largest:

() AUB

by ANRK

fc) A

(d) S

€ (AN B UMANCQ

Lucy is currently running two dot-com scams out of a bogns chatroom. She estimates
that the chances of the first one leading to her arrest are one in ten; the “‘risk”
associated with the second is more on the order of one in thirty. She considers the
likelihood that she gets busted for both to be 0.0025. What are Lucy’s chances of
avoiding incarceration?

2.4 CONDITIONAL PROBABILITY

In Section 2.3, we calculated probabilities of certain events by manipulating other
probabilities whose values we were given. Knowing P(4), P(B), and P(A N B), for
example, allows us to calculate P(A U B) (recall Theorem 2.3.6). For many real-world
sitzations, though, the “given”™ in a probability problem goes beyond simply knowing a
set of other probabilities. Sometimes, we know for a fact that certain events have afready
occurred, and those occurrences may have a beating on the probability we are trying to
find. In short, the probability of an event A may have to be “adjusted” if we know for
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certain that some related event B has already occurred. Any probability that is revised
to take into account the (known) occurrence of other events is said to be a conditional
probability.

Consider a fair die being tossed, with A defined as the event “6 appears.” Clearly,
P(A) = % But suppose that the die has already been tossed—by someone who refuses to
tell us whether or not A occurred but does enlighten us to the point of confirming that B
occurted, where B is the event “Even number appears.” What are the chances of A now?
Here, common sense can help us: There are three equally likely even numbers making up
the event B—one of them satisfies the event A, so the “updated” probability is %

Notice that the effect of additional information, such as the knowledge that B has
occurred, is to revise—indeed, to shrink—the original sample space § to a new set of
outcomes 5. In this example, the original S contained six outcomes, the conditional
sample space, three (see Figure 2.4.1}.

The symbol P(A|B)—read “the probability of A given B”—is used to denote a
conditional probability. Specifically, P(A|B) refers to the probability that A will occur
given that B has already occurred.

It will be convenient to have a formula for P{A|B) that can be evaluated in terms of
the original §, rather than the revised S'. Suppose that § is a finite sample space with
n outcomes, all equally likely. Assume that A and B are two events containing g and b
ouicomes, respectively, and let ¢ denote the number of outcomes in the intersection of A
and B (see Figure 2.4.2). Based on the argument suggested in Figure 2.4.1, the conditional
probability of A given B is the ratio of c to b. But ¢/b can be written as the quotient of two
other ratios,

c_gn
b~ b/n
s0, for this particular case,
P(A N B)
P(AIBy = —~ 4.
(A|B) PB) (24.1)

The same underlying reasoning that leads to Equation 2.4.1, though, holds true even when
the outcomes are not equally likely or when § is uncountably infinite.

- 4. [qm}

} A B
F (6, relative to §) = 1/6 P (6, relative to §) = 1/3 Ay

B

FIGURE 2.4.1 FIGURE 2.4.2

Definition 2.4.1. Let A and B be any two events defined on § such that P(B) > 0. The
conditional probability of A, assuming that B has already occurred, is written P{A[B)
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and is given by

P(A N B)

P(A|B) = FB)

Comment. Definition 2.4.1 can be cross-multiplied to give a frequently useful
expression for the probability of an intersection. If P{A]B) = P(A N B)/P(B), then

P(A N BYy= P(AIBYP(B). {2.4.2)

EXAMPLE 2.4.1

A card is drawn from a poker deck. What is the probability that the card is a club, given
that the card is a king?

Intuitively, the answer is ;]4«: The king is equally likely to be a heart, diamond, club, or
spade. More formally, let C be the event “Card is a club™; let K be the event “Card is a
king.” By Definition 2.4.1,

PICNK
P(C%K}m—(F(KT)

But P(K) = g%» and P(C m K) = P(card is a king of clubsg) = %"li Therefore, confirming
our intuition,
1/52 1

PCIK) = 4752 " 4

[Notice in this example that the conditional probability P(CiK) is numerically the same as
the unconditional probability P(C)--they both equal %. ‘This means that our knowledge
that K has occurred gives us no additional insight about the chances of € oceurring. Two
events having this property are said to be independent. We will examine the notion of
independence and its consequences in detail in Section 2.5.}

EXAMPLE 2.4.2

Our intuitions can often be fooled by probability problems, even ones that appear to be
simple and straightforward. The *“two boys™ problem described here is an often-cited case
in point.

Consider the set of families having two children. Assume that the four possible birth
sequences—(younger child is a boy, older child is a boy), {younger child is a boy, older
child is a girl), and so on—are equally likely. What is the probability that both children
are boys given that at least one is 2 boy?

The answer is not % The correct answer can be deduced from Definition 2.4.1. By
assumption, the four possible birth sequences—i{b, b), (b, g), (g, b), and (g, gr—each has
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a 3 probability of occurring. Let A be the event that both children are boys, and let B be
the event that at least one child is a boy. Then

P(A|B) = P(A N B)/P(B) = P(A)/P(B)
since A is a subset of B (5o the overlap between A and B is just A). But A has one outcome

{(b, b})} and B has three outcomes {(b, g), (g, b), (b, b)}. Applying Definition 2.4.1, then,
gives

PAIB) = (1/H/B/4 = -

Another correct approach is to go back to the sample space and deduce the value of
F(A|B) from first principles. Figure 2.4.3 shows events A and B defined on the four family
types that comprise the sample space S. Knowing that B has occurred redefines the sample
space to include #iree outcomes, each now having a 3 probabﬂzty Of those three p0551ble

outcomes, one—namely, (b, b)—satisfies the event A. It folows that P{A|B) =

& = sample space of two-child families
foutcomes written as (first born, second born)]

FIGURE 2.4.3

EXAMPLE 2.4.3
Two events A and B are defined such that (1) the probability that A occurs but B does
not occur is 0.2, (2) the probability that B occurs but A does not occur is 0.1, and (3) the
probability that neither occurs is 0.6. What is P(A]B)?

The three events whose probabilities are given are indicated on the Venn diagram
shown in Figure 2.4.4. Since

P(neither occurs) = 0.6 = P((A U B)%)
it foliows that
P(AUBY=1 - 06=04=P(A N B%) + P(AN B) + P(B N A°)

PANB)=04 — 02 — 01
=01
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ANy “‘\-‘,\\‘ .............................. —— BN AC
A woheme——Neither A nor B
A
FIGURE 2.4.4
From Definition 2.4.1, then,
P(AO B P(AN B
P(A|B) = ( _ ) _ ( ) ‘
P(B) P(A N B) + P(B N A®)
_ 0.1
01+ 01
=05

EXAMPLE 2.44

The possibility of importing liquified natural gas (LNG) from Algeria has been suggested
as one way of coping with a future energy crunch. Complicating matters, though, is the
fact that LNG is highly volatile and poses an enormous safety hazard. Any major spill
occurring near a U.S. port could result in a fire of catastrophic proportions. The question,
therefore, of the likelihood of a spill becomes critical input for future policymakers who
may have to decide whether or not to implement the proposal.

Two numbers need to be taken into account: (1) the probability that a tanker will
have an accident near a port, and (2) the probability that a major spill will develop
given that an accident has happened. Although no significant spills of LNG have yet
occurred anywhere in the world, these probabilities can be approximated from records
kept on similar tankers transporting less dangerous cargo. On the basis of such data, it
has been estimated (44) that the probability is ﬁ that an LNG tanker will have an
accident on any one trip. Given that an accident fuas occurred, it is suspected that only
3 times in 15,000 will the damage be sufficiently severe that a major spill would develop.
What are the chances that a given LNG shipment would precipitate a catastrophic
disaster?

ict A denote the event “Spill develops” and let B denote the event ** Accident occurs.”
Past experience is suggesting that P(B) = g5 and P(A|B) = 5555 Of primary concern
is the probability that an accident will occur and a spill will ensue—that is, P(4 N B).
Using Equation 2.4.2, we find that the chances of a catastrophic accident are on the order
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of 3 in 100 million:
P({accident occurs and spill develops) = P(A N B)
= P(A|BYP(B)
3 8
~ 15,000 ~ 50,000
= 0.000000032

EXAMPLE 2.4.5
Max and Muffy are two myopic deer hunters who shoot simultaneously at a nearby
sheepdog that they have mistaken for a 10-point buck. Based on years of well-documented
ineptitude, it can be assumed that Max has a 20% chance of hitting a stationary target at
close range, Muffy has a 30% chance, and the probability is 0.06 that they would both be
on target. Suppose that the sheepdog is hit and killed by exactly one bullet. What is the
probability that Muffy fired the fatal shot?

Let A be the event that Max hit the dog, and let B be the event that Muffy hit the dog.
Then P{A) = 0.2, P(B) = 0.3, and P(A N B) = 0.06. We are trying to find

P(BI(A® N B) U (A N BSY)

where the event (AC N BY U (4 N BS) is the union of A and B minus the intersection—that
is, it represents the event that either A or B but not both occur (recall Figure 2.4.4).

Notice, also, from Figure 2.4.4 that the intersection of B and (A N B) U (4 N B®)is
the event AY N B. Therefore, from Definition 2.4.1,

P(BI(AC N B) U (A n BSY) =[P(A" n BY[PUAC N B) U (4 n BO)]
=[P(B) — P(A N B)}J[P(AU B) — P(A N B)]
=[03 — 0.06]/[0.2 + 0.3 — 0.06 — 0.06]
=0.63

CASE STUDY 2.4.1 (Optional)

There once was a brainy baboon
Who always breathed down a basscon
For he said, “It appears
That in billions of years
1 shall certainly hit on a tune.”
Eddington

{Continued on next page)
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(Case Stteedv 2.1 cantinued)

4 GO THIS BABE AND JUDGEMENT OF TIMEDIOUS RETCH AND NOT LORD
WHAL TF THE EASELVES AND DO AND MAKE AND BASE GATHEM I AY
BEATELLOUS WE PLAY “EANS HOLY FOOL MOUR WORK FROM INMOST

BED BE CONFOULD HAVE MANY JUDGEMENT WAS IT YOU MASSURE’S TO
LADY WOULD HAT PRIME THAT’S OUR THROWN AND DID WIFE FATHER’ST
LIVENGTH SLEEP TITH I AMBITION TO THIN HIM AND FORCE AND LAW'S
MAY BUT SMELL SO AND SPURSELY SIGNOR GENT MuCH CHIEF MIXTURN

FIGURE 2.4.6

One can only wonder hew “human™ computer-generated text might be if condi-
tional probabilities for. say. seven- or cight-letter sequences were available. Right now
they are not, but given the rate that computer technology is developing. they soon will
be. When that day comes. our monkey will probably still never come up with text as
creative as Hamlet's soliloquy. but a fairly decent limerick might show up from time
to time!

CASE STUDY 2.4.2 (Optional)

Several years ago. a television program (inadvertently) spawned a conditional prob-
ability problem that led to more than a few heated discussions. even in the national
media. The show was Let’s Make a Deal, and the guestion involved the strategy that
contestants should take to maximize their chances of winning prizes.

On the program. a contestant would be presented with three doors: behind one of
which was the prize. After the contestant had selected a door. the host. Monty Hall.
would open one of the other two doors. showing that the prize was not there. Then
he would give the contestant a choice—either stay with the door initially selected or
switch to the “third”" door that had not been opened.

For many viewers. common sense seemed to suggest that switching doors would
make no difference. By assumption. the prize had a one-third chance of being behind
cach of the doors when the game began. Once a door was opened. it was argued that
each of the remaining doors now had a one-half probability of hiding the prize. so
contestants gained nothing by switching their bets.

Not so. An application ol Befinition 24.1, shows that it does make a difference—
contestants, in fact. dowuble their chances of winning by switching doors. To see why.
consider a specific (but typical) case: the contestant has bet on Door #2 and Monty Hall
has opened Door #3, Given that sequence of events, we need to caleulate and compare
the conditional probability of the prize being behind Door #1 and Door #2. respectively.
If the former is larger (and we will prove that it is). the contestant should switch doors.

(Contined on nexr page)
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TABLE 2.4.1
Character Frequency Probability Random Number Range

Space 6934 0.1968 00001-06934
E 3277 0.0930 06935-10211
O 2578 0.0732 10212-12789
T 2557 0.0726 1279015346
A 2043 0.0580 15347-17389
s 1856 0.0527 17390-19245
H 1773 0.0503 19246-21018
N 1741 0.0494 2101922759
1 1736 0.0493 22760-24495
R 1593 0.0452 24496-26088
L 1238 00351 26089-27326
D 1099 0.0312 2732728425
U 1014 0.0288 2842629439
M 889 0.0252 29440-30328
Y 783 0.0222 30329-31111
w 716 0.0203 31112-31827
F 629 0.0178 3182832456
C 584 0.0166 32457-33040
G 478 0.0136 33041-33518
P 433 0.0123 33519-33951
B 410 0.0116 33952-34361
v 309 0.0088 34362-34670
K 255 0.0072 3467134923
' 203 0.0058 3492635128
] 34 0.0010 35129-35162
Q 27 0.0008 35163-35189
X 21 0.0006 35190-35210
V4 14 0.0004 35211-35224

ADOAADRH ONNNDGELC TEFSISD VTALIDMA POESDHEMHIESWON
PJITOMJ FTL FIM TAOFERLMT O NORDEERH HMFIOMRETWOVRCA
OSRIE IEOBUTOGIM NUDSEEWU WEHS AWUA HIDNEVE NL SELTS

by a program knowing only single-letter frequencies (Table 2.4.1). Nowhere does
even a single correctly spelled word appear. Contrast that with Figure 2.4.6, showing
computer text generated by a program that had been given estimates for conditional
probabilities corresponding to all 614,656 (= 28%) four-letter sequences. What we
get is still garble, but the improvement is astounding—more than 80% of the letter
combinations are at least words.

FIGURE 2.4.5

{Continued on next page}
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(Cuse Stuedy 241 continued}

The image of a monkey sitting at a typewriter. pecking away at random until
be gets lucky and types out a perfect copy of the complete works of William
Shakespeare. has long been a favorile model of statisticians and philosophers to
illustrate the distinction between semething that is theoretically possible but for all
practical purposes, impossible. But if that monkey and his typewriter are replaced
by a high-technology computer and if we program in the right sorts of conditional
probabilities, the prospects for generating something intelligible become a little less
(ar-fetched-—maybe even disturbingly less far-fetehed (11).

Simulating nonnumerical English text requires that twenty-eight characters be
dealt with: the twenty-six letters, the space, and the apostrophe. The simplest ap-
proach would be to assign each of those characters a number from 1 to 28. Then a
random number in that range would be generated and the character corresponding
to that number would be printed. A second random number would be generated. a
corresponding second character would be printed. and se on,

Would that be a reasonable model? Of course not. Why should. say. X's have
the same chance of being selected as E's when we know that the latter are much
more common? At the very least. weights should be assigned to all the characters
proportional to their relative probabilities, Table 2.4.1 shows the empirical distribution
of the twenty-six letters, the space, and the apostrophe in the 35,224 characters making
up Act I of Hamler. Ranges of random numbers corresponding to each character’s
frequency are listed in the last colummn. If two random numbers were generated, say,
27351 and 11616, the computer would print the characters D and 0. Poing that. ol
course, is equivalent to printing a D with probability 0.0312 = [(28425 — 27327 + 1)/
35244 = 1099/35244] and an O with probability 0.0732 = [(12789 — 10212 + 1)/
35244 = 2578/35244].

Extending this idea to sequences of letters requires an application of Delinition
2.4.1. What is the probability. for cxample, that a 7 follows an £7 By definition,

S S number of ET7s
F{T follows an E} = P(TIE) = —eremrrrremererrereee
number of E's
The anslog of Table 2.4.1, then, would be an array having twenty-cight rows and
twenty-cight columns. The entry in the ith row and jth column would be P(/| ). the
probability that letter ¢ follows letter j.
En a similar fashion. conditional probabilities for longer sequences could also be

estimated. For example. the probability that an A follows the seguence QU would be
the ratio of QUA s to QU's:

number of QUAs
number of QU's

F(A follows QU = PLAJIQU) =

What does our monkey gain by having & typewriter programmed with probabilities
of sequences? Quite a bit. Figure 2.4.5 shows three lines of computer text generated
{Coritinued on nexi pagel
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TABLE 2.4.2

(Prize Location, Door Opened)  Probability

1,3 1/3
(2,1) 1/6
(2,3) 1/6
3, 1) 1/3

Table 2.4.2 shows the sample space associated with the scenario just described. If
the prize is actually behind Door #1, the host has no choice but to open Door #3;
similarly, if the prize is behind Door #3, the host has no choice but 1o open Door #1.
In the event that the prize is behind Door #2, though, the host would {theoretically)
open Door #1 half the time and Door #3 half the time.

Notice that the four outcomes in § are not equally likely. There is necessarily a
one-third probability that the prize is behind each of the three doors. However, the
two choices that the host has when the prize is behind Door #2 necessitate that the
two outcomes (2, 1) and (2, 3) share the one-third probability that represents the
chances of the prize being behind Door #2. Each, then, has the one-sixth probability
listed in Table 24.2.

Let A be the event that the prize is behind Door #2, and let B be the event that the
host opened Door #3. Then

P(A|B) = P(contestant wins by not switching) = [P(A N B)]/ P(B)

(4] /% + 4]

Now, let A* be the event that the prize is behind Door #1, and let B (as before) be the
event that the host opens Door #3. In this case,

Il
=

P(A*¥|B) = P(contestant wins by switching) = [P(A* 1 B)]/P(B)

(3114 +4)

2
-3

Common sense would have led us astray again! If given the choice, contestants
should always switch doors. Doing so ups their chances of winning from one-third to
two-thirds.

QUESTIONS
2.4.1. Suppose that two fair dice are tossed. What is the probability that the sum equals ten
given that it exceeds eight?
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24.2.
243,
244,

24.5.

2.4.6,

24.7.

2.4.8.

2459,

2.4.10.

24.11.

2.4.12.
2.4.13.

24.14.

Find P(A N BYif P{A) =02, P(B) =04, and P(AIB) + P{B|A) =075
If P(A|B) < P(A).showthat P(BIA) < P{(B).
Let A and B be two events such that PUA U B)S)=06and P(A M By =01 Let E
be the event that either A or B but not both will oceur. Find P(EJA U B).
Suppose that in Example 2.4.2 we ignored the age of the children and distinguished
only three family types; (boy, boy), (girl, boy), and (girl, girl). Would the conditional
probability of both children being boys given that at least one is a boy be different
from the answer found on p. 457 Explain.
Two events, 4 and B, are defined on a sample space § such that P(A{5) = 0.6, P(at
least one of the events occurs) = 0.8, and P{exactly one of the events occurs) = (.6
Find P{4) and P(B).
An urn contains one red chip and one white chip. One is drawn at random. If the chip
selected is red, that chip together with two additional red chips are put back into the
urn. If a white is drawn, the chip is returned fo the urn. Then a second chip is drawn.
What is the probability that both selections are red?
Given that P(A) = ¢ and P{B) = b, show that
PAIB) > a+b—1

b
An urn contains one white chip and a second chip that is equally likely to be white
or black. A chip is drawn at random and returned to the urn. Then a second chip is
drawn. What is the probability that 2 white appears on the second draw given that a
white appeared on the first draw?
Suppose events A and B are such that P(A N BY = 0.1 and P((A U B)¢) = 0.3. If
P(A) = 0.2, what does P[{A 1 B)|[(A U BY'] equal? Hint: Draw the Venn diagram.
One hundred voters were asked their opinions of two candidates, A and B, running for
mayor. Their responses to three questions are summatized below:

Number Saying Yes

Do you like A7 65
Do you like B? 55
Do you like both? 25

(a) What is the probability that someone likes neither?

(b) What is the probability that someone likes exactly one?

(¢) What is the probability that someone likes at least one?

{d) What is the probability that someone likes at most one?

(e) What is the probability that someone likes exactly one given that they hke at
least one?

(f) Of those who like at least one, what proportion like both?

(g} Of those who do not like A, what proportion like B?

A fair coin is tossed three times. What is the probability that at least two heads will

occur given that at most two heads have occurred?

Twao fair dice are rolled. What is the probability that the number on the first die was at

least as large as 4 given that the sum of the two dice was eight?

Four cards are dealt from & standard 52-card poker deck. What 1s the probability that

all four are aces given that at least three are aces? Note: There are 270, 725 different

sets of four cards that can be dealt. Assume that the probability associated with each

of those hands is 17270, 725.
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24.16.
24.17.

24.18.

2419,

2.4.20.
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Given that P(A N BC) = 0.3, P((A U B)°) = 02,and P(A N B) = 0.1, find P(A|B).
Given that P(A) + P(B) =09, P(A|B) = 0.5, and P(B|A) = 0.4, find P(A).

Let A and B be two events defined on a sample space § such that P(A N By = 0.1,
P(AC 1 B) =03, and P((A U BYC) = 0.2, Find the probability that at least one of
the two events occurs given that at most onc occurs.

Suppose two dice are rolled. Assume that each possible outcome has probability 1/36.
Let A be the event that the sum of the two dice Is greater than or equal to cight, and
let B be the cvent that at least one of the dice is a 5. Find P(A|B).

According to your neighborhood bookie, there are five horses scheduled to run in
the third race at the local track, and handicappers have assigned them the following
probabilities of winning;

Horse Probability of Winning
Scorpion 010
Starry Avenger 0.25
Australian Doll 0.15
Dusty Stake 030
Outandout 0.20

Suppose that Australian Doll and Dusty Stake are scratched from the race at the
last minute. What are the chances that Qutandout will prevail over the reduced
ficld?

Andy, Bob, and Charley have all been serving time for grand theft auto. According
to prison scuttlebutt, the warden plans to release two of the three next week. They all
have identical records, so the two to be released will be chosen at random, meaning
that each has a two-third probability of being included in the two to be set frec. Andy,
however, is friends with a guard who will know ahead of time which two will leave.
He offers to tell Andy the name of a prisoner other than himself who will be released.
Andy, however, declines the offer, believing that if he lcarns the name of a prisoner
scheduled to be released, then his chances of being the other person set free will
drop to one-half (since only two prisoners will be left at that point). Is his conecern
justified?

Applying Conditional Probability to Higher-Order Intersections

We have seen that conditional probabilities can be useful in cvaluating intersection
probabilitics-that is, P(A N B) = P(A|B)P(B) = P(B|A)P(A). A similar result holds
for higher-order intersections. Consider P(A N B N C). By thinkingof A N Basa single
event—say, D—we can write

PANBNO)=PMDnNC)
= P(CID)P(D)
= P(CIA N B)P(A N B)
= P(C|A 11 B)P(B|A)P(A)
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Repeating this same argument for n events, Aq, Az, ..., Ay, gives a formula for the general
€ase:l

P(A4 N Ay 0 - N Ag) =P(AnlAy 0 Az N oo 0 Agp)
- P(Ap—1lAp N A2 N --- 0 Ay2) - - - P{A21A1) - P(AY)
(2.4.3)

EXAMPLE 2.4.6

An urn contains five white chips, four black chips, and three red chips. Four chips are
drawn sequentially and without replacement. What is the probability of obtaining the
sequence (white, red, white, black)?

Figure 2.4.7. shows the evolution of the urn’s composition as the desired sequence is
assembled. Define the following four events:

SW @ 4w ® 4w @ IW 3IW
4B | —< 4B | —< 4B | =x 4B | ——~ 3B
3R 3R 2R ZR 2R

FIGURE 2.4.7

: white chip is drawn on first selection

: red chip is drawn on second selection

: white chip is drawn on third selection

: black chip is drawn on fourth selection

Qur objective istofind P(A N B 0 C N D).
From Equation 2.4.3,

MO W >

PAANBNCNDy=PWMD|ANBNC) - PClA N B) - P(B|A) - P(A)

Each of the probabilities on the right-hand side of the equation here can be gotten by ;ust
Iooking at the urns pxctured in Figure 24.7. P(DIA N B N C) = g, FCIAN B =

P{BjA) = 1‘1’* and P(A) = ﬁ. Therefore, the probability of drawing a (white, red, whlte
black) sequence is 0.02:

4 4 3 5
PANBACOD)=¢ 1 11 T3
240
~ 11,880
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CASE STUDY 2.4.3

Since the fate 1940s, tens of thousands of eyewitness accounts of strange lights in the
skies, unidentified flying objects, even alleged abductions by little green men, have
made headlines. None of these incidents, though, has produced any hard evidence,
any irrefutable proof that Earth has been visited by a race of extraterrestrials. Still,
the haunting question remains—are we alone in the universe? Or are there other
civilizations, more advanced than ours, making the occasional flyby?

Unitil, or unless, a flying saucer plops down on the White House lawn and a strange-
looking creature emerges with the proverbial “Take me to your leader” demand, we
may never know whether we have any cosmic neighbors. Equation 2.4.3, though, can
help us speculate on the probability of our nol being alone.

Recent discoveries suggest that planetary systems much like our own may be
quite common. If so, there are likely to be many planets whose chemical makeups,
temperatures, pressures, and so on, are suitable for life. Let those planets be the points
in our sample space. Relative to them, we can define three events:

A: lIife arises
B: technical civilization arises (one capable of interstellar communication)
C: technical civilization is flourishing now

In terms of A, B, and C, the probability a habitable planet is presently supporting a
technical civilization is the probability of an intersection—specifically, P(A N B N C).
Associating a number with P(A N B N C) is highly problematic, but the iask is
simplified considerably if we work instead with the equivalent conditional formula,
P(CIB N A) - P(B|A) - P(A).

Scientists speculate (157) that life of some kind may arise on one-third of all planets
having a suitable environment and that life on maybe 1% of all those planets will
evolve into a technical civilization. In our notation, P(A4) = % and P(BiA) = ﬁlﬁ

More difficult to estimate is P(CJA M B). On Earth, we have had the capability
of interstellar communication (that is, radio astronomy) for only a few decades, so
P(C|A N B), empirically, is on the order of 1 X 107%. But that may be an overly
pessimistic estimate of a technical civilization’s ability to endure. It may be true that
if a civilization can avoid annihilating itsell when it first develops nuclear weapons, its
prospects for longevity are lairly good. If that were the case, P(C|A N B) might be as
large as 1 X 102,

Putting these estimates into the computing formula for P(A N B N C) yields arange
for the probability of a habitable planet currently supporting a technical civilization.
The chances may be as small as 3.3 X 101" or as “large” as 3.3 x 10~

—8 i 1 -2 _1_ E
(1 %10 )(mﬂ)(3)<P(AGBF}C)<{1XE_O )(100)(3)

0.000000000033 < P(A N B N C) < 0.000033

Oor

{Continued on next page)
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{Case Study 2.4.3 continued}

A better way to put these figures in some kind of perspective is to think ip
terms of numbers rather than probabilitics. Astronomers estimate there arc 3 X 1011
habitable planets in our Milky Way galaxy. Multiplying that total by the two limits for
P(A 1 B 1 C) gives an indication of how many cosmic neighbors we arc likely to have.
Specifically, 3 X 16" - 0.000000000033 = 10, while 3 X H0H L 0.000033 = 10,000,000
So. on the one hand. we may be a galactic rarity. At the same time, the probabilitics
do not preclude the very real possibility that the heavens are abuzz with activity and
that our neighbors number in the millions.

QUESTIONS
2.4.21. An urn contains six white chips, four black chips, and five red chips. Five chips are

drawn out, one at a time and without replacement. What is the probability of getting
the sequence (black, black. red, white, white)? Suppose that the chips are numbered 1
through 15. What is the probability of getting a specific sequence—say, (2, 6,4, 9, 13)7

2.4.22. A man has n keys on a key ring, one of which opens the door to his apartment. Having

celebrated a bit too much one evening, he returns home only to find himself unable to
distinguish one key from another. Resourceful, he works out a fiendishly clever plan:
He will choose a key at random and try it. If it fails to open the door. he will discard
it and choose al random one of the remaining # — 1 keys. and so on. Cleatly, the
probability that he gains entrance with the first key he selects is 1/#. Show that the
probability the door opens with the hird key he tries is also 1/n. (Hint: What has to
happen before he even gels to the third key?)

2.4.23. Suppose that four cards are drawn from a standard 52-card poker deck. What is the

probability of drawing, in order, a 7 of diamonds, a jack of spades, a 10 of diamonds,
and a 5 of hearts?

2.4.24. One chip is drawn at random from an urn that contains one white chip and one black

chip. If the white chip is selected, we simply return it to the urm: if the black chip is
drawn, that chip—together with another black—are returned to the urn. Thena second
chip is drawn, with the same rules for returning it te the urn. Caleulate the probability
of drawing two whites followed by three blacks.

Calculating "Unconditional" Probabilities

We conclude this section with two very useful theorems that apply to partitioned sample
spaces. By definition, a set of events Ay, Az, ..., Ay “partition” § if every ottcome in

FIGURE 2.4.8
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the sample space belongs to one and only one of the A;’s—that is, the A;’s are mutually
exclusive and their union is § (see Figure 2.4.8).

Let B, as pictured, denote any event defined on §. The first result, Theorem 2.4.1,
gives a formula for the “unconditional” probability of B (in terms of the A;’s). Then
Theorem 2.4.2 calculates the set of conditional probabilities, P(A;|B), j = 1,2,...,n.

Theorem 2.4.1. Let {A;}_| be a set of events defined over S such that § = | J_; A,
Ay N Aj=@fori # j,and P(A;) > Ofori =1,2,...,n Forany event B,
1]
P(B)=)_" P(BIA)P(A)
i=1
Proof. By the conditions imposed on the A;’s,
B=(BNADUBNA)U---U (BN A
and
PBY=PBNA)+ P(BN A) + --- + P(BM Ap)

But each P(B N A;) can be written as the product P(B|A;)FP(A;), and the result
follows. 3

EXAMPLE 2.4.7

Urn [ contains two red chips and four white chips; urn I1, three red and one white. A chip
is drawn at random from urn I and transferred to urn IL Then a chip is drawn from urn L.
What is the probability that the chip drawn from urn 11 is red?

Let B be the event “Chip drawn from urn ILis red”; let A; and A be the events “Chip
transferred from urn T is red” and “Chip transferred from urn T is white,” respectively.
By inspection (see Figure 2.4.9), we can deduce all the probabilities appearing in the
right-hand side of the formula in Theorem 2.4.1;

~ TFransfer ™
ORe

o0
P®

Urn 11

e Draw one

FIGURE 2.4.9

P(B[A1) =z P(BlA2) =

P(A) = P(A2) =

N thl A
o s thl W
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Putting all this information together, we see that the chances are two out of three that a
red chip will be drawn from urn I

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2)

_42 3 4
5 6 5 6
_2
3

EXAMPLE 248
A standard poker deck is shuffled and the card on top is removed. What is the probability
that the second card is an ace?

Define the following events:

B: second card is an ace

Ar: top card was an ace

Az: top card was not an ace
Then P(BlA1) = &, P(BlAz) = &, P(A1) = &, and P(A) = &. Since the A;’s partition
the sample space of two-card selections, Theorem 2.4.1 applies. Substituting into the
expression for P(B) shows that 3% is the probability that the second card is an ace:

P(B) = P(BlA1)P{A1) + P(B]A2)P(A2)
_3 . 4.4 s
51 52 0 51 52
4

%

Comment. Notice that P(B) = P(2nd card is an ace) is numerically the same as
P(Aq) = P(first card is an ace). The analysis in Example 2.4.8 illustrates a basic principle
in probability that says, in effect, “what you don’t know, doesn’t matter.”” Here, removal
of the top card is irrelevant to any subsequent probability calculations if the identity of
that card remuains unknown.

EXAMPLE 2.4.9
Ashiley is hoping to land a summer internship with a public relations firm. If ber interview
goes well, she has a 70% chance of getting an offer. If the interview is a bust, though,
her chances of getting the position drop to 20%. Unfortunately, Ashley tends to babble
incoherently when she is under stress, so the likelihood of the interview going well is only
0.16. What is the probability that Ashley gets the internship?

Let B be the event “Ashley is offered internship,” let A; be the event “Interview goes
well,” and let Az be the event “Interview does not go well.” By assumption,

P(B|A1) =070  P(BJA2) =020
P(A) =010 P(Ay) =1- P(Ap=1-010=090



Section 2.4 Conditionat Probabitity 39

According to Theorem 2.4.1, Ashley has a 25% chance of landing the internship:

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2)
= (0.7)(0.10) + (0.20)(0.90)
=025

EXAMPLE 2.4.10

In an upstate congressional race, the incumbent Republican (R) is running against a field
of three Democrats (D, D, and D3) seeking the nomination. Political pundits estimate
that the probabilities of Dy, D, and D3 winning the primary are 0.35, 0.40, and 0.25,
respectively. Furthermore, results from a variety of polls are suggesting that R would have
a 40% chance of defeating D in the general election, a 35% chance of defeating D;, and
a 60% chance of defeating D;. Assuming all these estimates to be accurate, what are the
chances that the Republican will retain his seat?

Let B denote the event that R wins general election,” and let A; denote the event “D;
wins Democratic primary”; i =1, 2, 3. Then

FP(A;} =035 P{Az) =040 P(4s3) =025

and
P({B|A;) =040 P{BlA;) =035 P(B|A3) = 0.60
50
P(B) = P{Republican wins general election)

= P(B|A1)P(A1) + P(BlAz2)P(Az) + P(B|A3)P(A3)

= (0.40)(0.35) + (0.35)(0.40) + (0.6010.25)

=043
EXAMPLE 2.4.11

Three chips are placed in an urn. One is red on both sides, a second is blue on both sides,
and the third is red on one side and blue on the other. One chip is selected at random
and placed on a table. Suppose that the color showing on that chip is red. What is the
probability that the color underneath is also red (see Figure 2.4.10)?

At first glance, it may seem that the answer is one-half: We know that the blue/blue
chip has not been drawn, and only one of the remaining two—the red/red chip—satisfies
the event that the color underneath is red. If this game were played over and over, though,
and records were kept of the outcomes, it would be found that the proportion of times
that a red top has a red bottom is two-thirds, not the one-half that our intuition might
suggest. The correct answer follows from an application of Theorem 2.4.1.
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FIGURE 2.4.10

Define the following events:

A: bottom side of chip drawn is red
B: top side of chip drawn is red

Aq: red/red chip is drawn

Az: blue/blue chip is drawn

Az: red/blue chip is drawn

From the definition of conditional probability,

P(AN B)

P(AIB) = P(B)

But P(A N B) = P(both sides are red) = P(red/red chip) = 1. Theorem 2.4.1 can be
used to find the denominator, P{B):

P(B) = P(BIA1P(A1) + P(BlA2)P(A7) + FP(BlA3)P(A3)

1 1 T 1
=l g+0-3+5°3
_1
T2
Therefore,
/3 2
PAIB) =15 =3

Comment. The question posed in Example 2.4.11 gives rise to a simple but effective
con game. The trick is to convince a “‘mark” that the initial analysis given on page 59 is
correct, meaning that the bottom has a fifty-fifty chance of being the same color as the
top. Under that incorrect presumption that the game is “fair,” both participants put up
the same amount of money, but the gambler (knowing the correct analysis) always bets
that the bottom is the same color as the top. In the long run, then, the con artist will be
winning an even-money bet two-thirds of the time!
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QUESTICNS

2.4.25,

2.4.26.

2.4.27.

24,28,

2.4.29.

2.4.30.

2.4.31.

2432,

2.4.33.

2.4.34.

A toy manufacturer buys ball bearings from three different suppliers—56% of her
total order comes from supplier 1, 30% from supplier 2, and the rest from supplier
3. Past experience has shown that the quality control standards of the three suppliers
are not all the same. Two percent of the ball bearings produced by supplier 1 are
defective, while suppliers 2 and 3 produce defective bearings 3% and 4% of the time,
respectively. What proportion of the ball bearings in the toy manufacturer’s inventory
are defective?

A fair coin is tossed. If a head turns up, a fair die is tossed; if a tail rurns up, two fair
dice are tossed. What is the probability that the face (or the sum of the faces) showing
on the die (or the dice) is equal to six?

Foreign policy experts estimate that the probability is (.65 that war will break out next
year between two Middle East countries if either side significantly escalates its terrogist
activities: Otherwise, the likelihood of war is estimated 10 be €.65, Based on what has
happened this year, the chances of terforism reaching a critical level in the next twelve
months are thought to be three in ten. What is the probability that the two countries
will go to war? '

A telephone solicitor is responsible for canvassing three suburbs. In the past, 60% of
the completed calls to Belle Meade have resulted in contributions, compared to 55%
for Oak Hill and 35% for Antioch, Her list of telephone numbers includes one thousand
households from Belle Meade, one thousand from QOak Hill, and two thousand from
Antioch. Suppose that she picks a number at random from the list and places the call.
What is the probability that she gets a donation?

If men constitute 47% of the population and tell the truth 78% of the time, while
women tell the truth 63% of the time, what is the probability that a person selected at
random will answer a question truthfuily?

Urn T contains three red chips and one white chip. Urn II contains two red chips and
two white chips. One chip is drawn from each urn and transferred 1o the other urn.
Then a chip is drawn from the first urn. What is the probability that the chip ultimately
drawn from urn 1 is red?

The crew of the Starship Enrerprise is considering launching a surprise attack against
the Borg in & neutral quadrant. Possible interference by the Klingons, though, is causing
Captain Picard and Data to reassess their strategy, According to Data’s calculations,
the probability of the Klingons joining forces with the Borg is 0.2384. Captain Picard
feels that the probability of the attack being successful is 0.8 if the Enterprise can catch
the Borg alone, but only 0.3 if they have to engage both adversaries, Data claims that
the mission would be a tactical misadventure if its probability of success were not at
least 0.7306. Should the Enterprise attack?

Recall the “survival™ lottery described in Question 2.2.14. What is the probability of
release associated with the prisoner’s optimal strategy?

State College is playing Backwater A&M for the conference football championship.
If Backwater’s first-string quarterback is healthy. A&M has a 75% chance of winning.
If they have to start their backup quarterback, their chances of winning drop to 40%.
The team physician says that there is a 70% chance that the first-string quarterback
will play. What is the probability that Backwater wins the game?

An urn contains forty red chips and sixty white chips. Six chips are drawn out and
discarded, and a seventh chip is drawn. What is the probability that the seventh chip is
red?
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2435,

2436,

2.4.37.

2.4.38.

2.4.39,

A study has shown that seven out of ten people will say “heads” if asked to calt a coIn
toss. Given that the coin is fair, though, a head occurs, on the average, only five times
out of ten. Does it follow that you have the advantage if you let the other person call
the toss? Explain.

Based on pretrial speculation, the probability that a jury returns a guilty verdict n
a certain high-profile murder case is thought to be 15% if the defense can discredit
the police department and 80% if they cannot. Veteran court observers believe that
the skilled defense attorneys have a 70% chance of convincing the jury that the pohice
either contaminated or planted some of the key evidence. What is the probability that
the jury returns a guilty verdict?

As an incoming freshman, Marcus believes that he has a 25% chance of earning a GPA
in the 3.5 to 4.0 range, a 35% chance of graduating with a 3.0 to 3.5 GPA, and a 40%
chance of finishing with a GPA less than 3.0, From what the pre-med advisor has told
him, he has an 8 in 10 chance of getting into medical school if his GPA 1s above 3.5, a5
in 10 chance if his GPA is in the 3.0 to 3.5 range, and only a 1 in 10 chance if his GPA
falls below 3.0. Based on those estimates, what is the probability that Marcus gets into
medical school?

The governor of a certain state has decided to come out strongly for prison reform and
is preparing a new early-release program. Its guidelines are simple: prisoncrs related to
members of the governor’s staff would have a 90% chance of being released carly; the
probability of carly release for inmates not related to the governor’s staff would be 0.01.
Suppose that 40% of all inmates are related to someone on the governor’s staff. What
is the probability that a prisoner selected at random would be eligible for early release ?
Following are the percentages of students of State College enrolled in cach of the
school’s main divisions. Also listed are the proportions of students in cach division
who are women.

Division % % Women
Humanities 40 60
Natural Science 10 15
History 30 45
Social Science 20 5

100

Suppose the Registrar selects one person at random. What is the probability that the
student selected will be a male?

Bayes Theorem

"The second result in this section that is set against the backdrop of a partitioned sample
space has a curious history. The first explicit statement of Theorem 24.2, coming in
1812, was due to Laplace, but it was named after the Reverend Thomas Bayes, whose
1763 paper (published posthumously) had already outlined the result. On one level, the
theorem is a relatively minor extension of the definition of conditional probability. When

viewed

from a loftier perspective, though, it takes on some rather profound philosophical

implications. The latter, in fact, have precipitated a schist among practicing statisticians:
“Bayesians” analyze data one way; “non-Bayesians” often take a fundamentally different

approa

ch (see Section 5.8).
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Our use of the result here will have nothing to do with its statistical interpretation. We
will apply it simply as the Reverend Bayes originally intended, as a formula for evaluating
a certain Kind of “inverse” probability. If we know P(B|A;) for all i, the theorem enables
us to compute conditional probabilities “in the other direction”—that is, we can deduce
P(A;|B) from the P(B|A;)’s.

Theorem 24.2. (Bayes) Let {A;}! | be a set of n events, each with positive probability,

that partition S in such away that U{_ A; = Sand A; N A; =9 fori # j. Forany event B
{(also defined on §), where P(B} > (),

P(B|A;)P(A))

P(A;1B) =

H

Y P(BIA)P(A)
i=1

foranyl < j<n

Proof. From Definition 2.4.1,

. _ P(A; N B) _ P(BlAj}P(Aj)
P ==& = r®)

R
But Theorem 2.4.1 allows the denominator to be written as > P(B|A;)P(A;), and the
f=1
result follows. 0

PROBLEM-SOLVING HINTS
{Working with Partitioned Sample Spaces)

Students sometimes have difficulty setting up problems that involve partitioned
sample spaces—in particular, ones whose solution requires an application of either
Theorem 2.4.1 or 2.4.2—because of the nature and amount of information that needs
to be incorporated into the answers. The “trick” is learning to identify which part of
the “given” corresponds to B and which parts correspond to the A;’s. The following
hints may help.

1. Asyoureadthe question, pay particular attention to the Iast one or two sentences.
Is the problem asking for an wunconditional probability (in which case Theorem
2.4.1 applies) or a conditional probability (in which case Theorem 2.4.2 applies)?

2. If the question is asking for an unconditional probability, let B denote the event
whose probability you are trying to find; if the question is asking for a conditional
probability, let B denote the event that has already happened.

3. Once event B has been identified, reread the beginning of the guestion and
assign the A;’s.

EXAMPLE 2.4.12

A biased coin, twice as likely to come up heads as tails, is tossed once. If it shows heads, a
chip is drawn from urn I, which contains three white chips and four red chips; if it shows
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White
is drawn

FGURE 2.4.11

tails, a chip is drawn from urn 11, which contains six white chips and three red chips.
Given that a white chip was drawn, what is the probability that the coin came up tails (see
Figure 24.11)7
Since P(Heads) = 2P(Tails), it must be true that P(Heads) = % and P(Tails) = %

Define the events

B: white chip is drawn

Aq: coin came up heads (i.e., chip came from urn )

Ay: coin came up tails (i.e., chip came from utn 1)

Our objective is to find P(A2|B). From Figure 2.4.11,
3
P(B|A1) = 5 P(Bl|A7) =

FP(Ay) = P(A7) = -

L NG

(SRR

SO
P(BlA7) P(42)
P(BIADP (A1) + P(BIA) P(A2)
_ ©9as3)
GID@/) + 6/9/3)
7
~ 16

P(Az|B) ==

EXAMPLE 2.4.13

During a power blackout, one hundred persons are arrested on suspicion of Jooting. Each
is given a polygraph test. From past experience it is known that the polygraph is 90%
reliable when administered to a guilty suspect and 98% reliable when given to someone
who is innocent. Suppose that of the one hundred persons taken into custody, only twelve
were actually involved in any wrongdoing. What is the probability that a given suspect is
innocent given that the polygraph says he is guilty?

Let B be the event “Polygraph says suspect is guilty,” and let Ay and Az be the events
“Suspect is guilty” and “Suspect is not guilty,” respectively. To say that the polygraph
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is “90% reliable when administered to a guilty suspect” means that P(B]A;) = 0.90.
Similarly, the 98% reliability for innocent suspects implies that P(B€|A;) = 0.98, or,
equivalently, P(B[A;) = 0.02.

We also know that P(4;) = % and P(4;) = }%. Substituting into Theorem 2.4.2,
then, shows that the probability a suspect is innocent given that the polygraph says he is
guilty is 0.14:

P(BlA2)P(A2)
P(B|A1)P(A1) + P(BlA2)P(Ap)
. (0.02)(88/100)

" (0.90)(12/100) + (0.02)(88/100)
=0.14

P(A2]B) =

EXAMPLE 24.14

As medical technology advances and adults become more health conscious, the demand
for diagnostic screening tests inevitably increases. Looking for problems, though, when
no symptoms are present can have undesirable consequences that may outweigh the
intended benefits.

Suppose, for cxample, a woman has a medical procedure performed to see whether
she has a certain type of cancer. Let B denote the event that the test says she has cancer,
and let Ay denote the event that she actually does (and Az, the event that she does not).
Furthermore, suppose the prevalence of the disease and the precision of the diagnostic
test are such that

P(Ap) =00001 “[and P(Az) = 0.9999]

P(BjAq) = 0.90 = P(test says woman has cancer when, in fact, she does)

P(B|Az) = P(BIAY) = 0.001 = P(false positive) = P(test says woman has cancer
when, in fact, she does not)

What is the probability that she does have cancer, given that the diagnostic procedure
says she does? That is, calculate P(A1B).

Although the method of solution here is straightforward, the actual numerical answer
is not what we would expect. From Theorem 2.4.2,

P(B|A)P(A))
P(BIA1)P(A1) + P(BJAC)P(AS)
_ (0.9)(0.0001)

T (0.9)0.0001) + (0.001)(0.9999)
=0.08

P(A1|B) =

So, only 8% of those women identified as having cancer actually do! Table 2.4.3 shows
the strong dependence of P(A;|B) on P(A;) and P(B|A).
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TABLE 2.4.3

P(A1) P(BIAS) P(A(]B)

¢.0001  0.001 0.08
0.0001 .47
0.001 0.001 0.47
0.0001 (.90
0.01 0.001 0.90
0.001 0.99

In light of these probabilities, the practicality of screening programs directed at diseases
having a low prevalence is open to question, especially when the diagnostic procedure,
itself, poses a nontrivial health risk. (For precisely those two reasons, the use of chest
X -rays to screen for tuberculosis is no longer advocated by the medical community.)

EXAMPLE 2.4.15
According to the manufacturer’s specifications, your home burglar alarm has a 95%
chance of going off if someone breaks into your house. During the two years you have
lived there, the alarm went off on five different nights, each time for no apparent reason.
Suppose the alarm goes off tomorrow night. What is the probability that someone is trying
to break into your house? Note: Police statistics show that the chances of any particular
house in your neighborhood being burglarized on any given night are two in ten thousand.
Let B be the event “Alarm goes off tomorrow night,” and et Ay and Az be the events
“House is being burglarized” and “House is not being burglarized,” respectively. Then

P(B]A7) = 0.95
P(B|A3) = 5/730 (i.e., five nights in two years)
P(A7) = 2/10,000
FP(An =1 — P{A1) = 9,998/10,000
The probability in question is P(A1]B).
Intuitively, it might seem that P{Aq|B) should be close to one because the alarm’s
“performance” probabilities look good—FP{B]A1) is close to one (as it should be) and

P{B|Az)isclose tozero (as it should be). Nevertheless, P(A;|B) turns out to be surprisingly
small:

P(BiADF(AD
P(BIA1}P(A1) + P(BlA2)FP(A2)

B (0.95)(2/10,000)
T (0.95)(2/10,000) + (5/730)(9998/10,000)

P(A|B) =

= 0.027
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That is, if you hear the alarm going off, the probability is only 0.027 that the house is being
burglarized. :

Computationally, the reason P(A;[B} is so small is that P(A3) is so large. The latter
makes the denominator of P(A(|B) large and, in effect, “washes out” the numerator.
Even if P(B|A;) were substantially increased (by installing 2 more expensive alarm),
P(A1]|B) would remain largely unchanged (see Table 2.4.4).

TABLE 2.4.4

P(B|A1)

095 097 099 099
P{A|B) 0027 0028 0028 0.028

EXAMPLE 2.4.16
Currently a college senior, Jeremy has had a secret crush on Emma ever since the third
grade. Two weeks ago, fearing that his feelings would forever go unrequited, he broke his
silence and sent Emma a letter through Campus Mail, acknowledging his twelve-year se-
cret romance. Now, fourteen agonizing days later, he has yet to receive a response. Hoping
against hope, Jeremy and his fragile psyche are clinging to the possibility that someone’s
letter was lost in the mail. Assuming that (1) Emma (who is actually secretly dating
Jeremy’s father) has a 70% chance of mailing a response if, in fact, she had received the
letter and {2) the Campus Post Office bas a one in fifty chance of losing any particular piece
of mail, what is the probability that Emma never received Jeremy’s confession of the heart?

Let B represent the event that Jeremy did not receive a response; let A1 and A, denote
the events that Emma did and did not, respectively, receive Jeremy’s letter. The objective
is to find P(A2]B).

From what we know about Emma’s behavior and the incompetence of the Campus
Post Office, P(A) = %, P(A)) = 51'(‘%’ and, of course, P(B|Az) = 1. Also,

P(BlA1) = P(Jeremy receives no response | Emma recetved Jeremy’s letter)
= P|Emma does not respond U (Emma responds N Post Office loses letter)]
= P(Emma does not respond) + P(letter is lost | Emma responds)
% P{Emma responds)
=030 + (1/50(0.70)
=0.314

Therefore,

1(1/50)
0.314(49/50) + 1(1/50)
= 0.061

P(A2iB) =
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Sadl

y, the magnitude of P{A;|B) is not good news for Jeremy. If P(A;|B) = 0.061,

follows that Emma’s probability of having received the letter but not caring enough to
respond was almost 94%. “Faint heart ne’er won fair lady,” but feremy would probably

be well

-advised to direct his romantic intentions elsewhere.

QUESTIONS

2.4.40.

24451

2.4.42.

2.4.43.

2.4.44,

2.4.45.

2.4.40,

Urn T contains two white chips and one red chip; urn 11 has one white chip and two
red chips. One chip is drawn at random from urn I and transterred 1o urn {1, Then one
chip is drawn from urn 11 Suppose that a red chip is selected from urn 11 What is the
probahility that the chip transferred was white?

Urn I contains three red chips and five white chips; Urn Il contains four reds and
four whites; Urn T contains five reds and three whites. One urn is chosen at random
and one chip is drawn from that urn. Given that the chip drawn was red, what is the
probability that 111 was the urn sampled?

A dashboard warning light is supposed to flash red if a car’s oil pressure is too low. On
a certain model, the probability of the light flashing when it should is 0.99: 2% of the
time, though. it fAlashes for no apparent reason. H there is a 10% chance that the oil
pressure really is low, what is the probability that a driver needs to be concerned if the
warning light goes on?

Building permits were issued last year to three contractors starting up a new subdivision:
Tara Construction built two houses; Westview, three houses; and Hearthstone, six
houses. Tara’s houses have a 60% probability of developing leaky basements; homes
built by Westview and Hearthstone have that same problem 50% of the time and 40%
of the time, respectively. Yesterday, the Better Business Bureau received a complaint
from one of the new homeowners that his basement is jeaking. Who is most likely to
have been the contractor?

Two sections of a senior probability course are being taught. From what she has heard
about the two instructors listed, Francesca estimates that her chances of passing the
course are (L85 if she gets professor X and 0.60 if she gets professor Y. The section
into which she is put is determined by the registrar. Suppose that her chances of being
assigned to professor X are four out of ten. Fifteen weeks later we learn that Francesca
did, indeed, pass the course. What is the probability she was enrolled in professor X's
section?

A liquor store owner is willing to cash personal checks for amounts up to $50, but she
has become wary of customers who wear sunglasses. Fifty percent of checks written by
persons wearing sunglasses bounce. I contrast, 98% of the checks written by persons
not wearing sunglasses clear the bank. She estimates that 10% of her customers wear
sunglasses. If the bank returns a check and marks it “msufficient funds,” what is the
probability it was written by someonce wearing sunglasses?

Brett and Margo have cach thought about murdering their rich Uncle Basil in hopes of
claiming their inheritance a bit early. Hoping to take advantage of Basil’s predilection
for immoderate desserts, Brett has put rat poison in the cherries flambe; Margo,
unaware of Brett's activities, has laced the chocelate mousse with cyanide. Given the
amounts likely to be eaten. the probability of the rat poison being fatal is (L6(; the
cyanide, 0.50. Based on other dimmers where Basil was presented with the same dessert
options, we can assume that he has a 50% chance of asking for the cherries ftambe, a
40% chance of ordering the chocolate mousse, and a 10% chance of skipping dessert
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altogether. No sooner are the dishes cleared away when Basil drops dead. In the
absence of any other evidence, who should be considered the prime suspect?

2.4.47. Josh takes a twenty-question multiple-choice exam where each question has five
answers. Some of the answers he knows, while others he gets right just by making
fucky guesses. Suppose that the conditional probability of his knowing the answer to 2
randomly selected question given that he got it right is 0.92. How many of the twenty
questions was he prepared for?

2.448. Recently the U.S. Senate Committee on Labor and Public Welfare investigated the
feasibility of sctling up a national screening program to detect child abuse. A team
of consuliants estimated the following probabilities: (1) one child in ninety is abused,
(2) a physician can detect an abused child 90% of the time, and (3) a screcning program
would incorrectly label 3% of all nonabused children as abused. What is the probability
that a child s actually abused given that the screening program makes that diagnosis?
How does the probability change if the incidence of abuse is one in one thousand? Or
one in fifty?

2.4.49. At State University, 30% of the students are majoring in Humanities, 50% in History
and Culture, and 20% in Science. Moreover, according to figures released by the
Regislrar, the percentages of women majoring in Humanities, History and Culture, and
Science are 75%,45%, and 30%, respectively. Suppose Justin meets Anna at a fraternity
party. What is the probability that Anna is a History and Culture major?

2.4.50. An *“eyes-only” diplomatic message is to be transmitted as a binary code of 0s and 1s.
Past experience with the equipment being used suggests that if a 0 is sent, it will be
(correctly) received as a 0 90% of the time (and mistakenly decoded as a 1 10% of the
tirne). If a 1 is sent, it will be received as a 1 95% of the time {and as a 0 5% of the
time}. The text being sent is thought to be 70% 1s and 30% 0s. Suppose the next signal
sent is received as a 1. What is the probability that it was sent as a 7

2.4.5t. When Zach wants to contact his girffriend and he knows she is not at home, he is twice
as Hkely to send her an e-mail as he is to leave a message on her answering machine.
The probability that she responds to his e-mail within three hours is 80%; her chances
of being similarly prompt in answering a phone message increase 10 99%. Suppose she
responded to the message he left this morning within two hours. What is the probability
that Zach was communicating with her via e-mail?

2.4.52. A dot.com company ships products from three different warchouses (4, B, and C).
Based on customer cornplaints, it appears that 3% of the shipments coming from A are
somchow faulty, as are 5% of the shipments coming from B, and 2% coming from C.
Suppose a customer is mailed an order and calls in a complaint the next day. What is
the probability the item came from Warchouse C? Assume that Warchouses A, B, and
C ship 30%, 20%, and 50% of the dot.com’s sales, respectively.

2.4.53. A desk has three drawers. The first contains two gold coins, the second has two silver
coins, and the third has one gold coin and one silver coin. A coin is drawn From a drawer
selected at random. Suppose the coin sclected was silver. What is the probability that
the other coin in that drawer is gold?

INDEPENDENCE

Section 2.4 dealt with the problem of reevaluating the probability of a given cvent in light
of the additional information that some other event has already occurred. It often is the
case, though, that the probability of the given event remains unchanged, regardless of
the outcome of the second event—that is, P(A|B) = P(A) = P(A|B®). Events sharing
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this property are said to be independent. Definition 2.5.1 gives a necessary and sulficient
condition for two events to be independent.

Definition 2.5.1. Two cvents A and B are said to be independent if P(A N B) =
P(A) - P(B).

Comment. The fact that the probability of the intersection of two independent events
is equal to the product of their individual probabilities {ollows immediately from our first
definition of independence, that P(A|B) = P{A). Recali that the definition of conditional
probability holds true for any two events A and B [provided that P(B > O)]:

P(A N B)

P(B)

But P(A|B) can equal P(A) only if P(A N B) factors into P{A) times P(B).

P(A|RB) =

EXAMPLE 2.5.1

Let A be the event of drawing a king from a standard poker deck and B, the event of

drawing a diamond. Then, by Definition 2.5.1, A and B are independent because the

probability of their intersection—-drawing a king of diamonds—is equal to P(A) - P(B):
11 1

EXAMPLE 2.5.2

Suppose that A and B are independent events. Does it follow that A® and B¢ are also
independent? That is, does P(A N B) = P(A) - P(B) guarantee that P(AC n BY) =
P(AY) - P(BSY?

Yes. The proof is accomplished by equating two different expressions for P(AC U BC).
First, by Theorem 2.3.6,

P(AC U BS) = P(A®) + P(B) — P(A° n BS) 25.1)

But the union of two complements is the complement of their intersection {recall Ques-
tion 2.2.32). Therefore,

P(AC U BSy=1 -~ P(AN B) (2.5.2)
Combining Equations 2.5.1 and 2.5.2, we get
1~ PAN B =1~ P(A) + 1~ P(B) — P(A® n BY)
Since A and B are independent, P(A M B) = P(A) - P(B),so

PAS N B =1~ P(A) + 1 — P(B) — [1 — P(A) - P(B)]
=[1 - PO — P(B))
= P(A%) - P(B%)
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the latter factorization implying that A® and B are, themselves, independent. (If A and
B are independent, are A and BC independent?)

EXAMPLE 2.5.3

Administrators-R-Us is responding to affirmative-action litigation by establishing hiring
goals by race and sex for its office staff. So far they have agreed to employ the 120 people
characterized in Table 2.5.1. How many black women do they need in order for the
events A: Employee is female and B: Employee is black to be independent?

TABLE 2.5.1

White Black

Male 50 30
Female 40

Let x denote the number of black women necessary for A and B to be independent.
Then

P{A N B) = P(Black female) = x/(120 + x)
must equal
P(A)P(B) = P(Female)P(Black) = [(40 + x)/(120 + x)] - [(30 + x)/(120 + x)]

Setting x /(120 + x) = [(40 + x)/(120 + x)] - [(30 + x}/(120 + x)]implies that x = 24
black women need to be on the staff in order for A and P to be independent.

Comment. Having shown that “Employee is female” and “Employee is black” are
independent, does it follow that, say, “Employee is male” and “Employee is white” are
independent? Yes. By virtue of the derivation in Example 2.5.2, the independence of
events A and B implies the independence of events AC and B (as well as A and BC
and AC and B). It follows, then, that the x = 24 black women not only make A and B
independent, they also imply, more generally, that “race” and “sex” are independent.

EXAMPLE 2.5.4
Suppose that two events, A and B, each having nonzero probability, are mutually exclusive.
Are they also independent?

No. If A and B are mutually exclusive, then P(A N B) = 0. But P(A) - P(B) > 0(by
assumption), so the equality spelled out in Definition 2.5.1 that characterizes independence
is not met.
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Deducing Independence

Sometimes the physical crcumstances surrounding Iwo events make il obvious that
the occurrence (or nonoccurrence) of one has absolutely no influence or effect on the
occurrence (or nonoccurrence ) of the other. If that should be the case, then the two events
will necessarily be independent in the sense of Definition 2.5.1.

Suppose a coin is tossed twice. Clearly, whatever happens on the first toss has no
physical connection or influence on the outcome of the second. If A and B, then, are
events defined on the second and first tosses, respectively, it would have to be the case
that P(A|B) = P(a|B¢) = P(A). For example, let A be the event that the second toss of
a fair coin is a head, and let B be the event that the first toss of that coin is a tail. Then

. 1
P{A|B) = P(Head on second toss | Tail on first toss) = P¢Head on second toss) = 5

Being able to infer that certain events are independent proves to be of enormous help
in solving certain problems. The reason is that many events of interest are, in fact, inter-
sections. It those events are independent, then the probability of that intersection recluces
to a simple product (because of Definition 2.5.1}—that is, P{A M B) = P{A) - P(B).
For the coin tosses just described,

FP{A " B) = P(head on second toss M tail on first toss)
= P(A) - P(B)
= P(head on second toss) - P(tail on first toss)
1

EXAMPLE 2.5.5
Myra and Carlos are summer interns working as proofreaders for a local newspaper.
Based on aptitude tests, Myra has a 30% chance of spoiting a hyphenation error, while
Carlos picks up on that same kind of mistake 80% of the time. Suppose the copy they are
edifing contains a hyphenation error. What is the probability it goes undetected?

Let A and B be the events that Myra and Carlos, respectively, catch the mistake. By
assumption, P(A) = 0.50 and P(B) = (.80. What we are looking for is the probability of
the complement of 2 union, That is,

P{error goes undetected) == 1 — P{error is detected)
=1 — P(Myra or Carlos or both see the mistake)
=1~ P(AUB)
=1~ {P(A) + P(B) — P(A v B)} ({from Theorem 2.3.6)

!
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Since proofreaders invariably work by themselves, events A and B are necessarily
independent, so P{A N B).would reduce to the product, P(A) - P(B). It follows that such
an error would go unnoticed 10% of the time:

P(error goes undetected) =1 — {0.50 + 0.80 — (0.50)(0.80)} =1 ~ 0.90
=010

EXAMPLE 2.5.6

Suppose that one of the genes associated with the control of carbohydrate metabolism
exhibits two alleles—a dominant W and a recessive w. If the probabilitics of the WW,
Ww, and ww genotypes in the present generation are p, g, and r, respectively, for both
males and females, what are the chances that an individual in the next generation will be
aww?

Let A denote the event that an offspring receives a w allele from its father; let B denote
the event that it receives the recessive allele from its mother. What we are looking for is
P(A N B).

According to the information given,

p = P(parent has genotype WW) = P(WW)
g = P(parent has genotype Ww) = P(Ww)
r = P(parent has genotype ww) = P(ww)

If an offspring is equally likely to receive either of its parent’s alleles, the probabilities of
A and B can be computed using Theorem 2.4.1:

P(A) = P(A| WW)P(WW) + P(A | WwW)IP(Ww) + P(A | ww)P(ww)

1
q
= — = P(B
r+2 (B)

Lacking any evidence to the contrary, there is every reason here to assume that A and B
are independent eveats, in which case

P(A 1 "B) = P(offspring has genotype ww)
= P(A) - P(B)

-(+3)

(This particular model for allele segregation, together with the independence assumption,
is called random Mendelian mating.)
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EXAMPLE 2.5.7

Emma and Josh have just gotten engaged. What is the probability that they have different
blood types? Assume that blood types for both men and women are distributed in the
general population according to the following proportions:

Blood Type Proportion

A 40%
B 10%
AB 5%
O 45%

First, note that the event “Emma and Josh have different blood types” includes more
possibilities than does the event “Emma and Josh have the same blood type.” That being
the case, the complement will be easier to work with than the question originally posed.
We can start, then, by writing

P(Emma and Josh have different blood types)
=1 — P(Emma and Josh have the same blood type)

Now, if we let Ey and Jx represent the events that Emma and Josh, respectively, have
blood type X, then the event “Emma and Josh have the same blood type” is a union of
intersections, and we can write

P(Emma and Josh have the same blood type) = P{(E4 N Ja) U (Eg N Jp)
U (Eap N Jag) U (Eo N Jo)}
Since the four intersections here are mutually exclusive, the probability of their union
becomes the sum of their probabilities. Moreover, “blood type” is not a factor in
the selection of a spouse, so Ex and Jx are independent events and P(Ex N Jx) =

P(Ex}YP(Jx). It follows, then, that Emma and Josh have a 62.5% chance of having
different blood types:

P(Emma and Josh have different blood types) =1 — {P(EA)P(Ja)} + P(Ep)P(Jp)
+ P(Eag)P(Jap) + P(Eo)P(Jo}}
=1 — [(0.40)(0.40) + (011010
+ (0.05)0.05) + (0.45)(0.45)}

=0.625

QUESTIONS

2.5.1 Suppose that P{A N B) =02, P(A) = 0.6, and P(B) == 0.5.
(a) Are A and B mutually exclusive?
(b) Are A and B independent?
(¢) Find P(AC U BO).
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2.5.2. Spike is not a terribly bright student. His chances of passing chemistry are 0.35;
mathematics, 0.40; and both, 0.12. Are the events “Spike passes chemistry” and “Spike
passes mathematics™ independent? What is the probability that he fails both subjects?

2.5.3. Two fair dice are rolled. What is the probability that the number showing on one will
be twice the number appearing on the other?

2.5.4. Urn I has three red chips, two black chips, and five white chips; urn I has two red,
four black, and three white. One chip is drawn at random from each urn. What is the
probability that both chips are the same color?

2.5.5. Dana and Cathy are playing tennis. The probability that Dana wins at least one out of
two games is 0.3. What is the probability that Dana wins at least one out of four?

2.5.6. Three points, X1, X7, and X3, are chosen at random in the interval (0, a). A second set
of three points, ¥y, ¥3, and ¥3, are chosen at random in the interval (0, b). Let A be
the event that X, is between X; and X3. Let B be the event that ¥; < ¥; < ¥3. Find
P(A N B).

2.5.7. Suppose that P(A) = 1 and P(B) = }.

{a) What does P(A U B) equal if

1. A and B are mutually exclusive?
2. A and B are independent?

(b) What does P(A | B) equal if

1. A and B are mutually exclusive?
2. Aand B are independent?

2.5.8. Suppose that events A, B, and C are independent,
¢x) Use a Venn diagram to find an expression for P(A U B U ) that does not make
use of a complement.
) Find an expression for P(A U B U C) that does make use of a complement.
2.59. A fair coin is tossed four times. What is the probability that the number of heads
appearing on the first two tosses is equal to the number of heads appearing on the
second two tosses?

2.5.10. Suppose that two cards are drawn from a standard 52-card poker deck. Let A be the
event that both are either a jack, queen, king, or ace of hearts, and let B be the event
that both are aces. Are A and B independent? Note: There are 1,326 equalty-likely
ways to draw two cards from a poker deck.

Defining the Independence of More Than Two Events

It is not immediately obvious how to extend Definition 2.5.1 to, say, three events. To
call A, B, and C independent, should we require that the probability of the three-way
intersection factors into the product of the three original probabilities,

P(AN BN C)=P(A) - P(B) - P(O) (2.5.3)

or should we impose the definition we already have on the three pairs of events:
P(A N By = P(A) - P(B)
P(B N C)y= P(B) - P(C) (2.5.4)
P(A N C)=P(A) - P(C)

Actually, neither condition by itself is sufficient. If three events satisfy Equations 2.5.3 and
2.5.4, we will call them independent (or mutually independent), but Equation 2.5.3 does not
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imply Equation 2.5.4. nor does Equation 2.5.4 imply Equation 2.5.3 (see Questions 2.5.11
and 2.5.12).

More generally, the independence of n events requires that the probabilities of all
possible intersections equal the products of all the corresponding individual probabilities.
Definition 2.5.2 states the result formally. Analogous to what was truc in the case of fwo
events, the practical applications of Definition 2.5.2 arisc when n events are mutually
independent, and we can calculate P(A; M A2 N --- N A} by computing the product
P{Ay) - P(A3)--- P(Ay).

Definition 2.5.2. Events A¢, Ag, ..., A, are said to be independent if for every set of

indices i1, iz, ..., iy between I and n, inclusive,
P(Afl 0 Af'z M- N A“‘)m P(An) * P(Alz) st P(Al_g)
EXAMPLE 2.5.8

Audrey has registered for four courses in the upcoming fall ferm, one each in physics,
English. economics, and sociology. Based on what has happened in the recent past, it
would be reasonable to assume that she has a 20% chance of being bumped from the
physics class, a 10% chance of being bumped from the English class, a 30% chance
of being bumped from the economics class, and no chance of being bumped from the
sociology class. What is the probability that she fails to get into at least one class?
For the events

Ay Audrey is bumped from physics

Az Audrey is bumped from English

Az Audrey is bumped from economics

Ag: Audre is bumped from sociology
P(A7) = 0.20, P(A) = (.10, P{A3) = 0.30, and P(A4) = (. The chance that Audrey gets
bumped from at Ieast one class can be written as the probability of a union,

P{Audrey is bumped from at least one class) = P(A; U Az U Az U Ag) {2.5.5)

but evaluating Equation 2.5.5 is somewhat involved because the A;’s are not mutually
exclusive. A much simpler solution is to express the complement of “bumped from at
least one™ as an intersection:

p Audrey is bumped from | |- p Audrey is not bumped
at least one class e from any classes
=1~ P(AY n AS n A§ n AS)
Since different departments are involved, the A;’s are likely to be independent events, so
the intersection “factors” and we can write
P(Audrey is bumped from at least one class) = 1 — P{A$)P(AS}P(AS) P(AS)
=1 — (0.80)(0.90)(0.70)(1.00)
= (1.496
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EXAMPLE 259
The YouDie-WePay Insurance Company plans to assess its futare liabilities by sampling
the records of its current policyholders. A pilot study has turned up three clients—one
living in Alaska, one in Missouri, and one in Vermont—whose estimated chances of
surviving to the year 2010 are 0.7, 0.9, and 0.3, respectively. What is the probability that by
the end of 2009 the company will have had to pay death benefits to exactly one of the three?
Let Ay be the event “Alaska client survives through 2009.” Define A; and As
analogously for the Missouri client and Vermont client, respectively. Then the event E:
“Exactly one dies” can be written as the union of three intersections:

E= (A1 0 A2 0 Af) U (A1 1 A N 43) U (4§ N A2 0 A3)
Since each of the intersections is mutually exclusive of the other two,
P(E) = P(A1 N A2 11 AT) + P(A1 N AS 0 A3) + P(AL N Az 1 As)

Furthermore, there is no reason to believe that for all practical purposes the fates of
the three are not independent. That being the case, each of the intersection probabilities
reduces to a product, and we can write
P(E) = P(A1) - P(A2) - P(AS) + P(A1)- P(AS) - P(43) + P(AL) - P(A) - P(A3)
= 0. 7YO0NO.7) + 0.D(0.13(0.3) + (0.3)(0.9)(0.3)
=0.543

Comment. “Declaring” events independent for reasons other than those prescribed
in Definition 2.5.2 is a necessarily subjective endeavor. Here we might feel fairly certain
that a “random” person dying in Alaska will not affect the survival chances of a “random”
person residing in Missouri (or Vermont). But there may be special circumstances that
invalidate that sort of argument. For example, what if the three individuals in question
were mercenaries fighting in an African border war and were all crew members assigned
to the same helicopter? In practice, all we can do is look at each situation on an individual
basis and try to make a reasonable judgment as to whether the occurrence of one event is
likely to influence the outcome of another.

EXAMPLE 2.5.10
Protocol for making financial decisions in a certain corporation follows the “circuit”
pictured in Figure 2.5.1. Any budget is first screened by 1. If he approves it, the plan is
forwarded to 2, 3, and 5. If either 2 or 3 concurs, it goes to 4. If either 4 or 5 say “yes,” it
moves on to 6 for a final reading. Only if 6 is also in agreement does the proposal pass.
Suppose that 1, 5, and 6 each has a 50% chance of saying “yes,” whereas 2, 3, and 4 will
each concur with a probability of 0.70. If everyone comes to a decision independently,
what is the probability that a budget will pass?

Probabilities of this sort are calculated by reducing the circuit to its component unions
and intersections. Moreover, if all decisions are made independently, which is the case
here, then every intersection becomes a product.
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FIGURE 2.5.1

Let A; be the event that person i approves the budget, i = 1,2,...,6. Looking at
Figure 2.5.1, we sec that
P(budget passes) = P(A1 N {[(A2 U A3) N Ag] U As] N Ag)
= P(ADP{[(A2 U A3) N Ag] U As}P(Ag)
By assumption, P(A1) = 0.5, P(Ap) = 0.7, P(A3) = 0.7, P(A4) = 0.7, P(As) = 0.5, and
P(Ag) =0.5,50
P{[(A2 U A3) 11 Ag]) = [P(A2) + P(A3) — P(A2)P(A3)]P(Aq)
=[0.7 + 0.7 — O.N0.7H}O.7)
= (},637

Therefore,

P (budget passes) = (0.5){0.637 + 0.5 — (0.637)(0.5)}(0.5)
= 0.205

Repeated Independent Events

We have already seen several examples where the event of interest was actually an inter-
section of independent simpler events (in which case the probability of the intersection
reduced to a product). There is a special case of that basic scenario that deserves special
mention because it applies to numerous real-world situations. If the events making up
the intersection all arise from the same physical circumstances and assumptions (i.e.,
they represent repetitions of the same experiment), they are referred to as repeated
independent trials. The number of such trials may be finite or infinite.

EXAMPLE 2.5.11

Suppose the string of Christmas tree lights you just bought has twenty-four bulbs wired
in series. If each bulb has a 99.9% chance of “working™ the first time current is applied,
what is the probability that the string, itself, will not work.



Section 2.5 Independence 79

Let A; be the event that the ith bulb fails,i = 1,2,...,24. Then

P (string fails) = P(at least one bulb fails)
=P(A U Az U --- U A)
=1 — P(string works)
=1 — P(all twenty-four bulbs work)
=1 — P(Af N AS n ... n A5)

If we assume that bulb failures are independent events,
P(string fails) = 1 — P(A{)P(AS).-- P(AS,)

Moreover, since all the bulbs are presumably manufactured the same way, P(AiC )} is the
same for all i, so

P(string fails) = 1 — {P(Af) }24

=1 — (0.999)%
=1 - 098
=0.02

The chances are one in fifty, in other words, that the string would not work the first time
you take it out of the box.

EXAMPLE 2.5.12

A box contains one two-headed coin and eight fair coins, One is drawn at random and
tossed seven times. Suppose that all seven tosses come up heads. What is the probability
that the coin is fair?

This is basically a Bayes’ problem, but the conditional probabilities on the right-
hand side of Theorem 2.4.2 appeal to the notion of independence as well. Define the
evenis

B: seven heads occurred in seven tosses
Ay: coin tossed has two heads
Ag: coin tossed was fair
The question is asking for P(A; | B).
By virtue of the composition of the box, P(A;) = § and P(42) = §. Also,

P(B | Aj) = Pthead on first toss N --- N head on seventh toss | coin has two heads)
=1"=1
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Simitarly, P(B | Az) = (%)7 Substituting into Bayes’s formula shows that the probability
is .06 that the coin is fair:

P(B | A2)P(A2)
P(B| ADP(A1) + P(B| A2)P(A2)

ROR0
t(d) + (3) (6)

= (.06

P(A2 | B) =

Comment. Let B, denote the event that the coin chosen at random is tossed n times
with the result being that » heads appear. As our intuition would suggest, P(A2 | By} — 0
asn - oo

lim P(Az | By) = lim
Hr OO F R da e

EXAMPLE 2.5.13
During the 1978 baseball season, Pete Rose of the Cincinnati Reds set a National League
record by hitting safely in 44 consecutive games. Assume that Rose is 2,300 hitter and
that he comes to bat four times each game. If each at-bat is assumed to be an independent
event, what probability might reasonably be associated with a hitting streak of that length?
For this problem we need to invoke the repeated independent trials model twice-—once
for the four at-bats making up a game and a second time for the forty-four games making
up the streak. Let A; denote the event “Rose hitssafely inithgame,” i = 1,2,...,44. Then

P(Rose hits safely in forty-four consecutive games) = P{A; 1t A 0 -+~ N Agg)
= P{A1) - P(A2) - -~ - P(Aw)
{2.5.6)
Since all the P(A;)’s are equal, we can further simplify Equation 2.5.6 by writing
P(Rose hits safely in 44 consecutive games) = [PAapl*
To calculate P(A1) we should focus on the complement of Ay. Specifically,
P(Ap) =1 — P(AY)

=1 — P{Rose does not hit safely in Game 1)
=1 — P(Rose makes four outs)

=1 — (0.700)* (why?)
= (.76
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Therefore, the probability of a .300 hitter putting together a forty-four-game streak
(during a given set of forty-four games) is 0.0000057:

P(Rose hits safely in forty-four consecutive games) = (0.76)**
= 0.0000057

Comment. The analysis described here has the basic “structure” of a repeated
independent trials problem, but the assumptions that the latter makes are not entirely
satisfied by the data. Each at-bat, for example, is not really a repetition of the same
experiment, nor is P(A;) the same for all i. Rose would obviously have different
probabilities of getting a hit against different pitchers. Moreover, “four” was probably
the typical number of officiat at-bats that he had during a game, but there would certainly
have been many instances where he had either fewer or more. Modest deviations from
game to game, though, would not have a major effect on the probability associated with
Rose’s forty-four-game streak,

EXAMPLE 2.5.14

in a certain third world nation, statistics show that only eight out of ten children born in

the early 1980s reached the age of twenty-one. If the same mortality rate is operative over

the next generation, how many children does a woman need to bear i she wants to have

at least a 75% probability that at least one of her offspring survives to adulthood?
Restated, the question is asking for the smallest integer n such that

P{at least one of n children survives to adulthood) > (.75
Assuming that the fates of the n children are independent events,

P(at least one (of ») survives to age twenty-one) = 1 — P(all n die before adulthood)
=1 - {0.80)"

Table 2.5.2 shows the value of 1 — (0.80)" as a function of n.

TABLE 2.5.2
n 1 — (0RO
5 0.67
6 0.74
7 0.79

By inspection, we see that the smallest number of children for which the probability is at
least (.75 that at least one of them survives to adulthood is seven.
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EXAMPLE 2.5.15  (Optional)

In the game of craps, one of the ways a player can win is by rolling {with two dice) one of the
sums four, five, six, eight, nine, or ten, and then rolling that sum again before rolling a sum of
seven. For example, the sequence of sums six. five, eight, eight, six would result in the player
winning on his fifth roll. In gambling parlance, “‘six”" is the player’s “point,” and he “made
his point.” On the other hand, the sequence of sums eight, four, ten, seven would result in
the player losing on his fourth roll: his point was an eight, but he rolled a sun of seven be-
fore he rolled a second eight. What is the probability that a player wins with a point of ten?

TABLE 253
Sequence of Rolls Probability
(10, 10) (3/36)(3/36)
(10, no 10017, 10) (3/36)(27/36)(3/36)

(10,n0 10 or 7, no 10 0r 7, 10)  (3/36)(27/36)(27/36)(3/36)

Table 2.5.3 shows some of the ways a player can make a point of ten. Each sequence, of
course, is an intersection of independent events, so its probability becomes a product. The
event “Player wins with a point of ten’ is then the union of all the sequences that could have
been listed in the first column. Since all those sequences are mutually exclusive, the prob-
ability of winning with a point of ten reduces to the sum of an infinite number of products:

3 3 3 27 3
P(Player wins withapointof 10} = — « — 4+ — - — - —

3 27 21 3

%% 36 36
3 3 &2V
=% 362 (%) (2.5.7)
Recall from algebra thatif 0 < r < 1,
£X2
dork=10a -1
k=0

Applying the formula for the sum of a geometric series to Equation 2.5.7 shows that the
probability of winning at craps with a point of ten is %:

3
P(Player wins with a pointoften) = — - — -
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TABLE 2.54

Point P (makes point)

1/36
16/360
25/396
25/396
16/360
1/36

fuw Bt = Bv B = SRV I N

1

Comment. Table 2.5.4 shows the probabilities of a person “making” each of the
possible six points—4, 5, 6, 8, 9, and 10. According to the rules of craps, a player wins by
either (1) getting a sum of seven or eleven on the first roll or (2) gettinga 4,5,6,8,9, or 10
on the first roll and making the point. But P(sum = 7) = 6/36 and P (sum = 11) = 2/36, so

Plerwins)—6+2+l_;_16+25+25+16+1
(play 36 36 36 360 396 396 360 @ 36

={(.493

As even-money games go, craps is relatively fair —the probability of the shooter winning
is not much less than 0.500.

QUESTIONS

2.5.11. Suppose that two fair dice (one red and one green) are rolled. Define the events
A: a1 or a2shows on the red die
B: a3, 4, or 5 shows on the green die
C: the dice total is four, eleven, or twelve
Show that these events satisfy Equation 2.5.3 but not Equation 2.5.4.

2.5.12. A roulette wheel has thirty-six numbers colored red or black according to the pattern
indicated below:

Roulette wheel pattern
4 6 7 8 9 10 11 12 13 14 15 16 17 18
R R R R RBBBUBIERUIRIRIDREU BUETSB B
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 2% 20 19

Define the events

A: Red number appears
B: Even number appears
. Number is less than or equal to eighteen

Show that these events satisfy Equation 2.5.4 but not Equation 2.5.3.

2.5.13. How many probability equations need to be verified to establish the mutual indepen-
dence of four events?
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2.5.14.

2.5.13.

2.5.16.

2.5.17.

2.5.18,

2.5.19,

2.5.20.

2.5.21.

In a roll of a pair of fair dice (one red and one green), let A be the event the red die
shows a 3, 4, or 5; let B be the event the green dic shows a 1 or a 2; and let C be the
event ’the dice total is seven. Show that A, B, and € are independent.

In a roll of a pair of fair dice (one red and one green), let A be the event of an odd
number on the red die, let 8 be the event of an odd number on the green die, and let C
be the event that the sum is odd. Show that any pair of these events are independent
but that A, B, and € are not mutually independent.

On her way to work, a commuter encounters four traffic signals. Assume that the
distance between each of the four is sufficiently great that her probability of getting
a green light at any intersection is independent of what happened at any previous
intersection. The first two lights are green for forty seconds of each minute; the last
two, for thirty seconds of each minute. What is the probability that the commuter has
to stop at least three times?

School hoard officials are debating whether to require aH high school seniors (o take
a proficiency exam before graduating. A student passing all three parts (mathematics,
language skills, and general knowledge) would be awarded a diploma: otherwisc. he
would receive only a certificate of attendance. A practice test given to this year’s
ninety-five hundred seniors resulted in the following numbers of failures:

Subject Area Number of Students Failing
Mathematics 3325
Language skills 1908
General knowledge 1425

If “Student fails mathematics,” “Student fails language skills.” and “Student fails
general knowledge™ are independent events, what proportion of next year’s seniors
can be expected to fail to qualify for a diploma? Does independence seem a reasonable
assumption in this situation?

Consider the following four-switch circuit:

Out

If all switches operate independently and P(switch closes) = p, what is the probability
the circuit is completed?

A fast-food chain is running a new promotion. For each purchase, a customer is given
a game card that may win $10. The company claims that the probability of a person
winning at least once in five tries is 0.32. What is the probability that a customer wins
$10 on his or her first purchase?

Players A, B, and C toss a fair coin in order. The first to throw a head wins., What are
their respective chances of winning?

Andy, Bob, and Charley have gotten into a disagreement over a female acquaintance
and decide to settle their dispute with a three-cornered pistol duel. Of the three, Andy
is the worst shot, hitting his target only 30% of the time. Charley, a little better, is
on-target 50% of the time, while Bob never misses. The rules they agree to are simple:
They are to fire at the targets of their choice in succession, and cyclically, in the order
Andy, Bob, Charley, Andy, Bob, Charley, and so on until only one of them is left
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standing. {On each “turn,” they get only one shot. If a combatant is hit, he no longer
participates, cither as a shooter or as a target.) Show that Andy’s optimal strategy,
assuming he wants to maximize his chances of staying alive, is to fire his first shot into
the ground.

According to an advertising study, 15% of television viewers who have seen a certai
automobile commercial can correctly identify the actor who does the voice-over.
Supposc that 10 such people arc watching TV and the commercial comes on. What is
the probability that at least one of them can name the actor? What is the probability
that exactly one can name the actor?

A fair die is rolled and then » fair coins are tossed, where n is the number showing on
the die. What is the probability that no heads appear?

Each of m urns contains three red chips and four white chips. A total of r samples with
replacement are taken from each urn. What is the probability that at least one red chip
is drawn from at least one urn?

If two fair dice are tossed, what is the smallest number of throws, n, for which the
probability of getting at least one double six exceeds 0.57 (Note: This was one of the
first problems that de Méré¢ communicated to Pascal in 1654.)

A pair of fair dice are rolled until the first sum of eight appears. What is the probability
that a sum of seven docs not precede that first sum of eight?

An urn contains w white chips, b black chips, and r red chips. The chips are drawn
out at random, one at a time, with replacement. What is the probability that a white
appears before a red?

A Coast Guard dispatcher receives an SOS from a ship that has run aground off the
shore of a small island. Before the captain can relay her exact position, though, her
radio goes dead. The dispatcher has n helicopter crews he can send out 1o conduct a
scarch. He suspects the ship is somewhere cither south in area | (with probability p)
or north in area II (with probability 1 — p). Each of the n rescue partics is cqually
competent and has probability » of locating the ship given it has run aground in
the sector being searched. How should the dispatcher deploy the helicopter crews to
maximize the probability that one of them will find the missing ship? Hint: Assume
that m search crews arc sent to area 1 and » — m are sent to area II. Let B denote
the cvent that the ship is found, let A; be the event that the ship is in area I, and let
Az be the event that the ship is in area IL Use Theorem 2.4.1 1o get an expression for
P(B); then differentiate with respect to m.

A computer is instructed to generate a random sequence using the digits 0 through 9;
repetitions arc permissible. What is the shortest length the sequence can be and still
havc at lcast a 70% probability of containing at least one 47

Combinatorics is a time-honored branch of mathematics concerned with counting, arr ang-
ing, and ordering. While blessed with a wealth of early contributors (there are references
to combinatorial problems in the Old Testament), its emergence as a separate discipline is
often credited to the German mathematician and philosopher Gottfried Wilhelm Leibniz

(1646

1716), whose 1666 treatisc, Dissertatio de arte combinatoria, was perhaps the first

monograph written on the subject (111).

Applications of combinatorics are rich in both diversity and number. Users range from
the molecular biologist trying to determine how many ways genes can be positioned
along a chromosome, to a computer scientist studying queuing prioritics, to a psychologist
modeling the way we learn, to a weekend poker player wondering whether he should
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draw to a straight, or a flush, or a full house. Surprisingly enough, solutions to all of
these questions are rooted in the same set of four basic theorems and rules, despite the
considerable differences that seem to distinguish one question from another.

Counting Ordered Sequences: The Multiplication Rule

More often than not, the relevant “outcomes” in a combinatorial problem are ordered
sequences. If two dice are rolled, for example, the outcome (4, 5)--that is, the first die
comes up 4 and the second die comes up 5—is an ordered sequence of length two.
The number of such sequences is calculated by using the most fundamental result in
combinatorics, the pudtiplication rule,

Multiplication Rule. If operation A can be performed in m different ways and operation
B in n different ways, the sequence (operation A, operation B) can be performed inm - n
different ways.

Proof. At the risk of belaboring the obvious, we can verify the multiplication rule by
considering a tree diagram (see Figure 2.6.1). Since each version of A can be followed
by any of n versions of B, and there are m of the former, the total number of “A, B”
sequences that can be pieced together is obviously the product m - n. |

Operation A Operation B

FIGURE 2.6.1

Corollary. If operation A;, i = 1,2,... .k, can be performed in n; ways, i = 1,2,... .k
respectively, then the ordered sequence (operation Ay, operation Ay, ..., operation Ay }can
be performedinnm - n3 - --- - ng ways.

EXAMPLE 2.6.1

The combination lock on a briefcase has two dials, each marked off with 16 notches (see
Figure 2.6.2). To open the case, a person first turns the left dial in a certain direction
for two revolutions and then stops on a particular mark. The right dial is set in a similar
fashion, after having been turned in a certain direction for two revolutions. How many
different settings are possible?
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A A
15 @—B D ‘@—B
C C
FIGURE 2.6.2

In the terminology of the multiplication rule, opening the briefcase corresponds to
the four-step sequence (A1, A2, A3, A4) detailed in Table 2.6.1. Applying the previous
corollary, we see that 1,024 different settings are possible:

Number of different settings = ny .- ny - n3 - ny

=2.16-2.16
=124
TABLE 2.6.%
Operation Purpose Number of Options
Aq Rotating the left dial in a
particular direction 2
Az Choosing an endpoint for the
left dial 16
Az Rotating the right dial in a
particular direction 2
Ag Choosing an endpoint for the
right dial 16

Comment. Designers of locks should be aware that the number of dials, as opposed to
the number of notches on each dial, is the critical factorin determining how many different
settings are possible. A two-dial lock, for example, where each dial has twenty notches,
gives rise to only 2 - 20 - 2 - 20 = 1600 settings. If those forty notches, though, are
distributed among four dials (10 to each dial), the number of different seltings increases

a hundredfold t0 160,000 (=2 - 10 -2 . 10-2 - 10 . 2 . 10).

EXAMPLE 2.6.2

Alphonse Bertillon, a nineteenth-century French criminologist, developed an identifica-
tion system based on eleven anatomical variables (height, head width, ear length, etc.)
that presumably remained essentially unchanged during an individual’s aduli life. The
range of each variable was divided into three subintervals: small, medium, and large. A
person’s Bertillon configuration was an ordered sequence of eleven letters, say

s,s,mom, s s, s,m, s
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where a letter indicated the individual's “size” relative to a particular variable. How
populated does a city have to be before it can be guaranteed that at least two citizens will
have the same Bertillon configuration?

Viewed as an ordered sequence, a Bertillon configuration is an eleven-step classification
system, where three options are available at each step. By the multiplication rule, a total
of 311, or 177,147, distinct sequences are possible. Therefore, any city with at least 177,148
adults would necessarily have at feast two residents with the same pattern. (The limited
number of possibilities generated by Bertillon’s variables proved to be one of its major
weaknesses. Still, it was widely used in Europe for criminal identification before the
development of fingerprinting.)

EXAMPLE 2.6.3
In 1824 Louis Brailie invented what would eventually become the standard alphabet for
the blind. Based on an earlier form of “night writing” used by the French army for reading
battlefield communiqués in the dark, Braille’s system replaced each written character with
a six-dot matrix:

» L ]
- L ]
»

where certain dots were raised, the choice depending on the character being transcribed.
The letter e, for example, has two raised dots and is written

@ -
* L
. »

Punctuation marks, common words, suffixes, and so on also have specified dot patterns.
In all, how many different characters can be enciphered in Braifle?

Think of the dots as six distinct operations, numbered 1 to 6 (see Figure 2.6.3). In
forming a Braille letter, we have two options for each dot: We can raise it or not raise
it. The letter e, for example, corresponds to the six-step sequence {raise, do not raise, do

Options
i e - =
..... @ 0 @ O @ @ |
Ze S5 — 1 5 3 1 3 3 2 Sequences
3e Ge Det number

FIGURE 2.6.3
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not raise, do not raise, raise, do not raise). The number of such sequences, with k = 6
= ng = 2, is 2%, or 64. One of those sixty-four configurations, though,

andp) =Ap = ---

has no raised dots, making it of no use to a blind person. Figure 2.6.4 shows the entire
sixty-three-character Braille alphabet.

AGURE 2.6.4

¢ - |® & o e ® - |® & & &0 |- 8 @
« r|® s | - - &(® - o & | ® o | e e
a b c d e f g h i j
i z 3 4 5 6 7 8 9 0
® - i® +|® @|e ® - (o oo o o - |. 90|+ =
e e l@ | o] + ®o|® s+ o @ ® a|e |0
. - ® - (& - L] . - ® - | & - ® - | ® - L I
k 1 m 3] o p q F 8 t
® - ® - & & | . - * & | & & |0 - - @ L.
. . e - - . . r 8 8 - ® & | &9 - . @
e o & & . » o |0 ® & o (" o0 s 0 o0
u v X y Z and for of the with
. - L ® 8@ * - 8 & & & & - - @& - @
. - » » » - - - 8 . - ® & LA ® - . O
- & |- ® . & . . ® |+ @ - & |+ @ - ®i« @
ch gh sh th wh ed er ou oW w
L e - . 9 9 . - * & & & . - - » L
LI e - - - . - 8| - * @ . & - ® &
. ; en ! 0O e n
P - @ PR . - . . s
» - - » + @ - = - - -
¢« - 0 &9 o|@ .« -0 @
st ing # ar ' -
- @ |- ® - @ - N
. - - ® . @ . D . P ) . .
. - . . . - . - & - - . »
General v Italic | Letter | Capital
accent Used for sign; sign sign
sign two-celled decimal
contractions point
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EXAMPLE 2.6.4

The annual NCAA (*March Madness™) basketball tournament starts with a field of
sixty-four tearns. After six rounds of play, the squad that remains unbeaten is declared the
national champion. How many different configurations of winners and losers are possible,
starting with the first round? Assume that the initial pairing of the sixty-four invited teams
into thirty-two first-round matches has already been done.

Counting the number of ways a tournament of this sort can play out is an exercise
in applying the multiplication rule twice. Notice, first, that the thirty-two first-round
games can be decided in 2% ways. Similarly, the resulting sixteen second-round games
can generate 2'© different winners, and so on. Overall, the tournament can be pictured
as a six-step sequence, where the number of possible outcomes at the six steps are
232 216 98 24 22 and 2!, respectively. It follows that the number of possible tournaments
(not gli of which, of course, would be equally likely!) is the product 2% . 216. 28 . 24 22 . o1,
or 2%,

EXAMPLE 2.6.5

An octave contains twelve distinct notes (on a piano, five black keys and seven white
keys). How many different eight-note melodies within a single octave can be written if
the black keys and white keys need to alternate?

Choices: 57575757 w 75757575

BWBWBWBW WBWBWBWB
12345678 12345678
Keys Keys
(a) (b)

FGURE 2.6.5

There are two fundamentally different ways in which the black and white keys can
alternate—the black keys could produce notes 1, 3, 5, and 7 in the melody, or they could
produce notes 2, 4, 6, and 8. Figure 2.6.5 diagrams the two cases. Consider the first, where
the black keys produce the odd-numbered notes in the melody. In Multiplication Rule
terminology, notes 1, 3, 5, and 7 correspond to Operations A1, A3, As, and Ay for which
the numbers of available options are n; = 5, 13 = §, ns = 5, and n7 = 5. The white keys
{that is, Operations Ay, As, Ag, and Ag) all have »; = 7,7 = 2,4, 6, 8, so the number of
different “alternating” melodies—where a black note comes first—is the product 5* 74,
or 1,500,625.

By the same argument, the second case (where the black keys produce the even-
numbered notes in a melody) also generates 7* 5* = 1,500,625 melodies. Altogether,
then, the number of different melodies with alternating black and white notes is the sum
1,500,625 + 1,500,625, or 3,001,250.
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PROBLEM-SOLVING HINTS
(Doing combinatorial problems)

Combinatorial questions sometimes call for problem-solving techniques that are not
routinely used in other arcas of mathematics. The three listed below are especially
helpful.

1. Draw a diagram that shows the structure of the outcomes that are being counted.
Be sure to include (or indicate) all relevant variations. A case in point is
Figure 2.6.5. Recognizing at the outsei that there are two mutually exclusive
ways for the black keys and white keys to alternate (i.e., the black keys can be
cither the odd-numbcered notes or the even-numbered notes) is a critical first step
in solving the problem. Almost invariably, diagrams such as these will suggest
the formula, or combination of formulas, that should be applied.

2. Use enumerations to “test” the appropriateness of a formula. Typically, the
answer to a combinatorial problem—that is, the number of ways to do
something—will be so large that listing all possible outcomes is not feasible.
It often is feasible, though, to construct a simple, but analogous, problem for
which the entire set of outcomes can be identified (and counted). If the proposed
formula does not agree with the simple-case enumeration, we know that our
analysis of the original question is incorrect.

3. I the outcomes to be counted fall into structurally different categories, the
total number of outcomes will be the sum (not the product) of the number
of outcomes in each category. Recall Example 2.6.5. Alternating melodies fall
into two structurally-different categories: black keys can be the odd-numbered
notes or they can be the even-numbered notes (there is no third possibility).
Associated with each category is a different set of outcomes, implying that the
total number of alternating melodies is the sum of the numbers of outcomes
associated with the two categorics.

QUESTIONS

2.6.1. A chernical engineer wishes to observe the effects of temperature, pressure, and catalyst
concentration on the yield resulting from a certain reaction. H she intends to include
two different temperatures, three pressures, and two levels of catalyst, how many
different runs must she make in order to observe each temperature-pressure-catalyst
combination exactly twice?

2.6.2. A coded message from a CIA operative to his Russian KGB counterpart is to be sent
in the form Q4ET, where the first and last entries must be consonants; the second, an
integer 1 through 9; and the third, one of the six vowels. How many different ciphers
can be transmitted?

2.6.3. How many terms will be included in the expansion of

@atbtcd+e+ i+ y+u+v+w

Which of the following will be included in that number: aew, cdx, bef, xvw?
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Suppose that the format for license plates in a certain state is two letters followed by
four numbers.
(a) How many different plates can be made?
{(b) How many different plates are there if the letters can be repeated but no two
numbers can be the same?
{¢) How many different plates can be made if repetitions of numbers and letters is
allowed except that no plate can have four zeros?
How many integers between 100 and 999 have distinct digits, and how many of those
are odd numbers?
A fast-food restaurant offers customers a choice of eight toppings that can be added 1o
a hamburger. How many different hamburgers can be ordered?
In baseball there are twenty-four different “base-out” configurations (runner op
first—two outs, bases loaded--none out, and so on). Suppose that a new game,
sleazeball, is played where there are seven bases {(excluding home plate) and each
team gets five outs an inning, How many base-out conligurations would be possible in
sleazeball?
When they were first introduced, postal zip codes were five-digit numbers, theoretically
ranging from 00000 to 99999. (In reality, the lowest zip code was 00601 for San Juan,
Puerto Rico; the highest was 99950 for Ketchikan, Alaska.} An additional four digits
have recently been added, so each zip code is now a nine-digit number. How many zip
codes are at least as large as 600000000, are even numbers, and have a seven as their
third digit?
A restaurant offers a choice of four appetizers. fourieen entrees, six desserts. and five
beverages. How many different meals are possible il a diner intends to order only three
courses? (Consider the beverage to be a “course.”)
Proteins are chains of molecules chosen (with repetition) from some 20 different amino
acids. In a living cell, proteins are synthesized through the genetic code, a mechanism
whereby ordered sequences of nuclectides in the messenger RNA dictate the formation
of a particular amino acid. The four key nucleotides are adenine, guanine, cytosine,
and uracil (A, G, C, and U). Assuming A, G, C, or U can appear any number of
times in a nucleotide chain and that all sequences are physically possible, what is the
mirimum length the chains must attain to have the capability of encoding the entire set
of amine acids? Neote: Each sequence in the genetic code must have the same number
of nucleotides,
Residents of a condominium have an automatic garage door opener that has a row of
eight buttons. Each garage door has been programmed to respond to a particular set of
buttons being pushed. If the condominium houses 250 families, can residents be assured
that ne two garage doors will open on the same signal? If so, how many additional
families can be added before the eight-button code becomes inadequate? Note: The
order in which the buttons are pushed is irrelevant.
In international Morse code, each letter in the alphabet is symbolized by a series
of dots and dashes: the letter “a,” for example, is encoded as “.-". What is the
maximum number of dots and/or dashes needed to represent any letter in the English
alphabet?
The decimal number corresponding to a sequence of n binary digits ap, a1....ap-1,
where each a; is either 0 or 1, is defined to be

a2’ + a2t + -+ (1271

For example, the sequence 01 1 Oisequal to 6 (=0 - 29 + 1 -2 1+ 1.2 + 0. 2%,
Suppose a fair coin is tossed nine times. Replace the resulting sequence of H’s
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and T’s with a binary sequence of 1's and 0’s (1 for H, 0 for T). For how many
sequences of osses will the decimal corresponding 10 the observed set of heads and tails
exceed 2567

2.6.14. Given the letters in the word

ZOMBIES

in how many ways can two of the letiers be arranged such that one is a vowel and one
is a consonant?

2.6.15. Suppose that two cards are drawn—in order—from a standard 52-card poker deck. In
how many ways can one of the cards be a club and one of the cards be an ace?

2.6.16. Monica’s vacation plans require that she fly from Nashville to Chicago to Seattle
to Anchorage. According to her travel agent, there are three available flights from
Nashville to Chicago. five from Chicago to Seatle, and two from Seatile to Anchorage.
Assume that the numbers of options she has for return flights are the same. How many
round-trip itineraries can she schedule?

Counting Permutations (when the objects are all distinct)

Ordered sequences arise in two fundamentally different ways. The first is the scenario
addressed by the multiplication rule—a process is comprised of k operations, each
allowing »n; options, { = 1,2,...,k; choosing one version of each operation leads to
nynz. . ng possibilities,

The second occurs when an ordered arrangement of some specified length £ is formed
from a finite collection of objects. Any such arrangement is referred to as a permutation
of length k. For example, given the three objects A, B, and C, there are six different
permutations of length two that can be formed if the objects cannot be repeated: AB, AC,
BC, BA, CA, and CB.

Theorem 2.6.1. The number of permutations of length k that can be formed from a set of n
distinct elements, repetitions not ullowed, is denoted by the symbol , Py, where

nt

pBo=ntn =D =2t =k D=

Proof. Any of the n objects may occupy the first position in the arrangement, any
of n — 1 the second, and so on—the number of choices available for filling the kth
position will be n — k + 1 (see Figure 2.6.6). The theorem follows, then, from the
multiplication rule: There willbe n(n — 1)---(n — %k + 1) ordered arrangements.

Corollary. The number of ways to permute an entire set of n distinct objects is , P, =
an — 1yn — 2.1 =gl

n-1  n-(k-2) n—-{k-1)
2 k-1 k

. - Fi
Cheilces: h

Position in sequence

FIGURE 2.6.6
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EXAMPLE 2.6.6
How many permutations of length & = 3 can be formed from the set of n = 4 distinct
clements, A, B, C, and D?

According to Theorem 2.6.1, the number should be 24:

n! 4 4.3.2.1

n -k @ -3 1 =24

Confirming that figure, Table 2.6.2 lists the entire set of 24 permutations and illustrates
the argument used in the proof of the theorem.

TABLE 2.6.2
C 1. (ABC)
B=—"T"p 2. (ABD)
B 3. (ACB)
4 c=—"T")p 4. (ACD)
B 5 (ADB)
p=="" 0 6. (ADC)
¢ 7. (BAC)
A==""1 8. (BAD)
9

, A 9. (BCA)
C==T"Dp 10 (BCD)
A 1L (BDA)
P="T"C 1 (00
B 13 (CAB)
A="T"p 1 (caD)
A 15 (CBA)
B=""") 16 (CED)
A 17. (CDA)
b==T"} (CDB)
B 19, (DAB)
A="00 00 (DAG)
_ A 2. (DBA)
B=—T"¢ n (DBC)
. A 23 (DCA)
=", m (DCB)

D

A AN AN AN

EXAMPLE 26.7

in her sonnet with the famous first line, “How do I love thee? Let me count the ways,”
Elizabeth Barrett Browning listed eight. Suppose Ms. Browning had decided that writing
greeting cards afforded her a better format for expressing her feelings. For how many
years could she have corresponded with her favorite beau on a daily basis and never semt
the same card twice? Assume that each card contains exactly four of the eight “ways”
and that order maltters.
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In selecting the verse for a card, Ms. Browning would be creating 2 permutation of
length k = 4 from a set of # = 8 distinct objects. According to Theorem 2.6.1,

81
Number of different cards = g Py = m =8-7-6-5

= 1680

At the rate of a card a day, she could keep the correspondence going for more than four
and one-half years.

EXAMPLE 2.6.8

Years ago—long before Rubik cubes and electronic games had become epidemic—puzzles
were much simpler. One of the more popular combinatorial-related diversions was a four
by four grid consisting of fifteen movable squares and one empty space. The object was to
manetver as quickly as possible an arbitrary configuration (Figure 2.6.7a) into a specific
pattern (Figure 2.6.7b). How many different ways could the puzzie be arranged?

Take the empty space to be square number 16 and imagine the four rows of the grid
laid end to end to make a sixteen-digit sequence. Each permutation of that sequence
corresponds to a different pattern for the grid. By the corollary to Theorem 2.6.1, the
nuenber of ways to position the tiles is 16!, or more than twenty trillion (20,922,789,888,000,
to be exact). That total is more than fifty times the number of stars in the entire Milky
Way galaxy. (Note: Not all of the 16! permutations can be generated without physically
removing some of the tiles. Think of the two by two version of Figure 2.6.7 with tiles
numbered 1 through 3. How many of the 4! theoretical configurations can actually be
formed?)

)

FiGURE 2.6.7

EXAMPLE 2.6.9

A deck of 52 cards is shuffled and dealt face up in a row. For how many arrangements will
the four aces be adjacent?

This is a good example for illustrating the problem-solving benefits thal come from
drawing diagrams, as mentioned earlier. Figure 2.6.8 shows the basic structure that needs
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Non-aces

4 aces

FIGURE 2.6.8

to be considered: The four aces are positioned as a “clump” somewhere between or
around the forty-eight non-aces.

Clearly, there are forty-nine “spaces” that could be occupied by the four aces (in front
of the first non-ace, between the first and second non-aces, and so on). Furthermore, by
the corollary to Theorem 2.6.1, once the four aces are assigned to one of those forty-nine
positions, they can still be permuted in 4 P4 = 4! ways. Similarly, the forty-eight non-aces
can be arranged in 45 Fqg = 48! ways. It follows from the muitiplication rule, then, that
the number of arrangements having consecutive aces is the product, 49 - 41 . 48!, or,
approximately, 1.46 x 1054,

Comment. Computing n! can be quite cumbersome, even for »’s that are {airly small:
We saw in Example 2.6.8, for instance, that 16! is already in the trillions. Fortunately, an
easy-to-use approximation is available. According to Stirling’s formuda,

nl = f2gnttl 2

In practice, we apply Stirling’s formula by writing
1
logg(n!) = logg (V2r) + (" + E) logyp(rn) — nlogyg(e)

and then exponentiating the right-hand side.
Recall Example 2.6.9, where the number of arrangements was calculated to be
49 - 4! . 48!, or 24 - 491. Substituting into Stirling’s formula, we can write

P |
=~ 62.783366

Therefore,

24 . 491 =24 . 1062.78337
= 1.46 x 10%
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EXAMPLE 2.6.10

In chess a rook can move vertically and horizontally (see Figure 2.6.9). It can capture any
unobstructed piece located anywhere in its own row or column. In how many ways can
eight distinct rooks be placed on a chessboard (having eight rows and eight columns) so
that no two can capture one another?

FIGURE 2.6.9

To start with a simpler problem, suppose that the eight rooks are all identical. Since no
two rooks can be in the same row or same column (why?), it follows that each row must
contain exactly one. The rook in the first row, however, can be in any of eight columns; the
rook in the second row is then limited to being in one of seven columns, and sc on. By the
multiplication rule, then, the number of noncapturing configurations for eight identical
r00ks is g Py, or 8! (see Figure 2.6.10).

Total number =
8-76-5-4-3-2+1

FAGURE 2.6.10

Now imagine the eight rooks to be distinct—they might be numbered, for example,
1 through 8. The rook in the first row could be marked with any of eight numbers; the
rook in the second row with any of the remaining seven numbers; and so on. Altogether,
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there would be 8! numbering patterns for each configuration. The total number of ways
to position cight distinet, noncapturing rooks, then, is 8! - 8!, or 1,625,702,400.

EXAMPLE 2.6.11

A new horror movie, Friday the 13", Part X, stars Jason’s great-grandson as a psychotic
trying to dismember, decapitate, or do whatever clse it takes to dispatch eight camp
counsclors, four men and four women. (a} How many scenarios (i.e., victim orders) can
the screenwriters devise, assuming they want Jason to do away with all the men before
going after any of the women? (b) How many scripts arc possible if the only restriction
imposed on Jason is that he save Muffy for last?

. Suppose the male counselors are denoted A, B, C, and D, and the female counselors,
W, X, Y, and Z. Among the admissible plots would be the sequence pictured in
Figure 2.6.11, where B is done in first, then D, and so on. The men, if they are to
be restricted to the first four positions, can still be permuted in 4 P4 = 4! ways. The
same number of arrangements can be found for the women. Furthermore, the plot
in its entirety can be thought of as a two-step sequence: first the men are eliminated,
then the women. Since 41 ways are available to do the former and 41 the latter, the
total number of different scripts, by the multiplication rule, is 4! 4!, or 576.

Men Women
BDACYZWX
2 3

1

4 5 6 7 8
Order of killing

HGURE 2.6.11

b. I the only condition te be met is that Muffy be dealt with last, the number of
admissible scripts is simply 7 P; = 7!, that being the number of ways to permute the
other seven counselors (see Figure 2.6.12).

BW?ZCYAD My
i 2 3 4 5 6 7 8
Order of killing

HGURE 2.6.12

EXAMPLE 2.6.12
Consider the set of nine-digit numbers that can be formed by rearranging without
repetition the integers 1 through 9. For how many of those permutations will the 1 and
the 2 precede the 3 and the 4? That is, we want to count sequences like 725136948
butnotlike 681542739.

AL first glance, this seems to be a problem well beyond the scope of Theorem 2.6.1.
With the help of a symmetry argument, though, its solution is surprisingly simple.

Think of just the digits 1 through 4. By the Corollary on page 93, those four numbers
give rise to 41(= 24) permutations. Of those 24, only 4—(1, 2,3, 4), (2, 1, 3,4).(1, 2,4, 3),
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and (2, 1, 4, 3)}—have the property that the 1 and the 2 come before the 3 and the 4. It
follows that f‘% of the total number of nine-digit permutations should satisfy the condition
being imposed on 1, 2, 3, and 4. Therefore,

4
Number of permutations where 1 and 2 precede 3 and 4 = 54 9

= 60,480

QUESTICNS

2.6.17.

2.6.18.

2.6.19.

2.6.20.

2.6.21.

2.6.22.

2.6.23.

2.6.24.

2.6.25.

2.6.26.

2.6.27.

2.6.28.

2.6.29.

The board of a large corporation has six members willing to be nominated for office.

How many different “president/vice president/treasurer” slates could be submitted to

the stockholders?

How many ways can a set of four tives be put on a car if all the tires are interchangeable?

How many ways are possible if two of the four are snow tires?

Use Stirling’s formula to approximate 301

{Note: The exact answer is 205,252.859,812,268,935,315, 188,480,000,000.)

The nine members of the music faculty baseball team, the Mahler Maulers, are all

incompetent, and cach can play any position equally poorly. In how many different

ways can the Maulers take the field?

A three-digit number is to be formed from the digits 1 through 7, with no digit being

used more than once. How many such numbers would be less than 2897

Four men and four women are to be seated in a row of chairs numbered | through 8.

{a) How many total arrangements are possible?

(h) How many arrangements arc possible if the men are reqguired to sit in alternate
chairs?

An engineer needs to take three technical electives sometime during his final four

semesters. The three are to be selected from a Hst of ten. In how many ways can he

schedule those classes, assuming that he never wants to take more than one technical

elective in any given term?

How many ways can a twelve-member cheerleading squad (six men and six women)

pair up to form six male-female teams? How many ways can six male-female teams be

positioned along a sideline? What might the number 616126 represent? What might the

number 616!292'7 represent?

Suppose that a seemingly interminable German opera is recorded on all six sides of a

threc-record album. In how many ways can the six sides be played so that at least one

is out of order?

A group of » families, cach with m members, are to be lined up for a photograph.

In how many ways can the »m people be arranged if members of a family must stay

together?

Suppose that ten people, including you and a friend, line up for a group picture. How

many ways can the photographer rearrange the line if she wants to keep exactly three

peeple between you and your friend?

Theorem 2.6.1 was the first mathematical result known to have been proved by

induction, that feat being aceomplished in 1321 by Levi ben Gerson. Assume that we

do not know the multiplication rule. Prove the theorem the way Levi ben Gerson did.

In how many ways can a pack of fifty-two cards be dealt to thirteen players, four to

cach, so that every player has one card of each suit?
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2.6.30. If the definition of ! is to hold for all nonnegative integers n, show that it follows that
0! must equal one.

2.6.31. The crew of Apollo 17 consisted of a pilot, a copilot, and a geologist. Suppose that
NASA had actually trained nine aviators and four geologists as candidates for the
flight. How many different crews could they have assembled?

2.6.32, Uncle Harry and Aunt Minnie will both be attending your next family reunion.
Unfortunately, they hate each other. Unless they are seated with at least two people
between them, they are likely to get into a shouting match. The side of the table
at which they will be seated has seven chairs. How many seating arrangements are
available for those seven people if a safe distance is to be maintained between your
aunt and your uncle?

2.6.33. In how many ways can the digits 1 through 9 be arranged such that
(a) all the even digits precede all the odd digits
(b) all the even digits are adjacent to each other
(¢) two even digits begin the sequence and two even digits end the sequence
(d) the even digits appear in either ascending or descending order?

Counting Permutations (when the objects are not all distinct)

The corollary to Theorem 2.6.1 gives a formula for the number of ways an entire set of
n objects can be permuted if the objects are all distinct. Fewer than n! permutations are
possible, though, if some of the objects are identical. For example, there are 3t = 6 ways
to permute the three distinct objects A, B, and C:

ABC

ACB

BAC

BCA

CAB

CBA
If the three objects to permute, though, are A, A, and B--that is, if two of the three are
identical-the number of permutations decreases to three:

AAB

ABA

BAA

As we will see, there are many real-world applications where the r objects to be permuted
belong to r different categories, each category containing one or more identical objects.

Theorem 2.6.2. The mumber of ways to arrange n objects, ny being of one kind, nz of a
second kind, ..., and n, of an rth kind, is
n!
nylnpte-on,l

,
where ¥ n; = n.
f==]
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Proof. Let N denote the total number of such arrangements. For any one of those N,
the similar objects (if they were actually different) could be arranged in nqlup! - - -yl
ways. {Why?)} It follows that N - nyln3!-- - n,!is the total number of ways to amange n
{distinct) objects. But »! equals that same number. Setting N - nilnz!---n! equal to
n! gives the result. -

Comment. Ratios like n!/(n3tnp!--- 5, 1) are called multinomial coefficients because
the general term in the expansion of

 +x+ -+ x)

18

EXAMPLE 2.6.13

A pastry in a vending machine costs 85¢. In how many ways can a customer put in two
quarters, three dimes, and one nickel?

Order in which coins are deposited

FIGURE 2.6.13

If all coins of a given value are considered identical, then a typical deposil sequence,
say QDDQOND (see Figure 2.6.13), can be thought of as a permutation of # = 6 objects
belonging to r = 3 categories, where

sy = number of nickels = 1
17 = number of dimes = 3
#3 == number of quarters = 2

By Theorem 2.6.2, there are sixty such sequences:

1! 6!

nilmglng! 113121

60

Of course, had we assumed the coins were distinct (having been minted at different places
and different times), the number of distinct permutations would be 6!, or 720.
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EXAMPLE 2.6.14

Prior to the seventeenth century there were no scientific journals, a state of affairs that
made it difficult for researchers to document discoveries. If a scientist sent a copy of
his work to a colleague, there was always a risk that the colleague might claim it as his
own. The obvious alternative~~wait to get enough material to publish a book—invariably
resulted in lengthy delays. So, as a sort of interim documentation, scientists would
sometimes send each other anagrams—letter puzzles that, when properly unscrambled,
summarized in a sentence or two what had been discovered.

When Christiaan Huygens (1629--1695) looked through his telescope and saw the ring
around Saturn, he composed the following anagram {203):

RRERHRHNA, 0000, PP, 4, FF, §, LT, wukui

How many ways can the sixty-two letters in Huygens’s anagram be arranged?
Letny (= 7) denote the number of a’s, na{= 3) the number of ¢'s, and so on. Substituting
into the appropriate multinomial coefficient, we find

62!
N = S isT 14210 2T 1515]

as the total number of arrangements. To get a feeling for the magnitude of N, we need to

. apply Stirling’s formula to the numerator. Since

62! = A/ 2me 5262023
then

log(62!) = log (v2m) — 62 - log(e) + 62.5 - log(62)
= 85.49731

The antilog of 8549731 is 3.143 X 1083, so

3,143 x 10%°

N = SIS N 714G 0E DI 155!

is a number on the order of 3.6 X 10%. Huygens was clearly taking no chances! (Note
When appropriately rearranged, the anagram becomes “Anmulo cingitur tenui, plano
nusquam cohaerente, ad eclipticam inclinato,” which translates to “Surrounded by a thir
ring, flat, suspended nowhere, inclined to the ecliptic.™)
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EXAMPLE 2.6.15

Whal is the coefficient of x23 in the expansion of (I + X+ x
To understand how this question relates to permutations, consider the simpier problem
of expanding (a + b)%

9)100?

@+ b2=(@+b@+h
=a-a+a-b+b-a+b-5b

=a* + 2ab + b

Notice that each term in the first (@ + &) is multiplied by each term in the second (@ + b).
Moreover, the coefficient that appears in front of each term in the expansion corresponds
to the number of ways that that term can be formed. For example, the 2 in the term 2ab
reflects the fact that the product ab can result froin two different multiplications:

(@ + b)a + b) or (a+ ba+b)
[ — e’
ab ab

By analogy, the coefficient of x2* in the expansion of (I + x° + x*)1% will be the
number of ways that one term from each of the one hundred factors (1 + x5 + x%) can
be multiplied together to form x?>. The only factors that will produce x?*, though, is the
set of two x¥’s, one x>, and ninety-seven 1’s:

B=x 111

It follows that the coefficient of x2° is the number of ways to permute two x*’s, one x7,

and ninety-seven 1’s. So, from Theorem 2.6.2,

1001
: 23
coefficient of x“~ = ST1971

= 485,100

EXAMPLE 2.6.16

A palindrome is a phrase whose letters are in the same order whether they are read
backward or forward, such as Napoleon’s lament

Able was I ere I saw Elba
or the often cited

Madam, I'm Adam.
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Words themselves can become the units in a palindrome, as in the sentence

Girl, bathing on Bikini, eyeing boy,
finds boy eyeing bikini on bathing girl.

Suppose the members of a set consisting of four objects of one type, six of a second type,
and two of a third type are to be lined up in a row. How many of those permutations are
palindromes?

Think of the twelve objects to arrange as being four A’s, six B’s, and two (s, If the
arrangement is to be a palindrome, then half of the A’s, half of the B’s, and half of the C's
must occupy the first six positions in the permutation. Moreover, the final six members
of the sequence must be in the reverse order of the first six. For example, if the objects
comprising the first half of the permutation were

C A B A B B
then the last six would need to be in the order
B B A B A C

It follows that the number of palindromes is the number of ways to permute the first
six objects in the sequence, because once the first six are positioned, there is only one
arrangement of the last six that will complete the palindrome. By Theorem 2.6.2, then,

number of palindromes = 61/(213!1]) = 60

EXAMPLE 2.6.17

A deliveryman is currently at Point X and needs to stop at Point 0 before driving through
to Point ¥ (see Figure 2.6.14). How many different routes can he take without ever going
out of his way?

FIGURE 2.6.14

Notice that any admissible path from, say, X to 0 is an ordered sequence of 11
“moves”—nine East and two North. Pictured in Figure 2.6.14, for example, is the particular
X 10 0 route

E EN E E E ENEEE
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Similarly, any acceptable path from 0 to ¥ will necessarily consist of five moves East and
three moves North {the one indicatedis K E NN EN E E).

Since each path from X to 0 corresponds to a unique permutation of nine E’s and two
N’s, the number of such patbs (from Theorem 2.6.2) is the quotient

1119121 = 55
For the same reasons, the number of different paths from Oto ¥ is
Bl/(513h =56

By the Multiplication Rule, then, the total number of admissible routes from X to ¥ that
pass through 0 is the product of 55 and 56, or 3080.

QUESTIONS

2.6.34. Which state name can generate more permutations, TENNESSEE or FLORIDA?

2.6.35. How many numbers greater than 4,000,000 can be formed from the digits 2, 3, 4, 4, 5,
5, 5¢

2.6.36. An interior decorator is trying 1o arrange a shelf containing eight books, three with
red covers, three with blue covers, and two with brown covers.

(1) Assuming the titles and the sizes of the books are irrelcvant, in how many ways
can she arrange the eight books?

(b} In how many ways could the books be arranged if they were all considered
distinct?

(©) In how many ways could the books be arranged il the red books were considered
indistinguishable, but the other five were considered distinct?

2.6.37. Four Nigerians (A, B, C, D), three Chinese (#, *, &), and three Greceks (o, g, y) are
lined up at the box office, waiting Lo buy tickets for the World's Fair.

(a) How many ways can they position themselves if the Nigerians are to hold the first
four places in line; the Chinese, the next three; and the Greeks, the last three?

(b) How many arrangements are possible if members of the same nationality must
stay together?

{¢} How many ditferent queues can be formed?

(d) Suppose a vacationing Martian strolls by and wants to photograph the ten for
her scrapbook. A bit myopic, the Martian is uite capable of discerning the more
obvious differences in human anatomy but is unable to distinguish one Nigerian
(N} from another, one Chinese (C) from another, or one Greek () from another,
Instead of perceiving a line to be B = BAD#&Cay, for example, she would see
NCGNNCCNGG. From the Martian’s perspective, in how many different ways
can the ten funny-looking Earthlings line themselves up?

2.6.38. How many ways can the letters in the word

SLUMGULLION

be arranged so that the three L’s precede all the other consonants?
2.6.39. A tennis tournament has a field of 2n entrants, all of whom need to be scheduled to
play in the first round. How many different pairings are possible?
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2.6.40. What is the coefficient of x!? in the expansion of (1 + x> + x%!8?
2.6.41. In how many ways can the letters of the word

ELEEMOSYNARY

be arranged so that the S is always immediately followed by a ¥'?

2.6.42. In how many ways can the word ABRACADABRA be formed in the array pictured
below? Assume that the word must begin with the top A and progress diagonally
downward to the bottom A.

C C C C C

2.6.43. Suppose a pitcher faces a batter who never swings. For how many different ball/strike
sequences will the batter be called out on the fifth pitch?

2.6.44. ‘What is the coefficient of w?x>yz? in the expansion of (w + x + y + 2)°?

2.6.45. Imagine six points in a plane, no three of which lie on a straight line. In how many ways
can the six points be used as vertices to form two triangles? (Hin: Number the points
1 through 6. Call one of the triangles A and the other B. What does the permutation

A A B B A B
1 2 3 4 5 6

represent?)

2.6.46. Show that (k!)! is divisible by £1%~V'. (Hint: Think of a related permutation problem
whose solution would require Theorem 2.62.)

2.647. In how many ways can the letters of the word

BROBDINGNAGIAN

be arranged without changing the order of the vowels?

2.6.48. Make an anagram out of the familiar expression STATISTICS 1S FUN. In how many
ways can the letters in the anagram be permuted?

26.49. Linda is taking a five-course load her first semester: English, math, French, psychology,
and history. In how many different ways can she earn three A’sand two B’s? Enumerate
the entire set of possibilities. Use Theorem 2.6.2 to verify your answer.
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Counting Combinations

Order is not always a meaningful characteristic of a collection of elements. Consider a
poker player being dealt a five-card hand. Whether he receives a 2 of hearts, 4 of clubs, 9
of clubs, jack of hearts, and ace of diamonds in that order, or in any one of the other 5t — 1
permutations of those particular five cards is irrelevant—the hand is still the same. As the
last set of examples in this section bear out, there are many such situations—problems
where our only legitimate concern is with the composition of a set of elements, not with
any particular arrangement.

We call a collection of k unordered elements a combination of size k. For example,
givent a set of n = 4 distinct elements—A, B, C, and D—there are six ways to form
combinations of size 2:

AandB BandC
AandC BandD
Aand D Cand D

A general formula for counting combinations can be derived quite easily from what we
already know about counting permutations.

Theorem 2.6.3. The number of ways to form combinations of size k from a set of n distinct

]
objects, repetitions not allowed, is denoted by the symbols ( k) or ,Cy, where

n - O = nt
k] 7T Hm — ot

n) denote the number of combinations satisfying the condi-

Proaf. Let the symbol ( X
tions of the theorem. Since each of those combinations can be ordered in k! ways, the
product k! (:)
from n distinct elements. But # distinct elements can be formed into permutations of
lengthkinn(n — 1)---(n — k + 1) =nl/(n — k)! ways. Therefore,

n nt
. (k) T - R

Solving for (:) gives the result. 0

must equal the number of permutations of length & that can be formed

Comment. 1t often helps to think of combinations in the context of drawing objects
out of an urn. If an urn contains # chips labeled 1 through n, the number of ways we can

reach in and draw out different samples of size k is (:) In deference to this sampling

interpretation for the formation of combinations, (:) is usually read “n things taken k

at a time” or “n choose k.
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Comment. The symbol (Z) appears in the statement of a familiar theorem from

algebra,
o =3 ()
~ k=t k
Since the expression being raised to a power involves two terms, x and y, the constants

n . . .
k=10,1,...,n, are commonly referred to as binomial coefficients,
k k] b y £

EXAMPLE 2.6.18
Eight politicians meet at a fund-raising dinner. How many greetings can be exchanged if
cach politician shakes hands with every other politician exactly once?

Imagine the politicians to be eight chips—1 through $—in an urn, A handshake
corresponds to an unordered sample of size 2 chosen from that urn. Since repetitions arc
not allowed (even the most obsequious and overzealous of campaigners would not shake
hands with himself!), Theorem 2.6.3 applies, and the total number of handshakes is

B) _ 8
27 2!

or 28.

EXAMPLE 2.6.19
The basketball recruiter for Swampwater Tech has scouted sixteen former NBA starters
that he thinks he can pass off as Junior College transfers—six are guards, seven are
forwards, and three are centers. Unfortunately, his shush fund of illegal alumni donations
is at an all-time low and he can afford to buy new Corvettes for only nine of the players.
If he wants to keep three guards, four forwards, and two centers, how many ways can he
parcel out the cars?

This is a combination problem that also requires an application of the multiplication

. 6 .
rule. First, note there are 3 sets of three guards that could be chosen to receive

Corvettes (think of drawing a set of three names out of an urn containing six names).

2
follows from the multiplication rule, then, that the total number of ways to divvy up the

cars is the product
6 7 3)
3 4 2

7 .
Similarly, the forwards and centers can be bribed in (4) and ( ) ways, respectively. It

or 2100 (=20 - 35 - 3).
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EXAMPLE 2.6.20

Your statistics teacher announces a twenty-page reading assignment on Monday that is to
be finished by Thursday morning. You intend to read the first x; pages Monday, the next
x3 pages Tuesday, and the final x3 pages Wednesday, where x; + x; + x3 = 20 and each
x; = 1. In how many ways can you complete the assignment? That is, how many different
sets of values can be chosen for x1, x2, and x3?

Imagine the nineteen spaces between the twenty pages (see Figure 2.6.15). Choosing any
two of those spaces automatically partitions the twenty pages into three nonempty sets.
Spaces 3 and 7, for example, would correspond to reading three pages on Monday, four
pages on Tuesday, and thirteen pages on Wednesday. The number of different values for
the set (x1, x2, x3), then, must equal the number of ways to select two “markers”—namely,

(129),01'171.

NN

I A e s e R
Spacess 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FIGURE 2.6.15

EXAMPLE 2.6.21
Mitch is trying to put a little zing into his cabaret act by telling four jokes at the beginning
of each show. His current engagement is booked to run four months. If he gives one
performance a night and never wants to repeat the same set of jokes on any two nights,
what is the minimum number of jokes he needs in his repertoire?

Four months of performances create a demand for roughly 120 differeat sets of jokes.
Let n denote the number of jokes that Mitch can tell. The question is asking for the

smallest # for which (Z) > 120. Trial-and-error calculations summarized in Table 2.6.3

show that the optimal » is surprisingly small: A set of only nine jokes is sufficient to keep
Mitch from having to repeat his opening monologue.

TABLE 263
/]
=>1207
" (4) =
7 35 No
8 70 No
~ G 126 Yes
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EXAMPLE 2.6.22

Binomial coefficients have many interesting properties. Perhaps the most familiar is Pas-
cal’s triangle,! 2 numerical array where cach entry is equal to the sum of the two numbers
appearing diagonally above it (sce Figure 2.6.16). Notice that cach entry m Pascal’s
triangle can be expressed as a binomial coefficient, and the relationship just described
appears 1o reduce to a simple equation involving those coefficients:

(n j 1) - (Z) * (k i 1) (2.6.1)

Prove that Equation 2.6.1 holds for all positive integers n and k.

Row
1 0 9
1 1 1 Q) D
Tz 2 &G D
o3 3 3 > D D
146 4 ‘RS TR ¢4 B ¢4 BN S B
FGURE 2.56.16

Consider a set of #n + 1 distinct objects Aq, Az, .... A,s1. We can obviously draw

samples of size & from that set in (” : ) different ways. Now, consider any particular

. . . 1
object—for example, A;. Relative to Ay, each of those g 1— ) samples belongs to one

of two categories: those containing A1 and those not containing Ay. To form samples
containing Ag, we need to select & — 1 additional objects from the remaining n. This can

k—1

. n+ 1 n n
Ai.’lherefore,( . )must equal (k) + (k B 1).

EXAMPLE 2.6.23
The answers to combinatorial questions can sometimes be obtained using quite different
approaches. What invariably distinguishes one solution from another is the way in which
outcomes are characterized.

For example, suppose you have just ordered a roast beef sub at a sandwich shop, and
now you need to decide which, if any, of the available toppings (lettuce, tomato, onions,

be done in n ) ways. Similarly, there are (:) ways to form samples not containing

1pespite its name, Pascal’s triangle was not discovered by Pascal. Its basic stricture was known hundreds
of years before the French mathematician was born. It was Pascal, though, who first made extensive use of its

properties,
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Add? Y Y Y N N N N N
Lettuce Tomato Onion Mustard Relish Mayo Pickles Peppers

FIGURE 2.6.17

etc.) to add. If the store has cight “extras” to choose from, how many different subs can
you order?

One way to answer this question is to think of each sub as an ordered sequence of
length eight, where each position in the sequence corresponds to one of the toppings. At
each of those positions, you have two choices—*“add” or “do not add” that particular
topping. Pictured in Figure 2.6.17 is the sequence corresponding to the sub that has
lettuce, tomato, and onion but no other toppings. Since two choices (“add” or “do not
add”}) are available for each of the eight toppings, the multiplication rule tells us that the
number of different roast beef subs that would be requested is 2%, or 256.

An ordered sequence of length eight, though, is not the only model capable of
characterizing a roast beef sandwich. We can also distinguish one roast beef sub from
another by the particular combination of toppings that each one has. For example, there

are (j = 70 different subs having exactly four toppings. It follows that the total number

of different sandwiches is the total number of different combinations of size k, where k
ranges from 0 to 8. Reassuringly, that sum agrees with the ordered sequence answer:

8
total number of different roast beef subs:( ) + (8) -+ (8) + -0+ (8)

0 1 2 8
=1+84+284+ ... 41
=256

What we have just illustrated here is another property of binomial coefficients—namely,
that

ZR: ( :) =" (2.62)

k=0

The proof of Equation 2.6.2 is a direct consequence of Newton’s binomial expansion (see
the second comment following Theorem 2.6.3).

QUESTIONS

2.6.50. How many straight lines can be drawn between five points (A, B, C, D, and E), no
three of which are collinear?

2.6.51. The Alpha Beta Zeta sorority is trying to fill a pledge class of nine new members
during fall rush. Among the twenty-five available candidates, fifteen have been judged
marginally acceptable and ten highly desirable. How many ways can the pledge class
be chosen to give a two-to-one ratio of highly desirable to marginally acceptable
candidates?
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2.6.52. A boat has a crew of eight: Two of those eight can row only on the stroke side, while
three can row only on the bow side. In how many ways can the two sides of the boat
be manned?

2.6.53. Nine students, five men and four women, interview for four summer internships
sponsored by a city newspaper.

€a) In how many ways can the newspaper choose a set of four interns?

§b) Inhow many ways can the newspaper choose a set of four interns if it must include
two men and two women in each set?

{¢) How many sets of four can be picked such that not everyone in a set is of the same
sex?

2.6.84. ‘The final exam in History 101 consists of five essay questions that the professor chooses
from a pool of seven that are given to the students a week in advance. For how many
possible sets of questions does a student need to be prepared? In this situation does
order matter?

2.6.55, Ten basketball players meet in the school gym for a pickup game. How many ways can
they form two teams of five each?

2.6.56. A chemist is trying to synthesize part of a straight-chain aliphatic hydrocarbon polymer
that consists of twenty-one radicals—ten ethyls (E}, six methyls (3), and five propyls
{ P). Assuming all arrangements of radicals are physically possible, how many different
polymers can be formed if no two of the methyl radicals are to be adjacent?

2.6.57. In how many ways can the letters in

MISSISSIPFRI
be arranged so that no two I's are adjacent?

43
2.6.58. Prove that " e 2". Hint: Use the binomial expansion mentioned on page 108.
k p pag

() + () e () =)

2.6.59, Prove that
{ Hint: Rewrite the left-hand side as

W) GG )+

and consider the problem of selecting a sample of » objects from an original set of 2n

()00 )

2.6.60. Show that
{Hint: Consider the expansion of (x — ¥)".)

2.6.61. Prove that successive terms in the sequence (g), (Z), . (H) first increase and
H

- . . n ¥
then decrease. (Hint: Examine the ratio of two successive terms, ( - k) ( ) )
J 7
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2.6.62. Imagine » molecules of a gas confined to a rigid container divided into two chambers
by a semipermeable membrane. If i molecules are in the left chamber, the entropy of
the system is defined by the equation

Entropy = log (n)
i

If n is even, for what configuration of molecules will the entropy be maximized? (En-
tropy is a concept physicists find useful in characterizing heat exchanges, particularly
those involving gases. In general terms, the entropy of a system is a measure of ifs
disorder: As the “randomness”™ of the position and velocity vectors of a system of
particles increases, so does its entropy.) (Hint: See Question 2.6.61.)

2.6.63. Compare the coefficients of tf* m (1 + 1)1 + * = (1 + ¥ 1o prove that

26 )-(1)

J=f

COMBINATORIAL PROBABILITY

In Section 2.6 our concern focused on counting the number of ways a given operation,
or sequence of operations, could be performed. In Section 2.7 we want 1o couple those
enumeration results with the notion of probability. Puiting the (wo together makes a lot
of sense—there are many combinatorial problems where an enumeration, by Hself, is not
particularly relevant. A poker player, for example, is not intcrested in knowing the total
number of ways he can draw Lo a straight; he is interested, though, in his probability of
drawing Lo a straight.

In a combinatorial setting, making the transition from an enumeration to a probability
is easy. If there are n ways to perform a certain operation and a total of m of those satisfy
some stated condition—call it A—then P(A) is defined to be the ratio, mfz. This assumes,
of course, that all possible outcomes are equally likely.

Historically, the “m over n” idea is what motivated the early work of Pascal, Fermat,
and Huygens (recall Section 1.7). Today we recognize that not all probabilitics are so
easily characterized. Nevertheless, the mf model—the so-called classical definition of
probability—is entirely appropriate for describing a wide variety of phenomena.

EXAMPLE 2.7.1

An urn contains eight chips, numbered 1 through 8. A sample of three is drawn without
replacement. What is the probability that the largest chip in the sample is a 57

Let A be the event “Largest chip in sample is a 5.” Figure 2.7.1 shows what must
happen in order for A to occur: (1) the 5 chip must be selected, and (2) two chips must be
drawn from the subpopulation of chips numbered I through 4. By the multiplication rule,

1 4
the number of samples satisfying event A is the product (}) . (2)
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@ — (Choose 1

—» Choose 2

HGURE 2.7.1

The sample space S for the experiment of drawing three chips from the urn contains

4 8
(i) outcomes, all equally likely. In this situation, then, m = (1) . ( ), n o= ( 3), and

)

EXAMPLE 2.7.2

An urn contains n red chips numbered 1 through n, n white chips numbered 1 through n,
and n blue chips numbered 1 through » (see Figure 2.7.2). Two chips are drawn at random
and without replacement. What is the probability that the two drawn are either the same
color or the same number?

n Lig b, Draw two
r, W b, without
. replacement
’, W, b,
FIGURE 2.7.2

Let A be the event that the two chips drawn are the same color; let B be the event that
they have the same number. We are looking for P(A U B).
Since A and B here are mutually exclusive,

P(A U B) = P(A) + P(B)
With 3# chips in the urn, the total number of ways to draw an unordered sample of size
3
two is ( ; ) Moreover,

P(A) = P(2reds U 2Zwhites U 2blues)
= P(2reds) + P(2whites) + P{2blues)

=3(;)/(3)
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and
P(By=P(wol’s U two2’s U --- U twon’s)
3 3n
-(1)/ (%)
Therefore,
:(2) +(3)
P(AU B)= o
2
_n+1
T3 -1
EXAMPLE 2.7.3

Twelve fair dice are rolled. What is the probability that

a. the first six dice all show one face and the last six dice all show a second face?
b. not all the faces are the same?
¢ each face appears exactly twice?

a. The sample space that corresponds to the “‘experiment” of rolling twelve dice is

the set of ordered sequences of length twelve, where the outcome at every position
in the sequence is one of the integers 1 through 6. If the dice are fair, all 6!2 such
sequences are equally likely.

Let A be the set of rolls where the first six dice show one face and the second six
show another face. Figure 2.7.3 shows one of the sequences in the event A, Clearly,
the face that appears for the first half of the sequence could be any of the six integers
from 1 through 6.

Fuaces
2222224444 4 4
12 3 4 5 6 7 8 9 10 11 12

Position in sequence

FIGURE 2.7.3

Five choices would be available for the last half of the sequence (since the two
faces cannot be the same). The number of sequences in the event A, then, is
6P = 6 - 5 =30. Applying the “m/n” rule gives

P(A) =30/6'7 =14 x 10°®

b. Let B be the event that not all the faces are the same. Then

P(B)=1 — P(BY)
=1 - 6/12°
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since there are six sequences—(1,1,1,1,1,1,1,1,1,1,1, 1,),...,(6,6,6,6,6,6,6, 6,
6, 6, 6, 6,)—where the twelve faces are all the same.

¢. Let C be the event that each face appears exactly twice. From Theorem 2.6.2, the
number of ways each face can appear exactly twice is 121/(2! - 21 - 20 . 20 - 21 . 21).
Therefore,

121¢20 - 21 .20 - 2. 20 - 2D

P(C) = 612

== (0.0034

EXAMPLE 2.7.4
A fair die is tossed n times. What is the probability that the sum of the faces showing is
n + 27

The sample space associated with rolling a die » times has 6” outcomes, all of which
in this case are equally likely because the die is presumed fair. There are two “types” of
outcomes that will produce asum of n + 2—{(a)n — 1 1sandone 3and (b)n — 2 1s
and two 2s (see Figure 2.7.4). By Theorem 2.6.2 the number of sequences havingn — 1

!

nt nt n
1’s and one 3 is wwwsse—u = p; likewise, there are -———— == outcomes havin
1 — 1 N — 2 \2 &
n — 2 1s and two 2s. Therefore,
n
: "+ (2)
Pisum=n + 2) =
Sum=wn+2 Sum=n+2
111 e 13 L | L2 2
1 2 3 ri-1 n 1 2 3 n—2 11 n
FIGURE2.74

EXAMPLE 2.7.5

To keep the monkey entertained, Tarzan gives Cheetah the following letters from a
Scrabble set to play with:

AAA EE I g K L NN R T zZ

What is the probability that Cheetah (who can’t spell) rearranges the letters at random
and forms the following sequence:

TARZANLIKEJANE

(Ignore the spaces between the words).
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If similar letters are considered indistinguisha sle, Theorem 2.6.2 applies, and the
total number of ways to arrange the fourteen letters is 141/(312111111112!11111Y), or
3,632,428,800. Only one of those sequences is the desired arrangement, so

1

Notice that the same answer is obtained if the fourteen tiles are considered distinct.
Under that scenario, the total number of permutations is 14!, but the number of ways to
spell TARZAN LIKE JANE increases to 3!1212!, because all the A’s, £’s, and N'’s can be
permuied. Therefore,

312121 1

P(“TARZANLIKEJANE") = —— = 2 632,428,800

EXAMPLE 2.7.6

Suppose that k people are selected at random from the general population. What are the
chances that at least two of those k were born on the same day? Known as the birthday
problem, this is a particularly intriguing example of combinatorial probability because its
statement is so simple, its analysis is straightforward, yet its solution, as we will see, goes
strongly contrary to our intuition.

Picture the & individuals lined up in a row to form an ordered sequence. If leap year
is omitted, each person might have any of 365 birthdays. By the multiplication rule, the
group as a whole generates a sample space of 365% birthday sequences (see Figure 2.7.5).

Define A to be the event “at least two people have the same birthday.” If each person
is assumed to have the same chance of being born on any given day, the 365 sequences
in Figure 2.7.5 are equally likely, and

Number of sequencesin A

P = 365

Counting the number of sequences in the numerator here is prohibitively difficult
because of the complexity of the event A; fortunately, counting the number of sequences
in A® is quite easy. Notice that each birthday sequence in the sample space belongs to
exactly one of two categories (see Figure 2.7.6):

1. Atleast two people have the same birthday.
2. All k people have different birthdays.

Possible
birthdays: (3:;5) %65) o (3::——5—5—)) — 365% differemt

sequences

Person

FIGURE 2.7.5
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(July 13,8ept. 2, - - -, July13) e Sequences where at least
(April4, Aprild, -+ Aug.17) =7 two people have the same
- @ birthday
M
M
(Jure 14,Jan. 10, - - - ,Oct.28) *~ Sequences where all k
{Aug 10, March 1, * + ,Sept.8) o] people have different
. birthdays
Sample space: all birthday sequences of
tength k {contains 365% cutcomes).
FIGURE 2.7.6
It follows that

Number of sequencesin A = 365" —number of sequences where all k people
have different birthdays

The number of ways to form birthday sequences for & people subject to the restriction
that all k¥ birthdays must be different is simply the number of ways to form permutations
of length k from a set of 365 distinct objects:

365 Py = 365(364) - . - (365 — k + 1)
Therefore,

P{A) = P{atleast two people have the same birthday)

365" — 365(364)---(365 — k + 1)
B 365¢

Table 2.7.1 shows P(A) for k values of 15, 22, 23, 40, 50, and 70. Notice how the P(A)’s
greatly exceed what our intuition would suggest.

Comment. Presidential biographies offer one opportunity to “confirm” the unex-
pectedly large values that Table 2.7.1 gives for P(A). Among our first k = 40 presidents,
two did have the same birthday: Harding and Polk were both born on November 2. More

TABLE 2.7.1

k  P(A) = P (at least two have same birthday)

15 (.253
22 0.476
23 0.507
40 0.891
50 0.970

70 0.999
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surprising, though, are the death dates of the presidents: Adams, Jefferson, and Monroe
ail died on July 4, and Fillmore and Taft both died on March 8.

Comment. The values for P(A) in Table 2.7.1 are actually slight underestimates for
the true probabilities that at least two of k people will be born on the same day. The
assumption made earlier that all 365% birthday sequences are equally likely is not entirely
true: Births are somewhat more common during the summer than they are during the
winter. It has been proven, though, that any sort of deviation from the equalty-likely
model will only serve to increase the chances that two or more people will share the same
birthday (120). So, if & = 40, for example, the probability is slightly greater than 0.891
that at least two were born on the same day.

EXAMPLE 2.7.7

Ome of the more instructive—and to some, one of the more useful—applications of
combinatorics is the calculation of probabilities associated with various poker hands. it
will be assumed in what follows that five cards are dealt from a poker deck and that
10 other cards are showing, although some may already have been dealt, The sample

52
space is the set of ( 5 ) = 2,598,960 different hands, each having probability 1/2,598 960.

What are the chances of being dealt (a) a full house, (b) one pair, and (c) a straight?
[Probabilities for the various other kinds of poker hands (two pairs, three-of-a-kind, flush,
and 5o on) are gotten in much the same way.]

a. Full house. A full house consists of three cards of one denomination and two
of another. Figure 2.7.7 shows a full house consisting of three 7s and two Queens,

— , o . {13 :
Denominations for the three-of-a-kind can be chosen in ( ] ) ways. Then, given that
a denomination has been decided on, the three requisite suits can be selected in (3)

ways. Applying the same reasoning to the pair gives ( 1 ) available denominations,

4 . C
each having ( ) possible choices of suits. Thus, by the multiplication rule,

o onen
g

2 3 45 6 7 8 9 107 Q K A

N ol lwi

X
x
X

FIGURE 2.2.7
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2 3 4 5 6 7 8 9 10J Q K A

X X

wnmo
X
X

FIGURE 2.7.8

b. One pair. To qualify as a one-pair hand, the five cards must include two of the same

denomination and three “single” cards--cards whose denominations maitch neither

. 13
the pair nor each other. Figure 2.7.8 shows a pair of 6’s. For the pair, there are ( )
possible denominations and, once selected, ( ) possible suits. Denominations for
the three single catds can be chosen ( ) ways (see Question 2.7.16), and each card

4 g
can have any of 1) suits. Multiplying these factors together and dividing by (22)

(DEEOG0)
173203 /\1/\1/\1
) == (.42
(5)

Straight. A straight is five cards having consecutive denominations but not all in the
same suit—for example, a 4 of diamonds, 5 of hearts, 6 of hearts, 7 of clubs, and 8 of
diamonds (see Figure 2.7.9). An ace may be counted “high” or “low,” which means
that (10, jack, queen, king, ace) is a straight and so is (ace, 2, 3,4, 5). (If five consecutive
cards are all in the same suit, the hand is called a straight flush. The latter is considered
a fundamentally different type of hand in the sense that a straight flush *‘beats” a
straight.) To get the numerator for P(straight), we will first ignore the condition that
all five cards not be in the same suit and simply count the number of hands having
consecutive denominations. Note there are ten sets of consecutive denominations
of length five: (ace, 2,3, 4,5),(2,3,4,5,6), ..., (10, jack, queen, king, ace). With no
restrictions on the suits, each card can be either a diamond, heart, club, or spade. It
follows, then, that the number of five-card hands having consecutive denominations

gives a probabiiily of 0.42;

P(one pair) =

§
is10 - (i) . But forty (= 10 - 4) of those hands are straight flushes. Theretore,

5
10 - (;) — 40
N = 0003
= 0.00392
5
Table 2.7.2 shows the probabilities associated with all the different poker hands.
Hand i beats hand j if P(hand i) < P(hand j).

P(straight) =
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2 3 4 5 6 7 8 9 101 Q K A

D X X
B X X
C X
S
FIGURE 2.7.9
TABLE 2.7.2
Hand Probability
One pair 042
Two pairs 0.048
‘Three-of-a-kind 0.021
Straight 0.0039
Flush 0.0020
Full house 0.0014

Four-of-a-kind  0.00024
Straight flush 0.000014
Royal flush 0.0000015

PROBLEM-SOLVING HINTS
(Doing combinatorial probability problems)

Listed on p. 91 are several hints that can be helpful in counting the number of ways
to do something. Those same hints apply to the solution of combinatorial probability
problems, but a few others should be kept in mind as well.

L. The solution to a combinatorial probability problem should be set up as a
quotient of numerator and denominator enumerations. Avoid the temptation to
multiply probabilities associated with each position in the sequence. The latter
approach will always “sound” reasonable, but it will frequently oversimplify the
problem and give the wrong answer.

2. Keep the numerator and denominator consistent with respect to order—if
permutations are being counted in the numerator, be sure that permutations are
being counted in the denominator; likewise, if the outcomes in the numerator are
combinations, the outcomes in the denominator should also be combinations.

3. The number of outcomes associated with any problem involving the rolling of n
six-sided dice is 6"; similarly, the number of outcomes associated with tossing a
coin » times is 2”. The number of outcomes associated with dealing a hand of n
cards from a standard 52-card poker deck is 53 Cj,.
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QUESTIONS

271,

2.7.2

2.7.3.

274,

2775,

2.7.6.

277,
27.8.

2.78.

2.7.10.

2.7.11.

2.7.12.

Ten equally-qualified marketing assistants are candidates for promotion to associate
buyer; seven are men and three are women. If the company intends to promote four of
the ten at random, what is the probability that exactly two of the four are women?

An urn contains six chips, numbered 1 through 6. Two ate chosen at random and their
numbers are added together. What is the probability that the resulting sum is equat to
five?

An urn contains twenty chips, numbered T through 20. Two are drawn simultaneously.
What is the probability that the numbers on the two chips will difier by more than two?
A bridge hand (thirteen cards) is dealt from a standard 52-card deck. Let A be the event
that the hand contains four aces; let B be the event that the hand contains four kings.
Find P(A U B).

Consider a set of t¢n wns, nine of which contain three white chips and three red chips
each. The tenth contains five white chips and one red chip. An urn is picked at random.
Then a sample of size three is drawn without replacement from that urn. If all three
chips drawn are white. what is the probability the urn being sampled is the one with
five white chips?

A committee of fifty politicians is o be chosen from among our one hundred U.S.
Senators. If the selection is done at random, what is the probability that each state will
be represented?

Suppose that # fair dice are rolled. What are the chances that all n faces will be the
same?

Five fair dice are rolled. What is the probability that the faces showing constitute a *“full
house”—that is, three faces show one number and two faces show a second number?
Tmagine that the test tube pictured contains 2n grains of sand, n white and n black.
Suppose the tube is vigorously shaken. What is the probability that the twe colors of
sand will completely separate; that is, all of one color fail to the bottom, and all of the
other color lie on top? (Hint: Consider the 2n grains to be aligned in a row. In how
many ways can the n white and the n black grains be permuted?)

(o o---o%oo-nnﬂ

Does a monkey have a better chance of rearranging

ACCLLUUS tospell CALCULUS
or
AABEGLR tospell ALGEBRA?

An apartment building has eight floors. If seven people get on the elevator on the first
ficor, what is the probability they all want to get off on different floors? On the same
floor? What assumption are you making? Does it seem reasonable? Explain.

1f the letters in the phrase

AROLLING STONE GATHERS NO MOSS

are arranged at random, what are the chances that not all the 8’s will be adjacent?
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2.7.13. Suppose each of ten sticks is broken into a long part and a short part. The twenty
parts arc arranged into ten pairs and glued back together, so that again therc arc ten
sticks. What is the probability that each long part will be paired with a short part?
(Note: ‘This problem is a model for the effects of radiation on a living cell. Each
chromosome, as a result of being struck by ionizing radiation, breaks into two parts,
one part containing the centromere. The cell will die unless the fragment containing
the centromere recombines with one not containing a centromere. )

2.7.14. Six dice are rolled one time. What is the probability that each of the six faces appears?

2.7.15. Suppose that a randomly selected group of k people are brought together, What is the
probability that exactly one pair has the same birthday?

2,7.16. For one-pair poker hands, why is the number of denominations for the three single

12 127 /11N /10
- Py !?
cards (3) rather than (3 )(1 )(1 )

2.7.17. Danais not the world’s best poker player. Dealt a 2 of diamonds, an & of diamonds, an
ace of hearts, an ace of clubs, and an ace of spades, she discards the three aces. What
arc her chances of drawing to 2 flush?

2.7.18. A poker player is dealt a 7 of diamonds, a queen of diamonds, a queen of hearts, a
queen of clubs, and an ace of hearts. He discards the 7. What is his probability of
drawing to either a full house or four-of-a-kind?

2.7.19. Tim is dealt a 4 of clubs, a 6 of hearts, an 8 of hearts, a 9 of hearts, and a king of
diamonds. He discards the 4 and the king. What are his chances of drawing to a straight
flush? to a flush?

2.7.20. Five cards are dealt from a standard 52-card deck. What is the probabdity that the sum
of the faces on the five cards is 48 or more?

2,7.21. Nine cards are dealt from a 52-card deck. Write a formula for the probability that three
of the five even numerical denominations are represented twice, one of the three face
cards appears twice, and a second face card appears once. Note: Face cards are the
jacks, queens, and kings; 2, 4, 6, &, and 10 are the even numerical denominations.

27.22. A coke hand in bridge is one where none of the thirteen cards is an ace or is higher
than a 9. What is the probability of being dealt such a hand?

2.7.23. A pinochle deck has forty-cight cards, two of each of six denominations 9.1, 0, K 10,
A} and the usual four suits. Among the many hands that count for meld isa roundhouse,
which occurs when a player has a king and queen of each suit. In a hand of twelve cards,
what is the probability of getting a *“bare” roundhouse (a king and queen of each suit
and no ather kings or queens)?

2.7.24. A somewhat inebriated conventioneer finds himself in the embarrassing predicament
of being unable to predetermine whether his next step will be forward or backward.
What is the probability that after hazarding » such maneuvers he will have stumbled
forward a distance of r steps? (Hint: Let x denote the pumber of steps he takes forward
and y, the number backward. Thenx + y=nandx — y = r.}

AKING A SECOND LOOK AT STATISTICS (ENUMERATION AND MONTE CARLO TECHNIQUES)

It is a characteristic of probability and combinatorial problems that proposed solutions can
sound so right and yet be so wrong. Intuition can easily be fooled, and verbal arguments
are often inadequate to deal with questions having even a modicum of complexity. There
are some problem-solving strategies available, though, that can be very helpful. In general,
approaches that go back to basics are especially useful.
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Making a List and Checking It Twice

Ask a realtor to list the threc most important features that a house for sale can have and
the answer is likely to be “location, location, location.” Ask a probabilist to name the
three most helpiul techniques for solving difficult combinatorial problems and the answer
might very well be “enumerate, enumerate, enumerate.” Making a partial list of the sel
of outcomes comprising an event can often show that a proposed solution is incorrect anc
what the right answer should be. Sometimes, though, the magnitudes of the numbers ir
a problem are so large that making even a partial list of outcomes is not a viable optior
for that particular problem. 1n those cascs, the trick is to enumerate a much smaller-scale
problem, one that has all the essential features of the original.

For example, suppose a student government council is to be comprised of thre
freshmen, three sophomores, three juniors, three seniors, and one at-large representative
whe could be a member of any of the four classes. Morcover, suppose ten candidate:
from each of the four classes have been nominated. How many different thirteen-membe
councils can be formed?

One approach that may seem reasonable is to choose the council members in a way tha
mimics the statement of the question. That is, three representatives from cach class cal

10
be chosen in 3 ) Ways: then the at-large member would be selected from the remainin,

28¢== 40 — 12) nominees. Applying the multiplication rule gives -

10N 710N 10N 10N /28
_ iffere ils =
number of different councils ( 3 ) ( 3 ) ( 3 ) ( 3 ) ( 1 )

= 5,806,080,000

Another approach, which also may seem reasonable, is to realize that one of the classe
will necessarily have four representatives, while the other three will each have three. An
of the four classes, of course, could be the one with four representatives. Electing fou
freshmen, for example, and three from each of the other three classes can be done i

Hoyatawsiowate . , .
( 4 )( 3 ) ( 3 )( 3 ) ways. Allowing for the fact that the four representatives could b
in any class, it follows that the total number of thirteen-member councils is 1,451,520,00

motetascsmsi=(§)(5) (1)) = () () (5) )
= BEHE - ORI

Is the first approach overcounting the number of different councils or is the secor
approach undercounting? The two proposed solutions differ by a factor of four. Enume
ating (by hand) even a portion of the possible outcomes is not feasible here because -
the sheer magnitude of the combinatorial factors. A very simple analogous question ¢
be posed, though, that is easily enumerated. Suppose there were only fwo classes—sa
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Choose 1

Choose 1

—

AND choose 1 at-farge

FIGURE 2.8.1
TABLE 2.8.1
First Approach Second Approach
Fresh. Soph. At-large Fresh. Soph.
A C B A B C
A C D 4 A B D
A D B ] A C D
g | A D C B C D
B C A
B C D
B b A ]
"B D C
Duplicates

freshmen and sophomores—and only two nominees from each class. Furthermore, sup-
pose a three-member council is to be formed, consisting of one freshman, one sophomore,
and one representative at large (see Figure 2.8.1).

Applied to Figure 2.8.1, the first approach would claim that the number of different

2\ (4 —
councils is G) ( 1)( 1 2), or 8. The second approach would imply that the number of

different councils is 4 (: (;) (i) + G’) G)) . Table 2.8.1 is a listing of the outcomes

generated by the two strategies. By inspection, it is now clear that the first approach is
incorrect—every possible outcome is double-counted. The outcome ACB, for example,
where B is the at-large representative, reappears as BCA, where A is the at-large
representative. The second approach, on the other hand, prevents any such overlapping
from occurring {but does include all possible councils).

Play It Again, Sam

Recall the von Mises definition of probability given on p. 23: If an experiment is repeated
n times under identical conditions, and if the event E occurs on m of those repetitions,
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then

P(E) = lim ™ 28.1)

n—oe R

To be sure, Equation 2.8.1 is an asymptotic result, but it suggesis an obvious (and very
useful) approximation—if n is finite,

P(E) =

Ak

In general, efforts to estimate probabilities by simulating repetitions of an experiment
{usually with a computer) are referred to as Monte Carlo studies. Usually the technique
is used in situations where an exact probability is difficult to calculate. It can also be used,
though, as an empirical justification for choosing one proposed solution over another.

For example, consider the game described in Example 2.4.11. An urn contains a red
chip, a blue chip, and a two-color chip (red on one side, blue on the other). One chip is
drawn at random and placed on a table. The question is, if blue is showing, what is the
probability that the color underneath is also blue?

Pictured in Figure 2.8.2 are two ways of conceptualizing the question just posed. The
outcomes in (a) are assuming that a chip was drawn. Starting with that premise, the
answer to the question is %—the red chip is obviously eliminated and only one of the two
remaining chips is blue on both sides.

Chip drawn Side drawn
red red/red
blue — P(BIB) =112 bluefblue } —> P(BIB) = 2/3
two-color red/blue
(a) (b)
FIGURE 2.8.2

By way of contrast, the outcomes in (b) are assuming that the side of a chip was drawn
If so, the blue color showing could be any of three blue sides, two of which are blue
underneath. According to model (b}, then, the probability of both sides being blue is %

The formal analysis on pp. 60, of course, resolves the debate—the correct answer i
%. But suppose that such a derivation was unavailable. How might we assess the relative
plausibilities of % and %? The answer is simple~just play the game a number of times anc
see what proportion of outcomes that show blue on top have biue underneath.

To that end, Table 2.8.2 summarizes the results of one hundred random drawings. Fo
a total of fifty-two, blue was showing (S) when the chip was placed on a table; for thirty-si:
of the trials (those marked with an asterisk), the color underneath (U) was also blue
Using the approximation suggested by Equation 2.8.1,

36
P(blue is underneath | blue is on top) = P(B | B} = i 0.69

a figure much more consistent with % than with %
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TABLE 2.8.2

Trial# 8 U Trial# § U Trial# § U Trial# § U

1 R B 26 B R 51 B R 7% B B*
2 B B* 27 R R 52 R B 77T B B*
3 B R 28 R B 53 B B* 78 R R
4 R R 29 R B 54 R B 79 B B#*
5 R B 30 R R 55 R R 8 R R
6 R B 3 R B 36 R B 88 R B
7 R R 32 B B* 57 R R 8 R B
8 R R 33 R B 58 B B* B3 R R
9 B B* 34 B B* 59 B R 84 B R
10 B R 35 B B* 60 B B* 8 B R
11 R R 36 R R 61 B R 8 R R
12 B B* 37 B R 62 R B g B B*
13 R R 38 B B* 63 R R 88 R B
14 B R 39 R R 64 R R B9 B R
15 B B* 40 B B#* 65 B B* 99 R R
16 B B* 41 B B* 66 E R 91 R B
17 R B 42 B R 67 R R %2 R R
i8 B R 43 B B* 68 B B* 9 R R
19 B B* 44 B B* 69 B B* 99 R B
20 B B* 45 B B* 70 R R 95 B B*
21 R R 46 R R 71 R R 9% B B*
22 R R 47 B B* 72 E B* 97 B R
23 B B* 48 B B* 73 R B 9% R R
24 B R 49 R R 74 R R 9 B B*
25 B B* 50 R R 75 B B* 100 B B*

The point of these examples is not to downgrade the importance of rigorous derivations
and exact answers. Far from it. The application of Theorem 2.4.1 to solve the problem
posed in Example 2.4.11 is obviously superior to the Monte Carlo approximation illus-
trated in Table 2.8.2. Still, enumerations of outcomes and replications of experiments
can often provide valuable insights and call attention to nuances that might otherwise
go unnoticed. As problem-solving techniques in probability and combinatorics, they are
extremely, extremely important.
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INTRODUCTION

Throughout Chapter 2, probabilities were assigned to events—that is, to sets of sample
outcomes. The events we dealt with were composed of either a finite or a countably
infinite number of sample outcomes, in which case the event’s probability was simply the
sum of the probabilities assigned to its oulcomes. One particular probability function that
came up over and over again in Chapter 2 was the assignment of % as the probability
associated with each of the n points in a finite sample space. This is the model that
typically describes games of chance (and all of our combinatorial probability problems in
Chapter 2).

The first objective of this chapter is to look at several other useful ways for as-
signing probabilities to sample outcomes. In so doing, we confront the desirability of
“redefining” sample spaces using functions known as random variables. How and why
these are used—and what their mathematical properties are—become the focus of virtu-
ally everything covered in Chapter 3.

As a case in point, suppose a medical researcher is testing eight elderly adults for their
allergic reaction (yes or no) to a new drug for controlling blood pressure. One of the 28 =
256 possible sample points would be the sequence (yes, no, no, yes, no, no, yes, noe),
signifying that the first subject had an allergic reaction, the second did not, the third
did not, and so on. Typically, in studies of this sort, the particular subjects experiencing
reactions is of little interest: what does matter is the number who show a reaction. If that
were true here, the outcome’s relevant information (i.e., the number of allergic reactions)
could be summarized by the number 3.1

Suppose X denotes the number of allergic reactions among a set of eight adults. Then
X is said to be a random variable and the number 3 is the value of the random variable
for the outcome (yes, no, no, yes, no, no, yes, no).

In general, random variables are functions that associate numbers with some attribute
of a sample outcome that is deemed to be especially important. If X denotes the random
variable and s denotes a sample oulcome, then X(s) = ¢, where z is a real number. For
the allergy example, s = (yes, no, no, yes, no, no, yes, no) and r = 3.

Random variables can often create a dramatically simpler sample space. That certainly
is the case here—the original sample space has 256 (= 2%) outcomes, each being an
ordered sequence of length eight. The random variable X, on the other hand, has only
nine possible values, the integers from 0 to 8, inclusive.

In terms of their fundamental structure, all random variables fall into one of two broad
categories, the distinction resting on the number of possible values the random variable
can equal. If the latter is finite or countably infinite (which would be the case with the
allergic reaction example), the random variable is said to be discrete; if the outcomes
can be any real number in a given interval, the number of possibilities is uncountably
infinite, and the random variable is said to be continuous. The difference between the two
is critically important, as we will learn in the next several sections.

lBy Theorem 2.6.2, of course, there would be a total of fifiy-six (= 81/3!51) outcomes having exactly
three yeses. All fifty-six would be equivalent in terms of what they imply about the drug’s likelihood of causing
aflergic reactions.
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The purpose of Chapter 3 is to introduce the important definitions, concepts, and
computational techniques associated with random variables, both discrete and continuous.
Taken together, these ideas form the bedrock of modern probability and statistics.

3.2 BINOMIAL AND HYPERGEOMETRIC PROBABILITIES

This section looks at two specific probability scenarios that are especially important,
both for their theoretical implications as well as for their ability to describe real-world
problems. What we learn in developing these two models will help us understand random
variables in general, the formal discussion of which begins in Section 3.3.

The Binomial Probability Distribution

Binomial probabilities apply to situations involving a series of independent and identical
trials, where each trial can have only one of two possible outcomes. Imagine three
distinguishable coins being tossed, each having a probability p of coming up heads.
The set of possible outcomes are the eight listed in Table 3.2.1. If the probability of any
of the coins coming up heads is p, then the probability of the sequence (H, H, H) is p?,
since the coin tosses qualify as independent trials. Similarly, the probability of (T, H, H)
is (1 — p)p? The fourth column of Table 3.2.1 shows the probabilities associated with
each of the three-coin sequences.

Suppose our main interest in the coin tosses is the number of heads that occur. Whether
the actual sequence is, say, (H, H, T) or (H, T, H) is immaterial, since each outcome
contains exactly two heads. The last column of Table 3.2.1 shows the number of heads in
each of the eight possible outcomes, Notice that there are three outcomes with exactly
two heads, each having an individual probability of p>(1 — p). The probability, then,
of the event “two heads” is the sum of those three individual probabilities—that is,
3p%(1 — p). Table 3.2.2 lists the probabilities of tossing & heads, where k = 0, 1, 2,
or 3.

TABLE 3.2.1

1st Coin 2nd Coin  3rd Coin  Probability Number of Heads

H H H P 3
H H T - p) 2
H T H (1 - p) 2
T H H Pl - p) 2
H T T p(l — p)* 1
T H T p(l — p)? 1
T T H p(l - p)? 1
T T T 1 - pp 0
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TABLE3.22

Number of Heads  Probability

0 a- py
1 3p(1 — p)?
2 3p%(1 — p)
3 p3

Now, more generally, suppose that n coins are tossed, in which case the number of
heads can equal any integer from 0 through n. By analogy,

number of ways ) Pbeablhty of any
P(k heads) = to arrange & particular sequence
having & heads

\headsandn — k tails ) andn — & tails

( number of ways \
= toarrange k . pk(l — py*
\heads and n — k tails J

!

The number of ways to arrange k Hsand n — & Ts, though, is k'(—n'—k)?’ or (Z) {recall
An o I

Theorem 2.6.2).

Theorem 3.2.1. Consider a series of n independent trials, each resulting in one of two
possible outcomes, “success” or “failure.” Let p = P (success occurs at any given trial)
and assume that p remains constant from trial to trial. Then

n

Pk successes) = ( L

)pk(l — pyk, k=0,1,....n

Comment. The probability assignment given by the Equation in Theorem 32.1 is
known as the binomial distribution.

EXAMPLE 3.2.1

As the lawyer for a client accused of murder, you are looking for ways to establish “reason-
able doubt” in the minds of the jurors. Central to the prosecutor’s case is testi mony from a
forensics expert who claims that a blood sample taken from the scene of the crime matches
the DNA of your client. One-tenth of 1% of the time, though, such tests are in error.
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Suppose your client is actually guilty. If six other laboratories in the country are capable
of doing this kind of DNA analysis (and you hire them: all), what are the chances that at
least one will make a mistake and conclude that your client is innocent?

Each of the six analyses constitutes an independent trial, where p = P (lab makes a
mistake) = 0.001. Substituting into Theorem 3.2.1 shows that the lawyer’s strategy is not
likely to work:

P(at least one lab says client is innocent) == I — P(0 labs make a mistake)
6
@] — (o) (0.001)°(0.999)¢
= 0.006

For the defendant, the calculated 0.006 is hardly reassuring. Given such small values for
n and p, though, getting contradictory forensic results would be a longshot at best. But
then again, as the erstwhile TV detective, Baretta, was fond of saying. “H you can’t do
the time, don’t do the crime.”

EXAMPLE 3.2.2

Kingwest Pharmaceuticals is experimenting with a new affordable AIDS medication,
PM-17, that may have the ability to strengthen a victim’s immune system. Thirty monkeys
infected with the HIV complex have been given the drug. Researchers intend to wail six
weeks and then count the number of animals whose immunological responses show a
marked improvement. Any inexpensive drug capable of being effective 60% of the time
would be considered a major breakthrough; medications whose chances of success are
50% or less are not likely to have any commercial potential.

Yet to be finalized are guidelines for interpreting results. Kingwest hopes to avoid
making either of two errors: (1) rejecting a drug that would ultimately prove to be mar-
ketable and (2) spending additional development dollars on a drug whose effectiveness,
in the long run, would be 50% or less. As a tentative ‘“decision rule,” the project manager
suggests that unless 16 or more of the monkeys show improvement, research on PM-17
should be discontinued.

a. What are the chances that the “sixteen or more” rule will cause the company to
reject PM-17, even if the drug is 60% effective?

b. How often will the “sixteen or more'" rule aliow a 50%-effective drug to be perceived
as a major breakthrough?

(a) Fach of the monkeys is one of » = 30 independent trials, where the out-
come is either a “success” (monkey’s immune system is strengthened) or a “fail-
ure” (monkey’s immune system is not strengthened). By assumption, the probability
that PM-17 produces an immunological improvement in any given monkey is p = P
(success) = 0.60,
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By Theorem 3.2.1, the probability that exactly k monkeys (out of thirty) will show
' . (30 -
improvement after six weeks is (k (0.60)¥(0.40°"*_ The probability, then, that the

“sixteen or over” rule will cause a 60%-effective drug to be discarded is the sum of
“binomial” probabilities for k values ranging from 0 to 15:

15
P{60%-effective drug fails ““sixteen or more” rule) = Z (31(0) (0.60)*(0.40)*F
k=0
=0.1754

Roughly 18% of the time, in other words, a “breakthrough” drug such as PM-17 will
produce test results so mediocre (as measured by the “sixteen or more” rule) that the
company will be misled into thinking it has no potential.

(b) The other error Kingwest can make is to conclude that PM-17 warrants further
study when, in fact, its value for p is below a marketable level. The chance that particular
incorrect inference will be drawn here is the probability that the number of that successes
will be greater than or equal to sixteen when p = 0.5. That is,

P(30%-effective PM-17 appears to be marketabie)
= P(sixteen or more SUCCESSEs OCCur)

30
=y (3{}) (0.5 (0.5)°0-*%
k=16 k

=043

Thus, even if PM-17’s success rate is an unacceptably low 50%, it has a 43% chance of
performing sufficiently well in thirty trials to satisfy the “sixteen or more” criterion.

Comment. Evaluating binomial summations can be tedious, even with a calculator.
Statistical software packages offer a convenient alternative. Appendix 3.A.1 describes
how one such program, MINITAB, can be used to answer the sorts of questions posed in
Example 3.2.2.

EXAMPLE 3.2.3

The Stanley Cup playoft in professional hockey is a seven-game serics, where the first
team to win four games is declared the champion. The series, then, can last anywhere from
four to seven games (just like the World Series in baseball). Calculate the likelihoods
that the series will last four, five, six, and seven games. Assume that (1) each game is an
independent event and (2) the two teams are evenly matched.

Consider the case where Team A wins the series in six games. For that to happen, they
must win exactly three of the first five games and they must win the sixth game. Because
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of the independence assumption, we can write

P(Team A winsin six games) = P(Team A wins three of first five) - P(Tecam A wins sixth

= {(‘2)(0.5)3(0.5)2] - (0.5) = 0.15625

Since the probability that Team B wins the series in six games is the same {why?),

P(serics ends in six games) = P(Team A winsin six games U Team B winsin six games)
= P{A winsin six) + P(B wins in six) (why?)
= 0.15625 + 0.15625
=0.3125

A similar argument allows us to calculate the probabilties of four-, five-, and seven- game
Series:

P(four game scries) = 2005 = 0.125

P(five game series) = 2 [(f:) {(}.5)3{0.5}] (0.5) =0.25

P(seven game series) = 2 [(2) (0.5)3(0.5)3] (0.5) = 03125

Having calculated the “theoretical” probabilities associated with the possible lengths of
a Stanley Cup playoff raises an obvious question: How do those likelihoods compare with
the actual distribution of playoff lengths? For a recent fifty-nine year period, Column 2 in
Table 3.2.3 shows the proportion of playoffs that lasted 4, 5, 6, and 7 games, respectively.

Clearly, the agreement between the entries in Columns two and three is not very good:
Particularly noticeable is the excess of short playoffs (four games} and the deficit of long
playoffs (seven games). What this “lack of fit” suggests is that one or more of the binomial
distribution assumptions is not satisfied. Consider, for example, the parameter p, which
we assumed to equal % In reality, its valuc might be something quite different—just

TABLE 3.2.3

Series Length  Observed Proportion  Theoretical Probability

4 19/59 = 0.322 0.125
5 15/59 =0.254 0.250
6 15/59 = 0.254 0.3125
7 10/59 = 0.169 0.3125
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because the teams playing for the championship won their respective divisions, it does
not necessarily follow that the two are equally good. Indeed, if the two contending teams
were frequently mismatched, the consequence would be an increase in the number of
short playofis and a decrease in the number of long playoffs. It may also be the case that
momentum is a factor in a team’s chances of winning a given game. If so, the independence
assumption implicit in the binomial model is rendered invalid.

EXAMPLE 3.2.4

Doomsday Airlines (“Come Take the Flight of Your Life™) has two aircraft—a dilapidated
two-engine prop plane and an equally outdated and under-maintained four-engine prop
plane. Each plane will land safely only if at least half its engines are working properly.
Given that you wish to remain among the living, under what conditions would you opt
to fly on the two-engine plane? Assume that each engine on each plane has the same
probability p of failing and that any such fajlures are independent events.

For the two-engine plane,

P(flight lands safely) = P (one or more engines work properly)
)
= Z( )(1 ~ pfpt* (3.2.1)
=1

For the four-engine plane,

P(flightlands safely) = P (two or more engines work properly)

= f: (:)(1 - pfptt (32.2)

==

When to opt for the two-engine plane, then, reduces to an algebra problem: We look for
the values of p for which

2 ) 4 4
Z(k)(i - p Pt > Z(k)a — ptptt

or, equivalently,

Simplifying the inequality

4 4 2
(0)(1 - 't + (1)(1 - p'p > (0)(1 -
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gives
Gp—D(p— 1 <0 (3.2.3)

But (p — 1) is never positive. so Inequality 3.2.3 will be true only when (3p — 1) = 0,
which gives p = % as the desired solution set. Figure 3.2.1 corapares the two “safe return™
probabilities as a function of p.

QUESTIONS

3.2.1. An investment analyst has tracked a certain blue-chip stock for the past six months and
found that on any given day it either goes up a point or down a point. Furthermore, it
went up on 25% of the days and down on 75%. What is the probability that at the close
of trading four days from now the price of the stock will be the same as it is today?
Assume that the daily fluctuations are independent events.

3.2.2. In a nuclear reactor, the fission process is controlied by inserting special rods into the
radioactive core to absorb neutrons and slow down the nuclear chain reaction. When
functioning properly, these rods serve as a first-line defense against a core meltdown.
Suppose a reactor has 10 control rods, each operating independently and each having a
0.80 probability of being properly inserted in the event of an “incident”. Furthermare,
suppose that a meltdown will be prevented if at least half the rods perform satisfactorily,
What is the probability that, upon demand, the system will fail?

3.2.3. Suppose that since the early 1950s some 10,000 independent UFO sightings have been
reported to civil authorities. If the probability that any sighting is genuine is on the order
of 1 in 100,000, what is the probability that at least 1 of the 10,000 was genuine?

3.2.4. The probability that a circuit board coming off an assembly line needs rework is 0.15.
Suppose that 12 boards are tested.

{a) What is the probability that exactly 4 will need rework?
(b) Whatis the probability that at least one needs rework?
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A manufacturer has 10 machines that die cut cardboard boxes. The probability that, on
a given day, any one of the machines will be out of service for repair or maintenance is
0.05. If the day’s production requires the availability of at least seven of the machines,
what is the probability the work will get done?

‘Two lighting systems are being proposed for an employec work area. One requires
50 bulbs, cach having a probability of 0.05 of burning out within a month's time.
The second has 100 bulbs, each with a 0.0Z burnout probability. Whichever system is
instalied will be inspected once a month for the purpose of replacing burned-out bulbs.
Which system is likely to require less maintenance? Answer the question by comparing
the probabilitics that each will require at least one bulb to be replaced at the end
of 30 days.

The great English diarist Samuel Pepys asked his friend Sir Isaac Newton the following
question: Is # more likely to get at least one 6 when 6 dice are reHed, at least two 6's
when 12 dice are rofled, or at least three 6’s when 18 dice are rolled? Afier considerable
correspandence (see (162)). Newton convinced the skeptical Pepys that the first event
is the most likely. Compute the three probabilities.

The gunner on a small assault boat fires six missiles at an attacking plane, Each has a
20% chance of being on target. It two or more of the shells find their mark, the plane
will crash. At the same time, the pilot of the planc fires 10 air-to-surface rockets, each
of which has a (.05 chance of critically disabling the boat. What you rather be on the
plane or the boat?

If a family has four children, is it more likely they will have two boys and two girls or
three of one sex and one of the other? Assume that the probability of a child being a
boyis % and that the births are independent evenits.

Experience has shown that only % of all patients having a certain discase will recover if
given the standard treatment. A new drug is to be tested on a group of 12 voluntecrs.
if the FDA requires that at least seven of these patients recover before it will license
the new drug, what is the probability that the treatment will be discredited even if it
has the potential to increase an individual's recovery rate to %?

Transportation to school for a rural county’s 76 children is provided by a fleet of four
buses. Drivers are chosen on a day-to-day basis and come from a pool of local farmers
who have agreed to be “on call”. What is the smallest number of drivers that necd
to be in the pool if the county wants 1o have at least a 95% probability on any given
day that all the buses will run? Assume that each driver has an 80% chance of being
available if contacted.

The captain of a Navy gunboal orders a volley of 25 missiles to be fired at random
aleng a 500-foot streich of shorcline that he hopes to establish as a beachhead. Dug
into the beach is a 30-foot-long bunker serving as the enemy’s first line of defense. The
captain has reascn to believe that the bunker will be destroyed if at least three of the
misstles are on target. What is the probability of that happening?

A computer has generated seven random numbers over the interval 0 to 1. Ts it more
likely that (1} exactly three will be in the interval % to 1 or (2) fewer than three will be
greater than ;—2?

Listed in the following table is the length distribution of World Series competition for
the 52 years from 1950 to 2002
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World Series Lengths

Number of Games, X Number of Years

9

B

11
24

52

w1 N LA

Assuming that each World Series game is an independent event and that the probability
of cither team’s winning any particular contest is 0.5. find the probability of each series
length. How well does the model fit the data? (Compute the “expected” frequencies,
that is, multiply the probability of a given length series times 52).

3.2.18, Use the expansion of {x + v (recall the comment in Section 2.6 on page 108} to

B
verify that the binomial probabilities sum to 1; that s, ¥ (:) pk (1 — p)””““* z ]
k=00

3.2,16. Suppose a series of # independent trials can end in one of three possible cutcomes,
Let &1 and k» denote the number of trials that result in outcomes 1 and 2, respectively.
Let py and pp denote the probabilities associated with outcomes 1 and 2. Generalize
Theorem 3.2.1. to deduce a formula for the probability of getting &y and k3 occurrences
of outcomes 1 and 2, respectively.

3.2.17. Repair calls for central air conditioners fall into three general categories: coolant
leakage, compressor failure, and electrical malfunction. Experience has shown that the
probabilities associated with the three are 0.5, 0.3, and 0.2, respectively. Suppose that
a dispatcher has logged in 10 service requests for tomorrow morning. Use the answer
to Question 3.2.16 to calculate the probability that 3 of those 10 will involve coolant
leakage and 5 will be compressor failures.

The Hypergeometric Distribution

The second “special” distribution that we want to look at formalizes the urn problems that
frequented Chapter 2. Our solutions to those earlier problems tended to be enumerations,
We listed the entire set of possible samples, and then counted the ones that satisfied the
event in question. The inefficiency and redundancy of that approach should be painfully
obvious. What we are seeking here is a general formula that can be applied to any and
all such problems, much like the expression in Theorem 3.2.1 can handle the full range of
questions arising from the binomial model.

Suppose an urn contains » red chips and w white chips, where v + w = N, Imag-
ine drawing n chips from the urn one-at-a-time without replacing any of the chips
selected. At each drawing we record the color of the chip removed. The question is.
what is the probability that exactly & red chips are included among the » that are
removed?

Notice that the experiment just described is similar in some respects to the binomial
model, but the method of sampling creates a critical distinction. If each chip drawn was
replaced prior to making another selection, then each drawing would be an independent
trial, the chances of drawing a red at any given try would be a constant r/N, and the
probability that exactly k red chips would ultimately be included in the » selections would
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be a direct application of Theorem 3.2.1:
P(k redsdrawn) = (:)(r/N}k(l — /N %, k=0,1,2,...,n

However, if the chips drawn are not replaced, then the probability of drawing a red on
any given attempt is not necessarily »/N: Its value would depend on the colors of the
chips selected earfier. Since p = P(red is drawn) = P(success) does not remain constant
from drawing to drawing, the binomial model of Theorem 3.2.1 does not apply. Instead,
probabilities that arise from the “no replacement” scenario just described are said to
follow the hypergeometric distribution.

Theorem 3.2.2. Suppose an urn contains r red chips and w white chips, wherer + w = N.
If n chips are drawn out at random, without réplacement, and if k denotes the number of

red chips selected, then
(r) ( . )
kjAn — & (32.4)

(+)

.

P (k red chips are chosen) =

where k varies over all the integers for which ;) and (n v k) aredefined. The probabilities

appearing on the right-hand side of Equation 3.2.4 are known as the hypergeometric
distribution.

Proof. Assume the chips are distinguishable. We need to count the number of elements
making up the event of getting & red chips and n — & white chips. The number of ways
to select the red chips, regardless of the order in which they are chosen, is,, P;. Similarly,
the number of ways to select the n — k& white chips is , P,_;. However, the order in
which the chips are selected does matter. Each outcome is an n-long ordered sequence

of red and white. There are (:) ways to choose where in the sequence the red chips

go. Thus, the number of elements in the event of interest is Z),Pk wFn 1. Now, the

total number of ways to choose n elements from N, in order, without replacement is
NPy, 50

7
( )rPk wPn_k
P(k red chips are chosen) = ~—~-——
NP,

This quantity, while correct, is not in the form of the statement of the theorem.
To make that conversion, we have to change all of the terms in the expression
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to factorials:

H
(k)rpk an—k

Pk red chips are chosen) =

NPn

nt rt w!
kK - B =B (w - n+ B

N
(N — )t

i ! r w
RN - B = DY w —n + k) (k)(n — k)
- Nt - (N)

nl(N — n)! n 0

Comment. The appearance of binomial coefficients suggests a model of selecting
unordered subsets. Indeed, one can consider the model of selecting a subsct of size n
simultaneously, where order doesn’t matter. In that casc, the question remains: what is
the probability of getting k red chips and n — k white chips. A moment’s reflection will
show that the hypergeometric probabilities given in the statement of the theorem also
answer that question. So, if our interest is simply counting the number of red and white
chips in the sample, the probabilities are the same whether the drawing of the sample is
simultaneous, or the chips are drawn in order without repetition.

Comment. The name hypergeometric derives from a series introduced by the Swiss
mathematician and physicist, Leonhard Euler, in 1769:
1 ]
1+ glzx + ala -+ Dbk + 1)x2 afa + e + 2ybb + Db + 2)x3 L.
c 2ec + 1) 3lcle + Die + 2)
This is an expansion of considerable flexibility: Given appropriate valuesfor ¢, b, and ¢, it

reduces to many of the standard infinite series used in analysis. In particular, if « is set equal
1o 1, and b and ¢ are set equal to each other, it reduces to the familiar geometric series,

14 x4+ 2% +x° + -

hence the name hypergeometric. The relationship of the probability function in Theo-
rem 3.2.2 to Euler’s series becomes apparent if weset @ == —n, b= ~r,c=w — n + 1,

N
and multiply the scrics by (Z)) / ( ) . Then the coefficient of x* will be
13

(x)

the value the theorem gives for P(k red chips arc chosen).
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EXAMPLE 3.2.5

Keno is among the most popular games played in Las Vegas even though it ranks as one
of the least “fair” in the sense that the odds are overwheimingly in favor of the house.
(Betting on keno is only a little less foolish than playing a slot machine!) A keno card
has eighty numbers, 1 through 80, from which the player selects a sample of size &, where
k can be anything from 1 to 15 (see Figure 3.2.2). The “caller” then announces twenty
winning numbers, chosen at random from the eighty. If—and how much-—the player
wins depends on how many of his numbers match the twenty identified by the caller.
Suppose that a player bets on a ten-spot ticket. What is his probability of “catching” five
numbers?

K E N 0 First Game | Mo, Of | Frice
Games

Last Game

112314316 7{8(9: 10

i 2|13 (i4)15|16 17118 19|20

21122123 (24)25(26127128129|30

3132.33 34 (353637138 39 4

‘Wianing Ticket Must Be Uashed! Betore Start Of Next Game
4114214314445 (46 (47148149150

5152531545556 (5758|5960

6F (62163164 65 66167 | 68|68 70

TEIT2 73174 75 76|77 |78 | 719 | &G

FIGURE 3.2.2

Consider an urn containing ¢ighty numbers, twenty of which are winners and sixty of
which are losers (see Figure 3.2.3). By betting on a ten-spot ticket, the player, in effect, is
drawing a sample of size ten from that urn. The probability of “catching” five numbers is
the probability that five of the numbers the player has bet on are contained in the set of
twenty winning numbers.

20 winning #%
~—» Choose 10

60 losing #'s

FIGURE 3.2.3
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By Theorem 3.2.2 (with r = 20, w = 60, n = 10, N == 80, and k = 5}, the player has
approximately a 5% chance of guessing exactly five winning pumbers:

% =0.05

P(five winning numbers arc selected) =

EXAMPLE 3.2.6

A hung jury is one that is unable to reach a unanimous decision. Suppose that a pool
of twenty-five potential jurors is assigned to a murder case where the evidence is 50
overwhelming against the defendant that twenty-three of the twenty-five would return a
guilty verdict. The other two potential jurors would vote 10 acquit regardiess of the facts.
What is the probability that a twelve-member pancl chosen at random from the pool of
twenty-five will be unable to reach a unanimous decision?

Think of the jury pool as an urn containing twenty-five chips, twenty-three of which
correspond to jurors who would vote “guilty” and two of which correspond to jurors who
would vote “not guilty.” If either or both of the jurors who would vote “not guilty” are
included in the panel of twelve, the result would be a hung jury. Applying Theorem 3.2.2
(twice) gives 0.74 as the probability that the jury impanelled would not reach a unanimous
decision:

P(hung jury) = P(decision is not unanimous)
(223 25 + 2) (23) (25)
IRV (1 1) (12 (2 10 12

= (.74

EXAMPLE 3.2.7

When a bullet is fired it becomes scored with minute striations produced by imperfections
in the gun barrel. Appearing as a series of parallel lines, these striations have long been
recognized as a basis for matching a bullet with a gun, since repeated firings of the same
weapon will produce bullets having substantially the same configuration of markings.
Until recently, deciding how close two patterns had to be before it could be concluded
the bullets came from the same weapon was largely subjective. A ballistics cxpert would
simply look at the two bullets under a microscope and make an informed judgment based
on past experience. Today, criminologists are beginning to address the problem more
guantitatively, partly with the help of the hypergeometric distribution.

Suppose a bullet is recovered from the scene of a crime, along with the suspect’s gun.
Under a microscope, a grid of m cells, numbered 1 to m, Is superimposed over the bullet.
If m is chosen large enough so the width of the cells is sufficiently small, each of that
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Striations (total of 1)

AT L

Evidence bullet

123 45 m
a)
Striations (total of )
D] T s
12 3 45 m
()
FIGURE 3.2.4

evidence bullet’s n, striations will fall into a different cell (see Figure 3.2.4(a}). Then the
suspect’s gun is fired, yielding a test bullet, which will have a total of n, striations located in
a possibly different set of cells (see Figure 3.2.4(b)). How might we assess the similarities
in cejl locations for the two striation patterns?

As a model for the striation pattern on the evidence bullet, imagine an urn containing
m chips, with n, corresponding to the striation locations. Now, think of the striation
pattern on the test bullet as representing a sample of size n, from the evidence urn.
By Theorem 3.2.2, the probability that & of the cell locations will be shared by the two

striation patterns is
RN fm — n,
k ny — k

%)

Suppose the bullet found at a murder scene is superimposed with a grid having m = 25
cells, 7, of which contain striations. The suspect’s gun is fired and the bullet is found to
have n; = 3 striations, one of which matches the location of one of the striations on the
evidence bullet. What do you think a ballistics expert would conclude?

Intuitively, the similarity between the two bullets would be reflected in the probability
that one or more striations in the suspect’s bullet matched the evidence bullet. The smatler
that probability is, the stronger would be our belief that the two bullets were fired by the
same gun. Based on the values given for m, n,, and n,,

0G), GG, O6)
G 6 6

=042

P(one ormore matches) =
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If P{one or more malches) had been a very small number—say, 0.001—the infer-
ence would have been clear-cut: The same gun fired both bullets. But, here with the
probability of one or more matches being so large, we cannot rule out the possibility
that the bullets were fired by two different guns (and, presumably, by two different

people).

EXAMPLE 3.2.8

Wipe Your Feet, a carpet cleaning company, is trying to establish name recognition in a
community consisting of sixty thousand houscholds. The compary’s management team
estimates that five thousand of those families would do business with the firm if they
were contacted and informed of the services available. With that in mind, the company
has hired a staff of telemarketers to place one thousand calls. Write a formula for the
probability that at least one hundred new customers will be identified.

Conceptually, this is an urn problem not unlike the previous three examples, except
for the fact that the numbers of “chips” are powers of ten larger than what we have
encouniered up to this point. In the terminology of Theorem 3.2.2, N = 60,000, r = 5,000,
w = 55,000, n = 1000, and

P(telemarkcters identify £ new customers)

(5000) ( 55,000 )
k JAOO0 — K/ 0 6.1, 1000

60,000 ’
1000

It follows that

P(one hundred or more new customers are identified)
=1 — P(ninety-nine orfewer new customers are identified)

5000\ /55,000
Pk J\000 ~ &

=1-2 60,000
(lom)

k=0
1000

(3.2.5)

Needless to say, evaluating Equation 3.2.5 directly is very difficult because of the
number of terms involved and the large factorials implicit in both the pumerator and
denominator. In Chapter 4 we will learn a series of approximations that virtually trivialize
the evaluation.
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CASE 5TUDY 3.2.1

Biting into a plump, juicy apple is one of the innocent pleasures of autumn. Critical
to that enjoyment is the firmness of the apple, a property that growers and shippers
monitor closely. The apple industry goes so far as to set a lowest acceptable limit for
firmness, which is measured (in lbs) by inserting a probe into the apple. For the Red
Delicious variety, for example, firmness is supposed 10 be at least 12 Ibs; in the state
of Washington, wholesalers are not allowed to sell apples if more than 10% of their
shipment falls below that 12 Ib limit.

All of this raises an obvious question: How can shippers demonstrate that their
apples meet the 10% standard? Testing each one is not an option—the probe that
measures firmness renders an apple unfit for sale. That leaves sampling as the only
viable strategy.

Suppose, for example, a shipper has a supply of 144 apples. She decides to select 15
atrandom and measure each one’s firmness, with the intention of selling the remaining
apples if 2 or fewer in the sample are substandard. What are the consequences of her
plan? More specifically, does it have a good chance of “accepting” a shipment that
meets the 10% rule and a good chance of “rejecting” one that does not? (If either or
both of those objectives are not met, the plan is inappropriate.)

For examg»le, suppose there are actually 10 defective apples among the original
144. Since fﬂ ¥ 100 = 6.9%, that shipment would be suitable for sale because fewer
than 10% failed to meet the firmness standard. Tae question is, how likely is it that a
sample of 15 chosen at random from that shipment will pass inspection?

Notice, here, that the number of substandard apples in the sample has a hypergeo-
metric distribution with r = 10, w = 134, n = 15, and N = 144, Therefore,

P(sample passes inspection) = P(2 or fewer substandard apples are found)
10N /134 10N /134 10N /134
G)(s), (G | G)0S)
wa t Tt
( ES) (15 ) ( 15 )

=0.320 + 0.401 + 0.208 = 0.929

So, the probability is reassuringly high that a supply of apples this good would, in
fact, be judged acceptable to ship. Of course, it also follows from this calculation that
roughly 7% of the time, the number of substandard apples found will be greater than
2, in which case the apples would be (incorrectly) assumed to be unsuitable for sale
(earning them an undeserved one-way ticket to the applesauce factory. .. )

How good is the proposed sampling plan at recognizing apples that would, in fact,
be inappropriate to ship? Suppose, for example, that 30, or 21%, of the 144 apples

{Certinued on next page}
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(Case Study 3.2.1 continued}

would fall below the 12 Ib fimit. Ideally, the probability here that a sample passes
inspection should be small. The number of substandard apples found in this case
would be hypergeometric with r = 30, w = 114, #n = 15, and N = 144, so

(0, G, G0
N

=0.024 + 0.110 + 0221 =0.355

Here the bad news is that the sampling plan will allow a 21% defective supply to
be shipped 36% of the time. The good news is that 64% of the time, the number of
substandard apples in the sample will exceed 2, meaning that the correct decision “not
to ship” will be made.

Figure 3.2.5 shows P(sample passes) plotted against the percentage of defectives in
the entire supply. Graphs of this sort are called operating characteristic (or OC) curves:
They summarize how a sampling plan will respond to all possible levels of quality.

P (sample passes inspection) =

14
08
0.6

0.4

P (sample passes)

0.2

6 it
0 o 20 3¢ 40 50 e 70 8 90 100

Presumed percent defective
FGURE 3.2.5

Comment. Every sampling plan invariably allows for two kinds of errors—
rejecting shipments that should be accepted and accepting shipments that should be
rejected. In practice, the probabilities of committing these errors can be manipulated
by redefining the decision rule and/or changing the sample size. Some of these options
will be explored later in Chapter 6.

QUESTIONS

3.2.18. A corporate board contains 12 members. The board decides to create a five person

Committee to Hide Corporation Debt. Suppoese four members of the board are
accountants. What is the probability that the Committee will contain two accountants
and three non-accountants?
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One of the popular tourist attractions in Alaska is watching black bears catch salmon,
swimming upstream to spawn. Not all “black” bears are black, though—some are
tan-colored. Suppose that six black bears and three tan-colored bears are working the
rapids of a salmon stream. Over the course of an hour, six different bears are sighted.
What is the probability that those six will include at least twice as many black bears as
tan-colored bears?

A city has 4050 children under the age of 10, including 514 who have not been
vaccinated for measles. Sixty-five of the city’s children are enrolled in the ABC
Day Care Center. Suppose the municipal health department sends a doctor and a
nurse to ABC to immunize any child who has not already been vaccinated. Find
a formula for the probability that exactly k of the children at ABC have not been
vaccinated.

Country A inadvertently launches 10 guided missiles—6 armed with nuclear
warheads—at Country B. In response, Country B fires 7 antiballistic missiles, each of
which will destroy exactly one of the incoming rockets. The antibaHistic missiles have
no way of detecting, though, which of the 10 rockets are carrying nuclear warheads.
‘What are the chances that Country 8 will be hit by at least one nuclear missile?

Anne is studying for a history exam covering the French Revolution that wiH consist
of five essay questions selected at random from a list of 10 the professor has handed
oul to the class in advance. Not exactly a Napoleon buff, Anne would like to avoid
researching all 10 questions but still be reasonably assured of getting a fairly good
grade. Specifically, she wants to have at least an 85% chance of getting at least four of
the five questions right. Will it be sufficient if she studies eight of the 10 questions?
Each year a college awards five merit-based scholarships 1o members of the entering
freshmen class who have exceptional high school records. The initial pool of applicants
for the upcoming academic year has been reduced to a “short list” of eight men and
ten women, al of whom seem equally deserving. If the awards are made al random
from among the 18 finalists, what are the chances that both men and women will be
represented?

A local lottery is conducted weekly by choosing five chips at random and without
replacement from a population of 40 chips, numbered 1 through 40; order does not
matter. The winning numbers are announced on five successive commercials during the
Mounday night broadcast of a televised movie. Suppose the first three winning numbers
match three of yours. What are your chances at that point of winning the lottery?

A display case contains 35 gems, of which 10 are real diamonds and 25 are fake
diamonds. A burglar removes four gems al random, one at a time and without
replacement, What is the probability that the last gem she steals is the second real
diamond in the set of four?

A bleary-eyed student awakens one morning, late for an 8:00 class, and pulls two socks
out of a drawer that contains two black, six brown, and two blue socks, all randomly
arranged. What is the probability that the two he draws are a matched pair?

Show directly that the set of probabilities associated with the hypergeometric distribu-
tion sum to 1. Hinr: Expand the identity

A+ =0+ 000 +

and equate coefficients.
Urn I contains five red chips and four white chips; Urn II contains four red and five
white chips. Two chips are drawn simultaneously from Urn I and placed in Urn IL
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Then a single chip is drawn from Urn [L. What is the probability that the chip drawn
from Urn 11 is white? Hint: Use Theorem 2.4.1.

3.2.29. As the owner of a chain of sporting goods stores. you have just been offered a “deal”
on a shipment of 100 robot table tennis machines. The price is right, but the prospect
of picking up the merchandise at midnight from an unmarked van parked on the side
of the New Jersey Turnpike is a bit disconcerting. Being of low repute vourself, you
do not consider the legality of the transaction to be an issue, but you do have concerns
about being cheated. If too many of the machines are in poor working order, the
offer ceases to be a bargain. Suppose you decide to close the deal only if a sample
of 10 machines contains no more than one defective, Construct the corresponding
operating characteristic curve. For approximately what incoming quality will you
accept a shipment 50% of the time?
Suppose that r of N chips are red. Divide the chips into three groups of sizes ny, 2,
and n3, where n; + n2 + n3z = N. Generalize the hypergeometric distribution to find
the probability that the first group contains ry red chips, the second group rz red chips,
and the third group r3 red chips, wherery + 2 + rn=r.
3.2.31. Some nomadic tribes, when faced with a life-threatening contagious disease, will try to
improve their chances of survival by dispersing into smaller groups. Suppose a tribe of
21 people, of whom four are carriers of the disease, split into three groups of 7 each.
What is the probability that at least one group is free of the disease? Hint: Find the
probability of the complement.

3.2.32. Suppose a population contains ry objects of one kind, nz objects of a second kind, .. .,
and #», objects of a rth kind, where ny + a3 + -+ + 1, = N. A sample of size n is
drawn at random and without replacement. Deduce an expression for the probability
of drawing k1 objects of the first kind, k; objects of the second kind,. ... and &, objects
of the rth kind by generalizing Theorem 3.2.2.

3.2.33. Sixteen students—five freshmen, four sophomores, four juniors, and three seniors——have
applied for membership in their school’s Communications Board, a group that over-
sees the college’s newspaper, literary magazine, and radio show. Eight positions are
open. If the selection is done at random, what is the probability that each class gets
two representatives? (Hint: Use the generalized hypergeometric model asked for in
Question 3.2.32.)

3230

3.3 DISCRETE RANDCM VARIABLES

The binomial and hypergeometric distributions described in Section 3.2 are special cases
of some important general concepts that we want to explore more fully in this section.
Previously in Chapter 2, we studied in depth the situation where every point in a sample
space is equally likely to occur (recall Section 2.6). The sample space of independent
trials that ultimately led to the binomial distribution presented a quite different scenario:
specifically, individual points in $ had different probabilities. For example, if #n = 4 and
P = % the probabilities assigned to the sample points (s, f,s, f) and (f, f. f. f) are
(1/3)2(2/3)% = g; and (2/3)* = {2, respectively. Allowing for the possibility that different
outcomes may have different probabilities will obviously breaden enormously the range
of real-world problems that probability models can address.
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How to assign probabilities to outcomes that are not binomial or hypergeometric is one
of the major questions investigated in this chapter. A second critical issue is the nature of
the sample space itself and whether it makes sense to redefine the outcomes and create,
in effect, an alternative sample space. Why we would want to do that has already come
up in our discussion of independent trials. The “original” sample space in such cases is
a set of ordered sequences, where the ith member of a sequence s either an “s” or an
“f," depending on whether the ith trial ended in either success or failure, respectively.
However, knowing which particular trials ended in success is typically less important than
knowing the number that did (recall the clinical trial discussion on p. 129). That being the
case, it often makes sense to replace each ordered sequence with the number of successes
that sequence contains. Doing so collapses the original set of 27 ordered sequences (ie.,
outcomes) in S to the set of # + 1 integers ranging from 0 to ». The probabilities assigned
to those integers, of course, are given by the binomial formula in Theorem 3.2.1.

In general, a function that assigns numbers to outcomes is called a random variable.
The purpose of such functions in practice is to define a new sample space whose outcormnes
speak more directly to the objectives of the experiment. That was the rationale that
ultimately motivated both the binomial and hypergeometric distributions.

The purpose of this section is to (1) outline the general conditions under which
probabilities can be assigned to sample spaces and (2) explore the ways and means of
redefining sample spaces through the use of random variables. The notation introduced
in this section is especially important and will be used throughout the remainder of the
book.

Assigning Probabilities: The Discrete Case

We begin with the general problem of assigning probabilities to sample outcomes, the
simplest version of which occurs when the number of points in S is either finite or
countably infinite. The probability functions, p(s), that we are looking for in those cases
satisfy the conditions in Definition 3.3.1.

Definition 3.3.1. Suppose that § is a finite or countably infinite sample space. Let p be
a real-valued function defined for each element of S such that

a. < p(s)foreachs e §
b. ¥ pe=1

all se8
Then p is said to be a discrete probability function.

Comment. Once p(s)isdefined for alls, it follows that the probability of any event A—
that is, P(A)—is the sum of the probabilities of the outcomes comprising A:

PAY= Y pGs) (3.3.1)

all seA

Defined in this way, the function P(A) satisfies the probability axioms given in Section 2.3.
The next several examples illustrate some of the specific forms that p(s) can have and how
P(A) is calculated.
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EXAMPLE 3.3.1

Ace-six flats are a type of crooked dice where the cube is foreshortened in the one-
six direction, the effect being that 1s and 6s are more likely to occur than any of
the other four faces. Let p(s) denote the probability that the face showing 15 s. For
many ace-six flats, the *““cube” i 1s asymmetric to the extent that p(1) = p(6) = 4, while

p2) = p(3) = p®) = p(5) = ~g Notice that p{s) here qualifies as a discrete probab111ty
function because each p(s) is greater than or equal to 0 and the sum of p(s), over all s, is
1(=2(3) + 4(3))-

Suppose A is the event that an even numi)er occurs. It follows from Equation 3.3.1 that

P(A)=PQ) + P@ + PO =F + § + =13

Comment. If two ace-six flats are rolled, the probability of gettmg a SiEm equal to
seven is equal to Zp(1)p(6) + 2p2)p(5) + 2p3)p@) = 2(4) -+ 4(3) = ﬁ. If two
fair dice are rolled, the probabﬂ:%y of getting a sum equaj to seven is 2p(L)p(6) +
2p@yp5) + Zp3)pd = 6(3 )2 = 3, which is less than = 16 Gamblers cheat with ace-six
flats by switching back and forth between fair dice and ace-six flats, depending on whether
or not they want a sum of seven to be rolled.

EXAMPLE 3.3.2

Suppose a fair coin is tossed until a head comes up for the first time. What are the chances
of that happening on an odd-numbered toss?

Note that the sample space here is countably infinite and so is the set of outcomes
making up the event whose probability we are trying to find. The P(A) that we are looking
for, then, will be the sum of an infinite number of terms.

Let p(s) be the probab:hty that the first head appears on the sth toss. Since the coin is
presumed to be fair, p(l) = i Furthermore, we would expect half the time, when a tail
appears, the next toss would be a head, so p(2) = ﬁ 2 = z In general, p(s) = (7)
s=1,2,...

Does p(s) satisfy the conditions stated in Definition 3.3.17 Yes. Clearly, p(s) > 0 for
all s, To see that the sum of the probabilities is 1, recall the formula for the sum of a
geometric series: If 0 < r < 1,

(332)

o
5o
=t}

Applying Equation 3.3.2 to the sample space here confirms that P(S) = 1:

P{S>—2p(s) i(;)=é(%) - (%)ﬁ=1/(1 -3) -1
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Now, let A be the event that the first head appears on an odd-numbered toss. Then
PAY=pD) + p3) + p5) + --- But

: - SV &gy
p(1)+p<3)+p(5)+---=S§OP{ZS“’:Z(E) E(E)Z(E)

s=0 s=0
1 1 2
=(i) (*/(* - z)) =3
CASE STUDY 3.3.1

For good pedagogical reasons, the principles-of probability are always introduced by
considering events defined on familiar sample spaces generated by simple experiments.
To that end, we toss coins, deal cards, roll dice, and draw chips from urns. It would
be a serious error, though, to infer that the importance of probability extends no
further than the nearest casino. In its infancy, gambling and probability were, indeed,
intimately related: Questions arising from games of chance were often the catalyst that
motivated mathematicians to study random phenomena in earnest. But more than
340 years have passed since Huygens published De Ratiociniis. Today, the application
of probability to gambling is relatively insignificant {the NCAA March basketball
tournament notwithstanding) compared to the depth and breadth of uses the subject
finds in business, medicine, engineering, and science.

Probability functions—properly chosen—can “model” complex real-world phe-
nomena every bit as well as P(heads) = % describes the behavior of a fair coin,
The following set of actuarial data is a case in point. Over a period of three years
(= 1096 days) in London, records showed that a total of 903 deaths occurred among
males eighty-five years of age and older (188). Columns one and two of Table 3.3.1
give the breakdown of those 903 deaths according to the number occurring on a given
day. Column three gives the proportion of days for which exactly s elderly men died.

TABLE 3.3.1
(1) ) 3 )
Number of Deaths,s Number of Days Proportion [= Col.(2)/1096]  p(s)

0 484 0.442 0.440
i 391 0.357 0.361
2 164 0.150 0.148
3 45 0.041 0.040
4 11 0.010 0.008
3 1 0.001 0.003
6+ 0 0.000 £.000

1096 1 1
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For reasons that will be gone into at length in Chapter 4, the probability function that
describes the behavior of this particular phenomenon is
p{s) = P{s elderly mendie on & given day)
e~ U82(0.82)*

51

= s=0,1,2,... (33.3)
How do we know that the p(s) in Equation 3.3.3 is an appropriate way to assign
probabilities to the “‘experiment” of elderly men dying? Because it accurately predicts
what happened. Column four of Table 3.3.1 shows p(s) evaluated for s = 0. 1,2.... To
two decimal places, the agreement between the entries in Column three and Column four
is perfect.

EXAMPLE 3.3.3

Consider the following experiment: Every day for the next month you copy down each
number that appears in the stories on the front pages of your hometown newspaper. Those
numbers would necessarily be extremely diverse: One might be the age of a celebrity who
just died. another might report the interest rate currently paid on government Treasury
bills, and still another might give the number of square feet of retail space recenily added
to a local shopping mall.

Suppose you then calculated the proportion of those numbers whose leading digit was
a 1, the proportion whose leading digit was a 2, and so on. What relationship would you
expect those proportions to have? Would numbers starting with a 2, for example, occur
as often as numbers starting with a 67

Let p(s) denote the probability that the first significant digit of a “newspaper number™
is s, 8 =1.2..... 9. Our intuition is likely to tell us that the nine first digits should
be equally probable—that is. p(D) = p(2) = -+ = p(9) = é Given the diversity and
the randomness of the numbers, there is no obvious reason why one digit should be more
common than another. Our intuition, though, would be wrong—first digits are nof equally
likely. Indeed, they are not even close to being equally likely!

Credit for making this remarkable discovery goes to Simon Newcomb, a mathematician
who observed more than a hundred years ago that some portions of logarithm tables are
used more than others (77). Specifically, pages at the beginning of such tables are more
dog-eared than pages at the end, suggesting that users had more occasion to look up logs
of numbers starting with small digits than they did numbers starting with large digits.

Almost Afty years later, a physicist, Frank Benford. reexamined Newcomb’s claim in
more detail and locked for a mathematical explanation, What is now known as Benford’s
law asserts that the first digits of many different types of measurements, or combinations
of measurements, often follow the discrete probability model:

1
p(s) = P(1st significant digit is s) = log (1 + ;) , s=1,2,...,9

Table 3.3.2 compares Benford’s law to the uniform assumption that p(s) = %, for all s.
The differences are striking. According to Benford's law, for example, 1s are the most
frequently occurring first digit, appearing 6.5 times (= 0.301/0.046) as often as 9s.
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TABLE 3.3.2

“Uniform” Law Benford’s Law

Y

1 0.111 0.301
2 0.111 0.176
3 0111 0.125
4 0.111 0.097
5 0.111 0079
6 0111 0.067
7 0.111 0.058
8 0.111 0.051
9 0.111 0.046

Comment. A key to why Benford’s law is true are the differences in proportional
changes associated with each leading digit. To go from one thousand to two thousand, for
example, represents a 100% increase; to go from eight thousand to nine thousand, on the
other hand, is only a 12.5% increase. That would suggest that evolutionary phenomena
such as stock prices would be more likely to start with 1s and 2s than with 8s and 9s—and

they are. Still, the precise conditions under which p(s) = log (1 + 1) ,s=1,2,....9are
Y

not fully understood and remain a topic of research.

EXAMPLE 3.3.4
Is

)= —1 A 0,1,2,...; A>0
p(“)"1+1(1+a)"‘_”""’ =
a discrete probability function? Why or why not?

To qualify as a discrete probability function, a given p(s) needs to satisfy Parts (a) and
(b) of Definition 3.3.1. A simple inspection shows that Part (a) is satisfied. Since A > 0,
pls) is, in fact, greater than or equal to O for all s = 0, 1,2,... Part (b) is satisfied if the
sum of all the probabilities defined on the outcomes in § is I. But

(0] 1 }‘ 5
2 ”(S)=21+A(1+A)

allses s=0
1 1
= hy?
L+x), A Wy
1+ 2
_ 1 14+ A
14 A 1
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ihe answer, then, is “yes"—p(s} = 57 (1 n ).) ,s =0.1,2, ... & » 0 does
qualify as a discrete probability function. Of course, whether it has any practical value
depends on whether the set of values for p(s) actually do describe the behavior of
real-world phenomena.

Defining “New"” Sample Spaces

We have seen how the function p(s) associates a probability with each outcome, s, in a
sample space, Related is the key idea that outcomes can often be grouped or reconfigured
in ways that may facilitate problem-solving. Recall the sample space associated with a
series of n independent trials, where each s is an ordered sequence of successes and
failures. The most relevant information in such outcomes is often the number of successes
that occur, not a detailed listing of which trials ended in success and which ended in
failure. That being the case, it makes sense to define a “new” sample space by grouping
the original outcomes according to the number of successes they contained. The outcome
(f, [s-.., ), for example, had 0 successes. On the other hand, there were n outcomes
that yielded 7 success—(s, f, fo ... [ (fo s fooey fhooocand (f, fo..0.5) As we
saw earlier in this chapter, that particular regrouping of outcomes ultimately led to the
binomial distribution.

The function that replaces the outcome (s, f, f, ..., f) with the numerical value /
is called a random variable. We conclude this section with a discussion of some of the
concepts, terminology, and applications associated with random variables.

Definition 3.3.2. A function whose domain is a sample space § and whose values form
a finite or countably infinite set of real numbers is called a discrete random variable.
We denote random variables by upper case letters, often X or Y.

EXAMPLE 3.3.5

Consider tossing two dice, an experiment for which the sample space is a set of ordered
pairs, $ = {(i. ) | i = 1.2,....6; j=1,2,..., 6} For a variety of games ranging from
Monopoly to craps, the sum of the numbers showing is what maiters on a given turn. That
being the case, the original sample space § of thirty-six ordered pairs would not provide
a particularly convenient backdrop for discussing the rules of those games. It would be
better to work directly with the sums. Of course, the eleven possible sums (from two 10
twelve) are simply the different values of the rancdom variable X, where X (i, j) =1 + j.

Comment. In the above example, suppose we define a random variable Xy that gives
the result on the first die and X5 that gives the result on the second die. Then X = Xj + X3,
Note how easily we could extend this idea to the toss of three dice, or ren dice. The ability
to conveniently express complex events in terms of simpler ones is an advantage of the
random variable concept that we will see playing out over and over again.
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The Probability Density Function

We began this section discussing the function p(s), which assigns a probability to each
outcome s in §. Now, having introduced the notion of a random variable X as a real-valued
function defined on S—that is, X(s) = k—we need to find a mapping analogous to p(s)
that assigns probabilities to the different values of k.

Definition 3.3.3. Associated with every discrete random variable X is a probabitity
density function {(or pdf), denoted pyx (k), where

pxtk) = P({s € 5| X(s5) = k})

Note that py (k) = 0 for any k not in the range of X. For notational simplicity, we will
usually delete all references to s and § and wrile px (k) = P(X = k).

Comment. We have already discussed at length two examples of the function py (k).
Recall the binomial distribution derived in Section 3.2. Tf we let the random variable X
denote the number of successes in n independent trials, then Theorem 3.2.1 states that

P(X =k) = px(k) = (:)Pk(i - )"t k=0,1,...,n

A similar result was given in that same section in connection with the hypergeometric
distribution. If a sample of size n is drawn without replacement from an urn containing r
red chips and w white chips, and if we let the random variable X denote the number of
red chips included in the sample, then (according to Theorem 3.2.2),

POX = k) = px(k) = (,';)(n ’ k)/(r . w)

EXAMPLE 3.3.6
Consider again the rolling of two dice as described in Example 3.3.5. Let i and j denote
the faces showing on the first and second die, respectively, and define the random variable
X 10 be the sum of the two faces: X, j) =i + j.Find pxk).

According to Definition 3.3.3, each value of px (k) is the sum of the probabilities of the
outcomes that get mapped by X onto the value £. For example,

PX=3)=pxO)=P(sc S| X(s)=5)
=P(1LHU G4 DU 2.3 U (3, P4
=PL4 + P41 + P23+ P32

1 1 1 1]
=3 3t gt
4

" 36
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TABLE 3.3.3

pxtky k px{b)

1/36 8 5/36
2/36 9 4736
3/36 10 3/36
4/36 11 2/36
5/36 12 1/36
6/36

o B LT A SRR L S

assuming the dice are fair, Values of py (k) for other k are calculated similarly. Table 3.3.3
shows the random variable’s entire pdf.

EXAMPLE 3.3.7
Acme Industries typically produces three electric power generators a day; some pass the
company’s quality control inspection on their first iry and are ready to be shipped; others
need to be retooled. The probability of a generator needing further work is 0.05. If a
generator is ready to ship, the firm earns a profit of $10,000. If it needs to be retooled, it
ultimately costs the firm $2000. Let X be the random variable quantifying the company’s
daily profit. Find px (k).

The underlying sample space here is a set of n = 3 independent trials, where p =
P(generator passes inspection) = 0.95. K the random variable X is to measure the
company’s daily profit, then

X = $10,000 X (no. of generators passing inspection)
— §2,000 % (no. of generators needing retooling)

For instance, X(s, f,5) = 2($10,000) — 1($2,000) = $18,000. Moreover, the random
variable X equals $18,000 whenever the day’s output consists of two successes and one
failure. That is, X (s, f, 5} = X(s, 5, f) = X(f. 5, s). It follows that

P{X = $18.000) = px(18,000) = (;) (0.95)2(0.05)" = 0.135375

TABLE 3.3.4

No. Defectives &k = Profit px(k)

0 $30,000  0.857375
1 $18000 0135375
2 $6,000 0007125
3 —3$6,000 0.000125
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Table 3.3.4 shows px (k) for the four possible values of & ($30,000, $18.000, $6.000, and
~$6,000).

EXAMPLE 3.3.8
As part of her warm-up drill, each player on State’s basketball team is required to shoot
free throws until two baskets are made. If Rhonda has a 65% success rate at the foul line,
what is the pdf of the random variable X that describes the number of throws it takes her
to complete the drill? Assume that individual throws coustitute independent events.
Figure 3.3.1illustrates what must occur if the drillistoend onthe kthtoss,k = 2, 3, 4, ...:
First, Rhonda needs to make exactly one basket sometime during the first k — 1 attempts,
and, second, she needs to make a basket on the kth toss. Written formally,

px{k) = P(X = k) = P(drill ends on kth throw)
= P((1 basket and k-2 misses in first £-1 throws) N (basket on kth throw))
= P(1 basket and -2 misses) - P(basket)

Exactly one basket
Miss Basket Miss Miss Basket
i 7 73 r—1 %
Atiempts
AGURE 3.3.1

Notice that k-1 different sequences have the property that exactly one of the first k-1
throws results in a basket:

B M M M M
T 7 3 4 k=1
M B M M M
k-1 T 2 3 7 =
sequences
M M M M B
i 7 % 7 -1

Since each sequence has probability (0.355-2(0.65),
P(1 basket and k-2 misses) = (k-1)(0.35)% 2(0.65)
Therefore,
px(k) = (-1)(0.352(0.65) - (0.65)
= (-1)(035%2(0.65)2, k=2.3,4,... (334)

Table 3.3.5 shows the pdf evaluated for specific values of k. Although the range of k is
infinite, the bulk of the probability associated with X is concentrated in the values two
through seven: It is highly unlikely, for example, that Rhonda would need more than
seven shots to complete the drill.
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TABLE 3.3.5

px (k)

0.4225
0.2958
0.1553
0.0725
0.0317
0.0133

+  0.0089

W) |

e B e RO I S

Transformations

Transforming a variable from one scale to another is a problem that is comfortably
familar. If a thermometer says the temperature outside is 83°F, we know that the
temperature in degrees Centigrade is 28:

RS £ A
c_(g)(zr 32)w(9)(s3 32) =28

An analogous question arises in connection with random variables. Suppose that X is a
discrete randorm variable with pdf py (k). If a second random variable, ¥, is defined to be
aX + b, where o and b are constants, what can be said about the pdf for ¥?

Theorem 3.3.1. Suppose X is a discrete random variable. Let Y =aX + b, where a and b

y — b
are constants. Then py{(y} = px (} )
€

Proof. py(y) = P(Y = y) = PaX + bxy)mf’(xm), ; b)ﬂ])X(-‘. : b) C

EXAMPLE 3.3.9

Let X be a random variable for which px (k) = % for k = 1,2,...,10. What is the
probability distribution associated with the random variable ¥, where ¥ = 4X — 17 That
is, find py(y).
From Theorem 33.1, P(¥Y = y) = PMAX — 1 = y) = P{X = (» + 1)/4) =
¥+ 1

F3% ., which implies that py(y) = }_1@ for the ten values of (v + 1)/4 that

equal 1,2,...,10. But (¥ + 1)/4 =1 when y = 3, (y + 1}/4 = 2when vy =7,....
(y + 1)/4 = 10 when y = 39. Therefore, py(y) = {5, for v =3,7,...,39.
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The Cumulative Distribution Function

In working with random variables, we frequently need to calculate the probability that the
value of a random variable is somewhere between two numbers. For example, suppose
we have an integer-valued random variable. We might want to calculate an expression
like P(s < X < £). if we know the pdf for X, then

)
Ps<X<t)=) px(k).
k=s
but depending on the nature of px(k) and the number of terms that need to be added,
calculating the sum of px(k) from k = s to £ = ¢ may be quite difficult. An alternate
strategy is to use the fact that

Pe<X<t)=PX<t) — PX=s -1

where the two probabilities on the right represent curmudative probabilities of the random
variable X. If the latter were available (and they often are), then evaluating P(s < X < 1)
by one simple subtraction would clearly be easier than doing all the calculations implicit
1
in 3 px(k)-
k=g
Definition 3.3.4. Let X be a discrete random variable. For any real number ¢, the
probability that X takes on a value <1 is the cumulative distribution function {cdf)
of X (written Fx{(1)). In formal notation, Fx(r) = P({s € § | X(s) < #]). As was
the case with pdfs, references to s and S are typically deleted, and the cdf is written
Fy(ty = P(X <1).

EXAMPLE 3.3.10

Suppose we wish to compute P(Z1 = X < 40) for a binomia! random variable X
with n = 50 and p = 0.6. From Theorem 3.2.1, we know the formula for px(k), so
P(21 = X =< 40) can be written as a simple, although computationally cumbersome, sum:

40

k=21

Equivalently, the probability we are looking for can be expressed as the difference
between two cdfs:
P21 < X <40) = P(X <40) — P(X <20) = Fx(40) — Fx(20)

As il turns out, values of the cdf for a binomial random variable are widely available,
both in books and in computer software. Here, for example, Fx(40) = 0.9992 and
Fx(20) = 0.0034, s0
P21 < X <40) =0.9992 — 0.0034
= 0.9958
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EXAMPLE 3.3.11
Suppose that two fair dice are rolled. Let the random variable X denote the larger of the
two faces showing: (a) Find Fx(0) forr =1,2,..., 6 and (b) Find Fx(2.5).

a. The sample space associated with the experiment of rolling two fair dice is the set
of ordered pairs, s == (i, j), where the face showing on the first die is { and the face
showing on the second die is j. By assumption, all 36 possible outcomes are equally
likely. Now, suppose ¢ is some integer from 1 to 6, inclusive. Then

Fx(ty = P(X <1)
= P(Max (i, j) < 1)
= P <t and j<it)  (whyD)

=Pl <ty P(j=<1) (why?)
ot

6 6

2

=5 1=1,2,3,4,56

b. Even though the random variable X has non-zero probability only for the integers
1 through 6, the cdf is defined for any real number from —oc to +oo. By definition,
Fx(2.5) = P(X < 2.5). But

PX<25)=P(X<2) + PQ < X <2.5)
=Fx@)+ 0
S0
2?1
N=Fy@)=—=-
Fx(2.5) x(2) 360

What would the graph of Fy (1) as a function of ¢ look like?

QUESTIONS

3.3.1. An urn contains five balls numbered 1 to 5. Two balls are drawn simultaneously.
(a) Let X be the larger of the two numbers drawn. Find py (k).
(b) Let V be the sum of the two numbers drawn. Find py (k).

3.3.2. Repeal Question 3.3.1. for the case where the two balls are drawn with replacement.

3.3.3. Suppose a fair dic is tossed three times. Let X be the largest of the three faces that
appear. Find p, (k).

3.3.4. Suppose 2 fair die is tossed three times. Let X be the number of different faces that
appear (so X = 1,2, or 3). Find p. (k).

3.3.5. A fair coin is Ltossed three times. Let X be the number of heads in the tosses minus the
number of tails. Find p, k).

3.3.6. Suppose die one hasspots 1. 2, 2, 3. 3, 4 and die two has spots 1, 3,4, 5, 6, 8. If both dice
are rolted, what is the sample space? Let X = total spots showing. Show that the pdf for
X is the same as for normal dice.
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3.3.7. Supposc a particle moves along the x-axis beginning at 0. It moves one integer step to
the left or right with equal probability. What is the pdf of its position after 4 steps?
3.3.8. How would the pdf asked for in Question 3.3.7. be affected if the particle was twice as
likely to move to the right as to the lef?
3.3.9. Supposc that {ive people, including you and a {riend, line up at random. Let the random
variable X denote the number of people standing between you and your friend. What
is p, (k)7
3.3.10, Usrn T and Urn IT each have two red chips and two white chips. Two chips are drawn
simultaneously from cach urn. Let Xy be the number of red chips in the first sample
and X, the number of red chips in the second sample. Find the pdf of Xy + Xo.
3.3.11. Suppose X is a binomial random variable with n = 4 and p = % What is the pdf of
X + 17
3.3.12. Find the cdf for the random variable X in Question 3.3.3.
3.3.13. A fair die is rolled four times. Let the random variable X denote the number of 6's that
appear. Find and graph the cdf for X.
33.04. Atthe pointsx = (0, 1,..., 6, the odf for the diseretle random variable X has the value
Fx(xy = x{x + 1}/42. Find the pdf for X.
3.3.15. Find the pdf for the discrete random variable X whose cdf at the pointsx = 0.1, ..., 6
is given by Fy(x) = x¥/216.

CONTINUOUS RANDOM VARIABLES

The statement was made in Chapter 2 that all sample spaces belong to one of two generic
types—discrete sample spaces are ones that contain a finite or a countably infinite number
of outcomes and continuous sample spaces are those that contain an uncountably infinite
number of oulcomes. Rolling a pair of dice and recording the faces that appear is an
experiment with a discrete sample space; choosing a number at random from the interval
[0, 1] would have a continuous sample space.

How we assign probabilities to these two Lypes of sample spaces is different. Section 3.3
focussed on discrete sample spaces. Each outcome s is assigned a probability by the
discrete probability function p{s). If a random variable X is defined on the sample space,
the probabilities associated with its outcomes are assigned by the probability density
function px (k). Applying those same definitions, though, to the outcomes in a continuous
sample space will not work. The fact that a continuous sample space has an uncountably
mnfinite number of outcomes eliminates the option of assigning a probability to each peint
as we did in the discrete case with the function p(s). We begin this section with a particular
pdf defined on a discrete sample space that suggests how we might define probabilities, in
general, on a continuous sample space.

Suppose an electronic surveillance monitor is turned on briefly at the beginning of
every hour and has a (0.905 probability of working properly, regardless of how long it has
remained in service. I we let the random variable X denete the hour at which the monitor
first fails, then px (k) is the product of & individual probabilities:

px (k) = P(X = k) = P{moenitor fails for the first time at the kth hour)
= P({monitor functions properly for first £ — L hours N monitor fails at the kth hour)

= (0905 10.095), k=1,2,3,...
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FiGURE 3.4.1

Figure 3.4.1 shows a probability histogram of py (k) for & values ranging from 1 to 21,
Here the height of the kth bar is px(k), and since the width of each bar is 1, the area of
the kth bar is also py (k).

Now, look at Figure 3.4.2, where the exponential curve y = 0.1e is superimposed
on the graph of py (k). Notice how closely the area under the curve approximates the
area of the bars. It follows that the probability that X lies in some given interval will be
numerically similar to the integral of the exponential curve above that same interval.

For example, the probability that the monitor fails sometime during the first four hours
would be the sum

~£).1x

4
PO<X<d=)_ px(k)
k=f)

4
= (0.905/1(0.095)
k==f)
= 03297

To four decimal places, the corresponding area under the exponential curve is the same:

4
f 0.1~ %1 gy = 0.3297
4]

Implicit in the similarity here between py (k) and the exponential curve y = 0.1e 01x

is our sought-after alternative to p(s) for continuous sample spaces. Instead of defining
probabilities for individual points, we will define probabilities for infervals of points, and
those probabilities will be areas under the graph of some function {such as y = 0.1e~01%),
where the shape of the function will reflect the desired probability “measure” to be
assuciated with the sample space.
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FGURE 3.4.2

Definition 3.4.1. A probability function P on a set of real numbers § is called conti-
nuous if there exists a function f(t) such that for any closed interval [q,b] C S,

Pda,b]) = [ r(0)de.

Comment. Ifa probability function P satisfies Definition3.4.1, then P(A) = f, f(r)dr
for any set A where the integral is defined.
Conversely, suppose a function f(f) has the two properties

1. f(t)>0forallt
2. [Z f@ydt =1
If P(A) = [, f(t)dtforall A, then P will satisfy the probability axioms given in Section 2.3.

Choosing the Function 1)

We have seen that the probability structure of any sample space with a finite or countably
infinite number of outcomes is defined by the function p{s) = P(outcome is 5). For
sample spaces having an uncountably infinite number of possible outcomes, the function
F(#) serves an analogous purpose. Specifically, f (1) defines the probability structure of §
in the sense that the probability of any inferval in the sample space is the integral of f(t).
The next set of examples illustrate several different choices for f{z).

EXAMPLE 3.4.1

The continuous equivalent of the equiprobable preobability model on a discrete sample
space is the function f(z) defined by f(r) = 1/(b — a) for all r in the interval [a, b] (and
F(6) = 0, otherwise). This particular f(f) places equal probability weighting on every
closed interval of the same length contained in the interval [a, b]. For exampie, suppose
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Probability
density

FIGURE 34.3

a=F0and b = 10, and let A = [1.3] and B == [6, 8]. Then f(¢) = %ﬁ, and

_ 371 2 871

(see Figure 3.4.3).

EXAMPLE 3.4.2
Could 7(1) = 32,0 <t < 1 be used to define the probability function for a continuous
sample space whose outcomes consisted of all the real numbers in the interval [0, 1]? Yes,
because (1) £(¢t) > Ofor all ¢, and (2) f(: fd= j(: 32 dt = z3|3) =1,

Notice that the shape of f(¢) (see Figure 3.4.4) implies that outcomes close to 1 are more

fikely to occur than are outcomes close to 0. Forexamptle, P{(|0, %]) = 01 P32 dr =3 | {1]/ ? =

. vhile P(3.1D) = f30dt =2 flo=1- £ =F.

3

Probability 2
density

FIGURE 3.4.4

EXAMPLE 3.4.3

By far the most important of all continuous probability functions is the “bell-shaped”
curve, known more formally as the normal (or Gaussian) distribution. The sample space
for the normal distribution is the entire real line; its probability function is given by

1t — pu\?
exp -5 o , —o<t<oo —-W<p<oo o>0

1
fy= N
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u=-4
=035
#=3
=1
iy)] p=0
=15
= t
—4 ¢ 3
FIGURE 3.4.5

Depending on the values assigned to the parameters u and o, f{f) can take on a variety
of shapes and locations; three are illustrated in Figure 3.4.5.

Fitting Kt) to Data: The Density-Scaled Histogram

The notion of using a continuous probability function to approximate an integer-valued
discrete probability model has already been discussed (recall Figure 3.4.2). The “trick”™
there was to replace the spikes that define py (k) with rectangles whose heights are py (k)
and whose widths are one. Doing that makes the sum of the areas of the rectangles
corresponding to pyx(k) equal to one, which is the same as the total area under the
approximating continuous probability function. Because of the equality of those two
areas, it makes sense to superimpose (and compare) the “histogram” of py(k) and the
continuous probability function on the same set of axes.

Now, consider the related, but slightly more general, problem of using a continuous
probability function to model the distribution of a set of n measurements, vy, v, ..., va.
Following the approach taken in Figure 3.4.2, we would start by making a histogram
of the n observations. The problem is, the sum of the areas of the bars comprising that
histogram would not necessarily equal one.

As a case in point, Table 3.4.1 shows a set of forty observations. Grouping those y;’s
into five classes, each of width ten, produces the distribution and histogram pictured in
Figure 3.4.6. Furthermore, suppose we have reason to believe that these forty y;’s may be
a random sample from a uniform probability function defined over the interval {20, 70}—
that is,

1 1
TABLE 34.1

33.8 626 423 629 329 589 608 491 426 598
416 545 405 303 224 250 592 675 641 593
249 223 697 412 645 334 390 531 216 460
281 687 27.6 576 548 489 684 384 690 466
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FIGURE 3.4.6

(recall Example 3.4.1). How can we appropriately draw the distribution of the y,’s and
the uniform probability model on the same graph?

Note, first, that f(r) and the histogram are not compatible in the sense that the area
under f(¢} is (necessarily) one (== 50 X g}(—)), but the sum of the areas of the bars making
up the histogram is four hundred:

histogram area = 10(7) -+ 1(6) 4+ 10(9) + 16(8) + 10¢EK)
= 400

Nevertheless, we can “force” the total area of the five bars to match the area under (1)
by redefining the scale of the vertical axis on the histogram. Specifically, frequency needs
to be replaced with the analog of probability density, which would be the scale used on the
vertical axis of any graph of f(r). Intuitively, the density associated with, say, the interval
{20, 30) would be defined as the quotient

7
40 x 10

because integrating that constant over the interval [20, 30) would give ;;%, and the latter
does represent the estimated probability that an observation belongs to the interval
{20, 30).

Figure 3.4.7 shows a histogram of the data in Table 3.4.1 where the height of each bar
has been converted to a density, according to the formula

class frequency
total no. of observations X class width

density {of a class) =

Superimposed is the uniform probability model, f(1) = 5%, 20 < ¢ < 70. Scaled in this
fashion, areas under both f(r) and the histogram are one.

In practice, density-scaled histograms offer a simple, but effective, format for examining
the “fit"” between a set of data and a presumed continuous model. We will use itoften in the
chapters ahead. Applied statisticians have especially embraced this particular graphical
technique. Indeed, computer software packages that inclode Histograms on their menus
routinely give users the choice of putting either frequency or density on the vertical axis.



Section 3.4 Continuous Random Variables 167

0.03 [ Uniform probability
Ci Densit - function

ass CISItY ool
20<y < 30 7/[40(10)] =0.0175 Density B
30<y <40  6/[40(10)] = 0.0150 o0}
<y < 50 9/[40(10)] = 0.0225 i
50<y < 60 8/[40(10)] = 0.0200 ol Ly
60<y < 70 10/[40(10)] = 0.0250 20 30 4 50 6

FIGURE 3.4.7

CASE STUDY 3.4.1

Years ago, the V803 transmitter tube was standard equipment on many aircraft radar
systems. Table 3.4.2 summarizes part of a reliability study done on the V805; listed
are the lifetimes (in hrs) recorded for 903 tubes (37). Grouped into intervals of width
cighty, the densities for the nine classes are shown in the last column.

TABLE 3.4.2

Lifetime (hrs) Number of Tubes Density

0-80 317 0.0044
80160 230 0.0032
160240 118 0.0016
240-320 93 0.0013
320-400 49 0.0007
400480 33 0.0005
480560 17 0.0002
560-700 26 0.0002
700+ 20 0.0002
903

Experience has shown that lifetimes of electrical equipment can often be nicely
modeled by the exponential probability function,

fFO=xM, 150

where the value of A (for reasons explained in Chapter 5) is set equal to the reciprocal
of the average lifetime of the tubes in the sample. Can the distribution of these data
aiso be described by the exponential model?

One way to answer such a question is to superimpose the proposed model on a
graph of the density-scaled histogram. The extent to which the two graphs are similar
then becomes an obvious measure of the appropriateness of the model.

{Continued on next page)
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(Case Studdy 3.4.1 continued)
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FIGURE 3.4.8

For these data, A would be 0,0056, Figure 3.4.8 shows the function

F() = 0.0056¢ 00056/

plotted on the same axes as the density-scaled histogram. Clearly, the agreement is
excellent, and we would have no reservations about using areas under f(¢) to estimate
lifetime probabilities. How likely is it, for example, that a V805 tube will last longer
than five hundred hrs? Based on the exponential model, that probability would be
0.0608:

O
P(V805 lifetime exceeds 500 hrs) = f 0.0056¢ 00565 gy,
506)

—~(LOD36y |00 —(.0056{500 —-2.8
= —e }|5ﬁ0 m e OB e @ == (L.OOG0R

Continuous Probability Density Functions

We saw in Section 3.3 how the introduction of discrete random variables facilitated the
solution of certain problems. The same sort of function can also be defined on sample
spaces with an uncountably infinite number of outcomes. In practice, continuous random
varighles are often simply an identity mapping, so they do not radically redefine the
sample space in the way that a binomial random variable does. Nevertheless, it helps to
have the same notation for both kinds of sample spaces.

Definition 3.4.2. A function ¥ that maps a subset of the real numbers into the real
numbers is called a continuous random variable. The pdf of ¥ is the function fy(y)
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having the property that for any numbers ¢ and b,

b
Pla=Y =b) =[ fr(ndy

EXAMPLE 3.4.4

We saw in Case Study 3.4.1 that lifetimes of V805 radar tubes can be nicely modeled by
the exponential probability function,

F() = 0.0056¢~ %% 4 0

To couch that statement in randon variable notation would simply require that we define
Y 10 be the life of a VB80S radar tube. Then Y would be the identity mapping and the pdf
for the random variable ¥ would be the same as the probability function, £{t). That is, we
would wrile

fr(3) = 0.0056e 0950y > ¢

Similarly, when we work with the bell-shaped normal distribution in later chaplers we
will write the model in random variable notation as

iy =

1
2

EXAMPLE 3.4.5

Suppose we would like a continuous random variable ¥ to *select” a number between
0 and 1 in such a way that intervals near the middle of the range would be more likely
to be represented than intervals pear either 0 or 1. One pdf having that property is the
function fy(y) = 6y(1 — y),0 <y < 1 (see Figure 3.4.9). Do we know for certain that
the function pictured in Figure 3.4.9 is a “legitimate” pdf? Yes, because fy(y) > 0 for all

1
yoand [ 6y — y)dy = 6[y42 — y¥3]|; = L.

Comument.  To simplify the way pdfs are wrillen, it will be assumed that fy{y) = 0
for all y outside the range actually specified in the funtion’s definition. In Example 3.4.5,

) =651 -y)

ok

[ e ML

Probability
density

o}
PSS
e
e

[

FIGURE 3.4.9
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for instance, the statement fy(v) = 6y{1 — ), 0 < v < 1 is to be interpreted as an
abbreviation for

0, y <0
fr)y=q16x0(1 — ¥, 0=y=l
0, v > 1

Continuous Cumulative Distribution Functions

Associated with every random variable, discrete or continuous, is a cumulative distribution
function. For discrete random variables (recall Definition 3.3.4), the cdf is a nondecreasing
step function, where the “jumps”™ occur at the values of # for which the pdf has positive
probability. For continuous random variables, the cdf is a monotonically nondecreasing.
continuous function. In both cases, the ¢df can be helpful in caleulating the probability
that a random variable takes on a value in a given interval. As we will see in later chapters.
there are also several important relationships that hold for continuous cdfs and pdfs, One
such relationship is cited in Theorem 3.4.1.

Definition 3.4.3. The cdf for a continuous random variable Y is an indefinite integral
of its pdf:

Fy(y) = f Jrdr=Pls eS| Y 2yDp=PT <)

(X

Theorem 3.4.1. Let Fy(y) be the cdf of a continuous vandom variable Y. Then
d
d Ey(y) = fr(v)

Progf. The statement of Theorem 3.4.1 follows immediately from the Fundamental
Theorem of Calculus. -

Theorem 3.4.2. Let Y be a contintous random variable with cdf Fy (v). Then
a PV > )=1 — Fp(s)
b. P(r < Y <35)=Fy(s) — Fy(r)
¢ lim Fy(y) =1
oo

d lim Fy(y)=0Q
=0

Proof.
a. P(Y > 5)=1 — P(Y <s)since (Y > s)and (Y < s) are complementary evenls.
But P(Y < s) = Fy(s), and the conclusion follows.
b, Sincetheset ¢ < ¥ <) =(¥ <5} ~ (¥ <r), Pr <Y =5)=P{¥Y <5} ~
P(Y <#) = Fy(s) — Fylr).
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¢ Let {y,} be a set of values of ¥, n = 1,2,3,..., where y, < y,4; for all
n, and lim y, = oo. If lim Fy(y,) = 1 for every such sequence {y,}, then
K300 00

lim Fy(y) = 1. To that end, set A} = (¥ < yp),and let A4, = (1 < ¥ < y,)
Y00

for n = 2,3,... Then Fy(y,) = P(UL_, Ap) = E P{Ay), since the A; are
=1
disjoint. Also, tile sample space § = U2, Ay, and by Axiom 4, 1 = P($) =

P, A) = E P(Ag). Then putting these equalities together gives 1 =
k=1

oG n
gﬂ P(Ay) = lim gﬁ P(Ay) = lim Fy(y,)
d lm Fr(y)= lim P(¥ <y)= lim P(-¥Y > —y)= Lim [1 — P(-¥ < —y)]
Y00 P00 YO0 y——00
=1- lim P(-Y <-y)=1— fm P(-Y <y)
yg”—OO YOG

=1 — ylggoF-Y{};) =0 _ (N

Transformations

If X and Y are two discrete random variables and 2 and b are constants such that
Y = aX + b, the pdf for ¥ can be expressed in terms of the pdf for X. Theorem
3.3.1 provided the details. Here we give the analogous result for a linear transformation
involving two continuous random variables.

Theorem 3.4.3. Suppose X is a continuous random variable. LetY = aX + b, wherea # 0

and b are constants. Then
— b
f Y()’) = —fx ( )

lal

4 Proof. We begin by writing an expression for the cdf of ¥:
Fr(=PY¥ <y)=PaX +b<y)y=PaX <y — b

At this point we need to consider two cases, the distinction being the sign of a. Suppose,
first, that @ > €. Then

Fy(y)=P@aX <y —b)=P(X5y_b)

a

and differentiating Fy(y) vields fy(y):
d d — b 1 - b i — b
fr)=—Fr»)=—F (y ) =~ fx (y ) = —fx (” )
y dy

Ifa < 0,

Fy(y)=P(aX_<.y—b)=P(X .2 "’)=1 - P(ng*”)
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Differentiation in this case gives

d d - 1 b - b
fr(y) = d—Fy(y) = == [E — Fx (:LJ’.)] =—=fx (} ) = if‘x (y )
y dy a a a la] a

and the theorem is proved. t

QUESTIONS
3.4.1. Suppose fy(») =4y>, 0 <y =L Find PO <Y < 3},
3.4.2. For the random variable ¥ withpdf fy(») =% + 2y.0<y <L find P(§ =¥ < 1)

343, Let fy(O) =34, —1 =y = LFind P(lY ~ 11 < %). Draw a graph of fy(y) and show
the area representing the desired probability.

3.4.4, For persons infected with a certain form of malaria, the length of time spent in remission
is described by the continuous pdf fr(y) = 1@ y2,0 < y < 3, where Y is measured in
years. What is the probability that a malaria patient’s remission Jasts longer than one
year?

3.4.5. The length of time, ¥, that a customer spends in line at a bank teller’s window before
being served is described by the exponential pdf fy(y) = 02702 y > 0.

(a) What is the probability that & customer will wait more than 10 minutes?

(b) Suppose the customer will leave if the wait is more than 10 minutes. Assume that
the customer goes to the bank twice next month. Let the random variable X be
the number of times the customer leaves without being served. Caleulate px (1),

3.4.6. Let n be a positive integer. Show that fy(y) = (# + 2)(n + 1" — 3,0 <y = 1,8
a pdf.

3.4.7. Find the odf for the random variable ¥ given in Question 3.4.1. Calculate P(0 < ¥ < %)
using Fy(y).

348, If ¥ is an exponential random variable, fy (y) = re™, y = 0, find Fy(y).

3.4.9. If the pdffor ¥ is

0 lyl = 1

fr= { 1- Dl bis!

find and graph Fy (y).
3.4.30. A continuous random variable ¥ has a cdf given by
0 y<@
Fyh=13y* O0<y <1
I y=1

Find P(% < ¥ < ?—1) two ways—iirst, by using the cdf and second, by using the pdf.
3.4.11. A random variable ¥ has cdf
0 v<l
F{={hy l=y<e
1 e <y
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Find
(a) P(Y < 2)
b P2 <Y <2))
(© P(2<Y <2}
D /(v

3.4.12. The cdf for a random variable ¥ is defined by Fy(y) = Ofor y < 0; Fy(3) = 4y3 — 334
for0<y<Liand Fy(y) =1fory > LFind P(} <Y < 2) by integrating fy (y).

34.13. Suppose Fy(y) = (% + 9,0 < y < 2. Find fy(»).

3.4.14. In a ccrtain country, the distribution of a family’s disposable income, ¥, is described
by the pdf fy(y) = ye™*. y > 0. Find the median of the income distribution—that is,
find the value m such that Fy (m) = 0.5.

3.415. Let ¥ be the random variable described in Question 3.4.3. Define W = 3¥ + 2. Find
Jw(w). For which values of w is fy () # 07

3.4.16. Suppose that fy(y) is a continuous and symmetric pdf, where symmetry is the property
that fy(y) = fy(—y)forall y. Show that P(—a < Y <a) =2Fy(y) — 1.

34.17. Let Y be a random variable denoting the age at which a piece of equipment [ails. In
reliability theory, the probability that an item fails al time v given that it has survived
until time y is called the hazard rate, h(y). In terms of the pdf and cdf,

L vy
Xl oo,

Find k() if ¥ has an exponential pdf (sce Question 3.4.8).

EXPECTED VALUES

Probability density functions, as we have already seen, provide a global overview of
a random variable’s behavior. If X is discrete, py(k) gives P(X = &) for all k; if ¥ is
continuous, and A is any interval, or countable union of intervals, P(Y € A) = f & friy dy.
Detail that explicit, though, is not always necessary—or even helpful. There arc times when
a more prudent strategy is to focus the information contained in a pdf by summarizing
certain of its features with single numbers.

The first such feature that we will examine is cenrral tendency, a term referring to the
“average” value of a random variable. Consider the pdf’s px (k) and fy(y) pictured in
Figure 3.5.1. Although we obviously cannot predict with certainty what values any future
X’s and ¥’s will take on, it seems clear that X values will tend to lic somewhere near, uy,
and Y values, somewherc near iy - In some sense, then, we can characterize py (k) by pyx,

and fy(y) by uy.
pytk)
I o)
E ! | } :
My By

FIGURE 3.5.1
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The most frequently used measure for describing central tendency—that is, for quan-
tifying oy and py—is the expected value. Discussed at some length in this scction and in
Section 3.9, the expected value of a random variable is a slightly more abstract formulation
of what we are already familiar with in simple discrete settings as the arithmetic average.
Here, though, the values included in the average are “weighted” by the pdf.

Gambling affords a familiar illustration of the notion of an expected value. Consider
the game of roulette. After bets are placed, the croupier spins the wheel and declares one
of thirty-eight numbers, 00,0, 1,2, ..., 36, to be the winner. Disregarding what seems to
be a perverse tendency of many roulette wheels to land on numbers for which no money
has been wagered, we will assume that each of these thirty-eight numbers is equally likely
(although only the cighteen numbers 1, 3, 5, ... ., 35 are considered to be odd and only the
eighteen numbers 2, 3, 4, ..., 36 are considered to be even). Suppose that our particular
bet (at “even money”) is $1 on odds. If the random variable X denotes our winnings, then
X takes on the value 7 if an odd number occurs, and —1, otherwise. Therefore,

px(D=PX=1)= % = %
and
px(—D=P(X =-1)= %“g = %
Then % of the t_ me we will win onc dollar and w}mgn of the titne we will lose one dollar.

Intuitively, then, if we persist in this foolishness, we stand to lose, on the average, a little
more than five conts cach time we play the game:

y st _ 9 10
expected” winnings = $1 - ) 4+ (81 - E
= —$0.053 = —5¢

The number —0.053 is called the expected value of X,

Physically, an expected value can be thought of as a center of gravity. Here, for
example, imagine two bars of height }—8 and "1% positioned along a weightless X-axis at
the points ~1 and +1, respectively (see Figure 3.5.2). If a fulcrum were placed at the
point —0.053, the system would be in balance, implying that we can think of that point as
marking off the center of the random variable’s distribution.

—0.053

FIGURE 3.5.2
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If X is a discrete random variable taking on each of its values with the same probability,
the expected value of X is simply the everyday notion of an arithmetic average or mean:

1 1
expectedvalueofX:Zk - = —Zk

anxe 7T P

Extending this idea to a discrete X described by an arbitrary pdf, py (k), gives

expected value of X = Zk - px(k) (351
allk

For a continuous random variable, Y, the summation in Equation 3.5.1 is replaced by an
integration and k - px(k) becomes y - fy(y).

Definition 3.5.1. Let X be a discrete random variable with probability function py (k).
The expected value of X is denoted E(X) (or sometimes y or uy) and is given by

EX)=p=px=) k- pxk)
allk

Similarly, if ¥ is a continuous random variable with pdf fy (),

O

E(Y)=p =y = f v - fe()dy

—0C

Comment. We assume that both the sum and the integral in Definition 3.5.1 converge
absolutely:

3 lpx () < oo f v () dy < oo

all & -0

If not, we say that the random variable has no finite expected value. One immediate
reason for requiring absolute convergence is that a convergent sum that is not absolutely
convergent depends on the order in which the terms are added, and order should obviously
not be a consideration when defining an average.

EXAMPLE 3.5.1
Suppose X is a binomial random variable with p = % andn = 3. Then px(k) = P(X =

6 =)V (Y, k=0,1,2,3. What is the expected value of X?
Applying Definition 3.5.1 gives

wo-fr 06 ()

64 240 300 125 1215 5 5
= () (%) + (1) (‘772}3) + (2) (@) + (3) (@) = E7T) = 3 =3(§)
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Comment. Notice that the expected value here reduces to five-thirds, which can be
written as three times five-ninths, the latter two factors being » and p, respectively. As
the next theorem proves, that relationship is not a coincidence.

Theorem 3.5.1, Suppose X is a binomial random variable with parameters n and p. Then
E(X)=np.

Proof. According to Definition 3.5.1, E(X) for a binomial random variable is the sum

n #
EX)=) k- prk):Zk(Z)pk(f - py*
k=0 k=)

i k - ﬂ! k k
=3 ey P = P
£k — !
H

= n k _— n—k
_,; & =D — P P (35.2)

At this point, a trick is called for. If E(X) = ¥ g(k) can be factored in such a way
all &
that E(X) = h ¥ pys+(k), where px«(k) is the pdf for some random variable X”, then
altk
E(X) = h, since the sum of a pdf over its entire range is one. Here, suppose that np is

factored out of Equation 3.5.2. Then

Now, let j =& — 1. It follows that
whin -1y i1
E(X)= npz ( . )p.I(1 _ p)n—‘;_.
=N 7
Finally, lettingm = n — 1 gives
Tl ) .
E(X)=npy ( ) i1 — pytd
=0 M
and, since the value of the sum is 1 (why?),

E(X)=np (3.5.3)
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Comment. The statement of Theorem 3.5.1 should come as no surprise. If a multiple-
choice test, for example, has one hundred questions, each with five possible answers, we
would “expect” to get twenty correct, just by guessing. But if the random variable X
denotes the number of correct answers (out of one hundred), 20 = E(X) = 100(%) = np.

EXAMPLE 3.5.2

An urn contains nine chips, five red and four white. Three are «drawn out at random

without replacement. Let X denote the number of red chips in the sample. Find E(X).
From Section 3.2, we recognize X to be a hypergeometric random variable, where

&)
WG 5)

3
EX)y=) k- et
=0

4 30 40 10
o (&) + )+ o(8) 1o )

P(X=k)=pxk) =

Therefore,

| L

Comment. As was true in Example 3.5.1, the value found here for E(X) suggests
a general formula—in this case, for the expected value of a hypergeometric random
variable,

Theorem 3.5.2, Suppose X is a hypergeometric random variable with parameters r, w, and
n. That is, suppose an urn contains r red balls and w white balls. A sample of size n is
drawn simultaneously from the urn. Let X be the number of red balls in the sumple. Then

E(X) =

r4ow
Proof. See Question 3.5.25. [

Comment. 1ct prepresent the proportion of red balls in an umn—that is, p = d ,

r+w
The formula, then for the expected value of a hypergeometric random variable has the
same structure as the formula for the expected value of a binomial random variable:
rn r

E(Xy= =n =
X ro4+w ¥+ w np
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EXAMPLE 3.5.3

Among the more common versions of the “numbers” racket is a game called D.J., its name
deriving from the fact that the winning ticket is determined from Dow Jones averages.
Three sets of stocks are used: Industrials, Transportations, and URilities. Traditionally,
the three are quoted at two different times, 11 a.m. and noon. The last digits of the earlier
quotation are arranged to form a three-digit number; the noon quotation generates a
second three-digit number, formed the same way. Those two numbers are then added
together and the last three digits of that sum become the winning pick. Figure 3.5.3 shows
a set of quotations for which 906 would be declared the winner.

11 A M ghotation Noor guotation
Industrials 845,611 Industrials 84817,
‘Transportation 375217 Transportation 370.73

Urtilities 110.613) Utilities 110.6:3)

173+ 733
[}

906 = Winning number

FIGURE 3.5.3

The payoff in D.J. is 700 to 1. Suppose that we bet $5. How much do we stand to win,
or lose, on the average?

Let p denote the probability of our number being the winner and let X denote our
earnings. Then

_ ]$3500  with probability p
T 1-$5  with probability 1 ~ p

EX)=$3500 - p — $5 - (1 — p)

Qur intuition would suggest (and this time it would be correct!) that each of the possible
winning numbers, 000 through 999, is equally likely. That being the case, p = 1/1000 and

1 999
(X)) = =) - %5 [ =815
E(X) = $3500 (IOOO) $5 (1000) $1.50

On the average, then, we lose $1.50 on a $5.00 bet.

EXAMPLE 3.5.4

Suppose that fifty people are to be given a blood test to see who has a certain disease. The
obvious Iaboratory procedure is to examine each person’s blood individually, meaning
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that fifty tests would eventually be run. An alternative strategy is to divide each person’s
blood sample into two parts—say, A and B. All of the A’s would then be mixed together
and treated as one sample. If that “pooled” sample proved to be negative for the disease,
all fifty individuals must necessarily be free of the infection, and no further testing would
need to be done. If the pooled sample gave a positive reading, of course, all fifty B samples
would have to be analyzed separately. Under what conditions would it make sense for a
laboratory to consider pooling the fifty samples?

In principle, the pooling strategy is preferable (i.e., more economical) if it can sub-
stantially reduce the number of tests that need to be performed. Whether or not it can
depends ultimately on the probability p that a person is infected with the disease.

Let the random variable X denote the number of tests that will have to be performed
if the samples are pooled. Clearly,

X — 1 if none of the fifty is infected
" 151 if at least one of the fifty is infected

But
P(X =1) = px(1) = P(none of the fifty is infected)
= - py%
(assuming independence), and
PX=5D=px(S)=1 - PX=1=1—- (1 — py°
Therefore,
EX)=1-0-p°+51-[1--p¥

Table 3.5.1 shows E(X) as a function of p. As our intuition would suggest, the pooling
strategy becomes increasingly feasible as the prevalence of the disease diminishes. If the
chance of a person being infected is 1 in 1000, for example, the pooling strategy requires an
average of only 3.4 tests, a dramatic improvement over the 50 tests that would be needed
if the samples were tested one by.one. On the other hand, if 1 in 10 individuals is infected,
pooling would be clearly inappropriate, requiring more than 50 tests [E(X) = 50.7].

TABLE 3.5.1

P E(X)
0.5 51.0
0.1 50.7
0.01 20.8
0.001 3.4

(.0001 1.2
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EXAMPLE 3.5.5
Consider the following game. A fair coin is flipped until the first tail appears; we win $2
if it appears on the first toss, $4 if it appears on the second toss, and, in general, $2% if it
first occurs on the kth toss. Let the random variable X denote our winnings. How much
should we have to pay in order for this to be a fair game? [Note: A fair game is one where
the difference between the ante and E(X) is 0.]

Known as the St. Petersburg paradox, this problem has a rather unusual answer. First,
note that

1
px(2) = P(X =2 = s k=12

Therefore,

O

1

EQ) =Y 2px@=) 2" - F=1+1+1+
allk kil

which is a divergent sum. That is, X does not have a finite expected value, so in order for
this game to be fair, our ante would have to be an infinite amount of money!

Comment. Mathematicians have been trying to “explain” the St. Petersburg paradox
for almost two hundred years (56). The answer seems clearly absurd—no gambler would
consider paying even $25 to play such a game, much less an infinite amount—yet the
computations involved in showing that X has no finite expected value are unassailably
correct. Where the difficulty lies, according to one common theory, is with our inability to
put in perspective the very small probabilities of winning very large payoffs. Furthermore,
the problem assumes that our opponent has infinite capital, which is an impossible state
of affairs. We get a much more reasonable answer for E(X) if the stipulation is added
that our winnings can be at most, say, $1000 (see Question 3.5.19) or if the payolfs are
assigned according to some formula other than 2* (see Question 3.5.20).

Comment. There are two important lessons to be learned from the St. Petersburg
paradox. First is the realization that £(X) is not necessarily a meaningful characterization
of the “location” of a distribution. Question 3.5.24 shows another situation where the
formal computation of E(X) gives a similarly inappropriate answer. Second, we need
to be aware that the notion of expected value is not necessarily synonymous with the
concept of worth. Just because a game, for example, has a positive expected value—even
a very large positive expected value—does not imply that someone would want to play
it. Suppose, for example, that you had the opportunity to spend your last $10,000 on a
sweepstakes ticket where the prize was a billion dollars but the probability of winning was
only 1 in 10,000. The expected value of such a bet would be over $90,000,

9,999 )

E(X)= $1,000,000,{)0{3( 10,000

10,000) + (—$10,000) (

= $90,001
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but it is doubtful that many people would rush out to buy a ticket. (Economists have
long recognized the distinction between a payoff's numerical value and its perceived
desirability. They refer to the latter as wtility.)

EXAMPLE 3.5.6

The distance, ¥, that a molecule in a gas travels before colliding with another molecule
can be modeled by the exponential pdf

= ——e D yz0

where p is a positive constant known as the mean free path. Find E(Y).
Since the random variable here is continuous, its expected value is an integral:

1
E(Y) = f y—e Yt dy
0 H
Let w = y/u, so that dw = 1/ dy. Then E(Y) = ujg)oowe“wdw. Setting # = w and
dv = ¢ ¥dw and integrating by parts gives

EQY)=pl-we™ — e =p (35.4)

Equation 3.5.4 shows that y is aptly named—it does, in fact, represent the average
distance a molecule travels, free of any collisions. Nitrogen (Nz), for example, at room
temperature and standard atmospheric pressure has g = (0.00005 cm. An Ny molecule,
then, travels that far before colliding with another N» molecule, on the average.

EXAMPLE 3.5.7
One continuous pdf that has a number of interesting applications in physics is the Rayleigh
distribution, where the pdf is givcn by

frn = *3’2[2"2, a>0 0<y<o (3.5.5)

Calculate the expected value for a random variable having a Rayleigh distribution.
From Definition 3.5.1,

E@) = f y - L2 gy
[1} a
Let v = y/(+/Za). Then

E(Y)—zfaf Pe "y

The integrand here is a special case of the general form v?* e . Fork = 1,

0o co,
f e gy f 2o gy — }_ﬁ
0 0 4
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Therefore,

E(Y) =2+2a - %«/E
=a/n/2

Comment. The pdf here is named for John William Strutt, Baron Rayleigh, the
nineteenth- and twentieth-century British physicist who showed that Equation 3.5.5 is the
solution to a problem arising in the study of wave motion. I two waves are superimposed,
it is well known that the height of the resultant at any tirse 1 is simply the algebraic sum
of the corresponding heights of the waves being added (see Figure 3.5.4). Seeking to
extend that notion, Rayleigh posed the following question: H n waves, each having the
same amplitude # and the same wavelength, are superimposed randomly with respect to
phase, what can we say about the amplitude R of the resultant? Clearly, R is a random
variable, its value depending on the particular collection of phase angles represented by
the sample. What Rayleigh was able to show in his 1880 paper {173} is that when n is
Iarge, the probabilistic behavior of R is described by the pdf

mrz/m‘zz

fg(r):n—hi-e 5 F

which is just a special case of Equation 3.5.5 with a = /2/nk?.

_~Resultant

FIGURE 3.5.4

A Second Measure of Central Tendency: The Median

While the expected value is the most frequently used measure of a random variable’s
central tendency, it does have a weakness that sometimes makes it misleading and
inappropriate. Specifically, if one or several possible values of a random variable are
either much smaller or much larger than all the others, the value of 1 can be distorted
in the sense that it no longer reflects the center of the distribution in any meaningful
way. For example, suppose a small community consists of 2 homogeneous group of
middie-range salary earners, and then Bill Gates moves to town. Obviously, the town’s
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average salary before and after the multibillionaire arrives will be guite different, even
though he represents only one new value of the “salary” random variable,

It would be helpful to have a measure of central tendency that was not so sensitive to
“outliers” or to probability distributions that are markedly skewed. One such measure is
the median, which, in effect, divides the area under a pdf into two equal areas.

Definition 3.5.2. If X is a discrete random variable, the median, m, is that point for
which P(X < m) = P(X > m). Intheevent that P(X < m) = 0.5and P(X = m') = 0.5,
the median is defined to be the arithmetic average, (m + m')/2.

If ¥ is a continuous random variable, its median is the solution to the integral

equation, 7 fy(y)dy = 0.5.

EXAMPLE 3.5.8

If a random variable’s pdf is symmetric, both u and m will be equal. Should pyx (k) or fy(y)
not be symmetric, though, the difference between the expected value and the median can
be considerable, especially if the asymmetry takes the form of extreme skewness. The
situation described here is a case in point.

Soft-glow makes a 60-watt light bulb that is advertised to have an average life of
one thousand hours. Assuming that that performance claim is valid, is it reasonable for
consumers to conclude that the Soft-glow bulbs they buy will last for approximately
one-thousand hours?

No! If the average life of a bulb is one thousand hours, the (continuous) pdl, fy(y),
modeling the length of time, ¥, that it remains lit before burning out is kikely to have the
form

fr) =0001e 000y 5 ¢ (3.5.6)

{for reasons explained in Chapter 4). But Equation 3.5.6 is a very skewed pdf, having a
shape much like the curve drawn in Figure 3.4.8. The median for such a distribution will
lie considerably to the left of the mean.

More specifically, the median lifetime for these bulbs—according to Definition 3.5.2—is
the value m for which

"
f 0.001e~" gy = 0.5
O

But [y 0.001e 90dy =1 — ¢=000m_ Seqring the latter equal to 0.5 implies that
m = (1/—0.001} In(0.5) = 693

So, even though the average life of a bulb is 1000 hours, there is a 50% chance that the
one you buy will last less than 693 hours.
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QUESTIONS

3.5.1. Recall the game of Keno described in Example 3.2.5. The following are all the payoffs
on a $1 wager where the player has bet on 10 numbers. Calculate E(X), where the

random variable X denotes the amount of money won.

Number of Correct Guesses  Payoff  Probability
<5 -$ 1 935
5 2 0514
6 18 0115
7 180 0016
8 1,300 135 x 1074
9 2,600 6.12 x 100
10 10,000 112 X 10~7

3.5.2. Cracker Jack first appeared in 1893 at the Chicago World’s Fair. Enormously popular
ever since (250 million boxes are sold each year), the snack owes more than a little
of its success, especially with children, 10 the toy ncluded in each box. When a pew
Nuity Deluxe flavor was infroduced in the mid-1990s, that familiar marketing gimmick
was raised to a new level. Placed in one box was a certificate redeemable for a $10,000
ring; in 30 other boxes were certificates for a Breakfast at Tiffeny’s video {2 movie in
which the leading character, Holly Golightly, finds her engagement ring in a Cracker
Jack box); the usual toys and puzzles were put in all the other boxes (183). Calculate
the expected valoe of the prize in a box of Nutty Deluxe Cracker Jack. Assume that
5 million boxes were distributed during that first year. Also, assumne that each video was

worth $30 and each other prize 1.2¢.

3.53. The pdf describing the daily profit, X, earncd by Acme Industries was derived in
Example 3.3.7. Find the company’s average daily profit.

3.58.4. Inthe game of redball, two drawings are made without replacement from a bowl that has
four white ping-pong balls and two red ping-pong balls. The amount won is determined
by how many of the red balls are selected. For a $5 bet, a player can opt to be paid
under either Rule A or Rule B, as shown. If you were playing the game, which would

you choose? Why?
A B
No. of Red No. of Red
Balls Drawn  Payoff Balls Drawn  Payoff
0 0 0 0
1 $2 1 $1
2 $10 2 $20

3.5.5. Recall the telemarketing campaign launched by the Wipe Your Feet carpet cleaning
company described in Fxample 3.2.8, On the average, how many new customers would
that effort identify? How many calls would they have {o make in order to find an average

of 100 new customers?
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3.5.6. A manufacturer has 100 memory chips in stock, 4% of which are Hkely to be defective
(based on past experience). A random sample of 20 chips is selected and shipped to
a factory that assembiles laptops. Let X denote the number of computers that receive
faulty memory chips. Find E(X).

3.5.7. Records show that 642 new students have just entered a certain Florida school district.

Of those 642, a total of 125 are not adequately vaccinated. The district’s physician has

scheduled a day for students to receive whatever shots they might need. On any given

day, though, 12% of the district’s students are likely to be absent. How many new
students, then, can be expected to remain inadequately vaccinated?

Calculate E(Y)} for the following pdf’s:

@ froN=301-y»0=<y=<1

®) fr() =dye P, y=0

7 U=y=l
© =1L 2<y<3
0, elsewhere

(d fr(y)=siny, 0=zy=<?

3.5.9. Recall Question 3.4.4, where the length of time ¥ (in years) that a malaria patient
spends in remission has pdf fy(y) = % y2,0 <y < 3. What is the average length of time
that such a patient spends in remission?

3.5.10. Let the random variable ¥ have the uniform distribution over [4, b]; thatis fy (y) = bi—a
fora < y < b. Find E(Y) using Definition 3.5.1. Also, deduce the value of E(Y), knowing
that the expected value is the center of gravity of fy(y).

3.5.11. Show that the expected value associated with the exponential distribution, fy(y) =
Le™™ .y = 0,is 1/A, where A is a posilive constant.

3.5.12. Show that

358

i
fY(Y):ﬁs y=1

is a valid pdf but that ¥ does not have a finite expected value,

3.5.13. Based on recent experience, 10-year-old passenger cars going through a motor vehicle
inspection station have an 80% chance of passing the emissions test. Suppose that 200
such cars will be checked out next week. Write two formulas that show the number of
cars that are expected to pass.

3.5.14. Suppose that 15 observations are chosen at random from the pdf fy(y) = 3y%,0 <
y < 1. Let X denote the number that lie in the interval (32 1). Find E(X).

3.5.15. A city has 74,806 registcred antomobiles. Each is required to display a bumper decal
showing that the owner paid an annual wheel tax of $50. By law, new decals need to
be purchased during the month of the owner’s birthday. How much wheel tax revenue
can the city expect 1o receive in November?

3.5.16. Regulators have found that 23 of the 68 investment companies that filed for bankruptcy
in the past five years failed becausc of fraud, not for reasons related to the economy.
Suppose that nine additional firms will be added to the bankruptcy rolls during the
next guarter. How many of those failurcs are likely to be attributed to fraud?

3.5.17. Anurn contains four chips numbered 1 through 4. Two are drawn without replacement.
1et the random variable X denote the larger of the two. Find E(X).

3.5.18. A fair coin is tossed three times. Let the random variable X denote the total number of
heads that appear times the number of heads that appear on the first and third tosses.
Find E(X}.
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3.5.19. How much would you have to ante to make the St. Petersburg game “fair” (recall
Example 3.5.5) if the most you could win was $1000? That is, the payoffs are $2f for
<k <9 and $1000 for k = 10.

3.5.20. For the St. Petersburg problem (Example 3.3.5) find the expected payoff if
(2) the amounts won are ¢f instead of 2F, where 0 < ¢ < 2.

(b) the amounts won are log 2%, [This was a modification suggested by D. Bernoulli (a
nephew of James Bernoulli) to take into account the decreasing marginal utility
of money-—the more you have, the less useful a bit more is.]

3.5.21L A fair dic 1s rolled 3 times. Let X denote the number of different faces showing,
X =1,2,3 Find E(X).

3.5.22, Two distinctintegers are chosen at random from the first five positive integers. Compute
the expected value of the absolute value of the difference of the two numbers.

3.5.23. Suppose that two evenly matched teams are playing in the World Series. On the
average, how many games will be played? (The winner is the first team to get four
victories.} Assume that each game is an independent event.

3.5.24. An urn contains one white chip and one black chip. A chip is drawn at random. If it is
white, the “game” is over; if it is black, that chip and another black one are put into
the urn. Then another chip is drawn at random from the “new” urn and the same rules
for ending or continuing the game are followed (if the chip is white, the game is over;
if the chip is black, it is replaced in the urn, together with another chip of the same
color). The drawings continue until a white chip is sclected. Show that the expected
number of drawings necessary to get a white chip is not finite.

3.5.25. A random sample of size n is drawn without replacement from ar: urn containing » red
chips and w white chips. Define the random variable X to be the number of red chips
in the sample. Use the summation technique described in Theorem 3.5.1 to prove that
E{X) =ruaflr + w).

3.5.26. Given that X is a nonnegative, integer-valued random variable, show that

Ex) =3 P(X =)
feee 1

The Expected Value of a Function of & Random Variable

There are many situations that call for finding the expected value of a function of
a random variable—say, ¥ = g(X). One common example would be change of scale
problems, where g(X} = aX + b for constants ¢ and b. Sometimes the pdf of the new
random variable ¥ can be easily determined, in which case F(Y) can be calculated by
simply applying Definition 3.5.1. Often, though, fy(y) can be difficult to derive, depending
on the complexity of g(X). Fortunately, Theorem 3.5.3 allows us {o calculate the expected
value of ¥ without knowing the pdf for V.

Theorem 3.5.3. Suppose X is a discrete random variable with pdf px(k). Let g(X) be a
function of X. Then the expected valie of the random variable g(X) is given by

E[g(X)] =" gk) - px(k)

alt &

provided that ) _ |g(k)|px (k) < oo,
all &
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IfY is a continuous random variable with pdf fv(v), and if g(Y) is a continuous function,
then the expected value of the random variable g(Y) is

Elg] = [

oG

gy} - fr(ndy

provided that {_[g(WIfr(y)dy < oo,
Proof. We will prove the result for the discrete case. See (150) for details showing
how the argument is modified when the pdf is continuous. Let W = g(X). The set of
all possible k-values, kq, ks, .. ., will give rise to a set of w-values, wq, ws, ..., where, in
general, more than one k may be associated with a given w. Let 5; be the set of &’s for
which g(k) = w; [so U;§; is the entire set of k-values for which px (k) is defined]. We
obviously have that P(W = w;) = P(X € §;), and we can write

EW)=)Y w;- P(W=uw;)=) w; - P(X€5))
i i

=Y w; y px(k)

j kes;

=3 > wi - px®

j keS;

=" gkypxtky (why?)

J keS;

=Y " gk)px )

all &

Since it is being assumed that Y gk} px(k) < oo, the stalement of the theorem
allk
holds. M

Ceorollary. For any random variable W, EaW + b) = aE(W) + b, where g and b are
constarnts.

Proof. Suppose W is continuous; the proof for the discrete case is similar. By The-
orem 353, E(aW + b) = [°) (aw + b)fw(w) dw, but the latter can be written

afo w - fuwydw + b [ fww)dw=aE(W) + b - 1 =aE(W) + b. 0

EXAMPLE 3.5.9
Suppose that X is a randoem variable whose pdf is nonzero only for the three values —2, 1,
and +2:

k px(k)

bt | oot o sl
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Let W = g(X) = XZ. Verify the statement of Theorem 3.5.3 by computing E(W) two
ways--first, by finding pw (w} and sumoming w - pw{w) over w and, second, by summing
gk - px (k) overk.

By inspection, the pdf for W is defined for only two values, 1 and 4:

w(=k) pww)
1
4

O] s

push | GO 3

Taking the first approach to find E(W) gives

1 7
E(W}mgw Cpww) =1 - (“3“‘) + 4. (g)

To find the expected value via Theorem 3.5.3, we take
Efg0)] =) K - px(b) = (~2)* - Sy L+ P2
- X 8 8 8

with the sum here reducing to the answer we already found, %?

For this particular situation, neither approach was easier than the other, In general,
that will not be the case. Finding pw (w) is often quite difficult, and on those occasions
Theorem 3.5.3 can be of great benefit.

EXAMPLE 3.5.10

Suppose the amount of propellant, ¥, put into a can of spray paint is a random variable
with pdf

fr =3y’ 0<y<1

Experience has shown that the largest surface area that can be painted by a can having ¥
amount of propellant is twenty times the area of a circle generated by a radius of Y ft, If
the Purple Dominoes, a newly formed urban gang, have just stolen their first can of spray
paint, can they expect to have enough to cover a 5’ X & subway panel with grafitti?
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No. By assumption, the maximum area {in ft°) that can be covered by a can of paint is
described by the function

g(¥) = 20m ¥2

According to the second statement in Theorem 3.5.3, though, the average value for g(¥)
is slightly less than the desired 40 ft:

1
Elg(N] = f 20my? - 3y2dy
1]
6931)?5 1
=73
=12n

= 37.7 ¢

0

EXAMPLE 3.5.11

A fair coin is tossed until a head appears. You will be given (%)k dollars if that first head
occuss on the kth toss. How much money can you expect to be paid?
1 et the random variable X denote the toss at which the first head appears. Then

px (k) = P{X = k) = P(1st k-1 tosses are tails and kth toss is a head)

et
(0"

Moreover,

x
E(amount won) = E [(%) ] = E[g(X)] =) g - px(k)
allk

-£6) -6




180 Chapter 3

Random Variables

EXAMPLE 3.5.12

Inone of the early applications of probability to physics, James Clerk Maxwell (1831-1879)
showed that the speed § of a molecule in a perfect gas has a density function given by

3
Fsi) =4‘}%sze“““2, s =0

where ¢ is a constant depending on the temperature of the gas and the mass of the particle.
What is the average energy of a molecule in a perfect gas?

Let m denote the molecule’s mass. Recall from physics that energy (W), mass (m), and
speed (5) are related through the equation

1
W = -m8? = g(%)
2
To find E(W) we appeal to the second part of Theorem 3.5.3:

E(W) W«L g(s) fsis)ds

Sy | ad 2
o f —ms? - 4, —s%e M ds
e} 2 rid
3 [e
a’ a2
m2m1/mf st ds
T Jo

Make the substitution 7 == as?. Then

m o 32 1
E(W) = 7/{] e dr

[/evFis
But
o 3/2 1 3 1 .
f e dr == ) | = )/, (see Section 4.6)
o 27\2
$0
m 3 1
E(energy) = E(W) = W(E) (5) N
_m
T da

EXAMPLE 3.5.13

Consolidated Industries is planning to market a new product and they are trying to decide
how many to manufacture. They estimate that each item sold will return a profit of m
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dollars; each one not sold represents an n dollar loss. Furthermore, they suspect the
demand for the product, V, will have an exponential distribution,

frv) = (%)e“”’/}‘, v >0

How many items should the company produce if they want to maximize their expected
profit? (Assume that r, m, and A are known.)

If a total of x items are made, the company’s profit can be expressed as a function Q(v),
where

me —nx —v) ife <x
mx fv>ux

Q) = {
and v is the number of items sold. It follows that their expected profit is

E{ow)] =L o) - fyv(v)dv

= [x[(m + njy — ﬂx]‘(l)e"”ﬁ dv + jmmx . (1)5”/“ dv  (3.5.7)
0 A x A

The integration here is straightforward, though a bit tedious. Equation 3.5.7 eventually
simplifies to

E[QV)] =2 - (n +n) — A - (m + nye ** — nx
To find the optimal production level, we need to solve d E] G(V)]/dx = 0 for x. But

dE[Q(V)]
dx

n
x=—l-ll‘}( )
m 4+ n

=(m + n)e ** — n

and the latter equals zero when

EXAMPLE 3.5.14

A point, y, is selected at random from the interval {0, 1}, dividing the line into two
segments (see Figure 3.5.5). What is the expected value of the ratio of the shorter segment
to the longer segment?

o
Bl wh
pui

FIGURE 3.5.5
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Notice, first, that the functon

shorter segment
g(¥) = e e
longer segment

has two expressions, depending on the location of the chosen point;

¥y -y, 0<y<i

¥i=
&) Liwwm,%<yg1

By assumption, fy(») =L0=<y < 1,s0

Ry oy Y1 —»
Elg]= | +3— 1dy + Sldy
o 1 —v iy

Writing the second integrand as (1/y — 1) gives

LI . g
1oy ;oY

2

i

3
7

1
w2
2

By symmetry, though, the two integrals are the same, so

]

s I S - o E
_ [% horter segmen ] o2 1
longer segment

= (.39

On the average, then, the longer segment will be a little more than 2%‘ times the length of

the shorter segment.

QUESTIONS

3.5.27. Suppose X is a binomial random variable with n = 10 and p = £. What is the expected

value of 3X — 47

3.5.28. Recall Question 3.2.4. Suppose that cach defective component discovered at the work
station costs the company $100. What is the average daily cost to the company for

defective components?
3.5.29. Let X have the probability density function

20 -m, 0<x <1
fxx) = 0. elsewhere

Suppose that ¥ = g(X) = X>. Find E(Y) two different ways.
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3.5.30. A tool and die company makes castings for steel stress-monitoring gauges. Their annual
profit, ¢, in hundreds of thousands of dollars, can be expressed as a function of product
demand, y:

QO =2(1 — &)

Suppose that the demand (in thousands) for their castings follows an exponential pdf,
fr(y) = 6e7%,y > 0. Find the company’s expected profit.

3.5.31. Aboxistobeconstructed so thatits heightis 5 inches anditsbase is ¥ inches by ¥ inches,
where Y is a random variable described by the pdf, fy(y) =6y(1 — »,0 < y < 1.
Find the expected volume of the box.

3.5.32. Grades onthe last Economics 301 exam were not very good. Graphed, their distribution
had a shape similar to the pdf

= fgﬁ(i‘)@ ~ ), 0<y<100

As a way of “curving” the results, the professor announces that he will replace each
persor’s grade, ¥, with a new grade, g(¥), where g(¥) = 10+/Y. Has the professor’s
strategy been successful in raising the class average above 60?7

3.5.33. Find E(¥?) if the random variable ¥ has the pdf pictured below:

L
2
LG
+ ¥

0 f

3.5.34. The hypotenuse, ¥, of the isosceles right triangle shown is a random variable having
a uniform pdf over the interval [6,10]. Calculate the expected value of the triangle’s
area. Do not leave the answer as a function of a.

a

H a

3.535. Anurn contains n chips numbered 1 through n. Assume that the probability of choosing
chip i is equal to ki, i = 1,2,...,n. If one chip is drawn, calculate E(1), where the
random variable X denotes the number showing on the chip selected. Hini: Recall that
the sum of the first # integers is n(n + 1}/2.

THE VARIANCE

We saw in Section 3.5 that the location of a distribution is an important characteristic
and that it can be effectively measured by calculating either the mean or the median. A
second feature of a distribution that warrants further scrutiny is its dispersion—that is,
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TABLE 3.6.1
k Px 1 {k) k p X3 (k}
-1 1 -1000000 1
13 1,000,000 3

the extent to which its values are spread out. The two properties are totaily different:
Knowing a pdf’s location tells us absolutely nothing about its dispersion. Table 3.6.1, for
example, shows two simple discrete pdfs with the same expected value (equal to zero) but
with vastly different dispersions.

it is not immediately obvious how the dispersion in a pdf should be quantified. Suppose
that X is any discrete random variable. One seemingly reasonable approach would be
to average the deviations of X from their mean-—that is, calculate the expected value of
X — p. As it happens, that strategy will not work because the negative deviations will
exactly cancel the positive deviations, making the numerical value of such an average
always zero, regardless of the amount of spread present in px{k):

EX —)=FEX) — pe=p — p==0O (3.6.1)

Ancther possibility would be to modify Equation 3.6.1 by making all the deviations posi-
tive—that is, replace E(X — p) with E(|X — p]). This does work, and it is sometimes used
to measure dispersion, but the absolute value is somewhat troublesome mathematically:
It does not have a simple arithmetic formula, nor is it a differentiable function. Squaring
the deviations proves to be a much better approach.

Definition 3.6.1. The variance of a random variable is the expected value of its squared
deviations from . If X is discrete with pdf py (%),

Var(X) =o? = E[(X — w’]=Y k — w* - px(k)
all £

If ¥ is continuous with pdf fy(y),
2 2 o 2
Var(Y) = o = E[(Y — p) ] = | (& — u) - friy)dy
—
[If E(X?) or E(Y?) is not finite, the variance is not defined.]

Comment. One unfortunate consequence of Definition 3.6.1 is that the units for the
variance are the square of the units for the random variable: If ¥ is measured in inches, for
example, the units for Var(¥) are inches squared. This causes obvious problems in relating
the variance back to the sample values. For that reason, in applied statistics, where unit
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compatibility is especially important, dispersion is measured not by the variance but by
the standard deviation, which is defined to be the square root of the variance. That is,

‘/Z(k - ﬂ)z - px{k) if X is discrete
all &

o = standard deviation = -
‘/ f (v — 10)% - fr(y)dy ifY is continuous
oo

Comment. The analogy between the expected value of a random variable and the
center of gravity of a physical system was peinted out in Section 3.5, A similar equivalency
holds between the variance and what engineers call a moment of inertia. If a set of weights
having masses my, mz, ... are positioned along a (weightless) rigid bar at distances
ry, ra, ... from an axis of rotation (see Figure 3.6.1), the moment of inertia of the system
is defined to be value ¥ m;r2. Notice, though, that if the masses were the probabilities

i
associated with a discrete random variable and if the axis of rotation were actually g, then
r1, 2, ... could be written (k1 — 1), (kp — p), ... and 3 m;r? would be the same as the
i

variance, ¥ (k — p)? - px(k).
all k

Axis of
1 rotation

s

et
Ty

FIGURE 3.6.1

Definition 3.6.1 gives a formula for calculating o2 in both the discrete and continuous
cases. An equivalent—but easier fo use—formula is given in Theorem 3.6.1.

Theorem 3.6.1. Let W be any random variable, discrete or continuous, having mean ji and
for which E(W?) is finite. Then

Var{W} = 6% = E(Wz) - #2

Proof. We will prove the theorem for the continuous case. The argument for discrete
W is similar. In Theorem 3.5.3, let g(W) = (W — p)Z. Then

Var(W) = E[(W — ,u)z]zf g fwlw) dw zf {w — g.t,)sz(w) dw

—0X



196 Chapter 3 Random Variables

Squaring out the term (w — w)* that appears in the integrand and using the additive
property of integrals gives

[ W — W fw@) dw= [ (@ = 2w + 12) fiy(w) dw

—Xy

XD o< (o0}
= f w? fw (w) dw — Zﬂf ww(w) dw + [ 1 fw (w) dw
{3 X} X)
= E(W?) ~ 242 + 1 = E(W?) — 2.
Note that the equality {°° w? fw (w) dw = E(W?)also follows from Theorem3.53. [

o
-

EXAMPLE 3.6.1
An urn contains five chips, two red and three white. Suppose that two are drawn out at
random, without replacement. Let X denote the number of red chips in the sample. Find
Var{X).

Note, first, that since the chips are not being replaced from drawing to drawing X is
a hypergeometric random variable. Moreover, we need to find u, regardless of which
formulais used to calculate o2. In the notation of Theorem 3.5.2, ¥ = 2, w = 3,and n = 2,50

pumrnf(r + wys=2 - 2/(2 + 3) == 0.8

To find Var(X) using Definition 3.6.1, we write

Var(X) = E[(X — w’]=)_(x — )’ - fx(0)

= (0 — 08)? - @(2 (1 — 0.8 - m
() ¢)
+ (2 — 08> - @ﬂ
()

To use Theorem 3.6.1, we would first find £(X?). From Theorem 3.5.3,

6 0

+

=0.36

E(X?) =Y "% fy(x) =07 - + 2

all x 3
()

= 1.00
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Then

Var(X) = E(X%) — %2 =1.00 — (0.8)%
=036

confirming what we calculated earlier.

In Section 3.5 we encountered a change of scale formula that applied to expected
values. For any constants ¢ and b and any random variable W, E(aW + b)Y = aE(W) + b.
A similar issue arises in connection with the variance of a linear transformation: If
Var(W) = o, what is the variance of aW + b7

Theorem 3.6.2. Let W be any random variable having mean y and where E(W?) is finite.
Then Var{aW + b) = a?Var(W).

Proof. Using the same approach taken in the proof of Theorem 3.6.1, it can be shown
that Ef(aW + b)zI = a?E(W?2) + 2abu + b*. We also know from the Corollary to
Theorem 3.5.3 that E(aW + b) = ap + b. Using Theorem 3.6.1, then, we can write
Var@W + b) = E[(aW + b)?] — [E@W + b)]2
= [a?E(W?) + 2abp + b*] — lau + b
= [a?E(W?) + 2abp + V] — [a%1% + 2abp + V7]
=PE(W?) — 2] = a*Var(W) =

EXAMPLE 3.6.2
A random variable Y is described by the pdf

FOI=2y, 0<y <l

What is the standard deviation of 3Y + 27
First, we need to find the variance of ¥. But

1 2
B0 = [y 2ydy=73
[}

and

1 1
E(Y2)=f - 2ydy =+
¢
50
2
Var(Y) = E(¥Y) — 12 =% - (2)

_1
T8
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Then, by Theorem 3.6.2,

Var(3¥ + 2)= (3% - Var(¥) =9 - “1}?4

B =

which makes the standard deviation of 3Y + 2 equal to \/% or .71

QUESTIONS

3.6.1. Find Var(X) for the urn problem of Example 3.6.1 if the sampling is done with
replacement.

3.6.2. Find the variance of ¥ if

3 0<y<1

frimn=11 2<y<3

0, elsewhere
3.6.3. Ten equally qualified applicants, six men and four women, apply for three lab technician
positions. Unable to justify choosing any of the applicants over all the others, the

personnel director decides to select the three at random. Let X denote the number of
men hired. Compute the standard deviation of X.

3.6.4. Compute the variance for a uniform random variable defined on the unit interval.
3.6.5. Use Theorem 3.6.1 to find the variance of the random variable ¥, where

=30 -3 0<y<l
3.6.6. If
2
i = k—;} D<y<k
for what value of k does Var(¥Y) = 2?

3.6.7. Calculate the standard deviation, o, for the random variable ¥ whose pdf has the graph
shown below:

K

[ sum

0 1 2 3
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3.6.8. Consider the pdf defined by

2
3 y=1

)=
¥y

Show that (a} [{° fr(y) dy = 1, ®)E(¥) =2, and (c) Var(¥) is not finite.

3.6.9. Frankie and Johnny play the following game. Frankie selects a number at random
from the interval [a, b]. Johnny, nol knowing Frankie’s number, is to pick a second
number from that same inverval and pay Frankie an amount, W, equal to the squared
difference between the two [so 0 < W < (b — a)?]. What should be Johnny’s strategy
if he wants to minimize his expected loss?

3.6.10. Let ¥ be a random variable whose pdf is given by fy(y) = 5y*,0 < y < 1. Use
Theorem 3.6.1 to find Var(¥). ’

3.6.11. Suppose that Y isan ex;z:»(menliai random variable, so fy(y) = Ae™, y = 0. Show that
the variance of ¥ is 1/22,

3.6.12. Suppose that ¥ is an exponential random variable with A = 2 {recall Question 3.6.11}.
Find P(Y > E(¥Y) + 2,/Var(Y)).

3.6.13. Let X be a random variable with finite mean u. Define for every real number
a, glay = E[(X — a)*]- Show that

g@=E[(X — )] + (u — o)
What is another name for min g(a)?
143

3.6.14. Let ¥ have the pdf given in Question 3.6.5. Find the variance of W, where W =
-5 + 12.

3.6.15. If ¥ denotes a temperature recorded in degrees Fahrenheit, then giY — 32) 15 the
corresponding temperature in degrees Celsius. If the standard deviation for a set
of temperatures is 15.7°F, what is the standard deviation of the equivalent Celsius
temperatures?

3.6.16. If E(W) = u and Var(W) = o2, show that

E(W — lu):() and Var(w — #) =1
o o

3.6.17. Suppose U is a uniform random variable over [0, 1].
{a) Showthaty¥ = (b — a)l/ + a is uniform over [a, b]
{b) Use Part (a) and Question 3.6.4 to find the variance of ¥.

Higher Moments

The quantities we have identified as the mean and the variance are actually special cases
of what are referred to more generally as the moments of a random variable. More
precisely, E(W) is the first moment about the origin and o? is the second moment about
the mean. As the terminology suggests, we will have occasion to define higher moments
of W. Just as E(W) and o reflect a random variable’s location and dispersion, so it is
possible to characterize other aspects of a distribution in terms of other moments. We will
see, for example, that the skewness of a distribution—that is, the extent to which it is not
symmetric around p—can be effectively measured in terms of a third moment. Likewise,
there are issues that arise in certain applied statistics problems that require a knowledge
of the flatness of a pdf, a property that can be quantified by the fourth moment.
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Definition 3.6.2. Let W be any random variable with pdf fw(w). For any positive
integer r,

1. The rth moment of W about the origin, pi,, is given by

pr = E(W")
o
provided f [wl - fw(w) dw < oo (or provided the analogous condition on

0
the surmmation of lw|" holds, if W is discrete). When » = 1, we usually delete the
subscript and write E{W) as y rather than p.

2. The rth moment of W about the mean, j,., is given by
Hy = E[(W = p)']
provided the finiteness conditions of part 1 hold.
Comment, We can express ] in terms of p;, j = 1,2, ..., 7, by simply writing out

the binomial expansion of (W — p)":

r

W= EW - wyl=) (;)E(th;*“f

j=0
Thus,
o =E[W ~ wH=c%=py — i
s = E[(W — ] = us — 3upe + 2143
ph=E[W — % = s ~ &aps + 6p3pr ~ 33
and so on.
EXAMPLE 3.6.3

The skewness of a pdf can be measured in terms of its third moment about the mean.
If a pdf is symmetric, E[(W — p)°] will obviously be zero; for pdfs not symmetric,
E[(W — u)*] will not be zero. In practice, the symmetry (or lack of symmetry) of a pdfis
often measured by the coefficient of skewness, y,, where

_E[(W - ]
Y=
o
Dividing 5 by o makes y; dimensionless.
A second “‘shape” parameter in common use is the coefficient of kurtosis, y», which
involves the fourth moment about the mean. Specifically,

E[(W — u)*
by = [( 2x

7 3

a
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For certain pdf’s, p, is a useful measure of peakedness: relatively flat pdf’s are said to be
platykurtic; more peaked pdf’s are called leptokurtic [see (97)).

Earlier in this chapter we encountered random variables whose means did not exist—
recall, for example, the St. Petersburg paradox. More generally, there are random variables
having certain of their higher moments finite and certain others, not finite. Addressing
the question of whether or not a given E(W/) is finite is the following existence theorem.

Theorem 3.6.3. If the kth moment of a random variable exists, all moments of order less
than k exist.

FProof. Let fy(y} be the pdf of a continuous random variable ¥. By Definition 3.6.2,
E(Y*) exists if and only if

[ - frndy < oo 3.6.2)

letl < j < k. Toprove the theorem we must show that

w .
] - fro)dy < oo
is implied by Inequality 3.6.2. But
f W - frO)dy = f b - o) dy + f ol - fe(y)dy
—oa fyl=<1 |¥l=>1

<[ soma+ f

Yl - fr()dy
{¥i=1 fyi>1

<1 +] W - frG) dy
{yi>1

<1 +] - frdy < oo
fvi>1

Therefore, E(Y') exists, j = 1,2,...,k — 1. The proof for discrete random variables
is similar. O

EXAMPLE 3.6.4

Many of the random variables that play a major role in statistics have moments existing
for all k, as does, for instance, the normal distribution introduced in Example 3.4.3. Still,
it is not difficult to find well-known models for which this is nof true. A case in point is
the Student t distribution, a probability function widely used in inference procedures. (See

Chapter 7.)
The pdf for a Student ¢ random variable is given by
friy) = C(zn) ., 0 <y<oo n=>l

(1 + _JL) (n+1)2
H
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where #n is referred to as the distribution’s “degrees of freedom’ and c(n) is a constant.
By definition, the (2k)th moment is the integral

00 2k

. NG dy
H
Is E(Y#) finite?

Not necessarily. Recall from calculus that an integral of the form

]
[

will converge only if & > 1. Also, the convergence properties for integrals of

2k
Y

yz (n+1)/2
14+ 2
i

2k 1

are the same as those for

¥y .
( yZ ) n+02 ywH -2k

Therefore, if E(¥%) is to be finite, we must have
n+1-—2k>1

or, equivalently, 2k < n. Thus a Student ¢ random variable with, say, n = 9 degrees of
freedom has E(X®) < oo, but no moment of order higher than eight exists.

QUESTIONS

3.6.18. Let ¥ be a uniform random variable defined over the interval {0, 2). Find an expression
for the rth moment of ¥ about the origin. Also, use the binomial expansion as described
in the comment to find E[(Y — 1)°].

3.6.19. Find the coefficient of skewness for an exponential random variable having the pdf

fn=e?, y=>0

3.6.20. Calculate the coelficient ‘of kurtosis for a uniform random variable defined over the
unit interval, fy(yy =1, for0<y <1

3.6.21. Suppose that W is a random variable for which E{(W — wP]=10and EWH =4.1s
it possible that g = 27
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36.22. If Y = aX + b, show that ¥ has the same coefficients of skewness and kurtosis as X.
3.6.23. LetY be the random variable of Question 3.4.6, where for a positive integer a1, fy(y) =
n+ 2¥e + DY — »,0<y <1,
(a) Find Var(¥)
(b} For any positive integer £, find the kth moment around the origin.
3.6.24. Suppose that the random variable ¥ is described by the pdf

frm=c. -y y=1

{a) Findc.
{b) What is the highesl moment of ¥ that exists?

JOINT DENSITIES

Sections 3.3. and 3.4 introduced the basic terminology for describing the probabilistic
behavior of a single random variable. Such information, while adequate for many
problems, is msufficient when more than one variable is of interest to the experimenter,
Medical researchers, for example, continue to explore the relationship between blood
cholesterol and heart disease, and, more recently, between “good” cholesterol and “bad”
cholesterol. And more than a little attention—both political and pedagogical—is given to
the role played by K-12 funding in the performance of would-be high school graduates
on exit exams, On a smaller scale, electronic equipment and systems are often designed to
have built-in redundancy: Whether or not that equipment functions properly ultimately
depends on the reliability of two different components.

The point is, there are many situations where two relevant random variables, say X and
¥,? are defined on the same sample space. Knowing only fx(x) and fy(»}, though, does
not necessarily provide enough information to characterize the all-important simultaneous
behavior of X and Y. The purpose of this section is to introduce the concepts, definitions,
and mathematical techniques associated with distributions based on two (or more) random
variables.

Discrete Joint Pdfs

As we saw in the single-variable case, the pdfis defined differently, depending on whether
the random variable is discrete or continuous. The same distinction applies to joint pdfs.
We begin with a discussion of joint pdfs as they apply to two discrete random variables.

Definition 3.7.1. Suppose S s a discrete sample space on which two random variables,
X and ¥, are defined. The joint probability density function of X and ¥ (or joint pdf) is
denoted py y{(x, ¥), where

pxy(x, y) = P{{s|X(s) =x and Y(s)=1y}

2For the next several sections we will suspend our earlier practice of using X (o denote a discrete random
variable and ¥ to denote a continuous random variable. The category of the random variables will seed to be
determined from the context of the problem. Typically, though, X and ¥ will either both be discrete or both be
CoORtinEoOBS.



204 Chapter 3

Random Variables

Comment. A convenient shorthand notation for the meaning of px y(x, y), consistent
with what was used earlier for pdfs of single discrete random variables, is to write

pxy(x, ) =P(X=x,Y=3)

EXAMPLE 3.7.1

A supermarket has two express lines. Let X and ¥ denote the number of customers in the
first and in the second, respectively, at any given time. During nonrush hours, the joint
pdf of X and ¥ is summarized by the following table:

X
0 1 2 3

61 02 0 0

02 025 005 O

¢ 005 005 0025
0 0 0.025 005

W) B wa T

Find P(IX — Y| =1), the probability that X and ¥ differ by exactly one.
By definition,

PUX — Y| =1D= 3 pxyxy)
lx—yl=1
=pxy(0. 1) + pxy(1,0 + pxy(,2)
+ pxy@. D + pxy(2.3) + pxy(3.2)
=02 + 02 + 0.05 + 0.065 + 0.025 + 0.025
=055

[Would you expect px y(x, ) to be symmetric? Would you expect the event }|X — ¥| > 2
to have zero probability?]

EXAMPLE 3.7.2

Suppose two fair dice are rolled. Let X be the sum of the numbers showing, and let ¥ be
the larger of the two. So, for example,

Py, =PX=2,Y= Ne= P =0
2
pxy@.3)H=PX=47Y=3)=P{{1L,3)3, Dh = T
and

1

Pxy(6.3) = PX =6,Y =3) = PUB. I} =

[ 3]

The entire joint pdf is given in Table 3.7.1.
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TABLE 3.7.1
y
x 1 2 3 4 5 6 Row totals
2 1/36 0 0 O 0 0 1/36
3 0 2/36 0 0 0 0 2/36
4 0 1736 2/36 0 0 0 3/36
5 QO 0 2/36 2/36 0 0 4/36
6 0 0 1/36 2/36 2736 0 5/36
7 0 0 0 2/36 2/36 2/36 6/36
8 0 0 0 1736 2/36 2/36 5/36
g 0 0 0 0 2/36  2/36 4736
10 0 0 0 0 1736  2/36 3/36
11 0 0 0 O G  2/36 2/36
12 0 O 0 0 0 1/36 1/36

Col.totals  1/36 3/36 5/36 7/36 9/36 11/36

Notice that the row totals in the right-hand margin of the table give the pdf-for

X. Similarly, the column totals along the bottom detail the pdf for Y. Those are not
coincidences. Theorem 3.7.1 gives a formal statement of the relationship between the

joint pdf and the individual pdfs.

Theorem 3.7.1. Suppose that px y (x, y) is the joint pdf of the discrete random variables X
and Y. Then

px() =) pxy(x,y) and pr() = pry(x,y

all y allx
Froof. We will prove the first statement. Note that the collection of sets (Y = y) for
all y form a partition of §; that is, they are disjoint and |_,;, LY =y) = 5. The set.
X=x)=(X=x)nS=X=x0nN Uaﬂy(Y:J’):Uany{(X:x) N (Y=y)},sq

px(x)=P(X =x)=P (UE(X =x)N (¥ = y)})

alty

=3 PX=x,Y=y =3 pxylx . 0

ally ally

Definition 3.7.2. An individual pdf obtained by summing a joint pdf over all values of
the other random variable is called a marginal pdf.

Continuous Joint Pdfs

If X and Y are both continuous random variables, Definition 3.7.1 does not apply because
P(X = x,Y = y) will be identically 0 for all (x, y). As was the case in single-variable
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situations, the joint pdf for two continuous random variables will be defined as a function,
which when integrated vields the probability that (X, Y) lies in a specified region of the
xy-plane.

Definition 3.7.3. Two random variables defined on the same set of real numbers are
jointly continuous if there exists a function fx y(x, v) such that for any region R in the
xy-plane P((X,Y) € R) = [ [, fx.y(x, ¥) dx dy. The function fx y(x, ¥) is the joint pdf
of Xand Y.

Note: Any function fx y(x, v} for which

L fyy(x,¥) >0 forallxandy

o0 o0
2, f Fey(x,yydxdv=1

O o O
quaslifics as a joint pdf. We shall employ the convention of naming only the domain where
the joint pdf is nonzero; everywhere else it will be assumed to be 0. This is analogous, of
course, to the notation used earlier in describing the domain of single random variables.

EXAMPLE 3.7.3
Suppose that the variation in two continuous random variables, X and Y, can be modeled
by the joint pdf fx y(x, ¥} =cxy. for0) < v < x < LFinde.

By inspection, fx y(x, ¥} will be non-negative as long as ¢ > 0. The particular ¢ that
qualifies fx y(x, ¥) to be a joint pdf, though, is the one that makes the volume under

fx.y{x, y) equal to 1. But
X
) dx
0

1 x 1 \,2
//cxydydx:imcf ([ (x_v)d_v)dx:c‘f x i
I s 0 \Jo 0 2

Therctore, ¢ = 8.

EXAMPLE 3.7.4
A study claims that the daily number of hours, X, a teenager watches television and the
daily number of hours, ¥, he works on his homework are approximated by the joint pdf.

fxyn ) =xye P x>0, ¥y >0

What is the probability a teenager chosen at random spends at least twice as much time
walching television as he does working on his homework?

The region, R, in the xv-plane corresponding to the event “X > 2Z¥” is shown in
Figure 3.7.1. It follows that P(X > 2Y) is the volume under fx y(x, ¥} above the region R:

oc pxfl
P(X >2Y)= f f xyve FED gy dx
0 0
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FGURE 3.7.1

Separating variables, we can write

o0 x/2
P(X = 2Y) =[ xe* f ye ¥dy ldx
G G

and the double integral reduces to %:

P(X = 2Y) :f xe * [I - (% + l)e"x"z:!dx
0
2

Geometric Probability

One particularly important special case of Definition 3.7.3 is the joint uniform pdf, which is
represented by a surface having a constant height everywhere above a specified rectangle
in the xy-plane. That is,

1
= <x<b <
fxx(x.y) b —a@d o ¢=F= .c<y=<d

I R is some region in the rectangle where X and ¥ are defined, P((X, ¥) € R) reduces to

a simple ratio of arcas:

f R

Calculations based on Equation 3.7.1 are referred to as geometric probabilities.

EXAMPLE 3.7.5
Two friends agree to meet on the University Commons “sometime around 12:30.” But
neither of them is particularly punctual—or patient. What will actually happen is that



208 Chapter3

Random Variables

0 (15,0) 60

FIGURE 3.7.2

each will arrive at random sometime in the interval from 12:00 to 1:00. If one arrives and
the other is not there, the first person will wait fiftcen minutes or until 1:00, whichever
comes first, and then leave. What is the probability the two will get together?

To simplify notation, we can represent the time period from 12:00 to 1:00 as the interval
from zero to sixty minutes. Then if x and y denote the two arrival times, the sample
space is the 60 X 60 square shown in Figure 3.7.2. Furthermore, the event M, “the two
friends meet,” will occur if and only if |x — y| < 15 or, equivalently, if and only if
—15 < x — y < 15. These inequalities appear as the shaded region in Figure 3.7.2.

Notice that the areas of the two triangles above and below M are each equal to
%(45) (45). Tt follows that the two friends have a 44% chance of meeting:

" areaof §
(60 — 2[145)(49)]
- (60)?

=0.44

EXAMPLE 3.7.6

A carnival operator wants to set up a ringtoss game. Players will throw a ring of diameter
d onto a grid of squares, the side of each square being of length s (see Figure 3.7.3). If the
ring lands entirely inside a square, the player wins a prize. To ensure a profit, the operator

&

FIGURE 3.7.3
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AGURE 3.7.4

must keep the player’s chances of winning down 1o something less than one in five. How
small can the operator make the ratio d/s?

First, it will be assumed that the player is required to stand far enough away so that no
skill is involved and the ring is falling at random on the grid. From Figure 3.7.4, we see
that in order for the ring not to touch any side of the square, the ring’s center must be
somewhere in the interior of a smaller square, each side of which is a distance d/2 from
one of the grid lines,

Since the area of a grid square is s and the area of an intetior square is (s — d)?, the
probability of a winning toss can be written as the ratio:

. i — d)?
P(ring touches no lines) = Ss__z_}_
A
But the operator requires that
¢ — d Z
‘(A—T)‘ =< 020
s
Solving for d /s gives
a =1 - +/020=055

8

That is, if the diameter of the ring is at least 55% as long as the side of one of the squares,
the player will have no more than a 20% chance of winning.

QUESTIONS

3.7.L If px y(x, y) = exy at the points (1, 1), (2, 1), (2, 2), and (3, 1), and equals () elsewhere,
find c.

3.7.2. Let X and Y be two continuous random variables defined over the unit square. What
does ¢ equal if fx y(x,y) = c(x? + y»)?

3.7.3. Suppose that random variables X and Y vary in accordance with the joint pdf,
fxyx, y)=clx + »),0<x <= y < 1.Finde.
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3.74. Find ¢ if fx y(x,y) = cxv for X and Y defined over the triangle whose vertices are the
points {0, 0}, (0, 1), and (1. 1).

3.7.5. An urn contains four red chips, three white chips, and two blue chips. A random sample
of size 3 is drawn without replacement. Let X denote the number of white chips in the
sample and ¥ the number of blue. Write a formuia for the joint pdf of X and Y.

3.7.6. Four cards arc drawn from a standard poker deck. Let X be the number of kings drawn
and ¥ the number of queens. Find pyx v (x, ¥).

3.7.7. An advisor looks over the schedules of his 50 students to see how many math and
science courses each has registered for in the coming semester. He summarizes his
results in a table. What is the probability that a student selected at random will have
signed up for more math courses than science courses?

Number of math courses, X

0 1 2
Nurber 0 11 6 4
Of science
cowrses, ¥ 1 9 10 3

2 5()2\

3.7.8. Consider the experiment of tossing a fair coin three times. Let X denote the number
of heads on the last flip, and let Y denote the total number of heads on the three flips.
Find px ¥(x, ¥}

Suppose that two fair dice are tossed one time. Let X denote the number of 2's that
appear, and ¥ the number of 3’s. Write the matrix giving the joint probability density
function for X and ¥. Supposc a third random variable, Z, is defined, where Z == X + Y.
Use py y(x, y) to find pz{(z).

3.7.10. Suppose that X and ¥ have a bivariate uniform density over the unit square:

379

c, Desx<l, O<y<l

fxylx,» = 0

elsewhere

L]

{a) Findc.
() Find P(0 < X < 5,0 < ¥ < }).
3.711. Let X and ¥ have the joint pdf

fxrxo =2 0 <x <y 0<y

Find P(Y < 3X).

3.7.12. A point is chosen at random from the interior of a circle whose equation is 24 yt<a
Let the random variables X and ¥ denote the x- and y-coordinates of the sampled
point. Find fx y{x, ¥).

3.7.13. Find P(X < 2Y)if fx y(x,y) = x + yfor X and ¥ each defined over the unit intervalk.

3.7.14. Suppose that five independent observations are drawn from the continuous pdf.

Fr(t) =2¢,0 <1 < 1. Let X denote the number of £'s that fal in the interval 0 <1 < !

and let ¥ denote the number of £°s that fall in the interval % <t < % Find py y(1. 2):
3.7.15. A point is chosen at random from the interior of a right triangle with basc b and
height 4. What is the probability that the y value is between 0 and #/27
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Marginal Pdfs for Continuous Random Variables

The notion of marginal pdfs in connection with discrete random variables was introduced
in Theorem 3.7.1 and Definition 3.7.2. An analogous relationship holds in the continuous
case—integration, though, replaces the summation that appears in Theorem 3.7.1.

Theorem 3.7.2. Suppose X and Y are jointly continuous with joint pdf fx y(x, v). Then the
marginal pdfs, fx(x) and fy(y), are given by

fx(x)=[ fxyx,y)ydy and fY(y}=f Tx.y{x, y)dx

Proof. Itsuffices to verify the first of the theorem’s two equalities. As is often the case
with proofs for continuous random variables, we begin with the cdf:

O X X O
Fy(x) = P(X <x) = f f Tx.x(, yyde dy =f Txylx, y)dy dt
—00 J —0u —0G J —00
Differentiating both ends of the equation above gives
O
fx(x)= f Txy(x, y)ydy
—00
(recall Theorem 3.4.1). O

EXAMPLE 3.7.7
Suppose that two continuous random variables, X and ¥, have the joint uniform pdf,

1
ﬁfquza O0=x<3, 0=<y<2

Find fx{x).
Applying Theorem 3.7.2 gives

y4 21 1
o= [ roenay= [ tar=1 0sx<3
G 0 >

Notice that X, by itself, is a uniform random variable defined over the interval 10, 3}
similarly, we would find that fy(y) has a uniform pdf over the interval {0, 2).

EXAMPLE 3.7.8

Consider the case where X and Y are two continuous random variables, jointly distributed
over the first quadrant of the xy-plane according to the joint pdf,

e Yot x>0, y=0
0, elsewhere

fX,Y(x’ y) = {
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Find the two marginal pdf’s.
Frst, consider fx{x). By Theorem 3.7.2,

fxx) = fxyx, y)dy = fo y e Yot )a'y

—OC
In the integrand, substitute
u=ylx + 1)

making du = (x + 1)dy. This gives

1 oo 2 1 <,
- gy —t [ e a
Fxx) = [0 ok MTEE 1)3./@ we o a

After applying integration by parts (twice) to i~ ue ™ du, we get

(> o)
: > 2, 1 -
T ey | -2 -2
fx(x) TS [ w'e ue P ]0
o1 i (L2 2
T+ 1) o\ o + prr et

s >
G+ T

Finding fy(y) is a bit casier:

o= f Fry(x, y)dx = f yre YO+ gy
B 4]

=y [ e dx =y e"’(w«) (_e““”"
0 ¥

)

GUESTIONS

3.7.16. Find the marginal pdf of X for the joint pdf derived in Question 3.7.5.

3.7.17. Find the marginal pdfs of X and ¥ for the joint pdf derived in Question 3.7.8,

3.7.18. The campus rccruiter for an international conglomeratc classifies the large number of
students she interviews into three categories—the lower quarter, the middle half, and
the upper quarter. If she meets six students on a given morning, what is the probability
that they will be evenly divided among the three categories? What is the marginal
probability that exactly two will belong to the middle half?

3.7.19. For each of the following joint pdfs, find fx(x) and fr(y).

@ fryix,)=%50<x=20=sy<1

M fxyOLy=37%0=x<2,0<y<1
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© frrEyn=%x+2)0<x<1,0<ys<1
@ fryx. ) =clx + »,0<x<10=y
© fxy(x, =4y 0<xs1,0=xy=1
B frrly) =xye ", 0<x,0<y
@ frrxy)=ye V7, 0<x,0<y
3.7.20. For each of the following joint pdf’s, find fx(x) and fy(y).
@ fryxy=30<x<y=<2
® fry(ny=10<y<x<l
(€ fry(x,yy=6x,0<x<1,0<y<l —x
3.7.21. Suppose that fy y(x,y) = 6(1 — x — ) for x and y defined over the unit square,
subject to the restriction that 0 < x + y < 1. Find the marginal pdf for X.
3.7.22. Find fy (0 if fx.y(x, ¥} = 2 %e~? for x and y defined over the shaded Tegion pictured.

y=
=1

0

3.7.23. Suppose that X and Y are discrete random variables with

41 TV 71V [\
mae = (o) (5) (5) - osr=s

Find px(x) and py(x).

3.7.24. A generalization of the binomial model occurs when there is a sequence of » mdepen-
dent trials with three outcomes, where p; = P(Outcome 1) and pp = P{QOutcome 2).
Let X and ¥ denote the number of trials (out of #) resulting in Outcome 1 and
QOutcome 2, respectively.

1

€a) Show that py y(x, y) Pipl —pr = )" * P 0<x+y=<n

sl
xIylin — x — 1
(b} Find px(x) and py(x).
Hini: See Question 3.7.23.

Joint Cdfs

For a single random variable X, the cdf of X evaluated at some point x—that is, Fy(x)—is
the probability that the random variable X takes on a value less than or equal to x.
Extended to two variables, a joint cdf (evaluated at the point (x, v)) is the probability that
X < u and, simultancously, ¥ < v,

Definition 3.7.4. Let X and Y be any two random variables. The joint cumulative
distribution function of X and Y (ox joint cdf) is denoted Fy y(u, v), where

Fyy(u,v)=P(X <u and Y <)
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EXAMPLE 3.7.9

Find the joint ¢df, Fx y(x, v), for the two random variables, X and Y, whose joint pdf is
givenby fxy(x,») =50 +ay),0sx<1,0<y=L

If Definition 3.7.4 is applied, the probability that X < » and ¥ < v becomes a double
mtegral of fy y(x, y):

4 Eh 124 4 n 14
Fx ylu, v) = ;f{} f(; (x 4 xy)dxdy = 3"]9 (fo x + xy)dJC) dy

4 rvf x? 4 v uZ
= [ [Fa+y| Ja=5] 50+
3o\ 2 0

T3 2
v
LT RN Sl
BEV R Y

0

which simplifies to
1, 2
Fy y(u, v} = gl# (Zv + v7})

(For what values of u and v is Fy y (u, v) defined?)

Theorem 3.7.3. Let Fx y(u,v) be the joint cdf associated with the continuous random
variables X and Y. Then the joint pdf of X and Y, fx,y(x, y) is a second partial derivative
-2

of the joint cdf—that is, fx y(x, y) =

PP Fx y{x, y), provided Fx y(x, y) has continuous
Xdy
second partial derivatives.

EXAMPLE 3.7.10

What is the joint pdf of the random varjables X and ¥ whose joint cdf is Fx y(x,y) =
3572y + 572
By Theorem 3.7.3,

“Z Py 1 2 2
£ )= =x°2y + ¥
X, ¥ (X, ) war3 @y + ¥9)

fxyx, v = o iy

82 , 2 4
= —— ; Yy = — Py o + ;
iy 3¥@y + ) )=3x@ + 2y =3tx xy)

Notice the similarity between Examples 3.7.9 and 3.7.10— fx y(x, y} is the same in both
examples; so1s Fx y(x, ¥).
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Multivariate Densities

The definitions and theorems in this section extend in a very straightforward way
to situations involving more than two variables. The joint pdf for n discrete random
variables, for example, is denoted p X1.....Xn (X1, - - - Xp) Where

pXi,__.,X,,(xvauxn) - P(Xl = X1, "'9Xn =xﬂ}

For n continuous random variables, the joint pdf is that function S X X1, o, )
having the property that for any region R in n-space,

PUXq,...,Xp) € R}=[/"'[fxl,_.,sxn{xh...,.xn)dxi---dxn
R

Andif Fx, .. x,(x1,...,%,)isthejoint cdfof continuous random variables X 1, .., Xp—that
is) FX;,. ..,Xn(xI! - "vxl’l) = P(Xi _<. xlv b} Xn E xﬂ}_ﬁthen
aﬂ
Fxi . 2Ky oo, 30) = mFx1....,x,,(x1, ceerXp)

The notion of a marginal pdf also exiends readily, although in the n-variate case, a
marginal pdf can, itself, be a joint pdf. Given X3, ..., X,,, the marginal pdf of any subset
of r of those variables (X;,, X;,, ..., X;,) is derived by integrating (or summing) the joint
pdf with respect to the remaining n — r variables (X;,, X;,, ..., X;,_,). if the X;’s are all
continuous, for example,

low) O s 2]
ini""‘Xir (x!'li"'sxir) :-/. f ”‘\/‘ fx'ia"'ixﬂ{xl"”’xn) dle -.-dxjn-r
—o0J—ox

—c0

QUESTIONS

3.7.25. Consider the experiment of simultancously tossing a fair coin and rolling a fair die. Let
X denote the number of heads showing on the coin and ¥ the number of spots showing
on the die.

{a) List the outcomes in 5.
(b) Find FX’){(I, 2}

3.7.26. Anurn contains 12 chips—4 red, 3 black, and 5 white. A sample of size 4 is to be drawn
without replacement. Let X denote the number of white chips in the sample; ¥ the
number of red. Find Fyx y(1, 2).

3.7.27. For each of the following joint pdf’s, find Fx y(u, v).

@ frry)=3720=xs20<y<1
M) fxr(x.y)=%x +2y),0<x<1,0<y<1
© fry(x,y)=4xy,0=x=<l0=<y=<1
3.7.28. For cach of the following joint pdf’s, find Fy, y{x, v).
@ fry(y)=30<x<y=<2
® fxyeny)=10=<y<x=<1
{© fryx,y)=6x,0<x=<1,0<y=<l—x
3.7.29. Find and graph fx y{(x, y) if the joint cdf for random variables X and ¥ is

Fxv(x,y) = xy, O<x<l, O0<y<l1
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3,7.30. Find the joint pdf associated with two random variables X and ¥ whose joint cdf is
Fyy(x,v)=(1 —~ ENL — M), x>0 y=0

3731 Giventhat Fy y(x, y) = k(#x2y? + 5x3%),0 < x < 1,0 < y < 1,find the corresponding

pdf and use it to calenlate P(0 < X < %,% < ¥ < 1)
3.132. Prove that

Pla <« X<bc<¥Y=zd)=Fyybd) ~ Fxyla, dy — Fyylb,¢) + Fxyla. o)

3.7.33. A certain brand of fluorescent bulbs will last, on the average, 1000 hours. Suppose that
four of these bulbs are installed in an office. What is probability that all four are still
functioning after 1050 hours? If X; denotes the ith bulb’s life, assume that

4
1 .
) - - ey /1000
%, X053, 5, (%1, X2, 43, x4) = E (W}(){){)) e
forx; » 0,i=1,2,3,4.
3.7.34. A hand of six cards is deait from a standard poker deck. Let X denote the number of
aces, ¥ the number of kings, and Z the number of queens.
{(a) Write a formula for px v z(x, ¥, 2).
(b) Find px y(x, y)and px z(x,2).
_ » 31 IV TN TV
3.7.35. Calculate py v (0. Dif px yoz{x, ¥y, 2) = ( ) ( ) (—) .

izt 3 - x - v — oY 2

1 F—x—yoz

" for,x,)',zm(ﬁ}§1,2,3and('}§x%wymlmzsf.%.

3,7.36. Suppose that the random variables X, ¥, and Z have the multivariate pdf
fxrzx.y, 2= + yle "

for0 < x « 1,0 < v < 1l,and z > 0.Find (a) fx.r(x, ¥),(b) frz(y, z), and {¢) fz(2).
3.7.37. The four random variables W, X, ¥, and Z have the multivariate pdf

fw xvz(w, x, y,3) = louxyz
for 0 < w < 1,0 = x < 1,0 <« vy < 1, and © < z < 1. Find the marginal pdf.

fw.x (w0, x}, and use it fo compute Pl < W < %% <« X < D.

Independence of Two Random Variables

The concept of independent events that was introduced in Section 2.5 leads quite naturally
to a similar definition for independent random variables.

Definition 3.7.5. Two random variables X and Y are said o be independent if for every
interval A and every interval B, P(X € Aand ¥ € B) = P(X € A)P(Y € B).

Theorem 3.7.4. The random variables X and Y are independent if and only if there are
functions g(x} and h{y) such that

Fxy(x, v} = gx)h(y) (3.7.2)
If Equation 3.7.2 holds, there is a constant k such that fx (x) = kg(xYand fy(y) = (1/K)h(3)
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Proof. We prove the theorem for the continuous case. The discrete case is similar.
First, suppose that X-and Y are independent. Then Fx y(x,y) = P(X < x and
Y <y)y= P(X < x)}P(Y < y) = Fx(x)Fy{y), and we can write

2 2
Fyylx,y) =
x,v(x,y) % 3y

d d
fxylx, y) = Fx(x)Fy(y) = d—Fx(x)—FY(y) = fxfr(»
X dy

ox dy

Next we need to show that Equation 3.7.2 implies that X and Y are independent. To
begin, note that

= fareydy = f () dy = g(x) f h(y) dy

—C0 —o0

Set k = ffomh(y) dy, so fx(x) = kg(x). Similarly, it can be shown that fy(y) =
{(1/kYh(y). Therefore,

P(XeAandYeB):/[fx,y(x,y)dxdy=ffg(x)h(y)dXdy
als AJB

- L L k()L RO dx dy = fA Fr () dx fg Fe)dy
= P(X € A)P(Y € B)

and the theorem is proved. O

EXAMPLE 3.7.11

Suppose that the probabilistic behavior of two random variables X and ¥ is deseribed by
the joint pdf fy y(x, y) =12xy(1 — ¥),0<x <1,0 < y < 1. Are X and ¥ independent?
K they are, find fx(x) and fy(y).

According to Theorem 3.7.4, the answer to the independence question is “yes” if
fx.y(x, y) can be factored into a function of x times a function of y. But there are such
functions. Let g{x) = 12x and k(y) = y(1 — ).

To find fx(x) and fy(y) requires that the “12” appearing in fx y(x, ¥) be factored in
such a way that g(x) - h(y) = fx(x) - fr(y). Let

oo 1 1 1
k= [T rmav= [0 - nay=p2 -yl =1

—0 0 0
Therefore, fx(x) = kg(x) = §(12x) = 2x,0 < x < land fr(») = (1/DA() = 6y(1 — y),
0=<y=<l

independence of n { > 2) Random Variables

In Chapter 2, extending the notion of independence from two events to r events proved
to be something of a problem. The independence of each subset of the n events had to be
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checked separately (recall Definition 2.5.2). This is not necessary in the case of n random
variables. We simply use the extension of Theorem 3.7.4 to n random variables as the
definition of independence in the multidimensional case. The theorem that independence
is equivalent to the factorization of the joint pdf holds in the multidimensional case.

Definition 3.7.6. The n random variables X, X2, ..., X, are said to be independent if
there are functions g1(x1), g2(x2). ..., ga{x,) such that for every x1, x2, ..., x,

Iy % %, 000, %2, o0 X)) = pr{x)ga(x2) - - - gulxn)

A similar statement holds for discrete random variables, in which case f is replaced
with p.

Comment. Analogous to the result for n = 2 random variables, the expression on the
right-hand side of the equation in Definition 3.7.6 can also be written as the product of
the marginal pdfs of X1, Xg, ..., and X,,.

EXAMPLE 3.7.12

Consider & urns, each holding n chips, numbered 1 through #. A chip is to be drawn at

random from each urn. What is the probability that all k chips will bear the same number?
i X1, X2, ..., X denote the numbers on the 1st, 2nd, ..., and kth chips, respectively,

we are looking for the probability that Xy = X5 = ... = X;. In terms of the joint pdf,

PXy=Xp=-=X)= 3 PXyXp... XK1, X200, X8)

Xp=Hg= =g

Each of the selections here is obviously independent of all the others so the joint pdf
factors according fo Definition 3.7.6, and we can write

PXy=Xp="=X)=)_ px,(x) - px,(x)--- px, (%)
]
(1 1 1)
=" —_ = s aee s —
n n #
1
= a1

Random Samples

Definition 3.7.6 addresses the question of independence as it applies to n random variables
having marginal pdfs—say, fx,(x1). fx,(x2). ..., fx, (x,)—that might be quite different.
A special case of that definition occurs for virtually every set of data collected for
statistical analysis. Suppose an experimenter takes a set of # measurements, x1, x2, ..., X,
under the same conditions. Those X;’s, then, qualify as a set of independent random
variables—moreover, each represents the same pdf. The special--but familiar—notation
for that scenario is given in Definition 3.7.7. We will encounter it often in the chapters
ahead.
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Definition 3.7.7. Let X, X2,..., X, be a set of n independent random variables, all

having the same pdf. Then Xy, X7,..., X, are said to be a random sample of size n.
QUESTIONS
3.7.38. T'wo fair dice arc tossed. Let X denote the number appearing on the first die and Y the

3.739.

3,740,

3.7.41.

3.742.

3.7.43.

3.744.

3.7.45.

3.7.46.

3.7417.

3.748.

3.7.49,

3.7.50.

number on the second. Show that X and ¥ are independent.

Let fx y(x, y) = 320§ < x, 0 < y. Show that X and Y are indepcndent. What
are the marginal pdf’s in this case?

Suppose that each of two urns has four chips, numbered 1 through 4. A chip is drawn
from the lirst urn and bears the number X. That chip is added to the second urn. A
chip is then drawn from the second urn. Call its number Y.

(a) Find px y(x, y).

(&) Show that px(k) = py(k) = 1,k =1,2,3,4

(¢) Show that X and ¥ are not independent

Let X and ¥ be random variables with joint pdf

fxylx,y) =k, 0<x=<l, O<y=xl O<x+y=<li

Give a geometric argument to show that X and ¥ are not independent.

Arc the random variables X and ¥ independent if fy y(x, y) = %(x + 2y, 0<x <=1,
O0<y=1?

Suppose that random variablcs X and Y are independent with marginal pdfs, fx(x) =
2x,0<x<land fy(3) =3y, 0< y < 1.Find P(Y < X).

Find the joint cdf of the independent random variables X and ¥, where fx(x) = =,
O<x=<2and r() =2y, 0<y <1

If two random variables X and ¥ are independent with marginal pdfs fx(x) = 2x,

D

Y
O0<xy=<land fy(y) = 1,0 < y < 1, calculate P (} > 2).

Supposc fx,y (x, ¥) = xye~ ¥ x » 0,y > 0. Prove for any real numbers a, b, ¢, and
d that

Pla< X <be<Y<dy=Pla<X <bh) -Ple<Y <d

therchy establishing the independence of X and Y.
Given the joint pdf fx y(x,y) =2x + y — 2xy,0 < x < 1,0 < y < 1, find numbers
a, b, c. and d such that

Pla< X <be<Y<dyFPla<X <b- -Pe<Y <d

thus demonstrating that X and ¥ are not independent.

Prove that if X and ¥ are two independent random variables, then U = g(X) and
V = (Y} are also independent,

if two random variables X and ¥ are defined over a region in the X Y-plane that is not a
rectangle (possibly infinite} with sides parallel to the coordinate axes, can X and ¥ be
independent?

Write down the joint probability density function for a random sample of size » drawn
from the exponential pdf, fx(x) = (1/3)e ** 5 > (.
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3.7.51. Suppose that X, X3, X3, and X4 are independent random variables, cach with pdf
fx, () =4x7,0 < x; < 1. Find
(® P(X; < 3)
(b) P(exactlyone X; < 3)
(©)  fx;.X2.%3, %4 (X1, X2, X3, X4)

(&} FXZ.X:; {x2, x3)
3.7.52. A random sample of size n = 2k is taken from a uniform pdf defined over the unit

interval. Calculate P(X; < 4, X2 > Lxs < L Xe > 3.0 X > 1).
3.8 COMBINING RANDOM VARIABLES

In Section 3.4, we derived a linear transformation frequently applied to single random
variables—Y = a + bX. Now, armed with the multivariable concepts and techniques
covered in Section 3.7, we can extend the investigation of transformations to functions
defined on sets of random variables. In statistics, the most important combination of a
set of random variables is often their sum, so we begin this section with the problem of
finding the pdfof X + Y.

Finding the pdf of a Sum

Theorem 3.8.1. Suppose that X and Y are independent random variables, Let W = X -+ Y.
Then

1. If X and Y are discrete random variables with pdfs px (x) and py (y), respectively,

pwiw) =Y px(x)py(w — x)
all x

2. If X and Y are continuous random variables with pdfs fx(x) and fy(y), respectively,
fwlw) = [ Fx(x) fy(w — xydx
0

Proof.
L pyw)=P(W=w)=P(X + Y =W)

mUP(X:x,Y:w—x):EP(me,Y:w—x)

all x al x
=Y P(X=x)P¥ =w — x)
all x
=Y px(x)pr(w — x)
all x

where the next-to-last equality derives from the independence of X and Y.

2. Since X and ¥ are continuous random variables, we can find fw (w) by differen-
tiating the corresponding cdf, Fw(w). Here, Fw{w) = P(X + Y =< w)is found
by integrating fy y(x,¥) = fx(x) - fy(y) over the shaded region R pictured in
Figure 3.8.1.
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FIGURE 3.8.1

By inspection,

Fu(w) = f f A frO)dy dx = f ‘fxm( f - fy(y)dy) dx

= fx(x)Fy(w — x)dx

Assume that the integrand in the above equation is sufficicntly smooth so that
differentiation and integration can be interchanged. Then we can write

d [ 0 d
fw{w) = iFw(w) =— Fx(xFy(w — x}dx :f Fx(x) (EFY{W - x)) dx

dw dw J_o
. )
= [ fxXfrw — x)dx
-0
and the theorem is proved. O

Comment. The intcgral in part {2) above is referred to as the convoelution of the
functions fx and fy. Besides their frequent appearances in random-variable problems,
convolutions turn up in many arcas of mathematics and engineering.

EXAMPLE 3.8.1

Suppose that X and ¥ arc two independent binomial random variables, cach with the
same success probability but defined on m and » trials, respectively. Specifically,

pxk) = (’z)p"& -V k=01,....m
and
prk) = (Z)p“(i — ok k=01

Find pw(w), where W =X 4 7.
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By Theorem 3.8.1, pwi(w) == Y px(x)py{w — x), but the summation over “all x”
allx
needs to be interpreted as the set of values for x and w — x such that px(x) and

py(w - xJ, respectively, are both nonzero. But that will be true for all integers x from 0
to w. Therefore,

pww) =3 px(ipy(w — x) = (m)Px(l - p)"‘“x( " )p“’“"(l - pyr®
et} X w —Xx

x==f)

(e o
=3 pia - prme
JM)(x w—x

Now, consider an urn having m red chips and » white chips. If w chips are drawn
out—without replacement—the probability that exactly x red chips are in the sample is

given by the hypergeometric distribution,
(m) ( - )
AXSAW — X/ (38.1)

m+ n
w
Summing Equation 3.8.1 from x = 0 to x = w must equal one (why?), in which case

2 (6" )-0)

x=b

P(x reds in sample) =

80 -
m+ n w Ft-pr
pwlw) = w pE( — p) , w=01...,n+m
Should we recognize pw(w)? Definitely. Compare the structure of pw(w) to the
statement of Theorem 3.2.1: The random variable W has a binomial distribution where
the probability of success at any given trial is p and the total number of trials isn + m.

Comment. Example 3.8.1 shows that the binomial distribution “reproduces” itself—
that is, if X and ¥ are independent binomial random variables with the same value for
p, their sum is also a binomial random variable. Not ali random variables share that
property. The sum of two independent uniform random variables, for example, is not a
uniform random variable (see Question 3.8.3).

EXAMPLE 3.8.2

Suppose a radiation monitor relies on an electronic sensor, whose lifetime X is modeled
by the exponential pdf fy(x) = e~ x > (. To improve the reliability of the monitor,
the manufacturer has included an identical second sensor that is activated only in the
event the first sensor malfunctions. (This is called cold redundancy.) Let the random
variable ¥ denote the operating lifetime of the second sensor, in which case the lifetime
of the monitor can be written as thesum W = X + Y. Find fw(w).
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Since X and Y are both continuous random variables,

joce]

fow)= | fx®frw — xdx (3.82)

—OG

Notice that fx(x) > Oonlyif x > Oand fy(w — x} > Oonlyif ¥ < w. Therefore, the
integral in Equation 3.8.2 that goes from —co to coreduces (o an integrat from 0 to w, and
we can wrife

ur w w
fwlw) = f @ frw — x)dx = f Ae Mhe MR gy — 32 f e xgMW—R) gy
0 0 1]

w
= }Lze"m’/ dx = Y we™, wz=0
0

Comment. By integrating fy(x) and fy(w), we can assess the improvement in the
monitor’s reliability afforded by the cold redundancy. Since X is an exponential random
variable, E(X) = 1/4 (recall Example 3.5.6}. How diffcrent, for example, are P{X = 1/1)
and P(W > 1/3)? A simple calculation shows that the latter is actually fwice the magnitude
of the former:

X0
P(X =1/3) = f he Mdx = —e 4| =¢ =037
173

-0
P(W=1/3) = f Pwe ™ dw = e (—u — 1)|=2¢7 =074
/A

Finding the pdfs of Quotients and Products

We conclude this section by considering the pdfs for the quotient and product of fwo
independent random variables. That is, given X and Y, we are looking for fy {w), where
1} W = ¥/X and 2) W = XY. Neither of the resulting formulas is as important as the
pdf for the sum of two random variables, but both formulas will play key roles in several
derivations in Chapter 7.

Theorem 3.8.2, Let X and Y be independent continuous random variables, with pdfs fx(x)
and fy{y), respectively. Assume that X is zero for af most a set of isolated poirnts. Let
W =Y/X, Then

fw(w)=f Il fx (e fy (wx) dx

—00
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Proaf.

Fw(w) = PY/X <w)
=P¥/X<w and Xz0) + P¥/X>w and X < ()
=P <wX and X>0) 4+ PX>wX and X <0
=P(Y<wX and X>0O +1 - P¥<wX and X <0)

oo pWE )] wx
= fe f e e dyds +1 - f £ Fr () dy dx

—00 f 00

Then differentiate Fy (w) to obtain

f()wmfng _d ocwx( v d _,iﬁfwx( (dd
wlw) =~ W(w)_ﬂu—f(} f_mfxx)fy(y) ¥ x—dem moofxx)fy ydydx

oG d wx 0 d wx
= f fx(x) (Ez_ fr(y)dy) dx — f Fx(x) (---- fy(y)dy) dx
o} W Jeno - dw e ]

(38.3)

(Note that we are assuming sufficient regularity of the functions to permit interchange
of integration and differentiation.)

To proceed, we need to differentiate the function G(w) = ff’o’g fr{y) dy with respect
to w. By the Fundamental Theorem of Calculus and the chain rule, we find

d d [ d
5 T W) = fr(y)dy = fy(wx)

Tu v ) dvax w5 X fy (wx)

Putting this result into Equation 3.8.3 gives

o0 ]
fwlw) = /0 xfx(x) fy(wx)dx — f xfx (x} fy (wx)dx

o0 i)
- [ﬁ xfx () fy (wx) dx + f (=) fx () fyr (wi) dx
{4

- [ﬂ ] fx (x) fr (wx) dx + [ x| Fx (o) fr(w) dx

-G

- f el fx O6) fy (wx) dx

—CQ

which completes the proof. [

EXAMPLE 3.8.3

Let X and Y be independent random variables with pdfs fy(x) = re ™™ x > 0 and
fr(y) =2re"*,y > 0. Define W = Y/X. Find fw(w).
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Substituting into the formula given in Theorem 3.8.2, we can write
fw(w) = f Oox(ze*“)(xe*m") dx = A2 f " e M
0 . N 0
=T w f(} ML+ wye MHWx g

Notice that the integral is the expected value of an exponential random variable with
parameter A(1 + w), soitequals 1/4(1 + w) (recall Example 3.5.6}. Therefore,

fort) = — L _ ! 20
W = ol +w A+ wp T

Theorem 3.8.3. Let X and Y be independent continuous random variables with pdfs fx(x)
and fy(y), respectively. Let W = XY. Then

R |
‘mm=f ZpxCw/x) fy () dx

—no 1]

Proof. A line-by-line straightforward modification of the proof of Theorem 3.8.2 will
provide a proof of Theorem 3.8.3. The details are left to the reader. i

EXAMPLE 3.8.4

Suppose that X and Y are independent random variables with pdfs fy(x) =1,0<x <1
and fy(v) =2y,0 < y < 1, respectively. Find fw{w), where W = X¥.
According to Theorem 3.8.3,

Rac |
fwlu) = f — fx(w/x) fr(x)dx

o IxI

The region of integration, though, needs to be restricted to values of x for which the
integrand is positive. But fx (w/x) is positive only if 0 < w/x < 1, which implies that
x = w. Moreover, for fy(x) to be positive requires that 0 < x < 1. Any x, then, from w to
1 will yield a positive integrand. Therefore,

1 1
fw(w):f 1(1)(2x)dx=[ 2dx=2 — 2w, O0=<w=xl

;X w

Comment. Theorems 3.8.1, 3.8.2, and 3.8.3 can be adapted to situations where X and
Y are not independent by replacing the product of the marginal pdfs with the joint pdf.
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QUESTIONS

38.1 Let X and ¥ be two independent random variables. Given the marginal pdfs shown
below, find the pdf of X + Y. In each case, check 1o sec if X + ¥ belongs to the same
family of pdfsas do X and ¥.

&

A *
(a) pxk) = e_;‘F and py (k) = e“f‘%, k=0,1,2....

M) pxtk)=prth)y=(0 — pflpk=12..

3.8.2. Suppose fx(x) = xe ™, x = 0,and fy(y) = ¢~¥, y > 0, where X and Y are independent,
Findthepdfof X + Y.

3.83. Let X and ¥ be two independent random variables, whose marginal pdfs are given
below. Find the pdf of X + Y. Hint: Consider twocases. 0 < w < lTand 1 < w < 2.
frEy=10<x=<Tand fy(v)=1,0<y <1

3.84. If a random variable V is independent of two independent random variables X and ¥,
prove that V is independentof X + Y.

38.5. Let ¥ be a uriform random variable over the interval [0, 1]. Find the pdf of W = 2.
Hint: First find Fy(w).

3.8.6. Let ¥ be a random variable with £y (v) = 6v(l — v),0 < y < 1. Find the pdf of W = Yz,

3.8.7. Given that X and ¥ are independent random variables, find the pdf of XY for the
following two sets of marginal pdfs:

@ fx(x)=10=<x<land fy(»=10=<y <1
3.8.8 Let X and ¥ be twe independent random variables. Given the marginal pdfs indicated
below, find the cdf of ¥/X. Hing: Consider two cases, 0 < w < land 1 < w,
@ fxxy=10=<x<land fy(m=10=<y =<1
M) fry=2x,0=<x=land fy(x)=2r,0<y=<l1
3.8.9. Suppose that X and ¥ are two independent random variables, where fx(x) = xe™,

3.9 FURTHER PROPERTIES OF THE MEAN AND VARIANCE

Sections 3.5 and 3.6 intreduced the basic definitions related to the expected value
and variance of single random variables. We learned how to calculate E(W), E[g(W)],
E{aW + by, Var(W), and Var(@W + b), where ¢ and b are any constants and W could
be either a discrete or a continucus random variable. The purpose of this section is to
examine certain multivariable extensions of those results, based on the joint pdf material
covered in Section 3.7.

We begin with a theorem that generalizes E[g(W)]. While it is stated here for the case
of two random variables, it extends in a very straightforward way to include functions of
# random variables.

Theorem 3.9.1.
1. Suppose X and ¥ are discrete random variables with joint pdf px y(x, v), and let
g(X, Y) be a function of X and Y. Then the expected value of the random variable
g{X. Y)is given by
E[gX. V)] =YY g(x.3 - pxyx.»

all xatb »

provided = 3 |gx, »)| - pxy(x,¥) < oo

alt x all y
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2. Suppose X and Y are continuous random variables with joint pdf fx y{x, y), and let
2(X.Y) be a continuous function. Then the expected value of the random variable
g(X, Y)is given by

E{g(X‘ Y)] If f g{x! .V} " fX,Y(x& y}dxdy

provided [ {7 1g(x, V) - Fx.y(x, ¥y dxdy < co

Proof. The basic approach taken in deriving this result is similar to the method
followed in the proof of Theorem 3.5.3. See (134) for details. ]

EXAMPLE 3.9.1

Consider the two random variables X and ¥ whose joint pdf is detailed m the 2 X 4 matrix
shown in Table 3.9.1. Let

g(X,Y)=3X — 2XY + ¥

Find Efg(X, Y)] two ways—{irst, by using the basic definition of an expected value, and
secondly, by using Theorem 3.9.1.

TABLE 3.9.1
Y
0 1 2 3
i i 1
X 0 g 2 g 0
13 i 1
0 3 1 3
TABLE 3.9.2
z c 1 2 3
fz(2) P 3 3 0

Let Z = 3X — 2XY 4 Y. By inspection, Z takes on the values 0, 1, 2, and 3 according
to the pdf fz(z) shown in Table 3.9.2. From the basic definition, then, that an expected
value is a2 weighted average, we see that E[g(X, Y)] is equal to one:

EgX. N =E@) =Y z - f2(2)

allz

1
=0 .- 1-
4+

BN i

=1
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The same answer is obtained by applying Theorem 3.9.1 to the joint pdf given in
Figure 3.9.1:

1
0.~
T3

| -

1 1 1 1
E 0.2 2 - 4+3.043.04+2-=+1-
[ELV)=0 - S+ 1.2 +2:2+3-04+3-0+2- 2+

=1
‘The advantage, of course, enjoyed by the latter solution is that we avoid the intermediate
step of having to determine fz(z).

EXAMPLE 3.9.2
Anelectrical circuit has three resistors, Ry, Ry, and Rz, wired in parallel (see Figure 3.9.1),
The nominal resistance of each is fifteen ohms, but their aciuaf resistances, X, ¥, and Z,

vary between ten and twenty according to the joint pdf,
10<x <20

1
fryxx,y, )= (xy + xz + yz), 1W0<y=<20
675,000 10 < z <20

What is the expected resistance for the circuit?

FIGURE 3.9.1

Let R denote the circuit’s resistance. A well-known result in physics holds that
1 1 1 1

or, equivalently,
XYz
XY + XZ + YZ
Integrating R(x, y,z) - fx.y.z(x. v, z) shows that the expected resistance is five:

1
BB = dxdyd
*® L.ef fm Iy+xz+yz 675,009(’“3"*'“'*'}’1) xdydz

20
= —'———— xyzdxdydz
675,000 fiﬁ fzo L} Y Y

=30

= R(X, Y, Z)
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Theorem 3.9.2. Let X and Y be any two random variables (discrete or continuous dependent
or independent), and let a and b be any two constants. Then
E@X + bY) =aE(X) + BE(Y)
provided E(X} and E(Y} are both finite.

Proof. Consider the continuous case (the discrete case is proved much the same way).
Let fx y(x,y} be the joint pdf of X and ¥, and define g(X,Y) = aX + bY. By
Theorem 3.9.1,

E{(aX + bY) =f f (ax + by) fxy(x, yydxdy
= f f (ax) fx,y(x, yydxdy + f f ®By) fx,y (x, yydx dy

“f X( fxy(x, y)dy) dx + b[ ¥y (f fx.y(x, y)dx) dy

—a f xfx(x)dx + b f YFr()dy

0 i

= aE(X) + bE(Y) O

Corollary. Let Wy, Wy, ..., W, be any random variables for which E(W;) < og, i =
1.2,....n,and let a1, m, - . . , ay, be any set of constants. Then

E@W; + W, + - + axWp) = E(W1) + @E(Wy) + -+ + a, E(W,)

EXAMPLE 3.9.3
Let X be a binomial random variable defined on n independent trials, each trial resulting
in success with probability p. Find E(X).

Note, first, that X can be thought of asasum, X = Xy + X3 + --- + X, where X;
represehts the number of successes occurring at the ith trial:

_ | 1 if theith trial produces a success
' 7] 0 if theith trial produces a failure

{Any X; defined in this way on an individual trial is called a Bernoulii random variable.
Every binomial, then, can be thought of as the sum of » independent Bernoullis.) By
assumption, py, (I =pand px, MW =1 — p,i =1,2,..., n. Using the corollary,

E(X)=E(Xy) + E(X2) + --- + E(Xy)
=n - E(Xy)

the last step being a consequence of the X;’s having identical distributions. But
EX)=1-p+0-Ad-p=p
s0 E(X) = np, which is what we found before {recall Theorem 3.5.1}.
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Comment. The problem-solving implications of Theorem 3.9.2 and its corollary
should not be underestimated, There are many real-world events that can be modeled as
a linear combination a4 W + @aWo + --- + a, W,, where the W;s are relatively simple
random variables. Finding E(qy Wy + axWa + -+ + a,W,,) directly may be prohibitively
difficult because of the inherent complexity of the linear combination. It may very
well be the case, though, that calculating the individual E(W;)’s is easy. Compare, for
instance, Example 3.9.1 with Theorem 3.5.1. Both derive the formula that E(X) = np
when X is a binomial random variable. The approach taken in Example 3.9.1 (i.c., using
Theorem 3.9.2) is much easier. The next several examples further explore the technique
of using linear combinations to facilitate the calculation of expected values.

EXAMPLE 3.9.4

A disgruntled secretary is upset about having to stuff envelopes. Handed a box of n letters
and n envelopes, she vents her frustration by putting the letters into the envelopes at
random. How many people, on the average, will receive their correct mail?

If X denotes the number of envelopes properly stuffed, whai we want is £(X). However,
applying Definition 3.5.1 here would prove formidable because of the difficulty in getting
a workable expression for px(k) [see (97)]. By using the corollary to Theorem 3.9.2,
though, we can solve the problem quite easily.

Let X; denote a random variable equal to the number of correct letters put into the ith
envelope, i == 1,2, ..., »n. Then X; equals O or 1, and

}l fork =1
px, () =PX;=k={" _4
fork == (¢
n

ButX =X, + Xo+ - + Xpand E(X) = E(X1) + E{X2) + --- + E(X,,.) Furthermore,
each of the X;’s has the same expected value, 1/#:

! n—1 i
E(X,-)mZk~P(Xi=k)m(}-m¥m +1. ==

k{3
It follows that

i 1
EX)=)Y E(X)=n- (;)

izl
=1

showing that, regardless of n, the expected number of properly stuffed envelopes is one.
(Are the X;’s independent? Does it matter?)

EXAMPLE 3.9.5
Ten fair dice are rolled. Calculate the expected value of the sum of the faces showing.
If the random variable X denotes the sum of the faces showing on the ten dice, then

X=X+ X0+ -+ Xy
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where X; is the number showing on the ithdie,i = 1,2, ..., 10. By assumption, px, (k) = &
6 6
fork=1,2,3,4,5650EX)=Y k- + =13 k=1. % =35 By the coroflary to
k=1 k=1
Theorem 3.9.2,

EX)y=EX) + EX2) + -+ + E(Xq0)
= 10(3.5)
=35

Notice that E(X) can also be deduced here by appealing to the notion that expected
values are centers of gravity. It should be clear from our work with combinatorics that
PX=10)=P(X=60), PIX =11) = P(X =59), P{X = 12) = P(X = 58), and so on.
The probability function py (k) is symmetric, in other words, which implies that its center
of gravitgr ésﬂthe midpoint of the range of its X -values. It must be the case, then, that E£(X)

equats 12460 or 35,

EXAMPLE 3.2.6

The honor count in a (thirteen-card) bridge hand can vary from zero to thirty-seven
according to the formula;

honor count = 4 - (number of aces} + 3 - (number of kings) + 2 - (number of queens)
+ 1 . (number of jacks)
What is the expected honor count of North’s hand?
The solution here is a bit unusual in that we use the corollary to Theorem 3.9.2
backwards. If X;,i = 1,2,3, 4, denotes the honor count for players North, South, East,

and West, respectively, and if X denotes the analogous sum for the entire deck, we can
write .

X=X{ 4+ X2 4+ X3 + X4
But
X=EX)=4-4+3-44+2-44+1-4=40

By symmetry, E(X;) = E(X;),i # j,soitfollows that 40 =4 . E(X,), which implies that
ten is the expected honor count of North’s hand. (Try doing this problem directly, without
making use of the fact that the deck’s honor count is forty.)

EXAMPLE 3.9.7

Suppose that a random sequence of 1s and 0s is generated by a computer, where the
length of the sequence is 1, and

p = p(1 appears in i th position)
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and
1 ~ p= p(0 appears in ith position), i=12,...,n

What is the expected number of runs in the sequence? Note: A run is a series of consecutive
similar outcomes. For example, the sequence

1101000

hasatotalof fourruns (1 1, 0, 1,and 0 0 0).

Let X; denote the outcome appearing in position i, = 1, 2, ..., n. The number of runs
in the sequence, then, can be expressed in terms of the n — 1 transitions from X; to Xi 44,
i=1,2,...,n ~ 1 Specifically, let
0 ifX; = X;yy

(Xi, Xyy1) =
Q(Xs, Xis {1 iin?&X,‘_;_]_

1t follows that
R = total pumber of runs = 1 4+ O(X1, X2} + Q(X2, X3) + -+ + O(X;—1, X»)

and
n—1
ERy =1+ Y E[Q(Xi, Xiy1)]
i=1
But
E[0Xi. Xiy)] =0« P(X; =Xiy1) + 1 - P(X; # Xigp)
= P(X; # Xiy1)
=PXi=1NXip1=0 + PX; =00 X;1=1)
=p{l —p+ A - pip (because of independence)
=2p(l — p)
Therefore,

ER)=1+2(n — DHpd — p

Expected Values of Products: A Spedial Case

We know from Theorem 3.9.1 that for any two random variables X and ¥,

Z nypx,y(x, y) if X and Y are discrete

E(XY) = a!igoaif y00
f f xyfx,y(x,y)dx dy if X and Y are continuous
—o0 J—x0

If, however, X and Y are independent, there is an easier way to calculate F{XY).
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Theorem 3.9.3. If X and Y are independent random variables,

EXY)Y=E(X) - E(Y)

provided E(X) and E(Y) both exist.

Progf. Suppose X and Y are both discrete random variables. Then their joint pdf,
px.v{x, y), can be replaced by the product of their marginal pdfs, px(x) - py(y), and
the double summation required by Theorem 3.9.1 can be written as the product of two
single summations:

EXY)=) "3 x5 pxy(x,)

all x all ¥

=Y > xy - px(®) - pr(y)

all xall y

=3 x-px() - | Yy pr(y)
all x all y

= E(X) - E(Y)

The proof when X and Y are both continuous random variables is left as an exercise. [

QUESTIONS

39.L

3.9.2.
3.93.

3.94.

3.9.5.

3.9.6.

Suppose that r chips are drawn with replacement from an urn containing » chips,
numbered 1 through n. Let V denote the sum of the numbers drawn. Find E(V).
Suppose that fxy(x,y) = 22e "0 0 < x,0 < y. Find E(X + Y).

Suppose that fx y(x.y) = %(x + 2y), 0= x = 1,0 =y < 1. (recall Question 3.7.19(c)).
Find E{X + Y).

Marksmanship competition at a certain level requires each contestant to take 10 shots
with each of two different hand guns. Final scores are computed by taking a weighted
average of four times the number of bull's-eyes made with the first gun phus six times
the number gotten with the second. If Cathie has a 30% chance of hitting the bull’s-eye
with each shot from the first gun and a 40% chance with each shot from the second gun,
what is her expected score?

Suppose that X; is a random variable for which E(X;) = u,i = 1,2, ..., n. Under what
conditions will the {ollowing be true?

n
E EQ;X; =ft
—

Suppose that the daily closing price of stock goes up an eighth of 2 point with probability
p and down an eighth of a point with probability ¢, where p > g. After n days how much
gain can we expect the stock to have achieved? Assume that the daily price fluctuations
are independent events.
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3.9.7. Anurn contains r red balls and w white balls. A sample of n balls is drawn in order and
without replacement. Let X; be 11f the ith draw is red and 0 otherwise i = 1,2, ..., n.
(1) Show that £(X;) = E(X).i =2,3,...,n
(b} Use the Corollary to Theorem 3.9.2 to show that the expected number of red balls

Isar/(r + w).

3.9.8. Suppose two fair dice are tossed. Find the expected value of the product of the faces
showing.

3.9.9. Find E(R) for a two-resistor circuit similar 1o the one described in Example 3.9.2,
where fy y(x,¥) =k{x + 3,10 =<x=20,10 < ¥y < 20.

3.9.10. Suppose that X and Y are both uniformly distributed over the interval [0, 1}. Calculate
the expected value of the square of the distance of the random point (X, Y) from the
origin; that is, find E(X2 + ¥2). Hint: See Question 3.8.5.

3.9.11. Suppose X represents a point picked at random from the interval [0, 1] on the x-axis,
and Y is a point picked at random from the interval [0, 1] on the y-axis. Assume that X
and ¥ are independent. What is the expected value of the area of the triangle formed
by the points (X, 03, (0. Yy and (0,0)7 ~

3.912. Suppose ¥q., ¥z, ..., Y, is a random sample from the uniform pdf over [0, 1]. The
geometric mean of the numbers is the random variable VY2 - -+« - ¥,. Compare the
expected value of the geometric mean to that of the arithmetic mean Y.

Calculating the Variance of a Sum of Random Variables

We know from the corollary to Theorem 3.9.2 that
E(W, + W + - + Wy=EW) + EW2) + --- + E(W,)

for any set of random variables Wy, Wa, ..., W, provided E(W;) exists for all i. A similar
result holds for the varignce of a sum of randlom variables, but only if the random variables
are independent.

Theorem 3.94. Let W), Wa, ..., W, be a set of independent random variables for which
E(W?) is finite for all i. Then
Var{Wj + Wz 4 --- + W) = Var{W;) 4+ Var(Ws) + --- 4+ Var(W,)

Proof. The derivation is given for a sum of two random variables, W; + Wa. A simple
induction argument would complete the proof for arbitrary ». From Theorems 3.6.1
and 3.9.2,

Var(W, + Wo) = E((W; + W) — [E(W)) + E(WpP?
Writing out the squares gives
Var(W) + Wo) = E(W] + 2W, W, + W}) — [EGW)F — 2E(WDE(Wy) — [E(Wn))
= E(W?) — [E(WDF + E(W3) — [EW)P
+ 2[E(W1W2) — E(Wp)E(W)] (3.9.1)
By the independence of Wy and Wa, E(W; W) = FE(Wj) E(W;), making the last term

in Equation 3.9.1 vanish. The remaining terms combine to give the desired result:
Var(W) + Wo) = Var(Wy) + Var(W). [J
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Corollary. Let Wi, Wa, ... W, be any set of independent random variables for which
E (Wiz) < ooforalli Leta, 4, ..., a, be any set of constants. Then

Var(@ Wi + mWs + --- + a,W,) = ajVar(Wy) + aiVar(Wp) + --- + aVar(X,,)

Proaf. The derivation is based on Theorems 3.9.4 and 3.6.2. The details will be left as
an exercise. O

Comment. A more general version of Theorem 3.9.4 can be proved, one that leads
to a slightly different formula but does not require the W;’s to be independent. The
argument, however, depends on a definition we have not vet introduced. We will return
to the problem of finding the variance of a sum of random variables in Section 11.4.

EXAMPLE 3.9.8

The binomial random variable, being a sum of » independent Bernoullis, is an obvious
candidate for Theorem 3.9.4. Let X; denote the number of successes occurring on the ith
trial. Then

% = 1 with probability p
"7 ]0 with probability 1 — p

and
X=X+ X3 + -+ + X, = total number of successes in » trials.

Find Var(X).

Note that

EX)=1-p+0-0-p)
and
E(x) =07 -p+©*-A-p=p

50

Var(X;) = E(X?) — [EX)P =p - p*
=p - p)

It follows, then, that the variance of a binomial random variable is np(1 — p):

Var(X) =Y Var(X;) = np(l — p)

i=1
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EXAMPLE 3.99

In statistics, it is often necessary to draw inferences based on W, the average computed
from a random sample of # observations. Two properties of W are especially important.
First, if the W;s come from a population where the mean is i+, the corollary to Theorem 3.9.2
implies that E(W) = u. Second, if the W;s come from a population whose variance is a?,

then Var(W) = o/n. To verity the latter, we can appeal to Theorem 3.9.4. Write

- 1 1 1 1
W= Wime - Wit — - W+~ - W,
7 L n ) ]

Then
1 1\? 1\*
Var(W) = (n) Var(Wy) + ( ) - Var(Ws) + -+ + (;) - Var(W,)
2 2
-GG e G)
n #
0,2
"
QUESTIONS

3.9.13. Suppose that fy y(x,y) = 2Ze™*5+ 0 < x, 0 < y. Find Var(X + ¥). Hint: See
Questions 3.6.11 and 3.9.2.

3.9.14. Suppose that fx y(x, y) = %(x +29),0=xx<1,0<y <1 Fnd Var(X + ¥). Hint:
See Question 3.9.3.

3.9.15. For the uniform pdf defined over [0, 1], find the variance of the geometric mean when
n = 2 (see Question 3.9.12).

3.9.16. Let X be a binomial random variable based on » trials and a success probability of
P let Y be an independent binomial random variable based on m trials and a success
probability of py. Find E(W) and Var(W), where W == 4X - 6Y.

3..17. Let the Poisson random variable ©7 be the number of calls for technical assistance
received by a computer company during the firm’s 9 normal workday hours. Suppose
the average number of calls per hour is 7.0 and that each call costs the company $50.
Let V be a Poisson random variable representing the number of calls for technical
assistance received during a day’s remaining 15 hours. Suppose the average number of
calls per hour is 4.0 for that time period and that each such call costs the company $60.
Find the expected cost and the variance of the cost associated with the calls received
during a 24-hour day.

3.9.18. A mason is contracted to build a patio retaining wall. Plans call for the base of the wall
10 be a row of 50 10-inch bricks, each separated by 5 1-inch-thick mortar. Suppose that
the bricks used are randomly chosen from a populanon of bricks whose mean length is
10 inches and whose standard deviation is 3‘1*2 inch. Also, suppose that the mason, on
the average, will make the mortar % inch thick, but the actual dimension varics from

brick to brick, the standard deviation of the thicknesses being % inch. What is the
standard deviation of L, the length of the first row of the wall? What assumption are
you making?
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3.9.19. An electric circuit has six resistors wired in series, each nominally being 5 ohms. What
is the maximum standard deviation that can be allowed in the manufacture of these
resistors if the combined circuit resistance is to have a standard deviation no greater
than 0.4 ohm?

3.9.20. A gambler plays n hands of poker. If he wins the kth hand, he collects k doilars; if he
loses the kth hand, he collects nothing. Let T denote his total winnings in » hands.
Assuming that his chances of winning each hand are constant and are independent of
his success or failure at any other hand, find E(T) and Var(T).

Approximating the Variance of a Function of Random Variables (Optional)

It is not an uncommon problem for a laboratory scientist to have to measure several
quantities, each subject to a certain amount of “error,” in order to calculate a final desired
result. For example, a physics student trying to determine the acceleration due to gravity,
G, knows that the distance, D, traveled by a freely falling body in time, T, is related to G
by the equation

1 .-
D=-GT
2

(assuming the body is initially at rest) or, equivalently,

2D
C=7
Suppose distance and time are to be measured directly with a yardstick and a stopwatch.
The values obtained, D and 7. will not be exactly correct; rather, we can think of them
as being realizations of random variables, with those variables having “true” values up
and pr and variances Var(D}) and Var(7T), the latter two numbers reflecting the lack of
precision in the measuring process. Suppose we know from past experience the precisions
characteristic of the distance and time measurements——what can we then conclude about
the precision in the calculated value for G? That is, knowing Var(D) and Var(7T), can we
find Var(G)?

By way of background, we have already seen one result that bears directly on this
sort of “error-propagation” problem. If the quantity to be calculated, W, is the sum of n
independently measured quantities, Wy, Wo, ..., W, and if the variance associated with
each of the W;’s is known, we can appeal to Theorem 3.9.4 and say that

Var(W) = Var(W) 4+ Var(W2) + --- + Var(W,) {3.9.2)

In general, extending Equation 3.9.2 in any exact way to situations where W is some
arbitrary function of a set of W,’s—say, W = g(Wy, W, ..., W,)—is extremely difficult, It
is a relatively simple matter, though, to get an approximation for the variance of W.
More specifically, suppose that W is a function of » independent random variables—that
is, W = g(Wy. Wo, ..., W,)). Assume that y; and Var(W,) are the mean and variance,
respectively, of W, i = 1,2,..., n. Using the first-order terms in a Taylor expansion of
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the function g(W;, Wa, ..., W) around the point (i1, yi2, - . ., i), We can write

(T yﬂn)]

&
] bt Wy~ ptn) [a,f,

g
W = - —_—
g1, ta Ha) + (W) m}[ oW

ag
Wy — s
+ (W M)[HWg

] (3.9.3)
(11,5140}

Applying the corollary to Theorem 3.94 to Equation 3.9.3 yields the sought-after

(et - - N

approximation:
a 2 J 2
Var(W) ﬁ[w‘i”w ] Var(Wy) + [mﬁ ] Var(Wy)

W g iz i) W2 | iy iz i)

R 2
bt [ é } Var(Wy). (3.9.4)
d (g2 o find
CASE STUDY 3.9.1

In a typical dental X-ray unit, electrons from the cathode of the X-ray tube are
decelerated by nuclei in the anode, thereby producing Bremsstrahlung radiation
{X-rays). These emissions, when collimated by a lead-lined tube, effect the desired
image on a sheet of film.

Tennessee state regulations (170) require that the distance, W, from the focal spot
on the anode of an X-ray tube to the patient’s skin be at least 18 cm. On some
equipment, particularly older units, that distance cannot be measured directly because
the exact location of the focal spot cannot be determined just by looking at the tube’s
outer housing. When this is the case, state inspectors resort to an indirect measuring
procedure. Two films are exposed, one at the unknown distance W and a second at
a distance W + Z. The two diameters, X and ¥, of the resulting circular images are
then measured (see Figure 3.9.2).

By similar triangles,

X ) 4 X7

— = or W=
w W4+ Z Y - X

(3.9.5)

Phrased in the context of our previous notation,
W=g(X.Y.Z)=XZ(¥ — X)~!

{Continued on next page)
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Focal spot

Lead-lined
colimator

FIGURE 3.9.2

During the course of one such inspection (96), values measured for the two
diameters X and ¥ and the backoff distance Z were 6.4 cm, 9.7 ¢m, and 10.2 cm,

respectively, From Equation 3.9.5, then, the anode-to-patient distance is cstimated
to be

_ (64)(102)

W= 97 — 6.4

=198 cm

indicating that the unit is in compliance. If the error in W, though, were sufficiently
large, there might still be a sizable probability that the frue W was less than 18 cm,
mearnting the unit was, in fact, out of compliance. It is not unreasonabie, therefore, to
inquire about the magnitude of Var(W).

To apply Equation 3.9.4, we first need to compute the partial derivatives of
g(X, Y, Z). In this case,

dg XZ z
& 5 +
X (Y — X) ¥ - X
0g  —XZ
Y (Y — X2
and
ag X
0Z (¥ — X)

{Continued on next page)
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(Case Study 3.9.1 continued)

Inspectors feel that the standard deviation in any of their measurements is on
the order of 0.08 cm, so Var(X) = Var(Y) = Var(Z) = (0.08)2. Substituting the
variance estimates and the partial derivatives, evaluated at the point (ux, puy, puz) =
{6.4,9.7,10.2) into Equation 3.9.4 gives

(6.4)(10.2) 10.2
97 — 642 T (97 = 64

2
+ {W“(6‘4)(10‘2)] 0.08)% + [

2
Var(W) = [ ] (0.08)2

2
] (0.08)2

(9.7 — 6.4)? 9.7 — 6.4)

={.782

Therefore, the estimated standard deviation associated with the calculated value of W
is /0,782, or 0.88 cm.

QUESTIONS
3.9.21. A physics student is trying to determine the gravitational constant, G, using the
expression
.2
G= 75

where both distance (D) and time (7) are to be measured. Suppose that the standard
deviation of the measurement errors in D is 0.0025 feet and in 7, 0.045 seconds. Tf the
experimental apparatus is set up so that D will be 4 feet, then 7 till be approximately
% second. If D is set at 16 feet, T will be close to 1 second. Which of these two sets of
values for Iy and T will give a smaller variance for the calculated G?

3.9.22. Suppose that Wy, W, ..., and W, are independent random variables with variances o2,

o, ..., and o} respectively, and let W = Wy + W, + --. + W,. Compare Var(W)
using Theorem 3.9.4 and Equation 3.9.4,

3.9.23. If h is its height and a and b are the lengths of its two parallel sides, the area of a

trapezoid is given by 1
A= E(a + bk

Find an expression that approximates o, if @, b, and & are measured independently
with standard deviations o, o3, and oy, respectively.

3.9.24. In Case Study 3.9.1, notice that the difference between 19.8 cm (the calculated distance)

and 18 cm (the state regulation minimum distance) is slightly more than two standard
deviations. What does that imply about the probability that this particular X-ray
machine is operating safely?

3.10 ORDER STATISTICS

The single-variable transformation taken up in Section 3.4 involved a standard linear
operation, ¥ = aX + b. The bivariate transformations in Section 3.8 were similarly
arithmetic, typically being concerned with either sums or products. In this section we will
consider a different sort of transformation, one involving the ordering of an entire set of
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random variables. This particular transformation has wide applicability in many areas of
statistics, and we will see some of its consequences in later chapters. Here, though, we
will limit our discussion to two basic resulis: derivations of {1) the margina! pdf of the ith
largest observation in a random samplc and (2) the joint pdf of the ith and jth largest
observations in a random sample.

Definition 3.10.1. Let ¥ be continuous random variable for which yy, yo, ..., ¥, arc the
values of a random sample of size n. Reorder the y;s from smallest to largest:

(No two of the y;s are equal, except with probability zero, since Y is continuous.)
Define the random variable Y to have the value y;, 1 <i < n. Then ¥/ is called the ith
order statistic. Sometimes ¥ and YI’ arc denoted Ymax and Yy, respectively.

EXAMPLE 3.10.1

Suppose that four measurcments are made on the random variable Y:y; = 3.4, y» = 4.6,
¥3 = 2.6, and vq = 3.2. The corresponding ordered sample would be

26 <32 <« 34 < 4.6

The random variable representing the smallest observation would be denoted Y], with
its value for this particular samplc being 2.6. Similarly, the value for the second order
statistic, ¥;, is 3.2, and so on.

The Distribution of Extreme Order Statistics

By definition, every observation in a random sample has the same pdf. For example,
if a sct of four mecasurements is taken from a normal distribution with 2 = 80 and
o =15, then fy, (v}, fr,(3), fra(¥), and fy,(y) arc all the same—each is a normal pdf
with 4 = 80 and o = 15. The pdf describing an ordered obscrvation, though, is not
the same as the pdf describing a random obscrvation. Intuitively, that makes sense, I
a single observation is drawn from a normal distribution with ¢ = 80 and ¢ = 15, it
would not be surprising if that observation were to take on a value near eighty. On
the other hand, if a random sample of # = 100 observations is drawn from that same
distribution, we would not cxpect the smallest obscrvation—ithat is, Yyin—to be anywhere
ncar cighty. Common sense tells us that that smallest observation is likely to be much
smaller than cighty, just as the largest observation, Ynay, is likely to be much larger than

cighty.
It follows, then, that before we can do any probability calculations—or any applications
whatsoever—involving order statistics, we need to know the pdf of ¥/ fori =1,2,...,n.

We begin by investigating the pdfs of the “extreme” order statistics, fy,, (y) and fy,, ().
These are the simplest to work with, At the end of the section we return to the more
general problems of finding (a) the pdf of ¥/ for any i and (b) the joint pdf of ¥/ and ¥ i
wherei < j.
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EXAMPLE 3.10.2
Suppose that ¥y, Y2, ..., ¥, is a random sample of continuous random variables, each
having pdf fy(y) and cdf Fy(y). Find

A [t () = fr:(»), the pdf of the largest order statistic
b fruin () = fy;(3), the pdf of the smallest order statistic

Finding the pdfs of Ymax and Ymin is accomplished by using the now-familiar technique
of differentiating a random variable’s cdf. Consider, for example, the case of the largest
order statistic, ¥:

FY;(y) = Fypr (V) = P(¥Ymax < ¥}
=PYi<ynY<ynNn---NY, =y
=P(Y1<y) - P 2y)--P¥, <y) (why?)
=[FrWI"

Therefore,
fri ) = dfdy[[Fr O] = nlFy O fr ()
Similarly, for the smallest order statistic (f = 1),

Fyi(y) = Frp, () = P(Ymin <)
=1 = P(¥Yin > N=1— P(¥1 > y) - P(Y2 > y)--- P(Yn > ¥)
=1-[1 - RO

Therefore,

fa®) =dfdyll = [L — FrOI1=nll — KO HG)

EXAMPLE 3.10.3
Suppose a random sample of # = 3 observations—7VYq, Y2, and Y3—is taken from the
exponential pdf, fy(y) == ¢"¥, y = 0. Compare fy,(y) with f},{ {y). Intuitively, which will
be larger, P(¥1 < 1) or P(¥{ < 1)?7

The pdf for ¥y, of course, is just the pdf of the distribution being sampled—that is,

N =fM=e”, y=0

To find the pdf for Y] requires that we apply the formula given in Example 3.10.2 for
¥ ). Note, first of all, that

¥
oY= [ etar = =1 - e
G
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3x
I
Vo fO)=3eY
[y i
1 /
2 L.
Probability Y
density Y
\
itk K o
N ‘\\ /fyi 0)=e”
N
\:- -
T ———— e v o e ry
g ] 2 3 4 5
FGURE 3.10.1

Then, since n = 3 (and i = 1), we can write

fr) =301 - 1 — Pl
=3¢ ¥, y=0

Figure 3.10.1 shows the two pdfs plotted on the same set of axes. Compared to Fr (),
the pdf for ¥; has more of its area located above the smaller values of y (where Y] is more
likely to lie). For example, the probability that the smallest observation (out of three) is
less than one is 95%, while the probability that a random observation is less than one is
only 63%:

1 3 3
PY] <= f 3¢V dy = f et du=—e"
0 0

= (.95

1 1

PY; < = f e Ydy=—e"?
0

=063

EXAMPLE 3.10.4

Suppose a random sample of size ten is drawn from a continuous pdf fy(y). What is the
probability that the largest observation, ¥}, is less than the pdf’'s median, m?

Using the formuta for fy{ﬂ () = frm(¥) given in Example 3.10.2, it is certainly true
that

Pty <my= [ 105 ONF )Py (3.10.1)

but the problem does not specify fy(y), so Equation 3.10.1 is of no help.
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Fortunately, a much simpler solution is available, even if fy(y) were specified: The
event “Yj, < m” is equivalent to the event “Yy <« m N ¥z < m N --- N Yo < m”.
Therefore,

P(Y{G <my=PY <« m, Yo < m, ..., o < m) (3.10.2)

But the ten observations here are independent, so the intersection probability implicit on
the right-hand side of Equation 3.10.2 factors into a product of ten terms. Moreover, each
of those terms equals % (by definition of the median), so

P(Yjy < m)= P(¥Y; < m) - P(Ya < m)--- P(¥Y1o < m)

= ()"
= 0.00098

A General Formula for f,.{y)

Having discussed two special cases of order statistics, Yy, and ¥Ypax, We now turn to the
more general problem of finding the pdf for the ith order statistic, where i can be any
integer from 1 through .

Theorem 3.10.1. Ler ¥y, Vo, ..., Yy be a random sample of continuous random variables
drawn from a distribution having pdf fy(y) and cdf Fy(y). The pdf of the ith order statistic
is given by

friy) = SilEr O = B fr»)

n!
(G — Diggr -
for1 <i<n.

Proof. We will give a heuristic argument that draws on the similarity between the
statement of Theorem 3.10.1 and the binomial distribution. For a formal induction
proof verifying the expression given for fy:(y), see {98).

Recall the derivation of the binomial probability function, px(k) = P(X = k) =

(:) pk(ii. - p}””"‘, where X is the number of successes in » independent trials, and p

is the probability that any given trial ends in success. Central to that derivation was the
recognition that the event “X = k™" is actually a union of all the different (mutually
exclusive) sequences having exactly & successes and n — k failures. Because the trials
are independent, the probability of any such sequence is p*(1 ~ p)"~* and the number

of such sequences (by Theorem 2.6.2) is n!/[kl(n — k)!] (or (;:)), so the probability
that X = k is the product, (Z) oA - pyk.

Here we are looking for the pdf of the ith order statistic at some point y—that
is, fyr(y). As was the case with the binomial, that pdf will reduce to a combinatorial
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Y-axis
RGURE 3.10.2

term times the probability associated with an intersection of independent events. The
only fundamental difference is that ¥/ is a continuous random variable, whereas the
binomial X is discrete, which means that what we find here will be a probability density
function.

By Theorem 2.6.2, there are n!/[(i — 1)11!l(n — i)!] ways that n observations can be
parceled into three groups such that the ith largest is at the point y (see Figure 3.10.2).
Moreover, the likelihood associated with any particular set of points having the
configuration pictured in Figure 3.10.2 will be the probability thati — 1 {independent)
observations are all less than y, n — { observations are greater than y, and one
observation is at y. The probability density associated with those constraints for a given
set of points would be [Fy ("] ![1 — Fr()I* fr(y). The probability density, then,
that the ith order statistic is located at the point y is the product,

IFOT Y - RO o) 0

n!
A T —

EXAMPLE 3.10.5

Suppose that many years of observation have confirmed that the annual maximum flood
tide ¥ (in feet) for a certain river can be modeled by the pdf

fY{y)=%, 20 <y <40

(Note: Tt is unlikely that flood tides would be described by anything as simple as a uniform
pdf. We are making that choice here solely to facilitate the mathematics.) The Army
Corps of Engineers are planning to build a levee along a certain portion of the river, and
they want to make it high enough so that there is only a 30% chance that the second worst
flood in the next thirty-three years will overflow the embankment. How high should the
levee be? {We assume that there will be only one potential flood per year.)

Let k be the desired height. If ¥, ¥, ..., Y33 denote the flood tides for the next
n = 33 years, what we require of k is that

P(Yy, > By =030
As a starting point, notice that for 20 < y < 40,

¥ 1 y
=f —dy=2 —1
Fy(y) f2 . 20 dy 20
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Therefore,

33 (y A y\' 1
5,00 = 31m (55 - 1) (2 - "z_o) )

and k is the solution of the integral equation

4G 31 1
y P L
fh (33)(32) (E - 1) (2 20) o =030 (3.10.3)

If we make the substitution

Equation 3.10.3 simplifies to

1
P, > by =33(32) W1 — wydu
thf2—1

h 32 h 33
=1-33]= ~1 2f— —1 3.10.4
133 (20 1) + 2(2{) ) (3.10.4)

Setting the right-hand side of Equation 3.10.4 equal to 0.30 and solving for & by trial and
error gives

h == 39.3 feet

Joint pdfs of Order Statistics

Finding the joint pdf of two or more order statistics is easily accomplished by generalizing
the argument that derived from Figure 3.10.2. Suppose, for example, that each of n
observations in a random sample has pdf fy(y) and ¢df Fy (). The joint pdf for order
statistics ¥; and Y} at points « and v, where i < j and u < v, can be deduced from
Figure 3.10.3, which shows how the » points must be distributed if the ith and jth order
statistics are to be located at points # and v, respectively.

By Theorem 2.6.2, the number of ways to divide a set of n observations into groups of
sizesi — 1,1,j — i — 1,1,andn — j is the quotient

n!
(i —~ DG ~ i — DI — !

i—1obs. Yi j-i-lobs. Y n—jobs

\ [ !

T Y-axis
¥

T N

RGURE 3.10.3
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Also, given the independence of the n observations, the probability thati — 1 are less than
wis[Fy)f~1, the probability that j — i — 1 are betweenu and vis [Fy (v} — Fy(u)} 1,
and the probability that n — j are greater than vis [1 — Fy(v)]"~/. Multiplying, then, by
the pdfs describing the likelihoods that ¥/ and ij would be at points 1 and v, respectively,
gives the joint pdf of the two order statistics:

_ n! i~11 g ey 17 j—i—1
T ) = GG = T Dt = iy @I IR @) = oL
- @] fra fr@ (3.10.5)

fori < jandu < v,

EXAMPLE 3.10.6

Let ¥y, ¥z, and Y3 be a random sample of size n = 3 from the uniform pdf defined over
the unit interval, fy(y) = 1,0 < y < 1. By definition, the range, R, of a sample is the
difference between the largest and smallest order statistics—in this case,

i 7
R = range = Ymax — Yuin = —-Y

Find fg(r), the pdf for the range.

We will begin by finding the joint pdf of ¥] and Y}. Then fyi vy (u, v) Is integrated over
theregion ¥; — ¥{ < rtofind the cdf, Fg(r) = P(R < r). The final step is to differentiate
the cdf and make use of the fact that fr(r) = Fo(r).

i fr(3 =1,0 <y < 1,it follows that

0, y<0
Fr(=P¥ =y})=1y, 0<y=1
1. y=>1

Applying Equation 3.10.5, then, withn = 3,i = 1, and j = 3, gives the joint pdf of ¥y and
¥;. Specifically,

3
Frip,v) = g’ — ' -’ - 1.1

=6(v —u), O<u <v=<l
Moreover, we can write the ¢df for R in terms of Y| and ¥
FRi)=PR<n)=P(Y; - Y{<r=P¥;<Y +7r)

Figure 3.10.4 shows the region in the ¥ ¥}-plane corresponding to the event that R < r.
Integrating the joint pdf of ¥] and ¥} over the shaded region gives

1—r  putr 1 1
Friry=P(R <r) =f f 6(v — W dvdu + f f 6(v — n)dvdu
¢ u E—r Jy
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u axis
¢ Y;mimr/ 1

FAGURE 3.104

The first double integral equals 3r* — 3r%; the second equals r2, Therefore,
Fr(r) =3r% — 3 + r¥ =32 - 277
which implies that

fr(r) = FR(r) =6r — 6%, O0<r<l

QUESTIONS

3.10.1. Suppose the length of time, in minutes, that you have to wait at a bank tefler’s window
is uniformly distributed over the interval (0, 10). If you go to the bank four times during
the next month, what is the probability that your second longest wait will be less than
5 minttes?

3,10.2. A random sample of size n = 6 is taken from the pdf fy(y) =3y%, 0 <y < 1. Find
P(Y! > 0.75).

3.10.3. What is the probability that the larger of two random observations drawn from any
continuous pdf will exceed the sixtieth percentile?

3.10.4. A random sample of size 5 is drawn from the pdf fr{y) = 2y, 0 < vy < 1. Calculate
P(Y] < 0.6 < ¥{). Hint: Consider the complement.

3.10.5. Suppose that ¥y, 1, ..., ¥, is a random sample of size # drawn from a continuous pdf,
fr{y), whose median is m. Is P(¥] > m) less than, equal to, or greater than Py, > m)?

3.10.6. Let ¥y, Y2, ..., Y, be a random sample from the exponential pdf fy(y) = e,y > 0.
What is the smallest n for which PV, < 0.2) > (.97

3.10.7. Calculate P(0.6 < ¥; < 0.7) if a random sample of size 6 is drawn from the uniform
pdf defined over the interval (0,1).

3.10.8. A random sample of size n = 5 is drawn from the pdf fy(y) =2y,0 < y < 1.Onthe
same set of axes, graph the pdfs for ¥, Yl’, and Yf’,“

3.10.9. Suppose that n observations are taken at random from the pdf

1 1 =20V
frin= 67(7‘”), — 00 <y <00

N7 (6)

What is the probability that the smaltlest observation is larger than 20?
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3.10.10. Suppose that n observations are chosen at random from a continuous pdf fy (v). What
is the probability that the last observation recorded will be the smallest number in the
entire sample?

3.10.11. In acertain large metropolitan area the proportion, Y, of students bused varies widely
from school to school. The distribution: of proportions is roughly described by the
following pdf:

y
0 1
Suppose the enroliment figures for five schools selected at random are examined.
What is the probability that the school with the fourth highest proportion of bused
children will have a ¥ -value in excess of 0.75? What is the probability that none of the
schools will have fewer than 10% of their student bused?

3.10.12. Consider a system containing n components, where the lifetimes of the components
are independent random variables and each has pdf fy (y) = Ae *¥, v > (. Show that
the average time clapsing before the first component failure occurs is 1/ x5

3.10.13. Let Yy, Y2, ..., ¥, be a random sample from a uniform pdf over [0,1]. Use Theo-

i — Dln — iV
rem 3.1{.1 to show that fﬂi ¥ — ypyidy = W

3.10.14. Use Question 3.10.13 to find the expected value of ¥/, where ¥y, V3, ..., ¥, is arandom
sample from a uniform pdf defined over the interval [0, 1],

3.10.E5. Suppose three pomnts are picked randomly from the unit interval. What is the
probability that the three are within a half umit of one another?

3.10.16. Suppose a device has three independent components, all of whose Hfetimes (in
months) are modeled by the exponential pdf, fy(y) = ¢7*, y > 0. What is the
probability that all three components will fail within two months of one another?

CONDITIONAL DENSITIES

We have already seen that many of the concepts defined in Chapter 2 relating to the
probabilities of events—for example, independence—have their random-variable coun-
terparts. Another of these carryovers is the notion of a conditional probability, or, in what
will be our present terminology, a conditional probability density function. Applications
of conditional pdfs are not uncommon. The height and girth of a tree, for instance, can
be considered a pair of random variables. While it is easy to measure girth, it can be
difficult to delermine height; thus it might be of interest to a lumberman to know the
probabilities of a Ponderosa pine’s attaining certain heights given a known value for its
girth. Or consider the plight of a school board member agonizing over which way to
vole on a proposed budget increase. Her task would be that much easier if she knew the
conditional probability that x additional tax dollars would stimulate an average increase
of y points among twelfth-graders taking a standardized proficiency exam.
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Finding Conditional pdfs for Discrete Random Variables
In the case of discrete random variables, a conditional pdf can be treated in the same way
as a conditional probability. Note the similarity between Definitions 3.11.1 and 2.4.1.

Definition 3.11.1. Let X and ¥ be discrete random variables. The conditional probability
density function of Y given x—that is, the probability that ¥ takes on the value y given
that X is equal to x—is denoted py)(y) and given by

px.y{x,y)

Prig{y) = P(Y w y | X = x) =
pxix)

for px(x) # 0.

EXAMPLE 3.11.1
A fair coin is tossed five times. Let the random variable ¥ denote the total number of
heads that occur, and let X denote the number of heads occurring on the last two tosses.
Find the conditional pdf py(x(y) for all x and y.

Clearly, there will be three different conditional pds, one for each possible value of X
{x =0, x = 1, and x == 2}, Moreover, for each value of x there wili be four possible values
of ¥, based on whether the first three tosses yield 0, 1, 2, or 3 heads,

For example, suppose no heads oceur on the last two tosses. Then X =0, and

prio(y) = P(Y = y| X = 0) = P(y Heads occur on first three tosses)

(6 (-3)”
() e

Now, suppose that X = 1. The corresponding conditional pdf in that case becomes
prix(M=PF¥ =yiX=1

Notice that ¥ = 1 if zero heads occur in the first three tosses, ¥ = 2 if one head oceurs in
the first three trials, and so on. Therefore,

3 1 y-1 1 (-1
*”Y'*U"’):(y - 1) (5) (1 - 5)
3
=( 3 1)(%) y=1,2.34
y -

3 1n?
pm{y)—-P(Y—-yIX—Z)—(y __2) (E) , ¥y=2,3,4,5

Similarly,
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x=2
ER B
Pyz{y) i | | |
8 i !
x=1
3L
]
Py} |
3| | I
3 x=0
=
Py(y} |
8 ] ] L L Y-axis
0 1 2 3 4 5
FIGURE 3111

Figure 3.11.1 shows the three conditional pdfs. Each has the same shape, but the possible
values of ¥ are different for each value of X

EXAMPLE 3.11.2
Assume that the probabilistic behavior of a pair of discrete random variables X and ¥ is
described by the joint pdf

px,y(x,y) = xy*/39

defined over the four points (1, 2), (1, 3), (2, 2), and (2, 3). Find the conditional probability
that X =1 giventhat ¥ =2,

By definition,
pxp{l) = P(X =1 given that ¥ = 2)
_ rx,y(1,2)
pr(2)
_ 1-2%/39
T 1-22/39 4+ 2 - 22739
=1/3
EXAMPLE 3.11.3

Suppose that X and Y are two independent binomial random variables, each defined on
n trials and each having the same success probability p. Let Z = X + Y. Show that the
conditional pdf py;, (x) is a hypergeometric distribution.
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We know from Example 3.8.1 that Z has a binomial distribution with parameters 2
and p. That is,

pz(z) = P(Z == z) == (2:)132(1 — p¥ %, z=0,1,...,2n.

By Definition 3.11.1,

.2
px|2(x)=P(X=x|Z:Z)m%
pz(z)
_ PX=xandZ=12)
h P(Z =2)
_ P(Xﬁxand}"mz _— )C)
N P(Zmz)
_PX=x) PO =2z - ) (because X and Y are independent)
P(Zmz)

(")p*(l -y ( " )pma — pyE
X z - X
2
( n)pz(l ~ py"?
Z
n 7 )
)2
()
z

which we recognize as being the hypergeometric distribution.

Comment. The notion of a conditional pdf generalizes easily to situations involving
more than two discrete random variables. For example, if X, ¥, and Z have the joint pdf
px.v.z(x,y, 7), the joint conditional pdf of, say, X and Y given that Z = z is the ratio

pxyz(x, .0

X, ¥) =
Px.rix, ¥ e

EXAMPLE 3.114
Suppose that random variables X, Y, and Z have the joint pdf

Pxr.zlx. y. 2y = xy/92

for points (1, 1, 1), (2, 1,2), (1, 2,2), (2,2, 2), and (2, 2, 1). Find px y|;(x, y) for all values
of z.

To begin, we see from the points for which px v z(x, y, 2) is defined that Z has two
possible values, 1 and 2. Suppose z = 1. Then

pxy.z(x, ¥ 1)

pxyilx, y) = pzD)
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But
pz()=P(Z=1=P[(1,1,1) U 221)]
1 2
=1---14+2---
9 + 9 !
_ 5
9
Therefore,
xXy/9
pxyilx.y) =-—7—=xy/5 for (x,»=(11 and (2,2)
g

Suppose z = 2. Then

Pz =PZ=2=P[2,1,2 U (1,22 U (2,2,2)]

1 2 2
— . — I .= L
2- gt + 20
_2
T
SO
pxyplx,y) = pxyz(x.y,2)
’ § * pz(z)
_x - y/18
-8
1
Xy
=3 for ;N=2D.AD, ad 22
QUESTIONS

3111, Suppose X and ¥ have the joint pdf px.y(x, ) = 215 gor the points (1, 1),
{1, 2), (2, 1), (2, 2}, where X denotes a “message™ sent {either x = 1 or x = 2) and
Y denotes a “message” received. Find the probability that the message sent was the
message received—that is, find pyy (x).

3.1L.2. Suppose a die is rolled six times. Let X be the total number of 4’s that occur and fet ¥
be the number of 4's in the first two tosses. Find pyi ().

3.1L3. An urn contains eight red chips, six white chips, and four blue chips. A sample of size
3 is drawn without replacement. Let'X denote the number of red chips in the sample
and ¥, the number of white chips. Find an expression for py|; (y).

3.11.4. Five cards are dealt from a standard poker deck. Let X be the number of aces received,
and ¥, the number of kings. Compute P(X =2|Y = 2).

3.11.5. Given that two discrete random variables X and ¥ follow the joint pdf px y(x,y) =
Ex + y),forx=1,2,3andy=1,23,
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3.1L6.

3117,

3118,

3119,

31116,

(a) Find%.

(b} Evaluate py).(1) for all values of x {for which p,(x) > 0.

Let X denote the number on a chip drawn at random from an urn containing three
chips, numbered 1, 2, and 3. Let ¥ be the number of heads that oceur when a fair coin
is tossed X times.

(8} Find px y(x, y).

(b) Find the marginal pdf of ¥ by summing out the x-values.

Suppose X, Y, and Z have a trivariate distribution described by the joint pdf

xy + xz + yz
Pxy,zlx, ¥, 2) = B E—

where x, y, and z can be 1 or 2. Tabulate the joint conditional pdf of X and ¥ given
each of the two values of z.
In Question 3.11.7 define the random variable W to be the “majority’ of x, y, and z.
For example, W(2, 2, 1) = 2 and W(1, 1, 1) = 1. Find the pdf of Wix.

k

Let X and Y be independent random variables where p, (k) = e““*;:—! and py(k) =
k i

e““% for k = (, 1, .... Show that the conditionat pdf of X given X + ¥ = n is

Hint: See Question 3.8.1.

binomial with parameters » and .

A4
Suppose Compositor A ks preparing a manuscript to be published. Assume that she
makes X errors on a given page, where X has the Poisson pdf, px (k) = e=22%/k1,
k=012, ... Asecond compusitor, B, is also working on the book. He makes ¥
errors on a page, where py(k) = e 335 /k1k =0, 1,2, ... Assume that Compositor A
prepares the first 100 pages of the text and Compositor B, the last 100 pages. After
the book is completed, reviewers (with too much time on their hands!) find that the
text contains a total of 520 errors. Write a formula for the exact probability that fewer
than half of the errors are due to Compositor A.

Finding Conditional pdfs for Continuous Random Variables

If the variables X and Y are continuous, we can still appeal to the quotient f %, v (x, ¥ fx(x)
as the definition of fy|,(y) and argue its propriety by analogy. A more satisfying approach,

though,

is to arrive at the same conclusion by taking the limit of ¥’s ““conditional” cdf.

If X is continuous, a direct evaluation of Fy,(y) = P(Y < y|X = x), via Definition
2.4.1, is impossible, since the denominator would be 0. Alternatively, we can think of
PY < y|X = x)as alimit:

P<Y5y|X:x)=;{§_§1gP(Y5ylx5X5x + k)

x+h ¥
f f Fxy(t, u)dudt
= Jim 22 =

h—oc X+
f fx@yde
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Evaluating the quotient of the limits gives %, so P'Hépital’s rule is indicated:

x+h py
£ [ f fry(t, uyduds
X =00

x+h
4 f fxltydr

P(Y < yIX = x) = lim (3.1L1)

By the fundamental theorem of calculus,

x+h
— df = h
an ). gt)dr=gx + h)

which simplifies Equation 3.11.1 to

¥
[ fxyl(x + B).u]du
< fx(x + A)
¥
f—mlgii}’{k;fx‘y(x 4+ h,u)du

hli_llg] fx(x + h)

P(Y <ylX=x)=lim
Y =yl x) Jirm,

du

_ [ fareen
—o0 fX(x}

provided that the limit operation and the integration can be interchanged [see (9) for a
discussion of when such an interchange is valid]. It follows from this last expression that
Ix.v(x, ¥}/ fx (x) behaves as a conditional probability density function should, and we are
justified in extending Definition 3.11.1 to the continuous case.

EXAMPLE 3.11.5
Let X and ¥ be continuous random variables with joint pdf
1
(g)(é—x—y), 0<x<2 2<y=<4
0, elsewhere

Find (a) fx(x),{b) frix(3),and () P2 < ¥ < 3x =1).

a. From Theorem 3.7.2,

Fxyx, ) =

00 4 1
fx(x) = Fxy(x,y) dy:[2 (g) 6 —x — yydy

-0
=(%)(6—2x}, 0<x <2
b. Substifuting into the *“‘continuous” statement of Definition 3.11.1, we can write
fry(.y) BH6—x-»
fx(x) ()6 — 2x)

_6—x—y
6 -2x

frix(» =

D<x<2 2<y<4
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¢ Tofind P(2 < ¥ < 3|x = 1) we simply integrate Jyn(¥)overtheinterval2 < ¥ < 3:

3
P2 <Y <3x mi)mj; Fri(y) dy

35_V
= —d
fz b

22
T8

[A partial check that the derivation of a conditional pdf is correct can be performed by
integrating fy|,(y) over the entire range of ¥. That integral should be one, Here, for

example, when x = 1, ffgo frn() dy = f; [(5 — y)/4] dy does equal one.)

QUESTIONS
3.1L11. Let X be a nonnegative random variable. We say that X is memoryless if

PX > s+ X > )= P(X > s) foralls,t >0

Show that a random variable with pdf fx(x) = (1/Me™** x > 0, is memoryless.

3J1.12. Given the joint pdf

Fyx =20 0<cx<y, y>0

find

@) P¥Y <X < 1)
M) PY <1]X=1
© friz(»

@) E(¥|x)

3.11.13. Find the conditional pdf of ¥ given x if

Jey(e, y)=x +y

for0<x<land0=<y<l1,

31114, i

fxy@,y)=2, xz20, y=0, x+ yx<i
show that the conditional pdf of ¥ given x is uniform.

3.11.15. Suppose that

2y + 4x 1

frix(y) = 17 dx and  fx{x) = 3" (I + 4x)

forO0 < x < 1and0 < y < 1. Find the marginal pdf for ¥.

3.11.16. Suppose that X and Y are distributed according to the joint pdf

2
fx,r(x,y):g c(Z2x 4+ 3y, O<x<l, O0gy=xl
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By Definition 3.12.1,

Mx(t) = E(e%) = Ze"‘( ”) P — py*

k=0 k
=3 (:) (pe' @ — pyi* (3.12.2)
k=0

To get a closed-form expression for My(r)-—that is, to evaluate the sum indicated in
Equation 3.12.2—requires a ¢hopefully) familiar formula from algebra: According to
Newton’s binomial expansion,

G+y=Y (n)xky”_k (3.123)
k==A} k

for any x and y. Suppose we let x = pe’ andy =1 — p. It follows from Equations 3.12.2
and 3.12.3, then, that

My@=(@1 - p+ pe)

(Notice in this case that My (2} is defined for all values of 7).

EXAMPLE 3.12.3

Suppose that ¥ has an exponential pdf, where fr(y) = Ae™, y > 0. Find My (z).
Since the exponential pdf describes a continuous random variable, My (r) is an integral:

My (@) = E(”) = L &L e dy

- f e 07 gy
G

After making the substitution ¥ = (L — f)y, We can write

oo d
My(r) = / e 2N
i

=0 A —t
A I
= —e
A - tl: =0

A A
= 1 - lime™®|=
l—t[ ufgiaee] A—t

Here, My (7) is finite and nonzero only when # = (A — 1)y > 0, which implies that 1 must
be less than A. For t > A, My (1) fails to exist.
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EXAMPLE 3.12.1
Suppose the random variable X has a geometric pdf,

pxy=0 — plp, k=1,2,...

(In practice, this is the pdf that models the occurrence of the first success in a series
of independent trials, where each trial has a probability p of ending in success [recall
Exampie 3.3.2]). Find Mx (r), the moment-generating function for X.

Since X is discrete, the first part of Definition 3.12.1 applies, so

(s8]
Mx () = E@X) =" e 1 — p*Tp

k=1
£X3
=P N gk - pyf
1-p k=1
(x;:
=L _3[a - pet (3.12.1)
1-p5

The 7 in Mx(1) can be any number in a neighborhood of zero, as long as Mx (1) < .
Here, Mx(¢) is an infinite sum of the terms {(1 — p)e']¥, and that sum will be finite only
if (1 — p)e' < 1, or, equivalently, ift < In(1/(1 — p)). It will be assumed, then, in what
follows that 0 < ¢t < In(1/(1 — p).

Recall that

mk -E
Zr:lwr

k)

provided 0 < r < 1. This formula can be used on Equation 3.12.1, where r == (1 — p)e’
and0 < t < In (ﬁ) Specifically,

Mx () = imi’m;( DI — peT - [a - p)e’}")

k=0

-5 (e )
Tl - p\1 - (1~ p)
- pe'
1 - (1 = p)et

EXAMPLE 3.12.2

Suppose that X is a binomial random variable with pdf

px(k) = (z)p’“(i - " k=0,1,...,n

Find Mx (5.
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Find
@ fx(x),
() frix(y), and
(c) P(4<Y<41Xm%)
(d) EY|x)
3.11.17. If X and Y have the joint pdf

Frrix, =2 0<x<y<l

find P(0 < X < 3IY =3).
3.11.18. Find P(X < 1)¥ =13} if X and ¥ have the joint pdf

FrrN=xy/2, 0<x<y=<2
3.1L.19. Suppose that X1, X2, X3, X4, and Xs have the joint pdf
Iy, X2, %5, X4. %5 (X1, X2, X3, X4, X5) = 32x1 X2X3%4%5

for0 < x; < 1,i =1,2,..., 5. Find the joint conditional pdf of X7, X3, and X3 given
that X4 = x4 and X5 = xs.
3.11.29. Suppose the random variables X and ¥ are jointly distributed according to lbe pdf

fXY(Xy)—é(X + 2), b<x<l, Docy<?2

Find

@) fx(x)

() P(X > 2Y)

© P(Y > 1x > 1)

3.12 MOMENT-GENERATING FUNCTIONS

Finding moments of random variables directly, particularly the higher moments defined

in Section 3.6, is conceptually straightforward but can be quile problematic: Depending

on the nature of the pdf, integrals and sums of the form [°_y" fy(y)dy and 3" k" px (k)
1tk

al
can be very difficult to evaluate. Fortunately, an allernative method is available. For many
pdfs, we can find a moment-generating furnction {or mgf), My (1), one of whose properties
is that the rth derivative of Mw(z) evaluated at zero is equal to E(W7).

Calculating a Random Variable’s Moment-Generating Function

In principle, what we call a moment-generating function is a direct application of
Theorem 3.5.3.

Pefinition 3.12.1. Let W be a random variable. The moment-generating function (mgf)
for W is denoted Myw (¢) and given by

Ze’kpw(k) if Wis discrete

Mw() = E@@%) =194

e fw(w) dw  if Wis continuous

00

at ali values of ¢ for which the expected value exists.
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EXAMPLE 3.12.4
The normal (or bell-shaped) curve was introduced in Example 3.4.3. Its pdf is the rather
cumbersome function

1y — )’
fr()?)m(ijma)exp mf( ) , 00 < ¥ <00

[

where it = E(Y) and o? = Var(¥). Derive the moment-generating function for this most
important of all probability models.
Since Y is a continuous random variable,

e _ 2
My (t) = E(Y) = (1/@0) f explry) exp [m% () - M) ]dy
® 2 R T 2
= (1/v/Zno) [ exp [w’ 2uy 20»30 y tu ]dy (3.12.4)

Evaluating the integral in Equation 3.12.4 is best accomplished by completing the square
of the numerator of the exponent (which means that the square of half the coefficient of
y is added and subtracted). That is, we can write
y2 — 2w + 2(}‘2!))) + (g + o2t)? - (0 - o2ty 4 p?
=y ~ (4 + ) ottt + 2;110"2 (3.12.5)

The last two terms on the right-hand side of Equation 3.12.5, though, do not involve y,
so they can be factored out of the integral, and Equation 3.12.4 reduces to

2,2 oo _ 2\ 2
My (1) = exp (ILI + i{m) (1/\/‘2“7;0“) f exp [W}ﬁ (leg;l'mfgm)) :|dy

But, together, the latter two factors equal one (why?), implying that the moment-
generating function for a normally distributed random variable is given by

My(t) - e;u+cr2:2/2

QUESTIONS
3.J2.1. Let X be a random variable with pdf px(k) = 1/n, for k =0,1,2,....,n — 1 and 0
Lot
otherwise. Show that My (f) = .
n{l — &)

3.12.2. Two chips are drawn at random and without replacement from an wrn that contains five
chips, numbered 1 through 5. If the sum of the chips drawn is even, the random variable
X equals 5; if the sum of the chips drawn is odd, X = ~3. Find the moment-generating
function for X.
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3.12.3. Find the expected value of £X if X is a binominal random variable with n = 10 and
1
P =3
3.12.4. Find the moment-generating function for the discrete random variable X whose
probability function is given by

N 71
px(k)=(z) (Z) k=012, ...

3.12.5. Which pdfs would have the following moment-generating functions:
@) My(D) ="
by My()=2/Q2 — 1)
© Mx@)=(3 + 1)
W) Mx() =03e'/(1 — 0.7¢")
3.12.6. Let X have pdf

¥ O=<y=1
frOy=12 -y 1=<y=<l
0, elsewhere

Find My ().

3.127. A random variable X is said to have a Poisson distribution if px(k) = P(X =§) =
e ik, k = 0,1, 2, .... Find the moment-generating function for a Poisson random
variable. Hirt: Use the fact that

] rk
=3 o
=0 "
3.128. Iet ¥ be a continuous random variable with fy(¥) = ye™¥, § < y. Show that
1
Myt = ———.
v 1= 12

Using Moment-Generating Functions to Find Moments

Having practiced finding the functions My (¢} and My (z), we now turn to the theorem that
spells out their relationship to X and Y.

Theorem 3.12.1. Let W be a random variable with probability density function fw(w). [If
W is continuous, fw{w) must be sufficiently smooth to allow the order of differentiation
and integration to be interchanged.] Let Mw (1) be the moment-generating function for W.
Then, provided the rth moment exists,

MO (0) = E(W")

Progf. We will verify the theorem for the continuous case where r is either 1 or 2.
The extensions to discrete random variables and to an arbitrary positive integer r are
straightforward.
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Forr =1,
d S S | i
MPO) = — f & fyndy] = f —e” fy(y)dy
dr J o oo 1
=0 tecl}
= [ ye” fy(ydy, = f ye™ fy(y)dy
oo tel} -0
e f yfy(yydy = E(Y)
Forr=2,
d2 o0 ‘ o0 d2 !
MPO) = = [ & fr(y)dy| = f € fy(y)dy
dr= J. oo —oo
o) =0
O (5. e) 2
m] ye" fy(y)dy =f y2e® Y fr(y) dy
) fe) 0
m[ Y fr(y) dy = E(YY)
EXAMPLE 3.12.5

For a geometric random variable X with pdf
px®)y =0 - plp k=12...
we saw in Example 3.12.1 that
Mx(t) = pe'[1 — (1 ~ p)e']™

Find the expected value of X by differentiating its moment-generating function.
Using the product rule, we can write the first derivative of Mx(t) as

MP @ = p' (11 — (1 — Py =D ~ p) + [1 — (1 — p)e] ' pe!

o pa - pe pe
T~ - petf 1 (1~ p

Setting ¢ == {} shows that E(X) = mf;:

M _p(l = pt pe’
MY O=EX = 1 ap Y T - e
Y U LN 4
4 p

1
P
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EXAMPLE 3.12.6
Find the expected value of an exponential random variable with pdf

frOY=2e, y>0
Use the fact that
My@) = A — 1)}

{as shown in Example 3.12.3).
Differentiating My (¢} gives

My (1) = M=D — 172 (=1)

_ A
-
Sett = 0. Then
A
{1)
M) = ———
y O o =07
implying that
1
E(Y) = —
r) 3
EXAMPLE 3.12.7

Find an expression for E(X*) if the moment-generating function for X is given by

Mx® = — pr — p2) + p1e + pre®

The only way to deduce a formula for an arbitrary moment such as E(X*) is to calculate

the first couple moments and look for a pattern that can be generalized. Here,
Mg}(t} =p1& + 2p2£2‘
50

EX) = MP(©0) = p1e® + 2pre* "
=p1 +2p2

Taking the second derivative, we see that

M;?}(t) = plet + 22p2€21
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implying that
E(X?) = MP©0) = p1e® + 2 pre?®
=pm + 2p>

Clearly, each successive differentiation will leave the py ferm unaffected but will multiply
the p» term by two. Therelore,

EXY =MPO) =p1 + %ps

Using Moment-Generating Functions to Find Variances

In addition to providing a useful technique for caleulating E(W"), moment-generating
functions can also find variances, because

Var(W) = E(W?) — [EW)P (3.12.6)

for any random variable W (recall Theorem 3.6.1). Other useful “descriptors” of pdfs can
also be reduced to combinations of moments. The skewness of a distribution, for example,
is a function of E[W — p)%], where p = E(W). But

E[(W — 0)®] = EW?) — 3BE(WHEW) + 2[E(W)P

In many cases, finding E[(W — p)?] or E[(W — p)3] could be quite difficult if moment-
generating functions were not available.

EXAMPLE 3.12.8

We know from Example 3.12.2 that if X is a binomial random variable with parameters n
and p, then

My@®) =1 - p + pe')"

Use My () to find the variance of X.
The first two derivatives of My (¢) are

MP® =nd ~ p + peyt - pe
and
MP @) =pe' - ntn — DA = p + pe')'™? - pe' + n(l — p + pey" ! - pe
Setting r = 0 gives
MP©) = np = E(X)
and

MP©) =n(n — DP* + np = EX?
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From Equation 3.12.6, then,

Var(X) =n(n — Hp? + np — (np)®
=np(l — p)

(the same answer we found in Example 3.9.8).

EXAMPLE 3.12.9
A discrete random variable X is said to have a FPoisson distribution if
—A }\‘k
Py =PX =B =", k=012,

(An example of such a distribution is the mortality data described in Case Study 3.3.1.)
It can be shown (see Question 3.12.7) that the moment-generating function for a Poisson
random variable is given by

MX (f,) — e-—a‘\.—i—}uer

Use Mx(t) to find E(X) and Var(X).
Taking the first derivative of My (7) gives

M;l){f) —_ 9“A+A€= . Aet

EX)=MP@O) = . 20
=2

Applying the product rule to M ;.” () yields the second derivative,

M;(Z) () = et |yt + rét s L
Fort=249,

Mf} (©) = E( Xz} _ efl-HLeﬁ c2e? + 2l . e h et 5 0
=2 + 32
The variance of a Poisson random variable, then, proves to be the same as ifs mean:
Var(X) = E(X) — [EXOF
=MPO) - [P O]

=32 43 -2
= A
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QUESTIONS
3.129. Calculate E(Y*) for a random varizble whose momenl-generating function is
+

My (1) ="' 712, _

33200, Find E(yYhif Yisan exponential random variable with fy(y) = 2e™, v > 0,

31211 The form of the moment-generating function for a normal random variable is
My(t) = ¢“+772 (recall Example 3.12.4). Differentiate My (1) to verify that a = E(Y)
and b* = Var(¥).

3.12.12. What is E(¥?) if the random variable ¥ has moment-generating function My (1) =
(1 — an™*7

3.12.13. Find E(¥?) if the moment-generating function for Y is given by My(f) = ¢
Use Example 3.12.4 to find E(¥?) without taking any derivatives, Hinz Recall
Theorem 3.6.1

3.12.14. Find an expression for E(Y*) if My(t) = (1 — 1/A)™", where X is any posilive real
number and r is a positive integer.

30218, Use My(1) to find the expected value of the uniform random variable described in
Question 3.12.1.

3.12.16. Find the variance of ¥ if My(n) = ¥ /(1 — ).

et

Using Moment-Generating Functions to identify pdf’'s

Finding moments is not the only application of moment-generating functions. They are
also used to identify the pdf of sums of random variables—that is, finding fw (w), where
W =Wy 4+ Wy 3 ...+ W, Their assistance in the latter is particularly important for two
reasons: (1) Many statistical procedures are defined in terms of sums, and (2) alternative
methods for deriving fw, 4w, 4w, (W) are extremely cumbersome.

The next two theorems give the background results necessary for deriving fy(w).
Theorem 3.12.2 states a key unigueness property of momeni-generating functions: If W)
and Wy are random variables with the same mgfs, they must necessarily have the same
pdfs. In practice, applications of Theorem 3.12.2 typically rely on one or hoth of the
algebraic properties cited in Theorem 3.12.3.

Theorem 3.12.2. Suppose that Wy and Wy are random variables for which Mw, (t) = Mw, (1)

for some interval of 's containing 0. Then fw, (w) = fw,(w).

Proof. See (97). o

Theorem 3.12.3.
a. Let W be a random variable with moment-generating function My (1), Let V =
aW + b Then

My () = P My tat)

b, Let Wi, Wo. .., W,, be independent random variables with moment-generating func-
fions My, (). My, (£)...., and My, (1), respectively. Let W = Wy + Wo + -+ 4 W,
Then

Mw(t) = Mw (1) - Muy(0)--- My, (¥)

Proof. The proof is left as an exercise. C
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EXAMPLE 3.12.10
Suppose that Xy and X; are two independent Poisson random variables with parameters
A1 and A3, respectively. That is,

Mk
P =PEi =k ="—"=, k=012,...
and
e~k
Pro() =Py =k =—75—, k=012..

Fet X = X; + X;. What is the pdf for X?
According to Example 3.12.9, the moment-generating functions for X; and X» are

MX; (t) — e—)»;-i—h;e"
and

My, (1) = 202
Moreover, if X = Xy + X, then by Part b of Theorem 3.12.3,

My (£) = Mx, (¢} - Mx, (1)
:e—ll+l;e’ i e—kz-i—lze'

= ¢ Hi+0HDe (3.12.7)

But, by inspection, Equation 3.12.7 is the moment-generating function that a Poisson
random variable with A = 41 + A2 would have. It follows, then, by Theorem 3.12.2 that

e~ Mty 1 Ak
k! ’

px{k) = k=0,1,2,...

Comment. The Poisson random variable reproduces itself in the sense that the sum of
independent Poissons is also a Poisson. A similar property holds for independent normat
random variables (see Question 3.12.19) and, under certain conditions, for independent
binomial random variables (recall Example 3.8.1).

EXAMPLE 3.12.11

We saw in Example 3.12.4 that a normal random variable, ¥, with mean p and variance
o? has pdf

a

2
fr) = (1/v2rc) exp [—% (-" — “) ] o0 < y < 00
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and mgf
MY (I) — eﬂt-i—ﬂztzlz

By definition, a standard normal random variable is a normal random variable for which
i = 0 and o = 1. Denoted Z, the pdf and mgf for a standard normal random variable
are fz(z) = (1/ VIme P2, —co < z < coand Mz(f) = 72, respectively. Show that the
ratio

Y —u

o
is a standard normal random variable, Z.

. — 1
Write Y - # as :;»Y _E By Part a of Theorem 3.12.3,
o (e

_ t
My -0 (8) = e H17 My (Qm)

— utlo e(u_r/erwz(rmzﬂ)
2
= ' 12

Y —

But Mz (1) = ¢ /2 50 it follows from Theorem 3.12.2 that the pdf for E is the same

Y -

as fr(2). (We call Faz transformation. Its importance will become evident in

Chapter 4.)

QUESTIONS

3.12.17. Use Theorem 3.12.3(a) and Question 3.12.8 to find the moment-generating function
of the random variable ¥, where fy(y) = Aye™™,y > 0.

3.12.18. Let Yy, Y3, and ¥3 be independent random variables, each having the pdf of Ques-
tion 3.12.17. Use Theorem 3.12.3(b) to find the moment-generating function of
Yi + Y2 + Y3, Compare your answer to the moment-generating function in Ques-
tion 3.12.14.

31219, Use Theorems 3.12.2 and 3.12.3 to determine which of the following statements is
true:
(a) The sum of twoindependent Poisson random variables has a Poisson distribution.
(b} The sum of two independent exponential random variables has an exponential

distribution.
(¢) The sum of two independent normal random variables has a normal distribution.
5
3.12.20. Calculate P(X < 2y if Mx(f) = (% -+ Ze’

3.12.21. Suppose that ¥y, Y3, ..., ¥, is a random sample of size » from a normal distribution
with mean z and standard deviation . Use moment-generating functions to deduce

_ n
the pdfof ¥ = L 3.
B
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31222, Suppose the moment-generating function for a random variable W is given by

4
My () = 35 . (Z + iex)
303

Calculate P{W < 1). Hint: Write W as a sum,

3.12.23. Suppose that X is a Poisson random variable, where py(k) = e 3 ¥/kt k= 0,1,....
(a) Does the random variable W = 3X have a Poisson distribution?
{b) Does the random variable W = 3X + 1 have a Poisson distribution?

. 2
3.12.24. Supposc that Y is a normal variable, where fy(y) = (1/+/2na)exp I:——% ( Y ,u,) :l,
U B

—00 < y < 00
{a) Docs the random variable W = 3Y have a normal distribution?
(b) Does the random variable W = 3Y + 1 have a normal distribution?

TAKING A SECOND LOOK AT STATISTICS {INTERPRETING MEANS)

One of the most important ideas coming out of Chapter 3 is the notion of the expected
value {or mean) of a random variable. Defined in Scction 3.5 as a number that reflects
the “center” of a pdf, the expected value (i) was originally introduced for the benefit of
gamblers. It spoke directly to one of their most fundamental questions—How much will
I win or lose, on the average, if 1 play a certain game? (Actually, the real question they
probably had in mind was “How much arc you going to lose, on the average?”) Despite
having had such a selfish, materialistic, gambling-oriented raison detre, the expected value
was quickly embraced by (respectable) scientists and researchers of all persuasions as a
preeminently useful descriptor of a distribution. Today, it would not be an exaggeration
to claim that the majority of alf statistical analyses focus on either (1) the expected value
of a single random variable or (2) comparing the expected values of two or more random
variables.

In the lingo of applied statistics, there are actually two fundamentally different types
of “means”—population means and sample means. The term “population mean” is
a synonym for what mathematical statisticians would call an expected value—that is,
a population mean (4} is a weighted average of the possible values associated with a
theoretical probability model, cither px (k) or fy (y), depending on whether the underlying
random variable is discrete or continuous. A sample mean is the arithmetic average of
a set of measurements. If, for example, n observations—yy, y, ..., y,—are taken on a
continuous random variable ¥, the sample mean is denoted y, whete

-t

1 n
:Eg)ﬁ'
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Conceptually, sample means are estimates of population means, where the “quality”
of the estimation is a function of (1) the sample size and {2} the standard deviation
{¢) associated with the mdividual measurements. Intuitively, as the sample size gets
larger and/or the standard deviation gets smaller, the approximation will tend to get
better,

Interpreting means {(either ¥ or i) is not always easy. To be sure, what they imply
in principle is clear enough—both ¥ and p are measuring the centers of their respective
distributions. Stifl, many a wrong conclusion can be traced directly to researchers mis-
understanding the value of a mean, Why? Because the distributions that ¥ and/or ¢ are
actually representing may be dramatically different than the distributions we think they
are representing.

An interesting case in point arises in connection with SAT scores. Fach Fall the
average SATs carned by students in each of the fifty states and the District of Colurnbia
are released by the Educational Testing Service (ETS). With “accountability” being
one of the new paradigms and buzz words associated with K-12 education, SAT scores
have become highly politicized. At the national level, Democrats and Republicans each
campaign on their own versions of education reform, fueled in no small measure by
scores on standardized exams, SATs included; at the state level, legislatures often modify
education budgets in response to how well or how poorly their students performed
the year before. Does it make sense, though, to use SAT averages to characterize the
quality of a state’s education system? Absoclutely not! Averages of this sort refer to very
different distributions from state to state. Any attempt to interpret them at face value will
necessarily be misleading.

One such state-by-state SAT comparison that appeared in the mid-90s is reproduced
in Table 3.13.1 {128). Notice that Tennessee’s entry is 1023, which is the tenth highest
average listed. Does it follow that Tennessee’s educational system is among the best in the
nation? Probably not. Most independent assessments of K-12 education rank Tennessee’s
schools among the weakest in the nation, not among the best. If those opinions are
accurate, why do Tennessee’s students do so well on the SAT?

The answer to that question lies in the academic profiles of the students who take
the SAT in Tennessce. Most college-bound students in that state apply exlusively to
schools in the South and the Midwest, where admissions are based on the ACT, not
the SAT. The SAT is primarily used by private schools, where admissions tend to be
more competitive. As a result, the students in Tennessee who take the SAT are not
representative of the entire population of students in that state. A disproportionate
number are exceptionally strong academically, those being the students who feel that
they have the ability to be competitive at Ivy League-type schools. The number 1023,
then, is the average of something (in this case, an clite subset of all Tennessee students),
but it does not correspond to the center of the SAT distribution for all Tennessee
students.

The moral here is that analyzing datz effectively requires that we look beyond the
obvious. What we learn in Chapter 3 about random variables and probability distributions
and expected values is helpful only if we take the time to learn about the context and
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TFABLE 3.13.1
Average Average

State  SAT Score State  SAT Score
AK 911 MT 986
AL 1011 NE 1025
AZ 939 NV 913
AR 935 NH 924
CA 895 NI 893
Cco 969 NM 1003
CT 898 NY 888
DE 892 NC 860
DC 849 ND 1056
FL 879 OH 966
GA 844 OK 1019
HI 881 OR 927
ID 969 PA 879
IL 1024 RI1 882
IN 876 SC 838
IA 1080 SD 1031
KS 1044 TN 1023
KY 997 X 886
LA 1011 uT 1067
ME 883 vT 899
MD 508 VA 893
MA 901 WA 922
MI 1009 WV 921
MN 1057 Wl 1044
MS 1013 WY 580
MO 1017

2n

the idiosyncracies of the phenomenon being studied. To do otherwise is likely to lead to
conclusions that are, at best, superficial and, at worst, incorrect.

NDIX 3.A.1 MINITAB APPLICATIONS

Numerous software packages are available for doing a variety of probability and statistical
calculations. Among the first to be developed and one that continues to be very popular
is MINITAB. Beginning here, we will include at the ends of certain chapters a short
discussion of MINITAB solutions to some of the problems that were discussed in that
chapter. What other software packages can do and the ways their outputs are formatted

are likely to be quite similar.
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Contained in MINITAB are subroutines that can do some of the more important pdf
and cdf computations described in Sections 3.3 and 3.4. In the case of binomial random
variables, for instance, the statements

MTB > pdf k;
SUBC > binomial n p.

ancd

MTB > cdf k;
SUBC > binomial n p.

k ]
will calculate (z) P - prFfand 3 (n) Pl — py*', respectively. Figure 3.A.1.1
r=0 \F

shows the MINITAB program for doing the cdf calculation (= P(X < 15)) asked for in
Part a of Example 3.2.2.

The commands pdf k and cdf k can be run on many of the probability models most
likely to be encountered in real-world problems. Those on the list that we have already
seen are the binomial, Poisson, normal, uniform, and exponential distributions.

MTB > cdf 15;
SUBC > binomial 30 0.60.
Cumulative Distribution Function
Binomial with m = 30 and p = 0.600000
x P(X <= x)
15.00 0.1754

FIGURE 3.A.1.1

For discrete random variables, the cdf can be printed out in its entirety (that is, for
every integer) by deleting the argument & and using the command MTB < cdf ;. Typical
is the output in Figure 3.A.1.2, corresponding to the cdf for a binomial random variable
withn =4 and p = »15,

MTB > cdf;

SUBC > binomial 4 0.167.

Cumulative Distribution Function

Bincmial with n = 4 and p = 0.167000
x P{ X <= x)

¢ 0.4815
1 0.8676
2 (.9837
3 0.9992
4 1.0000

FIGURE 3.A.1.2
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Also available is an inverse cdf command, which in the case of a continuous random
variable ¥ and a specified probability p identifies the value y having the property that
P(Y = y) = Fy(Y) = p. For example, if p = 0.60 and Y is an exponential random
variable with pdf fy(y) = ¢ 7, y > 0, the value y = 0.9163 has the property that
P(Y <0.9163) = Fy(0.9163) = 0.60. That is,

0.9163
Fy(0.9163) = f eV dy =060
0

With MINITAB the number 0.9163 is found by using the command MTB > invcdf 0.60
(see Figure 3.A.1.3).

MTB > invedf G.60;
SUBC> exponential 1.
Inverse Cumulative Distribution Function
Exponential with mean = 1.00000
P{X <= x) X
G.6000 G.9163

FIGURE 3.A.1.3
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L. A, ). Quetelet

Luételet.
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Although he maintained lifelong literary and artistic interests, Quetelet’s
mathematical talents led him to a doctorate from the University of Ghent
and from there to a college teaching position in Brussels. in 1833 he
was appointed astronomer at the Brussels Royal Observatory, after having
been largely responsible for its founding. His work with the Belgian census
marked the beginning of his pioneering efforts in what today would
be called mathematical sociology. Quetelet was well-known throughout
Europe in scientific and literary circles: At the time of his death he was a
mermber of more than one hundred learned societies.

—Lambert Adolphe lacgues Quetelet {1796-1874)
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INTRODUCTION

To “qualify” as a probability model, a function defined over a sample space S needs to
satisfy only two criteria: (1) It must be nonnegative for all outcomes in S, and (2) it must

7 3
sum or integrate to one. That means, for example, that fy(y) = i—i + %, 0=<y=<lcan
tfy 7y
be considered a pdf because fy(y) > Oforali0 < y < 1 and[ 4 + 5 dy=1.
G

It certainly does not follow, though, that every fy(y) and px (k) that satisfy these two
criteria would actually be used as probability models. A pdf has practical significance only
if it does, mdeed. model the probabilistic behavior of real-world phenomena. In point

; 3
of fact, only a handful of functions do [and fy(y) = % -+ %, 0 <y <1isnot one of
them!].

Whether a probability function—say, fy(y)—adequately models a given phenomenon
ultimately depends on whether the physical factors that influence the value of ¥ parallel
the mathematical assumptions implicit in fy(y). Surprisingly, many measurements (ie.,
random variables) that seem to be very different are actually the consequence of the same
set of assumptions (and will, therefore, be modeled by the same pdf). That said, it makes
sense to single out these “real-world” pdf’s and investigate their properties in more detail.
This, of course, is not an idea we are seeing for the first time—recall the attention given
to the binomial and hypergeometric distributions in Section 3.2.

Chapter 4 continues in the spirit of Section 3.2 by examining five other widely used
models. Three of the five are discrete; the other two are continuous. One of the continuous
pdf’s is the normal {or Gaussian) distribution, which, by far, is the most important of
all probability models. As we will see, the normal “curve” figures prominently in every
chapter from this point on.

Examples play a major role in Chapter 4. The only way to appreciate fully the
generality of a probability model is to look at some of its specific applications. Included in
this chapter are case studies ranging from the discovery of alpha-particle radiation to an
early ESP experiment to an analysis of pregnancy durations to counting bug partsin peanut
butter.

HE POISSON DISTRIBUTION
The binomial distribution problems that appeared in Section 3.2 all had relatively small

values for #, so evaluating px (k) = P(X = &) = (:) P - pY" % was not particularly

difficult. But suppose r were 1000 and k, 500. Evaluating px (500) woulkd be a formidable
task for many handheld calculators, even today. Two hundred years ago, the prospect of
doing cumbersome binomial calculations by hend was a catalyst for mathematicians to
develop some easy-to-use approximations. One of the first such approximations was the
Poisson limit, which eventually gave rise to the Poisson distribution. Both are described
in Section 4.2

Simeon Denis Poisson (1781-1840) was an eminent French mathematician and physi-
cist, an academic administrator of some note, and, according to an 1826 letter from the
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mathematician Abel to a friend, Poisson was a man who knew “how to behave with a
great deal of dignity.” One of Poisson’s many interests was the application of probability
to the law, and in 1837 he wrote Recherches sur la Probabilite de Jugements. Included in

the latter is a limit for px(k} = (:

approaches 0, and np remains constant. In practice, Poisson’s limit is used to approximate
hard-to-calculate binomial probabilities where the vatues of n and p reflect the conditions
of the limit—that is, when n is large and p is small.

) p*(1 — p)"* that holds when n approaches oo, p

The Poisson Limit

Deriving an asymptotic expression for the binomial probability model is a straightforward
exercise in calculus, given that ap is to remain fixed as n increases.

Theorem 4.2.1. Suppose X is a binomial random variable, where

]

P(X = k) = px(k) = (k

)p"(l -y, k=0,1,...,n

Ifn — coand p — O in such a way that » = np remains constant, then

; = i ny nk _ € p)t
Jim PX=k= }m (k)p(l—p) = P

p-+0 p—0
Rp#EORSE, #p==CONSL.

Proof. We begin by rewriting the binomial probability in terms of A:

k n-k
fim (n)p"(i — py"* = lim (n) (&) (1 - &)
a0\ k n—oo \ k n n
_ a1 A A\
= lim —— [ =} {1~ - 1- =
ﬂijggoki(n - k}i)L (n"‘)( n) ( n)
2 " ! (1 - f)n
T koo (n — k)P (n — AXE n

But since [1 — (A/n)]" — e as n > 0o, we need only show that

nl 1
= ol —

to prove the theorem. However, note that

7! _ pn —B---n—k+ 1
(n— i — A (1 — N — (= Q)

a quantity that, indeed, tends to 1 as # — oo (since A remains constant). C
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EXAMPLE 4.2.1

Theorem 4.2.1 is an asymptotic result. Left unanswered is the question of the relevance
of the Poisson limit for finite n and p. That is, how large does » have to be and how small
does p have to be before e "7 (np)* /k! becomes a good approximation 1o the binomial
probability, px(k)?

Since *“good approximation” js undefined, there is no way to answer that question in
any completely specific way. Tables 4.2.1 and 4.2.2, though, offer a partial solution by
comparing the closeness of the approximation for two particular sets of values for n and p.

In both cases 4 = np is equal to one, but in the former, » is set equal to five—in the
latter, to one hundred. We see in Table 4.2.1 (n = 5) that for some % the agreement
between the binomial probability and Poisson’s limit is not very good. If » is as large as
onc hundred, though (Table 4.2.2), the agreement is remarkably good forall k.

TABLE 4.2.1: Binomial Probabilities and TABLE 4.2.2: Binomial Probabilities and Poisson
Poisson Limits; n=5and p = % =1 Limits; n = 100 and p = Té'ﬁ =1
—1 k -1 1 k
5 k sk ¢ () 100 & wo—x € (D
k ( k) O2fe85F k ( ¢ ) (0.01)%(0.99) e
0 0.328 0.368 0 0.366032 0.367879
1 0.410 0.368 1 0.369730 0.367879
2 0.205 0.184 2 0.184865 0.183540
3 0.051 0.061 3 0.060999 0.061313
4 0.006 0.015 4 0.014942 0.015328
5 0.000 0.003 5 0.002898 0.003066
6+ 0 0.001 6 0.000463 0.000511
1.000 1.000 7 0.000063 0.000073
8 .000007 0.000009
9 0.0000M 0.000001
10 0.000000 0.000000
1.000000 £.999999
EXAMPLE 4.2.2

Shadyrest Hospital draws its patients from a rural area that has twelve thousand elderly
residents. The probability that any one of the twelve thousand will have a heart attack
on any given day and will need to be connected to a special cardiac monitoring machine
has been estimated to be one in eight thousand. Currently, the hospital has three such
machines. What is the probability that equipment will be inadequate to meet tomorrow’s
emergencies?

Let X denote the number of residents who wili need the cardiac machine tomorrow.
Note that X is a binomial random variable based on a large n{= 12,000) and a small

p( = Efo”é) As such, Poisson’s limit can be used to approximate px{k) for any k. In
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particular,

P(ShadyresUs cardiac facilities are inadequate)= P(X > 3)

=1-P(X <3
3 k 12,000k
12 ’
1 Z( ,0()())( i ) (7999)
i\ k K000 7 | 8000
3 18 k
N e (1.5)
] e Z —
P
={.0656

where A = np = 12,()(3{}(%%{_}) = 1.5. On the average, then, Shadyrest will not be able
to meet all the cardiac needs of its clientele once every fifteen or sixteen days. (Based
on the binomial and Poisson limit comparisons shown on page 276, we would expect the
approximation here to be excellent—n (= 12,000) is much larger and pl= %) is much
smaller than their counterparts in Table 4.2.2, so the conditions of Theorem 4.2.1 are
more necarly satisfied.)

CASE STUDY 4.21

Leukemia is a rare form of cancer whose cause and mode of transmission remain
largely unknown. While evidence abounds that excessive exposure to radiation can
increase a person’s risk of contracting the disease, it is at the same time true that
most cases occur among persons whose history contains no such overexposure. A
related issue, one maybe even more basic than the causality question, concerns the
spread of the discase. It is safe to say that the prevailing medical opinion is that most
forms of leukemia are not contagious—still, the hypothesis persists that some forms
of the disease, particularly the childhood variety, may be. What continues to fucl this
speculation are the discoveries of so-called “leukemia clusters,” aggregations in time
and space of unusually large numbers of cases.

To date, one of the most frequently cited leukemia clusters in the medical literature
occurred during the late 1950s and early 1960s in Niles, Hlinois, a suburb of Chicago
{74). In the S%vvyear period from 1956 to the first four months of 1961, physicians in
Niles reported a total of eight cases of leukemia among children less than fifteen years
of age. The number at risk (that is, the number of residents in that age range) was
70,76. To assess the likelihood of that many cases occurring in such a small population,
it is necessary to look first at the leukemia incidence in neighboring towns. For all
of Cook county, excluding Niles, there were 1,152,695 children less than 15 years
of age—and among those, 286 diagnosed cases of leukemia. That gives an average
5%-year leukemia rate of 24.8 cases per 100,000:

286 cases for 5% years « 100,000
1,152,695 children 100,000

= 24.8 cases/ 100,000 children in 5% years

{Continued on next page)
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Now, imagine the 7076 children in Niles to be a series of # = 7076 (independent)
Bernoulli trials, each having a probability of p = 24.8/100,000 = 0.000248 of contract-
ing leukemia. The question then becomes, given an n of 7076 and a p of 0.000248,
how likely is it that eight “successes” would occur? (The expected number, of course,
would be 7076 % 0.000248 = 1.75.) Actually, for reasons that will be claborated on
in Chapter 6, it will prove more meaningful to consider the related event, cight or
more cases occurring in a 531;—year span. If the probability associaied with the latter is
very small, it could be argued that leukemia did not occur randomly in Niles and that,
perhaps, contagion was a factor,

Using the binomial distribution, we can express the probability of eight or more
cases as

8 s 7076
P(8or more cascs) = ¥ ( L )(O.OGO%B)“({).999752)7‘”6"" (4.2.1)
k=8

Much of the computational unpleasantness implicit in Equation 4.2.1 can be avoided
by appealing to Theorem 4.2.1. Given that np = 7076 X 0.000248 = 1.75,

PX=8=1_ P(X<7)

7175 k
e _ Zc {1.7%)

k=0 k!
=1 — 09951
= 0.00049

How closc can we expect 0.00049 to be to the “true’ binomial sum? Very close.
Considering the accuracy of the Poisson limit when # is as small as one hundred (recall
Table 4.2.2), we should feel very confident here, where n is 7076.

Interpreting the 0.00049 probability is not nearly as easy as assessing its accuracy,
The fact that the probability is so very small tends to denigratc the hypothesis that
leukemia in Niles occurred at random. On the other hand, rare even ts, such as clusters,
do happen by chance. The basic difficulty in putting the probabitity associated with
a given cluster in any meaningful perspective is not knowing in how many similar
communitics leukemia did nor exhibit a tendency to cluster. That there is no obvious
way to do this is one reason the leukemia controversy is still with us.

QUESTIONS

4.2.1. If a typisl averages onc misspelling in every 3250 words, what are the chances that a
6000-word report is free of all such errors? Answer the question two ways—first, by
using an exact binomial analysis, and second, by using a Poisson approximation. Does
the similarity (or dissimilarity) of the two answers surprisc you? Explain.
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4.2.2.

4.2.3.

4.24.

4.2.5.

4.2.6.

4.2.7.

4.2.8.

4.2.9.

A medical study recently documented that 905 mistakes were made among the 289,411
prescriptions written duringone year at a large metropolitan teaching hospital. Suppose a
patient is admitted with a condition serions enough to warrant 16 different prescriptions.
Approximate the probability that at least one will contain an error.

Five hundred people are atlending the first annual “1 was Hit by Lighting” Club.

Approximate the probability that at most one of the 500 was born on Poisson’s birthday.

A chromosome mutation linked with colorblindness is known to occur, on the average,

once in every 10,000 births.

(@) Approximate the probability that exactly 3 of the next 20,000 babies born will have
the mutation.

(b) How many babies out of the next 20,000 would have to be born with the mutation
to convince you that the *1 in 10,0600 estimate is too low? Hinr: Calculate
P(X >k =1~ P(X <k — 1)forvarious k. {Recall Case Study 4.2.1)

Suppose that 1% of all items in a supermarket are not priced properly. A customer buys

10 items. What is the probability that she will be delayed by the cashicr because one

or more of her items requires a price check? Calculate both a binomial answer and a

Poisson answer. Is the binomial model “exact” in this case? Explain.

A newly formed life insurance company has underwritten term policies on 120 women

between the ages of 40 and 44. Suppose that each woman has a 1/150 probability of

dying during the next calendar ycar, and each death requircs the company o pay out
$50,000 in benefits. Approximate the probability that the company will have to pay al

Teast $150,000 in benefits next year.

According to an airline industry report (187). roughly 1 piece of luggage out of every 2({)

that are checked is lost. Suppose that a frequent-flying businesswoman will be checking

120 bags over the course of the next year. Approximate the probability that she will lose

2 of more pieces of luggage.

Electromagnetic fields generated by power transmission lines are suspected by some

researchers to be a cause of cancer. Especially at risk would be telephone linemen

because of their frequent proximity to high-voltage wires. According to one study, two

cases of a rare form of cancer were detected among a group of 9500 linemen (181).

In the general population, the incidence of that particular condition is on the order of

one in a million. What would you conclude? Hint: Recall the approach taken in Case

Study 4.2.1.

Astronomers estimate that as many as 100 billion stars in the Milky Way galaxy are

encircled by planets. If so, we may have a plethora of cosmic neighbors. Let p denote

the probability that any such solar system contains intcHigent life. How smail can p be
and still give a 50-50 chance that we are not alone?

The Poisson Distribution

The real significance of Poisson’s limit theorem went unrecognized for more than fifty
years. For most of the latter part of the nineteenth ceatury, Theorem 4.2.1 was taken
strictly at face value: It provided a convenient approximation for px{k) when X is
binomial, » is large, and p is small. But then in 1898 a German professor, Ladislaus
von Bortkiewicz, published a monograph entitled Das Gesetz der Kleinen Zahlen ( The
Law of Small Numbers) that would quickly transform Poisson’s “limit” into Poisson’s
“distribution.”

What is best remembered about Bortkiewicz’s monogtaph is the curious set of data
described in Question 4.2.10. The measurements recorded were the numbers of Prussian
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cavalry soldiers who were kicked to death by their horses. In analyzing those figures,
Bortkiewicz was able to show that the function e™*A%/k! is a useful probability model in
its own right, even when (1) no explicit binomial random variable is present and (2) values
for n and p are unavailable. Other researchers were quick to follow Bortkiewicz’s lead,
and a steady stream of Poisson distribution applications began showing up in technical
journals. Today the function px (k) = e~**/k! is universally recognized as being among
the three or four most important data models in all of statistics.

Theorem 4.2.2. The random variable X is said to have a Poisson distribution if

—llk
k!

pxlh)=P(X =k)= . k=0,1,2,...

where ). is a positive constant. Also, for any Poisson random variable, E(X) = » and
Var(X) =

Proof. To show that py(k) qualifies as a probability function, note, first of all, that
px (k} = O for all nonnegative integers k. Also, px (k) sums to one:

00 —.i\,}L N [o9] )\‘k
pr(k) Z D D P |

k=0 Ll
o 3k
since i is the Taylor series expansion of e*. Verifying that E{(X) = A and
k=)
Var(X) = A has already been done in Example 3.12.9, using moment-generating
functions, O

Fitting the Poisson Distribution to Data

Poisson data invariably refer to the numbers of times a certain event occurs during each
of a series of ““units” (often fime or space). For example, X might be the weekly number
of traffic accidents reported at a given intersection. If such records are kept for an entire
year, the resulting data would be the sample &1, &3, ..., k53, where each k; is a nonnegative
integer.

Whether or not a set of ;s can be viewed as Poisson data depends on whether the
proportions of 0s, 1s, 2s, and so on in the sample are numerically similar to the probabilities
that X = 0, 1, 2, and so on, as predicted by py(k) = e *A*/k!. The next two case studies
show data sets where the variability in the observed ;s is consistent with the probabilities
predicied by the Poisson distribution. Notice in each case that the A in px(k) is replaced

_ n
by the sample mean of the k;s—that is by £ = (1/n) }_ k;. The reason for making that
e=]
substitution will be taken up in Chapter 5.
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CASE STUDY 4.2.2

Among the early research projects investigating the nature of radiation was a 1910
study of a-particle emission by Ernest Rutherford and Hans Geiger (156). For each
of 2608 eighth-minute intervals, the two physicists recorded the number of a-particles
emitted from a polonium source (as detected by what would eventually be called a
Geiger counter). The numbers and proportions of times that k such particles were
detected in a given eighth-minute (¢ = 0,1,2,...) are detailed in the first three
columns of Table 4.2.3. Two v particles, for example, were detected in each of 383
eighth-minute intervals, meaning that X == 2 was the observation recorded 15%
{=383/2608 X 100) of the time.

To see whether a probability function of the form px (k) = ¢~*3*/ k! can adequately
model the observed proportions in the third column, we first need to replace ) with
the sample’s average value for X. Suppose the six observations comprising the “114”
category are each assigned the value eleven. Then

TABLE 4.2.3

No. Detected, k¥ Frequency Proportion py(k) = e~ 387 (3.87) / k!

0 57 0.02 0.02
1 203 0.08 (.08
2 383 0.15 .16
3 525 (.20 0.20
4 532 (.20 0.20
5 408 (.16 .15
6 273 0.10 0.10
7 139 0.05 0.05
8 45 0.02 0.03
9 27 0.01 0.0t
10 10 0.00 0.00
114 6 0.00 0.00
2608 1.0 1.0
T 570y + 203(1) + 383(2) + --- + 6(11) 10,092

2608 2608
=3.87

and the presumed model is py(k) = ¢ 387387k /k!, k = 0,1,2,.... Notice how
closely the entries in the fourth column [te., px(0), px(1), px(2),...] agree with
the sample proportions appearing in the third column. The conclusion here is in-
escapable: The phenomenon of radiation can be modeled very effectively by the
Poisson distribution.
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CASE STUDY 4.2.3

Table 4.2.4 gives the numbers of fumbles made by 110 Division IA football seams
during a recent weekend’s slate of fifty-five games (107). Do the data support the
contention that the number of fumbles, X, that a team makes during a game is a
Poisson random variable?

TABLE 4.2.4
2 1 2 2 3 1t 3 4 3 4 5
5 21 3 2 5 2 41 2 2
1 0 4 2 4 v+ 2 6 2 ¢ 3
1 2 o1 2 2 3 5 1 3
2 3 4 5 4 3 6 O 3 1 2
1 2 2 1 2 t 3 2 4 2 4
4 2 0 5 4 3 6 5 3 5 1
311 21 4 3 1 5 1 2
1 3 4 4 4 2 7 4 2 5 3
1 3 6 2 1 1 4 1 2 3 @

The first step in summarizing these data is to tally the frequencies and calculate the
sample proportions associated with each value of X (see Columns 1-3 of Table 4.2.5).
Notice, also, that the average number of fumbles per team is 2.55:

TABLE 4.2.5

No. of Fumbles, k Frequency Proportion px(k)y = e 255255 k!

0 8 0.07 0.08
i 24 0.22 0.20
2 27 0.25 0.25
3 20 0.18 0.22
4 17 0.16 0.14
5 10 0.09 607
6 3 0.03 603
T+ 1 0.0 0.
110 1.0 1.0

8(0) + 24(1) + 27(2) + --- + I(7)
110

k=
=2.55

Substituting 2.55 for A, then, gives py (k) = e 2352 55)% /k! as the particular Poisson
model most likely to fit the data.
(Continued on next page)}




284 Chapter4

Special Distributions

{Case Study 4.2.3 continued)

The fourth column of Table 4.2.5 shows px (k) evaluated for each of the eight values
listed for k2 px(0) = e >3°(2.55)°/0! = (.08, and so on. Once again, the row-by-row
agreement is quite strong. There appears to be nothing in these data that would
refute the presumption that the number of fumbles a team makes is a Poisson random
variable.

The Poisson Model: The Law of Small Numbers

Given that the expression e *A*/k! models phenomena as diverse as o-radiation and
football fumbles raises an obvious question: Why is that same py(k) describing such
different random variables? The answer, of course, is that the underlying physical
conditions that produce those two sets of measurements are actuatly much the same,
despite how superficially different the resulting data may seem to be. Both phenomena
are examples of a set of mathematical assumptions known as the Poisson model. Any
measurements that are derived from conditions that mirror those assumptions will
necessarily vary in accordance with the Poisson distribution.

Consider, for example, the number of fumbles that a football team makes during the
course of a game. Imagine dividing a time interval of length 7 into » nonoverlapping
subintervals, each of length %, where n is large (see Figure 4.2.1). Suppose that

Tin
A"

Ll L] L1
I 2 3 4 5 n
T
FGURE 4.2.1

1. The probability that two or more fumbles occur in any given subinterval is
essentially (0.

2. Fumbles are independent events.

3. The probability that a fumble occurs during a given subinterval is constant over the
entire interval from Gto 7',

The n subintervals, then, are analogous to the » independent trials that form the backdrop
for the “binomial model”: In each subinterval there will be either zero fumbles or one
fumble, where

Dn = P{fumble occurs in a given subinterval)

remains constant from subinterval to subinterval.
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Let the random variable X denote the total number of fumbles a team makes during
time T, and let & denote the rafe at which a team fumbles {e.g., A might be expressed as
0.10 fumbles per minute). Then

E(X)=AiT =np, (why}

x
which implies that p,, = —T From Theorem 4.2.1, then,
£

k n—k
pelk) = P(X = k) = (n) (3»3*_) (E _ E)
k) \ n "

N e-n(lT,’n) [ﬂ(;\.T/ﬂ)]k
B k!
e—A’f (lT}k

- (4.2.2)

So, if a team fumbles at the rate of, say, (.10 times per minute and they have the ball for
30 minutes during a game, A7 = (0.1X(30) == 3.0, and the probability that they fumble
exactly k times is approximated by the pdf, px (k) = e @0 kL k =0,1,2....

Now we can see more clearly why Poisson’s *“limit,” as given in Theorem 4.2.1, is so
important. The three Poisson model assumptions listed at the top of the page for football
fumbles are so unexceptional that they apply to countless real-world phenomena. Each
time they do, the pdf px (k) = e *T (AT )/ k! finds another application,

Calculating Poisson Probabilities

In practice, calculating Poisson probabilities is an exercise in choosing T so that AT
represents the expected number of occurrences in whalever “unit” is associated with
the random variable X. They look different, but the pdf's px(k) = e *A*/k! and
px{k) = e *T(AT)Y* /k! are exactly the same and will give identical values for P(X = k)
once A and T are properly defined.

EXAMPLE 4.2.3

Suppose that typographical errors are made at the rate of 0.4 per page in State Tech’s
campus newspaper. If next Tuesday’s edition is sixteen pages long, what is the probability
that fewer than three typos will appear?

We start by defining X to be the number of errors that will appear in sixteen pages.
The assumpltions of independence and constant probability are not unreasonable in this
setting, so X is likely to be a Poisson random variable. To answer the question using
the formula in Theorem 4.2.2, we need to set i equal to E(X). But if the error rate is
(.4 errors/page, the expected number of typos in sixteen pages will be 6.4

0,4E7TOrS
page

X 16 pages = 6.4 errors
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It follows, then, that

2 —
P(X <3)=P(X<2)=) 8—6':6'4);6
keeld .
e 846,40 e 464! e 046.4)°
= To (T
= 0.046

If Equation 4.2.2 is used, we would define
A == 0.4 errors/page
and
T = 16 pages
2
Then AT = E(X) = 6.4 and P(X < 3) would be }_ ¢ %4(6.4)*/k!, the same numerical

k=0
value found from Theorem 4.2.2.

EXAMPLE 4.2.4
Entomologists estimate that an average person consumes almost a pound of bug parts
each year (180). There are that many insect eggs, larvae, and miscellaneous body pieces in
the foods we eat and the liguids we drink. The Food and Drug Administration (FDA) sets
a Food Defect Action Level (FDAL) for each product: Bug-part concentrations below
the FDAL are considered acceptable. The legal limit for peanut butter, for example, is
thirty insect fragments per hundred grams. Suppose the crackers you just bought from a
vending machine are spread with twenty grams of peanut butter. What are the chances
that snack will include at least five crunchy critters?

fet X denote the number of bug parts in twenty grams of peanut butter. Assuming
the worst, we will set the contamination level equal to the FDA limit—that is, thirty
fragments per hundred grams (or 0.30 fragments/g). Notice that E(X) = 6.0:

W X 20 g == 6.0 fragments

It follows, then, that the probability that your snack contains five or more bug parts is a

disgusting 0.71:
4 60 6.0vF
PX>5=1— P(X<d)=1~ Zf»m%m)m
k=0 N
=1 — 0.2851

=071
Bon appetit!
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QUESTIONS

4.2.10. During the latter part of the nineteenth century, Prussian officials gathered information
relating to the hazards that horses posed to cavalry soldiers. A total of 10 cavalry corps
were monitored over a period of 20 years. Recorded for each year and each corps was
X, the annual number of fatalities due to kicks. Summarized in the following table are
the 200 values recorded for X (14). Show that these data can be modeled by a Poisson
pdf. Follow the procedure illustrated in Case Studies 42.2 and 42.3.

Observed Number of Corps-Years
No. of Deaths, &k in Which £ Fatalities Occurred

109
65
22

3
1

200

B e D

4.2.11. A random sample of 356 seniors enrolled at the University of West Florida was
categorized according to X, the number of times they had changed majors (114). Based
on the summary of that information shown in the following table, would you conclude
that X can be treated as a Poisson random variable?

Number of Major Changes Frequency

0 237
1 90
2 22
3 7

4.2.12. Midwestern Skies books 10 commuter flights each weck. Passenger totals are much the
same from week to week, as are the numbers of pieces of luggage that are checked.
Listed in the following table are the numbers of bags that were lost during each of the
first 40 weeks in 2004. Do these figures support the presumption that the number of
bags lost by Midwestern during a typical week is a Poisson random variable?

Week Bags Lost Week Bags Lost Week BagsLost

1 1 14 2 27 1
2 0 15 1 28 2
3 0 16 3 29 0
4 3 17 0 30 0
5 4 18 2 31 1
6 1 19 5 32 3
7 0 20 2 33 1
3 2 21 1 34 2
9 0 22 1 35 0
10 2 23 1 36 1
i1 3 24 2 37 4
12 1 25 1 38 2
13 2 26 3 39 1
40 0
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4.2.13. In 1893, New Zealand became the first country to permit women to vote. Scattered
over the ensuing 113 years, various countries joined this movement to grant this right
to women. The table below (127) shows how many countries took this step in a given
year. Do these data seem to follow a Poisson distribution?

Yearly Number of Countries
Granting Women the Vote  Frequency
0 82
1 25
2 4
3 o
4 2

4.2.14. The following are the daily numbers of death notices for women over the age of 80
that appeared in the London Times over a three-year period (73).

Number of Deaths  Observed Frequency

162
267
271
185
111
61
27
8

3

1

1096

NDSE 1 O A L Y e O

(a) Does the Poisson pdf provide a good description of the variability pattern evident
in these data?

(b) If your answer to Part () is “no,” which of the Poisson model assumptions do you
think might not be holding?

4.2.15. A certain species of European mite is capable of damaging the bark on orange trees.
The following are the results of inspections done on 100 saplings chosen at random
from a large orchard. The measurement recorded, X, is the number of mite infestations
found on the trunk of each tree. Is it reasonable to assume that X is a Poisson random
varizble? If not, which of the Poisson model assumptions is likely not to be true?

No. of Infestations, & No. of Trees

0 55
1 20
2 21
3 1
4 1
5 1
6 6
7 1
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4.2,16. A tool and die press that stamps out carus used in small gasoline engines tends to break
down once every five howrs. The machine can be repaired and put back on line quickly,
but each such incident costs $50. What is the probability that maintenance expenses
for the press will be no more than $100 on a typical cight-hour workday?

4.2,17, In a new fiber oplic communication system, {ransmission errors occur at the rate of 1.5
per 10 seconds. What is the probability thal more than two errors wilt occur during the
next half-minute?

4.2.18. Assume that the number of hits, X, that a bascball team makes in a nine-inning game
has a Poisson distribution. If the probability that a team makes zero hits 1s %, what are
their chances of getting two or more hits?

4.2.19. Flaws in metal sheeting produced by a high-temperature roller occur & the rate of one
per 10 square fect. What is the probability that three or more flaws will appear in a
5-by-8-foot panel?

4.2.20, Suppose a radioactive source is metered for two hours, during which time the total

number of alpha particles counted is 482. What is the probability that exactly three

particles will be counted in the next two minutes? Answer the guestion two ways—{irst,
by defining X to be the number of particles counted in two minutes, and second, by
defining X to be the number of particles counted in ene minute.

Supposc that on-the-job injuries in a textile mill cccur at the rate of 0.1 per day.

(1) What is the probability that ewo accidents will occur during the next {five-day)

work week?

(b) Is thc probability that four accidents will occur over the next two work wecks the

square of your answer to Part (a)? Explain.

4.2.22. Find P{X = 4) if the random variable X has a Poisson disiribution such that P(X =
1y=F(X =13).

4.2.23. Tet X be a Poisson random variable with parameter 4. Show that the probability that
X is even is %(1 + e 2y,

42.24. TLet X and ¥ be independent Poisson random variables with parameters ) and o,
respectively. Example 3.12.10 established that X + Y is also Poisson with parameter
3+ p. Prove that same result using Theorem 3.8.1.

4.2.25. If X is a Poisson random variable for which E{X|) = & and if the conditional pdf of
X, given that X = xp is binomial with parameters x; and p, show that the marginal
pdf of X5 is Poisson with E(X2) = ip.

4.2.24

Intervals Between Events: The Poisson/Exponential Relationship

Situations sometimes arise where the time interval between consecutively occurring events
is an important random variable. Imagine being responsible for the maintenance on a
network of computers. Clearly, the number of technicians you would need to employ in
order to be capable of responding to service calls in a timely fashion would be a function
of the “waiting time” from one breakdown to another.,

Figure 4.2.2 shows the relationship between the random variables X and ¥, where X
denotes the number of occcurrences in a unit of time and Y denotes the interval between
consecutive occurrences. Pictured are six intervals: X = 0 on one Occasion, X = 1 on
three occasions, X = 2 once, and X = 3 once. Resulting from thosc cight occurrences
are seven measurements on the random variable Y. Obviously, the pdf for ¥ will depend
on the pdf for X. One particularly important special case of that dependence is the
Poisson/exponential relationship outlined in Theorem 4.2.3.
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Y—values: ’ )‘11 31’2 ' ¥ . ¥ y,g )"6. ):7
Lo | ale ol ol oa ]
X=1 X=1 X=2 X=1 X=0 X=3
osoogoieiceni)
Unit time
FIGURE 4.2.2

Theorem 4.2.3. Suppose a series of events satisfving the Poisson model are occurring at the
rate of A per unit time. Let the random variable Y denote the interval between consecutive
events. Then Y has the exponential distribution -

friyy=r", y>0

Proof. Supposc an event has occurred at time a. Consider the interval that extends from
atoa + y. Since the (Poisson) events are occurring at the rate of A per unit time, the
=AY (hy 0

€ ( )’ ) =y
Ot B ’

Define the random variable ¥ to denote the interval between consecutive occurrences.

Notice that there will be no occurrences in the interval (@,a + yyonly if ¥ > y.

Therefore,

probability that no outcomes will occur in the interval (a.a + y) is

PY > y)=¢e ™
or, equivalently,

P <y)=1—- P >y=1—e"

Let fy(y) be the (unknown) pdf for Y. It must be true that

¥
P(Y =) 2[{} frindt

Taking derivatives of the two expressions for P(Y < y), we can write

d [ d
frindt = —(1 — ™)
dy Jo dy

which implies that
figy =2, y>0

CASE STUDY 4.2.4

Over “short” geological periods, a volcano’s cruptions are believed 10 be Poisson
events—that is, they are thought to occur independently and at a constant rate. If so,
the pdf describing the intervals between eruptions should have the form fy (y) = Ae™.
Collected for the purpose of testing that presumption are the data in Table 4.2.6,
showing the intervals (in months) that elapsed between thirty-seven consecutive

{Continued on next page)
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eruptions of Mauna Loa, a fourteen thousand-foot volcano in Hawaii (110). During
the period covered—1832 to 1950—eruptions were occurring at the rate of A = 0.027
per thonth (or once every 3.1 years). Is the variability in these thirty-six y;s consistent
with the statement of Theotem 4.2.3?

TABLE4.26
126 73 3 6 37 23
73 23 2 65 94 51
26 21 6 68 16 20
6 18 6 41 40 18
41 11 12 38 77 61
26 3 38 50 91 12

To answer that question requires that the data be reduced fo a density-scaled
histogram and superimposed on a graph of the predicted exponential pdf (recall
Case Study 3.4.1). Table 4.2.7 details the construction of the histogram. Notice in
Figure 4.2.3 that the shape of that histogram is entirely consistent with the theoretical
model— fy (v) = 0.027¢ %927V _stated in Theorem 4.23.

TABLE 4.2.7

Interval {(mos), v Frequency Density

O0<y <
0<y
W=y
60 <y
80=<y
00 <y
120 <y

AAAAAA

20
40
60
80
100
120
140

L [y
O\IMCDMO\M\OUJ

0.0181
0.0125
0.0069
0.0083
0.0028
0.0000
0.0014

o 20 40

60

80

FGURE 4.2.3

100 120 140
Interval between eruptions (in months)
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EXAMPLE 4.2.5

Among the most famous of all meteor showers are the Perseids, which occur each year
in early August. In some areas the frequency of visible Perseids can be as high as forty
per hour. Given that such sightings are Poisson events, calculate the probability that an
observer who has just seen a meteor will have to wait at least five minutes before seeing
another.

Let the random variable ¥ denote the interval (in minutes) between consecutive
sightings. Expressed in the units of ¥, the forty per hour rate of visible Perseids becomes
0.67 per minute. A straightforward integration, then, shows that the probability is 0.036
that an observer will have to wait five minutes or more to see another meteor:

OC.
P(Y > 5) = f 0.67¢ =087 gy

5
oo
= f e""du (whercu = 0.67y)
B
333

== (0.036
QUESTIONS
4.2.26. Suppose that commercial airplane crashes in a certain country occur at the rate of 2.5

per year,

(a) Isit reasonable to assume that such crashes are Poisson events? Explain.

(b) What is the probability that four or more crashes will occur next year?

(¢} What is the probability that the next two crashes will occur within three months
of one another?

4.2.27. Records show that deaths occur at the rate of 0.1 per day among patients residing in a
large nursing home. If someone dies today, what are the chances that a week or more
will elapse before another death cocurs?

4.2.28. Suppose that ¥1 and ¥; are independent exponential random variables, each having
pdf fr(y) =2e™™.y > 0.IF ¥ = ¥; + Vs, it can be shown that

Fan() =32ye™, y >0

Recall Case Study 4.2.4. What is the probability that the next three eruptions of Mauna
Loa will be less than 40 monihs apart?

4.2.29. Fifty spotlights have just been installed in an outdoor security system. According to
the manufacturer’s specifications, these particular lights are expected to burn out at
the rate of 1.1 per 100 hours. What is the expected number of bulbs that will fail to last
for at least 75 hours?

4.3 THE NORMAL DISTRIBUTION

The Poisson limit described in Section 4.2 was not the only, or the first, approximation
developed for the purpose of facilitating the calculation of binomial probabilities. Early
in the eighteenth century, Abraham DeMoivre proved that areas under the curve
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i 1 _» . X- n(l)

7)) = ——e %1% —00 < z < oo can be used to estimate P as——i—sb .
B0 VAH®)
where X is a binomial random variable with a large n and p = %

Figure 4.3.1 illustrates the centralidea in DeMoivre’sdiscovery, Picturedis a probability
histogram of the binomial distribution with.n = 20.and p = 1,_‘ Superimposed over the

—z242

histogram is the function f,(z) = £ . Notice how closely the area nnder the curve

4
approximates the area of the bar, even for this relatively small value of n. The French
mathematician Pierre-Simon Laplace generalized DeMoivre’s original idea to binomial
approximations for arbitrary p and brought this theorem to the full attention of the
mathematical community by including it in his influential 1812 book, Theorie Analytigue
des Probabilities. '

Theorem 4.3.1. Let X be a binomial random variable defined on n independent trials for
which p = P(success). For any numbers a and b,

. X — np 1 jb 2 v
lim Pla< ————<b)=—= | ¥4
OO ( Joap(l — p) ) V21 da
Proof. One of the ways to verify Theorem 4.3.1 is to show that the limit of the moment-
X—np
Vvrp(l—p)

o0 1 2
& . ——¢~% /2 4z. By Theorem 3.12.2, then, the limiting pdf of Z =
.Ln N gpd

generating function for asn — oois e /2 and that ¢ /2 is also the value of

X —np
vap(l — p)

1
is the function fz(z) = Fe'zz ﬂ, —00 < z < 0. See Appendix 4.A.2 for the proof
JT

of a more general result. |

Comment. We saw in Section 4.2 that Poisson’s limif is actually a special case of

—3 }\.k .
Poisson’s distribution, px (k) = “’T k=0,1,2,.... Similarly, the DeMoivre-Laplace
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limit is a pdf in its own right. Justifying that assertion, of course, requires proving that

] 2 v

f2(2) = —zze™0
- 27[ - » - Bl - -
Curiously, there is no algebraic or trigonometric substitution that can be used to
demonstrate that the area under fz(z) is 1. However, by using polar coordinates, we can

integratesto 1 for —co0 < z < oo,

. . . SR B
verify a necessary and sufficient alternative—namely, that the square of [ W e T dzg
‘ Rt T
equals one.
To begin, note that

w}-'m 12 gy L ]*00 e 2/265)? = m&/m fm e dxdy
V2 J—co 27 o ’ 2n —ooJ—o0 ’

Letx =rcosfandy =r sin 8, sodxdy = r drdf. Then

1 [m/'m ~ly? 1 oo,
— eI —‘}dxdymw—/ f e 2 rdrde
2 | oo e 2n 1] )

1 f “ e gy f " 0
=—— re .
27 Jo 0

=1

2.
%12 is referred to as the standard normal

1
Comment. The function f.(z) =
f 27[ - -
(or Gaussian) curve. By convention, any random variable whose probabilistic behavior is
described by a standard normal curve is denoted by Z {rather than X, ¥, or W). Since

Mz(t) = 9’2/2, it follows readily that E(Z) = 0 and Var(Z) = 1.

Finding Areas Under the Standard Normal Curve

In order to use Theorem 4.3.1, we need to be able to find the area under the graph of
Ffz{z) above an arbitrary interval [a, b]. In practice, such values are obtained in one of two
ways—either by using a normal table, a copy of which appears at the back of every statistics
book, or by running a computer software package. Typically, both approaches give the cdf,
Fz(z} = P(Z < z}, associated with Z {and from the cdf we can deduce the desired area).

Table 4.3.1 shows a portion of the normal table that appears in Appendix A.1. Each
row under the Z heading represents a number along the horizontal axis of f7(z) rounded
off to the nearest tenth; columns 0 through 9 allow that number to be written to the
hundredths place. Entries in the body of the table are areas under the graph of fz(z) 1o
the left of the number indicated by the entry’s row and column. For example, the number
listed at the intersection of the “1.1” row and the 4" column is 0.8729, which means that
the area under fz(z) from —co to 1.14 is 0.8729. That is,

.14
: 1 P
e C 24z =08729 = P(—0 < Z < 1.14) = Fz(1.14)
f A/ 2 “

—o0

{see Figure 4.3.2).
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statement for Theorem 4.3.1: If X is a binomial random variable with parameters  and p,

I/ 0.5 — r— 0.5 —
p(asxq)ﬂz(i_mﬁz) o (M)

Vapl — p) vap(l — p)

Comment. Even with the continuity correction refinement, normal curve approxima-
tions can be inadequate if # is too small, especially when p is close to O or to 1. As a rule
of thumb, the DeMoivre-Laplace limit should be used only if the magnitudes of n and p

1 —
P andn > 9 P.
- p P

are such thatn > 9 i

EXAMPLE 4.3.1

Bocing 757s flying certain routes are configured to have 168 cconomy class seats.
Expericnce has shown that only 90% of all ticket-holders on those flights will actually
show up in time to board the plane. Knowing that, suppose an airline sells 178 tickets for
the 168 seats. What is the probability that not everyone who arrives at the gate on time
can be accommodated?

Let the random variable X denote the number of would-be passengers who show
up for a flight. Since travelers are sometimes with their families, not every ticket-
holder constitutes an independent event. S$till, we can get a useful approximation to the
probability that the Hight is overbooked by assuming that X is binomial with n = 178
and p = (1.9. What we arc looking for is P(169 < X < 178), the probability that morc
ticket-holders show up than there are seats on the plane. According to Theorem 4.3.2
(and using the continuity correction),

P{flight is overbooked) = P(169 < X < 178)

(169-0.5;;;;{ X—np _178+05—np
Vapd —py T mp@ — p) T Jap( — p)

B (E68.5 - 17809) _ X -~ 17809) _ 1785 - 178(().9))

J178(0.9)(0.1) ~ J/I78(0.9¢(0.1) — /17809 ©0.D
= PROI < Z <457 = F,(4.57y — F.2.07)

From Appendix A.1, Fz(4.57) = P(Z < 4.57) is cqual to one, for all practical purposes,
and the arca under fz(z) Lo the left of 2.07 is 0.9808. Therefore,

P(flight is overbooked) = 1.0000 — 0.9808
=0.0192

implying that the chances are about one in fifty that not every ticket-holder will have a
seat.
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CASE STUDY 4.3.1

Research in extrasensory perception has ranged from the slightly unconventional to
the downright bizarre. Toward the latter part of the nineteenth century and even well
into the twentieth century, much of what was done involved spiritualists and mediums.
But beginning around 1910, experimenters moved out of the seance parlors and into
the laboratory, where they began setting up controlled studies that could be analyzed
statistically. In 1938, Pratt and Woodruff, working out of Duke University, did an
experiment that became a prototype for an entire generation of ESP research (70).
The investigator and a subject sat at opposite ends of a table. Between them was a
screen with a large gap at the bottom. Five blank cards. visible to both participants,
were placed side by side on the table beneath the screen. On the subject’s side of the
screen one of the standard ESP symbols (see Figure 4.3.4) was hung over each of the

3| ) |03 14

FIGURE 4.34

The experimenter shuffled a deck of ESP cards, picked up the top one, and
concentrated on it. The subject tried to guess its identity: If he thought it was a circle,
he would point to the blank card on the table that was beneath the circle card hanging
on his side of the screen. The procedure was then repeated. Altogether, a total of
thirty-two subjects, all students, took part in the experiment. They made a total of
sixty thousand guesses—and were correct 12,489 times.

With five denominations involved, the probability of a subject’s making a correct
identification just by chance was % Assuming a binomial model, the expected number
of correct guesses would be 60,000 X 1 or 12,000. The question is, how “near” to
12,000 is 12,4897 Should we write off the observed excess of 489 as nothing more than
luck, or can we conclude that ESP has been demonstrated?

To effect a resolution between the conflicting “tuck”™ and “ESP” hypotheses, we
need to compute the probability of the subjects’ getting 12,489 or more correct answers
under the presumption that p = 1. Only if that probability is very small can 12,489 be
construed as evidence in support of ESP.

Let the random variable X denote the number of correct responses in sixty thousand

tries. Then 0,000 k 66.000—k
- 60,000 1 43T
Px>12489= Y (O ¥ (2 (43.1)
k k 5 5
12,489

(Continued on next page)




Section 4.3 The Normai Distribution 299

At this point the DeMoivre-Laplace limit theorem becomes a welcome alternative to

comyputing the 47,512 binomial probabilities implicit in Equation 4.3.1. First we apply

the continuity correction and rewrite P(X > 12,489) as P(X > 12,488.5). Then
X—np 12,4885 — 60,0001/

Vap(h — py T Je0000(1 /5 4/

X — ap
(V’np(l - )

. ‘i Ok
B A 2m Jaoy
= 00000003

PX>12480H="p (

e”:';lzd:

this last value being oblained from a more extensive version of Table Al in the
Appendix.

Here, the fact that P(X > 12,489) is so extremely small makes the “luck™ hypothesis
(p = 1) untenable. It would appear that something other than chance had to be
responsible for the occurrence of so many correct guesses. Still, it does not follow that
ESF has necessarily been demonstrated. Flaws in the experimental sctup as well as
errors in reporting the scores could have inadvertently produced what appears to be
a statistically significant result. Suoffice it to say that a great many scientists remain
highly skeptical of ESP research in general and of the Pratt-Woodruff experiment in
particular, [For a more thorough critique of the data we have just described, see (45).]

Comment. This is a good set of data for illustrating why we need lormal mathemat-
ical methods for interpreting data. The fact is. our intuitions, when left unsupported
by probability calculations, can often be deceived. A typical first reaction to the
Pratt—Woodreff results is to dismiss as inconsequential the 489 additional correct
answers. To many, it seems entirely believable that 60,000 guesses could produce,
by chance, an extra 489 correct responses. Only after making the P(X > 12.48%)
computation do we sec the utter implausibility of that conclusion. What statistics is
doing here is what we would like it to deo in general—rule out hypotheses that are not
supported by the data and point us in the direction of inferences that are more likely
to be true.

QUESTIONS

4.3.1. Use Appendix Table Al o evaluate the following integrals. In each case, draw a
diagram of fz(z) and shade the area that corresponds to the integral,
13y
{a) / 22 gz

€
044 +2n

(.94 1 2/2
{b) [ e tdz
—rw: A 2
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4.3.2,

4.3.3.

4.34.

4.3.5.

4.3.6.

4.3.7.

4.3.8.

® g
(¢ f e T dy
) 148 /2

@ —-432 4 2y
S,
Let Z be a standard normal random variable. Use Appendix Table A.1 to find the
numerica! value for each of the following probabilities. Show each of your answers as
an area under fz{(z).
(@) PO<Z<200
(b)) P(-064<Z < ~0.11)
(c) P(Z > -1.06)
) P(Z < —233)
(e) P(Z > 4.61)
(a} Let0 < a < b. Which number is larger?

g a1
I Y f P2y
L WZ}“I 4 z Or " ,,,.zﬂ._e Z

() Leta > 0. Which pumber is larger?

+1 4172
[ - eZd; or f ‘ Lff"“z/2 dz
a AL a—172 A2

1.24
(a) Evaluate f el gz,
0

O
() Evaluate f 6e=7 12 dz.

R e 4]
Assume that the random variable Z is described by a standard normal curve fz(z). For
what values of z are the following statements true?
() P(Z<7)=033
by P(Z=z7)=02236
(c) P(—1.00< Z < z)= 05004
d) P(—z < Z < 2} =080
() Pz <7 =203)=015
Let z,, denote the value of Z for which P(Z > z,)} = «. By definition, the interquartile
range, (, for the standard normal curve is the difference

Q=235 — 275

Find Q.

Oak Hill has 74,806 registered automobiles. A city ordinance requires each to display
a bumper decal showing that the owner paid an annual wheel tax of $50. By law, new
decals need to be purchased during the month of the owner’s birthday. This year’s
budget assumes that at least $306,000 in decal revenue will be collected in November.
What is the probability that taxes reported in that month will be less than anticipated
and produce a budget shortfall? )

Hertz Brothers, a small, family-owned radio manufacturer, produces electronic com-
ponents domestically but subcontracts the cabinets to a foreign supplier. Although
inexpensive, the foreign supplier has a quality control program that leaves much to
be desired. On the average, only 80% of the standard 1600-unit shipment that Hertz



4.3.9.

4.3.10.

43.1L

4.3.12.

4.3.14.
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receives is usable, Currently, Hertz has back orders for 1260 radios but storage space
for no more than 1310 cabinets. What are the chances that the number of usable units
in Hertz’s latest shipment will be large enough to allow Hertz to fill all the orders
already on hand. vet small enough to avoid causing any inventory problems?
Fifty-five percent of the registered voters in Sheridanville favor their incumbent mavor
in her bid for reelection. If 400 voters go Lo the polls, approximate the probability that
(a) therace endsina tie
(b) the challenger scores an upset victory
State Tech’s basketball team, the Fighting Logarithms, have a 70% foul-shooting
percentage.
(a) Write a formula for the exact probability that out of their next 100 free throws
they will make between 75 and 80, inclusive.
(by Approximate the probability asked for in Part (a).
A random sample of 747 obituaries published recently in Salt Lake City newspapers
revealed that 344 (or 46%) of the decedents died in the three-month period following
their birthdays {129). Assess the statistical significance of that finding by approximating
the probability that 46% or more would die in that particular interval if deaths occurred
randomly throughout the year. What would you conclude on the basis of your answer?
There s a theory embraced by certain parapsychologists that hypnosis can enhance
a person’s ESP ability. To test that hypothesis, an experiment was set up with 15
hypnotized subjects (22). Each was asked to make 100 guesses using the same sort of
ESP cards and protocol that were described in Case Study 4.3.1. A total of 326 correct
identifications were made. Can it be argued on the basis of those results that hypnosis
does have an effect on a person’s ESP ability? Explain.

G . . . .
If pylky = ( . ) O7F03'9% &k = 0.1....,10, is it appropriate to approximate
P4 = X £ 8) by computing
p 35 - WO ey < 85 — 10(0.7)
JIOOD03 — T JTINGT0.3)
Explain.
A sell-out crowd of 42 200 is expected at Cleveland’s Jacobs Field for next Tuesday’s

game with the Baltimore Oricles, the last before a long road trip. The ballpark’s
congession manager is trying to decide how much food to have on hand. Looking at
records [rom games played earlier in the season, she knows that, on the average, 38%
of all those in attendance will buy a hot dog. How large an order should she place if
she wants to have no more that a 20% chance of demand exceeding supply?

Central Limit Theorem

It was pointed oul in Example 3.9.3 that every binomizl random variable X can be written
as the sum of » independent Bernoulli random variables X, X5, ..., X,,, where

¥ 1 with probability p
"7 10 with probability 1 — p
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Butif X = X3 + X3 + --- + X, Theorem 4.3.1 can be reexpressed as

b
lim P e Cdy (4.3.2)

FE> 0K

X1+ X4+ Xy —np 1
a= b
Jrp(l — ) V2 Ja

Implicit in Fquation 432 is an obvious question: Does the DeMoivre-Laplace limit
apply to sums of other types of random variables as well? Remarkably, the answer is
“yes.” Efforts to extend Equation 4.3.2 have continved for more than one hundred and
fifty years. Russian probabilists—A. M. Lyapunov, in particular—made many of the key
advances. In 1920, George Polya gave these new generalizations a name that has been
associated with the result ever since: He called it the central limit theorem (141).

Theorem 4.3.2 (Central Limit Theorem). Let Wy, Wa,...be an infinite sequence of
independent random variables, each with the same distribution. Suppose that the mean
and the variance o of fw(w) are both finite. For any numbers a and b,

Wi+ -+ W, — 1t
fim P{a <~ toor b= m««m«/ e P az
PR O \/;10 V2T Ja

Proof. See Appendix 4.A.2. (|

Comment. The central limit theorem is often stated in terms of the average of Wy,
Ws, ..., and W,, rather than their sum. Since

1 o 1
E[;(Wl + - Wn)] = E(W)=p and Var [;(m 4o Wn)] =o%/n,
Theorem 4.3.2 can be stated in the equivalent form

. W - pu 1 fb 2
lim Pla< <bl=—= | 74z
oo ( U/\/ﬁ ) 2w Ja

We will use both formulations, the choice depending on which is more convenient for the
problem at hand.

EXAMPLE 4.3.2

The top of Table 4.3.2 shows a MINITAB simulation where forty random samples of size
five were drawn from a uniform pdf defined over the interval [0, 1]. Each row corresponds
to a different sample. The sum of the five numbers appearing in a given sample is denoted
“y” and is listed in column C6. For this particular uniform pdf, p = % and 0% = 1!5 (recall
Question 3.6.4), s0

W1+---+Wn~n;;_Y—%
Jno 5

1z




TABLE 4,3.2

C1 C2 3 C4 C5 Co c7
yi y2 y3 v4 ¥3 ¥ Z ratio
1 0556099 0646873 0354373 0673821 0233126 246429 —0.05532
2 049784c  0S5BBIT9 0272095 0956614 (819901  3.13544 0.98441
3 0284027 0209458 0414743 0614309 043945  1.96199 —0.83348
4  (.599286 (0667891 0.194460 OB3I%AR] 694474 299559 076777
5 028068%  0.692159  0.036593 Q728826 (0314434 205270 —(.69295
6 0462741 02349264 0471254 0613070 0489125 238545 017745
7 0556940 0246789 (L719907 0711414 0918221  3.15327 101204
8 0102855 0679118 0559210 0014393 0518450  1.87403  —(.96975
9 0642859 004036 0728131 0299165 OROHI93 247588 003736
10 GOI7770 Q56818 (416351 0908079 0075108 198550  —0.79707
11 0331201 0410705 GII8571  0.979254 0242582  2.08240  —0.64694
12 0355047 0961126 0920597 (0.575467 (.585492  3.39773 139076
13 0626197 0304734 (530345 0933018 0675899 307021 0.88337
4 0211714 0404505 0045544 0213012 0520614 139539 171125
15 0535199 0130715 0603642 0333023 0405782 200836 076164
16 0810374 0153955 0082226 (H27269  O.B9790F 277172 0.42095
17 0.687550 0.185393 0620878 0013395 (BI9712 232693  —0.26812
18 0424193 0529199 Q201554 0157073 0090455  L4(24R —1.70028
19 0397373 (143507 0.973991 0234845 (681147 243086 010711
26 0413788 0653468 0017335 0556255 0900568 254141 G.06416
2 62607 0094162 0247676 0.638E75 0653910 223723 40708
22 0963678 0375850 0909377 0307358 OBIBERZ 338515 1.37126
23 0967499 G.86BROS  0.940770 0403564 0814348  3.99699 2.31913
24 0439913 0440679 0075227 0983295 0554581 2.4997C —G.00047
25 0215774 0407494 0002307 0971140 0437144 203386 —0.72214
26 0108881 0271860 0972351 0604762 0210347 216820 —0.51402
27 0337798 0173911 0309916 (0300208 0666831 178866  —1.10200
28 0035017 0187311 0365419 0831417 0463567 248273 —0.02675
29 0563097 (065293 0.841320  0S5IB055 0685137 2.67290 0.26786
30 0687242 0544286 09B0337 0649507 (077364 2.93874 0.67969
31 0784500 0.745614  0.459559 0565875 0529171 3.08472 0.90584
32 0505460 0.355340 0163285 0352540 (896521 227315 035144
33 0336992 0.734869 0.824409 0321047 0682283 2.89960 0.61906
34 0784279 (.194038 0323756 0430020 0459238 2.19133 —(.47819
35 0548008 0788351 0831117 0200790 0.823102  3.19137 107106
36 (096383 G.B44281 0680927  0.656946 0.050867 232940 (26429
37 0161502 0972933 G038113 0515530 0553788 224187 —0.39990
38 0677552 0232181 0307234 O58R927 0365403 2.17130 —0.50922
39 0470454  0.267230 0652802 0633286 0410964 243474 —0.10111
40 0104377 0819950 C047036 0189226 0399502 136009 —1.45610
04|
£ (2)
Y
.3 g

2

Z o2

L

]

0.1

0.5

Z-ratio

15
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At the bottom of Table 4.3.2 is a density-scaled histogram of the forty “Z ratios,”
y-2/2 (as listed in column C7). Notice the close agreement between the distribution of

oo

those ratios and fz(z): What we see there is entirely consistent with the statement of
Theorem 4.3.2.

Comment. Theorem 4.3.2 is an asymptotic result, yet it can provide surprisingly good
approximations even when n is very small. Example 4.3.2 is a typical case in point: The
uniform pdf over [0, 1] looks nothing like a bell-shaped curve, yet random samples as
small as n = 5 yield sums that behave probabilistically much like the theoretical limit.

In general, samples from symmetric pdfs will produce sums that “‘converge” quickly
to the theoretical limit. On the other hand, if the underlying pdf is sharply skewed—for
example, fy(y) = 10e71%, y > 0—it would take a larger n to achieve the level of
agreement present in Figure 4.3.2.

EXAMPLE 4.3.3
A random sample of size n = 15 is drawn from the pd{ fy(v) = 3(1 ~ W20 <v <1 Let

_ 15
¥ = (%) ¥ ¥i. Use the central limit theorem to approximate P(3 <V <3).
i=1
Note, first of all, that

1
B = [ 530 - iy =
4]
and
1 1\ 3
o? = Var(Y) = E(Y?) — u° mf y2 231 — yidy - (W) ==
0 4 80

According, then, to the central limit theorem formulatmn that appears in the comment
on page 302, the probability that ¥ will lie between 1 3 and 3 g is approximately 0.99:

IREIY U SO B
P(§_‘£YE“8”):P /_../\/__ f/\/"‘” /\/__
& V&
= P(=250 < Z <2.50)
= (1.9876
EXAMPLE 4.3.4

In preparing next quarter’s budget, the accountant for a small business has one hundred
different expenditures to account for. Her predecessor listed each entry to the penoy, but
doing so grossly overstates the precision of the process. As a more {ruthful alternative,
she intends to record each budget allocation to the nearest $100. What is the probability
that her total estimated budget will end up differing from the actual cost by more than
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$5007 Assume that Yy, Y2, ..., Vi, the rounding errors she makes on the one hundred
items, are independent and uniformly distributed over the interval [ $50, +-$50].
fet

Siw=Y1 + ¥2 + -+ + Y

= total rounding error

What the accountant wants to estimate is £ (1 S0} > $3500). By the distribution assumption
made for each ¥;,

E¥) =0, i=12_.,100

and
3 50 1 2
Y;) = E{Y*} = ey
Var(Y;) = E(Y/) L_@wﬂ) dy
2500
T3
Therefore,
E@u)=ENT1 + 2+ --- + Yipo) =0
and
2506
VaE(S]g(}) o= V&i‘(Y1 + Yz + o+ Ylg)(}) = 100 (T)
250,000
T3

Applying Theorem 4.3.2, then, shows that her strategy has roughly an 8% chance of being
in error by more than $300:

P(S100} > $50{)} =1 - P(-500 < S0 < 500)
1 p 7500—0$S;{;[37055(}0—0
500/+/3 500/+/3 T S00/4/3

=1 - P(—173 < Z < 1.73)
= 0.0836.

EXAMPLE 4.3.5

The annual number of earthquakes registering 2.5 or higher on the Richter scale and having
an epicenter within forty miles of downtown Memphis follows a Poisson distribution with
A = 6.5, Calculate the exact probability that nine or more such earthquakes will strike
next year, and compare that value to an approximation based on the central limit
theorem.
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If X denotes the number of earthquakes of that magnitude that will hit Memphis next
year, the exact probability that X > 9 is a Poisson sum:

For Poisson random variables, the ratio

central Himit theorem reduces to

§ 65 6.5)"
PX>9 =1~ PX<B=1-— Zw
x={ X
=1 - 0.7916
= 0.2084
Wy 4+ -+ Wy —

% that appears in the

no
— A
(see Question 4.3.18). Therefore,

7
PX>9=1— PX<8®=1~- P(X <85

X — 65 B85 - 65
o] - P =
( 6.5 6.5 )

=1 - P(Z <0.78)
=0.2170

(Notice that the event “X < 8 isreplaced with “X < 8.5” before applying the central limit
theorem transformation. As always, the continuity correction is appropriate whenever a
discrete probability model is being approximated by the area under a curve.)

QUESTIONS

4.3.15.

4.3.16.

4.3.17.

4.3.18.

4.3.19.

4.3.20.

A fair coin is tossed 200 times. Let X; = 1 if the ith toss comes up heads and X; = 0
otherwise, i = 1,2,....200. Calculate the central limit theorem approximation for
P(IX — E(X)} < 5). How does this differ from the DeMoivre-Laplace approximation?
Suppose that 100 fair dice are tossed. Estimate the probabiiily that the sum of the faces
showing exceeds 370. Include a continuity correction in your analysis.

Let X be the amount won or loss in betting $5 on red in roulette. Then p,(5) =

and p (-5 = If a gambiler bets on red 100 times, use the central limit theorem to
estimate the probablhty that those wagers result in less than $50 in Josses.

If X1, X2, . ... X, are independent Poisson random variables with parameters 3. 2, . ...,
}\",rcspectivciy, andif X =X; + X2 + --- + X, then X is a Poisson random variable

8
with parameter A = 3 A; (recall Example 3.12.10). What specific form does the ratio
i=1

in Theorem 4.3.2 1zke if the X;’s are Poisson random variables?

An electronics firm receives, on the average, 50 orders per week for a patticular silicon
chip. If the company has 60 chips on hand, use the central limit theorem to approximate
the probability that they will be unable to fill all their orders for the upcoming week.

Assume that weekly demands follow a Poisson distribution. Hint: See Question 4.3.18.

Considerable controversy has arisen over the possible aftereffects of a nuclear weapons
test conducted in Nevada in 1957. Included as part of the test were some 3000 military
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and civilian “observers.” Now, more than 40 years later, eight cases of leukemia
have been diagnosed among those 3000, The expected number of cases, based on
the demographic characteristics of the observers, was three. Assess the statistical
significance of those findings. Calculate both an exact answer using the Poisson
distribution as well as an approximation based on the central limit theorem.

The Normal Curve as a Model for Individual Measurements

Because of the central limit theorem, we know that sums (or averages) of virtually any set
of random variables, when suitably scaled, have distributions that can be approximated
by a standard normal curve. Perhaps even more surprising is the fact that many individual
measurements, when suitably scaled, also have a standard normal distribution. Why
should the latter be true? What do single observations have in common with samples of
size n?

Astronomers in the eatly nineteenth century were among the first to understand the
connection. Imagine looking through a telescope for the purpose of determining the
location of a star. Conceptually, the data point, ¥, eventually recorded is the sum of two
components: (1) the star’s true location p* (which remains unknown) and (2) measurement
error, By definition, measurement error is the net effect of all those factors that cause
the random variable ¥ to have a different value than p*. Typically, these effects will be
additive, in which case the random variable can be written as a sum;

Y= +W + Wz 4+ -+ W, (4.3.3)

where Wi, for example, might represent the effect of atmospheric irregularities, W, the
effect of seismic vibrations, Ws the effect of parallax distortions, and so on.

If Equation 4.3.3 is a valid representation of the random variable ¥, then it would
follow that the central limit theorem applies to the individual ¥;s. Moreover, if

EM)=E@" + Wi + W2 + --- + W) =y
and
Var(Y) = Var(u* + Wy + Wz + -+« + W) =02
Y —u

the ratio in Theorem 4.3.2 takes the form

. Furthermore, 1 is likely to be very large,
g
so the approximation implied by the central limit theorem is essentially an equality—that

Y —
18, we take the pdf of B o be fz(D).
Finding an actual formula for fy(y), then, becomes an exercise in applying Theo-
Y —p

rem 3.4.3. Given that =Z,

Y=u+o0Z

and
_ 1 o (y—r
(= ;fz (T)

82
=Leﬁ%(¥) , —00 <y <00
2no
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Special Distributions

Definition 4.3.1. A random variable Y is said to be normally distributed with mean u
and variance o? if

¥—, 2
Fiyvy= «««-}M«em%(%ﬁg) s -0 <Yy <0

N 2mo

The symbol ¥ ~ N{u, o2) will sometimes be used to denote the fact that ¥ has a normal
distribution with mean g and variance o2.

Comment. Areas under an “arbitrary” normal distribution, fy(y), are calculated by
finding the equivalent area under the standard normal distribution, fz(z):

- v — — - -
P(asYsb):P(a £ < L ‘“):P(“ ozt “’)
o o o a (o2

.Y — . . .
The ratio  is often referred to as either a Z transformation or a Z score.

EXAMPLE 4.3.6

In many states a motorist is legally drunk or driving under the influence (DUI), if his or
her blood alcohol concentration, Y, is 0.10% or higher. When a suspected DUI offender
is pulled over, police often request a sobriety test. Although the breath analyzers used
for that purpose are remarkably precise, the machines do exhibit a certain amount of
measurement error. Because of that variability, the possibility exists that a driver’s true
blood alcohol concentration may be under 0.10% even though the analyzer gives a reading
over 0.10%. -

Experience has shown that repeated breath analyzer measurements taken on the same
person produce a distribution of responses that can be described by a normal pdf with p
equal to the person’s true blood alcohol concentration and o equal to 0.004%. Suppose
a driver is stopped at a roadblock on his way home from a party. Having celebrated a
bit more than he should have, he has a true bloed alcohol concentration of (LG95%, just
barely under the legal limit. If he takes the breath analyzer test, what are the chances that
he will be incorrectly booked on a DUI charge?

Since a DUI arrest occurs when ¥ = 0.10%, we need to find P(¥ > 0.10) when
1 = 0.095 and o = 0.004 (the percentage is irrelevant to any probability calculation and
can be ignored). An application of the Z transformation shows that the driver has almost
an 11% chance of being falsely accused:

— 0.095  0.10 — 0.095
P(Y>010)=P (Y > )

0004 ~— 0.004
=PZ>125 =1~ P(Z < 125)
=1 — 0.8944 = 0.1056

Figure 4.3.5 shows fy (), fz(z), and the two areas that are equal.
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FIGURE 4.3.5

EXAMPLE 4.3.7
Mensa (from the Latin word for “mind”) is an international society devoted to intellectual
pursuits. Any person who has an 1Q in the upper 2% of the general population is eligible
to join. What is the lowest IQ that will qualify a person for membership? Assume that IQs
are normally distributed with & = 100 and ¢ = 16.

Let the random variable ¥ denote a person’s IQ, and let the constant ¥z be the
lowest IQ that qualifies someone to be a card-carrying Mensan. The two are related bya
probability equation;

PY >y ) =002

or, equivalently,
PY < y1)=1- 002=0.58 (4.3.9)

(see Figure 4.3.6).
Applying the Z transformation to Equation 4.3.4 gives

_ Y — 100 yL~1€)0_ yL-IUO_
PY <yL)mP( T3 < T )—P(Z < T)-_OQS




