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Abstract

In this paper we introduce some results in di�erence cordial graphs

and the di�erence cordial labeling for some families of graphs as: lad-

der,triangular ladder,grid,step ladder and two sided step ladder graph.

Also we discussed some families of graphs which may be di�erence cor-

dial or not,such as diagonal ladder and some types of one-point union

graphs.
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1 Introduction

In this paper we will deal with �nite,simple and undirected graphs. By
the expression G = (V,E) we mean a simple undirected graph with vertex set
V , |V | is called the order of graph and edge set E, |E| is called its size.

Graph labeling connects many branches of mathematics and is considered
one of important blocks of graph theory, for more details see [3]. Cordial
labeling was �rst introduced in 1987 by Cahit [1], then there was a major
e�ort in this area made this topic growing steadily and widely,see[2].

In [4] Ponraj ,Shathish Naraynan and Kala introduce the notions of di�er-
ence cordial labeling for �nite undirected and simple graph,as in the following
de�nition :
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De�nition 1.1 Let G = (V,E) be a (p, q) graph,and f be a map from
V (G) to 1, 2, ..., p. For each edge uv assign the label |f(v)− f(u)| , f is called
a di�erence cordial labeling if f is one to one map and|ef (0)− ef (1)| ≤ 1
where ef (1) denotes the number of edges labeled with 1 while ef (0) denotes the
number of edges not labeled with 1. A graph with a di�erence cordial labeling
is called a di�erence cordial graph [4].

Ponraj et al. show every graph is a subgraph of a di�erence cordial graph
and any r − regular graph with r ≥ 4 is not di�erence cordial graph,every
path and cycle are di�erence cordial graphs,the star graph K1,n is di�erence
cordial if and only if n ≤ 5,the graph Kn is di�erence cordial only when n ≤ 4
while the bipartite graph Km,n is not di�erence cordial if m ≥ 4 and n ≥ 4,the
bistar Bm,n is not di�erence cordial when m+n ≥ 9 but the wheel Wn,the fan
Fn,the gear Gn,the helm Hn and all webs are di�erence cordial graphs for all
n [4]. In [5] the authors investigated the di�erence cordial labeling behavior of
G�Pn, G�mK1 (m = 1, 2, 3) where G is either unicyclic or a tree and G1�G2

are some more standard graphs. Some graphs obtained from triangular snake
and quadrilateral snake were investigated with respect to the di�erence cordial
labeling behavior. Also the behavior of subdivision of some snake graphs is
investigated in [5].

Proposition 1.2 If G is a (p, q) di�erence cordial graph,then
q ≤ 2p− 1 [4].

De�nition 1.3 The number δ(G) = min {d(v) | v ∈ V } is the minimum de-
gree of the vertices in the graph G, the number ∆(G) = max {d(v) | v ∈ V } is
the maximum degree of the vertices in the graph G, the number
d(G) = 1

|V |
∑
v∈V

d(v) is the average degree of the vertices in the graph G [7]

De�nition 1.4 A fan graph is obtained by joining all vertices of a path Pn

to a further vertex,called the center. Thus Fn contains n + 1 vertices say
c, v1, v2, v3, ..., vn and 2n−1 edges,say cvi, 1 ≤ i ≤ n, and,vivi+1, 1 ≤ i ≤ n−1.

Notation 1.5 The maximum number of edges labelled 1 that is related with
a speci�c vertex,equals 2.

2 Main Results

Proposition 2.1 The graph G(p, q) is not di�erence cordial graph if
δ(G) ≥ 4.

Proof. Let G(p, q) be any graph with δ(G) ≥ 4 ; then the minimum value of
q is 2p; but 2p 6≤ 2p− 1, this contradicts Proposition 1.2.
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Proposition 2.2 The graph G(p, q) is not di�erence cordial if d(G) ≥ 4 .

Proof. Let G(p, q) be any graph with d(G) ≥ 4;then the value of q is more
than or equal to 2p, but 2p 6≤ 2p− 1, which is contradicts Proposition 1.2.

Remark 1 The value of ef (0) is not exceeding p in any di�erence cordial
graph G(p, q).

Proof. Direct consequence of Proposition 1.2.

Proposition 2.3 Let G(p, q) be a graph with two vertices of degree (p− 1)
then G is not a di�erence cordial graph for all p ≥ 8.

Proof. Let G(p, q) be a graph with p vertices, p ≥ 8 and has two vertices vi, vj
of degree (p− 1) then there are 2p − 3 di�erent edges incident with them, If
there are more than two additional edges then G is not di�erence cordial since
q 6≤ 2p − 1. If there are only two additional edges then q = 2p − 1, then we
have two cases:

Case 1: the edge connecting vi and vj is labelled 0, then there are at most
6 edges labelled 1: two passing through vi, two are passing through vj and the
two additional edges. In this case

|2p− 7− 6| = |2p− 13| ≥ 2 where p ≥ 8

i.e., G is not di�erence cordial .
Case 2: the edge connecting vi and vj is labelled 1, then there are at most

5 edges labelled 1: one passing through vi and vj, two edges are: one is incident
with vi and other is incident with vj and the two additional edges. In this case

|2p− 6− 5| = |2p− 11| ≥ 2 where p ≥ 7

i.e., G is not di�erence cordial.
In case there is one additional edge, other than those incident with vi, vj,

similar argument is used .

Example 2.4 .

Figure 1: The graph G = (8, 15)

deg(V8) = 7, deg(V7) = 7 and G cannot be a di�erence cordial graph.
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Proposition 2.5 Let G(p, q) be any graph with two vertices of degrees (p− 1)
and (p− 2); then G is not a di�erence cordial graph for all p ≥ 9.

Proof. Similar to the proof of Proposition 2.3.

Example 2.6 .

Figure 2: The graph G = (9, 17)

deg(V8) = 7, deg(V9) = 8 and G cannot be a di�erence cordial graph.

In [6] theorem 2.14 ,R. Ponraj,S. Sathish Narayanan and R. Kala state that
"Let G be a (p, q) di�erence cordial graph with k(k > 1) vertices of degree p−1.
Then p ≤ 7 ". However :

Corollary 2.7 The graph G(p, q) is not a di�erence cordial graph if there
exist three vertices of degree (p− 1) for all p ≥ 6.

Proof. Let G(p, q) be a graph with three of its vertices of degree p − 1 then
there exist at least 3p− 6 edges in the graph, by Proposition 2 if the graph is
a di�erence cordial graph then

3p− 6 ≤ 2p− 1

A contradiction when p ≥ 6.

Example 2.8 .

Figure 3: The graph G = (6, 12)

12 6≤ 2 ∗ 6− 1 and G cannot be a di�erence cordial graph.
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Proposition 2.9 Let G be a (p, q) graph with one vertex of degree (p− 1)
then G is not a di�erence cordial if there exists a set of non adjacent vertices
S with

∑
vi∈S(deg(vi)− 3) ≥ 4.

Proof. Let G be a (p, q) graph with p vertices and have a vertex vk of degree
p−1 and there exists a set of non adjacent vertices S with

∑
vi∈S(deg(vi)−3) ≥

4. Then there are at least p − 3 edges passing through vk labelled 0, hence
ef (0) ≥ p− 3 + 4 = p+ 1, i.e.,G is not a di�erence cordial graph.

Example 2.10 .

Figure 4: The �ower graph Fl8

p = 17, q = 32
deg(v) = 16
S = {v1, v3, v5, v7} then

∑
vi∈S(deg(vi) − 3) = 1 + 1 + 1 + 1 = 4 there are at

least 4 + 14 = 18 edges labelled 0 then the graph is not a di�erence cordial.

Proposition 2.11 Let G be a (p, q) graph then G is not di�erence cordial
graph if there exists a set of non adjacent vertices S with∑

v∈S(deg(v)− 2) = p+ 1.

Proof. Let S be a set of non adjacent vertices with
∑

vi∈S(deg(vi)−2) = p+1
Since the maximum number of edges labelled 1 that are incident with a speci�c
vertex equals 2,the number of edges labelled 0 that are incident with vertices
of S are at least

∑
vi∈S(deg(vi) − 2) this means the minimum value for ef (0)

in the graph G is p+1,therefor the graph cannot be a di�erence cordial graph.

Proposition 2.12 The complement graph of a di�erence cordial graph is
not di�erence cordial when the number of its vertices is more than eight.

Proof. Let G be a (p, q) di�erence cordial graph with p ≥ 9 then by proposi-
tion 1.2.

q ≤ 2p− 1 (1)
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Gc, the complement of graph G contains 1
2
p(p−1)−q edges and p vertices,

let Gc be di�erence cordial then

1

2
p(p− 1)− q ≤ 2p− 1 (2)

by adding (1) and (2) we get

1

2
p(p− 1) ≤ 4p− 2

p2 − 9p ≤ −4

A contradiction for all p ≥ 9

3 Di�erence cordial labeling for Some graphs:

In This section we will discuss the ability of applying di�erence cordial
labeling for some graphs and the functions which make it di�erence cordial
graphs.

The Proposition 1.2 consider necessary condition for di�erence cordial la-
beling but it is not su�cient.

3.1 Ladder graphs Ln

The ladder graph is a planner undirected graph denoted by Ln with
2n vertices and 3n − 2 edges [3]. The ladder graph Ln can be expressed
as Ln

∼= Pn × P2

Figure 5: Ladder Graph L2n

Proposition 3.1 Every ladder graph Ln is di�erence cordial for all n.

Proof. Let Ln be a ladder graph, then it has 2n vertices and 3n−2 edges. Let
the vertices be v1, v2, ..., v2n such that vnvn+1 is an edge in this graph. De�ne
the mapping f : Ln −→ {1, 2, ..., 2n} by :
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f(vi) =


i if 1 ≤ i ≤

⌈
1
2
|E|
⌉

3
⌈
1
2
|E|
⌉

+
⌈
1
2
n
⌉

+ 2− 2i if
⌈
1
2
|E|
⌉
< i ≤

⌈
1
2
|E|
⌉

+
⌈
1
4
n
⌉

2(i− n)− 1 if
⌈
1
2
|E|
⌉

+
⌈
1
4
n
⌉
< i ≤ 2n and n is odd

2(i− n) if
⌈
1
2
|E|
⌉

+
⌈
1
4
n
⌉
< i ≤ 2n and n is even


From the �rst part of de�nition notice that there are

⌈
1
2
|E|
⌉
− 1 of edges

labelled 1, in the second part we notice that

|f(vi+1)− f(vi)| =
∣∣∣∣3⌈1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 2− 2(i+ 1)− 3

⌈
1

2
|E|
⌉
−
⌈

1

2
n

⌉
− 2 + 2i

∣∣∣∣ = 2

, so ∣∣f(vi)− f(v2n−(i+1)
∣∣ =

∣∣∣∣3⌈1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 2− 2i− 2n+ (i+ 1)

∣∣∣∣
=

∣∣∣∣3⌈1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 3− i− 2n

∣∣∣∣
=

∣∣∣∣3⌈1

2
(3n− 2)

⌉
+

⌈
1

2
n

⌉
+ 3− i− 2n

∣∣∣∣
= |3n− i | > 1

which means all these edges are labelled 0. In the third part of de�nition we
notice when n is even :

|f(vi+1)− f(vi)| = |2(i+ 1− n)− 2(i− n)| = 2

and ∣∣f(vi)− f(v2n−(i+1))
∣∣ = |2(i− n)− 2n+ (i+ 1)| = |3i− 4n|

>

∣∣∣∣3(

⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉
)− 4i

∣∣∣∣
>

∣∣∣∣3(

⌈
1

2
(3n− 2

⌉
+

⌈
1

4
n

⌉
)− 4n

∣∣∣∣
>

∣∣∣∣12n+ 3

⌈
1

4
n

⌉
− 3

∣∣∣∣
>


|5m− 3| if n = 4m

|5m+ 1| if n = 4m


> 2

this means all the edges viv2n−(i+1) in this third part are labelled 0. But
if n is an even number then the number of the total edges of the ladder Ln is
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even and thus there must exist additional edge labelled 1, which we may get
it from the label of the last vertex in part two and the �rst label in part three.

Notice that if i =
⌈
1
2
|E|
⌉

+
⌈
1
4
n
⌉
then

f(vd 12 |E|e+d 14ne) = 3

⌈
1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 2− 2

(⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉)
(3)

and if i =
⌈
1
2
|E|
⌉

+
⌈
1
4
n
⌉

+ 1, then

f(vd 12 |E|e+d 14ne+1) = 2

(
(

⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉
+ 1)− n

)
(4)

by subtracting (4 ) from (3 ) we get

f(vd 12 |E|e+d 14ne) − f(vd 12 |E|e+d 14ne+1)

= 3

⌈
1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 2− 2

(⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉)
− 2

(
(

⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉
+ 1)− n

)
= −

⌈
1

2
|E|
⌉

+
5

2
n− 4

⌈
1

4
n

⌉
= −

⌈
1

2
(3n− 2)

⌉
+

5

2
n− 4

⌈
1

4
n

⌉
=
−3

2
n+ 1 +

5

2
n− 4

⌈
1

4
n

⌉
= n+ 1− 4

⌈
1

4
n

⌉
=

{
1 if n = 4m
−1 if n = 4m+ 2

}
thus the edge vd 12 |E|e+d 14nevd 12 |E|e+d 14ne+1 is labelled 1, then the graph is

di�erence cordial.
Now if n is an odd number then |E| is an odd number and then from the

�rst part we get
⌊
1
2
|E|
⌋
edges labelled 1 and all other edges in the second and

third part are labelled 0, similarly when n is even, and

f(vd 12 |E|e+d 14ne) − f(vd 12 |E|e+d 14ne+1)

= 3

⌈
1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 2− 2

(⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉)
− 2

(
(

⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉
+ 1)− n

)
+ 1

= −
⌈

1

2
|E|
⌉

+

⌈
1

2
n

⌉
− 4

⌈
1

4
n

⌉
+ 2n− 1 = −

⌈
1

2
(3n− 2)

⌉
+

⌈
1

2
n

⌉
− 4

⌈
1

4
n

⌉
+ 2n− 1

=


−
⌈
1
2
(3(4m+ 1)− 2)

⌉
+
⌈
1
2
(4m+ 1)

⌉
− 4

⌈
1
4
(4m+ 1)

⌉
+ 2(4m+ 1)− 1 if n = 4m+ 1

−
⌈
1
2
(3(4m+ 3)− 2)

⌉
+
⌈
1
2
(4m+ 3)

⌉
− 4

⌈
1
4
(4m+ 3)

⌉
+ 2(4m+ 3)− 1 if n = 4m+ 3


=

{
0 if n = 4m+ 1
1 if n = 4m+ 3

}
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then

ef (1) = ef (0) if n is even

ef (1) = ef (0) − 1 if n is odd & n = 4m+ 1

ef (1) = ef (0) + 1 if n is odd & n = 4m+ 3

Hence G is di�erence cordial.

Example 3.2 Consider the graph L10

n = 10, |E| = 28,
⌈
1
2
|E|
⌉

= 14,
⌈
1
2
n
⌉

= 5,
⌈
1
4
n
⌉

= 3 then

f(vi) =


i if 1 ≤ i ≤ 14
49− 2i if 14 < i ≤ 17
2(i− 9) if 17 < i ≤ 20


f(v1) = 1, f(v2) = 2, ..., f(v14) = 14,

f(v15) = 19, f(v16) = 17, f(v17) = 15,
f(v18) = 16, f(v19) = 18, f(v20) = 20. ef (0) = 14, ef (1) = 14

Figure 6: A di�erence cordial labeling for L10

Example 3.3 Consider the graph L11 n = 11, |E| = 31,
⌈
1
2
|E|
⌉

= 16,
⌈
1
2
n
⌉

=
6,
⌈
1
4
n
⌉

= 3 then

f(vi) =


i if 1 ≤ i ≤ 16
56− 2i if 16 < i ≤ 19
2(i− n)− 1 if 19 < i ≤ 22


f(v1) = 1, f(v2) = 2, ..., f(v16) = 16,

f(v17) = 22, f(v18) = 20, f(v19) = 18,
f(v20) = 17, f(v21) = 19, f(v22) = 21.

Figure 7: A di�erence cordial labeling L11

ef (0) = 15, ef (1) = 16
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3.2 Triangular ladder graph TLn

A triangular ladder TLn, n ≥ 2, is a graph obtained from the ladder
Ln = Pn×P2 by adding the edges uivi+1for1 ≤ i ≤ n− 1. Such graph has 2n
vertices with 4n− 3 edges

Figure 8: Triangle ladder graph TLn

Proposition 3.4 The triangular ladder graph TLn, n ≥ 2 is a di�erence
cordial graph for all n.

Proof. Let G = TLn, n ≥ 2 be a triangular ladder graph ,then G = (2n, 4n−
3).

De�ne the function

f(vi) = 2i− 1 and f(ui) = 2i ; 1 ≤ i ≤ n (5)

It is clear that ef (1) = 2n− 1 hence ef (0) = (4n− 3)− (2n− 1) = 2n− 2,
then |ef (0)− ef (0)| = 1,

thus G = TLn, n ≥ 2 is a di�erence cordial graph.

Example 3.5 Consider the graphs TL6 and TL7

Figure 9: A di�erence cordial labeling for TL6

Figure 10: A di�erence cordial labeling for TL7
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3.3 The Grid graph Pm × Pn

In this subsection we will investigate the di�erence cordial labeling for
every grid graph of the form Pm×Pn for all m,n . Let the vertices of the grid
graph be arranged as a sequence in certain order as in the �gure 11

Figure 11: The grid graph Pm × Pn

This kind of graphs contains mn vertices and 2mn− (m+ n) edges.

Proposition 3.6 Every grid graph is Pm×Pn is a di�erence cordial graph
for all integers m,n greater than 1.

Proof. Let G be a graph Pm × Pn then G = (mn, 2mn− (m+ n)) Case 1:

If m = n then |V | = n2 and |E| = 2(n2−n), de�ne the function f for labeling
vertices of G by :

f(vij) = (i− 1)n+ j

in each row of the grid graph there exist n − 1 edges labelled 1 this leads to
ef (1) = n(n− 1) and the number of edges labelled 0 is equal to :

2n(n− 1)− n(n− 1) = n(n− 1),

thus G is a di�erence cordial graph.
Case 2 : If |m− n| = 1, then |V | = mn and |E| = 2mn− (m + n). Let

n = m+ 1 then |E| = 2m2 − 1. Now using the same functions in Case 1 we
will get

ef (1) = m(n− 1) = m(m+ 1− 1) = m2

and
ef (0) = (m− 1)(m+ 1) = m2 − 1

which means the graph is a di�erence cordial graph. Similarly if m = n + 1
Case 3 :If |m− n| ≥ 2. Let n > m and let k =

⌈
1
2
(n−m)

⌉
we de�ne the

mapping :

f(vij) =


(j − 1)m+ i if 1 ≤ j ≤ k

k (m− 1) + n (i− 1) + j if j = k + 1, ..., n


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It follows that :

ef (1) = k(m− 1) +m(n− k − 1)

= mn− (m+ k)

and

ef (0) = 2mn− (m+ n)−mn+ (m+ k)

= mn− (n− k)

so

|ef (0)− ef (1)| = |mn− n+ k −mn+m+ k|
= |−n+ 2k +m|

=

{
0 if n−m is even
1 if n−m is odd

}
Similarly if m > n we apply the same mapping but replacing i by j and m

by n, i.e.:
k =

⌈
1
2
(m− n)

⌉
and :

f(vij) =


(i− 1)n+ j if 1 ≤ i ≤ k

k (n− 1) +m (j − 1) + i if i = k + 1 , ... ,m


Hence the grid graph Pm × Pn is a di�erence cordial graph for all m,n.

Example 3.7 Let Pm × Pn = P4 × P3

n = 3,m = 4, |V | = 12, |E| = 17
f(vij) = 3(i− 1) + j

Figure 12: A di�erence cordial labeling for grid graph P4 × P3

ef (1) = 8, ef (0) = 9

Example 3.8 Let Pm × Pn = P5 × P8

n = 8,m = 5, |V | = 40, |E| = 67, k = 2

f(vij) =

{
5(j − 1) + j 1 ≤ j ≤ 2
2(5− i) + 8(i− 1) + j j > 2

}
ef (0) = 34 , ef (1) = 33
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Figure 13: A di�erence cordial labeling for grid graph P5 × P8

3.4 Step ladder graph S(Tn):

De�nition 3.9 Let Pn be a path on n vertices denoted by (1, 1), (1, 2), ..., (1, n)
and n− 1 edges denoted by e1, e2, ..., en−1 where ei is the edge joining the ver-
tices (1, i) and (1, i + 1). On each edge ei,i = 1, 2, ..., n − 1 we erect a ladder
with n− (i− 1) steps including the edge ei. The graph obtained is called a step
ladder graph and is denoted by S(Tn), where n denotes the number of vertices
in the base.

The following sketch shows the step ladder graph :

Figure 14: The step ladder graph S(Tn)

The number of vertices and edges are :

|V | = 2 + 3 + 4 + ...+ n+ n

=
1

2
n(n+ 1) + (n− 1)

=
n2 + 3n− 2

2
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|E| = 2(|V | − n)

= n(n+ 1)− 2

We notice for all step ladder graphs that i+ j ≤ n+ 2

Proposition 3.10 Every step ladder graph S(Tn) is a di�erence cordial
graph for all n.

Proof. Let S(Tn) be a step ladder graph then |E| = n(n+ 1)− 2 = n2 +n− 2
De�ne the function f : S(Tn) −→ {1, 2, ..., 1

2
n(n+ 1) + (n− 1)} by :

f(vij) =


j + (i− 1)n 1 ≤ i ≤ 3

j + (i− 1)n− 1
2
(i− 3)(i− 2) i ≥ 4


ef (1) = (3n− 4) + (n− 3) + (n− 4) + (n− 5) + ...+ 3 + 2 + 1

= (n− 1) + (n− 1) + (n− 2) + (n− 3) + ... + 2 + 1

= (n− 1) +
1

2
n(n− 1)

=
1

2
(n2 + n− 2) ,

then ef (1) = 1
2
|E| which means |ef (1)− ef (0)| = 0.

Therefor S(Tn) is a di�erence cordial graph for all n

3.5 Double Sided Step Ladder Graph 2S(T2n):

De�nition 3.11 Let P2n be a path of length 2n − 1 with 2n vertices
(1, 1), (1, 2), ..., (1, 2n) with 2n − 1 edges,e1, e2, ..., e2n−1, where ei is the edge
joining the vertices (1, i)and(1, i + 1). On each edge ei, for i = 1, 2, ..., n,
we erect a ladder with i + 1 steps including the edge ei and on each edge
ei, for i = n + 1, n + 2, ..., 2n − 1,we erect a ladder with 2n + 1 − i steps
including the edge ei.The double sided step ladder graph 2S(T2n) has ver-
tices denoted by (1, 1), (1, 2), ..., (1, 2n), (2, 1), (2, 2), ..., (2, 2n), (3, 2), (3, 3), ...,
(3, 2n − 1), (4, 3), (4, 4), , (4, 2n − 2), ..., (n + 1, n), (n + 1, n + 1). In the or-
dered pair (i, j), i denotes the row number (counted from bottom to top) and j
denotes the column number (from left to right) in which the vertex occurs.

Example 3.12 The �gure 15 is the 2S(T10)

Proposition 3.13 The double sided step ladder graph 2S(Tm) is a di�er-
ence cordial graph, where m = 2n denotes the number of vertices in the base.
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Figure 15: Double sided step ladder graph 2S(T2n)

Proof. Let G = (V,E) be the double sided step ladder graph 2S(Tm) where
m = 2n then

|V | = n2 + 3n and |E| = 2n2 + 3n− 1

De�ne f : V −→ {1, 2, ..., n2 + 3n} by :

f(vi,j) =



u if i = 1 and j ≤
⌈
1
2
n
⌉

j + 2n (i− 1) if i = 1 and j ≥
⌈
1
2
n
⌉

+ 1

j + 2n (i− 1) if i = 2

j + 2n (i− 1)− (i− 1)2 if i = 3, 4, ..., n+ 1


where

u =



2j (mod
⌈
1
2
n
⌉

+ 1) if n = 3 or n ≡ 0 (mod 4 )

2j (mod
⌈
1
2
n
⌉

+ 1) +

⌊
2j

d 12ne+1

⌋
if n ≡ 1, 2 (mod 4 )

(2j − 1) (mod
⌈
1
2
n
⌉

+ 1) + 2

⌊
2j

d 12ne+1

⌋
if n ≡ 3 (mod 4 )


from the last three parts of the de�nition of f we will get n2 + 2n −

⌈
1
2
n
⌉
−

1 edges give ef (1), while in the �rst part all edges give ef (0) except when⌈
1
2
n
⌉
≤ 4 we will get an edge in ef (1) since 1 ≤ u ≤ 3.

Case 1 : If n = 2 then ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 + 1 = 7 and ef (0) = 6,

if n = 3 then ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 + 1 = 13 and ef (0) = 13,

if n = 4 then ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 + 1 = 22 and ef (0) = 21 and

if n = 5 then ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 + 1 = 32 and ef (0) = 32.
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Case 2 :If n ≡ 0(mod 4) then n = 4k for some positive integer number k
and

⌈
1
2
n
⌉

= 2k, then |E| = 2(4k)2 + 3(4k)− 1 = 32k2 + 12k − 1 and

f(v1d 12ne) = 2(

⌈
1

2
n

⌉
) (mod

⌈
1

2
n

⌉
+ 1)

= (2 ∗ 2k)(mod 2k + 1) = 4k(mod 2k + 1)

= 2k − 1

while f(v1 d 12ne+1) =
⌈
1
2
n
⌉

+ 1 = 2k + 1,

thus the label of the edge v1d 12nev1 d 12ne+1 will be included in ef (0),

therefor ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 = 16k2 + 8k − 2k − 1 = 16k2 + 6k − 1

and ef (0) = |E | − ef (1) = 32k2 + 12k− 1− 16k2− 6k+ 1 = 16k2 + 6k we
get |ef (0)− ef (1)| = 1.

Case 3 : If n ≡ 1(mod 4) then n = 4k+1 for some positive integer number
k and

⌈
1
2
n
⌉

= 2k + 1, then |E| = 2(4k + 1)2 + 3(4k + 1)− 1 = 32k2 + 28k + 4
and

f(v1d 12ne) = 2(

⌈
1

2
n

⌉
) (mod

⌈
1

2
n

⌉
+ 1) +

⌊
2
⌈
1
2
n
⌉⌈

1
2
n
⌉

+ 1

⌋

= 2(2k + 1) (mod 2k + 2) +

⌊
2 d2k + 1e
d2k + 1e+ 1

⌋
= (4k + 2) (mod 2k + 2) + 1

= 2k + 1

while f(v1 d 12ne+1) =
⌈
1
2
n
⌉

+ 1 = 2k + 2,

thus the label of the edge v1 d 12nev1d 12ne+1 will be included in ef (1),

therefor ef (1) = n2+2n−
⌈
1
2
n
⌉
−1+1 = (4k+1)2+2(4k+1)−2k−1−1+1 =

16k2 + 14k + 2
and ef (0) = |E| − ef (1) = 32k2 + 28k + 4− 16k2 − 14k − 2 = 16k2 + 14k + 2
we get |ef (0)− ef (1)| = 0

Case 4 : If n ≡ 2 (mod 4) then n = 4k+2 for some positive integer number
k and

⌈
1
2
n
⌉

= 2k+ 1, then|E| = 2(4k+ 2)2 + 3(4k+ 2)− 1 = 32k2 + 44k+ 13
and

f(v1 d 12ne) = ( 2

⌈
1

2
n

⌉
)(mod

⌈
1

2
n

⌉
+ 1) +

⌊
2
⌈
1
2
n
⌉⌈

1
2
n
⌉

+ 1

⌋

= 2(2k + 1) (mod 2k + 2) +

⌊
2 d2k + 1e
d2k + 1e+ 1

⌋
= (4k + 2) (mod 2k + 2) + 1

= 2k + 1
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while f(v1 d 12ne+1) =
⌈
1
2
n
⌉
+1 = 2k+2, thus the label of the edge v1d 12nev1d 12ne+1

will included in ef (1),
therefore ef (1) = n2+2n−

⌈
1
2
n
⌉
−1+1 = (4k+2)2+2(4k+2)−2k−1−1+1 =

16k2 + 22k + 7
and ef (0) = |E | − ef (1) = 32k2 + 44k+ 13− 16k2− 22k− 7 = 16k2 + 22k+ 6
we get |ef (0)− ef (1)| = 1
Case 5 : If n ≡ 3(mod 4) then n = 4k + 3 for some positive integer number
k and

⌈
1
2
n
⌉

= 2k + 2, then|E| = 2(4k + 3)2 + 3(4k + 3)− 1 = 32k2 + 60k + 26
and

f(v1 d 12ne) = ( 2

⌈
1

2
n

⌉
− 1) (mod

⌈
1

2
n

⌉
+ 1) + 2

⌊
2
⌈
1
2
n
⌉
− 1⌈

1
2
n
⌉

+ 1

⌋

= (2(2k + 2)− 1)(mod 2k + 3) + 2

⌊
2 d2k + 1e − 1

d2k + 1e+ 1

⌋
= (4k + 3)(mod 2k + 3) + 2

= 2k + 2,

while f(v1d 12ne+1) =
⌈
1
2
n
⌉
+1 = 2k+3, thus the label of the edge v1 d 12nev1d 12ne+1

will be included in ef (1),
therefor ef (1) = n2+2n−

⌈
1
2
n
⌉
−1+1 = (4k+3)2+2(4k+3)−2k−2−1+1 =

16k2 + 30k + 13
and ef (0) = |E| − ef (1) = 32k2 +60k+26−16k2−30k−13 = 16k2 +30k+13
we get |ef (0)− ef (1)| = 0.

From the cases 1,2,3,4and 5 we conclude that the double sided step ladder
graph 2S(T2n) is a di�erence cordial graph for all integer number n

We discuss here some types of graphs not always di�erence cordial such as
diagonal ladder graph ,diagonal grid graph and friendship graph .

Diagonal ladder graph is a ladder with additional edges uivi+1 and ui+1vi,
denoted by DLn, where n is half its vertices and the number of its edges is
5n− 4.

Corollary 3.14 The diagonal ladder graphs are di�erence cordial graphs if
n ≤ 3.

Proof. Let the graph G be the diagonal ladder graph DLn with 2n vertices
that means there are 5n− 4 edges in G, G is a di�erence cordial graph. Then
we get by Proposition 2

5n− 4 ≤ 2(2n)− 1

n ≤ 3

then the diagonal ladder graph is di�erence cordial when n = 2 orn = 3
The following example shows that DL2 and DL3 are di�erence cordial
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Example 3.15 The following are labeling for the diagonal ladder graphs
DL2, DL3

Figure 16: The di�erence cordial labelings for the diagonal ladder graphs DL2

& DL3

The graph Pm × Pn with diagonal edges is called diagonal grid graph and
denoted by D( Pm×Pn). It has mn vertices and 2(2mn+ 1)−3(m+n) edges.

Remark 2 Diagonal grid graph Pm × Pn are not di�erence cordial graphs
for both m,n ≥ 3.

Proof. Let G = D (Pm × Pn), then from Proposition 2 if G is a di�erence
cordial graph then q ≤ 2p− 1. Let m = n = 3, then

q = 2(2mn+ 1)− 3(m+ n)

= 2(2 · 3 · 3 + 1)− 3(3 + 3)

= 20 
 17

then D (Pm × Pn) cannot be a di�erence cordial graph for bothm,n ≥ 3
This is consistent with corollary 3.5 since diagonal ladder graphs are diag-

onal grid graphs.
Another type of graphs will be discussed here named one-point union fan

graph, where a graph G in which a vertex distinguished from other vertices
is called a rooted graph and the vertex is called the root of G. Let G be a
rooted graph,the Graph G(n) obtained by identifying the roots of n copies of
G is called a one-point union of the n copies of G.

Proposition 3.16 The fan graph Fn is di�erence cordial for all n. citepon1

Proposition 3.17 The one-point union F
(m)
n of m copies of a fan Fn is

di�erence cordial for all n and for m ≤ 5.

Proof. Let G = F
(m)
n , then |V (G)| = mn+ 1 and |E(G)| = m(2n− 1). These

vertices are : v00 is the central vertex and the other vertices are denoted by
vij, 1 ≤ i ≤ nand1 ≤ j ≤ m
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Figure 17: The graph F
(m)
n

For each copy of a fan Fn there are n− 1 edges labelled 1, therefore there
are m(n− 1) + 2 edges labelled 1 in F

(m)
n , where the central vertex is labelled

1(modn) but is neither 1 nor mn+ 1 then

ef (0) = m(2n− 1)−m(n− 1)− 2 = mn− 2

Now

|ef (0)− ef (1)|
= |mn− 2−m(n− 1)− 2|
= |m− 4|

then |ef (0)− ef (1)| ≥ 2 for allm ≥ 6. We de�ne the mapping f for m ≤ 5 and
n ∈ N by

f(v0 0) ≡ 1(modn)and f(v0 0) 6= 1,mn+ 1

and

f(vij) =


(j − 1)n+ i if (j − 1)n+ i < f(v0 0)

(j − 1)n+ i+ 1 if (j − 1)n+ i > f(v0 0)


for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

As a special case,the friendship graph denotes by F
(m)
2 consists of one vertex

union with m copies of paths P2 consisting of 2m + 1 vertices and 3m edges
as shown in Figure 18
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Figure 18: The friendship graph F5

Therefore the friendship graph F
(m)
2 is di�erence cordial if and only ifm ≤ 5.
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