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 رــــكر وتقديــش

 

ٍ  أبسممى ا انممساًٍ انممساٛى د اناًممد لله انممر٘ اب ممد عهممٙ باناٛمما   َٙ بانُعًممف نًمم

 ٔأجدَٙ يٍ انعدو ثى زشقُٙ ٔزباَٙ انٗ اٌ ٔصهت يا ٔصهت انّٛ ...

انر٘ بّ اْ دٚت انٗ اندٍٚ اناق ْٕٔ انمر٘ انُمٙ ٔاصهٙ ٔاسهى عهٗ زسٕنّ 

 .انطاْسٍٚ ٔصابّ أجًعٍٛ عهٗ طهب انعهى ياًد بٍ عبدا ٔعهٗ انّ

  ٘ انكمسًٍٚٛ ...  ٔاقدو شكس٘ ٔاي ُاَٙ انٗ َبع انًٕد  ٔانساًف ٔانعطف ٔاند

انٗ يٍ تعاْدا ْمرِ انجمةس  انيمعٛبف بانسماٙ ٔانسعاٚمف انمٗ اٌ اَجمد عٕدْما 

ٔانممٗ ا ٌ نممى ٚ س اْمما ... نممالله اسيُممٙ ا يممٍ ْممرا انُبممع  ٔاُٚعممت ثًازْمما

 انًبازك.

 ٔشكس٘ ٔتادٚس٘ انٗ اخٕتٙ ا عصاء ٔانٗ عائه ٙ انكسًٚف.

ٔاقممممدو  شممممكس٘ ٔ ثُممممائٙ ٔاع ممممصاش٘ انممممٗ زئممممٛ  ٔاسمممماتر  قسممممى عهممممٕو  

انسٚاضممٛا. ... ٔاٌ  اَممت  هًمما. انجممكس عمماجص  عممٍ تادٚممف اآممىد ٔنكُممٙ 

 تًُٛت بإل انجاعس:

 ٔاٌ أ ك ذٔ نيم جًٛالله                               

 نكٍ بانجكس يُطهق انهساٌ                                              

 

ْٔرا قهًٙ ٔنساَٙ ُٚطهااٌ بانجكس  سماترتٙ انمرٍٚ اعمإََٙ  نٛمساد نٛسمسٔا 

 . نٙ انعسٛس ٔقسبٕا نٙ انبعٛد ا ٗ تًكُت بعٌٕ ا يٍ اَةاش ْرا انعًم

ٔ  اَسٗ يٕاقمف ايمس  انمد  ٕز انباضمم عبمد انمساًٍ اًٛمد زئمٛ   قسمى 

انسٚاضممٛا. ٔيمما قممدو نممٙ يممٍ تسممٓٛالله.د نةممصاِ ا خٛممس جممصاء انًاسممٍُٛ... 

ٔ رنك   اَسٗ جٕٓد اس اذ٘ انباضم انر٘ اشسف عهمٗ اطسٔا مٙ انمد  ٕز 

 ااًد يٕنٕد نجكس ا سعّٛ ٔ  اَساَٙ نيهّ يا باٛت.

ان ادٚس ا س اذ اند  ٕز زٚاض شا س َعٕو ٔانمد  ٕز  بنُٛمف ٔاخص بانجكس ٔ

سمال ا أعهٗ يا ابدٚاِ نٙ يٍ عٌٕ ٔانر٘  اَا سبباً نمٙ أسم ًساز دزاسم ٙ ٔ

 اٌ ٚابظٓى يٍ  م سٕء. 

ٔاشكس  م اصدقائٙ انمرٍٚ يمدٔا نمٙ ٚمد انعمٌٕ ٔسماعدَٔٙ  نٛمسا ... ٔلله دز 

 يٍ قال :

  نٛس  دعٕٖ ا خاء عهٗ انسخاء           

 بم نٙ انجدائد تعسف ا خٕاٌ                                                     

ٔنممٙ انا مماو  ٚسممعُٙ ا  اٌ ا ممسز شممكس٘ ٔتاممدٚس٘ نكممم يممٍ اعمماَُٙ عهممٗ 

 .ْرا انعًم ٔاناًد لله أ  ٔاخسااَةاش 
 ي مـراد محـمــد علـ                                                         
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         Abstract 

   
This thesis is concerned with the study of unsteady flow of non-

Newtonian, viscous, incompressible fluid in a curved pipe with 

rectangular cross-section, under the action of pressure gradient. 

Consideration is given to two cases, wide and longitudinal 

rectangular. An orthogonal coordinates system has been used to 

describe the fluid motion for each case and it is found that the motion 

equations are controlled by three parameters namely; Dean number, 

non-Newtonian parameter and frequency parameter. 

 For each case, solution for the secondary flow and the axial 

velocity are drived as perturbation over straight pipe. Firstly the 

expansion was in terms of Dean number and secondly in terms of 

frequency parameter. Perturbation equations are solved by using a 

variational method namely, Galerkin's method after eliminating the 

dependence on time for each case. The solutions have been developed 

in Cartesian coordinates for harmonic and biharmonic equations. In 

This study we covered the steady state for both cases under 

consideration.  

 QBASIC language is used to make the numerical computations 

of these solutions, while the MATLAB package is used to draw the 

figures of stream function and axial velocity. Our study is ended with 

studying the effect of the non –dimensional parameters mentioned 

above on the secondary flow, the axial velocity and the flow in the 

central plane. 
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Introduction 
 

 Fluid mechanics is that branch of applied mathematics which 

deals with behavior of fluid at rest and in motion. Fluid is that state of 

matter which is capable of changing shape and is capable of flowing. 

Each fluid characterized by an equation that relates stress to rate of 

strain, known as "state equation ". Fluid may be classified as 

"viscous" or "perfect" according to whether the fluid is capable of 

exerting shear stress or not. Viscous fluid is called Newtonian if the 

relation between stress and rate of strain, in state equation, is linear, 

otherwise it is called non-Newtonian fluid.  

Viscous flow through straight ducts of various cross-section 

forms is well understood. The flow in a gently curved duct may be 

considered as a modification of straight axial flow in which the effect 

of centrifugal forces must be considered. 

 Dean, (1927),[7] is the first researcher who worked in flow 

analysis of Newtonian fluids in curved pipes. He introduced a toroidal 

coordinate system to show that the relation between pressure gradient 

and the rate of flow through a curved pipe with circular cross-section 

of incompressible Newtonian fluid is dependant on the curvature. In 

that paper he could not show this dependence but he did it in his 

second paper (1928),[8] where he modified his analysis by including 

higher order terms to be able to show that the rate of flow is slightly 

reduced by curvature. 

Dean and Harst (1957),[10] obtained an approximate solution 

of Newtonian fluid flow in a curved pipe with rectangular cross- 

section assuming that the secondary motion is a uniformly stream 



from inner to outer bend. They modeled the equations of motion by 

using cylindrical coordinates. This assumption enabled them to obtain 

Bessel’s function solution. They argued that the secondary motion 

decreases the rate of flow produced by a given pressure gradient and 

causes an outward movement at the region where the prime motion is 

the greatest.  

In his paper Jones (1960),[17] makes a theoretical analysis of 

the flow of incompressible Non-Newtonian viscous liquid in a curved 

pipe with circular cross-section keeping only the first order terms. He 

shows that the secondary motion consists of two symmetrical vortices 

and the distance of the stream lines from the central plane decreases as 

the Non-Newtonian parameter increases. 

Past work on fully developed flow in a curved square duct 

includes numerical studies by Mori, Uchida & Ukon (1971),[23] who 

obtained a numerical solution by using boundary-layer approximation 

(valid for large Dean numbers); Cheng. Lin & Ou (1976),[7], Ghia & 

Shokhey (1977),[14] and Joseph Smith & Adler (1975),[18] who 

obtained solutions which predicted the existence of a weak second 

vortex pair near the outer wall above a certain value of the Dean 

number. This second vortex pair was found to rotate in the opposite 

manner to the primary vortex pair. Cheng et al (1976),[7] predicted 

the onset of second vortex pair to occur when a Dean number is >150. 

Ghia & Sokhey,[14] predict in it to occur above a Dean number 

of 143 while the calculations of Joseph et al,[18], give a threshold 

Dean number of 152 since the curvature ratio (whose effect is 

embedded in the Dean number) may itself play an important role for 

highly curved ducts. The suitability of the Dean number as the sole 



parameter to characterize the onset of the second vortex pair is 

unclear. 

      For curved rectangular ducts Cheng et al (1976),[7] 

performed calculations for duct aspect ratio (defined as the ratio of 

height H  to the width B ) of 0.5, 2 and 5 for the range of the Dean 

number 15.9 to 312.7 at curvature ratios of 100 and 30. They reported 

that for an aspect ratio of 0.5 at L=176 there were no additional 

vortices and at L=200 there was a pair of very weak vortices close to 

the outer wall. In addition they found that for an aspect ratio of 5 a 

pair of secondary vortices appeared at a rather low Dean number of 76 

and the eye of the primary vortex moved toward the upper and the 

lower walls with the increase of Dean number.  

Winter, K. H. (1987),[34] considers the bifurcation of 

secondary solutions for fully developed laminar flow in curved 

rectangular ducts. The study is based on finite-element analysis and 

shows the existence of the multiple solutions arising from the non-

linear equations for the range of aspect ratio from 0.8 to 1.6.  

Ravi Sankar, Nandakumar & Masliyah (1988),[24] consider the 

related problems of developing flow in curved ducts. They have 

shown that for a range of curvature ratios and Dean numbers the flow 

develop into previously known two-and four- cell patterns based on 

fully three-dimensional calculations using the parabolized form of the 

Navier-Stokes equations. They have also shown that for loosely coiled 

ducts (of curvature ratio of 100) outside a narrow range of Dean 

number the solution exhibits sustained oscillations in the axial 

direction and that no stable steady solutions could be predicted. 



Thangam and Hur,(1990),[30] show that the secondary flow of 

incompressible viscous fluid in a curved duct is studied by using a 

finite-volume method. It is shown that as Dean number is increased 

the secondary flow structure evolves into a double vortex pair for low 

-aspect- ratio duct and roll cell for duct of high aspect ratio. They 

found that for ducts of high curvature the onset of transition from 

single vortex pair to a double vortex pair or roll cells depends on the 

Dean number and the curvature ratio while for ducts of small 

curvature the onset can be characterized by Dean number alone. 

     Jing-Wu Wang and Andrews, in (1995),[16] use a non-orthogonal 

coordinate system to study the effect of the pitch ratio and curvature 

on the velocity distribution of fully developed laminar flow of an 

incompressible fluid in a helical duct with rectangular cross-section. 

They used a numerical method to solve the motion equations, they 

find that the pitch ratio affects the pattern of the secondary flow, two-

vortex become a single vortex if the pitch ratio is greater than 10 and 

for a certain level there will be four vortexes to appear on the plan of 

the cross-section. 

Yakhot  A., et al (1999),[35] studied a pulsating laminar flow of 

a viscous, incompressible liquid in a rectangular duct . The motion is 

induced under an imposed pulsating pressure difference. The problem 

is solved numerically. Difference flow regimes are characterized by 

non- dimensional parameters based on the frequency of the imposed 

pressure gradient oscillation and the width of the duct. The influence 

of the aspect ratio of the rectangular duct and the pulsating pressure 

gradient frequency on the phase lag, the amplitude of the induced 

oscillating velocity, and the wall shear were analyzed. 



Abdul-Hadi A. M.(2000),[1] studied the unsteady flow of 

incompressible non-Newtonian fluid in a curved pipe with a square 

cross-section. He used a Galerkin method which is a variational 

method to solve the equations of Navier-Stokes. He shows that a 

secondary motion depends on three dimensional parameters namely 

Dean number, non-Newtonian and frequency parameters, also he 

studied the effect of these three parameters on the secondary flow, 

axial velocity and some other relation. 

AL-Musawy A. Z. H. (2004),[2] studied the flow of non-

Newtonian fluid in a curved duct with varying aspect ratio. In his 

computation he used a Galerkin method and finite-difference to solve 

the equations of Navier-stokes. He shows that a secondary motion 

depends on two dimensional parameters, also he studied the effect of 

non-Newtonian and aspect ratio parameters on the secondary flow and 

axial velocity. 

Our work will be generalized to chapter tow of Abdul-Hadi A. 

M. work. This thesis contains four chapters:- 

Chapter one devoted to study some of fluid properties and basic 

concepts. 

Chapter two deals with unsteady flow of viscous, incompressible, 

non-Newtonian fluid in curved pipe with rectangular cross-section. An 

orthogonal coordinates system has been formed to describe the fluid 

motion. In this chapter we are going to study two cases, wide 

rectangular and longitudinal rectangular. In each case the motion 

equations are controlled by three parameters namely, Dean number, 

non-Newtonian parameter and frequency parameter. In each case, 



solution of the secondary flow and the axial velocity are described by 

perturbations over straight pipe appearing the Dean number. 

Chapter three contains solutions of the problem for case1 and 

case2. These solutions are firstly expanded in terms of Dean number 

(chapter two) and secondly in terms of frequency parameter. 

Perturbations equations are solved by Galerkin method after 

eliminating the dependence on time. 

   In chapter four we study the effect of the parameters mentioned 

above on the flow in the central plane, the secondary motion and the 

axial velocity for each case. This chapter ended with studying a 

comparison between case1 and case2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER ONE 

Some Definitions and Basic Concepts 
 

Introduction 

The study of fluid dynamics is of closed link with the physical 

properties of fluids such as density, viscosity, pressure …etc. As an 

introduction to some of the issues in the mechanics of fluid, this 

chapter will include a preliminary discussion of a few such properties 

fluids flows. 
  

1.1 Density  

           The density of a fluid, denoted by , in unit of 3/ mKg is 

defined as the mass per unit volume of the fluid, 

          
V

m
                                                                          .… (1-1) 

where m  is the mass and V  the volume. According to this property, 

fluids can be classified into compressible and incompressible. When 

the density is constant, the fluid is known as incompressible but when 

it changes with time, the fluid is known as compressible. [28] 
 

1.2 Viscosity 

          A viscosity of fluid is that characteristic of real fluid which 

exhibits a certain resistance to change of form. Some of viscous  fluids 

“Newtonian fluids” obeys the linear relationship given by Newton’s 

law of viscosity. 

          
dy

du
T                                                                       …. (1-2) 



where T  is the shear stress ( force per unit area ), 
dy

du
  is called as 

velocity gradient and      is the coefficient  of dynamic viscosity or 

simply called viscosity. [28] 

 

1.2.1 Coefficient of Dynamic Viscosity:  

        The viscosity is defined as the tangential force required per unit 

area to sustain a unit velocity gradient. [28]            
      

1.2.2 Kinematic Viscosity:   

        Kinematic viscosity, denoted by , in units of m
2
/s is defined as 

the ratio of dynamic viscosity to mass density. [28] 

          



                                                                           .… (1-3) 

 

1.3 Pressure 

        Pressure, denoted by P, in units Kg/m.s^
2
 is defined as the local 

normal force per unit area, 

          
A

F
P n                                                                         .… (1-4)     

where 
n

F  is the normal forces to surface with area A. [28] 

 

1.4 Fluid Flow 

Historically, flow phenomena have been studied by the most 

famous thinkers of antiquity and, more recently, by the most notable 

mathematicians and experimenters. In internal flow through pipes, 

channels …etc, the flow is established and sustained by to overcome 

the resistance of flow.  



           It is possible –and useful-to classify the type of flow which is 

being examined into small number of groups. If we look at a fluid 

flowing under normal circumstances –a river for example –the 

conditions at one point will vary from those at another point (e.g. 

different velocity) we have unsteady flow. 

Under some circumstances the flow will not be as changeable 

as this. In what follow, we are going to define the terms describing the 

states which are used to classify flow. [3] 

 

1.4.1 Uniform Flow: 

If the flow velocity is same in magnitude and direction at every 

point in the fluid, then the flow is said to be uniform. [3], [28], [29] 

 

1.4.2 Non – Uniform Flow : 

        If at a given instant, the velocity is not same at every point then 

the flow is non-uniform flow. [3], [28], [29] 

 

1.4.3 Steady Flow:    

        A steady flow is one in which one of the following (velocity, 

pressure and cross- section) may differ from point to point but do not 

change with time. [3], [28], [29]  

 

1.4.4 Unsteady Flow:  

         If at any point in the fluid, the condition change with time, then 

the flow is described as unsteady. [3], [28], [29] 

 

1.4.5 Laminar Flow:  

         If the fluid particles move along smooth, regular paths, then the 

flow is called laminar flow. [28]. 

 

 



1.4.6 Turbulent Flow:  

         If the fluid particles move randomly, then the flow is called 

turbulent flow. [28]                                   

 

 

1.5 Reynolds' Number  

         The dimensionless expression ηvdρ /  where dvρ ,,  and η  are 

density, mean velocity, diameter and dynamic viscosity respectively, 

is called Reynolds number .The value of Reynolds number help us to 

predict the change in flow type. If its value  less than about 2000 then 

the flow is laminar, if greater than 4000 then the flow is turbulent and 

in between these then in the transition state from laminar to turbulent. 

[3], [28], [29] 
 

1.6 Continuity Equation  

        The continuity equation simply expresses the law of conservation 

of mass (the mass per unit time entering the tube must be flow out at 

the same rate) in mathematical form. [3], [28],        [29] 

 

1.7 Motion Equations   

        The motion equations are non-linear (or linear sometime) partial 

differential equations which expressed the Newton's second law in 

mathematical form. Thus the motion equations can be eveloped from 

consideration of the force acting on a small element of the fluid, 

including the shear stresses generated by fluid motion and viscosity. 

[28], [29] 

 

 

 



1.8 Stream Function  

         Let A be a fixed point in the plane of motion, and ABP, ACP are 

two curves joining A to an arbitrary point P, Fig.(1). 

 

 

                                                         

 

Fig.(1), Stream function 

According to the continuity equation the flux through ABP is 

equal to the flux through ACP. If we denote the flux by the function

ψ , then ψ depends on the position of P and time, i.e. ),,( tyxψ .The 

functionψ  is called stream function. [28] 

         

Fig.(2), illustrate the relation between the stream function  

)0,,( zxψ  and the velocity field. 

 

 

 

 

 

 

 

 
 

Fig. (2),Stream function and velocity field  

From the continuity equation we have         

 The flux through 
31

PP =flux through 
21

PP +flux through
32

PP  

           WdxUdyd                                                       …. (1-5) 

A 

P 
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B 
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since  ),( yx  ,then by chain rule we have  

           dy
y

dx
x

d











                                                 …. (1-6) 

from (1-5) and (1-6) we get  

           
x

W
y

U











,                                                 …. (1-7) 

 

1.8.1 Streamline: 

A streamline is an imaginary line drawn through the flow field 

such that the tangent at any point is in the direction of the velocity 

vector. [3], [28], [29] 
 

1.8.2 Theorem:  

  A steam function is constant along a streamline. [28] 
 

 

1.9 Stress and Strain  

        Fluid particles in motion deform, and therefore, can conform to 

complex geometries and shapes. In practical terms, deformation is 

represents the different ways in which particles can change shape or 

position under the influence of external forces. This deformation 

defined as “strain”. The external forces when transmitted in the fluid 

particles develop to internal forces. For convenience, internal forces 

are expressed in terms of stresses denoted by T, and stress is defined 

as the force per unit area along which the force acting on.  

Consequently, stress and force are equivalent concept. 



 In Fig.(3) we noted that stresses are distinguished as normal and 

tangential. 

 

 

 

Fig.(3),Normal and Tangential Stresses 

 

the subscripts xy or yx on the tangential stresses indicate respectively 

the face and direction the stresses are applied to. To guarantee static 

equilibrium for the free body diagram in Fig.(3) and, therefore, to 

ensure that   0F   and   0M , where F and M respectively the 

force and moment vectors, we must have Txy=Тyx. 

 By including the third direction, the stress state at a particular 

point in a three-dimensional flow is given by the tensor:- 

                 T=

















zzzyzx

yzyyyx

xzxyxx

TTT
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TTT

 

      Again, for static equilibrium,
zyyzzxxzyxxy

TTTTTT  ,, , which 

makes the stress tensor symmetric (i.e. off-diagonal terms are  equal ). 

[3] 
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1.10 Curvature   

      If T


is the unit tangent vector of a smooth curve, the curvature 

function of the curve is  

           
ds

Td
sc



)(                                                                 …. (1-8). 

     If 
ds

Td


 is large, the curvature at p is large, if 
ds

Td


 is close to zero, 

the curvature at p is smaller. Fig.(4), describe the  curvature. [3] 

 

 

 

 

 

   

 

 

1.11 Dimensional Analysis  

 Any physical phenomena can be described by certain 

quantitative properties e.g. length, velocity, area, volume…etc. These 

Fig.(4),The Curvature  

P P0 
s Ť  

Y 

X 



are known as dimensions. Of course dimensions are of no use without 

a magnitude being attached. We must know more than that something 

has a length. It must also have a standardized unit-such as a meter, a 

foot …etc. 

 Dimensions are properties which can be measured. Units are the 

standard elements we use to quantify these dimensions. In 

dimensional analysis we are only concerned with the nature of the 

dimension i.e. it's quantity. Thus, the dimensional analysis is a method 

to describe natural phenomena by a dimensionally correct equation 

among certain variables which affect the phenomena. There are 

several methods in the dimensional analysis; one of these methods is 

described in the following subsection. [3], [28] 

 

1.11.1 Scaling and Order-of-Magnitude Analysis:  

 This method consists of two steps 

Step1:  

 Scale the flow variables using quantities characteristic of the 

flow. For example in the flow in pipes the choice for characterizing 

length and velocity scales are respectively the diameter D of the pipe 

and free stream velocity V, then u =
V

u
 and v =

V

v
 are dimensionless 

quantities. 

Step2: 

 Extend the scaling procedure to all terms in the governing 

equation. 

The above procedure leads naturally into the non-

dimensionalization of the continuity and motion equations.  

 



CHAPTER TWO  

Formulation of the Problem 

Introduction  

The problem under consideration is an unsteady flow of 

viscose, incompressible, non-Newtonian fluid in a curved pipe with 

rectangular cross-section. To describe the flow a cylindrical 

coordinates, orthogonal coordinates, are used. It is shown that the 

dimensionless motion equations are controlled by three parameters 

namely Dean number D , non-Newtonian parameter   and the 

frequency parameter k . The linearization of motion equations has been 

done by using a series solution of ascending power of Dean number. 

2.1 A Mathematical Consideration  

        Unsteady flow of non-Newtonian fluid in a curved pipe is 

considered. The non-Newtonian fluid is characterized by equation of 

state of the form: 

jkijikik
eeeT  42  .  .

3,2,13,2,13,2,1  kji
                      …(2-1) 

where 
ik

T ,
ik

e ,  and  are the stress, rate of strain, viscosity coefficient 

and normal stress respectively. [26] 

        Fig.(5), illustrates the coordinates system that has been used. OZ 

is the axis of the circle formed by the wall of the pipe. C is the center 

of the section of the pipe by a plane through OZ making an angle  

with a fixed axial plane. CO is the perpendicular drawn from C upon 

OZ and is of length R .The plane through O perpendicular to OZ and 

the line traced out by C will be called the central plane and the center 

line of the pipe respectively. Cartesian coordinates x and z are drawn 



in the section of the pipe, where x is parallel to OC and z parallel to 

OZ. The position of any point Q is then specified by cylindrical 

coordinate (x,, z), -d  x  d and       -h  z  h      where d and h are  

the length and height of the cross-section respectively. The Cartesian 

system  ZYX ,,  is related to the coordinate system in the cross-

section by the relations  

        z=  Z), Sin(x+R=Y   ), Cos(x+R=X θθ     .… (2-2) 

where         2o π.        

        Two cases will be examined for convenient length: 

case1, when 2,3  hd , see fig.(5) and case2, when 3,2  hd , 

see fig.(6).  

 

 

 

 

 

                                  

Fig.(5), Coordinates system 

 

 

 

                                    

 

 

 
 

Fig.(6),Coordinates system 
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  The line element is given by  

22222 )()()()()( dzθdxRdxds                          .... (2-3) 

It is clear from (2-3) that the coordinate system ),,( ZX   is 

orthogonal system. So it is possible to use the curvilinear coordinate 

to write down the continuity equation and motion equations  

The line element in curvilinear coordinate is given by, [27] 

2

3

2

2

2

1

2 )()()()(
h

dz

h

dy

h

dx
ds                                       .… (2-4) 

where
321

11
,

1

h
and

hh
are the coefficient of dzanddydx, respectively.  

Then in comparison equation (2-3) with equation (2-4) we have  

1,
1

,1
321



 h

xR
hh .    

 

2.2 The Curvilinear Coordinates of the Stress and Rate of Strain 

Components 

       Let ),,( WVU  be the velocity component in the direction 

coordinates ),,( zθx . Then physical components of the rate of strain 

are, [27]  
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 By using equation of (2-1) and (2-5) the physical components 

stress can be written as                                               
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2.3 The Continuity and Motion Equations 

        The continuity and motion equations for non-Newtonian fluid are 

(28), 
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   In equations (2-7)-(2-10), we assume that the fluid is incompressible 

( =constant) and the velocity component            (U, V, W) are 

independent of   but the pressure p is not. 

 

 

 

 

 

 

 

 



 

 

Substituting equations (2-6) in (2-8)-(2-10) gives  
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The boundary conditions are                         U=V=W=0 on the 

boundary. 

 

 

 

By using the stream function, equation (1-7), for the velocity 

components U, W and eliminating the pressure from equations    (2-

11) and (2-13) we obtain 
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The last equations, (2-15) and (2-16), can be simplified to   

…. (2-15) 

…. (2-16) 

…. (2-14) 
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        We impose a sinusoidal pressure gradient in time with zero mean 

on the flow in the form of      
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for convenient computation we will choose .31.2J   

where JVo   is the amplitude of the applied pressure gradient  and    

is the angular frequency. 

 

2.4 Non-Dimensional Form of Motion Equation for the Case1 

        It is possible to write the motion equations (2-17) - (2-19) in non-

dimensional form through using the following new quantities  
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         These equations can be seen to be controlled by three 

parameters, a non-dimensional frequency parameter, 
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In what follows we shall omit the index of coordinate system, it 

is understood that all variables are in non-dimensional form. To solve 

the above system, (2-22)-(2-24), we will use successive 

approximation method, which is equivalent to the perturbation 

solutions of f  and v in ascending powers of L . So the solution of the 

above system can be developed by using 

…. (2-22) 

…. (2-23) 
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Where   0,,
0

tzxf  in a straight pipe. We will limit ourselves to 

find the solution up to the first order in L , similar procedures can be 

used for higher order solutions, and the first order solution provide 

goods accuracy for the purpose. If we substitute (2-25) in (2-22) - (2-

24), and equate coefficients of equal powers in L ; we obtain a series of 

relations from which vo, 1
f ,v1,...can be successively found .The 

equations are 
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The boundary conditions associated with the above equations, 

(2-26) – (2-28) are: - 
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2.5 Non-Dimensional Form of Motion Equation for the Case2 

 By similar procedure, with exception that h  is the characteristic 

length instead of ,d  the non-dimensional parameters are defined as  
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Equations (2-17) - (2-19) become   
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Chapter Three 

A Variational Method for Solving the Problem 
 

Introduction 

In this chapter, an approximate solution to the problem is 

obtained through a variational method, Galerkin's method, [4], [12], 

[25], for both cases. 

Actually, the variational methods including Galerkin give an 

analytic approximate solution for partial differential equations which 

describe a fluid mechanics problem. Since it is difficult to find an 

exact solution we resort to consider approximate solution for these 

equations. 

This chapter, also include the solutions of steady state for the 

two cases under consideration. 

3.1 Galerkin's Method 

In 1915, B.G. Galerkin presented a new variational method to 

solve boundary value problems which was of a wide interest to 

researchers in the field of Applied Mathematics and Engineering 

Applications. 

The method is summarized in finding the solution of the 

equation   fuL  ,  GLu 2 , where L  is a differential operator in 

two variables and f  is a given continuous function in two variables 

defined on a region G . We shall seek an approximate solution of the 

problem in the form  
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Where   niyxi ...3,2,1,,   is a system of functions (which is 

usually, called a base of coordinates) chosen before hand and is 

satisfying a certain conditions  

a) It should be linearly independent in L2(G).  

b) It should be complete in this space.  

And the coefficients ic  are to be determined. Our aim is to find 

the ic  values such that  yxnu ,  is close to the exact solution in the 

sense that fL nu   is orthogonal to i , ni ...,3,2,1 . i.e. 
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This is an algebraic system of equations for the unknowns ic , 

ni ,...,3,2,1  when we solve the above system by one of the direct 

numerical methods like “Gauss elimination, Gauss Jordan” or iterative 

numerical methods like “Gauss-sidel method or successive over-

relaxation method” we get ic  and substitute in (3.1) to get the thn  

approximate solution  yxun , .[25] 
 

3.2 solution of Case1 

Galerkin's method is employed to solve the equations (2-26)-(2-

28) subjected to the associated boundary conditions (2-29). 

3.2.1 Solution for v0:   

If we substitute for v0 in equation (2-26) by the expression  
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and equate the coefficient of equal powers in k for equation (2-26), 

then the following set of equations are obtained   
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with v0i =0,  i=1,2,3,4 on the boundary.                                       … (3-8) 

 Solution of (3-4) can be developed by assuming that  
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If substitute equation (3-9) in (3-4) we get 

 31.2
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So the employed Galerkin's method is equivalent to the 

assuming of solution in the form  
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where 
0

a is a constant to be determined. It is found that the solution of 

(3-11) is  
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 Thus the complete zeroth order solution is  
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If we substitute equation v01 in equation (3-5) and using the 

procedure of Galerkin's method, the solution of v02 is found to be of 

the form  

 …. (3-4) 

 …. (3-5) 

 …. (3-6) 

 …. (3-7) 
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where a1, a2, a3 and a4 are constant. 

 Similarly, solution for v03 and v04 can be found. Finally zero 

order solution for v0 thus obtained. 

 The substituting of these solutions into equation (3-3) give the 

solution for v0 which is   
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3.2.2 Solution for f1: 

     The equation (2-27) contains the function v0, which is now 

known through the solution (3-15). If we substitute of v0   into      (2-

27), then that equation will contain only one unknown function  which 

is
1

f , the solution for f1 is obtained as a perturbation in terms of the  

parameter   as follows: - 
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The recursive equations for ,
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f i=1, 2 are obtained on equating 

the coefficients of equal powers in   these equations are

 































2

01

2

0101

2

0101

0111

4

z

v

z

v

zx

v

x

v

z

v
vf         …. (3-17) 

…(3-15) 
































































2

01

2

02

2

02

2

0101

2

02

02

2

0101

02

02

0111

2

12

4

z

v

z

v

z

v

z

v

zx

v

x

v

zx

v

x

v
β

z

v
v

z

v
vf

τ
f

   

and the boundary conditions are: 

 













bondarytheoniv

bondarytheoni
z

f

x

f
f

i

ii

i

2,1,0

2,1,0
∂

∂

∂

∂

0

11

1             …. (3-19)  

 Again, we proceed to eliminate the time variable and generate a 

solution as an expansion in non-dimensional parameter  .The 

solution for 
1

f  is found to be of the form 
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3.2.3 Solution for v1: 

 Similarly, we assume that 
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The solution (3-21) is substituted into (2-28) and we make use 

of the solutions (3-15) and (3-20), the recursive equations are 

…. (3-18) 
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the boundary condition are 
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By similar procedure the solution for v1 is found to be of the     

form 
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Finally, substitute the solutions 
10

, fv and 
1

v  into (2-25), the 

stream function and the axial velocity can be written in a convent 

form  
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.... (3-26) 



)()()}(

)()(

2

123

2

122121

8

3

113

2

112111

6

04

8

03

6

02

4

01

2

10





SinCosvvvL

CosvvvLvkvvkvv

vLvv







 

where all the above sf ' and sv' are polynomials in x and z. 

If f and v are independent of t and 1k the system (2-22) -     (2-

24) will be reduced to corresponding system in case of steady state, 

which is  
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and the associated  boundary conditions are: 
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In substituting (2-25) in system (3-28) - (3-30), and equate 

coefficients of equal power in L, we obtain  

 

….(3-28) 

….(3-29) 

.... (3-27) 
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The boundary conditions associated with system (3-31) –   (3-

33), are: 
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The solution of system (3-31) – (3-33) subjected to the 

boundary condition (3-34) is 
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In addition to that if we set 0β  in (3-35) and (3-36) we 

obtained the solution in case of Newtonian fluid. [10] 

 

.... (3-32) 

.... (3-33) 

.... (3-35) 

.... (3-36) 

.... (3-31) 



3.3 Solution of case2 

 By similar procedure the solution of motion equations for case2 

is found and Galerkin's method is employed. 

3.3.1 Solution for vo: 

 We assume the solution of v0 is   
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 The solution for v03 and v04 are obtained by the same way. Thus 

the solution for v0 is  
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3.3.2 Solution for f1:  

 The solution for 1f  is found to be  

…. (3-40) 
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3.3.3 Solution for v1: 

 Similarly, the solution for v1 is  
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 Finally, in substituting the solution 10 , fv  and 1v  into (2-25), the 

stream function and the axial velocity can be written in a convent 

form  
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where all the above sf '  and sv'  are polynomials in x and z. 

 If f and v are independent of t and 1k , then the liner motion 

equations for the case of steady state, are     
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.... (3-46) 

.... (3-47) 

.... (3-42) 

.... (3-43) 

.... (3-44) 

…. (3-45) 



The boundary conditions associated with system (3-45) -   (3-

47), are: 
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  And the solution of system (3-45) – (3-47) subjected to the 

boundary condition (3-48), is  
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 Also, if we set 0β  in (3-49) and (3-50), we obtained the 

solution in case of Newtonian fluid. [10] 
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CHAPTER FOUR 

Results and Discussion 
 

Introduction 

 In this chapter, the analysis of the solutions, for both cases, is 

considered. The effect of parameters that control the motion equations 

on various important flow characteristic, (i.e. the secondary flow and 

the axial velocity) is studied for different values of these parameters.  

 We explain the effect of these parameters through drawing the 

projection of streamline in the central plane and in the cross-section of 

the pipe. A comparison between the values of stream function and the 

value of the axial velocity, for both cases, is given. 

 Also, in our analysis we consider the case of flow of Newtonian 

fluid in curved pipes.  
 

4.1 Secondary Flow 

 The secondary flow occurs in curved ducts or curved pipes. 

Physically the parameter L  (Dean number) can be considered as the 

ratio of the centrifugal force induced by circular motion of the fluid to 

viscous force when a fluid flows through a curved pipe. Pressure 

gradient directed towards the center of curvature, is setup across the 

pipe to balance the centrifugal force arising from curvature. The fluid 

near the wall of the pipe is moving more slowly than the fluid some 

way from the wall owing to viscosity and therefore require small 

pressure gradient to balance the local centrifugal force. As a result of 

these different pressure gradients, the faster-flowing fluid moves 

outwards, whilst the slower-flowing fluid moves inward.  



This flow is known as the secondary flow and it is superposed on the 

main stream region towards the outer wall and creating a much thicker 

layer of slowly moving fluid at the inner wall, however, owing the 

enhanced mixing and momentum transfer due to the secondary flow, 

the total frictional loss of energy near the wall increases and the fluid 

experiences more resistance in posing through the pipe. 
 

4.2 Streamline Projection for Case1 

 The differential equations of the streamline is, [29]  

 
W

dZ

V

dxR

U

dX






                                                …. (4-1) 

The velocity components, (U, V, W) are to be obtained from 

equations (3-35) and (3-36). 

 

 

 

Up to sufficient accuracy equation (4-1) may be written as 
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                             …. (4-2) 

It is clear that all the variables are in the dimensional form.  

 

4.2.1 Streamline Projection in the Central Pane: 

 The motion of the liquid in the central plane of the pipe is of 

special simplicity .At any point on OC we have z = 0 and 0/  xψ , -

1  x  1 which mean that w vanishes; (i.e. the liquid particles located 

in the central plane do not possess the w component of velocity which 

is responsible of moving them out of this (x = 0) plane). As a result 



the direction of the velocity at such point in the liquid lies in the 

central plane. Thus the motion in the upper half of the pipe is quite 

distinct from that in the lower half and it is clear that the central plane 

is the plane of symmetry for the motion. 

 The differential equation of the streamline in the central plane is 

 22
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2
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o
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                                                  …. (4-3) 

From the dimensional analysis we have  

d

uv
U                                                                    …. (4-4) 

Then by using equations (4-4) and (2-25) we obtain 
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Substituting equation (4-5) into equation (4-3) we obtain  
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where /dVR
oe

 , is Reynolds number which determine the nature 

of flow. 

 Substituting for 1f  from (3-35) into (4-6) and solving the 

resulting differential equation we obtain  
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Here   is measured from the point where the streamline cross 

the central plane )0( x . The ),( x  relation is independent of the 

dimension of the cross-section.  

 For a given value of x , the range of   varies with the 

dimensionless parameters 
e

R and  ; in the case of Newtonian fluid 

)0(  the range of   varies inversely with 
e

R  and for a fixed value 

of 
e

R the range of   increase as   decreases. It is found that an 

increase in   leads to a decrease in the curvature of the streamlines in 

the central plane.  

 It is noted that the value of   increases steadily with x and 

tends to infinity as x  tends to unity and   tends to minus infinity as x  

tends to minus one. 

 Numerical illustration are now given for a particular boundary 

and Reynolds number considered by Dean [8], namely 

3

1
,3.63 

R

d
R

e
 and for different values of the parameters Lkβ ,,  

and time τ . 



Fig.(7, 8), illustrate the streamline projection in the central 

plane. The streamline grows smoothly along the central plane and 

merges with the outer wall of the pipe. This shape is greatly affected 

by the non-linear stresses. The non-linear stresses force the flow to be 

around the inner wall for a quite angular distance, the flow centrifugal 

force forces the direction to sharply move in a radial direction but the 

flow steers near the outer wall again. This phenomenon becomes very 

clear as , the non-Newtonian parameter, increase through the interval 

(  , )\ [-0.16, 0.044], see Fig.(7). Inversely it is disappear as   

varies from -0.16 to 0.044 Fig.(8) 
 

4.2.2 Streamline Projection on the Cross-Section of the Pipe: 

 The streamline projection on the cross-section for a curved pipe 

are represented by 


1

f Constant  

Where 1f is given by (3-20), which is combination of the radial 

and vertical velocity. The nature of the closed curved streamline for 

various fluid changes because of the non-Newtonian parameter.  

The factors that affected on the secondary flow and  -

component velocity as can be seen from equations (3-26) and      (3-

27), are the frequency parameter k , the non-Newtonian parameter  , 

Dean number D  and the time  . 

Sixty nine cases have been studied to cover the effect of each of 

these factors on the secondary flow and  -component velocity. All 

figures (11-34) show that, there are two symmetrical regimes of 

secondary flow to appear in the cross-section in curved pipe. Also, it 

is noted that the intensity of the secondary flow is stronger in the 



middle of each of the upper and lower of the cross-section and 

becomes weaker when the more toward the boundary and the central 

plane. 

 For   increase through the interval (−∞, ∞)\[-0.16,0.044], 

77.1k  and 01.0L  it is found that there is small vertical 

displacement away from the central plane, and the intensity of the 

secondary flow increases, see Fig.(11, 12).  

In Fig.(13-16) when 1  and for k  and L greater than zero, it 

is noted that the effect of k and L  on the displacement of the 

secondary flow is the same as the effect of  and the intensity of 

secondary flow increase as k and L  increase, but when β is small, e.g. 

044.0  and different values of  k  and L , there is no displacement 

but there is change in intensity of the stream function, see Fig.(17-20).  

Fig.(21-34) illustrated the effect of time on the streamline 

projection on the cross-section in curved pipe. In Fig.(21-28), the 

values of  , k and L  are 1, 1.77, and 0.01 respectively and τ  varies 

from 0 to 6.28. As τ  varies from 0 to 2.05 ( τ  is measured in radian) 

there is displacement toward the central plane and the streamline 

become thicker near the central plane, see Fig.(21-23).  

The transition stage from a two-vortex structure to a four-vertex 

structure occurs at 061.2 ; where two additional vortices start to 

grow near the corner of the inner and outer walls, see     Fig.(24). 

They are clearer at 07.2 , see Fig.(25) and the twin vortices 

rotating in opposite direction of the main vortices appear. Also, at τ  

increase it is noted that there are two stagnation regions near the 

corner of the inner and outer walls, Fig.(24), moving toward the center 



of the cross-section, Fig.(25). As   increases, it is observed that the 

vortices in upper and lower half of cross-section near the corner of the 

inner and outer walls of the pipe expand and make another secondary 

flow, because of continuity displacement of the main vortices toward 

the central plane as   increase, the new vortices control to the flow in 

pipe and become the main vortices, Fig.(26-28).  

When the value of   is small, e. g. 0.044, and for the same 

values of k and L  (i.e. 77.1k and 01.0L ), the increasing in τ  from 

0 to 6.28 lead to growth one vertex in each halve of the cross-section 

(upper and lower the central plane) near the boundaries, the vertices 

appear at 753.1τ  , Fig.(30), and its direction opposite to main vortices. 

At τ  varies from 0 to 6.28, the main vertices displace to the central 

plane. So it reach to stagnation regions, inversely the vertices that 

appear in upper and lower cross-section growth to take the location of 

the main vertices, see Fig.(29-34). 
 

 

 

 

4.2.3 The Effect of Parameters, ( Lkβ ,, )and Time ) on  -

Component Velocity:  

The effect of parameters, ( Lkβ ,, and ) on  -component 

velocity illustrated in Fig.(35-47). It is noted that,  parameters  , k

and  have weak effect on the location of center of axial velocity, and 

the increase in  and k leads to an increase on the value of the axial 

velocity. For increasing L  there is horizontal displacement in the 

center of the axial velocity toward the outer wall of the pipe, see 



Fig.(35-42). In Fig.(44-47) we noted that for small value for β , 

( 044.0 ), and the increase in k  leads to increase in the intensity of 

the axial velocity but the increase in β  and L  have not effected, see 

Fig.(45,46).  

 

4.3  Streamline Projection for Case2 

 As in case1, the differential equations of the streamline are  
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W

dZ

V

dxR

U

dX






                                          …. (4-9) 

The velocity components, (U, V, W) are to be obtained from 

equations (3-49) and (3-50). 

Up to sufficient accuracy equation (4-9) may be written as 
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Also the expressions here appear in dimensional form. 
 

4.3.1 Streamline Projection in the Central Pane: 

 This section has the same properties in the previous section 

(4.2.1) and the differential equation of the streamline in the central 

plane is 

)( 22
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In case2 equation (4-4) becomes  

h
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Using equations (4-12) and (2-25), we obtain   
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Substituting equation (4-13) into equation (4-11), gives  
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 Substituting for 1f  from (3-49) into (4-14) and solving the 

resulting differential equation gives  
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It noted that   has the same properties as in section (4.2.1), but 

it tends to infinity as x  tends to 
3

2  and it is tend to minus infinity as 

x  tends to 
3

2 .  

From Fig.(9, 10), we noted that the stream line projection in the 

center plane has the same phenomenon describe in section (4.2.1) 

associated with similar effect of   but in slowly form.  

 



4.3.2 Streamline Projection on the Cross-Section of the pipe: 

 Figures (48-64) illustrate the effect of  , k , L  and   on the 

stream line projection on the cross-section in a curved pipe. It is found 

that there is no displacement in a secondary flow as  , k and L

increase. 

 In addition, it is found that the intensity of the secondary flow 

increases as  , k and L increase, see Fig.(48-53). Also, it is noted that 

there are two stagnation regions near the inner and outer walls moving 

toward the center of cross-section as  , k and L increase.  

 As   increases and the values of  , k and L  are 10, 1.77 and 

0.01 respectively, there is displacement toward the boundaries and the 

streamlines become  thicker near the boundaries, Fig.(54). The 

transition stage from a stage from a two-vortex structure to a four-

vertex structure occurs at 85.1 ; where two additional vortices start 

to grow near the inner and outer walls, see Fig.(55), the twin vortices 

rotating in opposite direction of the main vortices appear. Also, at τ  

increase it is noted that there are two stagnation regions near the inner 

and outer walls moving toward the center of the cross-section, see 

Fig.(54).  

 For 85.1τ , the stagnation regions start to move toward the 

center of cross-section causes displacement to main vortices toward 

the boundaries with the new vortices near the inner and outer walls 

move toward the center of cross-section to reach the main vortices, 

see Fig.(56-58). 

Fig.(59-64), illustrate the effect of k , L  and   when  is small 

such as 024.0 , it is noted that there is small displacement toward 



the central plane as β , k , L  and   increases and the intensity 

increase as these factors increase.  

Finally, it is observed that the effect of each of the factors (  , 

k , L  and  ) on θ -component velocity have the same effect in case1 

(except L  has stronger effected than in case1) see        Fig.(65-79).   

For steady state (time derivative is zero), in both cases, it noted 

that the effect of   and L have same effect as in unsteady state but in 

different level see Fig.(80-113). 

Fig.(43, 73) explain the Newtonian type of fluid.   

 

4.4 Comparison between Case1 and Case2 and Conclusion 

For streamline projection in a central plane of the pipe, it is 

noted that as   increases, the effect in case1 is stronger than     case 2. 

Regarding streamline projection in the cross-section, in case1 it 

is noted that the increase in  , k and L  lead to a weak displacement 

away from center plane and the intensity increases as these factors 

increase, where in case2, the increase in these factors lead to increase 

in the intensity (different from that in case1) of the secondary flow but 

there is no displacement. 

 In addition to that, in case1 the increase in   leads to a 

displacement toward the central plane and the streamline become 

thicker near central plane.  

 At 061.2  there exist four-vortex structure near the corner of 

the inner and outer walls of the pipe; while in case 2, the displacement 

was toward the boundaries occur and the streamline become thicker 

near the boundaries as τ  increase. The four-vortex structure near the 

inner and outer wall appear at 85.1 . Also, for small values of  , 



in case1 it is noted that there exist two-vortex structure and the 

displacement toward the central plane  but there is no such they in 

case2.  

 

4.5 Further Study   

 In what follow we give some suggestions for further study  

1- The pressure in our problem is imposed. One can calculate the 

pressure by solving Possion’s equation for pressure.  

2- This work can be extended for helical pipe in which torsion is 

not equal to zero (in our problem torsion is zero). 

3- This work can be extended for pipe with varying curvature. 

4- Our problem can be resolving by using boundary layer method. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(7),streamline projection in the central               Fig.(8),streamline projection 

in the central   

plane for β =-.1, 0.01, 0.04, 0.042, 0.044                      plane for β =-1, 1, 5, 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(9),streamline projection in the central               Fig.(10),streamline projection  

in the   plane for β =-.16, 0.01, 0.02, 0.023, 0.024              central plane for β =-

10, 10, 20, 30       
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