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List of symbols

Symbol Meaning
P, The space of polynomials of order »
c(p) Positive constant depends on p
J.(f) Jackson polynomial
Lyo(x) The space of all unbounded functions f on space X
E.(f)p The degree of best approximation of functions on
Ly(x)
Ly(x) The space of all bounded measurable functions
Ty The trigonometric polynomials of degree M
wo(f; 8) The modulus of continuity of function f
wy (f; 6) The modulus of smoothness of function f
A¥ £(x) | The k™symmetric difference of /
7 (f; 6)y The averaged modulus of smoothness on L, (x)
wi(f,x;8) | The local modulus of smoothness of function f
Clap] The space of all continuous bounded functions
E.(f)p The best one-sided approximation of functions f on
Lp(®)
Miq b1 The space of all bounded functions f on space X
T, The set of all algebraic polynomials of degree <r
Lo (x) The space of all essentially bounded functions
@, (x) Fejer kernels
i3 The Fourier coefficients
Vonan(f,x) | Valle-poussin polynomial
cp, k1) Positive constant depending on p, k and [
Ly, Positive linear operators
i The partial derivatives of function f
r} The averaged modulus of smoothness on Ly (x) with /

derivatives

Tr (6)

The averaged modulus of smoothness
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This thesis is devoted to approximation of finite Fourier transform
(FFT) that is (integrable, bonded and 1-periodic ) function defined on
[0,1]in L, space,1 < p < o and deal with what is called error estimated

of function by positive linear operators via averaged modulus of
smoothness.

The degree of best approximation for ( FFT ) in L, —space,1 =p <
by using trigonometric polynomials , Valle-poussin operator and
L, polynomials on [0,1] in terms of averaged modulus of smoothness
have been studied and found.

The following results have been studied:

1. The error is estimate for (FFT) that is integrabel, 1-periodic and
bounded function on [0,1] in L, —space ,1 < p < oo by trigonometric
polynomials in terms averaged modulus of smoothness.

2. The error is estimate for (FFT) that is integrabel, 1-periodic and
bounded function on [0,1] in L, —space ,1 < p < oo by Valle poussin
operators in terms averaged modulus of smoothness.

3. The error is estimate for (FFT) that is integrabel, 1-periodic and
bounded function on [0,1] in L, —space,1 < p < o by L, polynomials
in terms averaged modulus of smoothness.




Introduction

Entmducﬁ@n

Our interest in approximation theory is related to its huge history as
well as its plentiful connections with modern and classical analysis
theory. The idea of approximation theory arose from methods to
estimating the error in a large number of numerical processes such as

interpolation and approximation of functions by means of operators.

Approximation theory of functions has been studied by a number of
researchers,  throughout  trigonometric ~ polynomials, algebraic
polynomials, Jackson and Bernstein theorems . The Russian mathematical
Chebyshev was the first person who invented the best approximation
problem and how to change the linear motion into circular motion[14].
And also he developed in a very obvious way the goal of approximation

theory in his researches.

Weierstrass developed a theorem that is considered the basic of
approximation theory of real variable function and has great contribution
in developing mathematical analysis which is for every continuous
function f* there exist an algebraic polynomials P, of degree < n such

that the function f'converges to P [31].

The methods of approximation are based on the use of new characteristic
of functions, the name of new characteristics is averaged modulus of
smoothness, or T — moduli. They are defined for every bounded function
integral, the averaged modulus of smoothness, which have already been
used with success in a series of problems in the theory of approximation,
are particularly helpful for estimating the error of functions that deal with

finite numbers [37].




Introduction

There are many researchers have studied the theory of approximation of

functions as is given below :

In (1968), B. Sendov [8] introduced the ordinary L, -modulus of

continuity, denoted by w — modulus.

In (1984) Ivanov ,[20]"obtained some results about approximation of
measurable and bounded functions by Bernstein polynomials in L,[0,1]

space".

In (1987) , ZDitizian and V.Totik[10] introduced a way of
measuring smoothness of functions ,where the need for these concepts
arises from the failure of the classical moduli of smoothness to solve

some basic problems.

In (1991) S. K. Jassim [22] presented an equivalence between
the approximation of bounded measurable functions with trigonometric
polynomial and the averaged modulus of smoothness in locally global

space (1 <p < o).

In (1999) , E. S. Bhaya [6] obtained some results about the convergence
of periodic functions in the space L,(0 <p <1) ,in terms of average

modulus of smoothness .

R .Li and Y.Liu [33] (2008) , obtained the asymptotic estimations of
best m-term approximation and Greedy algorithm for multiplier function

classes defined by Fourier series .

In (2010) Leeka A.H [24], studied the approximation of unbounded

functions by some algebraic and trigonometric polynomials in Lpa—

spaces and she found the degree of approximation of 27 —periodic

unbounded functions by two trigonomiatric polynomials.




Introduction

A.A. Hammod [17] (2012), introduced the estimation of any function
(bounded and unbounded) by the k-functional and found estimation for
positive linear operator by new weighted modulus of continuity in Lyg—

spaces .
The Scheme of this Thesis is:

In chapter one, modulus of continuity and average modulus of
smoothness have been defined with properties , definitions , theorems and

lemmas that need in our works are given.

Chapter two estimates the error for the finite Fourier transform in
terms of trigonometric polynomials in L, —norm via the averaged

modulus of smoothness, and prove some results that related with it.

Chapter three estimates the error for the finite Fourier transform by
averaged modulus of smoothness via Valle-poussin operator and proof

some results that are related to it.

Chapter four estimates the error for the finite Fourier transform by
averaged modulus of smoothness via Ly, operator and proof some results

that are related to it.




1
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Chapter One

Fourier Series and Fourier

Transform




Chapter one Fourier series and Fourier transform

1.1 Introduction

In this chapter, introduced many primary definitions theorems
,JJlemmas and corollaries, introduced Fourier series JFourier transform
with applications and some of properties ,disecrete Fourier transform and

fast Fourier transform.
1.2 Basic definitions and notations

In this section some definitions, theorems and lemmas that will be

used in this work have been presented.
Definition (1.1)[40]

The real valued function Jon [a, b] is said to bounded if there is a real
number M such that |f(x)] < M for every x € [a, b] and otherwise it is

said to be unbounded.

The following examples illustrate the bounded functions on the set of real

number.

1) £(x) = sinx X €R,[~1,1]
2) f(x) = cosx X € R, [-1,1]
3 () = x ,x € [0,1]
Definition (1.2)[12]

An algebra D of subset of some set X is called o — algebra if every

union of a countable collection of members of D is again in D that is in

addition to D being an algebra Un=1 4, belong to D for every{ 4,,}

sequence of D.
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Definition (1.3)[12]

Let D be a o — algebra of subsets of X, a couple (X, D) is called a
measurable space. A subset 4 of X is called measurable or measurable

with respect to D if 4 € D.
Definition (1.4)[40]

Let /' a function defined on the measurable space X with values in the
extended real numbers system the function J'is said to be measurable if

the set {x: f(x) > a} measurable of every real a.
Definition (1.5)

Let X = [0,1], then denoted by the Ly-space of all bounded measurable
functions /' on X such that:

Ifllz, = {follf(x)lp dx}i , 1<p<w (1.1)
Definition (1.6):[25]

Let (X, || ) be a normed space , let ¥ be a non empty subspace of
Xand apoint x € X, if y € Y such that ||x — y|| = infyeyllx — z|| then y

is called a best approximation from Y to X.
Definition (1.7)[38]

The degree of best approximation of f € L,[0,1] with respect to

the trigonometric polynomials of degree  in L, — spaces is defined by:

En(f)p = infanTm”f - pn”p ’ 1< p<o (12)

Where T, is the set of all trigonometric polynomials of degree m.
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Theorem (1.8) (Existence best approximation ) [29]

Let Y be finite dimensional subspace of X ,then for every x € X there

exist best approximation form ¥ to X,

Definition (1.9)[12]

A set 4 is called convex if the set of points {¥x; + (1 —9x,} € 4
for every x1,x, €4, 0<9 <1 and 4 is called strictly convex if the

points {9x; + (1 — 9)x,} are interior points for every x;,x, € A.
Definition (1.10)[12]

A normed spaces X is called strictly convex space if the ball B(0,1) is

strictly convex.
Theorem (1.11) (uniqueness best approximation ) [29]

In strictly convex normed space X there is at most one best

approximation to an x € X out of a given subspace 7.
Definition (1.12)[38]

The modulus of continuity of f on [a ,b] is the following function

of § € [0,b — a]

W(f;8) = sup{lf () = f@)|: |x - #| < 8, x,% € [a, b} (1.3)

A necessary and sufficient condition for a function f'to be continuous

in the interval [a, b] is

clsi_rgg w(f;8) =w(f;0)=0
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Definition (1.13)[38]

The modulus of smoothness is a natural generalization of the

modulus of continuity as the following:

©e(f;8) = sup{|AKf (0): |h] < 6,%,x + kh € [q, b](} (1.4)
k is positive integer k=7, 2,3,...

Where

k
k
MFG) = ) (—1yme ;) FGc +mhy
m=0
Such that

( k ) _ k!
m/) "~ ml (k= m)!
is the binomial coefficient.
Example
when £=1 we have

Anf(x) = f(x+2h) - f(x)
When k=2 we have
ARfG) = FO) + f(x +2h) — 2f(x +h)
when k=3

AL f(x) =3f(x +h) +f(x +3h) = 3f(x + 2h)-f(x)

The modulus of smoothness of order 1 is the modulus of continuity, i. e

w1(f;6) = w(f; 6)




Chapter one Fourier series and Fourier transform

The modulus of smoothness of order 2, w,(f;8) called the Zigmund

modulus
The modulus of smoothness have the following five basic properties :
l.. Monotonicity:
wi(f; 81) < wi(f; 6,) for0<6, <5,
2. Semi-additivity:
0 (f +9;8) < wi (f; 6) + w(g; 8)

3. A higher order modulus can be estimated by means of a modulus of

lower order

wr(f;6) < 2wi_1(f; 6)

4. A modulus of the function can be estimated by means of a modulus of

lower order modulus of the derivative:

Wi (f38) < 2w, (£ 6)

5. The integer multiplier for the moduluys:

Wi (f;n6) < nkwy(f; )

Where 7 is natural number
Definition (1,14)[38]

The averaged modulus of fE€L0,1], 1 <p < oo with respect to

the trigonometric polynomials in L, — spaces is given by:

%(f; 8)p = oy (f, % 8]l (15)
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Fourier series and Fourier transform

1

b p
- [ f (0 (F x: 5))”de
Where
wi(f, x; 8) = sup {,A’,ﬁf(t)l: t,t+kh

ko ké
€ [x R +~J N [0,1]}

> (1.6)

The function w, (£, x; 8) is local modulus of smoothness.

Where

wi(f;6) = “wk(f;-,'@”c[o,l]

The averaged modulus of smoothness have five basic properties:

1. Monotonicity:
Tk(f;S)p <1 (f;é)p foré<é
2. Semi-additivity:

ow(f +9;6), < 1 (f; 6y + 7(g; 6),

3. A higher-order-modulus can be estimated by means of lower order:

k
T (f38)p < 214, (fim5)
p

4. The modulus of order k of the function can be estimated from the
modulus of order k-1 of the derivative:
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k
T (f; 8)p < 87y, (f"-k..:fa)
D

5. The integer multiplier for the modulus:
Te(find), < 2n)k+ig,(f; 6)yp
Where # is natural number.

Theorem(l.lS)[iSS}

If /' is a measurable bounded function on [a, b] then

(3 8)p < T(f38), < wp(f 8)(b—a), 1< p < oo (1.7)
Weierstrass theorem (1.16)[15]

If f€C[ab] then for each &> O,there exist trigonometric
polynomial 7 such that

If = Tll, <e, (IS p < )
Definition (1.17)[42]

The value of a function repeats itself at regular intervals of x, called a

periodic function,

A function fis periodic in x with periodic nr if
fx+nn) = f(x) n=1,2.. for all x.
For example, y=sin x is periodic in x with periodic .

The following figure shows the form of periodic functions,

10
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Figure (1.1) : periodic function

Theorem (1.18)[6]

Let fbe a 2-periodic bounded measurable function - (lil) < p < 1then
En(Fp < ¢,k Dz (1, %)p,k,l eEN (1.8)
Theorem (1.19)[6]

Letf € L,[a,b], a,b €R, O<p<1)
Wi (f,8)p < 7 (f, ), (1.9)

Corollary (1.20)[7]

for every natural number % and 6 > 0,if f € M[a,b] ,then

wi(f,x;8) € L,[a, b] as a function ofx,1 <p < w.

11
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Theorem (1.2D)[5]

There exists a constant c(k) ,depending only onk > 2 ,such that for

every absolutely continuous function fon the interval [a,b]
Te(f;8)p < c()Swy_y (fF 5), (1.10)
Lemma (1.22)[18]

let f € Ly[-1,1] 1< b <o n=kthen:
En(f)p < Co(f,n1), , §=pn1 (1.11)
Where C is constant,
Lemma (1.23)[39]

Let f € L,[~1,1] then

(£, 8), < ClIfll, (1.12)

Where C is constant.

Lemma (1.24)[1]
Letfel,(1<p< ) then
T (f, 0)p < 2744 (f)6), (1.14)
Where § > 0
Theorem (1.25)[42]
Letf € Ly, 0 < p < o then there exists a polynomial

Qn €., (n<7)of degree < n ,such that

12
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If — Qr”Lp(X) = Cog(f,%;8),,6 > 0 (1.15)
Where C is constant.
1.3 Fourier Series

Fourier series is a way to represent a wave —like function as a
combination of simple sine waves more formally, It decomposes any
periodic function or periodic signal to the sum of ga set of simple

oscillating function namely sins and cosines.

The main idea behind Fourier theorem is: The function cos x and sin x
each have period 27, and in general the function cos #x and sin nx have
period 2m/n . But if the form of any linear combination of these
functions that is -multiply each by a constant and add the results to the

resulting function stil] has period 27 . This lead us to the following:

Let f{x) be any periodic function with period 277 | The finite sum is

Sp(x) = %—I— A1 COSX +a, cos2x + -+ + a,, cos nx + by sinx +

by sin2x + -+ + b, sinnx

n
a
= -2—0 + Z (am cosmx + b, sin mx) (1.16)
m=1
n
a
flx) = —29 + Z (ap, cosmx + by, sinmx) (1.17)
m=1

Iflim, . S, = f (x)

Then series (1. 16) converges to J(x) and rewrite series (1.17)

a
fx) = -29 + Z (@m cosmx + b,, sin mx) (1.18)
m=1
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Where the coefficients Ay and by, are real numbers.

1 w
Ay, = ;J[ f(x) cosmx dx, m=1,2,3, ... (1.19)
—1T
b, = %f_nnf(x) sin mx dx, m=0,1,2,... (1.20)
And
1 w
a, = -—f f(x)dx, (1.21)
TJ) o
If /' is odd function-
ag =0 and Ay, =0

f () = X1 (b, sin mux)
-If /' is even function

b, =0
a, =
flx) = > + Z (an, cosmx)
m=1

1.4 Fourier Transform

There are several common conventions for defining the Fourier
Transform as for an integral function (Kaiser 1994,pp. 29) [23]and
(Rahman 201 Lpp. 11) [32] this article use the following definition.

() = f £ () e2ming gy

for any real number ¢

When the independent variable ¥ Iepresents time the transform variable '3

14
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represents frequency under suitable conditions f is determined by via the

inverse transform

Fo) = f £(&) e2mix gy

For any real number x
Fourier transform is a tool that breaks a wave form (a function or signal)
in to an alternate representation characterized by sine and cosines.

Fourier transform shows that any wave form can be re-written as the sum

of sinusoidal functions,

The Fourier transform a function of one variable time (in second )which
lives in the time domain to second function which lives in the frequency

domain (Hertz) and changes the basis of the function.

Fourier transform .
Frequency < —> Time

The following figure shows the transform from time domain to frequency

domain:
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Fit)
F
glt]

Figure (1.2) : Transform from time domain to frequency domain

F(w) =fooF(t)e“i“’t dt

Its Fourier transform

1 r® .
— lwt
F(t) o ]_OOF(w) e dw

It is inverse of Fourier transform

F(t) represents time domain and F (w) represents frequency domain.

Fourier transform is a mapping between the two domains

Fourier transform
— (transform problem)

(Problem)

solve | hard solve | easy

invers Fourier transform

(solution) (transform solution)

16
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1.5 Applications of Fourier transform

There are many applications of F ourier series ;including any field of
physical science that uses sinusoidal signals, such as engineering
,physics, applied mathematics and chemistry. Below are some important

applications:
1. Analysis of Differential Equations

The most important use of the Fourier transform is to solve partial
differential equations. Many of equations of the mathematical, physics
can be treated this way. Fourier transform can be used to solve heat

equation.
2. Fourier Transform Spectroscopy

The Fourier transform is used in nuclear magnetic resonance (NMR)
and in other kinds of Spectroscopy, e.g. infrared (FTIR). In NMR an
exponentially shaped free induction decay (FID) signal is acquired in the
time domain and F ourier-transform to the Lorentzian line-shape in the
frequency domain. The Fourier transform is also used in magnetic

resonance imaging (MRI) and mass spectrometry.
3. Quantum Mechanics

The Fourier transform is useful in Quantum mechanics in different
ways. To begin with, the basic conceptual structure of Quantum
mechanics postulates the existence of pairs of complementary variables,

connected by the Heisenberg uncertainty principle.

17
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4. Signal Processing

The Fourier transform is used for the spectral analysis of time-series.
The subject of statistical signal processing dose not, however, usually

apply the Fourier transform to the signal itself.
1.6 Some Properties of the Fourier transform [26]
1. Linearity

If aand f are any constant and created a new function h(t) =
af(t) + Bg(t) as a linear combination of two old functions f(t) and

9(t) ,then the Fourier transform of h is

hw) = f (e e-ior gy f a6 + Bg(t)] e-iwt gy

= ajoof(t) et gt +ﬁjmg(t)e“i‘“t dt

= af () + B9 (w)
2. Time Shifting

Suppose that created a new function h(t) = f(t— ty) by time
shifting a function f(t) by ty.The easy way to check the direction of the
shift is to note that if the original signal f (t) has a jump when its
argument 7=a ,then the new signal h(t) =f(t —t,) hasa jump when

t — ty = a ,which is at =g+ to » Lo units to the right of the original jump.

The Fourier transform of his

h(w) = fooh(t)e“i“’t dt = foof(t —to)e @t g

18
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=j f(f)e—iw(ﬂto) dt

o0}
=e-iwt0[ ]c(f)e—-iwt dt
—00
Where

t=t+t¢, ) dt = dt

= et f ()

3. Scaling

If created a new function h(t) = f (é) by scaling time by a factor of

a > 0 ,then the Fourier transform of i is

~ «© . © st .
h(w) =f h(t)e @t gt =f f(a)e‘“”t dt
Let t=at, dt = adt
wo[ e g

= af (aw)

4. Differentiation

If created a new function h(t) = f(t) by differentiating an old
function £(¢),then the Fourier transform of /4 is

hw) = f () et gp - f TR emot gy

Now integrate by parts with u = e—iot and dv = f(t)dt so that dy =

—iwe ™t dtandp = f(t) . suppose that f(F0) = 0 ,this gives

19
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[ee]

iAz(a))=j U dv=uv|®, + f v du

— 00

foof(t) (—iw)e ot g¢ = iwf(w)

S. Duality

The duality property tell us if created a new time-domain function

g = f(t)by exchanging the roles of time and frequency , then the

Fourier transform of gis.

9(w) = 2nf (~w)

5@ = [ gweor g = | Fweor a s=t
= f f(s)emios gg
flt) = —{fwf(w)ei“’t dw w=s
2r)_, ’

1 >, .
=2—7;f f(s)est ds,

1.7 Discrete Fourier transform [21] [26]

Is one of the most important tools in digital signal processing ,the
(Discrete Fourier Transform) can calculate a signals frequency spectrum .
This is a direct examination of information encoded in the frequency
;phase, and amplitude of the component sinusoids. For example ,human
speech and hearing use signals with this type of encoding . The DFT can
find a systems frequency response from the systems impulse response

,and vice versa . This allows systems to be analyzed in the frequency
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domain ,just as convolution allows Systems to be analyzed in the time
domain . The DFFT can be used as an intermediate step in more elaborate

signal processing techniques .

The sequence of N' complex numbers X0, X1, ey, Xy_q 18 transform into

an N-periodic sequence of complex numbers

N-1
X = ) xp.e dmkn/N o 5
n=0
And the inverse is
N-1
1 2iwkn/N
xn=ﬁ Xy estmkn ,NEZ
k=0

There are many practical applications of (Discrete Fourier Transform) in
[21],[26] :

In digital signal processing ,the function is any quantity or signal
that varies over time ,such as the pressure of sound wave ,a radio or daily
temperature readings ,sampled over a finite time interval . In image
processing ,the samples can be the values of pixels along a row or column
of a raster image . the (Discrete Fourier Transform) is also used to

efficiently solve partial differential equations

The (Discrete Fourier Transform) formula can be converted to the
trigonometric forms sometimes used in engineering and computer

science:

Fourier transform:
— n n
Xy = ; Xn, (cos (—an ]—\7) +isin (—an N) )
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Inverse Fourier transform

=

-1
X, = %k s X, (cos (an%) +isin (—an ;—/) )

i

N is the number of time samples
N is the current sample (0,..N-1)
Xnis the value of the signal at time
K is the current frequency

Xis the amount of frequency in the signal
1.8 Fast Fourier transform 137]

In 1985 a paper by J.W Cooley and J.W Tukey in the journal
Mathematics of computation [CT] explain a new method of calculating
the constants in the interpolating trigonometric polynomial. This method
needing only 0(m log, m) multiplications and O(mlog, m) additions,
provided m is chosen in an appropriate manner. For a problem with
thousand of data points, this method reduces the number of calculations

from millions to thousands.

This method is described by Cooley and Tukey and is known as
Cooley-Tukey algorithm or the fast Fourier transform (FFT) algorithm
and has led to revolution in the use of interpolating trigonometric

polynomials .

The method consists of organizing the problem so that the number of

data points being used can be easily factor , particularly into powers two.

Fast Fourier transform is an algorithm to compute the discrete

Fourier transform (Discrete F ourier Transform) and its inverse quickly.
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This quickly because the algorithm do not compute the parts that equal to
zero in DFT.
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Chapter two : Error estimate for the finite Fourier transform by averaged
modulus of smoothness

2.1 Introduction

Moduli of smoothness represent important tools in obtaining
quantitative estimates of the error of approximation for positive

processes[31].

In (2004) Epsten C.L. [9] estimated error for the continuous 1-
periodic function ( finite Fourier transform ) (FFT) defined on closed
interval in L-spaces by modulus of continuity, now the error of the
integrable ,bounded and 1-periodic functions on [0,1] by trigonometric
polynomials in terms of averaged modulus of smoothness where fe
L, — spaces,1 <p < w estimeted. This main theorem is proved.

1
If—p Il <671, (m)

In (2000) A. H. Al-Abdulla [2] introduced new theorems concerning
the convergence of periodic functions in the space L,s(0<p<1;6>

0) in terms of averaged moduli of functions.

Trigonometric polynomials in the complex case are spanned by the

positive and negative powers of e*,

Any function 7T of the form
N N
T(x) =a, + Z a,cos (nx) + iZ b, sin(nx) (x €R)
n=1 ‘ n=1

With a, ,b,inC for0<n <N, is called a complex trigonometric

polynomial of degree N (Rudin 1987, pp. 88). Using Eulers formula the

polynomial can be rewriting as:
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N
T(x) = Z Cpet* (x €RR)
n=-=N
Then
N N
T(x) =ay+ Z ancos (nx) + Z b, sin(nx) (x ER)
n=1 n=1

Is called a real trigonometric polynomial of degree N [28].
Also ,in this chapter introduced Whitney's theorem [38]
Considered f is a finite Fourier Transform functions.

2.2 Whitney theorem 138]

in 1957 Whitney prove the following theorem, which now

classical in approximation theory and numerical analysis.

Let f be bounded function on [0,1] and integrable on [0,1], for
integer # > 1 , this notation important for prove.

1

= = <t<
h ——_— X=vh+t, 0<t<h

where v is integer.
The following operator is important to prove the theory :
Pn(f3 %) = @p(f;vh +t)

—1)n-v rh
.—_-(—}:()n—)_.fo AY f(x = vy)dy

1
lon (f; 2)| < (7)-wn(f; h)
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And by using the notation.
n [
x L
Lyy(x) = E i ] , v=01,..,n (2.1)
) y v _]
Jj=0
VES

Let us introduce some auxiliary results to prove main theorem:
Proposition (2.1) [38]

If /'is an integrable on [0,1] ,then for each integer n > ]

SO =Prs () + 9nfi2) + Zo 2 [ 0n (Fijh+ 0l () av - (22)
Where P,,_, is a polynomial of degree at most n-1.
Proposition (2.2) [38]

Let P,_;(f) be the interpolation polynomial for fat the point 4, 2h,..., nk

ie
Paca (i) = 2y f (i)l oy (2= 1) (2.3)
Then

FOO = Pi_y (3 %) =
R @bno (3) + 0nF52) = oo 003l (2) +

Dy o on(fih +0) 1y (22) v (2.4)

Lemma(2.3) [38]

Let

Yo = max {z}gl (") s (0]:0 < x < 1}=1 2.5)
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Lemma(2.4) [38]

Let

Uy = P (’;)_1 max{|lL,;()|:iv <x < v+ 1} (2.6)

c (2.7)

Where
1 1 1
o— -t cee — o
01,—1+2 ;T +v ,00 =10

Inparticular ,for v=0, then

Hno =1 +Z G)_l max{|l, ;(x)|:0 < x < 1}<2 (2.8)

j=1

&

Proposition (2.5) 138]

For any function J which is integrable on [0,1], then

f(x) ‘Zf(ih)ln~1,j-1 (% - 1)
=1

< 6 + 7min(o,, g,_,)

(n) wy (f; h)

(2.9)

Forx € [vh, (v + 1) /h, h=1n+1),v=0,1,...n 0, =1 +%+ +§

0y =0
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Theorem(2.6)[38]

For any function f integrable on [0,1] and for each n > 1 there is a

polynomial p of degree at most n-/such that .

1
FG) =P < 60, (1) (2.10)

2.3 Some important notations [9]
First, defined a set of complex sequences of length N+7,
Sy = {{cy, ¢, woCy)iG EC, j=0, e, N}

the Finite Fourier Transform (FFT) is the map from Sy to itself such that

1 N =27ijk
N, = N 3T 2,96 ™ (211)

This sequence is periodic, it can be extended to all K € Z, it is natural to
think

min=- 12 0 ey
The inverse of (FFT) is given as
kmax ..
2mijk
B = > gemt (2.12)
k=min

Aprincipal application of the (FFT)is to approximately compute samples
of the Fourier transform of g function. If fis a function defined on [0,1]

then we define

" 1 N ] =2mijk
= N+1
Tuk N+IZ lf(N+1)e (2.13)
]:
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The sum on the right-hand side of equation (2.13) is Riemann sum

1
Fk) = J[ F)e=2mikx g (2.14)

A trigonometric polynomials is a functions of the form

M
P(x) = z ape*™kx g eC (2.15)

-M

We denote the set of such functions by Ty,if fis (FFT) ,an integrable, 1 -
periodic function defined on [0,1] ,then for each Me N jthere is a
function p* € Ty, that is a best approximation to #'such that

If=pll, = Jnf lIf = pllp (2.16)

2.4 The error estimate to best approximation for (FFT)

Introduced the main results about estimating the error for the finite
Fourier transform by averaged modulus of smoothness by using

trigonometric polynomial Ty.
Theorem (2.7)

let f(x) be (Finite Fourier Transform ) is an integrable, 1-periodic

function on [0,1] then the best approximation p* to f in T),satisfies

1

If =vll, <67, () (2.17)

Proof

Since the interpolation polynomial
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PiaCfi) = ) Gl sy (F=1)
j=1

IfCe) = pres (F, 011,

A;llf(o) ln,O (%C') + @n (f; X)
= D on(iin (3)
Jj=o0
L n
+ht ]Z Pn(fiJh+ V)L, ; (x ; v) dv
0 Jj=0

Using

on(f;x) = on(f; vh + t)

(=1)n-v
=50 f 8 £ (e = vy)dy

1
”(pn(f; x)”p = '(n‘)'Tn(f; h)
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If () = Paca (0l

< [ 1) max|Lyo (O] + 7, (F; b)

n

+ 7,(f; h) maxZ—(—lj ING]

O=st<1 n

J=0\j

+ Tu(f; h) Z —(-]1—)— fo tll,;.j ()| dv]

p

To(f3 h) [maxostﬂlln,o (t)l + 1+ maxyo Z;'L.—.o(‘i)‘ lln,j (t), +

]

Lj=o Z’l‘_) f()tll;l.j )] va

J p
=1
STGD 341+ ) —maxl,, (o)
j=1 (1) o
1+ 0y +
< ,(f; h) [4 + —-i‘g__"aJ
)
Then
) 1
IF =2l = 6% (55) 7

The following corollary for the theorem 2.7)

31




Chapter two : Error estimate for the finite Fourier transform by averaged
modulus of smoothness

Corollary (2.8)

If fis an integrable, 1-periodic function on [0,1] with I integrable 1-

periodic dervatives ,then the best approximation p* to f satisfies

1/ 1
o 1+1 Tf(zsz)
If =p"ll, <6 Gt (2.18)

The following results proved.

Theorem (2.9)

For M€ N and £, an integrable 1-periodic function defined on [0,1]

we have estimates
|fomie = F )| < 2][p* —flly  forlkl<m (2.19)
Where p* € T),
Proof.
Since p*e Ty, , for |k| < M we have
lsz,k -f (k),:,ﬁM,k — Pam e + Damp — ]s(k),
Then

|for i = Dans k|
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1 2M p %
! [ f) (S ezt || a
< —_
"j 2M+1Z f<2M+1 p(2M+1)e x
0 j=
| fam e — Powe|l < If - p*ll,
1
1/1 p P
i = fool = ||| | [17G0 oy e-amns |
0 \o
- ,
= f ’(/ [f(x) - p*(x)]e—zmkx> dx
0
0
|f () = Borrie| < IIf = ?*ll,
Then we use the triangle inquality.
lsz,k - ﬁ;‘M,k + Dam e — ]6(1«), < lsz,k. - ﬁSM,kl + ’f(k) ~ Dol
|fore = f ®| < IIf - Pl +If =7l
< 2llp* = £, B

Corollary (2.10)

Suppose that f is an integrabal 1-periodic function with | = 0 an
integrabal 1-periodic derivatives ; then

3 A 6l7! ._1_
|famge = F ()| < 12—{%12#1”) (2.20)

For |k| < M
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Proof .

From theorem (2.9)

famre = FUO| < 21Ip* = [l

Then from corollary (2.8)

If = pllps6t+s Lime (2;;;;)

Then o = F0)] < 2. 641 f<m;)

| forese = f(k)|<12 7 (zam)

“Gam)t =

Corollary (2.11)

Suppose that fis an integrable 1-periodic function then

) ) 1
fomi| < |F ()| + 67, (ZHM) (2.21)

Proof .
By theorem (2.9)
farie = 70| < 211 =,
Fase = FO < Foaaie = Bingye + B — £ l

< | fomp = Do | + ,ﬁ;M,k - f ()|

| o = Pomr] < IIf = 2
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Then from theorem (2.7)

IF =2l <67 (50)

T
Then

,]EZM,k, < lf =»"ll, + lf(k)l

leM,kl <67y (%A;) +,f(k)l

Theorem (2.12)

If /'is an integrabal I-periodic function ,then There is a constant C

such that

e ~ fam| < ClogM ||f — 2", (2.22)

Where p* € T}, is a best a pproximation .

Proof :

Let Dirichlet kernel

P (=[] Dy (x = y)f(y)dy

Then

2M
. 1 J J
fon (%) _2M+1}ZODM(X-2M+1)]C(2M+1)

We observe that

| fomacy = fom@| < | forsce) = p ()| + |p*(x) = fomw)|
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1
+ f Dy (x—y)[p*(y)—f(y)]dy> dx
0

1 2M
<IF=pllp. WZ‘DM<X“2M+1
]=

Both the sum and the
times log M

Corollary (2.13)

ol =

p

)|+ [ 10ue =210y

integral in the last line are bounded by a constant

If f'is an integrabal 1-periodic function whose averaged modulus

satisfies

77(8) = o(|log§]™%)

(2.23)

Where o is Landow symbol defined as:

f@|

f€o(g) = hrn (x)
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Then the (FFT) partial sum (Farr) converges to f/ on [0,1] if £ has [

integrabal periodic derivatives and T} satisfies the (2.23), then for each

I<j <1 ,the sequence(d.f,,,) converges to 0,{ f
Proof

Let p*€ Ty be a best approximation to /' ,we will use the triangle

inquality to conclude that

| far) = fauo| < | fomeey — p ()] + [p*(x) - fomeo|

Applying theorem (2. 12)and (2.7)

| fom = fam@o| < ClogM ||f -pll,

Since
. 1
I =ply <67 ()
Then
N 1
,fZM(x) - fZM(x)l < (ClogM + 6); e (2.24)

The estimate in (2.23 ) implies the right-hand side of equation (2.24)

tends to zero as M tends to infinity. =
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Chapter three : Error estimate for the finite Fourier transform via Valle
Valle poussin operator

3.1 Introduction

In (2004) Epsten C.L. [9] estimate error for the continuous 1-periodic
function ( finite Fourier transform ) (FFT) defined on closed interval in
L;,o-spaces by modulus of continuity, in this chapter we will state and
prove estimate the error of the Finite F ourier Transform via Valle-
Poisson operator by averaged modulus of smoothness, for 1-periodic,
integrale function defined on [0,1],in L,-spaces and state results that

relation with it |

Vallee-poussin is a French mathematical whose first mathematical
research was on analysis, in particular concentrating on integrals and
solution of differential equations. Also he worked on approximation to

functions by algebraic and trigonometric polynomials,

In (2010) Lekaa A.H. [24] used Valle-poisson operator to find out a

unique  trigonometric polynomial of degree  (2n) interpolating

21 —periodic unbounded functions J at the points {Xf}]s':o’ is denoted by

Vanan(f,x) and prove a direct inequality of 27 —periodic unbounded

functions in Ly, o—spaces ( ! <p< 1), [=12,.. via averaged

2(1+1) —

modulus of smoothness.

In (2014) Alaa AA. [1] introduced the estimate the degree of best
one —sided approximation of unbounded function in L, ,, (X), by Valle-

Poisson operator in terms of averaged modulus of smoothness.
3.2 Definitions and Notations:

Valle-Poisson is positive linear operator [1].

A polynomials operator is a function of the form:
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1

Vﬁ,m(u) = (m—n + 1) {Dn(u) +t Dpyg () + - + Dm(u)}

4 n,m(u) =D, (u)

+(m+1)/(m—n+1) Z [1—k/(m+ 1)] cos ku
k

=n+1

1
Vom@8) = o (M Dl () = by )}

. m+n+1 . m—-n++1
sin 5 u. sm—~2—-——u

2(m—n + 1)Sin2%

Where D, (u) is the Dirichlet kernel of degree n.

n

D,(u) = %Z cos ku = [sin(n + 1/2)u]/[2 sin(u/2)]

k=1
m > 2n and U € [—m, ]
,
Vanm (%) = —— Z £ (6tm) Vnon (3 = 1)
Where
2tk
xk'm=m+1 k=01,....m

Be the Jackson polynomial of function f and.

21

1
Vom (f, %) = T fw). Vom(u — x) du (3.1)
0
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If fis an integrable ,1-periodic function defined on [0,1] then for
each m € N, there is a polynomials operator V, ,,,of best approximation of

f'such that
E.(f) < IIf =V_(n,m) (f,x) |,

Where E,, (f) is the degree of best approximation of functions.

Theorem (3.1) (de la Valle-Poisson ) [15]

For each positive integer #, there exists a polynomial operator I, of

degree 2n-1 with property .
If = Va(HIl < 4E,(F)
We have some properties of the operators 1,

1. V,is a trigonomatric polynomial operator of degree 2n-1, and
(Ty) = Ty

2. we havel},(f) — (f) forn - oo
3. Il < 3 Indeed, [V, [I, < 2llo5,]l + [0y || = 3
Lemma (3.2)[24]
Letf, g be two functions defined on the same domain, then
O Vom(f +9) = Vo () + Vi (g)
(i) Vom(af) = aVj, ()
Where «a is constant.

Lemma (3.3) [24]

If f € 2m —periodic bounded measurable function, then

40




Chapter three : Error estimate for the finite Fourier transform via Valle
Valle poussin operator

If = VanamPl, < e,k Dz, (1,2)

p

n=1,2,.. p, k and [ are constant depends on p.
3.3 Error estimate for (FFT) via Valle-Poussin operator

The main theorem about estimating the error of the finite F ourier

transform via Valle-poussin by averaged modulus of smoothness proved.

Theorem (3.4)

If f(x) is FFT an integrable ,1-periodic function on [0,1],then the

polynomial operator of best approximation satisfies

1
IF = Vamll, < 42 (1)
Proof
“f - Vn,m(f:x)”p = ”f - Pn - Vn,m(f - Pn)”p

Where P, is a polynomial of order # of the form

M

P(x) = Z ay, e?mkx a,eC
M

< ”f"Pn”p + ”Vﬁ,m(f—Pn)”p

S = Pallp (1 + [Vom])

Since ”Vnm” <3

”f - Vn,m”p < 4”f - Pn”p
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= 4En(f)p

From theorem (1.18),we get

n+1

lIF - Vn,m”p < 4ty (_1_) a
The following corollary to (3.4) theorem.

Corollary (3.5)

If fis an integrable 1-periodic function on [0,1] with [ an integrable
1-periodic derivatives then the polynomial operator of best approximation

satisfies

1

I =Vl 5 atv2g, 2L

Theorem (3.6)

For M € Nand £ ,an integrable 1-periodic function defined on
[0,1],we have

Fosare = fool < 20m ~ | Vel <M 112 20
Proof :
Since Vy,y is polynomial operator and k| <M

lf 2mik — Vo + Vi — f(k),

Then

=< IfZM,k - Vn,M, + , Vo — fA(k),
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1 1 : —27jk
f 2M (—J—-) ezM+1 —
0 \2m+14j= 2M+1

o = V| [

1

f

m+1 Zk Of(xk m) Va Zn(x Xy m))

1 2M
[ )
< ezM+1
0 1447 \2m

1
p p

m+IZf(ka)Vn2n(x ka) dx ,fZMk

Vo < Vi = £

And

‘VnM f(k),"“f( f(u) nm(u_x) du

F

2w 1
_ —_ —2mkx
7)y SO0 VunCu=3) du ~ | fx)e-2min gy

1 p
- f f(x)e2mkx dx) dx
0

1

) of

,Vn,M ‘f(k)l = ”Vn,M —f”p

So that

Famie = Foo | < 2]V =7,
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Corollary (3.7)

Suppose that f is an integrable 1-periodic function with [ an

integrabal 1-periodic derivatives; then

1
aiet (o
; p +1
leM,k ‘f(k), =8 (n(-lfll)l )

Proof':
From theorem(3.6)

Fame = foo | < 2[[Vi =1L,
And corollary (3.5)

1

AT
I =Vl < 47412, iy

Then

1

1
If = Vol < 241417, iy

1

. e
fame = fao | < 8 41, [CF D o

Corollary (3.8)

Suppose that 7 is an integrable 1-periodic function then

N o 1
ol < |f| + 4 (f' m)
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Proof:
From theorem (3.6)

s = fao | < 2|V =7,

And

,f:ZM,k + Vn,M, =< ”Vn,M - f”p

Then from theorem (3.4)

1
I = ol < 457 ()
ol < WVas = 1| + o
ol < [foo] +4 (£, 2)
Theorem(3.9)

There is a universal constant C such that if £is an integrable ,1-
periodic function then

,fZM(x) _fZM(x), < ClogM ”Vn,M —f”p
Proof:

Let Dirichlet kernel

1
famee = f Dy (x = y) fiyhdy
0

Then
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o = ~gi 1) (o)
Tame = 2347, DM(’C am+ 1) G
j=o
And
leM(x) —fZM(x)I ,-<- IfZM(x) + Vn,M - Vn,M "'fZM(x)l
< IfZM(x) - Vn,Ml + an,M - fZM(x)l
2M ,
[z 12,4 (= ) ()
< f
= ZM +1 2M + 1
m +1 Z f(ka) VnZn(x ka)
1
1 plP
+ f Dy Cx = y)[Vy) — f(y)])
0
<|[ f (= gt31)* (i)
= f
0 - 2M +1 2M +1
T m 1 Z f(ka) VnZn(x ka)
1
p 1
1
+f DM(x—y)[V(y)"f(y)]dy> dx
0
j 1
Vs = f”p 2M+1 (x B 2M+1),+f0 DulCx = y)ldy
These eq. Bounded by a constant log M B
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Corollary (3.10)

If /is an integrable l-periodic function whose averaged modulus

satisfies
7(8) = o (|logs|™)

The FFT partial sum ( f, M ) convergs to fon [0,1] if J'has [ integrabal

periodic function derivatives and T; satisfies the above estimate then for

each 1 < j <[ the sequence (6,{ Forr) converges to 6,{ f
Proof :

Let p*be a best approximation to S ,we will use the triangle

inequality to concluded that

leM(x) - fZM(x)l ,S ,fZM(x) + Vn,M + Vn,M - fZM(x)I

< ,]‘;M(x) - Vn,Ml + ,Vn,M - fZM(x)I

Apply theorem (3.9)

|famc = famue| < ClogM |Vee —f”p

Since
I = Vol < 42, (n + 1)
~ 1
leM(x) ~ fameo| < (C logM + 4)z, (n n 1)
” fz M) ~ famee) ” tends to zero as M tends to infinity. B
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Chapter four : Error estimate for the finite Fourier transform interms _
of L,, polynomial

4.1 Introduction

In (2004) Epsten C.L. [9] estimated error for the continuous 1-
periodic function ( finite Fourier transform ) (FFT) defined on closed
inierval in Le,-spaces by modulus of continuity, in this chapter estimated
the error for the finite Fourier transform by averaged modulus of
smoothness via L, polynomial in L,-spaces on [0,1] for 1- periodic

;integrabal functions and prove the main theorem

”f - Ln”p <6 Tk(f; vV X(l - x)/n)
4.2 Definitions and notations 1]

Let J,,(t) denote the Jackson kernel

sinnt/2 8 n
Ju() = Ay (W) p f_n]n(t)dt =1
And define
t+tj
T;(t) =f Jn(uw)du ,J=01,.....,n
t-tj

Where t; = jm/n , j=0,.. n now for x = cost letr;(x) = Th-j(0)

and define
X
Ri(x) = flrj(u)du, j=0,..,n

Not that since T, = 0 and Th =1 we have Ry(x) = 1 + x and R,(x) =
0.

The point ¢; are defined by the equations 1 — $j = R;(1). since
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_ ) - (&)
Sje1—&

Sj j=0,...n—-1

Andif@; = (x — fj)+ we can write

n-1
5200 = FED 4501420 + ) (55 = 571 ) ()
j=1

Sn 1s linear interpolant in [¢ j+1 — §;] ;replacing @;(x) by R;(x)

Then R;(x) brings us to the polynomials

n-—1
L) = F-1) +5oRo + 3 (s = 51-4)R,
j=1

n—-1
=f=D+ Z 5 (Rj = Rjs1)
Jj=0

Theorem (4.1) [35]
Let f(x) € L, X =10,1], and Ly, is positive linear operator, then

) 1L (Nl < kllfllsn
b) “f - Ln(f)”p < CTr(f; \r/ (dn)s)p s<r

where d, < min {1, (g)g}

4.3 Error estimate for (FFT) by L, polynomial

Let f(x) be a finite Fourier transform , the main theorem proved

with some results.
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Theorem (4.2)

Let f(x) be an integrabal I-periodic function on [0,1] then L, (f) is

a polynomials satisfies

If = Lully <67, (f,y/x(T=2)/n)
Proof

f=La(f)=f—g) + gx) - Ln(g(x)) + Ln(g(x)) = Ln(f)

Take the p-norm to both sides

”f(X) - Ln(f)”p
1
= (fo [f = 9() + 9(0) ~ L, (g(0)) + Ln(9(x))

1

_ Ln(f)]lpdx)ﬁ

Using Minkowski inquality, get

£ C) = Lo (PO

1

< ( ]0 i - g(x)]lpdxf
+([ oo - Ln(g<x>)u”dx)%

+ ( fo 1l [Ln(9() - Ln(f)]ldef

Since Ly, is linear operator, then

50




Chapter four : Error estimate for the finite Fourier transform interms _

of L., polynomial

IF G = Lo (O

1

1 7
< ( j l[f—g(X)]lpdx)
0

+ (foll[g(x) - Ln(g(x))]lpdxf

1
Z

n ( f L (g (0) —-f)]lpdx>
0

Since [|f — g(x)|l, < Cty(f, ), then

1

. 1
(fo I[f —g(X)]lpdx)p =If =g@ll, < Crie (£, 6),

By using theorem (1.4), (b ) get

(Mo~ taCoenIPer) < frato) - g0l = cr, 150,
0

From (a)

1

1 2
( L L (g (x) — f)]lpdx>p = 19O = P,
< ¢ty (f,w/x(l - x)/n)

From theorem (2.7) get

If = Lnlly < 67, (f,yx(T = 2)/n)

The following corollary to the theorem (4.2)
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Corollary (4.3)

If fis a 1-periodic function on[0,1] with / 1-perodic derivatives then

o <f’w/x(1 - x))
If = Loll, < 61 :

(5=2)

n

Now, state and prove our results for L-periodic function.

Theorem (4.4)

ForM € N and 1 is 1-periodic function defined on [0,1], let L, by a

polynomials ,then we have estimates

orse = FUO| < 211L5 = £1l,  For |k] < M

Proof
A simple calculation shows that for |k| < M we have “
fomre = L + Ly = fo|
< o = L] + L ~ fuol
Then

o=t =|| [

2M+1 [(2M+1)

1

L ] ] —2mijk pd
- ¥ 2M+1
"QM+1>€ x
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1
1 p 7

< 1< J o (J ~2mijk
= f 2M+1;{f(2M+1)— "(2M+1)]82M+1 dx

0

o = Ly < I1F = 31,

And

1 p

1
L7 = fuo | = l j f [f(x) = Ly, (x)] e2mikx | gy
0

0

k11

< [fol l(fol[f(X) — L’;L(x)]e_zmkx)pl dx]%

HORYAEI TSy
Then
|fam e = Ly + L, — fool < | famp = Ln| + |fao — Lz
Farase = F U] < NI = Ll + N1 = L],
|fomie = F ()| < 211L;, = £, o
Corollary (4.5)

Suppose that f is, 1-periodic function with [ >0 1-periodic
derivatives ; then

6'! (73=)
|fom s — fk)| <12 W

For |k| <M
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Proof

From theorem (4.4)

\fomse = F 0| < 2113, ~ 111,

Then from corollary (4.3)

L1
”f - L;”pf_ 6lt1 Tf(zntM)

(2rm)!
Then
T,f(_l__
r _ £ < 2. 1+1 2Mn
i = F00| < 2.6 ZE,
1
1.1
<12 67y (271M>
- (2nM)!
Corollary (4.6)

Suppose that fis 1-periodic function then

el < 1700] + 67, (522-)
Proof
By theorem (4.4)
s = F (O] < 211f = L]l

|fompe = F ()| < |fame = Ly + L, - ()|

< |forre — Ly| + | L3, — (i)

fampe = Lu| < NIF = L3l
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Then from theorem (4.2)

IF = Lillp <67 (5)

2nM
Then
Famiel < 1If = Ll + |F (O]
|fomae| < 6.7, (57:74') +HF | =
Theorem (4.7)

There is a universal constant C such that if f'is 1-periodic function

,then

|fame) = Famen | < Clogm If =Lyl

Proof
Let Dirichlet kernel
FouCO=[ Dy (x = )£ (y)dy
Then

2M
- _ 1 ] ]
Jan (%) = o 1}2% (x—2M+1)f(2M+ 1)

We observe that;

']EZM(x) - f2M(x)| =< |f2M(x) - L;z(x)l + | Ln(x) — fZM(x)l
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<[ (s 300 (= sl ) )

D=

1 p
+ fo Dy (x =)L)~ f (y)]dy) dx

1

1 p
+ L Dy (x =)L) - f (y)]dy) dx

2M
| j 1
< If = Lil,. WZO 2w (3 = 5375) + [ 10w =1y

Both the sum and the integral in the last line are bounded by a constant

times log M
Corollary (4.8)
If fis 1-periodic function whose averaged modulus satisfies
77(8) = o(|log§|™) (a)

Then, the (FFT) partial sum (sz) converges to f on [0,1] if # has [

periodic derivatives and T} satisfies the above estimate, then for each

1< j <1 the sequence(d. f, M) converges to 6,{ f
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Proof

Let p*€ Tyybe a best approximation to f ,we will use the triangle

inquality to conclude that

\famco = Fomew| < |famco) = Ly ()] + L3, (x) ~ fom)|

Applying theorem (4.2),we see that

- 1
leM(x) ~ fameo| < (ClogM + 6)1s (%) (b)

The estimate in (a ) implies the right-hand side of equation ( b ) tends to
zero as M tends to infinity. The last inquality tell us that

“ £ M) ~ fame) “ tends to zero as M tends to infinity. @
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Conclusion

Conclusions and Recommendations for Future Work

The degree of the best approximation have been studied to estimate
the error for finite Fourier transform ,bounded function ,integrable

function and I1-perodic function in L, — spaces by positive linear
operators in terms of averaged modulus of smoothness . the error estimate

in L, — spaces have been calculate by :

1. The error estimate by trigonometric polynomial on [0,1] in L, —

spaces in terms of averaged modulus of smoothness have been found .

2.The error estimate for finite Fourier transform via Valle-poussin

operator on [0,1] in L,, — spaces have been found .

3.The error estimate by L, polynomial for finite Fourier transform in

terms of averaged modulus of smoothness have been found.

Suggested many problems for future works.

1.The error estimate for the function may be any other periodic or a

periodic function.
2.The error estimate for unbounded functions.

3. The error estimate for functions in L, — spaces .
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