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Abstract

This thesis is concerned with the study of unsteady flow of non-
Newtonian, viscous, incompressible fluid in a curved pipe with
rectangular cross-section, under the action of pressure gradient.
Consideration is given to two cases, wide and longitudinal
rectangular. An orthogonal coordinates system has been used to
describe the fluid motion for each case and it is found that the motion
equations are controlled by three parameters namely; Dean number,
non-Newtonian parameter and frequency parameter.

For each case, solution for the secondary flow and the axial
velocity are drived as perturbation over straight pipe. Firstly the
expansion was in terms of Dean number and secondly in terms of
frequency parameter. Perturbation equations are solved by using a
variational method namely, Galerkin's method after eliminating the
dependence on time for each case. The solutions have been developed
in Cartesian coordinates for harmonic and biharmonic equations. In
This study we covered the steady state for both cases under
consideration.

QBASIC language is used to make the numerical computations
of these solutions, while the MATLAB package is used to draw the
figures of stream function and axial velocity. Our study is ended with
studying the effect of the non —dimensional parameters mentioned
above on the secondary flow, the axial velocity and the flow in the

central plane.
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Introduction

Fluid mechanics is that branch of applied mathematics which
deals with behavior of fluid at rest and in motion. Fluid is that state of
matter which is capable of changing shape and is capable of flowing.
Each fluid characterized by an equation that relates stress to rate of

strain, known as "state equation ". Fluid may be classified as
"viscous" or "perfect” according to whether the fluid is capable of
exerting shear stress or not. Viscous fluid is called Newtonian if the
relation between stress and rate of strain, in state equation, is linear,
otherwise it is called non-Newtonian fluid.

Viscous flow through straight ducts of various cross-section
forms is well understood. The flow in a gently curved duct may be
considered as a modification of straight axial flow in which the effect
of centrifugal forces must be considered.

Dean, (1927),[7] is the first researcher who worked in flow
analysis of Newtonian fluids in curved pipes. He introduced a toroidal
coordinate system to show that the relation between pressure gradient
and the rate of flow through a curved pipe with circular cross-section
of incompressible Newtonian fluid is dependant on the curvature. In
that paper he could not show this dependence but he did it in his
second paper (1928),[8] where he modified his analysis by including
higher order terms to be able to show that the rate of flow is slightly
reduced by curvature.

Dean and Harst (1957),[10] obtained an approximate solution
of Newtonian fluid flow in a curved pipe with rectangular cross-

section assuming that the secondary motion is a uniformly stream



from inner to outer bend. They modeled the equations of motion by
using cylindrical coordinates. This assumption enabled them to obtain
Bessel’s function solution. They argued that the secondary motion
decreases the rate of flow produced by a given pressure gradient and
causes an outward movement at the region where the prime motion is
the greatest.

In his paper Jones (1960),[17] makes a theoretical analysis of
the flow of incompressible Non-Newtonian viscous liquid in a curved
pipe with circular cross-section keeping only the first order terms. He
shows that the secondary motion consists of two symmetrical vortices
and the distance of the stream lines from the central plane decreases as
the Non-Newtonian parameter increases.

Past work on fully developed flow in a curved square duct
includes numerical studies by Mori, Uchida & Ukon (1971),[23] who
obtained a numerical solution by using boundary-layer approximation
(valid for large Dean numbers); Cheng. Lin & Ou (1976),[7], Ghia &
Shokhey (1977),[14] and Joseph Smith & Adler (1975),[18] who
obtained solutions which predicted the existence of a weak second
vortex pair near the outer wall above a certain value of the Dean
number. This second vortex pair was found to rotate in the opposite
manner to the primary vortex pair. Cheng et al (1976),[7] predicted
the onset of second vortex pair to occur when a Dean number is >150.

Ghia & Sokhey,[14] predict in it to occur above a Dean number
of 143 while the calculations of Joseph et al,[18], give a threshold
Dean number of 152 since the curvature ratio (whose effect is
embedded in the Dean number) may itself play an important role for

highly curved ducts. The suitability of the Dean number as the sole



parameter to characterize the onset of the second vortex pair is
unclear.

For curved rectangular ducts Cheng et al (1976),[7]
performed calculations for duct aspect ratio (defined as the ratio of
height H to the width B) of 0.5, 2 and 5 for the range of the Dean
number 15.9 to 312.7 at curvature ratios of 100 and 30. They reported
that for an aspect ratio of 0.5 at L=176 there were no additional
vortices and at L=200 there was a pair of very weak vortices close to
the outer wall. In addition they found that for an aspect ratio of 5 a
pair of secondary vortices appeared at a rather low Dean number of 76
and the eye of the primary vortex moved toward the upper and the
lower walls with the increase of Dean number.

Winter, K. H. (1987),[34] considers the bifurcation of
secondary solutions for fully developed laminar flow in curved
rectangular ducts. The study is based on finite-element analysis and
shows the existence of the multiple solutions arising from the non-
linear equations for the range of aspect ratio from 0.8 to 1.6.

Ravi Sankar, Nandakumar & Masliyah (1988),[24] consider the
related problems of developing flow in curved ducts. They have
shown that for a range of curvature ratios and Dean numbers the flow
develop into previously known two-and four- cell patterns based on
fully three-dimensional calculations using the parabolized form of the
Navier-Stokes equations. They have also shown that for loosely coiled
ducts (of curvature ratio of 100) outside a narrow range of Dean
number the solution exhibits sustained oscillations in the axial

direction and that no stable steady solutions could be predicted.



Thangam and Hur,(1990),[30] show that the secondary flow of
incompressible viscous fluid in a curved duct is studied by using a
finite-volume method. It is shown that as Dean number is increased
the secondary flow structure evolves into a double vortex pair for low
-aspect- ratio duct and roll cell for duct of high aspect ratio. They
found that for ducts of high curvature the onset of transition from
single vortex pair to a double vortex pair or roll cells depends on the
Dean number and the curvature ratio while for ducts of small
curvature the onset can be characterized by Dean number alone.

Jing-Wu Wang and Andrews, in (1995),[16] use a non-orthogonal
coordinate system to study the effect of the pitch ratio and curvature
on the velocity distribution of fully developed laminar flow of an
incompressible fluid in a helical duct with rectangular cross-section.
They used a numerical method to solve the motion equations, they
find that the pitch ratio affects the pattern of the secondary flow, two-
vortex become a single vortex if the pitch ratio is greater than 10 and
for a certain level there will be four vortexes to appear on the plan of
the cross-section.

Yakhot A, etal (1999),[35] studied a pulsating laminar flow of
a viscous, incompressible liquid in a rectangular duct . The motion is
induced under an imposed pulsating pressure difference. The problem
Is solved numerically. Difference flow regimes are characterized by
non- dimensional parameters based on the frequency of the imposed
pressure gradient oscillation and the width of the duct. The influence
of the aspect ratio of the rectangular duct and the pulsating pressure
gradient frequency on the phase lag, the amplitude of the induced

oscillating velocity, and the wall shear were analyzed.



Abdul-Hadi A. M.(2000),[1] studied the unsteady flow of
incompressible non-Newtonian fluid in a curved pipe with a square
cross-section. He used a Galerkin method which is a variational
method to solve the equations of Navier-Stokes. He shows that a
secondary motion depends on three dimensional parameters namely
Dean number, non-Newtonian and frequency parameters, also he
studied the effect of these three parameters on the secondary flow,
axial velocity and some other relation.

AL-Musawy A. Z. H. (2004),[2] studied the flow of non-
Newtonian fluid in a curved duct with varying aspect ratio. In his
computation he used a Galerkin method and finite-difference to solve
the equations of Navier-stokes. He shows that a secondary motion
depends on two dimensional parameters, also he studied the effect of
non-Newtonian and aspect ratio parameters on the secondary flow and
axial velocity.

Our work will be generalized to chapter tow of Abdul-Hadi A.
M. work. This thesis contains four chapters:-

Chapter one devoted to study some of fluid properties and basic
concepts.

Chapter two deals with unsteady flow of viscous, incompressible,
non-Newtonian fluid in curved pipe with rectangular cross-section. An
orthogonal coordinates system has been formed to describe the fluid
motion. In this chapter we are going to study two cases, wide
rectangular and longitudinal rectangular. In each case the motion
equations are controlled by three parameters namely, Dean number,

non-Newtonian parameter and frequency parameter. In each case,



solution of the secondary flow and the axial velocity are described by
perturbations over straight pipe appearing the Dean number.

Chapter three contains solutions of the problem for casel and
case2. These solutions are firstly expanded in terms of Dean number
(chapter two) and secondly in terms of frequency parameter.
Perturbations equations are solved by Galerkin method after
eliminating the dependence on time.

In chapter four we study the effect of the parameters mentioned
above on the flow in the central plane, the secondary motion and the
axial velocity for each case. This chapter ended with studying a

comparison between casel and case2.



CHAPTER ONE

Some Definitions and Basic Concepts

Introduction

The study of fluid dynamics is of closed link with the physical
properties of fluids such as density, viscosity, pressure ...etc. As an
introduction to some of the issues in the mechanics of fluid, this
chapter will include a preliminary discussion of a few such properties

fluids flows.

1.1 Density
The density of a fluid, denoted by p, in unit of Kg/m?®is

defined as the mass per unit volume of the fluid,

'O:V . (1-1)

where m is the mass and v the volume. According to this property,
fluids can be classified into compressible and incompressible. When
the density is constant, the fluid is known as incompressible but when

it changes with time, the fluid is known as compressible. [28]

1.2 Viscosity

A viscosity of fluid is that characteristic of real fluid which
exhibits a certain resistance to change of form. Some of viscous fluids
“Newtonian fluids” obeys the linear relationship given by Newton’s

law of viscosity.

T=p— o (122)



where T is the shear stress ( force per unit area ), g_u is called as
y

velocity gradient and # is the coefficient of dynamic viscosity or

simply called viscosity. [28]

1.2.1 Coefficient of Dynamic Viscosity:

The viscosity is defined as the tangential force required per unit

area to sustain a unit velocity gradient. [28]

1.2.2 Kinematic Viscosity:

Kinematic viscosity, denoted by o, in units of m?/s is defined as

the ratio of dynamic viscosity to mass density. [28]

v="1 . (1-3)
2,

1.3 Pressure

Pressure, denoted by P, in units Kg/m.s"? is defined as the local
normal force per unit area,
P=—" .. (1-4)
where F_is the normal forces to surface with area A. [28]

1.4 Fluid Flow

Historically, flow phenomena have been studied by the most

famous thinkers of antiquity and, more recently, by the most notable
mathematicians and experimenters. In internal flow through pipes,
channels ...etc, the flow is established and sustained by to overcome

the resistance of flow.



It is possible —and useful-to classify the type of flow which is
being examined into small number of groups. If we look at a fluid
flowing under normal circumstances —a river for example —the
conditions at one point will vary from those at another point (e.g.
different velocity) we have unsteady flow.

Under some circumstances the flow will not be as changeable
as this. In what follow, we are going to define the terms describing the

states which are used to classify flow. [3]

1.4.1 Uniform Flow:
If the flow velocity is same in magnitude and direction at every
point in the fluid, then the flow is said to be uniform. [3], [28], [29]

1.4.2 Non — Uniform Flow :
If at a given instant, the velocity is not same at every point then
the flow is non-uniform flow. [3], [28], [29]

1.4.3 Steady Flow:

A steady flow is one in which one of the following (velocity,

pressure and cross- section) may differ from point to point but do not
change with time. [3], [28], [29]

1.4.4 Unsteady Flow:
If at any point in the fluid, the condition change with time, then
the flow is described as unsteady. [3], [28], [29]

1.4.5 Laminar Flow:

If the fluid particles move along smooth, regular paths, then the

flow is called laminar flow. [28].



1.4.6 Turbulent Flow:
If the fluid particles move randomly, then the flow is called
turbulent flow. [28]

1.5 Reynolds' Number

The dimensionless expression pvd/# where p,v,d and 5 are

density, mean velocity, diameter and dynamic viscosity respectively,
is called Reynolds number .The value of Reynolds number help us to
predict the change in flow type. If its value less than about 2000 then
the flow is laminar, if greater than 4000 then the flow is turbulent and
in between these then in the transition state from laminar to turbulent.
[3], [28], [29]

1.6 Continuity Equation

The continuity equation simply expresses the law of conservation
of mass (the mass per unit time entering the tube must be flow out at

the same rate) in mathematical form. [3], [28], [29]

1.7 Motion Equations

The motion equations are non-linear (or linear sometime) partial
differential equations which expressed the Newton's second law in
mathematical form. Thus the motion equations can be eveloped from
consideration of the force acting on a small element of the fluid,
including the shear stresses generated by fluid motion and viscosity.
[28], [29]



1.8 Stream Function

Let A be a fixed point in the plane of motion, and ABP, ACP are

two curves joining A to an arbitrary point P, Fig.(1).

A
Fig.(1), Stream function

According to the continuity equation the flux through ABP is
equal to the flux through ACP. If we denote the flux by the function
v, then yw depends on the position of P and time, i.e. w(X,Yy,t).The

functiony is called stream function. [28]

Fig.(2), illustrate the relation between the stream function

w(x,z,0) and the velocity field.

Y A

P

<K
v

@)
Fig. (2),Stream function and velocity field

From the continuity equation we have
The flux through PP, =flux through PP, +flux through P,P,
dy =-Udy +Wdx ....(1-5)



since w =w(X,Y),then by chain rule we have

oy oy
dy =—"dx+——d ....(1-6
V=" Y y (1-6)

from (1-5) and (1-6) we get
u--% w-% . (1-7)

oy OX

1.8.1 Streamline:

A streamline is an imaginary line drawn through the flow field
such that the tangent at any point is in the direction of the velocity
vector. [3], [28], [29]

1.8.2 Theorem:

A steam function is constant along a streamline. [28]

1.9 Stress and Strain

Fluid particles in motion deform, and therefore, can conform to
complex geometries and shapes. In practical terms, deformation is
represents the different ways in which particles can change shape or
position under the influence of external forces. This deformation
defined as “strain”.The external forces when transmitted in the fluid
particles develop to internal forces. For convenience, internal forces
are expressed in terms of stresses denoted by T, and stress is defined
as the force per unit area along which the force acting on.

Consequently, stress and force are equivalent concept.



In Fig.(3) we noted that stresses are distinguished as normal and

tangential.
T
yX
T y
i><y
ot
Fig.(3),Normal and"Pangential Stresses

the subscripts 4, or y on the tangential stresses indicate respectively
the face and direction the stresses are applied to. To guarantee static
equilibrium for the free body diagram in Fig.(3) and, therefore, to

ensure that > F =0 and > M =0, where F and M respectively the

force and moment vectors, we must have T,,=7y.

By including the third direction, the stress state at a particular

point in a three-dimensional flow is given by the tensor:-

XX Xy Xz

_|
1
— — -
_|

X zy 2z

Again, for static equilibrium,T =T T =T,T, =T, , which

makes the stress tensor symmetric (i.e. off-diagonal terms are equal ).

[3]



1.10 Curvature

If Tis the unit tangent vector of a smooth curve, the curvature

function of the curve is

c(s) :‘?JI_Z ... (1-8).

if |97
ds

is large, the curvature at p is large, if Sl

Is close to zero,

the curvature at p is smaller. Fig.(4), describe the curvature. [3]

Po p T

Fig.(4),The Curvature

1.11 Dimensional Analysis

Any physical phenomena can be described by certain

quantitative properties e.g. length, velocity, area, volume...etc. These



are known as dimensions. Of course dimensions are of no use without
a magnitude being attached. We must know more than that something
has a length. It must also have a standardized unit-such as a meter, a
foot ...etc.

Dimensions are properties which can be measured. Units are the
standard elements we use to quantify these dimensions. In
dimensional analysis we are only concerned with the nature of the
dimension i.e. it's quantity. Thus, the dimensional analysis is a method
to describe natural phenomena by a dimensionally correct equation
among certain variables which affect the phenomena. There are
several methods in the dimensional analysis; one of these methods is

described in the following subsection. [3], [28]

1.11.1 Scaling and Order-of-Magnitude Analysis:

This method consists of two steps
Stepl:

Scale the flow variables using quantities characteristic of the
flow. For example in the flow in pipes the choice for characterizing
length and velocity scales are respectively the diameter D of the pipe

: - _u - : :
and free stream velocity V, then u :\7 and v:\% are dimensionless

quantities.
Step2:

Extend the scaling procedure to all terms in the governing
equation.

The above procedure leads naturally into the non-

dimensionalization of the continuity and motion equations.



CHAPTER TWO

Formulation of the Problem

Introduction

The problem under consideration is an unsteady flow of
viscose, incompressible, non-Newtonian fluid in a curved pipe with
rectangular cross-section. To describe the flow a cylindrical
coordinates, orthogonal coordinates, are used. It is shown that the
dimensionless motion equations are controlled by three parameters
namely Dean numberD, non-Newtonian parameter g and the
frequency parameterk . The linearization of motion equations has been
done by using a series solution of ascending power of Dean number.

2.1 A Mathematical Consideration

Unsteady flow of non-Newtonian fluid in a curved pipe is
considered. The non-Newtonian fluid is characterized by equation of
state of the form:

T, =2ne, +4&ee,. ..(2-1)

i=1,2,3 j=1,2,3 k=1,2,3"

where T, ,e,,

nand & are the stress, rate of strain, viscosity coefficient
and normal stress respectively. [26]

Fig.(5), illustrates the coordinates system that has been used. OZ
is the axis of the circle formed by the wall of the pipe. C is the center
of the section of the pipe by a plane through OZ making an angle 6
with a fixed axial plane. CO is the perpendicular drawn from C upon
OZ and is of length R .The plane through O perpendicular to OZ and
the line traced out by C will be called the central plane and the center

line of the pipe respectively. Cartesian coordinates x and z are drawn



in the section of the pipe, where x is parallel to OC and z parallel to
OZ. The position of any point Q is then specified by cylindrical
coordinate (x,0, z), -d <x < d and -h<z<h wheredandh are
the length and height of the cross-section respectively. The Cartesian
system (X,Y,Z) is related to the coordinate system in the cross-
section by the relations

X=(R+x)Cos(@), Y=(R+x)Sin@O), Z=z ... (2-2)
where 0<0<L2r.

Two cases will be examined for convenient length:

casel, when d =3,h=2, see fig.(5) and case2, when d =2,h=3,

see fig.(6).
Z A
_d
2k
R y jh
o) Z C i
Fig.(5), Coordinates system
Z A
A
Z
h
R
X
0 6 C g

Fig.(6),Coordinates systerm



The line element is given by

(ds)? = (dx)* + (R + x)*(dO)? + (dz)? .. (2-3)

It is clear from (2-3) that the coordinate system (X,6,Z) is
orthogonal system. So it is possible to use the curvilinear coordinate
to write down the continuity equation and motion equations

The line element in curvilinear coordinate is given by, [27]

dx dz

2 _ (YA\2 ﬂz Y _
(“)—(m)+(m)+(m) ... (2-4)

wherel, iand lare the coefficient of dx,dyand dz respectively.

1 2 3
Then in comparison equation (2-3) with equation (2-4) we have

1
R+ X

h,=1.

L]

h=1,h, =

2.2 The Curvilinear Coordinates of the Stress and Rate of Strain

Components
Let (U,V,W) be the velocity component in the direction

coordinates (x,6,z). Then physical components of the rate of strain

are, [27]
oU 1 (av j oW
€ :_ 1€ = —+U e,=—,
R+x\ 060 oz
~ 1 aw+av)
R+x 60 oz)

.. (2-5)

~ (au awj
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By using equation of (2-1) and (2-5) the physical components

stress can be written as



2
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2.3 The Continuity and Motion Equations

The continuity and motion equations for non-Newtonian fluid are
(28),
oU ow
—+ =

X a

p(au +U U +W
ot

OX

ou sz oP oT, oT
_ ===+ =

0z R oX  OX 16/4

Xz

0 . 2°7)

THH
— ..(2-8
(29

p(ﬂ+uﬁ+wﬂ)=—1@+m—w+m& ... (2-9)

ot OX oz RoO  oOx 0z

p(@W +U ow +W 8Wj:_8_P+6TXZ +£ ....(2-10)
ot OX 0z 0z oOx 0z

In equations (2-7)-(2-10), we assume that the fluid is incompressible
(p=constant) and the velocity component (U, V, W) are

independent of @ but the pressure p is not.



Substituting equations (2-6) in (2-8)-(2-10) gives

2 2 2
[@wywy_v_j__ap 0U ,.0U o

—+2 +8&—
a Va ™ e T R xS o

o oW o’'U o'W o’U(oU oW
+28 —+—|+7 +—— [ +2 —+—
oXor  OX oxoz\ 0z  oX

07  OX

2 2 2
+2¢& 8_U 5L2J+5W +2 8V:/[5U+aﬂJ+2§aﬂ
01" oXxoz 164 07

OX E OX

2 2 2 2
atj+aw 2Ly 0V 4y S0V (211
01" OXoL

R2. Rax* R Ra?

Roo " ox?
ouJ oV oV (o U oW oV
+2& —+ +——; 2
OX OX o0z \ Oxoz oX OX0z
o oW oV oV (0°U oW o°W
—+— |t +< —+ +2 .
0z OX 0z oX \ 0z 020X 0z
oV oW 0%V ....(2-12)

_+2 -
0z ] 0z 0z°

(aw oW oW j oP o°’U o'W
yo, +U +W =——+7 +— |t
ot OX 0z 0z OX0z  OX

o’'U(ou oW o'W (oU oW oW
+ +2 + +2& =
z

2 2
p(av o +Wav):_1@+ OV 00V
ot OX 0z ox* OX

2
d ox*\ oz  ox oxoz\ 0z  ox

o’'U o'W o°W ouU oW\ o'U oW
t—— [+2n—+2¢& + —+
oxoz  oX 0z oz ox )\ 0z° oOxoz
oV oV oW o°W
+2&— +8&— -
é@z P 4 e ... (2-13)



The boundary conditions are U=V=W=0 on the
boundary. ....(2-14)

By using the stream function, equation (1-7), for the velocity
components U, W and eliminating the pressure from equations  (2-
11) and (2-13) we obtain

3 3
p 8V2v/+81//(31// 6w63y1 2V8_V+
ot 0z 0°zo0x ox o'z R oz

dy oy _ov 83%!/) Oy __, o

0z°0ox?
E oV oV E oV oV B o'y

2> ——— 2> il ....(2-15)
R Ox 0zox R o0z oz OX

And equation (2-12) become

3
ot 0z ox OX 0z R 06 OX“0Z OX

2 2 3 3 2 2
Oy 0NV | Jy 8V+ 81//6V_2 61//8V+

—2 _ _
oz o°x  ox ozorx) T

OXOz OX° OXoz° ox ox® oz 07° oXoz
Py N Oy TN L apd
Ox* Oxoz 0z° ox R 0z° 0z R 0z 0z°
Oy OV Oy N o, Oy NV (51

oxoz 07° 0z0X> OX 0z2°0X 0z

2¢

The last equations, (2-15) and (2-16), can be simplified to



Viy=—Viy+ V-
VTRV TR o ke ez ox
LNV, NV
pR ox oxbz  pR oz 07°

ovy L 0[P :5_V+(5_WQ_0_WQJV+
RoO\ p ot OX 0L 0z OX

é(ﬂi_ﬁijvz Y AR AN
p\ OX 0z 07 OX v p\oxoz )\ 0z°  ox?

L& Oy azv_azv] ... (2-18)
p\oxoz \ ox*  oz°

v (2D i),

o (2-17)

oy Oy
=—-=—"=0, on the bounda
V= T o ... (2-19)

v =0, on the boundary
where

o> & s O o) o)

V=

—+=—, \% +2 +
x> oz ox"  ox’ez* ozt
We impose a sinusoidal pressure gradient in time with zero mean

on the flow in the form of

_ii E =] VoaCOS(at) (2-20)
RoO\ p

for convenient computation we will choose J =2.31.
where JVoa is the amplitude of the applied pressure gradient and «

is the angular frequency.

2.4 Non-Dimensional Form of Motion Equation for the Casel

It is possible to write the motion equations (2-17) - (2-19) in non-

dimensional form through using the following new quantities

xl:g, 21:5, r=ta,f :%, v=\¥ .. (2-21)

0



Equations (2-17) - (2-19), then become

v*f =K22V2f +Lvﬂ+ oo _of o Vif -
ot 0z, \OX 0z, 0z, 0X,
AL o o0°v +ﬂ o°v
ox, ox0z, | oz, on) ....(2-22)

v
t \OX, 0z, 0z, OX,

2 2 2
/{ﬂi—ﬂijvzuzﬂ oV (a f @ f}

ox, 07, 01, OX, ox,0z,\ oz, ox
o*f [o*v 0%
2 — -
p oxoz, ( o’ ézlzj ... (2-23)
f= of —ﬂzo, on the boundary

T ox, o o (2-24)

v =0, on the boundary

These equations can be seen to be controlled by three

2
parameters, a non-dimensional frequency parameter, k :d(gj , the

(Y
: & 2V, d?
non-Newtonian parameter ﬁ:? and Dean number L = el
P Y

In what follows we shall omit the index of coordinate system, it
is understood that all variables are in non-dimensional form. To solve
the above system, (2-22)-(2-24), we will use successive
approximation method, which is equivalent to the perturbation

solutions of f and v in ascending powers of L. So the solution of the

above system can be developed by using



f(x,z,t) = Lf (x,z,t) + L f,(x,Z,t) +--- 2-29
V(X 2,t) =V, (X, 2,t) + Lv, (X, 2,t) + L?V, (X, Z,t) +---

Where f,(x,z,t)=0 in a straight pipe. We will limit ourselves to
find the solution up to the first order in L, similar procedures can be
used for higher order solutions, and the first order solution provide
goods accuracy for the purpose. If we substitute (2-25) in (2-22) - (2-
24), and equate coefficients of equal powers inL; we obtain a series of

relations from which v, f, ,vi,...can be successively found .The

equations are

Vv, =k’ % —2.31x*Cos(r) ....(2-26)

2 2
V4f1=K2£V2fl+VOaV°— 8v08v0+8v06v20
or OX OX01 01 01

..(2-27
0z J ( )
Ve _K%-l-(aflé—%gjv +ﬁ(a\/°g_%ﬁj

T ko oz ox X o1 o1 ox
..(2-28
vt +2/382V° o'f, o'f, +2ﬁaZfl 0%, 0%, (2-28)
U oxoz\ ozt ox? oxoz\ ox® oz

The boundary conditions associated with the above equations,
(2-26) — (2-28) are: -

ffizizo on theboundary
ox o1 120
v,=0,n=0.1-- on theboundary . (2-29)

2.5 Non-Dimensional Form of Motion Equation for the Case?2

By similar procedure, with exception that h is the characteristic

length instead of d, the non-dimensional parameters are defined as



xlzz, zl—E, T =ta, f:Z, v=l ....(2-30)
h h v Vv,
Equations (2-17) - (2-19) become
2 2 8\/ 2
Vv, =k a— —2.31x°Cos(7) ....(2-31)
T
2 2
Vit =kt Lprg oy, Yo gl Xo OVo OOV | (5 59y
ot 0z OX OX0Z 07 0z

OX 07 07 OX

o’v, (0*f, o0°f o*f, (0%, 0%
+92 0 1 L|y92 1 o _ 0
g Gxaz( ozt ox’ j d oxoz [ ox* oz’ j

) oV, (afla aflaj (avoa v, 0
VV,=k—+| ———-——— v, +

OX 07 07 OX

[t

.. (2-33)

2 23
wherek:h(gj, p= 6 andL:M , and the boundary

phZ RUZ

conditions associated with this system, (2-31)-(2-33), are

D

f, = M = oM =0 on theboundary
oX oz

v.=0,n=01--- ontheboundary

... (2-34)



Chapter Three
A Variational Method for Solving the Problem

Introduction

In this chapter, an approximate solution to the problem is
obtained through a variational method, Galerkin's method, [4], [12],
[25], for both cases.

Actually, the variational methods including Galerkin give an
analytic approximate solution for partial differential equations which
describe a fluid mechanics problem. Since it is difficult to find an
exact solution we resort to consider approximate solution for these
equations.

This chapter, also include the solutions of steady state for the
two cases under consideration.

3.1 Galerkin's Method

In 1915, B.G. Galerkin presented a new variational method to
solve boundary value problems which was of a wide interest to
researchers in the field of Applied Mathematics and Engineering
Applications.

The method is summarized in finding the solution of the
equation L(u)=f, ueL,(G), where L is a differential operator in

two variables and f is a given continuous function in two variables

defined on a region G. We shall seek an approximate solution of the
problem in the form

u,(x,y)= Zn:ciCDi(x, y) .. (3-1)

i=1



Where {®,(x,y)i=123..n} is a system of functions (which is
usually, called a base of coordinates) chosen before hand and is
satisfying a certain conditions

a) It should be linearly independent in L,(G).
b) It should be complete in this space.
And the coefficients c; are to be determined. Our aim is to find

the c; values such that U.(x,y) is close to the exact solution in the
sense that LU, — f is orthogonal to @;, i1=123...,n. i.e.

II [Lu, (x,y)= f(x y)lo, (x, y)dxdy =0 »

ﬁ{ (ZC D (x, y))— f(x, y)} (%, y)dxdy =0

This is an algebraic system of equations for the unknowns c;,
1=1,2,3,....,n when we solve the above system by one of the direct

numerical methods like “Gauss elimination, Gauss Jordan” or iterative
numerical methods like “Gauss-sidel method or successive over-

relaxation method” we get ¢, and substitute in (3.1) to get the n'"
approximate solution u, (x, y).[25]

3.2 solution of Casel

Galerkin's method is employed to solve the equations (2-26)-(2-
28) subjected to the associated boundary conditions (2-29).

3.2.1 Solution for vg:

If we substitute for v, in equation (2-26) by the expression
V, = K2V, + KV, + KV, + &°V,, +O(x™) ....(3-3)
and equate the coefficient of equal powers in k for equation (2-26),

then the following set of equations are obtained



VZV01 =—2.31Cos(7) ....(3-4)

ov
Viy, =—% ....(3-5)
ot
ov
Vi, =—2 -
=5 ....(3-6)
2, OV,
VVo = o (3-7)
with vg; =0, i=1,2,3,4 on the boundary. ... (3-8)

Solution of (3-4) can be developed by assuming that

V,, =V, ,(X,2)Cos(z) ... (3-9)

If substitute equation (3-9) in (3-4) we get

Vi, =-2.31 .... (3-10)

So the employed Galerkin's method is equivalent to the
assuming of solution in the form

VOM:aO(l—xz{g—zz) ... (3-11)

where a is a constant to be determined. It is found that the solution of
(3-11)is

VOM:(l—xz{g—zzj ... (3-12)
Thus the complete zeroth order solution is
vy, = (1 XZ)(S— ZZJCOS(T) ....(3-13)

If we substitute equation vg; in equation (3-5) and using the

procedure of Galerkin's method, the solution of vy, is found to be of
the form



V,, = (1—x2{g— zzj(al +a,x’ +a,2° +a,x’z° )Sin(r) ...(3-14)

where a;, a,, az and a4 are constant.
Similarly, solution for vy; and vy can be found. Finally zero
order solution for v, thus obtained.
The substituting of these solutions into equation (3-3) give the
solution for vy which is
v, = K2(1—x2)(g— 2°)[Cos(r) + °(a, +ax’ +a,2 +
a,x’z%)Sin(z)+ x* (b, +b,x* +b,z* +b,x*z* + b, x* +
b,x‘z* +b,z* +b,x*z* + b,x*z*)Cos(z) + x°(c, + C,X* +
c,z’+c, Xz  +cx  +c x'z’ +c, 2t + e x*zt + e xfzt +
c, X° +c, X2 +c¢,X°z+c,z° +¢, X 2° +¢, X'2°+
c,.X°2°)Sin(z)]+O(x") ...(3-15)

3.2.2 Solution for f;:
The equation (2-27) contains the function v,, which is now

known through the solution (3-15). If we substitute of v, into (2-
27), then that equation will contain only one unknown function which
is f,, the solution for f; is obtained as a perturbation in terms of the
parameter x as follows: -
f=x"f,+x°f, +O(x°) .... (3-16)
The recursive equations for f,, i-; , are obtained on equating

the coefficients of equal powers in x these equations are

Ng, OV, i LT ....(3-17)
OX OXxoz 0z 0z°

ov
A f11 = Vo 8201 - ﬂ[




2
Vi, =£V2 f,, +V,, oy +V,, oy -p oy 0 Voy +
ot 0z 0z OX OXozZ
aVOZ 82VOl aVOl a2V02 a\/02 82VOl
+ + -
OX Oxoz 01 o61° 01 o1° - (3-18)
and the boundary conditions are:
d, 4, .

=—2 =1 =0,1=1,2 on the bonda
X a i ....(3-19)

v,, =0, 1=1,2 on the bondary
Again, we proceed to eliminate the time variable and generate a
solution as an expansion in non-dimensional parameter f.The

solution for f, is found to be of the form

fl = K4 ( flll + ﬁfllZ)COS ’ (T) + K6 ( f121 + ﬂfIZZKOS (T)

_ ... (3-20)
Sin(z) + O(x*)
3.2.3 Solution for v;:
Similarly, we assume that
Vv, =x°v, +x°v,, + O(x") ... (3-21)

The solution (3-21) is substituted into (2-28) and we make use

of the solutions (3-15) and (3-20), the recursive equations are



VZV11 :(aflla_afllajvm_i_ﬁ(avma_avma)vz f11+

aaz 07 OX OX 07 01 OX
2ﬁ6 vm(a fz”—a f2“]+2ﬁa fn(a Vi”—a vzmj ..(3-22)
oXoz \ 0z OX oxoz \ ox 0z
, ov, (of, 8 of, 0 of, 0 o, 0
\% 2= < — Nt ~—  — — Vo
ot OX 0z 07 OX OX 07 01 OX
+ﬁ av()lﬁ_av()lg sz +/B %g_%g sz
OX 0z &z OX 1 ox 6z 071 OX H
ov,, (0°f,, _82f12 9 oV, (0% f, _621‘11 N
oxoz\ o022  ox° oxoz \ 0z? ox’
o*f (o°v, 0°v o*f (o>, 0°v
2 11 02 02 |49 12 01 o1 | (3-23
g oxoz ( ox* oz’ ] g oxoz ( ox* oz’ j (3-23)
the boundary condition are
d &, .
f,=—=—-=0,i=12 on the bondary
X a ... (3-24)

v, =0, 1=12 on the bondary

By similar procedure the solution for v, is found to be of the

V1 = KG [(Vlll + ﬂVMZ + ﬂzvm)coss (T) + Kz (V121 + ﬁV122 ] (3_25)
+ B?V,,,)Cos?(7)Sin(z) +O(x*)]

Finally, substitute the solutions v, f, and y,_into (2-25), the

stream function and the axial velocity can be written in a convent

f(x,z,7) =Lf (X z,7)
f(x,z,7)=L[x*(f,, + B f,)C08*(z) + x°(f,, + B f.,,)
Cos(7)Sin(7)] ... (3-26)



v=Vv,+ Ly,

v=rxv, +kv, + kv, +K’v,, + Lk (v, + BV, + B?V,,)C0s° () +
L’ (v, + BV, + B°V,,,)¥Cos(7)?Sin(7) . (3-27)

where all the above f'sand v'sare polynomials in x and z.

If f and v are independent of t and k =1the system (2-22) - (2-

24) will be reduced to corresponding system in case of steady state,

which is
2
vty (B0 M ONGep gy [NVY OV
0z \oXoZ 0z 0oX OX )\ Oxoz
ov ) o%v
A ....(3-28)
(&
Vzv:—2.31+(i£—igjv+ﬁ(@£—ﬂgjvzf +
OX 0Z 0Z OX OX 07z 01 oX
Zﬁ[ 0 vj(a f o fj+2ﬁ(a f ](a v 0 vj ....(3-29)
oxoz \ oz*  ox? oxoz \ ox*  oz?
and the associated boundary conditions are:
f _a =§:O, ontheboundary

T ox ez ... (3-30)
v =0, ontheboundary

In substituting (2-25) in system (3-28) - (3-30), and equate

coefficients of equal power in L, we obtain



N 0N, B, v, O,
0oz OX OXOz 0z 0z°

o’v, (o*f, o'f o'v, 0%,
Zﬁ(axaz I j (6xaz j( oz’ j - (3-33)

The boundary conditions associated with system (3-31) — (3-
33), are:

f. = i = i =0, 1=1,2 ontheboundary
oX 0z ....(3-34)
v =0, n=0,1 ontheboundary

The solution of system (3-31) — (3-33) subjected to the
boundary condition (3-34) is

f(x,z,7) =Lf (X, z2,7)

f(x,z,7)=L(Q- xz)(g — zz))z[(elz +e,X’z+e,2° +e,X°2° +
X'z +e,X'2%) + B(9,X°2 + 9,X°2° + g2+ g,X'z)] - (3-35)

where e,....e,, 0,,..,9, are real const.

v=v,+Lv,
v=(1- XZ)(g_ ZZ)[1+ L(Vll +:BV12 +ﬁzvl3)] ... (3-36)

In addition to that if we set =0 in (3-35) and (3-36) we

obtained the solution in case of Newtonian fluid. [10]



3.3 Solution of case?

By similar procedure the solution of motion equations for case2
is found and Galerkin's method is employed.

3.3.1 Solution for v,:

We assume the solution of vq is

V. =k, +x'V,, +x°V,, +k*V,, + O(x") ... (3-37)
where

Vo :(g—xzj(l—zz)Cos(r) ... (3-38)

V,, = (g— xzj(l— 27 )i, +i,X% +i,2% +i,x?2)Sin(z) .(3-39)

The solution for vy; and vy, are obtained by the same way. Thus

the solution for vq is

4 . .

v, :xz(g— XY —z?)[Cos(z) + x2(i, +i,x* +i,2° +
i,X°28)Sin(z)+ x* (j, + ,X* + j,2° + j,x°2° + j.x" +
jX'z2?+ gzt + jxPzt + jyx*z*)Cos(z) + x°(m, + m,x* +
m,z° + m,x’z* + mx* + mx*z* + m,z* + mx*z* + myx*z* +

6 6,2 6 6 2,6 4,6
m, x°* +m, x°z* + m,x°z + m,z° + m,x*z° + m,.x"z° +
m,x°z°)Sin(z)]+ O(x") ... (3-40)

3.3.2 Solution for f;:

The solution for f, is found to be




fl :K4(flll+ﬂf112)cosz(r)+K6(f121+ﬁf122)
Cos(z)Sin(z) +O(x®) ... (3-41)

3.3.3 Solution for v;:

Similarly, the solution for vy is
v, = ;cﬁ(v111 + BV, + ,Bzvm)(:os3 (1) + ;cg(v121 + BV, + ﬂzvm)
Cos’(z)Sin(z) +O(x") ... (3-42)
Finally, in substituting the solution v,, f, and v, into (2-25), the
stream function and the axial velocity can be written in a convent
form
f(x,z,7) =Lf (X 2,7)
f(x,z,7)=L[x*(f,,+ B f,,)C08*(z) + x°(f,, + B f.,,)
Cos(z)Sin(r)] ... (3-43)
v=Vv,+Lv,
v=r’V, +k'v,, +x°v,, +Kk°,, + Lk’ (v, + Bv,, + BV, ;)C0s’ (1) +
Lic® (V,y, + BVy,, + B7V,,,)COS(7)* Sin(7) ... (3-44)
where all the above f's and v's are polynomials in x and z.
If f and v are independent of t and k =1, then the liner motion

equations for the case of steady state, are

Vi, =-2.31 ... (3-45)
2 2

vit =y, Mo pMe OVo g O, OV ... (3-46)
oz OX OX0Z 07 0z

VZVl :(a_flg_%gjvo _|_ﬁ %2_%2 VZ fl +
OX 02 07 OX OX 07 07 OX

o°v 0 f, O°f o2 f Yoty oty
2 0 1 _ 1 + 2 1 o o ]
ﬁ(@x@zj{ o0z>  ox* j ﬁ[@x@zj{ PP j ... (3-47)




The boundary conditions associated with system (3-45) - (3-
47), are:

of . of, :
f.=—L=—=0,i=1,2 onthebounda
Tk e Y .(3-48)
v, =0, n=12 ontheboundary

And the solution of system (3-45) — (3-47) subjected to the
boundary condition (3-48), is

f(x,z,7) =Lf (X z,7)

(02,0 = LG - )@ 2) (2 + X2 + 0.2 + 47"+

0:X'Z + g X'2°) + B(rX°z +,X°2° + 1,z + r4x“z)] ... (3-49)

where q,,...,q,, I,,...,I, are real const.

v=Vv,+Lv,
V= (g— X2)(1—22)[L+ L(v,, + Bv,, + BV,,)] ... (3-50)

Also, if we set =0 in (3-49) and (3-50), we obtained the

solution in case of Newtonian fluid. [10]



CHAPTER FOUR

Results and Discussion

Introduction

In this chapter, the analysis of the solutions, for both cases, is
considered. The effect of parameters that control the motion equations
on various important flow characteristic, (i.e. the secondary flow and
the axial velocity) is studied for different values of these parameters.

We explain the effect of these parameters through drawing the
projection of streamline in the central plane and in the cross-section of
the pipe. A comparison between the values of stream function and the
value of the axial velocity, for both cases, is given.

Also, in our analysis we consider the case of flow of Newtonian

fluid in curved pipes.

4.1 Secondary Flow

The secondary flow occurs in curved ducts or curved pipes.
Physically the parameter L (Dean number) can be considered as the
ratio of the centrifugal force induced by circular motion of the fluid to
viscous force when a fluid flows through a curved pipe. Pressure
gradient directed towards the center of curvature, is setup across the
pipe to balance the centrifugal force arising from curvature. The fluid
near the wall of the pipe is moving more slowly than the fluid some
way from the wall owing to viscosity and therefore require small
pressure gradient to balance the local centrifugal force. As a result of
these different pressure gradients, the faster-flowing fluid moves

outwards, whilst the slower-flowing fluid moves inward.



This flow is known as the secondary flow and it is superposed on the
main stream region towards the outer wall and creating a much thicker
layer of slowly moving fluid at the inner wall, however, owing the
enhanced mixing and momentum transfer due to the secondary flow,
the total frictional loss of energy near the wall increases and the fluid

experiences more resistance in posing through the pipe.

4.2 Streamline Projection for Casel

The differential equations of the streamline is, [29]

dX (R+x)d¢ dzZ
u v W

The velocity components, (U, V, W) are to be obtained from
equations (3-35) and (3-36).

. (4°1)

Up to sufficient accuracy equation (4-1) may be written as

X Riw _a e

2
Yoy (1—x2{h—22] W
0 d2

It is clear that all the variables are in the dimensional form.

4.2.1 Streamline Projection in the Central Pane:

The motion of the liquid in the central plane of the pipe is of
special simplicity .At any point on OC we have z =0 and ow/ox=0, -
1 <x <1 which mean that w vanishes; (i.e. the liquid particles located

in the central plane do not possess the w component of velocity which

Is responsible of moving them out of this (x = 0) plane). As a result



the direction of the velocity at such point in the liquid lies in the
central plane. Thus the motion in the upper half of the pipe is quite
distinct from that in the lower half and it is clear that the central plane
is the plane of symmetry for the motion.

The differential equation of the streamline in the central plane is

2
%: hlid d9 ....(4-3)
v, - (d*-x?)
d
From the dimensional analysis we have
vu
U=— ....(4-4
r (4-4)
Then by using equations (4-4) and (2-25) we obtain
U:E% at z=0 ....(4-5)
d oz

where L =2R? (gj
R

Substituting equation (4-5) into equation (4-3) we obtain
dx, —-2R, Of

do  h? (1—xf).82

- ... (4-6)
d?
where R =V, d/v , is Reynolds number which determine the nature
of flow.
Substituting for f, from (3-35) into (4-6) and solving the

resulting differential equation we obtain

1 1+x\ (A-x
0= I ( ) ( ﬂ (4-7)
?Re(a2+ﬁbl)h(h2—l) { 1=x) \r+x




where 7i= 8+ pb, <0 and  pe(—o0,00)\[-0.16,0.044]
a, +/b,

and

—h’ 1+x)' X
0= In (—) +2tanl(—j] ..(4-8)
fRe (a, + b)) (R +1) [ 1-x h

where h:[a1+—ﬂbBJ> 0 and —0.16 < 3<0.044
a2 +ﬂbl

Here ¢ is measured from the point where the streamline cross

the central plane (x=0). The (x,€) relation is independent of the

dimension of the cross-section.

For a given value of x, the range of & varies with the
dimensionless parameters R and £; in the case of Newtonian fluid
(B=0)the range of & varies inversely with R, and for a fixed value
of R the range of ¢ increase as g decreases. It is found that an
increase in S leads to a decrease in the curvature of the streamlines in
the central plane.

It is noted that the value of ¢ increases steadily with xand
tends to infinity as x tends to unity and ¢ tends to minus infinity as x
tends to minus one.

Numerical illustration are now given for a particular boundary
and Reynolds number considered by Dean [8], namely

R, =63.3, %:% and for different values of the parameters f,k,L

and time .



Fig.(7, 8), illustrate the streamline projection in the central
plane. The streamline grows smoothly along the central plane and
merges with the outer wall of the pipe. This shape is greatly affected
by the non-linear stresses. The non-linear stresses force the flow to be
around the inner wall for a quite angular distance, the flow centrifugal
force forces the direction to sharply move in a radial direction but the
flow steers near the outer wall again. This phenomenon becomes very

clear as S, the non-Newtonian parameter, increase through the interval
(—o0,)\ [-0.16, 0.044], see Fig.(7). Inversely it is disappear as S
varies from -0.16 to 0.044 Fig.(8)

4.2.2 Streamline Projection on the Cross-Section of the Pipe:

The streamline projection on the cross-section for a curved pipe
are represented by

f, = Constant

Where f, is given by (3-20), which is combination of the radial
and vertical velocity. The nature of the closed curved streamline for
various fluid changes because of the non-Newtonian parameter.

The factors that affected on the secondary flow and &-
component velocity as can be seen from equations (3-26) and (3-
27), are the frequency parameter k, the non-Newtonian parameter £,
Dean number D and the time 7.

Sixty nine cases have been studied to cover the effect of each of
these factors on the secondary flow and @-component velocity. All
figures (11-34) show that, there are two symmetrical regimes of
secondary flow to appear in the cross-section in curved pipe. Also, it

is noted that the intensity of the secondary flow is stronger in the



middle of each of the upper and lower of the cross-section and
becomes weaker when the more toward the boundary and the central
plane.

For S increase through the interval (—oo, 0)\[-0.16,0.044],
k=177 and L=0.01 it is found that there is small vertical
displacement away from the central plane, and the intensity of the
secondary flow increases, see Fig.(11, 12).

In Fig.(13-16) when =1 and for k and L greater than zero, it

is noted that the effect of kandL on the displacement of the
secondary flow is the same as the effect of Fand the intensity of
secondary flow increase as k and L increase, but when £ is small, e.g.
£ =0.044 and different values of k andL, there is no displacement
but there is change in intensity of the stream function, see Fig.(17-20).

Fig.(21-34) illustrated the effect of time on the streamline
projection on the cross-section in curved pipe. In Fig.(21-28), the
values of g,kandL are 1, 1.77, and 0.01 respectively and 7 varies
from 0 to 6.28. As 7 varies from 0 to 2.05 (7 is measured in radian)
there is displacement toward the central plane and the streamline
become thicker near the central plane, see Fig.(21-23).

The transition stage from a two-vortex structure to a four-vertex
structure occurs at 7 =2.061; where two additional vortices start to
grow near the corner of the inner and outer walls, see Fig.(24).
They are clearer at 7=2.07, see Fig.(25) and the twin vortices
rotating in opposite direction of the main vortices appear. Also, at
increase it is noted that there are two stagnation regions near the

corner of the inner and outer walls, Fig.(24), moving toward the center



of the cross-section, Fig.(25). As T increases, it is observed that the
vortices in upper and lower half of cross-section near the corner of the
inner and outer walls of the pipe expand and make another secondary
flow, because of continuity displacement of the main vortices toward
the central plane as 7 increase, the new vortices control to the flow in
pipe and become the main vortices, Fig.(26-28).

When the value of g is small, e. g. 0.044, and for the same
values of kandL (i.e. k =1.77and L =0.01), the increasing in 7 from
0 to 6.28 lead to growth one vertex in each halve of the cross-section
(upper and lower the central plane) near the boundaries, the vertices
appear at r= 1753 , Fig.(30), and its direction opposite to main vortices.
At 1 varies from 0 to 6.28, the main vertices displace to the central
plane. So it reach to stagnation regions, inversely the vertices that
appear in upper and lower cross-section growth to take the location of

the main vertices, see Fig.(29-34).

4.2.3 The Effect of Parameters, (.k,L)and Timei) on_ 6-

Component Velocity:

The effect of parameters, (p,k,Landz) on @-component
velocity illustrated in Fig.(35-47). It is noted that, parameters S, k
and z have weak effect on the location of center of axial velocity, and
the increase in fand k leads to an increase on the value of the axial
velocity. For increasing L there is horizontal displacement in the

center of the axial velocity toward the outer wall of the pipe, see



Fig.(35-42). In Fig.(44-47) we noted that for small value for S,
(L =0.044), and the increase in k leads to increase in the intensity of
the axial velocity but the increase in f# and L have not effected, see

Fig.(45,46).

4.3 Streamline Projection for Case2

As in casel, the differential equations of the streamline are
dX _(R+x)d6 _dz
U Vv W
The velocity components, (U, V, W) are to be obtained from
equations (3-49) and (3-50).
Up to sufficient accuracy equation (4-9) may be written as
dx Rh*de _dz
U o) W

2

... (4-9)

... (4-10)

Also the expressions here appear in dimensional form.

4.3.1 Streamline Projection in the Central Pane:

This section has the same properties in the previous section

(4.2.1) and the differential equation of the streamline in the central

plane is
2
de__RhdO o (4-10)
U V,d°-x%)
In case2 equation (4-4) becomes
=24 ... (4-12)
h
Using equations (4-12) and (2-25), we obtain
U—Ei at z=0 ... (4-13)

" h oz



where L =2R? (E)
R

Substituting equation (4-13) into equation (4-11), gives

dx, —-2R, o

o d° . oz|*°
(F_Xl)

Substituting for f, from (3-49) into (4-14) and solving the

. (4-14)

resulting differential equation gives

4.Re(a2+ﬁb1)h(h2—g] 2 A X X

a, + fb, oo oo [
where 7 (a b j<o and  fe(—o,0)\[-0.64,0.025]

and

0= il [/HJ +2tan” U ..(4-16)
y h

Re(a2+ﬂb1)h(hz+gj 2 23-x

where = 280\ 6 and 0,64 < p<0.025
a’Z +ﬂbl

It noted that ¢ has the same properties as in section (4.2.1), but

it tends to infinity as x tends to % and it is tend to minus infinity as

x tends to —%.

From Fig.(9, 10), we noted that the stream line projection in the
center plane has the same phenomenon describe in section (4.2.1)

associated with similar effect of £ but in slowly form.



4.3.2 Streamline Projection on the Cross-Section of the pipe:
Figures (48-64) illustrate the effect of £, k,L and z on the

stream line projection on the cross-section in a curved pipe. It is found
that there is no displacement in a secondary flow as £, kandL
increase.

In addition, it is found that the intensity of the secondary flow
increases as S, kand L increase, see Fig.(48-53). Also, it is noted that
there are two stagnation regions near the inner and outer walls moving

toward the center of cross-section as £, k and L increase.
As 7 increases and the values of g, kandL are 10, 1.77 and

0.01 respectively, there is displacement toward the boundaries and the
streamlines become thicker near the boundaries, Fig.(54). The
transition stage from a stage from a two-vortex structure to a four-
vertex structure occurs at 7 =1.85; where two additional vortices start
to grow near the inner and outer walls, see Fig.(55), the twin vortices
rotating in opposite direction of the main vortices appear. Also, at ¢
increase it is noted that there are two stagnation regions near the inner
and outer walls moving toward the center of the cross-section, see
Fig.(54).

For 7>1.85, the stagnation regions start to move toward the
center of cross-section causes displacement to main vortices toward
the boundaries with the new vortices near the inner and outer walls
move toward the center of cross-section to reach the main vortices,
see Fig.(56-58).

Fig.(59-64), illustrate the effect of k,L and r when gis small

such as B =0.024, it is noted that there is small displacement toward



the central plane as g, k, L and 7 increases and the intensity
increase as these factors increase.

Finally, it is observed that the effect of each of the factors (3,
k,L and 7) on #-component velocity have the same effect in casel
(except L has stronger effected than in casel) see Fig.(65-79).

For steady state (time derivative is zero), in both cases, it noted
that the effect of £ and L have same effect as in unsteady state but in
different level see Fig.(80-113).

Fig.(43, 73) explain the Newtonian type of fluid.

4.4 Comparison between Casel and Case2 and Conclusion

For streamline projection in a central plane of the pipe, it is
noted that as £ increases, the effect in casel is stronger than  case 2.

Regarding streamline projection in the cross-section, in casel it
IS noted that the increase in S, kand L lead to a weak displacement
away from center plane and the intensity increases as these factors
increase, where in case2, the increase in these factors lead to increase
in the intensity (different from that in casel) of the secondary flow but
there is no displacement.

In addition to that, in casel the increase in r leads to a
displacement toward the central plane and the streamline become
thicker near central plane.

At 7 =2.061 there exist four-vortex structure near the corner of
the inner and outer walls of the pipe; while in case 2, the displacement
was toward the boundaries occur and the streamline become thicker
near the boundaries as 7 increase. The four-vortex structure near the

inner and outer wall appear at 7 =1.85. Also, for small values of /£,



in casel it is noted that there exist two-vortex structure and the
displacement toward the central plane but there is no such they in

case2.

4.5 Further Study
In what follow we give some suggestions for further study

1- The pressure in our problem is imposed. One can calculate the
pressure by solving Possion’s equation for pressure.

2- This work can be extended for helical pipe in which torsion is
not equal to zero (in our problem torsion is zero).

3- This work can be extended for pipe with varying curvature.

4- Our problem can be resolving by using boundary layer method.
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