
 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

Data
Structures

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

 المحاضرة الاولى

Linked Lists

Linked lists can be thought of from a high level perspective as being a series

of nodes. Each node has at least a single pointer to the next node, and in the

last node's case a null pointer representing that there are no more nodes in

the linked list.
In DSA our implementations of linked lists always maintain head and tail

pointers so that insertion at either the head or tail of the list is a constant time

operation. Random insertion is excluded from this and will be a linear

operation. As such, linked lists in DSA have the following characteristics:

1. Insertion is O(1)

2. Deletion is O(n)

3. Searching is O(n)

Out of the three operations the one that stands out is that of insertion. In

DSA we chose to always maintain pointers (or more aptly references) to the

node(s) at the head and tail of the linked list and so performing a traditional

insertion to either the front or back of the linked list is an O(1) operation. An

exception to this rule is performing an insertion before a node that is neither

the head nor tail in a singly linked list. When the node we are inserting before

is somewhere in the middle of the linked list (known as random insertion) the

complexity is O(n). In order to add before the designated node we need to

traverse the linked list to ¯nd that node's current predecessor. This traversal

yields an O(n) run time.
This data structure is trivial, but linked lists have a few key points which at

times make them very attractive:

1. the list is dynamically resized, thus it incurs no copy penalty like an

array or vector would eventually incur; and

2. insertion is O(1).

2.1 Singly Linked List

Singly linked lists are one of the most primitive data structures you will ¯nd in

this book. Each node that makes up a singly linked list consists of a value,

and a reference to the next node (if any) in the list.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 2. LINKED LISTS 10

Figure 2.1: Singly linked list node

Figure 2.2: A singly linked list populated with integers

2.1.1 Insertion

In general when people talk about insertion with respect to linked lists of any

form they implicitly refer to the adding of a node to the tail of the list. When

you use an API like that of DSA and you see a general purpose method that

adds a node to the list, you can assume that you are adding the node to the

tail of the list not the head.
Adding a node to a singly linked list has only two cases:

1. head = ; in which case the node we are adding is now both the head

and tail of the list; or

2. we simply need to append our node onto the end of the list updating the

tail reference appropriately.

1) algorithm Add(value)
2) Pre: value is the value to add to the list
3) Post: value has been placed at the tail of the list
4) n Ã node(value)
5) if head = ;
6) head Ã n
7) tail Ã n
8) else
9) tail.Next Ã n
10) tail Ã n
11) end if
12) end Add

As an example of the previous algorithm consider adding the following se-

quence of integers to the list: 1, 45, 60, and 12, the resulting list is that of

Figure 2.2.

2.1.2 Searching

Searching a linked list is straightforward: we simply traverse the list checking the

value we are looking for with the value of each node in the linked list. The

algorithm listed in this section is very similar to that used for traversal in x2.1.4.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 2. LINKED LISTS 11

1) algorithm Contains(head, value)
2) Pre: head is the head node in the list
3) value is the value to search for
4) Post: the item is either in the linked list, true; otherwise false
5) n Ã head
6) while n 6= ; and n.Value 6= value
7) n Ã n.Next
8) end while
9) if n = ;
10) return false
11) end if
12) return true
13) end Contains

2.1.3 Deletion

Deleting a node from a linked list is straightforward but there are a few cases

we need to account for:

1. the list is empty; or

2. the node to remove is the only node in the linked list; or

3. we are removing the head node; or

4. we are removing the tail node; or

5. the node to remove is somewhere in between the head and tail; or

6. the item to remove doesn't exist in the linked list

The algorithm whose cases we have described will remove a node from

any-where within a list irrespective of whether the node is the head etc. If you

know that items will only ever be removed from the head or tail of the list then

you can create much more concise algorithms. In the case of always

removing from the front of the linked list deletion becomes an O(1) operation.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 2. LINKED LISTS 12

1) algorithm Remove(head, value)
2) Pre: head is the head node in the list
3) value is the value to remove from the list
4) Post: value is removed from the list, true; otherwise false
5) if head = ;
6) // case 1
7) return false
8) end if
9) n Ã head
10) if n.Value = value
11) if head = tail
12) // case 2
13) head Ã ;
14) tail Ã ;
15) else
16) // case 3
17) head Ã head.Next
18) end if
19) return true
20) end if
21) while n.Next 6= ; and n.Next.Value 6= value
22) n Ã n.Next
23) end while
24) if n.Next 6= ;
25) if n.Next = tail
26) // case 4
27) tail Ã n
28) end if
29) // this is only case 5 if the conditional on line 25 was f alse
30) n.Next Ã n.Next.Next
31) return true
32) end if
33) // case 6
34) return false
35) end Remove

2.1.4 Traversing the list

Traversing a singly linked list is the same as that of traversing a doubly linked

list (de¯ned in x2.2). You start at the head of the list and continue until you

come across a node that is ;. The two cases are as follows:

1. node = ;, we have exhausted all nodes in the linked list; or

2. we must update the node reference to be node.Next.

The algorithm described is a very simple one that makes use of a simple

while loop to check the ¯rst case.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 2. LINKED LISTS 13

1) algorithm Traverse(head)
2) Pre: head is the head node in the list
3) Post: the items in the list have been traversed
4) n Ã head
5) while n =6 0
6) yield n.Value
7) n Ã n.Next
8) end while
9) end Traverse

2.1.5 Traversing the list in reverse order

Traversing a singly linked list in a forward manner (i.e. left to right) is simple as

demonstrated in x2.1.4. However, what if we wanted to traverse the nodes in the

linked list in reverse order for some reason? The algorithm to perform such a traversal

is very simple, and just like demonstrated in x2.1.3 we will need to acquire a reference

to the predecessor of a node, even though the fundamental characteristics of the

nodes that make up a singly linked list make this an expensive operation. For each

node, ¯nding its predecessor is an O(n) operation, so over the course of traversing the

whole list backwards the cost becomes O(n
2
).

Figure 2.3 depicts the following algorithm being applied to a linked list with
the integers 5, 10, 1, and 40.

1) algorithm ReverseTraversal(head, tail)
2) Pre: head and tail belong to the same list
3) Post: the items in the list have been traversed in reverse order
4) if tail 6= ;
5) curr Ã tail
6) while curr 6= head
7) prev Ã head
8) while prev.Next 6= curr
9) prev Ã prev.Next
10) end while
11) yield curr.Value
12) curr Ã prev
13) end while
14) yield curr.Value
15) end if
16) end ReverseTraversal

This algorithm is only of real interest when we are using singly linked lists,

as you will soon see that doubly linked lists (de¯ned in x2.2) make reverse list

traversal simple and e±cient, as shown in x2.2.3.

2.2 Doubly Linked List

Doubly linked lists are very similar to singly linked lists. The only di®erence is that

each node has a reference to both the next and previous nodes in the list.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 2. LINKED LISTS 14

Figure 2.3: Reverse traveral of a singly linked list

Figure 2.4: Doubly linked list node

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 2. LINKED LISTS 15

The following algorithms for the doubly linked list are exactly the same as

those listed previously for the singly linked list:

1. Searching (de¯ned in x2.1.2)

2. Traversal (de¯ned in x2.1.4)

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

 الوحاضرة الثانيت
2.2.1 Insertion

The only major di®erence between the algorithm in x2.1.1 is that we need to

remember to bind the previous pointer of n to the previous tail node if n was

not the ¯rst node to be inserted into the list.

1) algorithm Add(value)
2) Pre: value is the value to add to the list
3) Post: value has been placed at the tail of the list
4) n Ã node(value)
5) if head = ;
6) head Ã n
7) tail Ã n
8) else
9) n.Previous Ã tail
10) tail.Next Ã n
11) tail Ã n
12) end if
13) end Add

Figure 2.5 shows the doubly linked list after adding the sequence of

integers de¯ned in x2.1.1.

Figure 2.5: Doubly linked list populated with integers

2.2.2 Deletion

As you may of guessed the cases that we use for deletion in a doubly linked list

are exactly the same as those de¯ned in x2.1.3. Like insertion we have the added

task of binding an additional reference (P revious) to the correct value.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 2. LINKED LISTS 16

1) algorithm Remove(head, value)
2) Pre: head is the head node in the list
3) value is the value to remove from the list
4) Post: value is removed from the list, true; otherwise false
5) if head = ;
6) return false
7) end if
8) if value = head.Value
9) if head = tail
10) head Ã ;
11) tail Ã ;
12) else
13) head Ã head.Next
14) head.Previous Ã ;
15) end if
16) return true
17) end if
18) n Ã head.Next
19) while n 6= ; and value 6= n.Value
20) n Ã n.Next
21) end while
22) if n = tail
23) tail Ã tail.Previous
24) tail.Next Ã ;
25) return true
26) else if n 6= ;
27) n.Previous.Next Ã n.Next
28) n.Next.Previous Ã n.Previous
29) return true
30) end if
31) return false
32) end Remove

2.2.3 Reverse Traversal

Singly linked lists have a forward only design, which is why the reverse

traversal algorithm de¯ned in x2.1.5 required some creative invention. Doubly

linked lists make reverse traversal as simple as forward traversal (de¯ned in

x2.1.4) except that we start at the tail node and update the pointers in the

opposite direction. Figure 2.6 shows the reverse traversal algorithm in action.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 2. LINKED LISTS 17

Figure 2.6: Doubly linked list reverse traversal

1) algorithm ReverseTraversal(tail)
2) Pre: tail is the tail node of the list to traverse
3) Post: the list has been traversed in reverse order
4) n Ã tail
5) while n =6 ;
6) yield n.Value
7) n Ã n.Previous
8) end while
9) end ReverseTraversal

2.3 Summary

Linked lists are good to use when you have an unknown number of items to

store. Using a data structure like an array would require you to specify the

size up front; exceeding that size involves invoking a resizing algorithm which

has a linear run time. You should also use linked lists when you will only

remove nodes at either the head or tail of the list to maintain a constant run

time. This requires maintaining pointers to the nodes at the head and tail of

the list but the memory overhead will pay for itself if this is an operation you

will be performing many times.
What linked lists are not very good for is random insertion, accessing

nodes by index, and searching. At the expense of a little memory (in most

cases 4 bytes would su±ce), and a few more read/writes you could maintain a

count variable that tracks how many items are contained in the list so that

accessing such a primitive property is a constant operation - you just need to

update count during the insertion and deletion algorithms.
Singly linked lists should be used when you are only performing basic in-

sertions. In general doubly linked lists are more accommodating for non-trivial

operations on a linked list.
We recommend the use of a doubly linked list when you require forwards and

backwards traversal. For the most cases this requirement is present. For

example, consider a token stream that you want to parse in a recursive descent

fashion. Sometimes you will have to backtrack in order to create the correct parse

tree. In this scenario a doubly linked list is best as its design makes bi-directional

traversal much simpler and quicker than that of a singly linked

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

 الوحاضرة الثالثت

Chapter 3

Binary Search Tree

Binary search trees (BSTs) are very simple to understand. We start with a

root node with value x, where the left subtree of x contains nodes with values

< x and the right subtree contains nodes whose values are ¸ x. Each node

follows the same rules with respect to nodes in their left and right subtrees.
BSTs are of interest because they have operations which are favourably

fast: insertion, look up, and deletion can all be done in O(log n) time. It is

important to note that the O(log n) times for these operations can only be

attained if the BST is reasonably balanced; for a tree data structure with self

balancing properties see AVL tree de¯ned in x7).

In the following examples you can assume, unless used as a parameter
alias that root is a reference to the root node of the tree.

 23

14 31

7 17

9

Figure 3.1: Simple unbalanced binary search tree

19

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 20

3.1 Insertion

As mentioned previously insertion is an O(log n) operation provided that the

tree is moderately balanced.

1) algorithm Insert(value)
2) Pre: value has passed custom type checks for type T
3) Post: value has been placed in the correct location in the tree
4) if root = ;
5) root Ã node(value)
6) else
7) InsertNode(root, value)
8) end if
9) end Insert

1) algorithm InsertNode(current, value)
2) Pre: current is the node to start from
3) Post: value has been placed in the correct location in the tree
4) if value < current.Value
5) if current.Left = ;
6) current.Left Ã node(value)
7) else
8) InsertNode(current.Left, value)
9) end if
10) else
11) if current.Right = ;
12) current.Right Ã node(value)
13) else
14) InsertNode(current.Right, value)
15) end if
16) end if
17) end InsertNode

The insertion algorithm is split for a good reason. The ¯rst algorithm (non-

recursive) checks a very core base case - whether or not the tree is empty. If

the tree is empty then we simply create our root node and ¯nish. In all other

cases we invoke the recursive InsertN ode algorithm which simply guides us

to the ¯rst appropriate place in the tree to put value. Note that at each stage

we perform a binary chop: we either choose to recurse into the left subtree or

the right by comparing the new value with that of the current node. For any

totally ordered type, no value can simultaneously satisfy the conditions to

place it in both subtrees.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 21

3.2 Searching

Searching a BST is even simpler than insertion. The pseudocode is self-

explanatory but we will look brie°y at the premise of the algorithm nonetheless.
We have talked previously about insertion, we go either left or right with

the right subtree containing values that are ¸ x where x is the value of the

node we are inserting. When searching the rules are made a little more

atomic and at any one time we have four cases to consider:

1. the root = ; in which case value is not in the BST; or

2. root.Value = value in which case value is in the BST; or

3. value < root.Value, we must inspect the left subtree of root for value; or

4. value > root.Value, we must inspect the right subtree of root for value.

1) algorithm Contains(root, value)
2) Pre: root is the root node of the tree, value is what we would like to locate
3) Post: value is either located or not
4) if root = ;
5) return false
6) end if
7) if root.Value = value
8) return true
9) else if value < root.Value
10) return Contains(root.Left, value)
11) else
12) return Contains(root.Right, value)
13) end if
14) end Contains

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 22

3.3 Deletion

Removing a node from a BST is fairly straightforward, with four cases to con-

sider:

1. the value to remove is a leaf node; or

2. the value to remove has a right subtree, but no left subtree; or

3. the value to remove has a left subtree, but no right subtree; or

4. the value to remove has both a left and right subtree in which case we

promote the largest value in the left subtree.

There is also an implicit ¯fth case whereby the node to be removed is the

only node in the tree. This case is already covered by the ¯rst, but should be

noted as a possibility nonetheless.
Of course in a BST a value may occur more than once. In such a case the

¯rst occurrence of that value in the BST will be removed.

 23 #4: Right subtree

 and left subtree

#3: Left subtree
14 31

no right subtree

#2: Right subtree 7

no left subtree

#1: Leaf Node 9

Figure 3.2: binary search tree deletion cases

The Remove algorithm given below relies on two further helper algorithms

named F indP arent, and F indN ode which are described in x3.4 and x3.5 re-

spectively.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 23

1) algorithm Remove(value)
2) Pre: value is the value of the node to remove, root is the root node of the BST
3) Count is the number of items in the BST
3) Post: node with value is removed if found in which case yields true, otherwise false
4) nodeT oRemove Ã FindNode(value)
5) if nodeT oRemove = ;
6) return false // value not in BST
7) end if
8) parent Ã FindParent(value)
9) if Count = 1
10) root Ã ; // we are removing the only node in the BST
11) else if nodeT oRemove.Left = ; and nodeT oRemove.Right = null
12) // case #1
13) if nodeT oRemove.Value < parent.Value
14) parent.Left Ã ;
15) else
16) parent.Right Ã ;
17) end if
18) else if nodeT oRemove.Left = ; and nodeT oRemove.Right 6= ;
19) // case # 2
20) if nodeT oRemove.Value < parent.Value
21) parent.Left Ã nodeT oRemove.Right
22) else
23) parent.Right Ã nodeT oRemove.Right
24) end if
25) else if nodeT oRemove.Left 6= ; and nodeT oRemove.Right = ;
26) // case #3
27) if nodeT oRemove.Value < parent.Value
28) parent.Left Ã nodeT oRemove.Left
29) else
30) parent.Right Ã nodeT oRemove.Left
31) end if
32) else
33) // case #4
34) largestV alue Ã nodeT oRemove.Left
35) while largestV alue.Right 6= ;
36) // ¯nd the largest value in the left subtree of nodeT oRemove
37) largestV alue Ã largestV alue.Right
38) end while
39) // set the parents' Right pointer of largestV alue to ;
40) FindParent(largestV alue.Value).Right Ã ;
41) nodeT oRemove.Value Ã largestV alue.Value
42) end if
43) Count Ã Count ¡1
44) return true
45) end Remove

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 24

3.4 Finding the parent of a given node

The purpose of this algorithm is simple - to return a reference (or pointer) to

the parent node of the one with the given value. We have found that such an

algorithm is very useful, especially when performing extensive tree

transforma-tions.

1) algorithm FindParent(value, root)
2) Pre: value is the value of the node we want to ¯nd the parent of
3) root is the root node of the BST and is ! = ;
4) Post: a reference to the parent node of value if found; otherwise ;
5) if value = root.Value
6) return ;
7) end if
8) if value < root.Value
9) if root.Left = ;
10) return ;
11) else if root.Left.Value = value
12) return root
13) else
14) return FindParent(value, root.Left)
15) end if
16) else
17) if root.Right = ;
18) return ;
19) else if root.Right.Value = value
20) return root
21) else
22) return FindParent(value, root.Right)
23) end if
24) end if
25) end FindParent

A special case in the above algorithm is when the speci¯ed value does

not exist in the BST, in which case we return ;. Callers to this algorithm must

take account of this possibility unless they are already certain that a node

with the speci¯ed value exists.

3.5 Attaining a reference to a node

This algorithm is very similar to x3.4, but instead of returning a reference to

the parent of the node with the speci¯ed value, it returns a reference to the

node itself. Again, ; is returned if the value isn't found.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 25

1) algorithm FindNode(root, value)
2) Pre: value is the value of the node we want to ¯nd the parent of
3) root is the root node of the BST
4) Post: a reference to the node of value if found; otherwise ;
5) if root = ;
6) return ;
7) end if
8) if root.Value = value
9) return root
10) else if value < root.Value
11) return FindNode(root.Left, value)
12) else
13) return FindNode(root.Right, value)
14) end if
15) end FindNode

Astute readers will have noticed that the FindNode algorithm is exactly the

same as the Contains algorithm (de¯ned in x3.2) with the modi¯cation that

we are returning a reference to a node not true or f alse. Given FindNode, the

easiest way of implementing Contains is to call FindNode and compare the

return value with ;.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

 المحاضرة الرابعة

3.6 Finding the smallest and largest values in the

binary search tree

To ¯nd the smallest value in a BST you simply traverse the nodes in the left

subtree of the BST always going left upon each encounter with a node, termi-

nating when you ¯nd a node with no left subtree. The opposite is the case

when ¯nding the largest value in the BST. Both algorithms are incredibly

simple, and are listed simply for completeness.
The base case in both F indM in, and F indM ax algorithms is when the

Left (F indM in), or Right (F indM ax) node references are ; in which case we

have reached the last node.

1) algorithm FindMin(root)
2) Pre: root is the root node of the BST
3) root =6 ;
4) Post: the smallest value in the BST is located
5) if root.Left = ;
6) return root.Value
7) end if
8) FindMin(root.Left)
9) end FindMin

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 26

1) algorithm FindMax(root)
2) Pre: root is the root node of the BST
3) root =6 ;
4) Post: the largest value in the BST is located
5) if root.Right = ;
6) return root.Value
7) end if
8) FindMax(root.Right)
9) end FindMax

3.7 Tree Traversals

There are various strategies which can be employed to traverse the items in

a tree; the choice of strategy depends on which node visitation order you

require. In this section we will touch on the traversals that DSA provides on

all data structures that derive from BinarySearchT ree.

3.7.1 Preorder

When using the preorder algorithm, you visit the root ¯rst, then traverse the

left subtree and ¯nally traverse the right subtree. An example of preorder

traversal is shown in Figure 3.3.

1) algorithm Preorder(root)
2) Pre: root is the root node of the BST
3) Post: the nodes in the BST have been visited in preorder
4) if root 6= ;
5) yield root.Value
6) Preorder(root.Left)
7) Preorder(root.Right)
8) end if
9) end Preorder

3.7.2 Postorder

This algorithm is very similar to that described in x3.7.1, however the value of

the node is yielded after traversing both subtrees. An example of postorder

traversal is shown in Figure 3.4.

1) algorithm Postorder(root)
2) Pre: root is the root node of the BST
3) Post: the nodes in the BST have been visited in postorder
4) if root 6= ;
5) Postorder(root.Left)
6) Postorder(root.Right)
7) yield root.Value
8) end if
9) end Postorder

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 27

 23 23 23

14 31 14 31 14 31

7 17 7 17 7 17

9 9 9

 (a) (b) (c)

 23 23 23

14 31 14 31 14 31

7 17 7 17 7 17

9 9 9

 (d) (e) (f)

Figure 3.3: Preorder visit binary search tree example

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 28

 23 23 23

14 31 14 31 14 31

7 17 7 17 7 17

9 9 9

 (a) (b) (c)

 23 23 23

14 31 14 31 14 31

7 17 7 17 7 17

9 9 9

 (d) (e) (f)

Figure 3.4: Postorder visit binary search tree example

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 29

3.7.3 Inorder

Another variation of the algorithms de¯ned in x3.7.1 and x3.7.2 is that of

inorder traversal where the value of the current node is yielded in between

traversing the left subtree and the right subtree. An example of inorder

traversal is shown in Figure 3.5.

 23 23 23

14 31 14 31 14 31

7 17 7 17 7 17

9 9 9

 (a) (b) (c)

 23 23 23

14 31 14 31 14 31

7 17 7 17 7 17

9 9 9

 (d) (e) (f)

Figure 3.5: Inorder visit binary search tree example

1) algorithm Inorder(root)
2) Pre: root is the root node of the BST
3) Post: the nodes in the BST have been visited in inorder
4) if root 6= ;
5) Inorder(root.Left)
6) yield root.Value
7) Inorder(root.Right)
8) end if
9) end Inorder

One of the beauties of inorder traversal is that values are yielded in their

comparison order. In other words, when traversing a populated BST with the

inorder strategy, the yielded sequence would have property xi · xi+18i.

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 30

3.7.4 Breadth First

Traversing a tree in breadth ¯rst order yields the values of all nodes of a par-

ticular depth in the tree before any deeper ones. In other words, given a

depth d we would visit the values of all nodes at d in a left to right fashion,

then we would proceed to d + 1 and so on until we hade no more nodes to

visit. An example of breadth ¯rst traversal is shown in Figure 3.6.
Traditionally breadth ¯rst traversal is implemented using a list (vector, re-

sizeable array, etc) to store the values of the nodes visited in breadth ¯rst

order and then a queue to store those nodes that have yet to be visited.

 23 23 23

14 31 14 31 14 31

7 17 7 17 7 17

9 9 9

 (a) (b) (c)

 23 23 23

14 31 14 31 14 31

7 17 7 17 7 17

9 9 9

 (d) (e) (f)

Figure 3.6: Breadth First visit binary search tree example

 كليت التربيت الاساسيت \جاهعت ديالى

 قسن الحاسباث

 ياسر علي م.م اعداد :

CHAPTER 3. BINARY SEARCH TREE 31

1) algorithm BreadthFirst(root)
2) Pre: root is the root node of the BST
3) Post: the nodes in the BST have been visited in breadth ¯rst order
4) q Ã queue
5) while root 6= ;
6) yield root.Value
7) if root.Left 6= ;
8) q.Enqueue(root.Left)
9) end if
10) if root.Right 6= ;
11) q.Enqueue(root.Right)
12) end if
13) if !q.IsEmpty()
14) root Ã q.Dequeue()
15) else
16) root Ã ;
17) end if
18) end while
19) end BreadthFirst

3.8 Summary

A binary search tree is a good solution when you need to represent types that are ordered according to

some custom rules inherent to that type. With logarithmic insertion, lookup, and deletion it is very

e®ecient. Traversal remains linear, but there are many ways in which you can visit the nodes of a tree.

Trees are recursive data structures, so typically you will ¯nd that many algorithms that operate on a tree

are recursive.
The run times presented in this chapter are based on a pretty big assumption - that the binary search

tree's left and right subtrees are reasonably balanced. We can only attain logarithmic run times for the

algorithms presented earlier when this is true. A binary search tree does not enforce such a property, and

the run times for these operations on a pathologically unbalanced tree become linear: such a tree is

e®ectively just a linked list. Later in x7 we will examine an AVL tree that enforces self-balancing

properties to help attain logarithmic run times.

