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 المحاضرة الاولى

 

 

Linked Lists 

 
 

 

Linked lists can be thought of from a high level perspective as being a series 

of nodes. Each node has at least a single pointer to the next node, and in the 

last node's case a null pointer representing that there are no more nodes in 

the linked list.  
In DSA our implementations of linked lists always maintain head and tail 

pointers so that insertion at either the head or tail of the list is a constant time 

operation. Random insertion is excluded from this and will be a linear 

operation. As such, linked lists in DSA have the following characteristics: 
 

1. Insertion is O(1) 
 

2. Deletion is O(n) 
 

3. Searching is O(n) 
 

Out of the three operations the one that stands out is that of insertion. In 

DSA we chose to always maintain pointers (or more aptly references) to the 

node(s) at the head and tail of the linked list and so performing a traditional 

insertion to either the front or back of the linked list is an O(1) operation. An 

exception to this rule is performing an insertion before a node that is neither 

the head nor tail in a singly linked list. When the node we are inserting before 

is somewhere in the middle of the linked list (known as random insertion) the 

complexity is O(n). In order to add before the designated node we need to 

traverse the linked list to ¯nd that node's current predecessor. This traversal 

yields an O(n) run time.  
This data structure is trivial, but linked lists have a few key points which at 

times make them very attractive: 
 

1. the list is dynamically resized, thus it incurs no copy penalty like an 

array or vector would eventually incur; and 
 

2. insertion is O(1). 

 

2.1 Singly Linked List 
 
Singly linked lists are one of the most primitive data structures you will ¯nd in 

this book. Each node that makes up a singly linked list consists of a value, 

and a reference to the next node (if any) in the list. 
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Figure 2.1: Singly linked list node 
 
 
 
 
 
 

 

Figure 2.2: A singly linked list populated with integers 

 

2.1.1 Insertion 
 
In general when people talk about insertion with respect to linked lists of any 

form they implicitly refer to the adding of a node to the tail of the list. When 

you use an API like that of DSA and you see a general purpose method that 

adds a node to the list, you can assume that you are adding the node to the 

tail of the list not the head.  
Adding a node to a singly linked list has only two cases: 

 
1. head = ; in which case the node we are adding is now both the head 

and tail of the list; or 
 

2. we simply need to append our node onto the end of the list updating the 

tail reference appropriately. 
 
1) algorithm Add(value)  
2) Pre: value is the value to add to the list  
3) Post: value has been placed at the tail of the list  
4) n Ã node(value)  
5) if head = ;  
6) head Ã n  
7) tail Ã n  
8) else 
9) tail.Next Ã n  
10) tail Ã n  
11) end if 
12) end Add 
 

 

As an example of the previous algorithm consider adding the following se-

quence of integers to the list: 1, 45, 60, and 12, the resulting list is that of 

Figure 2.2. 

 

2.1.2 Searching 
 
Searching a linked list is straightforward: we simply traverse the list checking the 

value we are looking for with the value of each node in the linked list. The 

algorithm listed in this section is very similar to that used for traversal in x2.1.4. 
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1) algorithm Contains(head, value)  
2) Pre: head is the head node in the list  
3) value is the value to search for  
4) Post: the item is either in the linked list, true; otherwise false  
5) n Ã head  
6) while n 6= ; and n.Value 6= value  
7) n Ã n.Next  
8) end while 
9) if n = ;  
10) return false  
11) end if  
12) return true  
13) end Contains 
 

 

2.1.3 Deletion 
 
Deleting a node from a linked list is straightforward but there are a few cases 

we need to account for: 
 

1. the list is empty; or 
 

2. the node to remove is the only node in the linked list; or 
 

3. we are removing the head node; or 
 

4. we are removing the tail node; or 
 

5. the node to remove is somewhere in between the head and tail; or 
 

6. the item to remove doesn't exist in the linked list 
 

The algorithm whose cases we have described will remove a node from 

any-where within a list irrespective of whether the node is the head etc. If you 

know that items will only ever be removed from the head or tail of the list then 

you can create much more concise algorithms. In the case of always 

removing from the front of the linked list deletion becomes an O(1) operation. 
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1) algorithm Remove(head, value)  
2) Pre: head is the head node in the list  
3) value is the value to remove from the list  
4) Post: value is removed from the list, true; otherwise false  
5) if head = ;  
6) // case 1  
7) return false  
8) end if  
9) n Ã head  
10) if n.Value = value 
11) if head = tail  
12) // case 2  
13) head Ã ;  
14) tail Ã ;  
15) else 
16) // case 3  
17) head Ã head.Next  
18) end if  
19) return true  
20) end if  
21) while n.Next 6= ; and n.Next.Value 6= value  
22) n Ã n.Next  
23) end while 
24) if n.Next 6= ;  
25) if n.Next = tail 
26) // case 4  
27) tail Ã n  
28) end if 
29) // this is only case 5 if the conditional on line 25 was f alse  
30) n.Next Ã n.Next.Next  
31) return true  
32) end if  
33) // case 6  
34) return false  
35) end Remove 
 

 

2.1.4 Traversing the list 
 
Traversing a singly linked list is the same as that of traversing a doubly linked 

list (de¯ned in x2.2). You start at the head of the list and continue until you 

come across a node that is ;. The two cases are as follows: 
 

1. node = ;, we have exhausted all nodes in the linked list; or 
 

2. we must update the node reference to be node.Next. 
 

The algorithm described is a very simple one that makes use of a simple 

while loop to check the ¯rst case. 
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1) algorithm Traverse(head)  
2) Pre: head is the head node in the list  
3) Post: the items in the list have been traversed  
4) n Ã head  
5) while n =6 0  
6) yield n.Value 
7) n Ã n.Next  
8) end while 
9) end Traverse 
 

 

2.1.5 Traversing the list in reverse order 
 
Traversing a singly linked list in a forward manner (i.e. left to right) is simple as 

demonstrated in x2.1.4. However, what if we wanted to traverse the nodes in the 

linked list in reverse order for some reason? The algorithm to perform such a traversal 

is very simple, and just like demonstrated in x2.1.3 we will need to acquire a reference 

to the predecessor of a node, even though the fundamental characteristics of the 

nodes that make up a singly linked list make this an expensive operation. For each 

node, ¯nding its predecessor is an O(n) operation, so over the course of traversing the 

whole list backwards the cost becomes O(n
2
).  

Figure 2.3 depicts the following algorithm being applied to a linked list with 
the integers 5, 10, 1, and 40. 
 
1) algorithm ReverseTraversal(head, tail)  
2) Pre: head and tail belong to the same list  
3) Post: the items in the list have been traversed in reverse order  
4) if tail 6= ;  
5) curr Ã tail  
6) while curr 6= head  
7) prev Ã head  
8) while prev.Next 6= curr  
9) prev Ã prev.Next  
10) end while 
11) yield curr.Value  
12) curr Ã prev  
13) end while 
14) yield curr.Value  
15) end if  
16) end ReverseTraversal 
 
 

This algorithm is only of real interest when we are using singly linked lists, 

as you will soon see that doubly linked lists (de¯ned in x2.2) make reverse list 

traversal simple and e±cient, as shown in x2.2.3. 
 

2.2 Doubly Linked List 
 
Doubly linked lists are very similar to singly linked lists. The only di®erence is that 

each node has a reference to both the next and previous nodes in the list. 
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Figure 2.3: Reverse traveral of a singly linked list 
 
 
 
 
 
 
 
 
 

 

Figure 2.4: Doubly linked list node 
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The following algorithms for the doubly linked list are exactly the same as 

those listed previously for the singly linked list: 
 

1. Searching (de¯ned in x2.1.2) 
 

2. Traversal (de¯ned in x2.1.4) 
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2.2.1 Insertion 
 
The only major di®erence between the algorithm in x2.1.1 is that we need to 

remember to bind the previous pointer of n to the previous tail node if n was 

not the ¯rst node to be inserted into the list. 
 
1) algorithm Add(value)  
2) Pre: value is the value to add to the list  
3) Post: value has been placed at the tail of the list  
4) n Ã node(value)  
5) if head = ;  
6) head Ã n  
7) tail Ã n  
8) else 
9) n.Previous Ã tail  
10) tail.Next Ã n  
11) tail Ã n  
12) end if 
13) end Add 
 

 

Figure 2.5 shows the doubly linked list after adding the sequence of 

integers de¯ned in x2.1.1. 

 
 
 
 
 

 

Figure 2.5: Doubly linked list populated with integers 
 

 

2.2.2 Deletion 
 
As you may of guessed the cases that we use for deletion in a doubly linked list 

are exactly the same as those de¯ned in x2.1.3. Like insertion we have the added 

task of binding an additional reference (P revious) to the correct value. 
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1) algorithm Remove(head, value)  
2) Pre: head is the head node in the list  
3) value is the value to remove from the list  
4) Post: value is removed from the list, true; otherwise false  
5) if head = ;  
6) return false  
7) end if  
8) if value = head.Value  
9) if head = tail  
10) head Ã ;  
11) tail Ã ;  
12) else 
13) head Ã head.Next  
14) head.Previous Ã ;  
15) end if  
16) return true  
17) end if  
18) n Ã head.Next  
19) while n 6= ; and value 6= n.Value  
20) n Ã n.Next  
21) end while 
22) if n = tail  
23) tail Ã tail.Previous  
24) tail.Next Ã ;  
25) return true 
26) else if n 6= ;  
27) n.Previous.Next Ã n.Next  
28) n.Next.Previous Ã n.Previous  
29) return true  
30) end if  
31) return false  
32) end Remove 
 

 

2.2.3 Reverse Traversal 
 
Singly linked lists have a forward only design, which is why the reverse 

traversal algorithm de¯ned in x2.1.5 required some creative invention. Doubly 

linked lists make reverse traversal as simple as forward traversal (de¯ned in 

x2.1.4) except that we start at the tail node and update the pointers in the 

opposite direction. Figure 2.6 shows the reverse traversal algorithm in action. 
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Figure 2.6: Doubly linked list reverse traversal 
 
 
1) algorithm ReverseTraversal(tail)  
2) Pre: tail is the tail node of the list to traverse  
3) Post: the list has been traversed in reverse order  
4) n Ã tail  
5) while n =6 ;  
6) yield n.Value 
7) n Ã n.Previous  
8) end while 
9) end ReverseTraversal 
 
 

 

2.3 Summary 
 
Linked lists are good to use when you have an unknown number of items to 

store. Using a data structure like an array would require you to specify the 

size up front; exceeding that size involves invoking a resizing algorithm which 

has a linear run time. You should also use linked lists when you will only 

remove nodes at either the head or tail of the list to maintain a constant run 

time. This requires maintaining pointers to the nodes at the head and tail of 

the list but the memory overhead will pay for itself if this is an operation you 

will be performing many times.  
What linked lists are not very good for is random insertion, accessing 

nodes by index, and searching. At the expense of a little memory (in most 

cases 4 bytes would su±ce), and a few more read/writes you could maintain a 

count variable that tracks how many items are contained in the list so that 

accessing such a primitive property is a constant operation - you just need to 

update count during the insertion and deletion algorithms.  
Singly linked lists should be used when you are only performing basic in-

sertions. In general doubly linked lists are more accommodating for non-trivial 

operations on a linked list.  
We recommend the use of a doubly linked list when you require forwards and 

backwards traversal. For the most cases this requirement is present. For 

example, consider a token stream that you want to parse in a recursive descent 

fashion. Sometimes you will have to backtrack in order to create the correct parse 

tree. In this scenario a doubly linked list is best as its design makes bi-directional 

traversal much simpler and quicker than that of a singly linked 
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Chapter 3 

 

 

Binary Search Tree 

 
 

 

Binary search trees (BSTs) are very simple to understand. We start with a 

root node with value x, where the left subtree of x contains nodes with values 

< x and the right subtree contains nodes whose values are ¸ x. Each node 

follows the same rules with respect to nodes in their left and right subtrees.  
BSTs are of interest because they have operations which are favourably 

fast: insertion, look up, and deletion can all be done in O(log n) time. It is 

important to note that the O(log n) times for these operations can only be 

attained if the BST is reasonably balanced; for a tree data structure with self 

balancing properties see AVL tree de¯ned in x7). 

In the following examples you can assume, unless used as a parameter 
alias that root is a reference to the root node of the tree. 
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Figure 3.1: Simple unbalanced binary search tree 
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3.1 Insertion 
 
As mentioned previously insertion is an O(log n) operation provided that the 

tree is moderately balanced. 
 
1) algorithm Insert(value)  
2) Pre: value has passed custom type checks for type T  
3) Post: value has been placed in the correct location in the tree  
4) if root = ;  
5) root Ã node(value)  
6) else 
7) InsertNode(root, value)  
8) end if  
9) end Insert 
 

 

1) algorithm InsertNode(current, value)  
2) Pre: current is the node to start from  
3) Post: value has been placed in the correct location in the tree  
4) if value < current.Value  
5) if current.Left = ;  
6) current.Left Ã node(value)  
7) else 
8) InsertNode(current.Left, value)  
9) end if  
10) else  
11) if current.Right = ;  
12) current.Right Ã node(value)  
13) else 
14) InsertNode(current.Right, value)  
15) end if  
16) end if  
17) end InsertNode 
 

 

The insertion algorithm is split for a good reason. The ¯rst algorithm (non-

recursive) checks a very core base case - whether or not the tree is empty. If 

the tree is empty then we simply create our root node and ¯nish. In all other 

cases we invoke the recursive InsertN ode algorithm which simply guides us 

to the ¯rst appropriate place in the tree to put value. Note that at each stage 

we perform a binary chop: we either choose to recurse into the left subtree or 

the right by comparing the new value with that of the current node. For any 

totally ordered type, no value can simultaneously satisfy the conditions to 

place it in both subtrees. 
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3.2 Searching 
 
Searching a BST is even simpler than insertion. The pseudocode is self-

explanatory but we will look brie°y at the premise of the algorithm nonetheless.  
We have talked previously about insertion, we go either left or right with 

the right subtree containing values that are ¸ x where x is the value of the 

node we are inserting. When searching the rules are made a little more 

atomic and at any one time we have four cases to consider: 
 

1. the root = ; in which case value is not in the BST; or 
 

2. root.Value = value in which case value is in the BST; or 
 

3. value < root.Value, we must inspect the left subtree of root for value; or 
 

4. value > root.Value, we must inspect the right subtree of root for value. 
 
1) algorithm Contains(root, value)  
2) Pre: root is the root node of the tree, value is what we would like to locate  
3) Post: value is either located or not  
4) if root = ;  
5) return false  
6) end if  
7) if root.Value = value  
8) return true  
9) else if value < root.Value  
10) return Contains(root.Left, value)  
11) else  
12) return Contains(root.Right, value)  
13) end if  
14) end Contains 
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3.3 Deletion 
 
Removing a node from a BST is fairly straightforward, with four cases to con-

sider: 
 

1. the value to remove is a leaf node; or 
 

2. the value to remove has a right subtree, but no left subtree; or 
 

3. the value to remove has a left subtree, but no right subtree; or 
 

4. the value to remove has both a left and right subtree in which case we 

promote the largest value in the left subtree. 
 

There is also an implicit ¯fth case whereby the node to be removed is the 

only node in the tree. This case is already covered by the ¯rst, but should be 

noted as a possibility nonetheless.  
Of course in a BST a value may occur more than once. In such a case the 

¯rst occurrence of that value in the BST will be removed. 
 

 23 #4: Right subtree 
 

  and left subtree 
 

#3: Left subtree 
14 31  

no right subtree  

  
 

 

 

#2: Right subtree 7  

no left subtree 
 

 
 

#1: Leaf Node   9 
 

 

 

Figure 3.2: binary search tree deletion cases 

 

The Remove algorithm given below relies on two further helper algorithms 

named F indP arent, and F indN ode which are described in x3.4 and x3.5 re-

spectively. 
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1) algorithm Remove(value)  
2) Pre: value is the value of the node to remove, root is the root node of the BST  
3) Count is the number of items in the BST  
3) Post: node with value is removed if found in which case yields true, otherwise false  
4) nodeT oRemove Ã FindNode(value)  
5) if nodeT oRemove = ;  
6) return false // value not in BST  
7) end if  
8) parent Ã FindParent(value)  
9) if Count = 1 
10) root Ã ; // we are removing the only node in the BST  
11) else if nodeT oRemove.Left = ; and nodeT oRemove.Right = null  
12) // case #1 
13) if nodeT oRemove.Value < parent.Value  
14) parent.Left Ã ;  
15) else 
16) parent.Right Ã ;  
17) end if 
18) else if nodeT oRemove.Left = ; and nodeT oRemove.Right 6= ;  
19) // case # 2 
20) if nodeT oRemove.Value < parent.Value  
21) parent.Left Ã nodeT oRemove.Right  
22) else 
23) parent.Right Ã nodeT oRemove.Right  
24) end if 
25) else if nodeT oRemove.Left 6= ; and nodeT oRemove.Right = ;  
26) // case #3 
27) if nodeT oRemove.Value < parent.Value  
28) parent.Left Ã nodeT oRemove.Left  
29) else 
30) parent.Right Ã nodeT oRemove.Left  
31) end if  
32) else  
33) // case #4  
34) largestV alue Ã nodeT oRemove.Left  
35) while largestV alue.Right 6= ;  
36) // ¯nd the largest value in the left subtree of nodeT oRemove 
37) largestV alue Ã largestV alue.Right  
38) end while 
39) // set the parents' Right pointer of largestV alue to ;  
40) FindParent(largestV alue.Value).Right Ã ;  
41) nodeT oRemove.Value Ã largestV alue.Value  
42) end if 
43) Count Ã Count ¡1  
44) return true 
45) end Remove 
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3.4 Finding the parent of a given node 
 
The purpose of this algorithm is simple - to return a reference (or pointer) to 

the parent node of the one with the given value. We have found that such an 

algorithm is very useful, especially when performing extensive tree 

transforma-tions. 
 
1) algorithm FindParent(value, root)  
2) Pre: value is the value of the node we want to ¯nd the parent of  
3) root is the root node of the BST and is ! = ;  
4) Post: a reference to the parent node of value if found; otherwise ;  
5) if value = root.Value  
6) return ;  
7) end if 
8) if value < root.Value  
9) if root.Left = ;  
10) return ;  
11) else if root.Left.Value = value  
12) return root  
13) else  
14) return FindParent(value, root.Left)  
15) end if  
16) else  
17) if root.Right = ;  
18) return ;  
19) else if root.Right.Value = value  
20) return root  
21) else  
22) return FindParent(value, root.Right)  
23) end if  
24) end if  
25) end FindParent 
 

 

A special case in the above algorithm is when the speci¯ed value does 

not exist in the BST, in which case we return ;. Callers to this algorithm must 

take account of this possibility unless they are already certain that a node 

with the speci¯ed value exists. 

 

3.5 Attaining a reference to a node 
 
This algorithm is very similar to x3.4, but instead of returning a reference to 

the parent of the node with the speci¯ed value, it returns a reference to the 

node itself. Again, ; is returned if the value isn't found. 
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1) algorithm FindNode(root, value)  
2) Pre: value is the value of the node we want to ¯nd the parent of  
3) root is the root node of the BST  
4) Post: a reference to the node of value if found; otherwise ;  
5) if root = ;  
6) return ;  
7) end if 
8) if root.Value = value  
9) return root  
10) else if value < root.Value  
11) return FindNode(root.Left, value)  
12) else  
13) return FindNode(root.Right, value)  
14) end if  
15) end FindNode 
 

 

Astute readers will have noticed that the FindNode algorithm is exactly the 

same as the Contains algorithm (de¯ned in x3.2) with the modi¯cation that 

we are returning a reference to a node not true or f alse. Given FindNode, the 

easiest way of implementing Contains is to call FindNode and compare the 

return value with ;. 
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3.6 Finding the smallest and largest values in the 

binary search tree 
 
To ¯nd the smallest value in a BST you simply traverse the nodes in the left 

subtree of the BST always going left upon each encounter with a node, termi-

nating when you ¯nd a node with no left subtree. The opposite is the case 

when ¯nding the largest value in the BST. Both algorithms are incredibly 

simple, and are listed simply for completeness.  
The base case in both F indM in, and F indM ax algorithms is when the 

Left (F indM in), or Right (F indM ax) node references are ; in which case we 

have reached the last node. 
 
1) algorithm FindMin(root)  
2) Pre: root is the root node of the BST  
3) root =6 ;  
4) Post: the smallest value in the BST is located 
5) if root.Left = ;  
6) return root.Value  
7) end if  
8) FindMin(root.Left)  
9) end FindMin 
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1) algorithm FindMax(root)  
2) Pre: root is the root node of the BST  
3) root =6 ;  
4) Post: the largest value in the BST is located 
5) if root.Right = ;  
6) return root.Value  
7) end if  
8) FindMax(root.Right)  
9) end FindMax 
 

 

3.7 Tree Traversals 
 
There are various strategies which can be employed to traverse the items in 

a tree; the choice of strategy depends on which node visitation order you 

require. In this section we will touch on the traversals that DSA provides on 

all data structures that derive from BinarySearchT ree. 

 

3.7.1 Preorder 
 
When using the preorder algorithm, you visit the root ¯rst, then traverse the 

left subtree and ¯nally traverse the right subtree. An example of preorder 

traversal is shown in Figure 3.3. 
 
1) algorithm Preorder(root)  
2) Pre: root is the root node of the BST  
3) Post: the nodes in the BST have been visited in preorder  
4) if root 6= ;  
5) yield root.Value 
6) Preorder(root.Left)  
7) Preorder(root.Right)  
8) end if  
9) end Preorder 
 

 

3.7.2 Postorder 
 
This algorithm is very similar to that described in x3.7.1, however the value of 

the node is yielded after traversing both subtrees. An example of postorder 

traversal is shown in Figure 3.4. 
 
1) algorithm Postorder(root)  
2) Pre: root is the root node of the BST  
3) Post: the nodes in the BST have been visited in postorder  
4) if root 6= ;  
5) Postorder(root.Left) 
6) Postorder(root.Right)  
7) yield root.Value  
8) end if  
9) end Postorder 
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7 17 7 17 7 17 

9  9  9  

 (a)  (b)  (c) 

 23  23  23 

14 31 14 31 14 31 

7 17 7 17 7 17 

9  9  9  

 (d)  (e)  (f) 
 
 

Figure 3.3: Preorder visit binary search tree example 
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Figure 3.4: Postorder visit binary search tree example 
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3.7.3 Inorder 
 
Another variation of the algorithms de¯ned in x3.7.1 and x3.7.2 is that of 

inorder traversal where the value of the current node is yielded in between 

traversing the left subtree and the right subtree. An example of inorder 

traversal is shown in Figure 3.5. 
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9  9  9  

 (a)  (b)  (c) 

 23  23  23 

14 31 14 31 14 31 

7 17 7 17 7 17 

9  9  9  

 (d)  (e)  (f) 
 
 

Figure 3.5: Inorder visit binary search tree example 

 

1) algorithm Inorder(root)  
2) Pre: root is the root node of the BST  
3) Post: the nodes in the BST have been visited in inorder  
4) if root 6= ;  
5) Inorder(root.Left) 
6) yield root.Value  
7) Inorder(root.Right)  
8) end if  
9) end Inorder 

 

One of the beauties of inorder traversal is that values are yielded in their 

comparison order. In other words, when traversing a populated BST with the 

inorder strategy, the yielded sequence would have property xi · xi+18i. 
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3.7.4 Breadth First 
 
Traversing a tree in breadth ¯rst order yields the values of all nodes of a par-

ticular depth in the tree before any deeper ones. In other words, given a 

depth d we would visit the values of all nodes at d in a left to right fashion, 

then we would proceed to d + 1 and so on until we hade no more nodes to 

visit. An example of breadth ¯rst traversal is shown in Figure 3.6.  
Traditionally breadth ¯rst traversal is implemented using a list (vector, re-

sizeable array, etc) to store the values of the nodes visited in breadth ¯rst 

order and then a queue to store those nodes that have yet to be visited. 

 
 23  23  23 
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 (a)  (b)  (c) 
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9  9  9  

 (d)  (e)  (f) 
 
 

Figure 3.6: Breadth First visit binary search tree example 
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1) algorithm BreadthFirst(root)  
2) Pre: root is the root node of the BST  
3) Post: the nodes in the BST have been visited in breadth ¯rst order  
4) q Ã queue  
5) while root 6= ;  
6) yield root.Value 
7) if root.Left 6= ;  
8) q.Enqueue(root.Left)  
9) end if  
10) if root.Right 6= ;  
11) q.Enqueue(root.Right)  
12) end if  
13) if !q.IsEmpty()  
14) root Ã q.Dequeue()  
15) else  
16) root Ã ;  
17) end if  
18) end while  
19) end BreadthFirst 
 

 

3.8 Summary 
 
A binary search tree is a good solution when you need to represent types that are ordered according to 

some custom rules inherent to that type. With logarithmic insertion, lookup, and deletion it is very 

e®ecient. Traversal remains linear, but there are many ways in which you can visit the nodes of a tree. 

Trees are recursive data structures, so typically you will ¯nd that many algorithms that operate on a tree 

are recursive.  
The run times presented in this chapter are based on a pretty big assumption - that the binary search 

tree's left and right subtrees are reasonably balanced. We can only attain logarithmic run times for the 

algorithms presented earlier when this is true. A binary search tree does not enforce such a property, and 

the run times for these operations on a pathologically unbalanced tree become linear: such a tree is 

e®ectively just a linked list. Later in x7 we will examine an AVL tree that enforces self-balancing 

properties to help attain logarithmic run times. 


