Al A yal)

Aac)
JHa a.a
(Yo OV=Y0r1)) alal
D ol Al it

Response to the new interrupt will depend upon the priority of the newly
arrived interrupt with respect to that of the interrupt being currently
served.

- If the newly arrived interrupt has priority less than or equal to that of the
currently served one, then it can wait until the processor finishes serving
the current interrupt.

- If, on the other hand, the newly arrived interrupt has priority higher
than that of the currently served interrupt.

For example, power failure interrupt occurring while serving an 1/0O
interrupt, then the processor will have to push its status onto the stack and

scrve the higher priority interrupt.

4-Direct Memory Access (DMA)

We have discussed the data transfer between the processor and no
devices. We have discussed two different approaches namely
prograrhmed [/O and Intpt-driven tro Both the methods require the active
mtervention of the processor to transfer data between memory and the I/O
module, and any data transfer must transverse a path through the
processor. Thus both these forms of tro suffer from two inherent
drawbacks.

[- The 1/0 transfer rate is limited by the speed with which the processor
can test and service adevice.

2- The processor is tied up in managing an /O transfer; a number of
instructions must be executed for each I/O transfet.

To transfer large block of data at high speed, a special control unit may
be provided to allow transfer of a block of data directly between an
external device and the main memory, without continuous intervention by

the processor. This approach is called direct memory access or DMA.

21

DMA transfers are performed by a control circuit associated with the I/0
device and this circuit is referred as DMA controller. The DMA
controller allows direct data transfer between the device and the main
memory without involving the processor.

To transfer data between memory and I/0O devices, DMA controller takes
over the control of the system from the processor and transfer of data take
place over the system bus. For this purpose, the DMA controller must use
the bus only when the processor does not need it, or it must force the
processor to suspend operation temporarily. The later technique is more
common and is referred to as cycle stealing, because the DMA module in

cffect steals a bus cycle.

Data
g —— ————.—_> .
Count

- Data
lines > | Register
Address
Address L | 5 ‘LL' 58
* - Register

lines

DMA Request <
DMA acknowledge » | Conuol

Interrupt

Read

Write

Logic

v

Figure: DMA Block daigram
When the processor wishes to read or write a block of data, it issues a
command to the DMA module, by sending to the DMA module the
following information.
I-Whether a read or write is requested, using the read or write control line
between the processor and the DMA module.

2-The address of the /O devise involved, communicated on the data

lines.

22

ly

3-The starting location in the memory to read from or write to,
communicated on data lines and stored by the DMA module in its address
register.

4-The number of words to be read or written again communicated via the
data lines and stored in the data count register.The processor then
continues with other works. It has delegated this no operation to the
DMA module. The DMA module checks the status of the 1/0 devise
whose address is communicated to DMA controller by the processor. If
the specified 1/0 devise is ready for data transfer, then DMA module
generates the DMA request to the processor. Then the processor indicates
the release of the system bus through DMA acknowledge. The DMA
module transfers the entire block of data, one word at a time, directly to
/O from memory, without going through the processor.When the transfer
is completed, the DMA module sends an interrupt signal to the processor.
After receiving the interrupt signal, processor takes over the system
bus.Thus the processor is involved only at the beginning and end of the
transfer. During that time the processor is suspended. It is not required to
complete the current instruction to suspend the processor. The processor
may be suspended just after the completion of the current bus cycle. On
the other hand, the processor can be suspended just before the need of the
system bus by the processor, because DMA controller is going to use the
system bus, it will not use the processor. The point where in the

mstruction cycle the processor may be suspended shown in the figure

below.

23

Timeg ===

Instruction cycle .
- DV G
Processor Processor Processor Processor Processor z‘umlc»or
_ye Cycle e Cycle Cycle vele
Cycle Cycle Cycele | Cy g S o
< e i >
3o o
Fetch Decode Fetch Execute Store l rocess
Instruction instruction operand | Instruction " result I interrupt
| | e v
A S | N i s
Ny // i ‘-—,’1/ ‘(.
S L ‘
N e 5
s i |
Nl Interrupt
DMA break point Break point

Figure: Instruction Cycle
When the processor is suspended, then the DMA module transfer one
word and return control to the processor.
Note that, this is not an interrupt, the processor does not save a context
and so something else.Rather, the processor pauses for one bus cycle.
During that time processor may perform some other task which does not
involve the system bus.In the worst situation processor will wait for some
time, till the DMA releases the bus.
The net effect is that the processor will go slow. But the net effect is the
enhancement of performed, because for a multiple word /0 transfer,
DMA is far more efficient than interrupt driven or programmed [/0.
The DMA mechanism can be configured in different ways. The most
common amongst them are:
0 Single bus, detached DMA - 1/0 confrgtration.
o Single bus, Integrated DMA - I/O confrguration.
0 Using separate 1/0 bus.
Single bus, detached DV A- /O confrguration.

[n this organization all modules share the same system bus.The DMA
module here acts as a surrogate processor. This method uses programmed

/O to exchange data between memory and an [/O module through the
DMA module.

24

For each transfer it uses the bus twice. The first one is when transferring
the data between /O and DMA and the second one is when transferring
the data between DMA and memory. Since the bus is used twice while
transferring data, so the bus will be suspended twice. The transfer
consumes two bus cycle. The interconnection organization is shown in
the figure(a).

Single bus, Integrated DMA- 1/0 confrguration.

By integrating the DMA- 1/0O and function thq number of required bus
cycle can be reduced. In this configuration, the DMA module and one or
more I/O modules are integrated together in such a way that the system
bus 1s not involved. In this case DMA logic may actually be a part of an
[/0O module, or it may be a separate module that controls one or more fio
modules.

The DMA module, processor and the memory module are connected
through the system bus. In this configuration cach transfer will use the
system bus only once and so the processor is suspended only once.

The system bus is not involved when transferring data between DMA and
[/O device, so processor is not suspended. Processor is suspended when
data 1s transferred between DMA and memory. The configuration is
shown in the figure(b).

Using separate [/0 bus.

[n this configuration the I/O modules are connected to the DMA through
another I/O bus.In the case the DMA module is reduced to one.

Transfer of data between [/O module and DMA module is carried out
through this 1/O bus. In this transfer, system bus is not in use and so it is
not needed to suspend the proiessor.

There is another transfer phase between DMA module and memory. In
this time system bus is needed for transfer and processor will be

suspended for one bus cycle. The configuration is shown in the figure(c).

25

t}&* cantrols a izt,i);&iu Yol L»u‘kiﬂ«e T his is wcﬁ,;u stroplo o

led devices,

Lo Aceonvroller or O module s Ad@t . i‘l“; uses programmed 1O withow!
interrupts, Wi %%&jmw sterp, the {,,ff"t * m« CHTICE SOe whid smmxmd %”zu et e s
cific detals of external divice nterlaces.

3 The some configiration asin shap 2 iy ased, bt now iﬂbﬁfﬁ*t}}tﬁs abre coiploved
The CPLU necd got spend timesvaitsag {or an PO operation t;;:; be performed.
mereasinge clficiency .

4. Phe B0 s voedle d i‘w eiven direot #oress 1o Hn.'l‘ﬂwz“u Yia] }h*lﬁk":f‘! Tt OO
a hlock of dara e m* Froms memory without invelving the © PY . except o
begianing and M:ui ol 1he tansfer

5. The 'O module s enhanced 1a become o ;‘xu,)c@a;:uw $H1 115 OWH ’x‘"‘i\”’si with a spw
cialized instraction set tailored for 170, The CPLT directs the HO processor 1o
execute an PO program momemaory. The i ‘) PrOCessir imtu&%&ﬁ and excoutes
these insirae UH:M without CPLDintervention This aliows the s
segquence of FO aehvitios and 1o be interrupted oniv when' 1%‘52,. ENre Sege i
has been perlommed.

6. Thiét 1.0 rioduted
owee oeh With ihm xuumm,wr%

1. 1he CPLU direc
. gﬂi’a&ﬁmwwr Eltie

\\Il

as o bow ;;i memiry ol i1s owand soan e B compder s
ol barge set g@f%’i Jdovices el be controbiod
with mininal \’1 2R invalvemeat, A commaon bse forsuch asauchuteciane has
boeen to condand fums TN .sm;ﬁ "mm interag iwf; terminals: PR O procosso
takes care of most of the tasks involved i controfhing the terminals

As one procgeds along this evolutionary path, more and more of the 17O fune-
0 s performed without CPU inv verment. The CPL is increasingly reticved ol
Arelated tasks, improving performance. With the last two steps (5 03, 4 nugon
Svinpe occurs with the introduction of the cone sp’l of an 1 M!mtiﬁﬁi: capable of exe-
g a program, For step 5, the 1HO module is often referred o 848 an /O channel
For step O, the term 80 procesyor is often wsed, Flowever, both terms are on ocea
Csen apphed to both situations, Tn whal follows, we will use the (&emi 1O c/umncl

racteristics x}i 1.0 (“lmm:mi»

hanne! has
< lf’(_) aper

: "‘nn_\, m, SLOT gy
& 140 channed ol

,!mm _sml »uﬁUﬂE’x the data transfer. :
iv«n tvpes of FO channels are common. as llustrated in Figure 7.15. A xedec-
W#bmrm controls multiple hiph-specd devices and. at any one fime. is dedicared
the translor of data with onc of these devices, Thus, the FO ehannel selects ome
vice and cffects the data pansfer. Each device, or a small set of dovices, o fuin
Hit} h\r a contradter, or 1O module, that 1s much fike the 'O modules woe have been

27

P it anul
address channed
1o o DIy

s Selectai 4
shapiral o E i
i ondiol ‘45?,,,”1:!.1 Wy . j:’ﬁ}} :
parthy to CP1 Cedanhrolier e roiler
,“’l\ ” :
& O U
(i Smelecior
e ol
sddress chaonndd
L6 T DL ST :
R Mulis = i
plexar -
SRR A chmnet o !

Control sigoal b ; o
paethy to CPL e 1‘““"

170
Ceontroiler |

e
condrotier

{h Stultiplexor
Figure: [/O Channel Architecture
discussing. Thus , the /O channel serves in place of the CPU in
controlling these I/O controllers. Amultiplexorchannel can handle 1/0
with multiple devices at the same time. For low- speed devices ,abyte
multiplexor accepts or transmits characters as fast as possible to multiple

devices.

28

o

Associative Miemories
I- Content Addressing

In conventional memories could be access to the information by the
address of the location that is contained it. There are another situations,
where the reverse function is required, In other words, the contents are
known, it is necessary to determine the location where this information
has been stored.

It should be possible to determine the address of a memory location be
means of the contents stored therein. Such memories called (content —
addressed or Associative memories). These memories are very
convenient to perform parallel searches by data association.

[t is possible to address such memories by the data itself. When a location
is to be accessed, the value of the contents of the location (or a part-a sub-
field of the word) is supplied. The memory accesses all the locations in
parallel and identifies all the locations where the contents match the
specified value. These can then be read out.
When a new word is to be stored the address is specified. The word is
stored in any unused (empty) location.
Example:
Function f(x) may have been stored for several values (xy,x,,...,X,), this
may have been as a table with two field (x;,f(x))).
Let us assume that the values xi and f(x;) are both stored in a single
location L; with two sub-field. The problem is to determine the value
f(x;) given x;.
2-Operation of Associative Memories

Each location of the memory is assumed to contain an argument
field and a contents field. The value which is required to be matched is
loaded in to the argument register. This compared with the contents of
the argument field of each location. The match register has one bit for

29

cach location of the memory. Wherever the argument field of the
location matches the content of the argument register, the corresponding
bit 1s set in the match register. The match register tags all the locations
where a match has been found. It is possible then to read the contents of
cach of these locations in sequential.
An optional ‘key’ register may be used to choose only particular bits in
the argument for matching. Bits of the argument register are used for
matching only if the corresponding bits of the key register are 1 .they
are ignored otherwise. It is possible to construct associative memories
with several argument fields. Anyone of these may be used at any given
time for cffecting an associative search, cach having its own key
register .
3-Applications

It is obvious that associative memories will be significantly more
expensive than the corresponding regular memories. Consequently they
are used only in application where the time available for associative

search 1s very limited. They are typically used in virtual memory and

cache systems.

30

!

Argument register

}

Key register

output

J9)SI133Y YIIBA

Read ? Areument Content
write

Figure: Associative Memory operation.

Cache Coherence Basic Concept

May be there are more than one cache memory in the system computer.
Multiple copies of data, spread throughout the caches, lead to a coherence
problem among the caches. The copies in the caches are coherent if they
all equal the same value. However, if one of the processors writes over
the value of one of the copies, then the copy becomes inconsistent
because it no longer equals the value of the other copies. If data are
allowed to become inconsistent (incoherent), incorrect results will be
propagated through the system, leading to incorrect final results. Cache
coherence algorithms are needed to maintain a level of consistency
throughout the parallel system.
A-Cache—Memory Coherence

[n a single cache system, coherence between memory and the cache is
maintained using one of two policies:
(1) write-through.

(2) write-back.

31

(-

When a task running on a processor P requests the data in memory
location X, for example, the contents of X are copied to the cache, where
it is passed on to P. When P updates the value of X in the cache, the
other copy in memory also needs to be updated in order to maintain
consistency. In write-through, the memory is updated every time the
cache 1s updated, while in write-back, the memory is updated only when
the block in the cache is being replaced. Tablel shows the write-through

versus write-back policies.

Write-Through Write-Back
Serial Event Memory Cache Memory Cache
I X X
2 P reads X X X X X
R

P updates X X’ X' X X'

TABLE | Write-Through vs. Write-Back

B- Cache—Cache Coherence

[n multiprocessing system, when a task running on processor P requests
the data in global memory location X, for example, the contents of X are
copied to processor P’s local cache, where it is passed on to P. Now,
suppose processor Q also accesses X. What happens if Q wants to write a
new value over the old value of X? There are two fundamental cache
coherence policies:

(1) write-invalidate.

(2) write-update.

Write-invalidate maintains consistency by reading from local caches until
a write occurs. When any processor updates the value of X through a
write, posting a dirty bit for X invalidates all other copies. For example,
processor Q invalidates all other copies of X when it writes a new value

mto its cache. This sets the dirty bit for X. Q can continue to change X

2

U2

N 2

-

without further notifications to other caches because Q has the only valid
copy of X. However, when processor P wants to read X, it must wait until
X is updated and the dirty bit is cleared.

Write-update maintains consistency by immediately updating all copies in
all caches. All dirty bits are set during cach write operation. After all
copies have been updated, all dirty bits are cleared. Table2 shows the

write-update versus write-invalidate policies.

Write-Update Write-Invalidate
Serial [ivent P's Cache Q's Cache P'sCache (Q's Cache
| Preads X X X
2 Q reads X X X X X
3 Q updates X X’ X' INV X'
4 Qupdates X' X" X" INV X’

TABLE2 Write-Update vs. Write-Invalidate
C- Shared Memory System Coherence
The four combinations to maintain coherence among all caches and
global memory are:
. Write-update and write-through:
. Write-update and write-back;
. Write-invalidate and write-through; and
. Write-invalidate and write-back.
If we permit a write-update and write-through directly on global memory
location X, the bus would start to get busy and ultimately all processors
would be idle while waiting for writes to complete. In write-update and
write-back, only copies in all caches are updated. On the contrary, if the
write is limited to the copy of X in cache Q, the caches become
inconsistent on X. Setting the dirty bit prevents the spread of inconsistent

values of X, but at some point, the inconsistent copies must be updated.

33

Pipelining Techniques

There exist two basic techniques to increase the instruction execution rate
of a processor. These are to increase the clock rate, thus decreasing the
mstruction execution time, or alternatively to increase the number of
instructions that can be executed simultancously. Pipelining and

struction-level parallelism are examples of the latter technique. :

l

WWWWU*HWH-W_HI

DJ3

/1 -::[_Tl_l D- : {et) - ' Sequential Processing Time
[F2][D2] 2] [Wa)

R [E3]3] [53); (73]

o

I

-

1 3?3‘455in 708 9 0 11 12 -
‘ E ‘ (h) Pipelining Time
-D-H
(7] [o2) 72 3
EWD-E
o) [)
’-nnm,
[[
I7!I)T{Tﬂ\\’7§ ‘
) 1 1] i)
?Emnm
] T.;',\viumplw,\w Time)

Figure (0): Multiple issue versus pipelining versus sequential processing
Pipelining owes its origin to car assembly lines. The idea is to have more
than one instruction being processed by the processor at the same time.
Similar to the assembly line, the success of a pipeline depends upon
dividing the exccution of an instruction among a number of subunits

34

(stages), cach performing part of the required operations. A possible
division is to consider instruction fetch (F), instruction decode (D),
operand fetch (I), instruction execution (E), and store of results (S) as the
subtasks needed for the execution of an instruction.

In this case, it is possible to have up to five instructions in the pipeline at
the same time, thus reducing instruction execution latency.

[. General Concept

Pipelining refers to the technique in which a given task is divided into a
number of subtasks that need to be performed in sequence. Each subtask
is performed by a given functional unit. The units are connected in a
serial fashion and all of tI]GIn operate simultaneously. The use of
pipelining improves the performance compared to the traditional
sequential execution of tasks. Figure 1 shows an illustration of the basic
difference between executing four subtasks of a given instruction (in this
case fetching F, decoding D, execution E. and writing the results W)

using pipelining and sequential processing.

[F FTID:I W1 [F2)1 @'EI w2 DE@II*,I -'

|

I

I

l 1 (et Ftu]ucntml I’wu\
i

|

I

|
/i .-m--

|
i
I
I
I

I
i
i
sin
|
|
i
|
i
I
|
I
|
x
|

I |
I |
| i I |
| | | I |
|
L FWI@IE 3 .
| i | | | | I
I3 I3 (DR W3
L *I:I:-'I S| . N
515213:4,5:6;753 9 10,’11:12
| I ' I | | () Bipelining ' I

Figure(1): Pipelining versus sequential processing.
[t is clear from the figure that the total time required to process three
instructions (11, 12, 13) is only six time units if four-stage pipelining is
used as compared to 12 time units if sequential processing is used. A
possible saving of up to 50% in the execution time of these three
instructions is obtained. In order to formulate some performance
measures for the goodness of a pipeline in processing a series of tasks, a

35

space time chart (called the Gantt’s chart) is used. The chart shows the
succession of the subtasks in the pipe with respect to time. Figure (2)
shows a Gan(t’s chart. In this chart, the vertical axis represents the
subunits (four in this case) and the horizontal axis represents time
(measured in terms of the time unit required for each unit to perform its
task). In developing the Gantt’s chart, we assume that the time (T) taken
by cach subunit to perform its task is the same: we call this the unit time.

As can be seen from the figure, 13 time units are needed to finish
executing instructions (1) to ;o). This is to be compared to 40 time units if

sequential processing is used (ten instructions each requiring four time

units).

ti [; /2 j.’w 14 I lrﬁ». [? I [) llu
Uy /| /3 f’; /) [s /n ; 18 ly /ll)
iA AR AN

{] L/! /: 3 /; 1_, [J // l; /\ ’ /x]l(i

sl
L2 3 4 5 6 7 8 9 10 11 12 B Time
Figure(2): The space-time chart (Gantt chart)

In the following analysis, we provide three performance measures for the
goodness of a pipeline. These are the Speed-up S(n), Throughput U(n),
and Efficiency E(n). It should be noted that in this analysis we assume
that the unit time T= t units.
1. Speed-up S(n): Consider the execution of m tasks (Instructions) using
n-stages (units) pipeline. As can be seen, n + m -1 time units are required

to complete m tasks.

Time using sequential processing mxnxt

Time using pipeline processing (m+m—1) x ¢
HnoxXon

n-+im— |

36

e

2. Throughput U(n) is a number of tasks executed per unit time .

1

[hroughput U(n) = (TI e - T

3. Efficiency E(n) : Ratio of the actual speed-up to the maximum speed-

up.

Speed-up n
Efficiency E(n) = =

2. Instruction Pipeline

The simple analysis made in Section 9.1 ignores an important aspect that
can affect the performance of a pipeline, that is, pipeline stall. A pipeline
operation is said to have been stalled if one unit (stage) requires more
time to perform its function, thus forcing other stages to become idle.
Consider, for example, the case of an instruction fetch that incurs a cache
miss. Assume also that a cache miss requires three extra time units.
Figure(3) illustrates the effect of having instruction I, incurring a cache

miss (assuming the execution of ten instructions I, to Ig).

Uy NN
Uy h |~ VOB B 5| Bl 1o
Ly Wl ™ s s s 0] | e

vy [T, LT [T | 7 | 6 1 [4 [T

1 23 4 5 6 7 8 9 10 Il 12 13 14 1

n

16
Figure(3): Effect of a cache miss on the pipeline

The figure shows that due to the extra time units needed for instruction I,

to be fetched, the pipeline stalls, that is, fetching of instruction I3 and

subsequent instructions are delayed. Such situations create what is known

as pipeline bubble (or pipeline hazards). The creation of a pipeline bubble

37

branch instruction is stored. Figure (4) shows that stall and the required

Gantt’s chart.

15 hilb | LW o~ 6 b e
IE W h | L\ | AT AR | L] | 1| o
1y Hhil L K| L it - Is | le | Iz | Is | Iy | 11o

r L L6, i N I 7 A R T

1 23 4 5 o0 7 8 9 10 11 12 13 14 15 16
Figure (4): Instruction dependency effect on a pipeline

B:Data Dependency

Data dependency in a pipeline occurs when a source operand of
instruction

[i depends on the results of executing a preceding instruction, I;, i > j. It
should be noted that although instruction I; can be fetched, its operand(s)
may not be available until the results of instruction Ij are stored. The
following example shows the effect of data dependency on a pipeline.
Example 2: Consider the execution of the following piece of code:

ADD R,. Rs, R Ry «— R+ K>

SL Rx: Ry «— SLIRS)

SUB Rs. Re. Ry R, «— Rs — R,

[n this piece of code, the first instruction, call it I,, adds the contents of
two registers Ry and R, and stores the result in register R;. The second
struction, call it Ij;; , shifts the contents of R3 one bit position to the left
and stores the result back into Rs. The third instruction, call it I.., , stores
the result of subtracting the content of R, from the content of Rs in
register Ry. In order to show the effect of such data dependency, we will
assume that the pipeline consists of five stages, IF, ID, OF, IE, and IS. In
this case, the (OF) stage represents the operand fetch stage. The functions
of the remaining four stages remain the same as explained before. As

shown in the figure(S), although instruction Iz has been successfully

39

decoded during time unit k +2, this instruction cannot proceed to the OF
unit during time unit k + 3. This is because the operand to be fetched by
[i+; during time unit k+3 should be the content of register R;, which has
been modified by execution of instruction I; . However, the modified
value of R5 will not be available until the end of time unit k-+4. This will
require instruction Iy to wait (at the output of the ID unit) until k+3.
Notice that instruction I, will have also to wait (at the output of the IF
unit) until such time that instruction Iy, proceeds to the 1D. The net result
is that pipeline stall takes place due to the data dependency that exists

between instruction It and instruction I;. .

e < :
[I;]‘-) // A //l{_.] l‘_?_z
()] /I . :,__""/ A\ 1‘;1 /H-}
F Lo | it | L2
s ATl - Y - R T L] 'b,
. . A k+1 k+2k+3 k+d k+5hk+6 o . Time

Figure(5): The write-after-write data dependency

The data dependency presented in the above example resulted because
register Rj 1s the destination for both instructions I; and I;.,. This is called
a write-alter-write data dependency. Taking into consideration that any
register can be written into (or read from), then a total of four different
possibilities exist, including the:

¢ write-after-write.

¢ read-after-write .

e write-after-read.

¢ read-after-read.

40

Among the four cases, the read-after-read case should not lead to pipeline
stall. This 1s because a register read operation does not change the content
of the register. Among the remaining three cases, the write-after-write
(sce the above example) and the read-after-write lead to pipeline stall.
The following

piece of code illustrates the read-after-write case:

ADD /\J| Rg]\); Rg s]\’] +]\)3

[n this case, the first instruction modifies the content of register R;
(through a write operation) while the second instruction uses the modified
contents of Ry (through a read operation) to load a value into register R,
While these two instructions are proceeding within a pipeline, care should
be taken so that the value of register R; read in the second instruction is
the updated value resulting from execution of the previous instruction see
figure(6).

[n this case assuming that the first instruction is called Ii and the second
instruction 1is called I;,;.

[t 1s clear that the operand of the second instruction cannot be fetched
during time unit k+3 and that it has to be delayed until time unit k+5.
This 1s because the modified value of the content of register R; will not

be available until time slot k+35.

I AN
15 l ¥~ AT
,./, S

OF 5 / — IH
D L | I,

! 1 | | l

P e A RS ’

o ¢k k+1k+2Kk+3k+4k+5k+6 o Time

41

Figure(6) The read-after-write data dependency

Fetching the operand of the second instruction during time slot k+3 will

lead to incorrect results.

Example 3: Consider the execution of the following sequence of

instructions on a five-stage pipeline consisting of IF, 1D, OF, IE, and IS.

[t is required to show the succession of these instructions in the pipeline.

/1—?‘

Load
Load
Sub
Add
Add
SL
Add

RO, R4,

— 1. RI Rl «— —1;
5, R2: v2 «— 5
R2.1.R2 R2 «— R2—1:

. R2. R3; K3 «— RI + R2:
O «— R4 + R3:
R3 «— SL (R3)

R4 + RO:

e

=
e
1"«

=y
|
Py
-
~]

[n this example, the following data dependencies are observed:

Instructions

Type ol data dependency

l5and /5
[y and /1,
[y and /4
le and /,

17 and /5

Read-alter-write and wrte-after-write (W-W)
Rucl— der-write (R-W)
Rud-attu -wrile (R-W)
Read-alter-write and wrte-alter-write (W-W)
R

ed d—;lltcx'-\-*v’z'm- (R-W)

Figure(7) illustrates the progression of these instructions in the pipeline

taking into consideration the data dependencies mentioned above. The

assumption made in constructing the Gantt’s chart in Figure(7) is that

fetching an operand by an instruction that depends on the results of a

previous instruction execution is delayed until such operand is available,

that 1s, the result is stored. A total of 16 time units are required to execute

42

the given seven instructions taking into consideration the data

dependencics among the different instructions.

/S | b I 1, | 15 Io | I
IE I | 1L I Iy | & Io | I7

OF L& I I, | I I, | I

1D I | | & A Is | Ig %
L] Fe | Iy | I | |

] 2 34 5 6 7 8 9 J0 1112 13 14 15 16
Figure (7) Gantt’s chart for Example 3

Based on the results obtained above, we can compute the speed-up and

the throughput for executing the piece of code given in Example 3 as:

§ ~_ Time using sequential processing 7 x5
Speed-up 5(5) = — : — : 2 = 2.19
Time using pipeline processing 16
Throughpur U(5) = No. ol tasks executed per unit ime = 6= 0.44
§)

The discussion on pipeline stall due to instruction and data dependencies
should reveal three main points about the problems associated with
having such dependencies. These are:

I. Both instruction and data dependencies lead to added delay in the
pipeline.

2. Instruction dependency can lead to the fetching of the wrong
instruction.

3. Data dependency can lead to the fetching of the wrong operand.

There exist a number of methods to deal with the problems resulting from
instruction and data dependencies. Some of these methods try to prevent
the fetching of the wrong instruction or the wrong operand while others
try to reduce the delay incurred in the pipeline due to the existence of
instruction or data dependency. A number of these methods are

introduced below.

43

3-Methods Used to Prevent Fetching the Wrong Instruction
or Operand

Use of NOP (No Operation):

This method can be used in order to prevent the fetching of the wrong
instruction, in case of instruction dependency, or fetching the wrong
operand, in case of data dependency. Recall Example 1. In that example,
the execution of a sequence of ten instructions I,-[;, on a pipeline
consisting of four pipeline stages: IF, ID, IE, and IS were considered. In
order to show the execution of these instructions in the pipeline, we have
assumed that when the branch instruction is fetched, the pipeline stalls
until the result of executing the branch instruction is stored. This
assumption was needed in order to prevent fetching the wrong instruction
after fetching the branch instruction. In real-life situations, a mechanism
is needed to guarantee fetching the appropriate instruction at the
appropriate time. Insertion of “NOP” instructions will help carrying out
this task. A “NOP” is an instruction that has no effect on the status of the

Processor.

Example4: Consider the execution of ten instructions I~ on a
pipeline consisting of four pipeline stages: 1F, ID, IE, and IS. Assume that
instruction I, is a conditional branch instruction and that when it is
executed, the branch is not taken; that is, the branch condition is not

satisfied.

44

I Iy | I | 1| 1y [Nop[Nop|Nep| s | Ig | 1o | 1o | 1y | Do
1E Lof | 1 | 1 [Nop|Nop|Nop| Is | 1o | | L] 1o | e
D /, j: Iy | 4y [Nop|Nop|Nop| Is | fo | 5 | e | Iy | L1s
I 4 By [Nop[Nop|Nep| Is [1o | B f [s [1o

I N T4 5 & T8 9 W11 12 1y 413 16
Figure(8) The use of NOP instructions

In order to execute this set of instructions while preventing the fetching of
the wrong instruction, we assume that a specified number of NOP
instructions have been inserted such that they follow instruction I, in the
sequence and they precede instruction Is. Figure(8) shows the Gantt’s
chart illustrating the execution of the new sequence of instructions (after
inserting the NOP instructions). The figure shows that the insertion of
THREE NOP instructions after instruction I, will guarantee that the
correct instruction to fetch after I, in this case Is, will only be fetched
during time slot number 8 at which the result of executing Iy would have
been stored and the condition for the branch would have been known,
[t should be noted that the number of NOP instructions needed is equal to
(n-1), where n is the number of pipeline stages.
Note: the use of NOP instructions to prevent fetching the wrong
instruction in the case of instruction dependency. A similar approach can
be used to prevent fetching the wrong operand in the case of data
dependency. Consider the execution of the following piece of code on a
five-stage pipeline (IF, ID, OF, IE, IS).
ADD R\ R. Ry Ry < R, + R,
SUB Ri.1.R,: Ry, « R, |
MOV R R, R, < R.

Note the data dependency in the form of read-after-write (R-W) between
the first two instructions. Fetching the operand for the second instruction,

that is, fetching the content of R3, cannot proceed until the result of the

45

