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Abstract

Graph labeling is one of the important branches of Graph Theory and

became a principal tool in many applications on different sciences and

technologies. All that leads to appearance of more than one type of

labeling and multiple techniques to meet the required purposes.

In this thesis we study the two main types of graph labeling and

introduce the labelings for interested families of graphs and a tractive

results for graphs of these types. We state some basic definitions and

theorems in graph theory which we need. We divide the other work into

four chapters:

In chapter two we introduce some results in difference cordial graphs

and difference cordial labelings for some families of graphs such as: ladder,

triangular ladder, grid, step ladder and two sided step ladder graph. Also

we discussed some families of graphs which may be difference cordial or

not, such as diagonal ladder and some types of one-point union of graphs.

In chapter three we introduce some results on difference cordial graphs,

where we present results concerning the relation between difference

cordiality and the lengths of paths on graphs and study the Semi-

Hamiltonian graph, biconnected outerplanar graphs and the line graph of
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a graph. Also, we describe the difference cordial labeling for some families

of graphs such as: the graph obtained by duplication a vertex by an edge,

bow graphs, butterfly graphs, shell-flower graphs and one-point union of

complete graphs.

In chapter four we introduce some results on divisor cordial graphs and

describe the divisor cordial labeling for the families of graphs: the jelly

fish graph, the shell, the bow graph, butterfly graphs and the friendship

graphs. In the last chapter we introduce results in divisor cordial labeling

for regular graphs, divisor labelings for all graphs with number of vertices

less than eight, and divisor cordial labelings for some types of trees such

as: olive trees, spider trees, m−star trees, k−distant trees, caterpillar

trees and banana trees.
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Summary

This thesis sheds light on the two concepts of types of graph labeling

and describe the labeling for many families of graphs.

Graph labeling is one of the famous problems in Graph Theory.

Recently graph labeling became more important because the growth of

its applications in many of sciences and technology on a different area

such as: computer programming, coding theory, neural network, bio-

technology, in the study of X-Ray crystallography, radar, communication

network, circuit layouts. In this work by a graph G = (V,E), we mean

a finite, undirected graph with neither loops nor multiple edges. For

graph theoretic terminology we refer to Harary [14] and for graph labeling,

Gallian [12] is referred to.

In general Graph labeling is a strong communication between Number

theory and structure of graphs. Nowadays nearly 200 graph labelings

techniques have been studied.

Throughout this work we present new results in two types of graph

labelings, and discuss the labeling of many kinds of graphs in chapters

2, 3, 4 and 5.
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In chapter two: the basic definitions and theorems of graph theory

are introduced which are useful in current work, and the outline of the

thesis.

In year 2013, Ponraj, Shathish Naraynan and Kala introduce the

notions of difference cordial labeling for finite undirected and simple

graph. In chapter two, we present some new results on difference cordial

graphs under a title ”On Difference Cordial Graphs” which are published

in the mathematical Bulgarian journal ”Mathematica AEterna” journal.

This chapter comprises four sections and present new interesting results

and facts in difference cordial graphs:

• Seven results concerning the degree of vertices and difference

cordiality.

• One result concerning the graph and its complements.

In addition, we describe the function of labeling for different families

of graphs such as: ladder, step ladder, two sided step ladder, diagonal

ladder, triangular ladder, grid graph and some types of one-point union

of graphs. All that appears in:

Mathematica Aeterna, Vol. 5, 2015, no. 1, 105− 124. [37]

In chapter three: Some new results and examples on difference

cordial graphs, and interested results about:

• five results about relation between the lengths of disjoint paths in

graph and difference cordiality of a graph, in addition, Petersen,

semi-Hamiltonian graph and outerplanar graph.

2



• Two results about line graph.

• A result for union of graphs.

Also we describe difference cordial labelings for the families of

graphs: bow, buttery, Shell-Flower and One-Point Union of Complete

graphs. These results are published in the academic journal ”TURKISH

JOURNAL OF MATHEMATICS” in Turkey.

Turk J Math, 40, (2016), 417-427 [38]

By combining the divisibility concept in Number theory and Cordial

labeling concept in Graph labeling, Varatharajan, Navanaeethakrishnan

Nagarajan in 2011, introduced a new concept called divisor cordial

labeling.

In chapter four: some new results on divisor Cordial graph labeling

are introduced:

new general results in divisor cordial labeling, four results in maximal

number of edges are labeled one in any graph and in the regular graph. We

introduce and discusses mappings of labelings for some families of graphs

such as: jelly fish, shell, bow, butterfly and friendship graph, these results

are submitted for publication in the Indian academic journal: Journal of

Graph Labeling.

In chapter five: new results in divisor cordial labeling for the regular

graphs, and divisor cordial labelings for all graphs with number of vertices

less than eight except the graph K4 and proof it not divisor cordial graph.

As well the divisor cordial labeling for the trees: olive trees, spider trees,

m−star trees, k−distant trees, caterpillar trees and banana trees.

3



Chapter 1

Introduction

1.1 Brief Introduction to Labeling

Graph labeling is a strong communication between Number Theory and

structure of graphs. It is an assignment of integers to the vertices, edges,

or both, subject to certain conditions. Most graph labeling methods

extract their origin from a paper introduced firstly by Rosa in 1964 [30].

Diverse types are the subject of much study, where during the last 50

years nearly 200 graph labelings techniques have been studied in over

2000 papers [12].

Graph Labeling is a powerful tool that makes things ease in various

fields of computer science, public key cryptography, Networks represen-

tation, database management [28].

Most of the graph labeling problems have three ingredients: A set of

numbers S from which the labels are chosen; rule that assigns a value to

each vertex or edge such that some conditions must be satisfied [12].
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CHAPTER 1. INTRODUCTION

The problems related to labeling of graphs challenge our mind for their

eventual solutions. Labeled graph have variety of applications in coding

theory, particularly for missile guidance codes, design of good radar

type codes, convolution codes with optimal autocorrelation properties,

X-ray crystallography, communication network, bio-technology and to

determine optimal circuit layouts. A detailed study of variety of

applications of graph labeling is given by Bloom and Golomb [5].

A graceful labeling is an assignment of the integers {1, 2, ..., n} to

vertices of a graph such that once each edge is labeled with difference

of its incident vertices, with each integer in {1, 2, ..., n− 1} is used once

and only once. In [30] Rosa has identified essentially three reasons why a

graph fails to be graceful:

1. has ”too many vertices” and ”not enough edges”,

2. has too many edges,

3. has the wrong parity.

Rosa [30] has shown that if every vertex has even degree and the

number of edges is congruent to 1 or 2 (mod 4) then the graph is not

graceful. In particular, the cycles C4n+1 and C4n+2 are not graceful.

Seoud and Abdel-Aal [32] determined all odd-graceful graphs of order

at most 6 and proved that if G is odd-graceful then G ∪ Km,n is odd-

graceful. Seoud and Helmi in [33] proved: if G has an odd-graceful

labeling f with bipartition (V1, V2) such that:

max {f(x) : f(x) is even; x ∈ V1} < min {f(x) : f(x) is odd; x ∈ V2},

5



CHAPTER 1. INTRODUCTION

then G has an α−labeling, if G has an α−labeling, then G � kn is odd-

graceful, and if G1 has an α−labeling and G2 is odd-graceful, then G1∪G2

is odd-graceful.

They also proved the following graphs have odd-graceful labelings:

dragons obtained from an even cycle; graphs obtained from a gear

graph by attaching a fixed number of pendent edges to each vertex of

degree 2 on rim of the wheel of the graph; C2m�K̄n; graphs obtained from

an even cycle by attaching a fixed number of pendent edges to every other

vertex; graphs obtained by identifying an endpoint of a star Sn(n ≥ 3)

with a vertex of an even cycle; the graphs consisting of two even cycles of

the same order that share a common vertex with any number of pendent

edges attached at the common vertex; and the graphs obtained by joining

two even cycles of the same order by an edge.

Seoud and Wilson [39] proved that C3

⋃
K4 , C3

⋃
C3

⋃
K4 and certain

graphs of the form C3

⋃
Pn and C3

⋃
C3

⋃
Pn are not graceful. Seoud and

Youssef [40] investigated the gracefulness of specific families of the form

G
⋃
Km,n. They obtained the following results: C3

⋃
Km,n is graceful

if and only if m ≥ 2 and n ≥ 2 ; C4

⋃
Km,n is graceful if and only if

(m,n) 6= (1, 1); C7

⋃
Km,n and C8

⋃
Km,n are graceful for all m and n;

mK3

⋃
nK1,r is not graceful for all m,n and r; Ki

⋃
Km,n is graceful for

i ≤ 4 and m ≥ 2; n ≥ 2 except for i = 2 and (m,n) = (2, 2); K5

⋃
K1,n is

graceful for all n; K6

⋃
K1,n is graceful if and only if n is neither 1 nor 3.

Another best known labeling methods are called harmonious label-

ings. The harmonious graphs naturally arose in the study by the two

researchers Graham and Sloane [13]. They defined a graph G with q

6



CHAPTER 1. INTRODUCTION

edges to be harmonious if there is an injection f from the vertices of G to

the group of integers (modulo q) such that when each edge xy is assigned

the label f(x) + f(y)(mod q), the parity condition for harmonious graph

the resulting edge labels are distinct.

Seoud and Elsakhawi [36] proved: paths and ladders are arbitrarily

graceful; and for n ≥ 3; Kn is k−graceful if and only if k = 1 and n = 3

or 4.

Seoud and Youssef [41] have shown that the one point union of a

triangle and Cn is harmonious if and only if n ≡ 1 (mod 4) and that

if the one-point union of two cycles is harmonious then the number of

edges is divisible by 4. They [35] introduced Gracefulness of the union

of cycles and paths. Also in [34] Seoud, Abdel Maqsoud, and Sheehan

noted that when r or s is even, rC8 is not harmonious. They proved: the

graph obtained by appending any number of edges from the two vertices of

degree n ≥ 2 in K2,n is not harmonious; dragons Dm,n are not harmonious

when m+n is odd; and the disjoint union of any dragon and any number

of cycles is not harmonious when the resulting graph has an odd order.

Cordial labeling is a variation of both graceful and harmonious

labelings introduced by I. Cahit in 1987 [8].

A-cordial labelings defined as a common generalization of cordial labeling

(introduced by Cahit [8]) and harmonious labeling (introduced by

Graham and Sloane [13]).

Ponraj, Sathish Narayanan, and Kala [23] introduced the notion of

difference cordial labelings.

7



CHAPTER 1. INTRODUCTION

By combining the divisibility concept in number theory and cordial

labeling concept in graph labeling, R. Varatharajan, S. Navanaeethakr-

ishnan, and K. Nagarajan introduce a new concept called divisor cordial

labeling [46].

We study and present new results on the last two types of labelings

mentioned above. All graphs in this work are simple, finite and

undirected.

Graph labelings of diverse types are the subject of much study

and the state of the field is described in detail in Gallian dynamic

survey [12]. The results obtained so far, while numerous, are mainly

piecemeal in nature and lack generality. In an attempt to provide

something of a framework for these results, we introduce some of them in

the next chapter.

1.2 Some Fundamentals in Graph Theory:

In this section we will describe some of graphs and its properties

that we need in our work. Since the language of graph theory is still not

standard, all authors have their own terminology.

A graph G consists of a non-empty finite set V (G) of elements called

vertices, and a finite family E(G) of unordered pairs of (not necessarily

distinct) elements of V (G) called edges; the use of the word ’family’

permits the existence of multiple edges. We call V (G) the vertex set

and E(G) the edge family of G. Although we sometimes have to restrict

our attention to simple graphs (in any simple graph there is at most one

8



CHAPTER 1. INTRODUCTION

edge joining a given pair of vertices), we shall prove our results for general

graphs whenever possible. An edge v, w is said to join the vertices v and

w, and is again abbreviated to vw. The number of vertices in G is called

the order of G and the number of edges in G is called the size of G.

The order and size of G are denoted by p and q respectively, in other

word |V (G)| = p and |E(G)| = q. A graph is trivial if its vertex set is a

singleton.

Let G = (V,E) be a graph. Two vertices v1 and v2 are said to be

adjacent if there exists an edge e ∈ E ,e = v1, v2 ; v ∈ V . Two edges e1

and e2 are said to be adjacent if there exists a common vertex v on them.

Let v ∈ V , G = (V,E). The neighbors of v are the set of vertices that

are adjacent to v. Formally: N(v) = {u ∈ V : e ∈ E, e = u, v}.

The degree of a vertex v of a graph G is the number of edges incident

to the vertex, with loops counted twice. It is denoted by deg(v), that

means deg(v) = |N(v)|. The degree sequence of a graph is the sequence

formed by arranging the vertex degrees in non - increasing order.

A vertex of degree zero in G is called an isolated vertex and a vertex

of degree one is called a pendant vertex or a leaf. An edge e in a graph G

is called a pendant edge if it is incident with a pendant vertex. Note: in

any graph the sum of all the vertex-degrees is an even number - in fact,

twice the number of edges, since each edge contributes exactly 2 to the

sum. This result is called the handshaking lemma.

A graph G = (V,E) is a simple graph if G has no edges that are

self-loops and the set E(G) consists of distinct unordered pairs of distinct

elements of V (G). Thus every simple graph is a graph, but not every

9



CHAPTER 1. INTRODUCTION

graph is a simple graph, we will assume that every graph we discuss in

these notes is a simple graph and we will use the term graph to mean

simple graph. When a particular result holds in a more general setting,

we will state it explicitly.

A graph H is called a subgraph of G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). A subgraph H of a graph G is a proper subgraph of

G if either V (H) 6= V (G) or E(H) 6= E(G). A spanning subgraph of G

is a subgraph H of G with V (H) = V (G).

Much of graph theory involves ’walks’ of various kinds. A walk is a

sequence of vertices and edges v0, e1, v1, ..., vk−1, ek, vk, in which each edge

ei = vi−1vi. This walk goes from v0 to vk or ”connect” v0 with vk, the

length of walk is the number of its edges, and if v0 = vk the walk is closed.

The important types of walk are: the path is a walk, the trail is a walk

in which no edge is repeated, and the cycle is a non trivial closed trail in

which no vertex is repeated. Usually the path with n vertices is denoted

by Pn and the cycle with n vertices by Cn, the least cycle (when n = 3)

is called triangle. The path P6 and cycle C6 are shown in Figure 1.1.

Figure 1.1: The path and the cycle.

10



CHAPTER 1. INTRODUCTION

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there

is a bijection f : V1 −→ V2 that preserves the adjacency, i.e., uv ∈ E1, if

and only if, f(u)f(v) ∈ E2. The function f is then called an isomorphism

between G1 and G2. If G1 and G2 are isomorphic,then we write G1
∼= G2,

the two graphs G1 and G2 shown in Figure 1.2 are isomorphic.

Figure 1.2: A two isomorphic graphs.

Clearly ”if two graphs are isomorphic then they have, same number

of vertices, same number of edges and umber of vertices” having same

degree is equal.

A graph is said to be connected if for every pair of distinct vertices

u, v there is a u, · · · , v path joining them. A graph that is not connected

is called disconnected, a maximal connected subgraph of a disconnected

graph is called a component of the graph and every connected graph has

exactly one component, in other words, a graph is connected if it cannot

be expressed as the union of two graphs, and disconnected otherwise.

Each one of the two graphs G1 and G2 shown in Figure 1.2 is connected.

11
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1.2.1 Some Types of Graphs

This subsection presents the definitions for some types of graphs that we

may remember or study in this work.

A Null graph is a graph with n vertices and has no edge. A graph in

which all the vertices have equal degree is called a regular graph. If for

every vertex v of graph G, d(v) = k for some k ∈ N, then G is k−regular

graph [14]. The null graph is 0 − regular graph and every cycle Cn is a

2−regular graph with n vertices.

A complete graph G = (V,E) on n vertices has n vertices and for each

pair of vertices u, v; uv ∈ E(G). That means in the complete graph with

n vertices every two of which are adjacent, then: |E (G)| =
1

2
n(n − 1).

A complete graph on n vertices is denoted by Kn . Note that Kn is

(n− 1)− regular and the null graph with one vertex is K1.

A graph G = (V,E) is said to be bipartite if the vertex set can be

partitioned into two disjoint subsets V1 and V2 such that for every edge

ei = vivj ∈ E, vi ∈ V1 and vj ∈ V2. Figure 1.3 shows the bipartite graph.

Notice the vertices set of bipartite graph contain at least two vertices and

at least one edge.

Figure 1.3: The bipartite graph.
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We can also define n−partite graphs as: A graph G = (V,E) is called

n− partite graph if the vertex set V can be partitioned into n nonempty

sets V1, V2, ..., Vn such that every edge of G joins the vertices from different

subsets. It is often called a multipartite graph.

The complete bipartite graph Km,n is the bipartite graph whose vertex

set is partitioned into two non-empty disjoint sets V1 and V2 with |V1| = m

and |V2| = n, and any vertex in V1 is adjacent to each vertex in V2, and

any two distinct vertices in Vi are not adjacent to each other. The number

of edges in complete bipartite graph Km,n is mn. If m = n, then Kn,n is

n− regular. When m = 1 then K1,n is called the star graph.

An n−partite graph G is called complete n−partite if for each i 6= j,

each vertex of the subset Vi is adjacent to every vertex of the subset Vj.

A complete n − partite graph with n partitions of vertex set is denoted

by Km1,m2,...,mn .

A graph is said to be planar if there exists some geometric representa-

tion of G which can be drawn on a plane such that no any two of its edges

intersect. A graph that cannot be drawn on a plane without a crossover

between its edges is called non-planar graph. A simple planar graph is

called maximal planar if no edge can be added without destroying its

planarity [6].

A planar graph is outerplanar if it can be embedded in the plane

so that all its vertices lie on the same ”face”. An outerplanar graph is

maximal if no edge can be added without losing outerplanarity [6].

A graph which does not contain any cycle is known an acyclic graph

and if it includes exactly one cycle it is called a unicyclic graph [4].

13
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A forest is a graph that contains no cycles, and a connected forest is a

tree [48]. For a tree T of order n, T is connected, has no cycles, and has

n − 1 edges [48]. A star graph with n vertices is a tree with one vertex

having degree n− 1 and other n− 1 vertices having degree 1 and denoted

by Sn−1. There are many types of trees we will discuss some of them in

chapter five.

A cycle passing through all the vertices of a graph is called Hamil-

tonian graphs. A graph containing a Hamiltonian cycle is called

Hamiltonian graphs. A path passing through all the vertices of a graph

is called Hamiltonian path and a graph containing Hamiltonian path is

said to be semi-Hamiltonian.

Define the general form of Petersen graph as: the graph

P (k,m) = (V,E) where V = {ui, vi : i = 1, 2, ..., k − 1} and

E = {uiui+l, vivi+m, uivi : i = 0, 1, ..., k − 1} where addition is modulo k

and m <
1

2
k [15]. The Petersen graph P (5, 2) which shown as G1 in

Figure 1.2 consider the stander Petersen graph.

For a graph G = (V,E) define the line graph, denoted by L(G), as the

graph with vertices consisting of the edges of G, that is V (L(G)) = E(G),

and where e, é ∈ V (L(G)) are adjacent in L(G) if, and only if, they are

adjacent in G [2].

Let G = (V,E) be a graph, the graph complement of G is the graph

Gc = (V,Ec) so that: Ec = {uv : u, v ∈ V and u 6= v and uv /∈ E} [2].

A graph is said to be self complement if G ∼= Gc. The complement of

complete graph Kn is the null graph with n vertices.

14
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Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. It is said that G1

and G2 are disjoint if they have no vertex in common and edge disjoint

if they have no edge in common.

1.2.2 Operations on Graphs

There are several ways to get new graphs from old. Briefly described

some of these operations in this subsection:

The disconnected graph G = (V,E), where V = V1 ∪ V2 and

E = E1 ∪ E2 is called the union of G1 and G2 and is denoted by

G1 ∪ G2 [14]. The union of k graphs isomorphic to G is denoted

by kG [4]. The one point union of t cycles, each of length n is denoted

by C(t) n is called the friendship graph.

If V 1∩ V 2 = V , then the graph G = (V,E), where V = V 1∩ V 2 and

E = E1 ∩ E2 is called the intersection of G1 and G2 and is denoted by

G1 ∩G2.

If G1 and G2 are disjoint graphs, then the join of G1 and G2 is

denoted by G1 + G2 and is defined as V (G1 + G2) = V1 ∪ V2 and

E(G1 +G2) = E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}

The Cartesian product G×H has vertex-set V (G)×V (H), and (vi, wj)

is adjacent to (vh, wk) if either vi is adjacent to vh in G and wj = wk,

or vi = vh and wj is adjacent to wk in H. The ladder graph Ln is the

Cartesian product of the paths Pn and P2, i.e. Ln = Pn�P2. Figure 1.4

shows some operation on graphs.
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Figure 1.4: Some operations on graphs

The corona G1 �G2 of two graphs G1 and G2 is defined as the graph

obtained by taking one copy of G1 (of V1 vertices) and V1 copies of G2

and then joining the ith vertex of G1 to all the vertices in the ith copy of

G2.
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Chapter 2

On Difference Cordial Graphs

In this chapter we introduce some results in difference cordial graphs

and the difference cordial labeling for some families of graphs as: ladder,

triangular ladder, grid, step ladder and two sided step ladder graph. Also

we discussed some families of graphs which may be difference cordial or

not, such as diagonal ladder graphs and some types of one-point union of

graphs.

2.1 Introduction

In this chapter we will deal with finite, simple and undirected graphs.

By the expression G = (V,E) we mean a simple undirected graph with

vertex set V , |V | is called the order of graph and edge set E, |E| is called

its size. Graph labeling connects many branches of mathematics and

is considered one of important blocks of graph theory, for more details

see [14].

17
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Cordial labeling was first introduced in 1987 by Cahit [8], then there was

a major effort in this area made this topic growing steadily and widely,

see [12].

In [23] Ponraj, Shathish Naraynan and Kala introduce the notions of

difference cordial labeling for finite undirected and simple graph, as in

the following definition:

Definition 1. Let G = (V,E) be a (p, q) graph, and f be a map from

V (G) to 1, 2, ..., p. For each edge uv assign the label |f(v)− f(u)|,

f is called a difference cordial labeling if f is one to one map and

|ef (0)− ef (1)| ≤ 1 where ef (1) denotes the number of edges labeled

with 1 while ef (0) denotes the number of edges not labeled with 1.

A graph with a difference cordial labeling is called a difference cordial

graph [23].

Ponraj et al. show every graph is a subgraph of a difference cordial

graph and any r−regular graph with r ≥ 4 is not difference cordial graph,

every path and cycle are difference cordial graphs, the star graph K1,n is

difference cordial if and only if n ≤ 5, the graph Kn is difference cordial

only when n ≤ 4 while the bipartite graph Km,n is not difference cordial if

m ≥ 4 and n ≥ 4, the bistar Bm,n is not difference cordial when m+n ≥ 9

but the wheel Wn, the fan Fn, the gear Gn, the helm Hn and all webs are

difference cordial graphs for all n [23].

In [24] the authors investigated the difference cordial labeling behavior

of G � Pn, G � mK1 (m = 1, 2, 3) where G is either unicyclic or a tree

and G1�G2 are some more standard graphs. Some graphs obtained from
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triangular snake and quadrilateral snake were investigated with respect to

the difference cordial labeling behavior. Also the behavior of subdivision

of some snake graphs is investigated in [24].

Proposition 2.1. If G is a (p, q) difference cordial graph, then

q ≤ 2p− 1 [23].

Definition 2. The number δ(G) = min {d(v) | v ∈ V } is the minimum

degree of the vertices in the graph G, the number

∆(G) = max {d(v) | v ∈ V } is the maximum degree of the vertices in

the graph G, the number d(G) = 1
|V |
∑
v∈V

d(v) is the average degree of the

vertices in the graph G [10].

Definition 3. A fan graph is obtained by joining all vertices of a path Pn

to a further vertex, called the center. Thus Fn contains n + 1 vertices

say c, v1, v2, v3, ..., vn and 2n − 1 edges, say cvi, 1 ≤ i ≤ n, and,

vivi+1, 1 ≤ i ≤ n− 1.

Notation 2.2. The maximum number of edges labeled 1, that is related

with a specific vertex, equals 2.

2.2 Main Results

Proposition 2.3. The graph G(p, q) is not difference cordial graph if

δ(G) ≥ 4.

Proof. Let G(p, q) be any graph with δ(G) ≥ 4; then, the minimum value

of q is 2p; but 2p > 2p− 1, this contradicts proposition 2.1.
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Proposition 2.4. The graph G(p, q) is not difference cordial if d(G) ≥ 4.

Proof. Let G(p, q) be any graph with d(G) ≥ 4; then the value of q

is more than or equal to 2p, but 2p 6≤ 2p − 1, which is contradicts

Proposition 2.1.

Remark 2.5. The value of ef (0) is not exceeding p in any difference

cordial graph G(p, q).

Proof. Direct consequence of Proposition 2.1.

Proposition 2.6. Let G(p, q) be a graph with two vertices of degree

(p− 1), then G is not difference cordial for all p ≥ 8.

Proof. Let G(p, q) be a graph with p vertices, p ≥ 8 and has two vertices

vi, vj of degree (p− 1) then there are 2p− 3 different edges incident with

them, If there are more than two additional edges then G is not difference

cordial since q 6≤ 2p − 1. If there are only two additional edges then

q = 2p− 1, then we have two cases:

Case 1: the edge connecting vi and vj is labeled 0, then there are

at most 6 edges are labeled 1: two passing through vi, two are passing

through vj and the two additional edges.

in this case

|2p− 7− 6| = |2p− 13| ≥ 2 where p ≥ 8

i.e., G is not difference cordial.

Case 2: the edge connecting vi and vj are labeled 1, then there are at

most 5 edges labeled 1: one passing through vi and vj, two edges are: one
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is incident with vi and other is incident with vj and the two additional

edges. In this case

|2p− 6− 5| = |2p− 11| ≥ 2 where p ≥ 7

i.e., G is not difference cordial.

In case there is one additional edge, other than those incident with

vi,vj, similar argument is used.

Example 2.7. deg(V8) = 7 , deg(V7) = 7

Figure 2.1: The graph G = (8, 15)

notice: G cannot be a difference cordial graph.

Proposition 2.8. Let G(p, q) be any graph with two vertices of degrees

(p− 1) and (p− 2); then G is not a difference cordial graph for all p ≥ 9.

Proof. Similar to the proof of Proposition 2.6.

Example 2.9. In Figure 2.2

deg(V8) = 7, deg(V9) = 8, G cannot be a difference cordial graph.
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Figure 2.2: The graph G = (9, 17)

In [25] theorem 2.14, R. Ponraj, S. Sathish Narayanan and R. Kala

state that, Let G be a (p, q) difference cordial graph with k(k > 1) vertices

of degree p− 1. Then p ≤ 7. However:

Corollary 2.10. The graph G(p, q) is not a difference cordial graph if

there exist three vertices of degree (p− 1) for all p ≥ 6.

Proof. Let G(p, q) be a graph with three of its vertices of degree p − 1

then there exist at least 3p − 6 edges in the graph, by proposition 2.1 if

the graph is a difference cordial graph then

3p− 6 ≤ 2p− 1

A contradiction when p ≥ 6.

Example 2.11. In Figure 2.3

12 6≤ 2 ∗ 6− 1 and G cannot be a difference cordial graph.
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Figure 2.3: The graph G = (6, 12)

Proposition 2.12. Let G be a (p, q) graph with one vertex of degree

(p− 1) then G is not a difference cordial if there exists a set of non

adjacent vertices S with
∑

vi∈S(deg(vi)− 3) ≥ 4.

Proof. Let G be a (p, q) graph with p vertices and have a vertex vk

of degree p − 1 and there exists a set of non adjacent vertices S with∑
vi∈S(deg(vi) − 3) ≥ 4. Then there are at least p − 3 edges passing

through vk are labeled 0, hence ef (0) ≥ p− 3 + 4 = p + 1 , i.e., G is not

a difference cordial graph.

Example 2.13. In the Figure 2.4

n = 17 , q = 32, deg(v) = 16

S = {v1, v3, v5, v7} then∑
vi∈S(deg(vi)− 3) = 1 + 1 + 1 + 1 = 4

there are at least 4 + 14 = 18 edges labeled 0, then the graph is not

difference cordial.
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Figure 2.4: The flower graph Fl8

Proposition 2.14. Let G be a (p, q) graph then G is not difference

cordial graph if there exists a set of non adjacent vertices S with∑
v∈S(deg(v)− 2) = p+ 1.

Proof. Let S be a set of non adjacent vertices with∑
vi∈S(deg(vi)−2) = p+1. Since the maximum number of edges labeled 1

that are incident with a specific vertex equals 2, then the number of edges

labeled 0 that are incident with vertices of S are at least
∑

vi∈S(deg(vi)−2)

this means the minimum value for ef (0) in the graph G is p+ 1, therefor

the graph cannot be difference cordial.

Proposition 2.15. The complement graph of a difference cordial graph is

not difference cordial when the number of its vertices is more than eight.

Proof. Let G be a (p, q) difference cordial graph with p ≥ 9, then by

Proposition 2.6 :

q ≤ 2p− 1 (2.1)
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Gc, the complement of graph G contains 1
2
p(p − 1) − q edges and p

vertices, let Gc be difference cordial then

1

2
p(p− 1)− q ≤ 2p− 1 (2.2)

by adding equation 2.1 and equation 2.2 we get

1

2
p(p− 1) ≤ 4p− 2p2 − 9p ≤ −4

A contradiction for all p ≥ 9

2.3 Difference cordial labeling for Some

graphs

In This section we will discuss the ability of applying difference cordial

labeling for some graphs and the functions which make it difference cordial

graphs.

The Proposition 2.1 consider necessary condition for difference cordial

labeling but it is not sufficient.

2.3.1 Ladder graphs Ln

The ladder graph is a planner undirected graph denoted by Ln with 2n

vertices and 3n− 2 edges [14]. The ladder graph Ln can be expressed as

Ln
∼= Pn × P2, the Figure 2.5 show the ladder graph Ln
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Figure 2.5: The Ladder Graph Ln

Proposition 2.16. Every ladder graph Ln is difference cordial for all n.

Proof. Let Ln be a ladder graph, then it has 2n vertices and 3n−2 edges.

Let the vertices be v1, v2, ..., v2n such that vnvn+1 is an edge in this graph.

Define the mapping f : Ln −→ {1, 2, ..., 2n} by:

f(vi) =



i if 1 ≤ i ≤
⌈
1
2 |E|

⌉
3
⌈
1
2 |E|

⌉
+
⌈
1
2n
⌉
+ 2− 2i if

⌈
1
2 |E|

⌉
< i ≤

⌈
1
2 |E|

⌉
+
⌈
1
4n
⌉

2(i− n)− 1 if
⌈
1
2 |E|

⌉
+
⌈
1
4n
⌉
< i ≤ 2n and n is odd

2(i− n) if
⌈
1
2 |E|

⌉
+
⌈
1
4n
⌉
< i ≤ 2n and n is even


From the first part of definition notice that there are

⌈
1
2
|E|
⌉
− 1 of

edges are labelled 1, in the second part we notice that:

|f(vi+1)− f(vi)| =
∣∣∣∣3⌈12 |E|

⌉
+

⌈
1

2
n

⌉
+ 2− 2(i+ 1)− 3

⌈
1

2
|E|
⌉
−
⌈
1

2
n

⌉
− 2 + 2i

∣∣∣∣
= 2
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so

∣∣f(vi)− f(v2n−(i+1)
∣∣ =

∣∣∣∣3⌈1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 2− 2i− 2n+ (i+ 1)

∣∣∣∣
=

∣∣∣∣3⌈1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 3− i− 2n

∣∣∣∣
=

∣∣∣∣3⌈1

2
(3n− 2)

⌉
+

⌈
1

2
n

⌉
+ 3− i− 2n

∣∣∣∣
= |3n− i| > 1

which means all these edges are labelled 0.

In the third part of definition we notice when n is even:

|f(vi+1)− f(vi)| = |2(i+ 1− n)− 2(i− n)| = 2

and

∣∣f(vi)− f(v2n−(i+1))
∣∣ = |2(i− n)− 2n+ (i+ 1)| = |3i− 4n|

>

∣∣∣∣3(

⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉
)− 4i

∣∣∣∣
>

∣∣∣∣3(

⌈
1

2
(3n− 2)

⌉
+

⌈
1

4
n

⌉
)− 4n

∣∣∣∣
>

∣∣∣∣12n+ 3

⌈
1

4
n

⌉
− 3

∣∣∣∣
>


|5m− 3| if n = 4m

|5m+ 1| if n = 4m


> 2
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this means all the edges viv2n−(i+1) in this third part are labeled 0.

But if n is an even number then the number of the total edges of the

ladder Ln is even and thus there must exist additional edge labeled 1,

which we may get it from the label of the last vertex in part two and the

first label in part three.

Notice that if i =
⌈
1
2
|E|
⌉

+
⌈
1
4
n
⌉

then

f(vd 12 |E|e+d 14ne) = 3

⌈
1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 2− 2

(⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉)
(2.3)

and if i =
⌈
1
2
|E|
⌉

+
⌈
1
4
n
⌉

+ 1, then

f(vd 12 |E|e+d 14ne+1) = 2

(
(

⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉
+ 1)− n

)
(2.4)

by subtracting ( 2.4 ) from ( 2.3 ) we get:

f(vd 12 |E|e+d 14ne)− f(vd 12 |E|e+d 14ne+1)

= 3

⌈
1

2
|E|
⌉

+

⌈
1

2
n

⌉
+ 2− 2

(⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉)
− 2

(
(

⌈
1

2
|E|
⌉

+

⌈
1

4
n

⌉
+ 1)− n

)
= −

⌈
1

2
|E|
⌉

+
5

2
n− 4

⌈
1

4
n

⌉
= −

⌈
1

2
(3n− 2)

⌉
+

5

2
n− 4

⌈
1

4
n

⌉

=
−3

2
n+ 1 +

5

2
n− 4

⌈
1

4
n

⌉
= n+ 1− 4

⌈
1

4
n

⌉
=

 1 if n = 4m

−1 if n = 4m+ 2


thus the edge vd 12 |E|e+d 14nevd 12 |E|e+d 14ne+1 is labelled 1, then the graph is

difference cordial.

Now if n is an odd number then |E| is an odd number and then from

the first part we get
⌊
1
2
|E|
⌋

edges are labeled 1 and all other edges in the
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second and third part are labelled 0, similarly when n is even, and

f(vd 12 |E|e+d 14ne)− f(vd 12 |E|e+d 14ne+1)

= 3

⌈
1

2
|E|
⌉
+

⌈
1

2
n

⌉
+ 2− 2

(⌈
1

2
|E|
⌉
+

⌈
1

4
n

⌉)
− 2

(
(

⌈
1

2
|E|
⌉
+

⌈
1

4
n

⌉
+ 1)− n

)
+ 1

= −
⌈
1

2
|E|
⌉
+

⌈
1

2
n

⌉
− 4

⌈
1

4
n

⌉
+ 2n− 1

= −
⌈
1

2
(3n− 2)

⌉
+

⌈
1

2
n

⌉
− 4

⌈
1

4
n

⌉
+ 2n− 1

=



−
⌈
1
2(3(4m+ 1)− 2)

⌉
+
⌈
1
2(4m+ 1)

⌉
−4
⌈
1
4(4m+ 1)

⌉
+ 2(4m+ 1)− 1 ifn = 4m+ 1

−
⌈
1
2(3(4m+ 3)− 2)

⌉
+
⌈
1
2(4m+ 3)

⌉
−4
⌈
1
4(4m+ 3)

⌉
+ 2(4m+ 3)− 1 ifn = 4m+ 3


=

 0 if n = 4m+ 1

1 if n = 4m+ 3


then

ef (1) = ef (0) if n is even

ef (1) = ef (0)− 1 if n is odd & n = 4m+ 1

ef (1) = ef (0) + 1 if n is odd & n = 4m+ 3

Hence G is difference cordial.
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Example 2.17. Consider the graph L10

n = 10, |E| = 28,
⌈
1
2
|E|
⌉

= 14,
⌈
1
2
n
⌉

= 5,
⌈
1
4
n
⌉

= 3 then:

f(vi) =


i if 1 ≤ i ≤ 14

49− 2i if 14 < i ≤ 17

2(i− 10) if 17 < i ≤ 20



f(v1) = 1, f(v2) = 2, · · · , f(v14) = 14, f(v15) = 19,

f(v16) = 17, f(v17) = 15, f(v18) = 16, f(v19) = 18, f(v20) = 20.

Figure 2.6: Ladder Graph L10

ef (0) = 14, ef (1) = 14

Example 2.18. Consider the graph L11

n = 11, |E| = 31,
⌈
1
2
|E|
⌉

= 16,
⌈
1
2
n
⌉

= 6,
⌈
1
4
n
⌉

= 3,

then

f(vi) =


i if 1 ≤ i ≤ 16

56− 2i if 16 < i ≤ 19

2(i− n)− 1 if 19 < i ≤ 22


f(v1) = 1, f(v2) = 2, · · · , f(v16) = 16, f(v17) = 22,

f(v18) = 20, f(v19) = 18, f(v20) = 17, f(v21) = 19, f(v22) = 21.
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Figure 2.7: Ladder Graph L11

ef (0) = 15, ef (1) = 16

2.3.2 Triangular ladder graph TLn

A triangular ladder TLn, n ≥ 2, is a graph obtained from the ladder Ln

= Pn × P2 by adding the edges uivi+1for1 ≤ i ≤ n − 1, such graph has

2n vertices with 4n− 3 edges, the triangular ladder graph TLn is shown

in the Figure 2.8.

Figure 2.8: Triangle Ladder Graph TLn

Proposition 2.19. The triangular ladder graphs TLn, n ≥ 2 are

difference cordial graph for all n.

Proof. Let G = TLn, n ≥ 2 be a triangular ladder graph, then

G = (2n, 4n− 3). Define the function

f(vi) = 2i− 1 and f(ui) = 2i, 1 ≤ i ≤ n (2.5)
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It is clear that ef (1) = 2n− 1

hence ef (0) = (4n− 3)− (2n− 1) = 2n− 2, then |ef (0)− ef (0)| = 1,

thus G = TLn, n ≥ 2 are difference cordial graphs for all n.

Example 2.20. Consider the graphs TL6 and TL7

Figure 2.9: A difference cordial labeling for TL6

Figure 2.10: A difference cordial labeling for TL7

2.3.3 The Grid graph Pm × Pn

In this subsection we will investigate the difference cordial labeling

for every grid graph of the form Pm × Pn for all m,n. Let the vertices

of the grid graph be arranged as a sequence in certain order as in the

Figure 2.11

This kind of graphs contains mn vertices and 2mn− (m+ n) edges.
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Figure 2.11: The grid graph Pm × Pn

Proposition 2.21. Every grid graph is Pm × Pn is a difference cordial

graph for all integers m,n > 1.

Proof. Let G be a graph Pm × Pn then G = (mn, 2mn− (m+ n))

Case 1: If m = n

then |V | = n2 and |E| = 2(n2 − n), define the function f for labeling

vertices of G by:

f(vij) = (i− 1)n+ j

in each row of the grid graph there exist n − 1 edges labelled 1 this

leads to ef (1) = n(n− 1) and the number of edges labelled 0 is equal to:

2n(n− 1)− n(n− 1) = n(n− 1),

thus G is a difference cordial graph.
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Case 2: If |m− n| = 1, then |V | = mn and |E| = 2mn− (m+ n).

Let n = m+ 1 then |E| = 2m2 − 1.

Now using the same functions in Case 1 we will get

ef (1) = m(n− 1) = m(m+ 1− 1) = m2

and

ef (0) = (m− 1)(m+ 1) = m2 − 1

which means the graph is a difference cordial graph. Similarly if

m = n+ 1

Case 3: If |m− n| ≥ 2.

Let n > m and let k =
⌈
1
2
(n−m)

⌉
we define the mapping:

f(vij) =


(j − 1)m+ i if 1 ≤ j ≤ k

k (m− 1) + n (i− 1) + j if j = k + 1, ..., n


It follows that:

ef (1) = k(m− 1) +m(n− k − 1)

= mn− (m+ k)
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and

ef (0) = 2mn− (m+ n)−mn+ (m+ k)

= mn− (n− k)

so

|ef (0)− ef (1)| = |mn− n+ k −mn+m+ k|

= |−n+ 2k +m|

=

 0 if n−mis even

1 if n−m is odd


Similarly if m > n we apply the same mapping but replacing i by j

and m by n, i.e.:

k =
⌈
1
2
(m− n)

⌉
and:

f(vij) =


(i− 1)n+ j if 1 ≤ i ≤ k

k (n− 1) +m (j − 1) + i if i = k + 1, ...,m


Hence the grid graph Pm × Pn is a difference cordial graph for all

m,n.

Example 2.22. Let Pm × Pn = P4 × P3

n = 3, m = 4, |V | = 12, |E| = 17

f(vij) = 3(i− 1) + j

ef (1) = 8, ef (0) = 9.
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Figure 2.12: A difference cordial labeling for grid graph P4 × P3

Example 2.23. Let Pm × Pn = P5 × P8

n = 8, m = 5, |V | = 40, |E| = 67, k = 2, then

f(vij) =

 5(j − 1) + j 1 ≤ j ≤ 2

2(5− i) + 8(i− 1) + j j > 2



Figure 2.13: A difference cordial labeling for grid graph P5 × P8

ef (0) = 34, ef (1) = 33
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2.3.4 Step ladder graph S(Tn):

Definition 4. Let Pn be a path on n vertices denoted by

(1, 1), (1, 2), ..., (1, n) and n − 1 edges denoted by e1, e2, ..., en−1 where

ei is the edge joining the vertices (1, i) and (1, i + 1). On each edge

ei, i = 1, 2, . . . , n−1 we erect a ladder with n− (i−1) steps including the

edge ei. The graph obtained is called a step ladder graph and is denoted

by S(Tn), where n denotes the number of vertices in the base.

The Figure 4.2 shows the step ladder graph:

Figure 2.14: The step ladder graph S(Tn).

The number of vertices and edges in the step ladder graph S(Tn) are:

|V | = 2 + 3 + 4 + ...+ n+ n

=
1

2
n(n+ 1) + (n− 1)

=
n2 + 3n− 2

2
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|E| = 2(|V | − n)

= n(n+ 1)− 2

We notice for all step ladder graphs that i+ j ≤ n+ 2

Proposition 2.24. Every step ladder graph S(Tn) is a difference cordial

graph for all n.

Proof. Let S(Tn) be a step ladder graph then

|E| = n(n+ 1)− 2 = n2 + n− 2

Define the function:

f : V (S(Tn)) −→ {1, 2, ..., 1
2
n(n+ 1) + (n− 1)} by:

f(vij) =


j + (i− 1)n 1 ≤ i ≤ 3

j + (i− 1)n− 1
2
(i− 3)(i− 2) i ≥ 4



ef (1) = (3n− 4) + (n− 3) + (n− 4) + (n− 5) + ...+ 3 + 2 + 1

= (n− 1) + (n− 1) + (n− 2) + (n− 3) + ...+ 2 + 1

= (n− 1) +
1

2
n(n− 1)

=
1

2
(n2 + n− 2),

then ef (1) = 1
2
|E| which means |ef (1)− ef (0)| = 0
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Therefor S(Tn) is a difference cordial graph for all n

Example 2.25. In the following figure the difference cordial labeling for

S(T12) graph.

Figure 2.15: Difference cordial labeling for the step ladder graph S(T12)

2.3.5 Double Sided Step Ladder Graph 2S(T2n):

Definition 5. Let P2n be a path of length 2n − 1 with 2n vertices

(1, 1), (1, 2), ..., (1, 2n) with (2n − 1) edges, e1, e2, ..., e2n−1, where ei

is the edge joining the vertices (1, i) and (1, i + 1). On each edge

ei, for i = 1, 2, ..., n, we erect a ladder with (i + 1) steps includ-

ing the edge eiand on each edge ei, for i = n + 1, n + 2, ..., 2n −

1, we erect a ladder with 2n + 1 − i steps including the edge ei.
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The double sided step ladder graph 2S(T2n) has vertices denoted by:

(1, 1), (1, 2), ..., (1, 2n), (2, 1), (2, 2), ..., (2, 2n), (3, 2), (3, 3), ...,

(3, 2n− 1), (4, 3), (4, 4), ..., (4, 2n− 2), ..., (n+ 1, n), (n+ 1, n+ 1). In the

ordered pair (i, j), i denotes the row number (counted from bottom to top)

and j denotes the column number (from left to right) in which the vertex

occurs.

The figure 2.16 show the 2S(T10)

Figure 2.16: Double sided step ladder graph 2S(T10)

Proposition 2.26. The double sided step ladder graph 2S(Tm) is a

difference cordial graph for all m, where m = 2n denotes the number

of vertices in the base.

Proof. Let G = (V,E) be the double sided step ladder graph 2S(Tm)

where m = 2n, then

|V | = n2 + 3n and |E| = 2n2 + 3n− 1
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Define f : V −→ 1, 2, ..., n2 + 3n by:

f(vi,j) =



u if i = 1 and j ≤
⌈
1
2
n
⌉

j + 2n(i− 1) if i = 1 and j ≥
⌈
1
2
n
⌉

+ 1

j + 2n(i− 1) if i = 2

j + 2n(i− 1)− (i− 1)2 if i = 3, 4, ..., n+ 1


where

u =



2j(mod
⌈
1
2n
⌉
+ 1) if n = 3 or n ≡ 0 (mod 4)

2j(mod
⌈
1
2n
⌉
+ 1) +

⌊
2j

d 12ne+1

⌋
if n ≡ 1, 2(mod 4)

(2j − 1)(mod
⌈
1
2n
⌉
+ 1) + 2

⌊
2j

d 12ne+1

⌋
if n ≡ 3(mod 4)


from the last three parts of the definition of f we will get

n2 + 2n −
⌈
1
2
n
⌉
− 1 edges give are labeled 1, while in the first part all

edges are labeled 0 except when
⌈
1
2
n
⌉
≤ 4 we will get an edge is labeled

1 since 1 ≤ u ≤ 3

Case 1:

If n = 2 then ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 + 1 = 7 and ef (0) = 6,

if n = 3 then ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 + 1 = 13 and ef (0) = 13,
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if n = 4 then ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 + 1 = 22 and ef (0) = 21 and

if n = 5 then ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 + 1 = 32 and ef (0) = 32.

Case 2:

If n ≡ 0 (mod 4) then n = 4k for some positive integer number k and⌈
1
2
n
⌉

= 2k, then |E| = 2(4k)2 + 3(4k)− 1 = 32k2 + 12k − 1

and

f(v1d 12ne) = 2

⌈
1

2
n

⌉
(mod (

⌈
1

2
n

⌉
+ 1))

= (2 ∗ 2k) (mod (2k + 1)) = 4k (mod (2k + 1))

= 2k − 1

while f(v1d 12ne+1) =
⌈
1
2
n
⌉

+ 1 = 2k + 1,

thus the label of the edge v1d 12nev1d 12ne+1 will be included in ef (0),

therefor ef (1) = n2+2n−
⌈
1
2
n
⌉
−1 = 16k2+8k−2k−1 = 16k2+6k−1

and

ef (0) = |E| − ef (1) = 32k2 + 12k − 1− 16k2 − 6k + 1 = 16k2 + 6k

we get |ef (0)− ef (1)| = 1

Case 3:

If n ≡ 1 (mod 4) then, n = 4k + 1 for some positive integer number k

and
⌈
1
2
n
⌉

= 2k + 1 then

|E| = 2(4k + 1)2 + 3(4k + 1)− 1 = 32k2 + 28k + 4, and
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f(v1 d 12ne) = 2(

⌈
1

2
n

⌉
)(mod(

⌈
1

2
n

⌉
+ 1)) +

⌊
2
⌈
1
2
n
⌉⌈

1
2
n
⌉

+ 1

⌋

= 2(2k + 1)(mod (2k + 2)) +

⌊
2 d2k + 1e
d2k + 1e+ 1

⌋
= (4k + 2) (mod (2k + 2)) + 1

= 2k + 1

while f(v1 d 12ne+1) =
⌈
1
2
n
⌉

+ 1 = 2k + 2,

thus the label of the edge v1 d 12nev1 d 12ne+1 will be included in ef (1),

therefor ef (1) = n2 + 2n−
⌈
1
2
n
⌉
− 1 + 1 = (4k+ 1)2 + 2(4k+ 1)− 2k−

1 − 1 + 1 = 16k2 + 14k + 2 and ef (0) = |E| − ef (1) = 32k2 + 28k + 4 −

16k2 − 14k − 2 = 16k2 + 14k + 2

we get |ef (0)− ef (1)| = 0

Case 4:

If n ≡ 2 (mod 4) then n = 4k + 2 for some positive integer number k

and
⌈
1
2
n
⌉

= 2k+1 then |E| = 2(4k+2)2 +3(4k+2)−1 = 32k2 +44k+13

and

f(v1d 12ne) = (2

⌈
1

2
n

⌉
)(mod

⌈
1

2
n

⌉
+ 1) +

⌊
2
⌈
1
2
n
⌉⌈

1
2
n
⌉

+ 1

⌋

= 2(2k + 1)(mod(2k + 2) +

⌊
2 d2k + 1e
d2k + 1e+ 1

⌋
= (4k + 2)(mod(2k + 2)) + 1

= 2k + 1
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while f(v1 d 12ne+1) =
⌈
1
2
n
⌉

+ 1 = 2k + 2,

thus the label of the edge v1 d 12nev1d 12ne+1 will included in ef (1),

therefore

ef (1) = n2 + 2n−
⌈

1

2
n

⌉
− 1 + 1

= (4k + 2)2 + 2(4k + 2)− 2k − 1− 1 + 1

= 16k2 + 22k + 7

and

ef (0) = |E| − ef (1)

= 32k2 + 44k + 13− 16k2 − 22k − 7

= 16k2 + 22k + 6

we get |ef (0)− ef (1)| = 1

Case 5:

If n ≡ 3(mod 4), n = 4k + 3 for some positive integer number k and⌈
1
2
n
⌉

= 2k + 2, then

|E| = 2(4k + 3)2 + 3(4k + 3)− 1 = 32k2 + 60k + 26

and
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f(v1 d 12ne) = (2

⌈
1

2
n

⌉
− 1) (mod (

⌈
1

2
n

⌉
+ 1)) + 2

⌊
2
⌈
1
2
n
⌉
− 1⌈

1
2
n
⌉

+ 1

⌋

= (2(2k + 2)− 1) (mod (2k + 3)) + 2

⌊
2 d2k + 1e − 1

d2k + 1e+ 1

⌋
= (4k + 3) (mod (2k + 3)) + 2

= 2k + 2,

while f(v1 d 12ne+1) =
⌈
1
2
n
⌉

+ 1 = 2k + 3,

thus the label of the edge v1 d 12nev1 d 12ne+1 will be included in ef (1),

therefor

ef (1) = n2 + 2n−
⌈

1

2
n

⌉
− 1 + 1

= (4k + 3)2 + 2(4k + 3)− 2k − 2− 1 + 1

= 16k2 + 30k + 13

and

ef (0) = |E| − ef (1)

= 32k2 + 60k + 26− 16k2 − 30k − 13

= 16k2 + 30k + 13

we get |ef (0)− ef (1)| = 0.
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From the cases 1, 2, 3, 4 and 5 we conclude that the double sided step

ladder graph 2S(T2n) is a difference cordial graph for all integer number

n

We discuss here some types of graphs not always difference cordial

such as diagonal ladder graph, diagonal grid graph and friendship graph.

Diagonal ladder graph is a ladder with additional edges uivi+1 and

ui+1vi, denoted by DLn, where n is half its vertices and the number of its

edges is 5n− 4

Corollary 2.27. The diagonal ladder graphs are difference cordial if

n ≤ 3.

Proof. Let the graph G be the diagonal ladder graph DLn with 2n vertices

that means there are 5n − 4 edges in G, G is a difference cordial graph.

Then by proposition 2.6 we get,

5n− 4 ≤ 2(2n)− 1

n ≤ 3

then the diagonal ladder graph is difference cordial when n = 2 or

n = 3

Example 2.28 shows that DL2 and DL3 are difference cordial.
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Example 2.28. The following are labeling for the diagonal ladder graphs

DL2, DL3

Figure 2.17: The difference cordial labelings for the diagonal ladder
graphs DL2 and DL3.

The graph Pm × Pn with diagonal edges is called diagonal

grid graph and denoted by D(Pm × Pn). It has mn vertices and

2(2mn+ 1)− 3(m+ n) edges.

Remark 2.29. Diagonal grid graph Pm × Pn are not difference cordial

graphs for both m,n ≥ 3

Proof. Let G = D (Pm × Pn), from Proposition 2.1 if G is a difference

cordial graph then q ≤ 2p− 1. Let m = n = 3, then

q = 2(2mn+ 1)− 3(m+ n)

= 2(2 · 3 · 3 + 1)− 3(3 + 3)

= 20 
 17

then D (Pm × Pn) cannot be a difference cordial graph for both

m,n ≥ 3.
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This is consistent with corollary 2.27 since diagonal ladder graphs are

diagonal grid graphs.

Another type of graphs will be discussed here named one-point

union fan graph, where a graph G in which a vertex distinguished from

other vertices is called a rooted graph and the vertex is called the root of

G. Let G be a rooted graph, the Graph G(n) obtained by identifying the

roots of n copies of G is called a one-point union of the n copies of G.

Proposition 2.30. The fan graph Fn is difference cordial for all n.[23]

Proposition 2.31. The one-point union F
(m)
n of m copies of a fan Fn is

difference cordial for all n and for m ≤ 5.

Proof. Let G = F
(m)
n , then |V (G)| = mn + 1 and |E(G)| = m(2n − 1).

These vertices are : the central vertex is denoted by v00 and the other

vertices are denoted by vi j, 1 ≤ i ≤ n and 1 ≤ j ≤ m, as in the

Figure 2.18.

Figure 2.18: The graph F
(m)
n .
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For each copy of a fan Fn there are n − 1 edges labeled 1, therefore

there are m(n − 1) + 2, edges are labeled 1 in F
(m)
n where the central

vertex is labeled 1 (modn) but is neither 1 nor mn+ 1 then

ef (0) = m(2n− 1)−m(n− 1)− 2 = mn− 2

Now

|ef (0)− ef (1)|

= |mn− 2−m(n− 1)− 2|

= |m− 4|

then |ef (0)− ef (1)| ≥ 2 for all m ≥ 6.

We define the mapping f for m ≤ 5 and n ∈ N by

f(v0 0) ≡ 1(modn) and f(v0 0) 6= 1,mn+ 1

and

f(vi j) =


(j − 1)n+ i if (j − 1)n+ i < f(v0 0)

(j − 1)n+ i+ 1 if (j − 1)n+ i > f(v0 0)


for all i, j; 1 ≤ i ≤ n, 1 ≤ j ≤ m.

As a special case, the friendship graph denotes by F
(m)
2 consists of

one vertex union with m copies of paths P2 consisting of 2m+ 1 vertices

and 3m edges as shown in Figure 2.19
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Figure 2.19: The friendship graph F5.

Therefore the friendship graph F
(m)
2 is difference cordial iff m ≤ 5.
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Chapter 3

Some Results and Examples

on Difference Cordial Graphs

In this chapter we introduce some results on difference cordial graphs

and describe the difference cordial labeling for some families of graphs.

3.1 Introduction

Through this chapter we will deal with finite simple undirected graphs.

By G = (V,E) we mean a finite undirected graph with p vertices and q

edges where p = |V | and q = |E|. For standard terminology and notations

we follow Harary [14], and for more details of labeling see [12]

R. Ponraj, S. Sathish Narayanan and R. Kala[25], firstly, introduced

the concept of difference cordial labeling in 2013. After that, they

introduced many concepts and studied some types of graphs that have

this kind of labeling such as: path, cycle, complete graph, complete
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bipartite graph, bistar, wheel, web, sunflower graph, lotus inside a circle,

pyramid, permutation graph, book with n pentagonal pages, t−fold,

wheel, double fan and some more standard graphs have been investigated

in [23, 24, 25, 26, 27]. Within this area M. A.Seoud and Shakir M. Salman

introduced some results and investigated some difference cordial graphs:

ladder, step ladder,two sided step ladder,diagonal ladder,triangular lad-

der, grid graph and some types of one-point union graphs[34]

Definition 6. [14] The line graph L(G) of a graph G has a vertex for

each edge of G, and two of these vertices are adjacent if and only if the

corresponding edges in G have a common vertex.

Definition 7. [14] A planar graph is outerplanar if it can be embedded

in the plane so that all its vertices lie on the same face; we usually choose

this face to be exterior. An outerplanar graph G is maximal outerplanar

if no line can be added without losing outerplanarity.

The maximal outerplanar graph is denoted by MOG in this thesis.

The MOG has the following propositionerties:

Lemma 3.1. [14] Let G be an MOG with n vertices;n ≥ 3, then:

1. there are 2n− 3 edges, in which there are n− 3 chords;

2. there are n− 2 inner faces and each inner face is triangular;

3. there are at least two vertices with degree 2;

4. connectivity of G, k(G) is equal to 2.
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Definition 8. [2] Let G = (V,E) be a graph and u ∈ V a vertex of G.

The open neighborhood of u or just the neighborhood of u, denoted by

NG(u) or just N(u), is the set of all of the neighbors of u in G. Likewise,

the closed neighborhood of u, denoted by NG[u] or just N [u], is the set of

neighbors of u together with u itself.

Definition 9. [43] Duplication of a vertex vi by a new edge e = v
′
iv

′′
i in

a graph G produces a new graph G
′

such that N(v
′
i) ∩N(v

′′
i ) = {vi}.

Definition 10. [9] A shell graph is defined as a cycle Cn with

(n − 3) chords sharing a common end point called the apex, shell graphs

are denoted as C(n, n− 3).

Definition 11. [42] A bow graph is defined to be a double shell in which

each shell has any order.

Definition 12. [42] Define a Butterfly graph as a bow graph with exactly

two pendent edges at the apex.

Definition 13. [12] Define the shell-flower graph as k copies of the union

of the shell C(n, n − 3) and K2 where one end vertex of K2 is joined to

the apex of the shell. Figure 3.7 shows this type of graphs.

3.2 Some Results

Proposition 3.2. The graph G = (V,E) is difference cordial if and only

if there exist some disjoint paths, such that their total length is more than

or equal to
⌊
1
2
|E|
⌋
.
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Proof. Let G = (V,E) be a difference cordial graph with a mapping

f , then |ef (1)− ef (0)| ≤ 1, i.e., ef (1) − 1 ≤ ef (0) ≤ ef (1) + 1 and

ef (1) + ef (0) = |E|.

If |E| is even, then ef (1) = ef (0) and ef (1) = 1
2
|E|, this means 1

2
|E| edges

join the vertices labeled i, i+ 1.Then there are some paths such that, the

sum of their lengths is 1
2
|E| which is more than or equal to

⌊
1
2
|E|
⌋
.

If |E| is odd, then ef (1) = ef (0) + 1 or ef (1) = ef (0) − 1,

if ef (1) = ef (0) + 1, then ef (1) =
⌈
1
2
|E|
⌉
, thus there are

⌈
1
2
|E|
⌉

edges

join the vertices labeled i, i+1; in other words, there are some paths such

that, the sum of their lengths is more than or equal to
⌊
1
2
|E|
⌋
.

If ef (1) = ef (0)−1, then ef (1) =
⌊
1
2
|E|
⌋
, thus there are

⌊
1
2
|E|
⌋

edges

join the vertices labeled i, i+ 1, this means the existence of some disjoint

paths, as above, the sum of their lengths is more than or equal to
⌊
1
2
|E|
⌋
.

Thus, if G = (V,E) is a difference cordial graph, then there exist some

disjoint paths, the sum of their lengths is more than or equal to
⌊
1
2
|E|
⌋
.

It is necessary that the paths are disjoint otherwise there are three paths

having a common vertex, which is impossible, since if this common vertex

has the label x, two of the adjacent vertices should have the labels x− 1,

x+1. But the third vertex can’t take either x−1 or x+1, but something

else.

Suppose there exist some disjoint paths, the sum of their lengths is

more than or equal to
⌊
1
2
|E|
⌋

on the graph G = (V,E). If there is only

one such path and we labeled its vertices by i, i + 1, ...,
⌊
1
2
|E|
⌋
, then all

edges of this path are labeled 1.
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If there are two disjoint paths their lengths are k and h where k+h is

more than or equal to
⌊
1
2
|E|
⌋
, then we label these paths by j, j+1, ..., j+k

and t, t + 1, ..., t + h, respectively, hence there are k + h edges labeled 1,

continue this procedure with all paths.

Then G = (V,E) is difference cordial.

Proposition 3.3. If the graph G = (V,E) is semi-Hamiltonian, then G is

a difference cordial graph if and only if the length of the semi-Hamiltonian

path is more than or equal to
⌊
1
2
|E|
⌋
.

Proof. Let G be a (p, q) graph containing a semi-Hamiltonian path where

q = |E|, and let G be a difference cordial graph, since G contains a semi-

Hamiltonian path, we can label it such that ef (1) = p− 1 and according

to Proposition 2.1;

q ≤ 2p− 1 =⇒ p− 1 >

⌊
1

2
q

⌋
− 1

G is difference cordial implies the length of the semi-Hamiltonian path

is more than or equal to
⌊
1
2
|E|
⌋
.

Suppose G contains a semi-Hamiltonian path whose length is more

than or equal to
⌊
1
2
|E|
⌋
, then G is difference cordial by Proposition 3.2.

Proposition 3.4. Every connected graph G(p, q) with q = 2p − 1 is

difference cordial if and only if G is semi-Hamiltonian.
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Proof. Let G(p, q) be undirected simple connected with q = 2p− 1.

Suppose G is a difference cordial graph then there exists labeling f

such that |ef (1)− ef (0)| ≤ 1. From Proposition 3.2 there is a path with

length at least p−1, but by [42] the maximum length is p−1, then this path

must pass through all vertices of graph G, i.e., G is semi-Hamiltonian.

If G is a semi-Hamiltonian graph, we label the vertices on a semi-

Hamiltonian path by a sequence of integers 1, 2, ..., p we will get p−1 edges

labeled 1 and the other edges are labeled 0, this means G is difference

cordial.

Corollary 3.5. The Peterson graph is difference cordial.

Proof. Direct consequence of Proposition 3.3.

Proposition 3.6. Every biconnected outerplanar graph is a difference

cordial graph.

Proof. Let G (p, q) be a biconnected outerplanar graph, then G is a

Hamiltonian graph thus there is a semi-Hamiltonian path in G.

Case 1: If G is a maximal outerplanar graph, then q = 2p − 3 thus

q ≤ 2p − 1 and we label the vertices in this path by a sequence

of integer numbers so we get p − 1 of edges labeled 1, and other

edges will be labeled 0, thus ef (0) = p − 2, means G is difference

cordial.

Case 2: If G is not a maximal outerplanar graph, then q ≤ 2p − 3; thus

q ≤ 2p − 1, then the semi-Hamiltonian path is of length p − 1,
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which is more than
⌊
1
2
q
⌋
, then by Proposition 3.3, G is difference

cordial.

Then from Case 1 and Case 2 every biconnected outerplanar graph is

difference cordial.

Example 3.7. The following outerplanar graphs with their difference

cordial labeling are shown in Figure 3.1 and Figure 3.2 respectively,

p = 12 , q = 21 and ef (0) = 10, ef (1) = 11

Figure 3.1: A difference cordial labeling for the maximal outerplanar
graph with 12 vertices.

Figure 3.2: An outerplanar graph with 12 vertices and 20 edges.

p = 12 , q = 20 and ef (0) = 10, ef (1) = 10.
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Proposition 3.8. 1. The line graph L(G) for any graph G with

δ(G) ≥ 3 cannot be difference cordial.

2. The line graph L(G) for any graph G with d(G) ≥ 3 cannot be

difference cordial.

Proof. 1. Let G(p, q) be a simple undirected graph with δ(G) ≥ 3, and

L(G) its line graph.

The number of vertices on L(G) is equal to q, each of these edges in

L(G) has on its ends two vertices with degree more than or equal

to 3, then the vertex corresponding with this edge in the line graph

L(G) will be of degree more than 4, then L(G) is a graph with

δ(G) ≥ 4 then by Proposition 2.3, it cannot be difference cordial.

2. It follows directly from 1.

Remark 3.9. The union of two disjoint difference cordial graphs need

not be difference cordial.

Proof. Let G1(p1, q1) and G2(p2, q2) be two disjoint difference cordial

graphs, where f1 and f2 are their labelings, then |ef1(0)− ef1(1)| ≤ 1 and

|ef2(0)− ef2(1)| ≤ 1.

Since if ef1(0) = ef1(1) + 1, and ef2(0) = ef2(1) + 1, and G1, G1 are

disjoint graphs, then G1 ∪ G2 has q = q1 + q2 and p = p1 + p2, then

ef1(0) + ef2(0) = ef1(1) + ef2(1) + 2, hence G1 ∪ G2 is not difference

cordial.
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Example 3.10. The following two disjoint difference cordial graphs are

shown in Figure 3.3.

Figure 3.3: Two disjoint difference cordial graphs.

3.3 Difference Cordial Labeling for Some

Families of Graphs

In this section we introduce difference cordial labeling for some types

of graphs.

3.3.1 Graph Obtained by Duplication of Vertex by

an Edge

Here we discuss only the graph obtained by duplication of each vertex

of Cn by an edge.

Proposition 3.11. The graph obtained by duplication of each vertex of

Cn by an edge is difference cordial.
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Proof. Let v1, v2, ..., vn be the vertices of the cycle Cn and G be the graph

obtained by duplication of each vertex vi of the cycle Cn by an edge uiui+1

(1 ≤ i ≤ n).

Then V (G) = V (Cn) ∪ {u1, u2, ..., u2n} and

E(G) = E(Cn)∪{u2i−1vi, u2ivi, u2iu2i−1; 1 ≤ i ≤ n}, then V (G) = 3n and

E(G) = 4n.

Define the mapping f : V (G) −→ {1, 2, ..., 3n} by:

f(ui) = i & f(vi) =

 i+ 1 + 2n , i 6= n

2n+ 1 , i = n


From the definition of f(ui) there are n edges labeled 1 and from

f(vi) there are n − 1 edges labeled 1, also the edge u2nvn is labeled 1,

then ef (1) = 2n and G is a difference cordial graph.

Example 3.12. The graph obtained by duplication of vertex of C7 by an

edge with its difference cordial labeling is shown in Figure 3.4:

Figure 3.4: The difference cordial labeling for the graph obtained by
duplication of vertex of C7 by an edge.

60



CHAPTER 3. SOME RESULTS AND EXAMPLES ON
DIFFERENCE CORDIAL GRAPHS

3.3.2 Bow Graphs

The bow graph G(p, q) could be described as follows: In graph G, the

shell that is present to the left of the apex is called the left wing and the

shell that is present to the right of the apex and it is considered as the

right wing.

Figure 3.5 shows the bow graph with shells of orders m and n

excluding the apex.

Proposition 3.13. All bow graphs are difference cordial.

Proof. Let G be a bow graph with two shells of orders m and n excluding

the apex. Then, the number of vertices in G is p = m + n + 1 and the

number of edges q = 2(m+n−1). The apex of the bow graph is denoted

by v0, denote the vertices in the right wing of the bow graph from bottom

to top by v1, v2, ..., vm, and the vertices in the left wing of the bow graph

are denoted from top to bottom by vm+1, vm+2, ..., vm+n.

Define the mapping of labeling

f : V −→ {1, 2, ...,m+ n+ 1} by:

f(vi) =

 i , i 6= 0

m+ n+ 1 , i = 0


From the above definition we see there are m− 1 edges labeled 1 and

m edges labeled 0 in the right wing of the bow graph, also there are n

edges labeled 1 and n − 1 edges labeled 0 in the left wing of the bow

graph. Then |ef (1)| = |ef (0)| = m+n− 1, which implies the bow graph

is difference cordial.
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Example 3.14. The bow graph G with two wings having m,n vertices

respectively, with its difference cordial labeling is shown in Figure 3.5.

Figure 3.5: The bow graph with m + n + 1 vertices and its difference
cordial labeling.

3.3.3 Butterfly Graphs

Proposition 3.15. The butterfly graphs are difference cordial.

Proof. Let G be a butterfly graph with shells of orders m and n excluding

the apex, then the number of vertices in G is p = m+n+3 and the number

of edges q = 2(m+ n). The apex of the butterfly graph is denoted as v0,

denote the vertices in the right wing of the butterfly graph from bottom

to top by v1, v2, ..., vm, the vertices in the left wing of the butterfly graph

are denoted from top to bottom by vm+1, vm+2, ..., vm+n, and the pendant

vertices in the pendant edges are denoted by vm+n+1, vm+n+2.

Define the mapping of labeling f : V −→ {1, 2, ...,m+ n+ 3} by:

f(vi) =


i , 1 ≤ i ≤ n+m

m+ n+ 1 , i = 0

i+ 1 , n+m < i ≤ n+m+ 2
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From the above definition we see there are m− 1 edges labeled 1 and

m edges labeled 0 in the right wing of the bow graph, also there are n

edges labeled 1 and n− 1 edges labeled 0 in the left wing of the butterfly

graph, while the pendant edges are labeled 1 and 0.

Then |ef (1)| = |ef (0)| = m+ n, which implies the butterfly graph is

difference cordial.

Example 3.16. The butterfly graph G with two wings having m,n

vertices respectively, and its difference cordial labeling is shown in

Figure 3.6.

Figure 3.6: A difference cordial labeling for the butterfly graphs.

3.3.4 Shell-Flower Graphs

From the definition of the shell-flower graph it contains k copies of the

shell C(n, n − 3) and k copies of K2 where one vertex of K2 is joined to

the apex of the shell and each shell in the shell-flower graph is called a

petal, hence it consists of k petals and k pendant edges.

Proposition 3.17. The shell-flower graph cannot be difference cordial

when k ≥ 3 for all n.
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Proof. Let G(p, q) be the shell-flower graph with k petals in each one

C(n, n− 3), and then p = nk + 1, and q = 2k(n− 1) as in Figure 3.7.

Figure 3.7: A shell-flower graph with k petals.

The apex vertex has degree p − 1, then for any labeling of vertices

there are at least p − 3 = nk − 2 edges labeled 0 but the number of the

total other edges is:

2k(n− 1)− nk + 2

= (nk − 2) + (4− 2k),

assume all these edges are labeled as 1. Then for all k ≥ 3,

ef (0) ≥ ef (1) + 2. Hence the shell-flower graph is not difference cordial

for all k ≥ 3.

Example 3.18. The shell-flower graph with two petals C(9, 6) is shown

in Figure 3.8.
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Figure 3.8: A difference cordial labeling for the shell-flower graph with
two petals.

3.3.5 One-Point Union of Complete Graphs

In this subsection we discuss the difference cordial labeling of the one-

point union of m complete graphs Kn of order n, as in Figure 3.9.

Figure 3.9: The graph K
(2)
5 .
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Proposition 3.19. Let K
(m)
n be the one-point union of m complete graphs

Kn.

1. K
(m)
2 is difference cordial when m ≤ 5.

2. K
(m)
3 is difference cordial when m ≤ 5.

3. K
(m)
4 is difference cordial when m ≤ 2.

4. K
(m)
n is not difference cordial for all n ≥ 5.

Proof. 1. K
(m)
2 is star graph from [37] it is difference cordial when

m ≤ 5.

2. K
(m)
3 is friendship graph from [37] it is difference cordial when m ≤

5.

3. Let G = K
(m)
4 , then G has 3m+1 vertices and 6m edges, so there is

one vertex say v0 adjacent with all other vertices in G, so the graph

G−v0 consists of m components each component is a triangle which

consists of at most 2 edges labeled 1 and at least one edge labeled

0, i.e., there are at most 2m edges labeled 1 and at least m edges

labeled 0. But v0 is adjacent with all other vertices, hence its degree

is 3m, then G contains at least 4m− 2 edges labeled 0 and at most

2m+ 2 edges labeled 1 and we have:

ef (0)− ef (1) ≥ (4m− 2)− (2m+ 2)

≥ 2m− 4
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If m ≥ 3 then ef (0)− ef (1) ≥ 2,thus K
(m)
4 is not difference cordial

for all m ≥ 3.

4. In graph K
(m)
n ,δ(K

(m)
n ) ≥ 4 when n ≥ 5, then by Proposition 2.3,

K
(m)
n is not difference cordial.
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Chapter 4

Some Results on Divisor

Cordial Graphs

In this chapter we introduce some results on divisor cordial graphs and

describe the divisor cordial labeling for some families of graphs.

4.1 Introduction

In this chapter by a graph, we mean a finite, undirected graph

without loops and multiple edges, for terms not defined here, we refer to

Harary [14] . Graph labeling, mean that the vertices and edges are

assigned real values or subsets of a set, subject to certain conditions.

For a dynamic survey on various graph labeling problems we refer to

Gallian [12]. The concept of cordial labeling was introduced by Cahit

[8], in [46], Varatharajan et al. introduce the concept of divisor cordial

labeling of graph. The divisor cordial labeling of various types of graphs
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are presented in [29, 18, 22, 19, 20, 45, 44, 46, 47]. The brief summaries of

Definitions which are necessary for the present investigation are provided

below. For standard terminology and notations related to number theory

we refer to Burton [7].

Definition 14. [46] Let G = (V (G), E(G)) be a simple graph and

f : V (G) −→ {1, 2, ..., |V (G)|} be a bijection. For each edge uv, assign the

label 1 if f(u)|f(v) or f(v)|f(u) and the label 0 otherwise. The function

f is called a divisor cordial labeling if |ef (0)− ef (1)| ≤ 1. A graph with a

divisor cordial labeling is called a divisor cordial graph.

Definition 15. [14] The neighborhood of a vertex u is the set Nu(G)

consisting of all vertices v which are adjacent with u. The closed

neighborhood is Nu[G] = Nu(G)
⋃
{u}.

Definition 16. [17] The Jelly fish graph J(m,n) is obtained from a

4 − cycle v1, v2, v3, v4 by joining v1 and v3 with an edge and appending

m pendent edges to v2 and n pendent edges to v4.

Definition 17. [9] A shell graph is defined as a cycle Cn with

(n − 3) chords sharing a common end point called the apex, shell graphs

are denoted as C(n, n− 3).

Definition 18. [42] A bow graph is defined to be a double shell in which

each shell has any order.

Definition 19. [9] Define a Butterfly graph as a bow graph with exactly

two pendent edges at the apex.
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4.2 The Results

Proposition 4.1. For any simple graph G(p, q), the maximum value of

ef (1) is 4(G) +
b p2c∑
i=2

(
⌊
p
i

⌋
− 1), where p ≥ 4 .

Proof. Let G(p, q) be a simple connected graph and let the vertex vk be

of maximum degree 4(G), if we labeled this vertex by 1 then we will

achieve 4(G) edges labeled 1, and from division algorithm the maximum

number of the multiples of labels of vertices are:

for 2 is bp
2
c − 1,

for 3 is bp
3
c − 1,

for 4 is bp
4
c − 1,

.

.

.

for bp
2
c is b p

b p
2
cc − 1 which must equal 1

hence the maximum value for ef (1) equals 4(G) +
b p2c∑
i=2

(
⌊
p
i

⌋
− 1) in any

graph G(p, q).

Corollary 4.2. For each r−regular graph the maximum value of ef (1) is

kr +
b p2c∑

i=k+1

(
⌊
p
i

⌋
− 1); where k = b p

r+1
c and p ≥ 4 .

Proof. Let G(p, q) be an r − regular graph then 4(G) = r, and for each

vertex v in graph G the maximum number of edges that label 1 in Nv(G)

is r, hence for all i in which bp
i
c − 1 ≥ r we reduced it to r.

But from Proposition 4.1 the maximum value of ef (1) is
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4(G) +
b p2c∑
i=2

(
⌊
p
i

⌋
− 1), then the maximum value in an r − regular graph

is:

= r +
k∑

i=2

(r) +

b p2c∑
i=k+1

(
⌊p
i

⌋
− 1)

= r + (k − 1)r +

b p2c∑
i=k+1

(
⌊p
i

⌋
− 1)

= kr +

b p2c∑
i=k+1

(
⌊p
i

⌋
− 1)

Proposition 4.3. For any divisor Cordial graph G(p, q),

q ≤ 2(4(G) +
b p2c∑
i=3

⌊
p
i

⌋
) + 3, where p ≥ 6 .

Proof. Let G(p, q) be a divisor cordial graph, then |ef (0) − ef (1)| ≤ 1,

means ef (0) = ef (1)− 1 or ef (0) = ef (1) or ef (0) = ef (1) + 1,

by proposition 4.1,

q ≤ 2ef (1) + 1

q ≤ 2(M G+

b p2c∑
i=2

(
⌊p
i

⌋
− 1)) + 1

q ≤ 2(M G+

b p2c∑
i=3

(
⌊p
i

⌋
)) + 3
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4.3 Divisor Cordial Labeling for Some Fam-

ilies of Graphs

In this section we introduce the divisor cordial labeling for some types

of graphs.

4.3.1 The Jelly Fish Graph

Proposition 4.4. For m,n ≥ 1, Jelly fish graph J(m,n) is a divisor

cordial graph.

Proof. Let G(V,E) = J(m,n). Then G has (m + n + 4) vertices and

(m+ n+ 5) edges.

Without losing of generality, Let m ≤ n. Let V (G) = V1 ∪ V2 where

V1 = {x, u, y, v}, V2 = {ui, vj; 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E = E1 ∪ E2,

where E1 = {xu, uy, yv, vx, xy}, E2 = {uui, vvj; 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Define f : V → {1, 2, ..., (m+ n+ 4)} as follows:

f(u) = 1, f(v) = 2, f(x) = m+ n+ 4, f(y) = m+ n+ 3 and

f(ui) = 2(i+ 1); i = 1, 2, ...,m ,

f(vi) =

 2i+ 1 , i = 1, 2, ...,m

i+m+ 2 , i = m+ 1,m+ 2, ..., n

From the function f there are m + 2 edges labeled 1 sice f(u) = 1,

and since f(V ) = 2 there are exactly b1
2
(n−m)c of pendent edges from v

labeled 1 and only one from vx or vy. means ef (1) = m+ 3 + b1
2
(n−m)c

and
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ef (0) = m+ n+ 5− (m+ 3 + b1
2

(n−m)c)

= n+ 2− b1
2

(n−m)c,

Case 1: m,n are odd

The |E| and bn−mc are even, hence, |ef (0)− ef (1)| = 1

Case 2: m,n are even

The |E| is odd and bn−mc is even, hence, |ef (0)− ef (1)| = 1

Case 3: m is odd and n is even

The |E| is even and bn−mc is odd, hence, |ef (0)− ef (1)| = 0

Case 4: m is odd and n is even

The |E| is even and bn−mc is odd, hence, |ef (0)− ef (1)| = 0

Then from Case 1, Case 2, Case 3 and Case 4 the jelly fish graph is

divisor cordial.

Example 4.5. The jelly fish graph j(6, 11) and its divisor cordial labeling

are shown in Figure4.1

Figure 4.1: A Jelly fish graph j(6, 11) and its divisor cordial labeling
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4.3.2 The shell and The Bow Graph

Proposition 4.6. Every shell graph is divisor cordial.

Proof. Let G = (V,E) be a C(n, n − 3) graph with |V | = n, then

|E| = 2n − 3 means |E| is an odd number, and let v0 be the apex and

v1, v2, ..., vn−1 other its vertices.

Define the labeling f : V −→ {1, 2, ..., n} as:

f(v0) = 2, f(v1) = 1 and other vertices by the following:

2 · 2, 2 · 22, · · · , 2 · 2k1 ,

3, 3 · 2, 3 · 22, · · · , 3 · 2k2 ,

5, 5 · 2, 5 · 22, · · · , 5 · 2k3 ,

· · · · · · · · · · · · · · · · · · ,

· · · · · · · · · · · · · · · · · · ,

In this labeling, there are dn−1
2
e edges label 1 passing through v0, but

other edges not passing through the apex make a path, hence there are

also bn−2
2
c edges are labeled 1. Hence, ef (1) = dn−1

2
e+ bn−2

2
c

Case 1: n is odd, then ef (1) = n−1
2

+ bn−2
2
c and ef (0) = n−1

2
+ dn−2

2
e

Case 2: n is even, then ef (1) = dn−1
2
e+ n−2

2
and ef (0) = bn−1

2
c+ n−2

2

In the two cases Case 1 and Case 2, the difference between ef (1) and

ef (0) is 1 which means the shell graph is divisor cordial.

Notice another divisor labeling for shell graph can found with fan

graphs [46]
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Example 4.7. The shell graph C(13, 10) and its divisor cordial labeling

are shown in Figure 4.2

Figure 4.2: A shell graph C(13, 10) and its divisor cordial labeling

Proposition 4.8. All bow graphs are divisor cordial.

Proof. Let G be a bow graph with two shells of orders m and n excluding

the apex. Then the number of vertices in G is p = m + n + 1 and the

edges q = 2(m + n − 1). The apex of the bow graph is denoted by v0,

denote the vertices in the right wing of the bow graph from bottom to

top by v1, v2, ..., vm, and the vertices in the left wing of the bow graph

are denoted from top to bottom by vm+1, vm+2, ..., vm+n. Without lose of

generality suppose m ≤ n.

Define the labeling f : V −→ {1, 2, ...,m+ n+ 1} by:

f(v0) = 2, f(v1) = 1 and label the vertices of the wings by the following:
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2 · 2, 2 · 22, · · · , 2 · 2k1 ,

3, 3 · 2, 3 · 22, · · · , 3 · 2k2 ,

5, 5 · 2, 5 · 22, · · · , 5 · 2k3 ,

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

where (2m − 1) · 2km ≤ n and m ≥ 1, km ≥ 0. We observe that

(2m−1) ·2a divides (2m−1) ·2b(a < b) and (2m−1) ·2ki does not divide

2m+ 1.

Let G′ be a graph obtained from the bow graph G by adding the edge

vmvm+1.

The graph G′ has an odd number of edges and it is a shell graph, then

by Proposition 4.6 the graph G′ is divisor cordial. The graph G = G′ −

vmvm+1 with even edges, then G is divisor cordial since:

Case 1: If m + n is even, then ef (0) = ef (1) + 1 hence the deleted edge

vmvm+1 must be labeled 0.

Subcase i: If f(vm) = (2t−1)·2ki for some i, then the deleted edge vmvm+1

is labeled 0.

Subcase ii: If f(vm) 6= (2t− 1) · 2ki for some i, then we will shift the labels

of vertices v2, v3, ..., vm+n−l in the wings, by l where l is the

smallest integer satisfying f(vm+1) = (2t−1)·2ki for some i, and

shift the labels of the vertices vm+n−l+1, vm+n−l+2, ..., vm+n , by

l + 1 and take it modulo (m+ n).
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Case 2: If m + n is odd, then ef (1) = ef (0) + 1 hence the deleted edge

vmvm+1 must be labeled 1.

Subcase i: If f(vm) = (2t− 1) · 2ki for some i, then we will shift the labels

of vertices v2, v3, ..., vm+n−1 in the wings, by one step and shift

the label of vertex vm+n by two and take it modulo (m+ n).

Subcase ii: If f(vm) 6= (2t − 1) · 2ki for some i, then the edge vmvm+1 is

labeled 1.

Then the bow graph G with two wings of m and n vertices is a divisor

cordial graph for each m and n.

Example 4.9. The bow graph with two wings of 13 and 16 vertices

respectively and its divisor cordial labeling are shown in Figure 4.3

Figure 4.3: A bow graph with m = 13, n = 16 and its divisor cordial
labeling
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4.3.3 Butterfly Graphs

Proposition 4.10. The butterfly graphs are divisor cordial.

Proof. Let G be a butterfly graph with shells of orders m and n excluding

the apex then the number of vertices in G is p = m+n+ 3 and the edges

q = 2(m + n). The apex of the butterfly graph is denoted as v0,denote

the vertices in the right wing of the butterfly graph from bottom to top

as v1, v2, ..., vm, the vertices in the left wing of the butterfly graph are

denoted from top to bottom as vm+1, vm+2, ..., vm+n, and the vertices in

the pendant edges are vm+n+1, vm+n+2.

Since the butterfly defined as a bow graph with exactly two pendent edges

at the apex,then we define the labeling f : V −→ {1, 2, ...,m+n+ 3} by:

f(v0) = 2, f(v1) = 1, f(vm+n+1) = m + n + 2, f(vm+n+2) = m + n + 3

and labeled the vertices of the wings by the following:

2 · 2, 2 · 22, · · · , 2 · 2k1 ,

3, 3 · 2, 3 · 22, · · · , 3 · 2k2 ,

5, 5 · 2, 5 · 22, · · · , 5 · 2k3 ,

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

and we make the shift as in Proposition 4.8, for labeling of the vertices

in the wings.

Since the only one of the numbers m+ n+ 2 or m+ n+ 3 must be even

then the pendent edges will be labeled 1 and 0, hence the graph G is

divisor cordial.
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Example 4.11. The butterfly graph G with two wings having m = 9,

n = 15 vertices respectively, and its divisor cordial labeling is shown in

Figure 4.4.

Figure 4.4: A divisor cordial labeling for the butterfly with 29 vertices

4.3.4 Friendship Graphs

The friendship graph Fn is a graph that can be constructed by

coalescence n copies of the cycle graph C3 of length 3 with a common

vertex. The friendship graph Fn is isomorphic to the windmill graph

Wd(3, n) [12]. The Friendship Theorem states that graphs with the

property that every two vertices have exactly one neighbour in common

are exactly the friendship graphs [11]
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Proposition 4.12. The friendship graphs are divisor cordial.

Proof. Let G(p, q) be a friendship graph Fn then the number of vertices

in G is p = 2n+ 1 and q = 3n edges.

Define f : V → {1, 2, ..., (2n+ 1)} as follows:

f(v0) = 2, f(v1) = 1, f(v2) = 4, f(v2n) = 2n+ 1 and

f(vi) =


i , i = 3, 5, ..., 2n− 1

2(i− 1) , i = 4, 6, 8, ..., 2(dn
2
e+ 1)

4( i
2
− bn

2
c) , i = 2(dn

2
e+ 1), 2(dn

2
e+ 1) + 2, ..., 2n− 2

from definition of f there are n edges labeled 1 incident from the

central vertex, also, dn
2
e edges are labeled 1 on other edges of the

friendship Fn which are in the first dn
2
e triangles and all others edges

are labeled 0, then e1 = n+ dn
2
e and e0 = n+ bn

2
c, hence, the friendship

Fn is divisor cordial for all n.

Example 4.13. The friendship graph F6 and its divisor cordial labeling

are shown in Figure 4.5

Figure 4.5: A friendship graph F6 and its divisor cordial labeling.
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Chapter 5

Divisor Cordial Labeling for

Some Trees and Families of

Graphs

In this chapter, we introduce divisor cordial labelings for some types of

trees and some families of graphs.

5.1 Introduction

In this chapter by a graph, we mean a finite, undirected graph

without loops and multiple edges, for terms not defined here, we refer

to Harary[14]. Graph labeling, mean that the vertices and edges are

assigned real values or subsets of a set, subject to certain conditions.

For a dynamic survey on various graph labeling problems we refer to

Gallian [12]. The concept of cordial labeling was introduced by
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Cahit [8], in [46], Varatharajan et al. introduce the concept of divisor

cordial labeling of graph.

The divisor cordial labeling of various types of graphs are presented

in [29, 18, 22, 19, 20, 45, 44, 46, 47]. The brief summaries of definitions

which are necessary for the present investigation are provided below. For

standard terminology and notations related to number theory we refer to

Burton [7].

Definition 20. [31]An m−star has a single root node with any number

of paths of length m attached to it .

Definition 21. [3]A spider tree is a tree with at most one vertex of degree

greater than 2. If such a vertex exists, it is called the branch point of the

tree. A leg of a spider tree is any one of the paths from the branch points

to a leaf of the tree.

Definition 22. [21] A k−distant tree consists of a main path called the

spine, such that each vertex on the spine is joined by an edge to at most

one path on k−vertices. Those paths are called tails. When every vertex

on the spine has exactly one incident tail of length k, we call the tree a

uniform k−distant tree.

Definition 23. [1] An olive tree has a root node with k branches attached:

the ith branch has length i.

Definition 24. [16] Let G1, G2, ..., Gn be a family of disjoint stars. The

tree obtained by joining a new vertex a to one pendant vertex of each star

Gi is called a banana tree.
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5.2 The Results

Proposition 5.1. All simple connected graphs with number of vertices

less than eight are divisor cordial except K4.

Proof. In the following Figures: Figure 5.1, Figure 5.2 and Figure 5.3 We

Shown all nonisomorphic graphs of 4, 5 and 6 with their divisor cordial

graphs except K4 and in Appendix A we will show the graphs with 7

vertices.

Figure 5.1: A divisor cordial labeling for all connected graphs with four
vertices except K4

Figure 5.2: A divisor cordial labeling for all connected graphs with five
vertices.
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Figure 5.3: A divisor cordial labeling for all connected graphs with six
vertices.
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Proposition 5.2. Every r−regular graph with r > 6 is not divisor cordial

graph.

Proof. Let G(p, q) be an r−regular graph. The minimum number of edges

in r−regular graph with r > 6 is 28 in the complete graph K8, but from

the Proposition 4.1 the maximum value of ef (1) is kr +
b p2c∑

i=k+1

(
⌊
p
i

⌋
− 1);

where k = b p
r+1
c, that mean the maximum value of ef (1) in K8 is:

kr +

b p2c∑
i=k+1

(
⌊p
i

⌋
− 1), k =

⌊
8

8

⌋
= 1

= 7 +

b 82c∑
i=2

(

⌊
8

i

⌋
− 1)

= 7 + (

⌊
8

2

⌋
− 1) + (

⌊
8

3

⌋
− 1) + (

⌊
8

4

⌋
− 1)

= 12

We notice that: 1
2
· (28) � 12 + 1, which means the graph cannot be

divisor cordial. Thus all r− regular graphs with r more than 6 are not

divisor cordial.

5.3 Divisor Cordial Labeling for Some Trees

In this section we introduce the divisor cordial labeling for some types

of trees such as olive, spider, m− stars, banana and caterpillar tree.
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5.3.1 Olive Tree

Proposition 5.3. All olive trees are divisor cordial graphs.

Proof. Let oln be an olive tree of n branches, then the numbers of its edges

and vertices are |E| = n(n+1)
2

and |V | = |E| + 1, respectivly, denotes the

vertices as: v0, v1,1, v2,1, v2,2, v3,1, v3,2, v3,3, ..., vn,1, vn,2, ..., vn,n.

Figure 5.4: The olive tree oln

Define the labeling of vertices as: f(v0) = 2, f(v1,1) = 1 and label

the vertices vn,1, vn,2, ..., vn,n, vn−1,1, vn−1,2, ..., vn−1,n−1, vn−2,1, ..., v2,1, v2,2

by the numbers:

2 · 2, 2 · 22, · · · , 2 · 2k1 ,

3, 3 · 2, 3 · 22, · · · , 3 · 2k2 ,

5, 5 · 2, 5 · 22, · · · , 5 · 2k3 ,

· · · · · · · · · · · · · · · · · · ,

· · · · · · · · · · · · · · · · · · ,
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Where (2m − 1) · 2km ≤ n and m ≥ 1, km ≥ 0. We observe that

(2m − 1) · 2a divides (2m − 1) · 2b; (a < b) and (2m − 1) · 2ki does not

divide 2m+ 1.

We will discuss the labeles of the vertices vi,1 for the branches

n− 1, n− 2, ..., 2 in two cases :

Case 1: If f(vi,1) is odd then the edges v0vi,1 are labeled as 0

Case 2: If f(vi,1) is even then the edges v0vi,1 are labeled as 1

That mean the labelng is same as chain and hold |ef (0)− ef (1)| ≤ 1.

Example 5.4. The divisor cordial labeng of olive tree ol6 is shown in the

Figure 5.5.

Figure 5.5: A divisor cordial labeling for olive tree ol6
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5.3.2 Spider Tree

A tree is called a spider if it has a centeral vertex c with degree k > 1

while each of the other vertices is either a leaf or has degree 2. Thus, a

spider is an amalgamation of k paths with various lengths. If it has x1

paths with length a1, x2 paths with length a2, and so on, we denote the

spider by SP (ax1
1 , a

x2
2 , ..., a

xm
m ) where x1 + x2 + ... + xm = k, any one of

the paths from c to a leaf of T is called leg of the spider T . (see Figure

5.6).

Proposition 5.5. Spider Trees are divisor cordial graphs.

Proof. Let SP (ax1
1 , a

x2
2 , ..., a

xm
m ) be a spider tree. Define the labeling of

vertices by: label the center vertex as 2 and the leaf of the latest leg as 1

and proceeding with other vertices in this leg and other legs from long to

short in the same way as in olive tree (proof of Proposition 5.3).

Example 5.6. The divisor cordial labeling for the spider tree SP (42, 33),

shown in Figure 5.6

5.3.3 m-stars Tree

An m − star tree has a single root node with any number of paths of

length m such that each path attached to the root nod.

Proposition 5.7. All m− star trees are divisor cordial graphs.

Proof. Same as proof of Proposition 5.5

88



CHAPTER 5. DIVISOR CORDIAL LABELING FOR SOME
TREES AND FAMILIES OF GRAPHS

Figure 5.6: A divisor cordial labeling for spider tree

Example 5.8. The divisor cordial labeling for 4−star tree.

Figure 5.7: The 4−star graph and its divisor cordial labeling
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5.3.4 k-distant tree

A k−distant tree consists of a main path called the spine, such that each

vertex on the spine is joined by an edge to at most one path on k−vertices.

Those paths are called tails (i.e. each tail must be incident with a vertex

on the spine). When every vertex on the spine has exactly one incident

tail of length k, we call the tree a uniform k−distant tree. A uniform

k−distant tree with odd number of vertices is called a uniform k-distant

odd tree. A uniform k−distant tree with even number of vertices is called

a uniform k−distant even tree. See Figure 5.8

Conjecture 1. The uniform k−distant tree is divisor cordial.

Figure 5.8: A divisor cordial labeling for the k−distant tree

5.3.5 Caterpillar Tree

Definition 25. A caterpillar is a tree T such that for a maximum path

P , all vertices are of distance at most one from P . Figure 5.9
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Conjecture 2. All caterpillar trees are divisor cordial graphs.

Figure 5.9: Caterpillar tree

5.3.6 Banana Tree

A banana tree is constructed by bringing multiple stars together at a

single vertex by an edge from each one. Figure 5.10

Conjecture 3. Banana trees are divisior cordial graphs.

Figure 5.10: Banana tree
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Appendix A

All Nonisomorphic Graphs

with 7 Vertices and its Divisor

Cordial Graphs
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VERTICES AND ITS DIVISOR CORDIAL GRAPHS

Figure A.1: A divisor cordial labelin g for all connected graphs with
seven vertices

99



APPENDIX A. ALL NONISOMORPHIC GRAPHS WITH 7
VERTICES AND ITS DIVISOR CORDIAL GRAPHS

Figure A.2: A divisor cordial labeling for all connected graphs with
seven vertices
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Figure A.3: A divisor cordial labeling for all connected graphs with
seven vertices
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Figure A.4: A divisor cordial labeling for all connected graphs with
seven vertices

102


	Front Matter
	Acknowledgement

	ACKNOWLEDGMENT
	Abstract

	Abstract
	Table of Contents

	List of Figures
	Contents
	Summary
	1 Introduction
	1.1 Brief Introduction to Labeling
	1.2 Some Fundamentals in Graph Theory:
	1.2.1 Some Types of Graphs 
	1.2.2 Operations on Graphs


	2 On Difference Cordial Graphs
	2.1 Introduction
	2.2 Main Results
	2.3 Difference cordial labeling for Some graphs
	2.3.1 Ladder graphs Ln
	2.3.2  Triangular ladder graph TLn 
	2.3.3  The Grid graph PmPn 
	2.3.4 Step ladder graph S(Tn):
	2.3.5 Double Sided Step Ladder Graph 2S(T2n):


	3   Some Results and Examples on Difference Cordial Graphs
	3.1 Introduction
	3.2 Some Results
	3.3 Difference Cordial Labeling for Some Families of Graphs
	3.3.1 Graph Obtained by Duplication of Vertex by an Edge
	3.3.2 Bow Graphs
	3.3.3 Butterfly Graphs
	3.3.4 Shell-Flower Graphs
	3.3.5 One-Point Union of Complete Graphs


	4 Some Results on Divisor Cordial Graphs
	4.1 Introduction
	4.2 The Results
	4.3 Divisor Cordial Labeling for Some Families of Graphs
	4.3.1 The Jelly Fish Graph
	4.3.2 The shell and The Bow Graph
	4.3.3 Butterfly Graphs
	4.3.4 Friendship Graphs


	5 Divisor Cordial Labeling for Some Trees and Families of Graphs
	5.1 Introduction
	5.2 The Results
	5.3 Divisor Cordial Labeling for Some Trees
	5.3.1 Olive Tree
	5.3.2 Spider Tree
	5.3.3  m-stars Tree
	5.3.4 k-distant tree
	5.3.5 Caterpillar Tree
	5.3.6 Banana Tree


	A All Nonisomorphic Graphs with 7 Vertices and its Divisor Cordial Graphs

