
dt-lr;--L+
L.-r.lrll i-.J-iJl;rJJ

el;rlClpi

{Stijl i.t ytt

ハ|ェ |

」当い。・e

(Y。 Vヽ―Υ・ヽヽ)デ |」』 e国

♂自|デ|」』脚

1

^

Ａ
　
　
　
　
　
ｎ
Ａ

I{esponse tcl thc new interrLrpt u,ill depencl

arrived infon'ultt with respect to that of

served.

- I1'the newly arrived interrupt has priority

currently served one, then it can wait until

thc current interrupt.

Liporl the priority of the newly

the interrupt being currently

less than or eclual to that of the

thc processor finishes serving

- If, on thc other hancl, the newly arrived itrtenupt has priority higher

than that of the cr-rrrently served intemrpt.

For example, pttwer failLrrs interrupt occun'ing while serving an I/O

inlet'rupt, tltcn the processor rvill have to pLrsh its status onto the stack and

scr\'e the hisher priority inlernrpt.

4-Direct Mernory Access (DMA)

We have cliscussed the clata transf-er between the processor and no

clcvices. Wc have cliscr-rsscc'l two differcnt approachcs namely

prograrhurccl I/O and Intpt-ciriven tro Both thc nrethods reciuire the activc

interyention o1'the processor to transfer data between men-iory and the I/O

rroclule, ancl any data trtrnsf'er must transvcrse a path through thc

llrocessor. fhus both these tbrrns of tro sutl-er tion two inherent

rlrawbacl<s.

l- The l/O transler rate is liniitecl by the spoe:d with which the processor

r;an test ancl service adevice.

2- l'he processor is tied up in r-nanaging an I/O transf-er; a nr"rmber of

instructions must be executecl lor each I/O transfet.

'['o transfer large block of data at high speed, a special control unit may

be provided to allow transl'er of a block of data directly between an

cxternal device and the rnain lrer.nory, withoLrt continuous intervention by

the processor. This approach is calied dircct urcmory access or DMA.

●
　
　
．

●
　
　
ノ

つ
４

,

DMA transltrs are perforr-necl by a control cilcuit associated witli the I/O

device ancl this circuit is referred as DMA eontroller. l'he DMA

controller allovvs direct clata trunsf'er between the device and the main

lxerrory withour involving the processor.

To transfer clata between menrory and I/O clevices, DMA controller takes

over the control of the systerl fiom the processor and transfer of data take

place over the system bus. For this purpose, the DMA controller nrust use

the bus only when the processor does not need it, or it must force the

processor to suspend operation temporarily. 1-he later techr-rique is more

cornmon and is r ef'erred to as cycle stealing, because the DMA module in

etfect steals a br.rs cycle.

●
）

ａｔ
　
К

ヽ

・′　

＝

Addlc.ss
Iirrcs

DMA l{crprest
[)h{A sckn ()*, Ic<i gr,t:

I r)tcrr-uJ) t

It caci

Writr:

Figure: DMA Block daigram

When thc proccssor wishes to read or writc a block of data, it issues a

conrmand to the DMA moclule, by sending to the DMA module the

tbllowing inlbnnation.

1-Whether a read or write is requested, using the read or write c;ontrol line

between the processor and the DMA moclule.

2-l'he addrcss of the I/O devise involved, cor^nrnunicated on the data

lines.

つ
４

，

一

田

田

雨
~¬

3-The starting location in the memory to read from or write to,

oourmunioatecl on data lines ancl stored by the DMA module in its address

re gister.

'l-Tl-re numbcr of words to be rcacl or written again comrrunicatecl via the

clata lincs atrcl stored ir-r the clata count register.The processor then

oontinues witli other worlis. It has delegated this no operation to the

DMA module. The DMA mociule checks the status o1'the I/O devise

r,vhose address is communicated to DMA controller by the processor. It

the specified t/o devise is ready for data transfer, then DMA modulo

generates the DMA request to the processor. Then the processor indicates

the release of the sysrem bus through DMA acknowledge.The DMA

r-rlodule trattsl'els the entire block of data, one word at a tinte, directly to
I/O frorn rl-lcrrtory, without going through the prc-rcessor,When the transfer

is completccl, thc DMA n-roclule sends an intcrrupt signal to the processor.

After re'civins lhe inten'urpt signal, processor takes over the system

btrs.Thus tlre processor is involvecl only at the beginning and e16 of the

transfer. During that time thc processor is susper-rded. It is not required to

complete the crtl'rent instruction to suspenci the processor. The processor

n-iay be strspetlcled just afier the completion of the current bus cycle. On
tllc other liarrtl. thc processor'eaur be suspended just befbrc the need of the
system br"rs by the processor, because DMA co,troller is going to use tht:
system bus, it will not usc the processor. The point where in the
itrstructioll cyclc the proccssor rray be suspcncied shown in the figure
below.

●
´

‘
　
　
一

，
Ｄ
つ
４

ヽ
　
　

　

　

　

“

【

　

　

　

　

・■

』
岬

I'roc cs.s cr r
(.:ycle

L)ecode
instru(:t iur r

..'x

l inrc

Irrslrue tion c1,cL-

Pioccss(,r

(∵,ctc

Proccss()「

(lyclc

[xccu t,]
Il.tstr ucticilt

I PЮ∝s∝
(lvoic

1罵i

Proccssor
C.vcle.

I'rroct"'ss

i n I errupt

Ilctch

il:、 trtJoli、 i!1

＼
′

´ ―

a
I
I

lntcrrupt
Ilrcuk point

I)i\,{.,\ bre*k poinr

|

Figure: Instruction Cycle

When the processor is suspended, then the DMA moclule transfer one

word alld retunt control to the processor.

Note that, this is not an interrupt, the processor does not save a context
and so somethir-rg else.Rather, the processor pallses fbr one bus cycle.
During that tirlle processor nay perform sonte other tasl< which does not
involve the systenr bus'ln tlte worst situation processor will rvait fbr sonrc
time, till the DMA releases the bus.

The net efl.ect is that the processor will go slow. But the net eftbct is the
enhancenlent oI performe(r, because for a mLlrtipre word I/o transfer,
DMA is la,rore efficient than interrupt crriven or programmed I/o.
The DMA rnechanism can be configurecr in crifferent ways. The most
contmon antongst thenr are:

o Single bus, cletached DMA _ I/O confrgtration.
o Single bus, Inregrated DMA_ I/O confrgurarion.
o Using separatc I/O bus.

In this orgarization alr modures srrare the s.nre system bus.The DMA
,rodule here acts as a slrrrogate processor. 'r'his nrethod Lrscs pfogrammecr
I/o to excha,ge data betweerl merrory a.d a, I/o modure through the
DMA moclule.

‘

」

　

ｌ

Ｌ

24

lictc11

1中

劇

●
ウ

Ａ

　

　

　

　

（１

For each transler ituses the br.rs twice. The flrst one is when transferring

the clata betwcen l/O and DMA and the seooncl one is when transferring

the data between DMA and nremory. Since the bus is used twice while

transferring data, so the bus will be suspencled twicc. The transfer

consumes two bus cycle. 'fhe ir"rterconnection organization is shown in

the figurc(a).

Sinsle bus. Integrated DMA- l/O confrguration.

lly integrating the DMA- I/O and function thq number of roquired bus

cycle can be reduoed. In this configuration, the DMA module and one or

rrore IiO modules are integrated together in such a way that the system

bus is not involved. In this case DMA logic may actually be a part of an

liO modr-rle, or it may be a separate module that controls one or r-nore fio

rrrodules.

'fhe DMA module, pt'ocessor and the memory modLrle are connected

thlough the systcm bus. In this oonfiguration cach transf-er will use the

system bus only once and so thc processor is suspended only oltce.

The syster-r-r bus is not ir-rvolved ri,hen transf-crring data betrveen DMA ar-rcl

IiO device, so processor is not suspenclecl. Processor is suspended when

clata is transf'erred between DMA and nremory. The configuration is

sltown in the ligr"rre(b).

Using scparate I/O bus.

ln this configuration the I/O modr"rles are connected to the DMA through

another I/O bus.In the casc the DMA modulc is rcduced to otre.

'fransfer of clata between I/O module and DMA modulc is carried or-rt

through this I/O bus. ln this transt-or, system bus is not in use und so it is

not needccl to suspend the proiessor.

There is anothcr transfer pl-rase between DMA module and memory. In

this time system bus is needed fbr transt'er and processor will be

sr-rspended tbr onc bus cyole. The configuration is shown in the flgure(c).

ξ
υ

，

一

1 1 1 ‐ | || `| ‐ ‐ t:

■ |い 11' ‐| ‐ ‐1‐ |111‐ ||:|‐ ‐ , ,11'

‐ ‐ 11 1 1 .: | ‐|ltト

● ||■ :|■ ||, ||■ 111:1 1 ‐ |‐ | |■ | ‐‐ ‐ .‐ |■ ‐| |■ ‐■ ●●■ |‐ .‐ | ‐

|11 1 1■ ‐ ‐■■■● | ■・ | ■|| ‐ l.■ ‐‐
1 ‐| ‐ 1■ 1, ■‐||■ ■ 1■ 1‐ 1ヽ■ ‐■‐ | ‐‐

| | ‐ |. ' ■ 11. :|

' , | . :1.1
‐| || | , I I

.:・ 1● | | ‐|‐ |■ ‐ | ‐ ` ■・ ‐ | 1 1■ 111 ‐‐. :‐ ‐ 1｀
'I I

‐

11,,| ‐ ‐ ‐ | |‐ | |

‐| |‐ ■ | | ‐|■ ‐ 1 1 ‐ 11 ‐‐ ■ ■ _1

1 ■ 1 ■ l i'l. ‐
■ 1 1‐ 1,1

1t . | ‐|‐ | ::‐ 1 ‐ ‐ ‐ 111 1, ‐‐ 11‐‐ |l t'‐ |
| ｀ |: | ‐ 1 ‐ , 1‐ |),‐ ‐

i i. i.

il
i I rlrr i ; .l

,' ,r i r, i i i..' r i ilt I :i .,1:1,

li' , : i'l :

. r l l,
' i ili

.t :il

・11、 111キ.|11111‖ :||ヽ111111il「 1111｀ご‖111,ニキ11鷲 |∫ |卜 111111‖富黒|)11111111:11:111
■ltl=illl‖鳥‖III,I二Ⅷl・

詢臓Ⅲい●い奮鉾■……、'111::ltl｀ 1(||::`:1、
｀
1)ヽぃ、、ヾtll,1、・ご:|,1111111‐

|||11:|:::||IⅢ II`11'1 卜'い 1 11,11Ⅲ I‐ ||)t‐■11r)1:1.,‐ ltil・ 1■ |、 1・ 1(111ヽ ギ`(、 }|■ ,|卜で、■1ヽ 1ヽ 11, |:J11,,,`|11
‐
 |■ 、、、 11 1・ 1卜 1 :I11 メ(サ ィ「・.‐ | ′

' 1ヽ
 1111. |l 11 ,■ | l it,1,、 、・ヽ tl ll・ .:11 きヽ,ネ 11■ 1 , 'II: ^ヽ tL I

I‐ ||■ 1、 lt、)||11■ 11 11)1 11、 |‐1 1● 1111111(ヽ ||ヽ 11、 、、|},111 1,ヽ ||`|,、 | 、ゝ.t, |ヽヽ 11: に1、
「
 、|れ |ヾ |ヾぉI, ノ イ I II∫ t FI:111 ,|

,I卜 |:111A I■ で■・i、なIt・、1心11・ Iデ (1)ギ ll iti:ヽ 11111、

',.:ll't.jlitilr ri!'l!\.rili."i,ril.,li,r"rilt.)ti,r,.r,r1i ri 'llil]1 ,iftr!\,11t..\tl j.rii 1..rlit ,;i

,i'ilrt. rul...iii l,1, I tiriti.-,.ir i I ,\it..ri.t:,i..i.-,r.:tl.il{rlr,. ti.,; , ,

|■ |`|)ヽ | |li li 、■11),:｀ 1｀111 ・ 111111, ''it｀
・:● :1■ 1 ,ii、)|,|、 .1ユ 1 111)11 :|:、 こヽ 1l ⅢI ‐ |(111111 : 1'

‐i tl、 11,,11■ |,||、 _|‖ :、 |.1.|、「| ||:,、 111卜 ■11 ,111:11、 11:「 'II●
キlti‐ |ヽ|ト ーヽ.tit(ヽ 11',11,:,

‐.l lⅢ lll1 1' :'11 ・11｀●、. 11 11:| |II1 lll l l::{ 1 1 ・1:||
´
|11 :・ 11,`|(1)ヽ ヽ1 11: ||‐ .: | ら,

|||||111ヽ |l i.) ||||ヽ
li:|、 it‐ 111)|| :111 1111 ::キ |11:‐ 11'111 1t, 1111 1■ 11‐ |1嶺i ll l::|||'tiサ 1li llヽ 1｀)｀11111■ | || || .

|■ 1)ヽ lt il■ ■ t i i11、 tiヽ、」`1‐ l t‐ `‐
 ||ヽ |1 11 1 :ょ 、、:: 11-‐ 1::111111・ 11‐ 1. : ,| `

‐■|IⅢ lヽ .Ⅲ l.・ |||,、ぃ|:ヽ 1ヽ i‐ r lll11・ 11111111・ .)||``1、 |"|11,).:t,11.Ⅲ Ⅲ ll11111 11(,■ 、111,.■ |.|
■‐ 1),t ‐ 1111.1lⅢ 11.:..| |:,||● .1「 ,|.1‐ | |‐ 1'卜 it:
|1 111.・ ヽ111111)|‐ 111(l til::II‐ 11:111‐ ||111‐ 1111｀ 111‐ :11111、 111■ 111ふ 11`t.| ｀ ,I、 |■

/PI.:: ` .111:|‐ |■ 1)itll:| 111111・ 111.|.■ 111 、`:、 ,:11 :|::)・ |■ ,(11'1::, I、 、 ■■ l i
・ ll=:1111.111'(111:::1■ ■11 1■ 11(‐ 11 ..‐

｀
111綺 11 111)ピ |、 (1)● ヽ | ||‐ 1 1‐ ‐

‐‐‐ |:|:|ヽ | |「 、 ヽ tilて 、|:tl l ll.1‐ 1■ 1.||・ l i l、■ 、ぃ| :,I 」
「

r.:ぃ ||l t ll l
l.l iⅢ 11‐ 11,‐ ,メ l,|:F｀ 1・ F^、 1111(| ヽヽ 1::1■ 、11‐ 1■ _ ::lil、 、ヽ (|.11)● ,,,1、 11・ ・ .、 |:‐ |

27

.l);rlrr lltl

ilr:ltlt"l)" ,.1r.ririi. I

11)護 Iヽ 11,す |ヽ ドヽ

iliit j\ rrt!!|

i{il{il {,i-,, li,r,1 i1'}

lrt rrt,t,ti itil iriil

一み

i:l i "1;'ii'i 1{,i

i .":iit li :iti*lti!l
t,rriil i,-, l !"li'

{ $', } 'r I I ; , t i i i i (' \ r t l'

Figure: I/O Channel Architecture

discr,rssing. l'hus , the I/O channel serves in place

controllir-rg thcse I/O controllors. Amultiplexorchannel

of tllc CPU in

can handle 1/(D

with multiplc dcvrces at thc satne time. Iror low- speed devices ,abyte

nrr.rltiplexor acoepts or transrnits characters as fitst as possible to multiple

cle vices.

０
０
つ
４

ー

I .,rri,, I .,ltiiixi
r,:r.irr., i itl

,,tssociativc &'$ emo rics
l- Content Addressing

In conventional memories could be access to the information by thc

address of the location that is contained it. There are another situatious,

whcre thc reversc function is roquired, In other words, the contents arc

lorown, it is necessary to rletermine the location where this infonnation

has been storecl.

It shoLrld bc possible to detennine the acJdress of a metlory location be

rneans of the contents stored therein. Such uremories called (content -
acldressecl or Associative memories). Thesc memot'ies are very

convenient to perlbrm parallel searches by data associatiort.

lt is possible to acldress such memories by the data itself. When a location

is to be accessed, the valr,te of the contents of the location (or a part-a sub-

tleld of the word) is supplicd. The memory accesses all the locations in

parallel and idcntifies all the locations where the contents match the

specified valuc. 'Ihese can then be read out.

When a uew word is to be stored the adclrcss is specitied. The word is

stored in any r.rnused (empty) location.

Example:

Function f(x) may havc been stored for several values (x,,xr,...,x,,), this

rnay have been as a table with two field (xi,f(xi)).

Let us assrune that the values xi and t(x1) are both stored in a single

location L, with two sub-fleld. The problem is to determine the value

I(x;) given xi.

2-Operation of Associative Memories

Eaoh location of tlie menlory is assumed to contain an argument

f,reld and a contents field. Tlie vahre whicli is rcquired to bc n-ratched is

loaded in to the argument rcgistcr'. This oompared with the contents of

the argun-ient ficlcl of each location. The n-ratcl-r register has one bit for

t

29

cach locatior-r of the rxentory. Wherever the argument field of the

location ntatchos the content o1'the argunlent register, tlrc cclrresponding

bit is set in the rr-ratch register. The match register tags all the locations

where a rnatch has been founcl. It is possible then to reacl the contents of

each of tliese locations in seqLrential.

AIr optional 'key' register may be used to choose only particular bits in

the argunrent lbr rnatching. Bits of the argument register are used for

ruratching only if the corresponding bits of the key register are I .they

at'e ignored otherwise. It is possible to construct associative memories

rvith several argument frelds. Anyone of these may be used at any given

tinre for cflcc:ting an associative searcir, cach having its own key

register.

3-Applications

It is obvioLrs that associative memories will be significantly more

expensive thart the corresponding regular nreurories. Consequently they

Itre used only in application where the time available for associative

search is vcry limited. They arc typically used in virtual memory and

oache systerns.

30

ArsLrnrent register

Kcy're_qister

で
い
”
一
の
コ

刀

の
綸
お

一
の
『

output

Rcacl

vr, r'i t c.

l\ r'r.rr rrn ur 1 Clontcnt

Figure: Assocrative Mernory oltcration.

{ Iilct}e C'a.l}e r"crr ce R:rsi q (,S r}.-r:ept

May be there are more than one cache memory in the systeni computer.

Multiple copies of data, spread throughout the caches, leacl to a coherence

problem anlong the caches. The copies in the caches are coherent if they

all equal the sante value. I{owever, if one of the processors writes over

the value of one of the copies, then the copy beconres inconsistent

because it ,o longer equals the value o1' the other copies. If data are

allowed to becorne inconsistent (incoherent), incorrect results will be

propagated throrrgh the systcrn, leading to incorrect final results. Cache

coherence algorithms are needed to nraintain a level of consistency

throughout the parallel system.

A- Cache-l\{cmory Coh crence

In a singlo caclte system, coherence between memory ancl tfue cache is

maintainecl using one of two policies:

(l) write-through.

(2) write-bacl<.

０
，

When a task running on a processor P requests the data in memory

looation X, lbr cxample, the contents of X are copied to the cache, wherc

it is passecl on to P. When P updates the value of X in the cache, the

other copy in rremory also ncecls to bc: upclated in order to rnaintain

consistency. In rvrite-through, the memury is updated every time tlie

cache is upclatecl, while in rvrite-back, the rnemory is upclatecl only when

the block in the cache is being replaced. l'ablel shows the write-through

vorsus write-baol< policies.

\\r lite-Th lou gh \\'r'itc.- B ack

Scl・ 1轟 l [:l'*lrt Rl o111■ lT (luclrr 卜lビ llI)1'v

I) t',"'ltrls X
I' rtpt-llrtes X

'l'ABLE I Write-l'hrough vs. \\/rite-Back

B- Cache-Cache Coherence

ln multiproccssing system, ,uvhen a task running on processor P requests

thc data in global memory looation X, for example, the contents of X are

copied to processor P's local cache, wliere it is passed on to P. Now,

suppose processor Q also accesscs X. What happens if Q wants to write a

new value over the old value of X? There are two fundamental cache

cohcrence ltolicies:

(I) write-invalrclate.

(2) write-update.

Write-invalidate maintains consistency by reading from Iocal caches until

a rvrite occurs. When any proccssor updates the value of X through a

rvrile, postir-rg a clirty bit Ibr X invalidates all other copies. For example,

processor Q invalidates all other copies o1'X lvhen it writes a new value

into its cache. '['his sets the drrty bit for x. Q can continue to change X

Ｘ

Ｘ

Ｘ

ヽ

×

ヽ

ヽ

×

ヽ

ヽ

１
１

　
　
「

一
　

■
、

ｅ

一

without further notifications to other caches because Q has the only valid

oopy of X. Llou,over, when proccssor P wants to read X, it must wait until

X is updated ancl the dirty bit is cleared.

Write-upclatc maiutains oonsistency by inrrlcdiately upclating all copies in

all caches. All dirty bits arc set during cacl-r write opcration. After all

copies have becn updatecl, all clirty bits are cleared. Table2 shows the D

rvrite-update versus write-invaIiclate poIicies.

ヽヽ
'litc―

l」Pdatc WVIitc‐ 11lvtllitlitte

Scnal Evcnt P｀ 、(facllビ Q'S(lachc Pヽ Cachc Q's CaChe

I P lo■ d、 X ヽ x
2 Q ICtldヽ X N x x x
3 Q lll」atcs X X' X′ INV Xl
4 Q ul)dを1lCS X` .ヽ` x' INV X.′

'l-ABLE2 Write-Update vs. Write-lnvalidate

Cl- Shared Memory System Coherence

The four combinations to r-r-raintain coherence among all caches ancl

global menlory ure:

. Write-r-rpclate and write-through;

. Write-update and write-bacl<,

. Write-invalidate and write-through; ancl

. Write-invalidate and write-bacl<.

I1'we perntit it write-upclatc ancl write-through clirectly on global memory

location X, the bus woulci start to get busy and ultimately all processorS
"

rvould be icltc rvhile waiting lilr rvrites to contplete. In rvrite-urpdate ancl

write-back, only copies in all caches are updated. On thc contrary, if the !

write is limited to the copy of X in caohe Q, the oaches become

inconsistent on X. Setting the clirty bit prevents the spreacl of inconsistent

vah:es of X, br-rt ert some point, thc inconsistent copies must be updated.

つ
′
つ
つ

肋‡写ctti総熱憑辻i郵
｀
蛾Ch璽豊袋螢ぐ霧

「Fhcrc cxist t、vO basic tcchniqucs tO incrcasc thc instrtlctiOn cxccution ratc

of a proccssOr.Thesc arc to incrcasc thc clock ratc,thus dccrcasing the

instl‐uctiOn cxccution tinlc, Or altcmatively tO incrcasc the numbCr of

insti■lctions that can bc cxccutcd sillltlitancously. Pipclinillg and

instruction― levcl paraHelisnl arc cxamplcs ol｀ the lattcr tcchniquc.

―

′|―

―

イ1-― /ヽ

一甲甲印甲甲甲□□□日□□

メ11

ノ■

/■

,t′ ,Sぜ qtJこ :lti■ 1

日

イ1 17 ‖

I)it・ビせ、、1!lJ

、

一 ヽ14 ヽ

一

'l iltrr'
i ir t

il.ri
gr,.rl I trinu

□ 回 □ □

回 回 回 国 |

□回 回 |

日 回 回

回

菌

‐
‐
回

』

回

国ヽ

国

□
』

山

‐回

Figure (0): Multiple issue versLrs pipelining versLrs sequcntial processing

Pipelining owes its origin to car assembly lines. The idea is to have morc

tllatt onc instruction being processed by tho processor at tl-re same time.

Similar to the assembly line, the succcss of a pipeline depends upon

dividing thc excotttiort ol' an instruction ar-norlg a nulnbcr of subunits

'l inr('

34

員

″

i i r .\ ltrltrple isrrrr.

(stages), each perfonling part of the required operations. A possible

clivision is to consider instruction fetch (n;, instruction clecode (D),

operand f'etch (F), instruction execution (E), and store ot'results (S) as the

subtasks needecl for the execution of an instruction.

ln this case, it is possible to have up to five instructions in the'pipeline at

thc samc tirne, thrrs reducing instluction erecution latency.

l. General Concept

Pipelining refers to the techniqr-re in which a given task is divided into a

ttumber of sLrbtasks that need to be performecl in sequence. Each subtask

is performed by a given lirnctional unit. The units are connected in a

serial tashion and all of thenr operate sirnultaneously. The use o1'

Pipelining in'rproves the perfolmance compared to the traditional

sequential execLttion of tasl<s. Figure 1 shows an illustration of the basic

clilference betr'r'eett executins foLrr subtasks ol'a given instruction (in this

case fetching F, decoding D, execution E, anrl writing the results w)
r-rsing pipelining and sequential processing.

/ζ

ノ、

/^

1718
→ipelirlil〕 」

Frgu'e(1): Piperining rzersus seque,tial processing.

It is clear li-tlrlr 1he figure that the total tirrre required to process three
irrstructiors (ll ,|2, 13) is o,ly six time ur,its if four-stage pipelining is
Ltsecl as cotnpared to 12 [inre units if sequcntial processing is used. A
possible saving of up to 5ooA in the e.xccrrtion time of these threcr
instructions is obtainecl. In order to forrnulate sorno perfbrmancc
measures for thc goodness of a pipeline in processing a series of tasks, a

35

I-irrtt,

，
一

space time chart (called the Gantt's chart) is used. The chart shows the

succession of the subtasks in the pipe lvith rcspect to time. Figure (2)

sltows a Gzrntt's chart. In this chart, the vertical axis reltresents the

sr.rbunits (fbur in this oase) and the horizontal axis reprcsents tirne

(rneasureci irt tenns of the time unit requirecl for each unit to perform its

task). In developing the Gantt's chaft, we ilssun-le that the time (T) taken

by cach sttbttnit to perfbrrr its task is the same; we call this the unittime.

As can be seen from the figure, i3 tinre units are nceclcd to finish

executing instnrctions (I1 to 116). This is to be compared to 40 time units if
seqr-rential processing is used (ten instmctions each requiring fbur time

Lrr-rits).

ll Ili /, ノ /h l. 1,,
I
/lu

t,
I

1. /r I t_
/i.,

ム

、
/1rr

∫ /, li ∫ !. 為 /t,

Il ′ ′ /j t-l\ lt. l, t,, / r,,

h tt lil II I I] f irpr

Figure(2): Tl-re space_time charr (Gantt chart)

In the fbllor'ving analysis, we provide three pcrfbrmance lrrcasures fbr the
goodness o1'a pipeli,e. These are the Speecl-,p s(n), Throughput U(,),
and Effioiency E(n). It shourcr be noted that in this analysis we assume

that the unit time 'f: t units.

l' Speed-trp S(n): Consider the execution ot' m tasks (instnrctions) using
n-stages (units) pipeline. As oan be seen, n r m _l time units are requireci
to complete nt tasks.

Si
1

t t, r tt - t t 1
t S(r r) * f i :lfr""lfis5gl, r{ I

) I'o cL' ssi n g
Tinrcrrsirr.up@:

I/I X I?

tltxilxt

tl1111-1

36

(tr*trr*l)xr

|

|
」

は

¨
格

一
社
「

2. Throughput U(n) is a nr"rn'rber of tasks executed per ur-rit tin-rc

Throughput lJ(n) '-
(rr -r- ttt - 1) x r

3. Efficiency E(n):Ratio o1'tlte erctual speecl-r.rp to the rnaxirnurn speecl-

up.

lrfficiency E(n)
fitt rtl- u1t

/1-rl//-l

2. Instruction Pipeline

Thc simple analysis macle in Section 9.I ienorcs an important aspect that

oan affect the perfbrmance o1'a pipeline, that is, pipeline stall. A pipeline

operation is saicl to have been stalled if onc unit (stage) requrires more

tirlle to perfbrnt its functiorr, thus forcing other stages to become idle,

Clonsider, 1'trr cxarlple, thc case of an instnrction fetch that incurs a cache

ntiss. Assun.rc ulso that a cut:hc miss r.cclrrircs three cxtra tinre trnits

Irigure(3) illLrstrales the efl'ect of having irrstruction I2 incurring a cachc

rliss (assuming the execution of ten instructions I1 to I16).

+5 (r 10 11 12 11 :4 15 16

Irigure(3): Fllt'cct rl'a cache ,riss on the piJreline
'l'he figrrrc sllows tl"rat clue to the extra tinre rnrts needecl lor instruction I2

to be fetchccl, tlic pipeline stalls, that is, t'etching of instruction 13 apcl

subsequerlt instrttctions are clclayed. Such sitr.rations create what is knowp

as pipeline bubble (or pipeline hazards). Thc creation of a pipeline bubble

l. I /,,

ll !^ /.
t, /r /4 It

ノ I: I ノ

37

Ir
[,;
[,]
i_l

|

branch instruction

Gantt's chart.

is storccl. Figure (4) shorvs that stall and the requirecl

/\
ili
llt
I t:

I I I { 5 (, 7 S e l0 1l l] t] t-l 15 tr(,

Figure (4): Instructiotr dependencl, ell'ect on a pipeline

I]:Data Depcndency

Data depenclcncy in a pipeline occLlrs whcn a source operand ol'

instruction

I; depends on the results o1'exccuting a preceding instrlrction, I;, i > j. It

shotrld be noted that although instruction I; can be fetched, its operand(s)

rttay not be available until tlte results ol'instruction Ij are stored. Thc

lbllowing exanrple shorvs the eI'l'ect of data dependency on a pipeline.

llrample 2: Consider the execution of the lollowing piecc of code:

,-l I)D
.\t
s',r'B

/ir. ft2" R.r:

ft,t'

/i5. .(6. /T.1:

/?.r <- Rr * /l:
/?.i *SL{/tri
fi,r fr5 - fin

ln this piece o1'code, thc flrst instruction, call it I;, adds the contents o{-

trvo registers R1 and R2 and stores the resr"rlt in register Il:. The seconcl

irtstr-r-rction, call it I1*1 , shifts the contents o1'l{3 one bit position to the leli

and stores thc rcsr-rlt bacl< into I{r. The third instruction, call it Ii+2 , stores

the result of subtracting the content of R1, fi'om the content of Rs in

register Ra. hi order to show the effect of sr.rch clata depenclcncy, we will
assume that the pipeline consists of five stergcs, IF, ID, oF, IE, and IS. In

this case, the (OIr) stage represents the operand l'etch stage.'l-he functions

ol' the retnairting lbur stages rcmain thc same as explainocl lrefbre. As

shown irl the figure(5), although instruction llnlhas been successfully

! /1 lr \ I

ll I I
ヽ
♪

ヽ
・

l* /!r

ll I I I li I I,;

l1 /1 f4 (, l- / i,,

39

clecoded cluring time unit k t2, this instmction cannot proceed to the OF

unit during time unit k + 3.'this is because the operand to be fetched by

Ii*r during tirle unit k+3 should be the content of register Rj, which has

been mocliliecl by executiorr of instruction Ii However, the rnodifiecl

valLre of R: r,vill not be available until the cnd of time ur-rit k+4. This will

rr:c1r.rire instruction Ir*r to rvait (at the outpr-rt of the ID unit) until k+5.

Notice that instruction I,*2 will have also to wait (at the output of the IF

unit) until such time that instrurction 11.11 procccds to the ID. The net result

is that pipctine stall takes placc due to the data depenclency that exists

between instr-uction Ii and instmction I;*1.

′だ

イ′ノ1・

√ノ|)

ノ′:｀

′ゞ ノ:/ 、v//ン ぺ
|

ι

/́/

/
/1.l
′:+2

/

`1/

ヽ/
ｉ
≒ ノ

′
f

′
..

/ ノ,_

人 た+1た ■2た ■31■ 4た ■51■ 6 ・ 'l'i n t t'

Figure(5):'fhe write-after-write data dependency

'fhe data clc;rtnclency presentecl in the above cxample resulted because

rcgisterR3 is thc destinatron lbr both instructions Ii and Ii*r.'fhis is callecl

a r,vrite-alIer-rvrite data depenclency. Taking into consideration that any

rcgister can be rvritten into (or read from), then a total of four different

possibilities cxist, including the:

. writc-aI'tcr-write.

. reacl-al'ter-rvrite.

. write-a ftcr-read.

. read-a1tcr'-read.

40

/ヽ lllong thc ibllr cascs,tllc l・ cad― aftcr― rcad casc should not lcad to pipelinc

staH.This is bccausc a rcgistcr rcad operation docs not changc thc contcnt

of thc rcgistcr.2へ mong the relllaining thrcc cases, thc writc― aner―writc

(SCC thC abOvc cxamplc)alld thc rcad― a■ cr― wl・itc lead to pipelinc stan.

″
I｀llc fo1lowillg

picce of codc iHustrates the l・ cad― aftcr―、vritc casc:

A♪♪ 島 ,R2,R3: R掛 ‐―ノぞl十 六2
ぽゞお バメ,1,ノぜ4: R斗・~ノti-1

11、 this casc, thc flrst instruction modiics thc contcnt of rcgister R3

(tllrOugh a、vritc opcrati()n)wllilC the second instruction uscs tllc modiflcd

contents of R3(t1lrOugh a rcad opcration)10 10ad a valtlc into l・ cgister R4・

/ヽhile tllese two instructions are proceedillg、 vithin a pipclinc,carc should

bc takcn so that thc valuc of rcgistcr R3 rCad in the sccond instruction is

thc updatcd valしlc resulting l・ olll cxecution oIPtllc previous instruction scc

ngure(6).

In this casc assunling that thc 31‐ st instruction is callcd li and thc second

instruction is caHcd li+1.

lt is clcar that thc opcran(l of thc second insti・ しlction ca111lol bC fetchcd

dtlring tilllc tlnit k+3 and tllat it has to be(lelayed until tinle unit k+5

′
「his is becallsc the rllodifled value of the contcnt of rcgistcr R3 Will not

bc tlvailablc tintil time slot k+5.

r,′

>
・ ・ ` ス:+|た ■1人 ■ 31、 ■4た +5'、 ■でヽ ・ ・ Ili:ll o

√1/ 、υ/′ ヽ
、

/

//
C.1

`_//

ノ: 島+|

41

Figurc(6)Thc rCad_after― v/ritc data dcpcndcncy

Fctching thc()pcrand of thc sccond instructioll during tilllc s10t k+3 will

lcad to incolTcct rCsults.

Exalllplc 3: Considcr thc cxccution of thc お1lowing scqucncc of

instructions on a ive― stagc pipclinc consisting of IF,ID,OF,IE,and IS.

It is requircd to shoⅥ rthc succcssion of thesc instructions in the pipclinc. .

ノl→ L(〕tld -1,用 1 ″l‐ -1:
,

/〕 ‐ Lo[lご 5、 越 : ノヤユ‐ 5:

/、 → St11) /11i、 1.ノイ2 肥 ― バ2-1:

/4‐ Adtl 川 ./ヾ 2、 R3: バ3‐ バ|■ バ2:

ム ‐ rヽdd 六4、 爆 、パ6: バ6‐ バ斗■沢5:
/6→ tヽL 郎 ノで3- Lゝ・LIバ 3)

寿 → Adcl 賞6‐ R4、 牌 : バ7‐ 六斗十 /tJ61

1n this cxall■ plc,thc following clata depcndcncics arc obscrvcd:

l nst l"rr(:L i() n \ 'l'.Vpu ul' tlltlr tli:pt:rtrlc rtt" r

ノi nlltlノュ :ミ cttcl― tti tビ r―、vritじ tlllclヽ .ヽ1lte― al｀tct・―、ヽ11~itc(llV― ｀`メ

'ノ=l allclノ l IRctitl― tt「 [cr―、vritc(:R― ヽヽ
1}

/.and/3 itctttl― tt「 tビ r― wl‐ itc(Iく ―ヽV)

/r,ancl /.、 itctttl‐ tll｀ 1ビ r― ハヽ′ritc ttilcl、 、̀::itc― Iti｀ tc t― 、■
‐
itc(ヽ|.― ヽヽイ}

ノ7 allご 1 /5 1tctlti― :」 'lcI・―、vi'itC(lt― ヽヽ
F)

Figure(7) illustrartes the progression of these instructions in the pipelinc
l

taking into consideration the data depenclencies mentioned above. Thc

assumption rnade in constnrcting the Gantt's chart in Figure(7) is that !

f-etching an opcrand by an instruction that depends on the results of a

previous instruction execution is delayecl until such operand is available,

tltat is, the result is stored, A total of 16 tinte units are required to executc

42

the given sevcn instmctions taking into consideratittrt tlie data

dcpondcncics among tlie cli flcrcrtt instructions.

ノ̀ゞ

ノ″

θF

ノ″

ノ/:｀

1 2 3 4 5 ri 7 8ヽ 夕 |()1112131415

Figurc(7)Gtlntt's chart ibr Exall■ ple 3

Based on thc rcsults obtaillcd abovc,wc can COlllputc thc sPccd―up

thc throughput R)r cxecuting the piccc of codc givcn in Exalanplc 3 as:

ancl

SJtctrl-tt1t .\(-i t -

16

Ti,,t.: rriittg seclttciiti;.rl Processittg _ ? ;< 5 _ I lr)_ _. L /

Tirrrc rrsirtg ;ri;rr:liric ;tt'tiucssing l6

1'l'ltrrtttgltprrt {,I(5)- No. rtl't.lLslts eXCCutccl llet'ttltit tilttc : -- - 0.-l+

'flie discussion on pipeline stall due to instruction and data dependencies

shor.rld reveal three main points about the problents associated with

having sr,rch dependencies. 'l'hese are:

l. Both instnrction and data ciependencies lead to adcled delay in thcr

pipeline.

2. Instruction depenclency can lead to the fetching o1' the wrong

instruction.

3. Data deperrclency can lead to the fetching of the wrong clperand.

'fhere exist a number of methods to deal with the problerns resr,rlting front

instruction and data dependencies. Some of these methods try to prevent

the fetching olthe wrong instruotion or the wrong operancl while others

try to reduce the delay incurrecl in the pipeline due to the existence of

instruction or data deper-rdency. A number of these rretl-rods are

introduced below.

ノ
|

ノミ

ム

ム

．

ノ
|

43

|

|

| |

3-Methods Used to Prevent Fetching the Wrong Instruction

or Operartd

Use of NOP (No Operation):

This method can be used in orcler to prevent the fetching of the wrong

rnstructiort, ir.t case of instruction depettdetrcy, or f'etching thc wrollg

operand, in case of data clependency. Recall Example L In that example,

the execution of a sequence of ten instructions 11-116 on a pipeline

consisting of four pipeline stages: IF, ID, IE, and IS were considered. In

order to show the execution o['these instrr,rctions in the pipeline, we havo

assumed that when the branch instruction is l'etched, the pipeline stalls

ur-rtil the result of executing the branch instrurctior-r is stored. This

assumption was needed in order to prevent f'etching the rvrong ir-rstruction

alier ibtcliing thc branch instrLrction. In rcal-lil'e situations, a mechanisn"r

is needed to guarantee tetching the appropriate instruction at the

appropriate tirne. Insertion 01'"NOP" insh'r"rctions will help carrying out

this task. A "NOP" is an instruction that has no efl-ect on the status of the

pr ocessol'.

Example4: Consider thc execution of ten instructions I1-l1s on a

pipeline consistir-rg of for.rr 1;ipeline stages: IF, ID, IE, and IS. Assume that

instruction 1,1 is a conditional branch instruction and that when it is

executed, the branch is r-rot taken; that is, thc branch condition is not

satisfied.

44

∫ヽ

∫ノ:

′′♪

∫′,

/1 ノ ノ1 XOp i\\ill),i r\ ll ri プ
=
ノ
=

′‐ ノ1 ;\r rIr l{r:p Nt,1r ノミ ∫. rl rt ′1.

メ. ノ Nrtyr l\i*p 5r.rp ノ
r
ノ ノ,,

√
|

メ ノ Itlrrp Nrrp r\ \t[] ′. ノ ム)

1 2 3 4 5 6 T Rり 1(11ロ ユ l、ヽ 111516

Figurc(8)Thc llSC OfNOP illstrtlctions

ln()rdcr to cxccutc this sct o rinstructions、 vhile prcvcnting thc ittching ol｀

thc wrong instruction,wc asstlmc that a spcciflcd numbcr of NOP

instructions havc bccn inscrted such that thcy fo1lo、 v instl‐ uction 14 in thC

scqucncc and thcy prcccdc instl■ lction 15・ Figurc(8)showS thc Gantt's

chart illustrating the executiOn of the ncw sequence of instructions(aftel‐

inscrting thc NoP insti・ しlctiolls).Thc flgurc shOws that thc inscltion of

THREE NOP instnlctions a■
cl‐ instnlction 14 Will gllal‐ antec that the

corrcct instrtlctiOn tO fじ tch aitcr i4, in this casc ls,wil1 0nly bc fbtchc(1

dllring tillle siot number 8 at which the rcsult of executin3 14 WOuld havc

bccn stOrcd and the cOndition ibr thc branch、
vOしlld havc bccn known.

It shOuld bc l10tcd that thc ntllllbcr ofN(DP instl‐
tlctiOnS nccdcd is cqual to

(n-1),Whcrc n is the numbcr ofpipeline stages.

Note: tllc usc Of NOP instructions tO prcvcnt fctching the wrOng

insti・ uction in thc case Of illstl^uction dependency.A sintilar approach can

bc tlsed tO pl・evcnt fctching thc 、vrOng operand in tllc case Of data

dcpendency.(3onsider thc exectltiOn Of thc fOl10wing piccc Of cOde on a

nvc_stagc pipclinc(IF,ID,OF,IE,IS).

・1ヽわI) 賞|.R2.バ 、1 賞‐._R11_A・コ
.ゝ (ダ′メ メで、、l,A・.: A. ●…ノで、 1
ハ√(1ハノ バ

i、
バー: バ.. バ、

NOtc thc data dcpendcncy in thcね
nl1 0f rc〔ld_a■ cr_writc(R―W)bctwccn

thc flrst t、、/O instructiOns.Fetching the operand R)r thc second instructiOn,

that is, 食)tchirlg thc cOntent Of IR3, cannOt proceed until tllc result Of the

ぐ
υ
И
叶

