


Based on the original work by

George B. Thomas, Jr.
Massachusetts Institute of Technology 

as revised by 

Maurice D. Weir
Naval Postgraduate School

Joel Hass 
University of California, Davis

THOMAS’

CALCULUS
EARLY TRANSCENDENTALS

Twelfth Edition

7001_ThomasET_FM_SE_pi-xvi.qxd  11/3/09  3:18 PM  Page i



Editor-in-Chief: Deirdre Lynch
Senior Acquisitions Editor: William Hoffman
Senior Project Editor: Rachel S. Reeve
Associate Editor: Caroline Celano
Associate Project Editor: Leah Goldberg
Senior Managing Editor: Karen Wernholm
Senior Production Project Manager: Sheila Spinney
Senior Design Supervisor: Andrea Nix
Digital Assets Manager: Marianne Groth
Media Producer: Lin Mahoney
Software Development: Mary Durnwald and Bob Carroll
Executive Marketing Manager: Jeff Weidenaar
Marketing Assistant: Kendra Bassi
Senior Author Support/Technology Specialist: Joe Vetere
Senior Prepress Supervisor: Caroline Fell
Manufacturing Manager: Evelyn Beaton
Production Coordinator: Kathy Diamond
Composition: Nesbitt Graphics, Inc.
Illustrations: Karen Heyt, IllustraTech
Cover Design: Rokusek Design

Cover image: Forest Edge, Hokuto, Hokkaido, Japan 2004 © Michael Kenna

About the cover: The cover image of a tree line on a snow-swept landscape, by the photographer Michael Kenna,
was taken in Hokkaido, Japan. The artist was not thinking of calculus when he composed the image, but rather, of a
visual haiku consisting of a few elements that would spark the viewer’s imagination. Similarly, the minimal design
of this text allows the central ideas of calculus developed in this book to unfold to ignite the learner’s imagination.

For permission to use copyrighted material, grateful acknowledgment is made to the copyright holders on page C-1,
which is hereby made part of this copyright page.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designa-
tions have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Weir, Maurice D.
Thomas’ calculus : early transcendentals / Maurice D. Weir, Joel Hass, George B. Thomas.—12th ed.

p. cm
Includes index.
ISBN 978-0-321-58876-0
1. Calculus—Textbooks. 2. Geometry, Analytic—Textbooks. I. Hass, Joel. II. Thomas, George B. (George

Brinton), 1914–2006. III. Title IV. Title: Calculus.

QA303.2.W45 2009
515—dc22 2009023070

Copyright © 2010, 2006, 2001 Pearson Education, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United
States of America. For information on obtaining permission for use of material in this work, please submit a written
request to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA
02116, fax your request to 617-848-7047, or e-mail at http://www.pearsoned.com/legal/permissions.htm.

1 2 3 4 5 6 7 8 9 10—CRK—12 11 10 09

ISBN-10: 0-321-58876-2

www.pearsoned.com ISBN-13: 978-0-321-58876-0

7001_ThomasET_FM_SE_pi-xvi.qxd  11/3/09  3:18 PM  Page ii



iii

Preface ix

1 Functions 1

1.1 Functions and Their Graphs 1
1.2 Combining Functions; Shifting and Scaling Graphs 14
1.3 Trigonometric Functions 22
1.4 Graphing with Calculators and Computers 30
1.5 Exponential Functions 34
1.6 Inverse Functions and Logarithms 40

QUESTIONS TO GUIDE YOUR REVIEW 52
PRACTICE EXERCISES 53
ADDITIONAL AND ADVANCED EXERCISES 55

2 Limits and Continuity 58

2.1 Rates of Change and Tangents to Curves 58
2.2 Limit of a Function and Limit Laws 65
2.3 The Precise Definition of a Limit 76
2.4 One-Sided Limits 85
2.5 Continuity 92
2.6 Limits Involving Infinity; Asymptotes of Graphs 103

QUESTIONS TO GUIDE YOUR REVIEW 116
PRACTICE EXERCISES 117
ADDITIONAL AND ADVANCED EXERCISES 119

3 Differentiation 122

3.1 Tangents and the Derivative at a Point 122
3.2 The Derivative as a Function 126

CONTENTS

7001_ThomasET_FM_SE_pi-xvi.qxd  11/3/09  3:18 PM  Page iii



3.3 Differentiation Rules 135
3.4 The Derivative as a Rate of Change 145
3.5 Derivatives of Trigonometric Functions 155
3.6 The Chain Rule 162
3.7 Implicit Differentiation 170
3.8 Derivatives of Inverse Functions and Logarithms 176
3.9 Inverse Trigonometric Functions 186
3.10 Related Rates 192
3.11 Linearization and Differentials 201

QUESTIONS TO GUIDE YOUR REVIEW 212
PRACTICE EXERCISES 213
ADDITIONAL AND ADVANCED EXERCISES 218

4 Applications of Derivatives 222

4.1 Extreme Values of Functions 222
4.2 The Mean Value Theorem 230
4.3 Monotonic Functions and the First Derivative Test 238
4.4 Concavity and Curve Sketching 243
4.5 Indeterminate Forms and L’Hôpital’s Rule 254 
4.6 Applied Optimization 263
4.7 Newton’s Method 274
4.8 Antiderivatives 279

QUESTIONS TO GUIDE YOUR REVIEW 289
PRACTICE EXERCISES 289
ADDITIONAL AND ADVANCED EXERCISES 293

5 Integration 297

5.1 Area and Estimating with Finite Sums 297
5.2 Sigma Notation and Limits of Finite Sums 307
5.3 The Definite Integral 313
5.4 The Fundamental Theorem of Calculus 325
5.5 Indefinite Integrals and the Substitution Method 336
5.6 Substitution and Area Between Curves 344

QUESTIONS TO GUIDE YOUR REVIEW 354
PRACTICE EXERCISES 354
ADDITIONAL AND ADVANCED EXERCISES 358

6 Applications of Definite Integrals 363

6.1 Volumes Using Cross-Sections 363
6.2 Volumes Using Cylindrical Shells 374
6.3 Arc Length 382

iv Contents

7001_ThomasET_FM_SE_pi-xvi.qxd  11/3/09  3:18 PM  Page iv



6.4 Areas of Surfaces of Revolution 388
6.5 Work and Fluid Forces 393
6.6 Moments and Centers of Mass 402

QUESTIONS TO GUIDE YOUR REVIEW 413
PRACTICE EXERCISES 413
ADDITIONAL AND ADVANCED EXERCISES 415

7 Integrals and Transcendental Functions 417

7.1 The Logarithm Defined as an Integral 417
7.2 Exponential Change and Separable Differential Equations 427
7.3 Hyperbolic Functions 436
7.4 Relative Rates of Growth 444

QUESTIONS TO GUIDE YOUR REVIEW 450
PRACTICE EXERCISES 450
ADDITIONAL AND ADVANCED EXERCISES 451

8 Techniques of Integration 453

8.1 Integration by Parts 454
8.2 Trigonometric Integrals 462
8.3 Trigonometric Substitutions 467
8.4 Integration of Rational Functions by Partial Fractions 471
8.5 Integral Tables and Computer Algebra Systems 481
8.6 Numerical Integration 486
8.7 Improper Integrals 496

QUESTIONS TO GUIDE YOUR REVIEW 507
PRACTICE EXERCISES 507
ADDITIONAL AND ADVANCED EXERCISES 509

9 First-Order Differential Equations 514

9.1 Solutions, Slope Fields, and Euler’s Method 514
9.2 First-Order Linear Equations 522
9.3 Applications 528
9.4 Graphical Solutions of Autonomous Equations 534
9.5 Systems of Equations and Phase Planes 541

QUESTIONS TO GUIDE YOUR REVIEW 547
PRACTICE EXERCISES 547
ADDITIONAL AND ADVANCED EXERCISES 548

10 Infinite Sequences and Series 550

10.1 Sequences 550
10.2 Infinite Series 562

Contents v

7001_ThomasET_FM_SE_pi-xvi.qxd  11/3/09  3:18 PM  Page v



10.3 The Integral Test 571
10.4 Comparison Tests 576
10.5 The Ratio and Root Tests 581
10.6 Alternating Series, Absolute and Conditional Convergence 586
10.7 Power Series 593
10.8 Taylor and Maclaurin Series 602
10.9 Convergence of Taylor Series 607
10.10 The Binomial Series and Applications of Taylor Series 614

QUESTIONS TO GUIDE YOUR REVIEW 623
PRACTICE EXERCISES 623
ADDITIONAL AND ADVANCED EXERCISES 625

11 Parametric Equations and Polar Coordinates 628

11.1 Parametrizations of Plane Curves 628
11.2 Calculus with Parametric Curves 636
11.3 Polar Coordinates 645
11.4 Graphing in Polar Coordinates 649
11.5 Areas and Lengths in Polar Coordinates 653
11.6 Conic Sections 657
11.7 Conics in Polar Coordinates 666

QUESTIONS TO GUIDE YOUR REVIEW 672
PRACTICE EXERCISES 673
ADDITIONAL AND ADVANCED EXERCISES 675

12 Vectors and the Geometry of Space 678

12.1 Three-Dimensional Coordinate Systems 678
12.2 Vectors 683
12.3 The Dot Product 692
12.4 The Cross Product 700
12.5 Lines and Planes in Space 706
12.6 Cylinders and Quadric Surfaces 714 

QUESTIONS TO GUIDE YOUR REVIEW 719
PRACTICE EXERCISES 720
ADDITIONAL AND ADVANCED EXERCISES 722

13 Vector-Valued Functions and Motion in Space 725

13.1 Curves in Space and Their Tangents 725
13.2 Integrals of Vector Functions; Projectile Motion 733
13.3 Arc Length in Space 742
13.4 Curvature and Normal Vectors of a Curve 746
13.5 Tangential and Normal Components of Acceleration 752
13.6 Velocity and Acceleration in Polar Coordinates 757

vi Contents

7001_ThomasET_FM_SE_pi-xvi.qxd  11/3/09  3:18 PM  Page vi



QUESTIONS TO GUIDE YOUR REVIEW 760
PRACTICE EXERCISES 761
ADDITIONAL AND ADVANCED EXERCISES 763

14 Partial Derivatives 765

14.1 Functions of Several Variables 765
14.2 Limits and Continuity in Higher Dimensions 773
14.3 Partial Derivatives 782
14.4 The Chain Rule 793
14.5 Directional Derivatives and Gradient Vectors 802
14.6 Tangent Planes and Differentials 809
14.7 Extreme Values and Saddle Points 820
14.8 Lagrange Multipliers 829
14.9 Taylor’s Formula for Two Variables 838
14.10 Partial Derivatives with Constrained Variables 842

QUESTIONS TO GUIDE YOUR REVIEW 847
PRACTICE EXERCISES 847
ADDITIONAL AND ADVANCED EXERCISES 851

15 Multiple Integrals 854

15.1 Double and Iterated Integrals over Rectangles 854
15.2 Double Integrals over General Regions 859
15.3 Area by Double Integration 868
15.4 Double Integrals in Polar Form 871
15.5 Triple Integrals in Rectangular Coordinates 877
15.6 Moments and Centers of Mass 886
15.7 Triple Integrals in Cylindrical and Spherical Coordinates 893
15.8 Substitutions in Multiple Integrals 905

QUESTIONS TO GUIDE YOUR REVIEW 914
PRACTICE EXERCISES 914
ADDITIONAL AND ADVANCED EXERCISES 916

16 Integration in Vector Fields 919

16.1 Line Integrals 919
16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 925
16.3 Path Independence, Conservative Fields, and Potential Functions 938
16.4 Green’s Theorem in the Plane 949
16.5 Surfaces and Area 961
16.6 Surface Integrals 971

Contents vii

7001_ThomasET_FM_SE_pi-xvi.qxd  11/3/09  3:18 PM  Page vii



16.7 Stokes’ Theorem 980
16.8 The Divergence Theorem and a Unified Theory 990

QUESTIONS TO GUIDE YOUR REVIEW 1001
PRACTICE EXERCISES 1001
ADDITIONAL AND ADVANCED EXERCISES 1004

17 Second-Order Differential Equations online

17.1 Second-Order Linear Equations
17.2 Nonhomogeneous Linear Equations
17.3 Applications
17.4 Euler Equations
17.5 Power Series Solutions

Appendices AP-1

A.1 Real Numbers and the Real Line AP-1
A.2 Mathematical Induction AP-6
A.3 Lines, Circles, and Parabolas AP-10
A.4 Proofs of Limit Theorems AP-18
A.5 Commonly Occurring Limits AP-21
A.6 Theory of the Real Numbers AP-23
A.7 Complex Numbers AP-25
A.8 The Distributive Law for Vector Cross Products AP-35
A.9 The Mixed Derivative Theorem and the Increment Theorem AP-36

Answers to Odd-Numbered Exercises A-1

Index I-1

Credits C-1

A Brief Table of Integrals T-1

viii Contents

7001_ThomasET_FM_SE_pi-xvi.qxd  11/3/09  3:18 PM  Page viii



We have significantly revised this edition of Thomas’ Calculus: Early Transcendentals to
meet the changing needs of today’s instructors and students. The result is a book with more
examples, more mid-level exercises, more figures, better conceptual flow, and increased
clarity and precision. As with previous editions, this new edition provides a modern intro-
duction to calculus that supports conceptual understanding but retains the essential ele-
ments of a traditional course. These enhancements are closely tied to an expanded version
of MyMathLab® for this text (discussed further on), providing additional support for stu-
dents and flexibility for instructors. 

In this twelfth edition early transcendentals version, we introduce the basic transcen-
dental functions in Chapter 1. After reviewing the basic trigonometric functions, we pres-
ent the family of exponential functions using an algebraic and graphical approach, with
the natural exponential described as a particular member of this family. Logarithms are
then defined as the inverse functions of the exponentials, and we also discuss briefly the
inverse trigonometric functions. We fully incorporate these functions throughout our de-
velopments of limits, derivatives, and integrals in the next five chapters of the book, in-
cluding the examples and exercises. This approach gives students the opportunity to work
early with exponential and logarithmic functions in combinations with polynomials, ra-
tional and algebraic functions, and trigonometric functions as they learn the concepts, oper-
ations, and applications of single-variable calculus. Later, in Chapter 7, we revisit the defi-
nition of transcendental functions, now giving a more rigorous presentation. Here we define
the natural logarithm function as an integral with the natural exponential as its inverse.

Many of our students were exposed to the terminology and computational aspects of
calculus during high school. Despite this familiarity, students’ algebra and trigonometry
skills often hinder their success in the college calculus sequence. With this text, we have
sought to balance the students’ prior experience with calculus with the algebraic skill de-
velopment they may still need, all without undermining or derailing their confidence. We
have taken care to provide enough review material, fully stepped-out solutions, and exer-
cises to support complete understanding for students of all levels.

We encourage students to think beyond memorizing formulas and to generalize con-
cepts as they are introduced. Our hope is that after taking calculus, students will be confi-
dent in their problem-solving and reasoning abilities. Mastering a beautiful subject with
practical applications to the world is its own reward, but the real gift is the ability to think
and generalize. We intend this book to provide support and encouragement for both. 

Changes for the Twelfth Edition

CONTENT In preparing this edition we have maintained the basic structure of the Table of
Contents from the eleventh edition, yet we have paid attention to requests by current users
and reviewers to postpone the introduction of parametric equations until we present polar
coordinates. We have made numerous revisions to most of the chapters, detailed as follows:

ix
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• Functions We condensed this chapter to focus on reviewing function concepts and in-
troducing the transcendental functions. Prerequisite material covering real numbers, in-
tervals, increments, straight lines, distances, circles, and parabolas is presented in Ap-
pendices 1–3.

• Limits To improve the flow of this chapter, we combined the ideas of limits involving
infinity and their associations with asymptotes to the graphs of functions, placing them
together in the final section of Chapter 3.

• Differentiation While we use rates of change and tangents to curves as motivation for
studying the limit concept, we now merge the derivative concept into a single chapter.
We reorganized and increased the number of related rates examples, and we added new
examples and exercises on graphing rational functions. L’Hôpital’s Rule is presented as
an application section, consistent with our early coverage of the transcendental functions.

• Antiderivatives and Integration We maintain the organization of the eleventh edition
in placing antiderivatives as the final topic of Chapter 4, covering applications of 
derivatives. Our focus is on “recovering a function from its derivative” as the solution
to the simplest type of first-order differential equation. Integrals, as “limits of Riemann
sums,” motivated primarily by the problem of finding the areas of general regions with
curved boundaries, are a new topic forming the substance of Chapter 5. After carefully
developing the integral concept, we turn our attention to its evaluation and connection
to antiderivatives captured in the Fundamental Theorem of Calculus. The ensuing ap-
plications then define the various geometric ideas of area, volume, lengths of paths, and
centroids, all as limits of Riemann sums giving definite integrals, which can be evalu-
ated by finding an antiderivative of the integrand. We return later to the topic of solving
more complicated first-order differential equations.

• Differential Equations Some universities prefer that this subject be treated in a course
separate from calculus. Although we do cover solutions to separable differential equations
when treating exponential growth and decay applications in Chapter 7 on integrals and
transcendental functions, we organize the bulk of our material into two chapters (which
may be omitted for the calculus sequence). We give an introductory treatment of first-
order differential equations in Chapter 9, including a new section on systems and 
phase planes, with applications to the competitive-hunter and predator-prey models. We
present an introduction to second-order differential equations in Chapter 17, which is in-
cluded in MyMathLab as well as the Thomas’ Calculus: Early Transcendentals Web site,
www.pearsonhighered.com/thomas.

• Series We retain the organizational structure and content of the eleventh edition for the
topics of sequences and series. We have added several new figures and exercises to the
various sections, and we revised some of the proofs related to convergence of power se-
ries in order to improve the accessibility of the material for students. The request stated
by one of our users as, “anything you can do to make this material easier for students
will be welcomed by our faculty,” drove our thinking for revisions to this chapter.

• Parametric Equations Several users requested that we move this topic into Chapter
11, where we also cover polar coordinates and conic sections. We have done this, realiz-
ing that many departments choose to cover these topics at the beginning of Calculus III,
in preparation for their coverage of vectors and multivariable calculus.

• Vector-Valued Functions We streamlined the topics in this chapter to place more em-
phasis on the conceptual ideas supporting the later material on partial derivatives, the
gradient vector, and line integrals. We condensed the discussions of the Frenet frame
and Kepler’s three laws of planetary motion.

• Multivariable Calculus We have further enhanced the art in these chapters, and we
have added many new figures, examples, and exercises. We reorganized the opening
material on double integrals, and we combined the applications of double and triple 
integrals to masses and moments into a single section covering both two- and three-
dimensional cases. This reorganization allows for better flow of the key mathematical
concepts, together with their properties and computational aspects. As with the

x Preface
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eleventh edition, we continue to make the connections of multivariable ideas with their
single-variable analogues studied earlier in the book.

• Vector Fields We devoted considerable effort to improving the clarity and mathemati-
cal precision of our treatment of vector integral calculus, including many additional ex-
amples, figures, and exercises. Important theorems and results are stated more clearly
and completely, together with enhanced explanations of their hypotheses and mathe-
matical consequences. The area of a surface is now organized into a single section, and
surfaces defined implicitly or explicitly are treated as special cases of the more general
parametric representation. Surface integrals and their applications then follow as a sep-
arate section. Stokes’ Theorem and the Divergence Theorem are still presented as gen-
eralizations of Green’s Theorem to three dimensions.

EXERCISES AND EXAMPLES We know that the exercises and examples are critical com-
ponents in learning calculus. Because of this importance, we have updated, improved, and
increased the number of exercises in nearly every section of the book. There are over 700
new exercises in this edition. We continue our organization and grouping of exercises by
topic as in earlier editions, progressing from computational problems to applied and theo-
retical problems. Exercises requiring the use of computer software systems (such as
Maple® or Mathematica®) are placed at the end of each exercise section, labeled Com-
puter Explorations. Most of the applied exercises have a subheading to indicate the kind
of application addressed in the problem. 

Many sections include new examples to clarify or deepen the meaning of the topic be-
ing discussed and to help students understand its mathematical consequences or applica-
tions to science and engineering. At the same time, we have removed examples that were a
repetition of material already presented.

ART Because of their importance to learning calculus, we have continued to improve exist-
ing figures in Thomas’ Calculus: Early Transcendentals, and we have created a significant
number of new ones. We continue to use color consistently and pedagogically to enhance the
conceptual idea that is being illustrated. We have also taken a fresh look at all of the figure
captions, paying considerable attention to clarity and precision in short statements.

FIGURE 2.50, page 104 The geometric FIGURE 16.9, page 926 A surface in a 
explanation of a finite limit as . space occupied by a moving fluid.

MYMATHLAB AND MATHXL The increasing use of and demand for online homework
systems has driven the changes to MyMathLab and MathXL® for Thomas’ Calculus:
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Early Transcendentals. The MyMathLab course now includes significantly more exer-
cises of all types.

Continuing Features

RIGOR The level of rigor is consistent with that of earlier editions. We continue to distin-
guish between formal and informal discussions and to point out their differences. We think
starting with a more intuitive, less formal, approach helps students understand a new or diffi-
cult concept so they can then appreciate its full mathematical precision and outcomes. We pay
attention to defining ideas carefully and to proving theorems appropriate for calculus students,
while mentioning deeper or subtler issues they would study in a more advanced course. Our
organization and distinctions between informal and formal discussions give the instructor a de-
gree of flexibility in the amount and depth of coverage of the various topics. For example, while
we do not prove the Intermediate Value Theorem or the Extreme Value Theorem for continu-
ous functions on , we do state these theorems precisely, illustrate their meanings in
numerous examples, and use them to prove other important results. Furthermore, for those in-
structors who desire greater depth of coverage, in Appendix 6 we discuss the reliance of the
validity of these theorems on the completeness of the real numbers.

WRITING EXERCISES Writing exercises placed throughout the text ask students to ex-
plore and explain a variety of calculus concepts and applications. In addition, the end of
each chapter contains a list of questions for students to review and summarize what they
have learned. Many of these exercises make good writing assignments.

END-OF-CHAPTER REVIEWS AND PROJECTS In addition to problems appearing after
each section, each chapter culminates with review questions, practice exercises covering
the entire chapter, and a series of Additional and Advanced Exercises serving to include
more challenging or synthesizing problems. Most chapters also include descriptions of
several Technology Application Projects that can be worked by individual students or
groups of students over a longer period of time. These projects require the use of a com-
puter running Mathematica or Maple and additional material that is available over the
Internet at www.pearsonhighered.com/thomas and in MyMathLab.

WRITING AND APPLICATIONS As always, this text continues to be easy to read, conversa-
tional, and mathematically rich. Each new topic is motivated by clear, easy-to-understand
examples and is then reinforced by its application to real-world problems of immediate in-
terest to students. A hallmark of this book has been the application of calculus to science
and engineering. These applied problems have been updated, improved, and extended con-
tinually over the last several editions.

TECHNOLOGY In a course using the text, technology can be incorporated according to the
taste of the instructor. Each section contains exercises requiring the use of technology;
these are marked with a if suitable for calculator or computer use, or they are labeled
Computer Explorations if a computer algebra system (CAS, such as Maple or Mathe-
matica) is required. 

Text Versions

THOMAS’ CALCULUS: EARLY TRANSCENDENTALS, Twelfth Edition
Complete (Chapters 1–16), ISBN 0-321-58876-2 | 978-0-321-58876-0
Single Variable Calculus (Chapters 1–11), 0-321-62883-7 | 978-0-321-62883-1
Multivariable Calculus (Chapters 10–16), ISBN 0-321-64369-0 | 978-0-321-64369-8

T

a … x … b
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The early transcendentals version of Thomas’ Calculus introduces and integrates transcen-
dental functions (such as inverse trigonometric, exponential, and logarithmic functions)
into the exposition, examples, and exercises of the early chapters alongside the algebraic
functions. The Multivariable book for Thomas’ Calculus: Early Transcendentals is the
same text as Thomas’ Calculus, Multivariable.

THOMAS’ CALCULUS, Twelfth Edition
Complete (Chapters 1–16), ISBN 0-321-58799-5 | 978-0-321-58799-2
Single Variable Calculus (Chapters 1–11), ISBN 0-321-63742-9 | 978-0-321-63742-0
Multivariable Calculus (Chapters 10–16), ISBN 0-321-64369-0 | 978-0-321-64369-8

Instructor’s Editions
Thomas’Calculus: Early Transcendentals, ISBN 0-321-62718-0 | 978-0-321-62718-6
Thomas’ Calculus, ISBN 0-321-60075-4 | 978-0-321-60075-2
In addition to including all of the answers present in the student editions, the Instructor’s
Editions include even-numbered answers for Chapters 1–6.

University Calculus (Early Transcendentals)
University Calculus: Alternate Edition (Late Transcendentals)
University Calculus: Elements with Early Transcendentals
The University Calculus texts are based on Thomas’ Calculus and feature a streamlined
presentation of the contents of the calculus course. For more information about these titles,
visit www.pearsonhighered.com.

Print Supplements

INSTRUCTOR’S SOLUTIONS MANUAL
Single Variable Calculus (Chapters 1–11), ISBN 0-321-62717-2 | 978-0-321-62717-9
Multivariable Calculus (Chapters 10–16), ISBN 0-321-60072-X | 978-0-321-60072-1
The Instructor’s Solutions Manual by William Ardis, Collin County Community College,
contains complete worked-out solutions to all of the exercises in Thomas’ Calculus: Early
Transcendentals.

STUDENT’S SOLUTIONS MANUAL
Single Variable Calculus (Chapters 1–11), ISBN 0-321-65692-X | 978-0-321-65692-6
Multivariable Calculus (Chapters 10–16), ISBN 0-321-60071-1 | 978-0-321-60071-4
The Student’s Solutions Manual by William Ardis, Collin County Community College, is
designed for the student and contains carefully worked-out solutions to all the odd-
numbered exercises in Thomas’ Calculus: Early Transcendentals.

JUST-IN-TIME ALGEBRA AND TRIGONOMETRY FOR EARLY TRANSCENDENTALS
CALCULUS, Third Edition
ISBN 0-321-32050-6 | 978-0-321-32050-6
Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time
Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller and
Ronald I. Brent is designed to bolster these skills while students study calculus. As stu-
dents make their way through calculus, this text is with them every step of the way, show-
ing them the necessary algebra or trigonometry topics and pointing out potential problem
spots. The easy-to-use table of contents has algebra and trigonometry topics arranged in
the order in which students will need them as they study calculus.

CALCULUS REVIEW CARDS
The Calculus Review Cards (one for Single Variable and another for Multivariable) are a
student resource containing important formulas, functions, definitions, and theorems that
correspond precisely to the Thomas’ Calculus series. These cards can work as a reference
for completing homework assignments or as an aid in studying, and are available bundled
with a new text. Contact your Pearson sales representative for more information.

Preface xiii
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Media and Online Supplements

TECHNOLOGY RESOURCE MANUALS
Maple Manual by James Stapleton, North Carolina State University 
Mathematica Manual by Marie Vanisko, Carroll College
TI-Graphing Calculator Manual by Elaine McDonald-Newman, Sonoma State University
These manuals cover Maple 13, Mathematica 7, and the TI-83 Plus/TI-84 Plus and TI-89,
respectively. Each manual provides detailed guidance for integrating a specific software
package or graphing calculator throughout the course, including syntax and commands.
These manuals are available to qualified instructors through the Thomas’ Calculus: Early
Transcendentals Web site, www.pearsonhighered.com/thomas, and MyMathLab.

WEB SITE www.pearsonhighered.com/thomas 
The Thomas’ Calculus: Early Transcendentals Web site contains the chapter on Second-
Order Differential Equations, including odd-numbered answers, and provides the expanded
historical biographies and essays referenced in the text. Also available is a collection of Maple
and Mathematica modules, the Technology Resource Manuals, and the Technology Applica-
tion Projects, which can be used as projects by individual students or groups of students.

MyMathLab Online Course (access code required)
MyMathLab is a text-specific, easily customizable online course that integrates interactive
multimedia instruction with textbook content. MyMathLab gives you the tools you need to
deliver all or a portion of your course online, whether your students are in a lab setting or
working from home.

• Interactive homework exercises, correlated to your textbook at the objective level, are
algorithmically generated for unlimited practice and mastery. Most exercises are free-
response and provide guided solutions, sample problems, and learning aids for extra
help.

• “Getting Ready” chapter includes hundreds of exercises that address prerequisite
skills in algebra and trigonometry. Each student can receive remediation for just those
skills he or she needs help with.

• Personalized Study Plan, generated when students complete a test or quiz, indicates
which topics have been mastered and links to tutorial exercises for topics students have
not mastered.

• Multimedia learning aids, such as video lectures, Java applets, animations, and a
complete multimedia textbook, help students independently improve their understand-
ing and performance. 

• Assessment Manager lets you create online homework, quizzes, and tests that are
automatically graded. Select just the right mix of questions from the MyMathLab exer-
cise bank and instructor-created custom exercises. 

• Gradebook, designed specifically for mathematics and statistics, automatically tracks
students’ results and gives you control over how to calculate final grades. You can also
add offline (paper-and-pencil) grades to the gradebook. 

• MathXL Exercise Builder allows you to create static and algorithmic exercises for
your online assignments. You can use the library of sample exercises as an easy starting
point. 

• Pearson Tutor Center (www.pearsontutorservices.com) access is automatically in-
cluded with MyMathLab. The Tutor Center is staffed by qualified math instructors who
provide textbook-specific tutoring for students via toll-free phone, fax, email, and in-
teractive Web sessions.
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MyMathLab is powered by CourseCompass™, Pearson Education’s online teaching and
learning environment, and by MathXL, our online homework, tutorial, and assessment
system. MyMathLab is available to qualified adopters. For more information, visit
www.mymathlab.com or contact your Pearson sales representative.

Video Lectures with Optional Captioning
The Video Lectures with Optional Captioning feature an engaging team of mathematics in-
structors who present comprehensive coverage of topics in the text. The lecturers’ pres-
entations include examples and exercises from the text and support an approach that em-
phasizes visualization and problem solving. Available only through MyMathLab and
MathXL.

MathXL Online Course (access code required)
MathXL is an online homework, tutorial, and assessment system that accompanies
Pearson’s textbooks in mathematics or statistics. 

• Interactive homework exercises, correlated to your textbook at the objective level, are
algorithmically generated for unlimited practice and mastery. Most exercises are free-
response and provide guided solutions, sample problems, and learning aids for extra help.

• “Getting Ready” chapter includes hundreds of exercises that address prerequisite
skills in algebra and trigonometry. Each student can receive remediation for just those
skills he or she needs help with.

• Personalized Study Plan, generated when students complete a test or quiz, indicates
which topics have been mastered and links to tutorial exercises for topics students have
not mastered.

• Multimedia learning aids, such as video lectures, Java applets, and animations, help
students independently improve their understanding and performance. 

• Gradebook, designed specifically for mathematics and statistics, automatically tracks
students’ results and gives you control over how to calculate final grades. 

• MathXL Exercise Builder allows you to create static and algorithmic exercises for your
online assignments. You can use the library of sample exercises as an easy starting point. 

• Assessment Manager lets you create online homework, quizzes, and tests that are
automatically graded. Select just the right mix of questions from the MathXL exercise
bank, or instructor-created custom exercises. 

MathXL is available to qualified adopters. For more information, visit our Web site at
www.mathxl.com, or contact your Pearson sales representative.

TestGen®
TestGen (www.pearsonhighered.com/testgen) enables instructors to build, edit, print,
and administer tests using a computerized bank of questions developed to cover all the ob-
jectives of the text. TestGen is algorithmically based, allowing instructors to create multi-
ple but equivalent versions of the same question or test with the click of a button. Instruc-
tors can also modify test bank questions or add new questions. Tests can be printed or
administered online. The software and testbank are available for download from Pearson
Education’s online catalog. 

PowerPoint® Lecture Slides
These classroom presentation slides are geared specifically to the sequence and philosophy
of the Thomas’ Calculus series. Key graphics from the book are included to help bring the
concepts alive in the classroom.These files are available to qualified instructors through
the Pearson Instructor Resource Center, www.pearsonhighered/irc, and MyMathLab.
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1

1
FUNCTIONS

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review
what functions are and how they are pictured as graphs, how they are combined and trans-
formed, and ways they can be classified. We review the trigonometric functions, and we
discuss misrepresentations that can occur when using calculators and computers to obtain
a function’s graph. We also discuss inverse, exponential, and logarithmic functions. The
real number system, Cartesian coordinates, straight lines, parabolas, and circles are re-
viewed in the Appendices.

1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be
represented by an equation, a graph, a numerical table, or a verbal description; we will use
all four representations throughout this book. This section reviews these function ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling
point drops as you ascend). The interest paid on a cash investment depends on the length
of time the investment is held. The area of a circle depends on the radius of the circle. The
distance an object travels at constant speed along a straight-line path depends on the
elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another
variable quantity, which we might call x. We say that “y is a function of x” and write this
symbolically as

In this notation, the symbol ƒ represents the function, the letter x is the independent vari-
able representing the input value of ƒ, and y is the dependent variable or output value of
ƒ at x.

y = ƒ(x)  (“y equals ƒ of x”).

FPO

DEFINITION A function ƒ from a set D to a set Y is a rule that assigns a unique
(single) element to each element x H D .ƒsxd H Y

The set D of all possible input values is called the domain of the function. The set of
all values of ƒ(x) as x varies throughout D is called the range of the function. The range
may not include every element in the set Y. The domain and range of a function can be any
sets of objects, but often in calculus they are sets of real numbers interpreted as points of a
coordinate line. (In Chapters 13–16, we will encounter functions for which the elements of
the sets are points in the coordinate plane or in space.)
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Often a function is given by a formula that describes how to calculate the output value
from the input variable. For instance, the equation is a rule that calculates the
area A of a circle from its radius r (so r, interpreted as a length, can only be positive in this
formula). When we define a function with a formula and the domain is not
stated explicitly or restricted by context, the domain is assumed to be the largest set of real
x-values for which the formula gives real y-values, the so-called natural domain. If we
want to restrict the domain in some way, we must say so. The domain of is the en-
tire set of real numbers. To restrict the domain of the function to, say, positive values of x,
we would write 

Changing the domain to which we apply a formula usually changes the range as well.
The range of is The range of is the set of all numbers ob-
tained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), the
range is or or 

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of many real-valued functions of a real variable are inter-
vals or combinations of intervals. The intervals may be open, closed, or half open, and may
be finite or infinite. The range of a function is not always easy to find.

A function ƒ is like a machine that produces an output value ƒ(x) in its range whenever
we feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give
an example of a function as a machine. For instance, the key on a calculator gives an out-
put value (the square root) whenever you enter a nonnegative number x and press the key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associ-
ates an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the
arrows indicate that ƒ(a) is associated with a, ƒ(x) is associated with x, and so on. Notice that
a function can have the same value at two different input elements in the domain (as occurs
with ƒ(a) in Figure 1.2), but each input element x is assigned a single output value ƒ(x).

EXAMPLE 1 Let’s verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range ( y)

[0, 1]

Solution The formula gives a real y-value for any real number x, so the domain
is The range of is because the square of any real number is
nonnegative and every nonnegative number y is the square of its own square root,

for 
The formula gives a real y-value for every x except For consistency

in the rules of arithmetic, we cannot divide any number by zero. The range of the
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since

That is, for the number is the input assigned to the output
value y.

The formula gives a real y-value only if The range of is
because every nonnegative number is some number’s square root (namely, it is the

square root of its own square).
In the quantity cannot be negative. That is, or

The formula gives real y-values for all The range of is the
set of all nonnegative numbers.

[0, q d,14 - xx … 4.x … 4.
4 - x Ú 0,4 - xy = 14 - x ,

[0, q d
y = 1xx Ú 0.y = 1x

x = 1>yy Z 0y = 1>(1>y).

y = 1>x ,
x = 0.y = 1>xy Ú 0.y = A2y B2

[0, q dy = x2s - q , q d .
y = x2

[-1, 1]y = 21 - x2

[0, q ds - q , 4]y = 24 - x

[0, q d[0, q dy = 2x

s - q , 0d ´ s0, q ds - q , 0d ´ s0, q dy = 1>x
[0, q ds - q , q dy = x2

2x
2x

[4, q d .5y ƒ y Ú 465x2
ƒ x Ú 26

y = x2, x Ú 2,[0, q d .y = x2

“y = x2, x 7 0.”

y = x2

y = ƒsxd

A = pr2

2 Chapter 1: Functions

Input
(domain)

Output
(range)

x f (x)f

FIGURE 1.1 A diagram showing a
function as a kind of machine.

x

a f (a) f (x)

D � domain set Y � set containing
the range

FIGURE 1.2 A function from a set D to a
set Y assigns a unique element of Y to each
element in D.
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1.1 Functions and Their Graphs 3

The formula gives a real y-value for every x in the closed interval
from to 1. Outside this domain, is negative and its square root is not a real
number. The values of vary from 0 to 1 on the given domain, and the square roots
of these values do the same. The range of  is [0, 1].

Graphs of Functions

If ƒ is a function with domain D, its graph consists of the points in the Cartesian plane
whose coordinates are the input-output pairs for ƒ. In set notation, the graph is

The graph of the function is the set of points with coordinates (x, y) for
which Its graph is the straight line sketched in Figure 1.3.

The graph of a function ƒ is a useful picture of its behavior. If (x, y) is a point on the
graph, then is the height of the graph above the point x. The height may be posi-
tive or negative, depending on the sign of (Figure 1.4).ƒsxd

y = ƒsxd

y = x + 2.
ƒsxd = x + 2

5sx, ƒsxdd ƒ  x H D6 .

21 - x2
1 - x2

1 - x2
-1

y = 21 - x2

x

y

–2 0

2

y � x � 2

FIGURE 1.3 The graph of 
is the set of points (x, y) for which y has
the value x + 2.

ƒsxd = x + 2

y

x
0 1 2

x

f (x)

(x, y)

f (1)

f (2)

FIGURE 1.4 If (x, y) lies on the graph of
ƒ, then the value is the height of
the graph above the point x (or below x if
ƒ(x) is negative).

y = ƒsxd

EXAMPLE 2 Graph the function over the interval 

Solution Make a table of xy-pairs that satisfy the equation . Plot the points (x, y)
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation)
through the plotted points (see Figure 1.5).

How do we know that the graph of doesn’t look like one of these curves?y = x2

y = x2

[-2, 2] .y = x2

x

4

1

0 0

1 1

2 4

9
4

3
2

-1

-2

y � x 2

y � x2?

x

y

y � x2?

x

y

0 1 2–1–2

1

2

3

4
(–2, 4)

(–1, 1) (1, 1)

(2, 4)

⎛
⎝

⎛
⎝

3
2

9
4

,

x

y

y � x2

FIGURE 1.5 Graph of the function in
Example 2.
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4 Chapter 1: Functions

To find out, we could plot more points. But how would we then connect them? The 
basic question still remains: How do we know for sure what the graph looks like be-
tween the points we plot? Calculus answers this question, as we will see in Chapter 4.
Meanwhile we will have to settle for plotting points and connecting them as best 
we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area
function) and visually by a graph (Example 2). Another way to represent a function is
numerically, through a table of values. Numerical representations are often used by engi-
neers and scientists. From an appropriate table of values, a graph of the function can be
obtained using the method illustrated in Example 2, possibly with the aid of a computer.
The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3 Musical notes are pressure waves in the air. The data in Table 1.1 give
recorded pressure displacement versus time in seconds of a musical note produced by a
tuning fork. The table provides a representation of the pressure function over time. If we
first make a scatterplot and then connect approximately the data points (t, p) from the
table, we obtain the graph shown in Figure 1.6.

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function ƒ can
have only one value for each x in its domain, so no vertical line can intersect the graph
of a function more than once. If a is in the domain of the function ƒ, then the vertical line

will intersect the graph of ƒ at the single point .
A circle cannot be the graph of a function since some vertical lines intersect the circle

twice. The circle in Figure 1.7a, however, does contain the graphs of two functions of x: 

the upper semicircle defined by the function and the lower semicircle 

defined by the function (Figures 1.7b and 1.7c).g (x) = -21 - x2

ƒ(x) = 21 - x2

(a, ƒ(a))x = a

ƒ(x)

TABLE 1.1 Tuning fork data

Time Pressure Time Pressure

0.00091 0.00362 0.217

0.00108 0.200 0.00379 0.480

0.00125 0.480 0.00398 0.681

0.00144 0.693 0.00416 0.810

0.00162 0.816 0.00435 0.827

0.00180 0.844 0.00453 0.749

0.00198 0.771 0.00471 0.581

0.00216 0.603 0.00489 0.346

0.00234 0.368 0.00507 0.077

0.00253 0.099 0.00525

0.00271 0.00543

0.00289 0.00562

0.00307 0.00579

0.00325 0.00598

0.00344 -0.041

-0.035-0.248

-0.248-0.348

-0.354-0.309

-0.320-0.141

-0.164

-0.080

–0.6
–0.4
–0.2

0.2
0.4
0.6
0.8
1.0

t (sec)

p (pressure)

0.001 0.002 0.004 0.0060.003 0.005

Data

FIGURE 1.6 A smooth curve through the plotted points
gives a graph of the pressure function represented by
Table 1.1 (Example 3).
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1.1 Functions and Their Graphs 5

–2 –1 0 1 2

1

2

x

y

y � –x

y � x2

y � 1

y � f (x)

FIGURE 1.9 To graph the
function shown here,
we apply different formulas to
different parts of its domain
(Example 4).

y = ƒsxd

x

y � �x�

y � x
y � –x

y

–3 –2 –1 0 1 2 3

1

2

3

FIGURE 1.8 The absolute value
function has domain 
and range [0, q d .

s - q , q d

–1 10
x

y

(a) x2 � y2 � 1

–1 10
x

y

–1 1

0
x

y

(b) y � �1 � x2 (c) y � –�1 � x2

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper
semicircle is the graph of a function (c) The lower semicircle is the graph of a
function g sxd = -21 - x2 .

ƒsxd = 21 - x2 .

Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its
domain. One example is the absolute value function

whose graph is given in Figure 1.8. The right-hand side of the equation means that the
function equals x if , and equals if Here are some other examples.

EXAMPLE 4 The function

is defined on the entire real line but has values given by different formulas depending on
the position of x. The values of ƒ are given by when when

and when The function, however, is just one function whose
domain is the entire set of real numbers (Figure 1.9).

EXAMPLE 5 The function whose value at any number x is the greatest integer less
than or equal to x is called the greatest integer function or the integer floor function. 
It is denoted . Figure 1.10 shows the graph. Observe that

EXAMPLE 6 The function whose value at any number x is the smallest integer greater
than or equal to x is called the least integer function or the integer ceiling function. It is
denoted Figure 1.11 shows the graph. For positive values of x, this function might
represent, for example, the cost of parking x hours in a parking lot which charges $1 for
each hour or part of an hour.

<x= .

:2.4; = 2, :1.9; = 1, :0; = 0, : -1.2; = -2,

:2; = 2, :0.2; = 0, : -0.3; = -1 : -2; = -2.

:x;

x 7 1.y = 10 … x … 1,
x 6 0, y = x2y = -x

ƒsxd = •
-x, x 6 0

  x2, 0 … x … 1

  1, x 7 1

x 6 0.-xx Ú 0

ƒ x ƒ = e x, x Ú 0 

-x, x 6 0,

1

–2

2

3

–2 –1 1 2 3

y � x

y � ⎣x⎦

x

y

FIGURE 1.10 The graph of the
greatest integer function 
lies on or below the line so
it provides an integer floor for x
(Example 5).

y = x ,
y = :x;
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The names even and odd come from powers of x. If y is an even power of x, as in
or it is an even function of x because and If y is

an odd power of x, as in or it is an odd function of x because 
and 

The graph of an even function is symmetric about the y-axis. Since a
point (x, y) lies on the graph if and only if the point lies on the graph (Figure 1.12a).
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since a
point (x, y) lies on the graph if and only if the point lies on the graph (Figure 1.12b).
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin
leaves the graph unchanged. Notice that the definitions imply that both x and must be
in the domain of ƒ.

EXAMPLE 8

Even function: for all x; symmetry about y-axis.

Even function: for all x; symmetry about y-axis
(Figure 1.13a).

Odd function: for all x; symmetry about the origin.

Not odd: but The two are not
equal.
Not even: for all (Figure 1.13b).x Z 0s -xd + 1 Z x + 1

-ƒsxd = -x - 1.ƒs -xd = -x + 1,ƒsxd = x + 1

s -xd = -xƒsxd = x

s -xd2
+ 1 = x2

+ 1ƒsxd = x2
+ 1

s -xd2
= x2ƒsxd = x2

-x

s -x , -yd
ƒs -xd = -ƒsxd ,

s -x , yd
ƒs -xd = ƒsxd ,

s -xd3
= -x3 .

s -xd1
= -xy = x3 ,y = x

s -xd4
= x4 .s -xd2

= x2y = x4 ,y = x2

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the
function is increasing. If the graph descends or falls as you move from left to right, the
function is decreasing.

6 Chapter 1: Functions

DEFINITIONS Let ƒ be a function defined on an interval I and let and be
any two points in I.

1. If whenever then ƒ is said to be increasing on I.

2. If whenever then ƒ is said to be decreasing on I.x1 6 x2 ,ƒsx2d 6 ƒsx1d
x1 6 x2 ,ƒsx2) 7 ƒsx1d

x2x1
x

y

1–1–2 2 3

–2

–1

1

2

3
y � x

y � ⎡x⎤

FIGURE 1.11 The graph of the
least integer function 
lies on or above the line 
so it provides an integer ceiling
for x (Example 6).

y = x ,
y = <x=

DEFINITIONS A function is an

for every x in the function’s domain.

even function of x if ƒs -xd = ƒsxd,
odd function of x if ƒs -xd = -ƒsxd,

y = ƒsxd

It is important to realize that the definitions of increasing and decreasing functions
must be satisfied for every pair of points and in I with Because we use the
inequality to compare the function values, instead of it is sometimes said that ƒ is
strictly increasing or decreasing on I. The interval I may be finite (also called bounded) or
infinite (unbounded) and by definition never consists of a single point (Appendix 1).

EXAMPLE 7 The function graphed in Figure 1.9 is decreasing on and in-
creasing on [0, 1]. The function is neither increasing nor decreasing on the interval 
because of the strict inequalities used to compare the function values in the definitions.

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.

[1, q d
s - q , 0]

… ,6

x1 6 x2 .x2x1

(a)

(b)

0
x

y

y � x2

(x, y)(–x, y)

0
x

y

y � x3

(x, y)

(–x, –y)

FIGURE 1.12 (a) The graph of 
(an even function) is symmetric about the
y-axis. (b) The graph of (an odd
function) is symmetric about the origin.

y = x3

y = x2
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1.1 Functions and Their Graphs 7

(a) (b)

x

y

0

1

y � x2 � 1

y � x2

x

y

0–1

1

y � x � 1

y � x

FIGURE 1.13 (a) When we add the constant term 1 to the function
the resulting function is still even and its graph is

still symmetric about the y-axis. (b) When we add the constant term 1 to
the function the resulting function is no longer odd.
The symmetry about the origin is lost (Example 8).

y = x + 1y = x ,

y = x2
+ 1y = x2 ,

Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form for constants m and b, is
called a linear function. Figure 1.14a shows an array of lines where 
so these lines pass through the origin. The function where and is
called the identity function. Constant functions result when the slope (Figure
1.14b). A linear function with positive slope whose graph passes through the origin is
called a proportionality relationship.

m = 0
b = 0m = 1ƒsxd = x

b = 0,ƒsxd = mx
ƒsxd = mx + b ,

x

y

0 1 2

1

2 y � 3
2

(b)

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant function
with slope m = 0.

0 x

y
m � –3 m � 2

m � 1m � –1

y � –3x

y � –x

y � 2x

y � x

y � x
1
2

m �
1
2

(a)

DEFINITION Two variables y and x are proportional (to one another) if one is
always a constant multiple of the other; that is, if for some nonzero
constant k.

y = kx

If the variable y is proportional to the reciprocal then sometimes it is said that y is
inversely proportional to x (because is the multiplicative inverse of x).

Power Functions A function where a is a constant, is called a power func-
tion. There are several important cases to consider.

ƒsxd = xa ,

1>x 1>x,
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(b)

The graphs of the functions and are shown in
Figure 1.16. Both functions are defined for all (you can never divide by zero). The
graph of is the hyperbola , which approaches the coordinate axes far from
the origin. The graph of also approaches the coordinate axes. The graph of the
function ƒ is symmetric about the origin; ƒ is decreasing on the intervals and

. The graph of the function g is symmetric about the y-axis; g is increasing on
and decreasing on .s0, q )s - q , 0)

s0, q )
s - q , 0)

y = 1>x2
xy = 1y = 1>x x Z 0

g sxd = x-2
= 1>x2ƒsxd = x-1

= 1>x
a = -1  or  a = -2.

8 Chapter 1: Functions

–1 0 1

–1

1

x

y y � x2

–1 10

–1

1

x

y y � x

–1 10

–1

1

x

y y � x3

–1 0 1

–1

1

x

y y � x4

–1 0 1

–1

1

x

y y � x5

FIGURE 1.15 Graphs of defined for - q 6 x 6 q .ƒsxd = xn, n = 1, 2, 3, 4, 5,

(a)

The graphs of for 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval and also rise more steeply for

Each curve passes through the point (1, 1) and through the origin. The graphs of
functions with even powers are symmetric about the y-axis; those with odd powers are
symmetric about the origin. The even-powered functions are decreasing on the interval

and increasing on ; the odd-powered functions are increasing over the entire
real line .s - q , q )

[0, q ds - q , 0]

ƒ x ƒ 7 1.
s -1, 1d ,

n = 1,ƒsxd = xn ,

a = n,  a positive integer.

x

y

x

y

0

1

1

0

1

1

y � 1
x y � 1

x2

Domain: x � 0
Range:   y � 0

Domain: x � 0
Range:   y � 0

(a) (b)

FIGURE 1.16 Graphs of the power functions for part (a) 
and for part (b) .a = -2

a = -1ƒsxd = xa

(c)

The functions and are the square root and cube
root functions, respectively. The domain of the square root function is but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17
along with the graphs of and (Recall that and

)

Polynomials A function p is a polynomial if

where n is a nonnegative integer and the numbers are real constants
(called the coefficients of the polynomial). All polynomials have domain If thes - q , q d .

a0 , a1 , a2 , Á , an

psxd = an xn
+ an - 1x

n - 1
+

Á
+ a1 x + a0

x2>3
= sx1>3d2 .

x3>2
= sx1>2d3y = x2>3 .y = x3>2

[0, q d ,
g sxd = x1>3

= 23 xƒsxd = x1>2
= 2x

a =
1
2

, 
1
3

, 
3
2

, and 
2
3

.
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1.1 Functions and Their Graphs 9

y

x
0

1

1

y � x3�2

Domain:
Range:

0 � x � 	
0 � y � 	

y

x

Domain:
Range:

–	 � x � 	
0 � y � 	

0

1

1

y � x2�3

x

y

0 1

1

Domain:
Range:

0 � x � 	
0 � y � 	

y � �x  

x

y

Domain:
Range:

–	 � x � 	
–	 � y � 	

1

1

0

3
y � �x 

FIGURE 1.17 Graphs of the power functions for and 
2
3

.a =

1
2

, 
1
3

, 
3
2

,ƒsxd = xa

leading coefficient and then n is called the degree of the polynomial. Linear
functions with are polynomials of degree 1. Polynomials of degree 2, usually written
as are called quadratic functions. Likewise, cubic functions are
polynomials of degree 3. Figure 1.18 shows the graphs of
three polynomials. Techniques to graph polynomials are studied in Chapter 4.

psxd = ax3
+ bx2

+ cx + d
psxd = ax2

+ bx + c ,
m Z 0

n 7 0,an Z 0

x

y

0

y �  �     � 2x � x3

3
x2

2
1
3

(a)

y

x
–1 1 2

2

–2

–4

–6

–8

–10

–12

y � 8x4 � 14x3 � 9x2 � 11x � 1

(b)

–1 0 1 2

–16

16

x

y
y � (x � 2)4(x � 1)3(x � 1)

(c)

–2–4 2 4

–4

–2

2

4

FIGURE 1.18 Graphs of three polynomial functions.

(a) (b) (c)

2 4–4 –2

–2

2

4

–4

x

y

y � 2x2 � 3
7x � 4

0
–2

–4

–6

–8

2–2–4 4 6

2

4

6

8

x

y

y � 11x � 2
2x3 � 1

–5 0

1

2

–1

5 10

–2

x

y

Line y � 5
3

y � 5x2 � 8x � 3
3x2 � 2

NOT TO SCALE

FIGURE 1.19 Graphs of three rational functions. The straight red lines are called asymptotes and are not part
of the graph.

Rational Functions A rational function is a quotient or ratio where p
and q are polynomials. The domain of a rational function is the set of all real x for which

The graphs of several rational functions are shown in Figure 1.19.qsxd Z 0.

ƒ(x) = p(x)>q(x),
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Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3.
The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions Functions of the form where the base is a
positive constant and are called exponential functions. All exponential functions
have domain and range , so an exponential function never assumes the
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential
functions are shown in Figure 1.22.

s0, q ds - q , q d
a Z 1,

a 7 0ƒsxd = ax ,

10 Chapter 1: Functions

Algebraic Functions Any function constructed from polynomials using algebraic opera-
tions (addition, subtraction, multiplication, division, and taking roots) lies within the class
of algebraic functions. All rational functions are algebraic, but also included are more
complicated functions (such as those satisfying an equation like 
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

y3
- 9xy + x3

= 0,

(a)

4–1

–3

–2

–1

1

2

3

4

x

y y � x1/3(x � 4)

(b)

0

y

x

y � (x2 � 1)2/33
4

(c)

10

–1

1

x

y

5
7

y � x(1 � x)2/5

FIGURE 1.20 Graphs of three algebraic functions.

y

x

1

–1
� �2

�3

(a)  f (x) � sin x

0

y

x

1

–1
�

2

3
2 2

(b)  f (x) � cos x

0

�

2
– �

–�

5�

FIGURE 1.21 Graphs of the sine and cosine functions.

(a) (b)

y � 2–x

y � 3–x

y � 10–x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

y � 2x

y � 3x

y � 10x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.22 Graphs of exponential functions.
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1.1 Functions and Their Graphs 11

Logarithmic Functions These are the functions where the base is
a positive constant. They are the inverse functions of the exponential functions, and we
discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four logarithmic
functions with various bases. In each case the domain is and the range is
s - q , q d .

s0, q d

a Z 1ƒsxd = loga x ,

–1 10

1

x

y

FIGURE 1.24 Graph of a catenary or
hanging cable. (The Latin word catena
means “chain.”)

1

–1

1

0
x

y

y � log3x

y � log10 x

y � log2 x

y � log5x

FIGURE 1.23 Graphs of four logarithmic
functions.

Transcendental Functions These are functions that are not algebraic. They include the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many
other functions as well. A particular example of a transcendental function is a catenary.
Its graph has the shape of a cable, like a telephone line or electric cable, strung from one
support to another and hanging freely under its own weight (Figure 1.24). The function
defining the graph is discussed in Section 7.3.

Exercises 1.1

Functions
In Exercises 1–6, find the domain and range of each function.

1. 2.

3. 4.

5. 6.

In Exercises 7 and 8, which of the graphs are graphs of functions of x,
and which are not? Give reasons for your answers.

7. a. b.

x

y

0
x

y

0

G(t) =

2
t2

- 16
ƒstd =

4
3 - t

g(x) = 2x2
- 3xF(x) = 25x + 10

ƒsxd = 1 - 2xƒsxd = 1 + x2

8. a. b.

Finding Formulas for Functions
9. Express the area and perimeter of an equilateral triangle as a

function of the triangle’s side length x.

10. Express the side length of a square as a function of the length d of
the square’s diagonal. Then express the area as a function of the
diagonal length.

11. Express the edge length of a cube as a function of the cube’s diag-
onal length d. Then express the surface area and volume of the
cube as a function of the diagonal length.

x

y

0
x

y

0
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12. A point P in the first quadrant lies on the graph of the function
Express the coordinates of P as functions of the

slope of the line joining P to the origin.

13. Consider the point lying on the graph of the line
Let L be the distance from the point to the

origin Write L as a function of x.

14. Consider the point lying on the graph of Let
L be the distance between the points and Write L as a
function of y.

Functions and Graphs
Find the domain and graph the functions in Exercises 15–20.

15. 16.

17. 18.

19. 20.

21. Find the domain of 

22. Find the range of 

23. Graph the following equations and explain why they are not
graphs of functions of x.

a. b.

24. Graph the following equations and explain why they are not
graphs of functions of x.

a. b.

Piecewise-Defined Functions
Graph the functions in Exercises 25–28.

25.

26.

27.

28.

Find a formula for each function graphed in Exercises 29–32.

29. a. b.

30. a. b.

–1
x

y

3

21

2

1

–2

–3

–1
(2, –1)

x

y

52

2
(2, 1)

t

y

0

2

41 2 3
x

y

0

1

2

(1, 1)

G sxd = e1>x , x 6 0

x , 0 … x

F sxd = e4 - x2 , x … 1

x2
+ 2x , x 7 1

g sxd = e1 - x , 0 … x … 1

2 - x , 1 6 x … 2

ƒsxd = e x, 0 … x … 1

2 - x, 1 6 x … 2

ƒ x + y ƒ = 1ƒ x ƒ + ƒ y ƒ = 1

y2
= x2

ƒ y ƒ = x

y = 2 +

x2

x2
+ 4

 .

y =

x + 3

4 - 2x2
- 9

 .

G std = 1> ƒ t ƒF std = t> ƒ t ƒ

g sxd = 2-xg sxd = 2ƒ x ƒ

ƒsxd = 1 - 2x - x2ƒsxd = 5 - 2x

(4, 0).(x, y)
2x - 3.y =(x, y)

(0, 0).
(x, y)2x + 4y = 5.

(x, y)

ƒsxd = 2x .

12 Chapter 1: Functions

31. a. b.

32. a. b.

The Greatest and Least Integer Functions
33. For what values of x is

a. b.

34. What real numbers x satisfy the equation 

35. Does for all real x? Give reasons for your answer.

36. Graph the function

Why is ƒ(x) called the integer part of x?

Increasing and Decreasing Functions
Graph the functions in Exercises 37–46. What symmetries, if any, do
the graphs have? Specify the intervals over which the function is in-
creasing and the intervals where it is decreasing.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

Even and Odd Functions
In Exercises 47–58, say whether the function is even, odd, or neither.
Give reasons for your answer.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

Theory and Examples
59. The variable s is proportional to t, and when 

Determine t when s = 60.
t = 75.s = 25

hstd = 2 ƒ t ƒ + 1hstd = 2t + 1

hstd = ƒ t3
ƒhstd =

1
t - 1

gsxd =

x

x2
- 1

gsxd =

1
x2

- 1

gsxd = x4
+ 3x2

- 1gsxd = x3
+ x

ƒsxd = x2
+ xƒsxd = x2

+ 1

ƒsxd = x-5ƒsxd = 3

y = s -xd2>3y = -x3>2
y = -42xy = x3>8
y = 2-xy = 2ƒ x ƒ

y =

1
ƒ x ƒ

y = -

1
x

y = -

1
x2y = -x3

ƒsxd = e :x; , x Ú 0<x= , x 6 0.

< -x= = - :x;
:x; = <x= ?

<x= = 0?:x; = 0?

t

y

0

A

T

–A

T
2

3T
2

2T

x

y

0

1

TT
2

(T, 1)

x

y

1

2

(–2, –1) (3, –1)(1, –1)

x

y

3

1
(–1, 1) (1, 1)
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1.1 Functions and Their Graphs 13

60. Kinetic energy The kinetic energy K of a mass is proportional
to the square of its velocity If joules when

what is K when 

61. The variables r and s are inversely proportional, and when
Determine s when 

62. Boyle’s Law Boyle’s Law says that the volume V of a gas at con-
stant temperature increases whenever the pressure P decreases, so
that V and P are inversely proportional. If when

then what is V when 

63. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 14 in. by 22 in. by cutting out
equal squares of side x at each corner and then folding up the
sides as in the figure. Express the volume V of the box as a func-
tion of x.

64. The accompanying figure shows a rectangle inscribed in an isosce-
les right triangle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (You might start
by writing an equation for the line AB.)

b. Express the area of the rectangle in terms of x.

In Exercises 65 and 66, match each equation with its graph. Do not
use a graphing device, and give reasons for your answer.

65. a. b. c.

x

y

f

g

h

0

y = x10y = x7y = x4

x

y

–1 0 1x
A

B

P(x, ?)

x

x

x

x

x

x

x

x

22

14

P = 23.4 lbs>in2?V = 1000 in3,
P = 14.7 lbs>in2

r = 10.s = 4.
r = 6

y = 10 m>sec?y = 18 m>sec,
K = 12,960y.

66. a. b. c.

67. a. Graph the functions and to-
gether to identify the values of x for which

b. Confirm your findings in part (a) algebraically.

68. a. Graph the functions and 
together to identify the values of x for which

b. Confirm your findings in part (a) algebraically.

69. For a curve to be symmetric about the x-axis, the point (x, y) must
lie on the curve if and only if the point lies on the curve.
Explain why a curve that is symmetric about the x-axis is not the
graph of a function, unless the function is 

70. Three hundred books sell for $40 each, resulting in a revenue of
For each $5 increase in the price, 25

fewer books are sold. Write the revenue R as a function of the
number x of $5 increases.

71. A pen in the shape of an isosceles right triangle with legs of length
x ft and hypotenuse of length h ft is to be built. If fencing costs
$5/ft for the legs and $10/ft for the hypotenuse, write the total cost
C of construction as a function of h.

72. Industrial costs A power plant sits next to a river where the
river is 800 ft wide. To lay a new cable from the plant to a location
in the city 2 mi downstream on the opposite side costs $180 per
foot across the river and $100 per foot along the land.

a. Suppose that the cable goes from the plant to a point Q on the
opposite side that is x ft from the point P directly opposite the
plant. Write a function C(x) that gives the cost of laying the
cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive
location for point Q is less than 2000 ft or greater than 2000 ft
from point P.

x QP

Power plant

City

800 ft

2 mi

NOT TO SCALE

(300)($40) = $12,000.

y = 0.

sx, -yd

3
x - 1

6

2
x + 1

.

g sxd = 2>sx + 1dƒsxd = 3>sx - 1d

x
2

7 1 +

4
x .

g sxd = 1 + s4>xdƒsxd = x>2

x

y

f

h

g

0

y = x5y = 5xy = 5x

T

T
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14 Chapter 1: Functions

1.2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where
the denominator is zero) to produce new functions. If ƒ and g are functions, then for every
x that belongs to the domains of both ƒ and g (that is, for ), we define
functions and ƒg by the formulas

Notice that the sign on the left-hand side of the first equation represents the operation of
addition of functions, whereas the on the right-hand side of the equation means addition
of the real numbers ƒ(x) and g(x).

At any point of at which we can also define the function 
by the formula

Functions can also be multiplied by constants: If c is a real number, then the function
cƒ is defined for all x in the domain of ƒ by

EXAMPLE 1 The functions defined by the formulas

have domains and The points common to these do-
mains are the points

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write for the product function ƒg.

Function Formula Domain

[0, 1]

[0, 1]

[0, 1]

[0, 1) 

(0, 1] 

The graph of the function is obtained from the graphs of ƒ and g by adding the
corresponding y-coordinates ƒ(x) and g(x) at each point as in Figure
1.25. The graphs of and from Example 1 are shown in Figure 1.26.ƒ # gƒ + g

x H Dsƒd ¨ Dsgd ,
ƒ + g

sx = 0 excludedd
g
ƒ

 sxd =

g sxd
ƒsxd

= A
1 - x

xg>ƒ
sx = 1 excludedd

ƒ
g sxd =

ƒsxd
g sxd

= A
x

1 - x
ƒ>g

sƒ # gdsxd = ƒsxdg sxd = 2xs1 - xdƒ # g

sg - ƒdsxd = 21 - x - 2xg - ƒ

sƒ - gdsxd = 2x - 21 - xƒ - g

[0, 1] = Dsƒd ¨ Dsgdsƒ + gdsxd = 2x + 21 - xƒ + g

ƒ # g

[0, q d ¨ s - q , 1] = [0, 1] .

Dsgd = s - q , 1] .Dsƒd = [0, q d

ƒsxd = 2x and g sxd = 21 - x

scƒdsxd = cƒsxd .

aƒg b sxd =

ƒsxd
g sxd
 swhere gsxd Z 0d .

ƒ>ggsxd Z 0,Dsƒd ¨ Dsgd

+

+

 sƒgdsxd = ƒsxdg sxd .

 sƒ - gdsxd = ƒsxd - g sxd .

 sƒ + gdsxd = ƒsxd + g sxd .

ƒ + g, ƒ - g ,
x H Dsƒd ¨ Dsgd
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1.2 Combining Functions; Shifting and Scaling Graphs 15

y � ( f � g)(x)

y � g(x)

y � f (x) f (a)
g(a)

f (a) � g(a)

a

2

0

4

6

8

y

x

FIGURE 1.25 Graphical addition of two
functions.

5
1

5
2

5
3

5
4 10

1

x

y

2
1

g(x) � �1 � x f (x) � �x
y � f � g

y � f • g

FIGURE 1.26 The domain of the function is
the intersection of the domains of ƒ and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the
function (Example 1).ƒ # g

ƒ + g

Composite Functions

Composition is another method for combining functions.

DEFINITION If ƒ and g are functions, the composite function (“ƒ com-
posed with g”) is defined by

The domain of consists of the numbers x in the domain of g for which g(x)
lies in the domain of ƒ.

ƒ � g

sƒ � gdsxd = ƒsg sxdd .

ƒ � g

The definition implies that can be formed when the range of g lies in the 
domain of ƒ. To find first find g(x) and second find ƒ(g(x)). Figure 1.27 pic-
tures as a machine diagram and Figure 1.28 shows the composite as an arrow di-
agram.

ƒ � g
sƒ � gdsxd,

ƒ � g

x g f f (g(x))g(x)

x

f (g(x))

g(x)

g
f

f 
 g

FIGURE 1.27 Two functions can be composed at
x whenever the value of one function at x lies in the
domain of the other. The composite is denoted by
ƒ � g . FIGURE 1.28 Arrow diagram for ƒ � g .

To evaluate the composite function (when defined), we find ƒ(x) first and then
g(ƒ(x)). The domain of is the set of numbers x in the domain of ƒ such that ƒ(x) lies
in the domain of g.

The functions and are usually quite different.g � ƒƒ � g

g � ƒ
g � ƒ

7001_AWLThomas_ch01p001-057.qxd  10/1/09  2:23 PM  Page 15



16 Chapter 1: Functions

EXAMPLE 2 If and find

(a) (b) (c) (d)

Solution
Composite Domain

(a)

(b)

(c)

(d)

To see why the domain of notice that is defined for all
real x but belongs to the domain of ƒ only if   that is to say, when   

Notice that if and then However,

the domain of is not since requires 

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to
each output of the existing function, or to its input variable. The graph of the new function
is the graph of the original function shifted vertically or horizontally, as follows.

x Ú 0.2xs - q , q d,[0, q d ,ƒ � g

sƒ � gdsxd = A2x B2 = x .g sxd = 2x ,ƒsxd = x2

x Ú -1.x + 1 Ú 0,
g sxd = x + 1ƒ � g is [-1, q d ,

s - q , q dsg � gdsxd = g sg sxdd = g sxd + 1 = sx + 1d + 1 = x + 2

[0, q dsƒ � ƒdsxd = ƒsƒsxdd = 2ƒsxd = 21x = x1>4
[0, q dsg � ƒdsxd = g sƒsxdd = ƒsxd + 1 = 2x + 1

[-1, q dsƒ � gdsxd = ƒsg sxdd = 2g sxd = 2x + 1

sg � gdsxd .sƒ � ƒdsxdsg � ƒdsxdsƒ � gdsxd

g sxd = x + 1,ƒsxd = 2x

Shift Formulas

Vertical Shifts

Shifts the graph of ƒ up

Shifts it down

Horizontal Shifts

Shifts the graph of ƒ left

Shifts it right ƒ h ƒ units if h 6 0

h units if h 7 0y = ƒsx + hd

ƒ k ƒ units if k 6 0

k units if k 7 0y = ƒsxd + k

x

y

2

1

2

2 units

1 unit

–2

–2

–1
0

y � x2 � 2

y � x2

y � x2 � 1

y � x2 � 2

FIGURE 1.29 To shift the graph
of up (or down), we add
positive (or negative) constants to
the formula for ƒ (Examples 3a
and b).

ƒsxd = x2

EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula to get shifts the
graph up 1 unit (Figure 1.29).

(b) Adding to the right-hand side of the formula to get shifts the
graph down 2 units (Figure 1.29).

(c) Adding 3 to x in to get shifts the graph 3 units to the left (Figure
1.30).

(d) Adding to x in and then adding to the result, gives 
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31).

Scaling and Reflecting a Graph of a Function

To scale the graph of a function is to stretch or compress it, vertically or hori-
zontally. This is accomplished by multiplying the function ƒ, or the independent variable x,
by an appropriate constant c. Reflections across the coordinate axes are special cases
where c = -1.

y = ƒsxd

y = ƒ x - 2 ƒ - 1-1y = ƒ x ƒ ,-2

y = sx + 3d2y = x2

y = x2
- 2y = x2

-2

y = x2
+ 1y = x2
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1.2 Combining Functions; Shifting and Scaling Graphs 17

x

y

0–3 2

1

1

y � (x � 2)2y � x2y � (x � 3)2

Add a positive
constant to x.

Add a negative
constant to x.

–4 –2 2 4 6–1

1

4

x

y

y � �x – 2� – 1 

FIGURE 1.30 To shift the graph of to the
left, we add a positive constant to x (Example 3c).
To shift the graph to the right, we add a negative
constant to x.

y = x2 FIGURE 1.31 Shifting the graph of
units to the right and 1 unit

down (Example 3d).
y = ƒ x ƒ 2

EXAMPLE 4 Here we scale and reflect the graph of 

(a) Vertical: Multiplying the right-hand side of by 3 to get stretches
the graph vertically by a factor of 3, whereas multiplying by compresses the
graph by a factor of 3 (Figure 1.32).

(b) Horizontal: The graph of is a horizontal compression of the graph of

by a factor of 3, and is a horizontal stretching by a factor of 3
(Figure 1.33). Note that so a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal
stretching may correspond to a vertical compression by a different scaling factor.

(c) Reflection: The graph of is a reflection of across the x-axis, and
is a reflection across the y-axis (Figure 1.34).y = 2-x

y = 2xy = -2x

y = 23x = 232x
y = 2x>3y = 2x

y = 23x

1>3y = 32xy = 2x

y = 2x.

Vertical and Horizontal Scaling and Reflecting Formulas

For , the graph is scaled:

Stretches the graph of ƒ vertically by a factor of c.

Compresses the graph of ƒ vertically by a factor of c.

Compresses the graph of ƒ horizontally by a factor of c.

Stretches the graph of ƒ horizontally by a factor of c.

For , the graph is reflected:

Reflects the graph of ƒ across the x-axis.

Reflects the graph of ƒ across the y-axis.y = ƒs -xd
y = -ƒsxd

c = -1

y = ƒsx>cd
y = ƒscxd

y =
1
c  ƒsxd

y = cƒsxd
c 7 1

–1 10 2 3 4

1

2

3

4

5

x

y

y � �x

y �   �x

y � 3�x

3
1

stretch

compress

–1 0 1 2 3 4

1

2

3

4

x

y

y � �3 x

y � �x�3

y � �x
compress

stretch –3 –2 –1 1 2 3

–1

1

x

y

y � �x

y � –�x

y � �–x

FIGURE 1.32 Vertically stretching and
compressing the graph by a
factor of 3 (Example 4a).

y = 1x
FIGURE 1.33 Horizontally stretching and
compressing the graph by a factor of
3 (Example 4b).

y = 1x
FIGURE 1.34 Reflections of the graph

across the coordinate axes
(Example 4c).
y = 1x
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18 Chapter 1: Functions

EXAMPLE 5 Given the function (Figure 1.35a), find formulas to

(a) compress the graph horizontally by a factor of 2 followed by a reflection across the
y-axis (Figure 1.35b).

(b) compress the graph vertically by a factor of 2 followed by a reflection across the x-axis
(Figure 1.35c).

ƒsxd = x4
- 4x3

+ 10

Solution

(a) We multiply x by 2 to get the horizontal compression, and by to give reflection
across the y-axis. The formula is obtained by substituting for x in the right-hand
side of the equation for ƒ:

(b) The formula is

Ellipses

Although they are not the graphs of functions, circles can be stretched horizontally or ver-
tically in the same way as the graphs of functions. The standard equation for a circle of
radius r centered at the origin is

Substituting cx for x in the standard equation for a circle (Figure 1.36a) gives

(1)c2x2
+ y2

= r2 .

x2
+ y2

= r2.

y = -
1
2

 ƒsxd = -
1
2

 x4
+ 2x3

- 5.

 = 16x4
+ 32x3

+ 10.

 y = ƒs -2xd = s -2xd4
- 4s -2xd3

+ 10

-2x
-1

–1 0 1 2 3 4

–20

–10

10

20

x

y

f (x) � x4 � 4x3 � 10

(a)

–2 –1 0 1

–20

–10

10

20

x

y

(b)

y � 16x4 � 32x3 � 10

–1 0 1 2 3 4

–10

10

x

y

y � –   x4 � 2x3 � 51
2

(c)

FIGURE 1.35 (a) The original graph of f. (b) The horizontal compression of in part (a) by a factor of 2, followed by a
reflection across the y-axis. (c) The vertical compression of in part (a) by a factor of 2, followed by a reflection across
the x-axis (Example 5).

y = ƒsxd
y = ƒsxd

x

y

(a) circle

–r

–r

r

r0

x2 � y2 � r2

x

y

(b) ellipse, 0 � c � 1

–r

0

c2x2 � y2 � r2

r
c– r

c

x

y

(c) ellipse,  c � 1

–r

r

0

c2x2 � y2 � r2

r
c– r

c

r

FIGURE 1.36 Horizontal stretching or compression of a circle produces graphs of ellipses.
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1.2 Combining Functions; Shifting and Scaling Graphs 19

If the graph of Equation (1) horizontally stretches the circle; if the cir-
cle is compressed horizontally. In either case, the graph of Equation (1) is an ellipse
(Figure 1.36). Notice in Figure 1.36 that the y-intercepts of all three graphs are always 
and r. In Figure 1.36b, the line segment joining the points is called the major
axis of the ellipse; the minor axis is the line segment joining The axes of the el-
lipse are reversed in Figure 1.36c: The major axis is the line segment joining the points

, and the minor axis is the line segment joining the points In both cases,
the major axis is the longer line segment.

If we divide both sides of Equation (1) by we obtain

(2)

where and If the major axis is horizontal; if the major axis
is vertical. The center of the ellipse given by Equation (2) is the origin (Figure 1.37).

Substituting for x, and for y, in Equation (2) results in

(3)

Equation (3) is the standard equation of an ellipse with center at (h, k). The geometric
definition and properties of ellipses are reviewed in Section 11.6.

sx - hd2

a2 +

s y - kd2

b2 = 1.

y - kx - h

a 6 b ,a 7 b ,b = r .a = r>c

x2

a2 +

y2

b2 = 1

r2 ,

s ;r>c, 0d .s0, ;rd

s0, ;rd .
s ;r>c, 0d

-r

c 7 10 6 c 6 1,

x

y

–a

–b

b

a

Major axis

Center

FIGURE 1.37 Graph of the ellipse

where the major

axis is horizontal.

x2

a2 +

y2

b2 = 1, a 7 b ,

Exercises 1.2

Algebraic Combinations
In Exercises 1 and 2, find the domains and ranges of and

1.

2.

In Exercises 3 and 4, find the domains and ranges of ƒ, g, , and

3.

4.

Composites of Functions
5. If and find the following.

a. b.

c. d.

e. f.

g. h.

6. If and find the following.

a. b.

c. d.

e. f.

g. h.

In Exercises 7–10, write a formula for 

7.

8. hsxd = x2gsxd = 2x - 1,ƒ(x) = 3x + 4,

hsxd = 4 - xgsxd = 3x ,ƒ(x) = x + 1,

ƒ � g � h.

g (g (x))ƒ(ƒ(x))

g (g (2))ƒ(ƒ(2))

g (ƒ(x))ƒ(g (x))

g (ƒ(1>2))ƒ(g (1>2))

gsxd = 1>sx + 1d ,ƒsxd = x - 1

g (g (x))ƒ(ƒ(x))

g (g (2))ƒ(ƒ(-5))

g (ƒ(x))ƒ(g (x))

g (ƒ(0))ƒ(g (0))

g sxd = x2
- 3,ƒsxd = x + 5

ƒsxd = 1, g sxd = 1 + 2x

ƒsxd = 2, g sxd = x2
+ 1

g>ƒ.
ƒ>g

ƒsxd = 2x + 1, g sxd = 2x - 1

ƒsxd = x, g sxd = 2x - 1

ƒ # g .
ƒ, g, ƒ + g ,

9.

10.

Let and Ex-
press each of the functions in Exercises 11 and 12 as a composite in-
volving one or more of ƒ, g, h, and j.

11. a. b.

c. d.

e. f.

12. a. b.

c. d.

e. f.

13. Copy and complete the following table.

g(x) ƒ(x) (ƒ g)(x)

a. ?

b. 3x ?

c. ?

d. ?

e. ? x

f. ? x
1
x

1 +

1
x

x
x - 1

x
x - 1

2x2
- 52x - 5

x + 2

2xx - 7

�

y = 2x3
- 3y = 22x - 3

y = x - 6y = x9

y = x3>2y = 2x - 3

y = s2x - 6d3y = 2sx - 3d3

y = 4xy = x1>4
y = 22xy = 2x - 3

jsxd = 2x .ƒsxd = x - 3, g sxd = 2x , hsxd = x3 ,

hsxd = 22 - xgsxd =

x2

x2
+ 1

 ,ƒsxd =

x + 2
3 - x

 ,

hsxd =

1
xgsxd =

1
x + 4

 ,ƒsxd = 2x + 1,
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20 Chapter 1: Functions

14. Copy and complete the following table.

g(x) ƒ(x) (ƒ g)(x)

a. ?

b. ?

c. ?

d. ?

15. Evaluate each expression using the given table of values

ƒ x ƒ2x

ƒ x ƒ2x

x
x + 1

x - 1
x

ƒ x ƒ

1
x - 1

�

22. The accompanying figure shows the graph of shifted to
two new positions. Write equations for the new graphs.

23. Match the equations listed in parts (a)–(d) to the graphs in the ac-
companying figure.

a. b.

c. d.

24. The accompanying figure shows the graph of shifted to
four new positions. Write an equation for each new graph.

x

y

(–2, 3)

(–4, –1)

(1, 4)

(2, 0)

(b)

(c) (d)

(a)

y = -x2

x

y

Position 2 Position 1

Position 4

Position 3

–4 –3 –2 –1 0 1 2 3

(–2, 2) (2, 2)

(–3, –2)

(1, –4)

1

2

3

y = sx + 3d2
- 2y = sx + 2d2

+ 2

y = sx - 2d2
+ 2y = sx - 1d2

- 4

x

y
Position (a)

Position (b)

y � x2

–5

0

3

y = x2

x 0 1 2

ƒ(x) 1 0 1 2

g(x) 2 1 0 0-1

-2

-1-2

a. b. c.

d. e. f.

16. Evaluate each expression using the functions

a. b. c.

d. e. f.

In Exercises 17 and 18, (a) write formulas for and and
find the (b) domain and (c) range of each.

17.

18.

19. Let Find a function so that

20. Let Find a function so that

Shifting Graphs
21. The accompanying figure shows the graph of shifted to

two new positions. Write equations for the new graphs.

x

y

–7 0 4

Position (a) Position (b)y � –x2

y = -x2

(ƒ � g)(x) = x + 2.
y = g(x)ƒ(x) = 2x3

- 4.

(ƒ � g)(x) = x.

y = g(x)ƒ(x) =

x
x - 2

.

ƒ(x) = x2, g (x) = 1 - 2x

ƒ(x) = 2x + 1, g (x) =

1
x

g � ƒƒ � g

ƒsgs1>2ddgsƒs0ddƒsƒs2dd
gsgs -1ddgsƒs3ddƒsgs0dd

ƒ(x) = 2 - x, g(x) = b -x, -2 … x 6 0

x - 1,    0 … x … 2.

ƒsgs1ddgsƒs -2ddgsgs2dd
ƒsƒs -1ddgsƒs0ddƒsgs -1dd

7001_AWLThomas_ch01p001-057.qxd  10/1/09  2:23 PM  Page 20



1.2 Combining Functions; Shifting and Scaling Graphs 21

Exercises 25–34 tell how many units and in what directions the graphs
of the given equations are to be shifted. Give an equation for the
shifted graph. Then sketch the original and shifted graphs together,
labeling each graph with its equation.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Graph the functions in Exercises 35–54.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. The accompanying figure shows the graph of a function ƒ(x) with
domain [0, 2] and range [0, 1]. Find the domains and ranges of the
following functions, and sketch their graphs.

a. b.

c. d.

e. f.

g. h. -ƒsx + 1d + 1ƒs -xd

ƒsx - 1dƒsx + 2d

-ƒsxd2ƒ(x)

ƒsxd - 1ƒsxd + 2

x

y

0 2

1 y � f (x)

y =

1
sx + 1d2y =

1
x2 + 1

y =

1
x2 - 1y =

1
sx - 1d2

y =

1
x + 2

y =

1
x + 2

y =

1
x - 2y =

1
x - 2

y = sx + 2d3>2
+ 1y = 23 x - 1 - 1

y + 4 = x2>3y = 1 - x2>3
y = sx - 8d2>3y = sx + 1d2>3
y = 1 - 2xy = 1 + 2x - 1

y = ƒ 1 - x ƒ - 1y = ƒ x - 2 ƒ

y = 29 - xy = 2x + 4

y = 1>x2 Left 2, down 1

y = 1>x Up 1, right 1

y =

1
2

 sx + 1d + 5 Down 5, right 1

y = 2x - 7 Up 7

y = -2x Right 3

y = 2x Left 0.81

y = x2>3 Right 1, down 1

y = x3 Left 1, down 1

x2
+ y2

= 25 Up 3, left 4

x2
+ y2

= 49 Down 3, left 2

56. The accompanying figure shows the graph of a function g(t) with
domain and range Find the domains and ranges
of the following functions, and sketch their graphs.

a. b.

c. d.

e. f.

g. h.

Vertical and Horizontal Scaling
Exercises 57–66 tell by what factor and direction the graphs of the
given functions are to be stretched or compressed. Give an equation
for the stretched or compressed graph.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Graphing
In Exercises 67–74, graph each function, not by plotting points, but by
starting with the graph of one of the standard functions presented in
Figures 1.14–1.17 and applying an appropriate transformation.

67. 68.

69. 70.

71. 72.

73. 74.

75. Graph the function 

76. Graph the function 

Ellipses
Exercises 77–82 give equations of ellipses. Put each equation in stan-
dard form and sketch the ellipse.

77. 78.

79. 80. sx + 1d2
+ 2y2

= 43x2
+ s y - 2d2

= 3

16x2
+ 7y2

= 1129x2
+ 25y2

= 225

y = 2ƒ x ƒ .

y = ƒ x2
- 1 ƒ .

y = s -2xd2>3y = -23 x

y =

2
x2 + 1y =

1
2x

- 1

y = s1 - xd3
+ 2y = sx - 1d3

+ 2

y = A1 -

x
2

y = -22x + 1

y = 1 - x3, stretched horizontally by a factor of 2

y = 1 - x3, compressed horizontally by a factor of 3

y = 24 - x2, compressed vertically by a factor of 3

y = 24 - x2, stretched horizontally by a factor of 2

y = 2x + 1, stretched vertically by a factor of 3

y = 2x + 1, compressed horizontally by a factor of 4

y = 1 +

1
x2 , stretched horizontally by a factor of 3

y = 1 +

1
x2 , compressed vertically by a factor of 2

y = x2
- 1, compressed horizontally by a factor of 2

y = x2
- 1, stretched vertically by a factor of 3

-g st - 4dg s1 - td
g st - 2dg s - t + 2d
1 - g stdg std + 3

-g stdg s - td

t

y

–3

–2 0–4

y � g(t)

[-3, 0] .[-4, 0]
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22 Chapter 1: Functions

81.

82.

83. Write an equation for the ellipse shifted 
4 units to the left and 3 units up. Sketch the ellipse and identify its
center and major axis.

84. Write an equation for the ellipse shifted 
3 units to the right and 2 units down. Sketch the ellipse and iden-
tify its center and major axis.

Combining Functions
85. Assume that ƒ is an even function, g is an odd function, and both

ƒ and g are defined on the entire real line Which of the follow-
ing (where defined) are even? odd?

� .

sx2>4d + sy2>25d = 1

sx2>16d + sy2>9d = 1

6 ax +

3
2
b2

+ 9 ay -

1
2
b2

= 54

3sx - 1d2
+ 2s y + 2d2

= 6 a. b. c.

d. e. f.

g. h. i.

86. Can a function be both even and odd? Give reasons for your
answer.

87. (Continuation of Example 1.) Graph the functions 

and together with their (a) sum, (b) product,
(c) two differences, (d) two quotients.

88. Let and Graph ƒ and g together with
and g � ƒ.ƒ � g

g sxd = x2 .ƒsxd = x - 7

g sxd = 21 - x

ƒsxd = 2x

g � gƒ � ƒg � ƒ

ƒ � gg2
= ggƒ 2

= ƒƒ

g>ƒƒ>gƒg

T

T

1.3 Trigonometric Functions

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle
within a circle of radius r is defined as the number of “radius units” contained in

the arc s subtended by that central angle. If we denote this central angle by when meas-
ured in radians, this means that (Figure 1.38), oru = s>r u

A¿CB¿

(1)s = ru (u in radians).

If the circle is a unit circle having radius , then from Figure 1.38 and Equation (1),
we see that the central angle measured in radians is just the length of the arc that the an-
gle cuts from the unit circle. Since one complete revolution of the unit circle is 360 or 
radians, we have

(2)

and

Table 1.2 shows the equivalence between degree and radian measures for some basic 
angles.

1 radian =
180
p  ( L 57.3) degrees or 1 degree =  

p
180

 ( L 0.017) radians.

p radians = 180°

2p°
u

r = 1

B'

B
s

A'
C A

r

1
θ

Circle of radius r

Unit circle

FIGURE 1.38 The radian measure of the
central angle is the number 
For a unit circle of radius is the
length of arc AB that central angle ACB
cuts from the unit circle.

r = 1, u
u = s>r.A¿CB¿

TABLE 1.2 Angles measured in degrees and radians

Degrees 0 30 45 60 90 120 135 150 180 270 360

(radians) 0 2p
3p
2

p
5p
6

3p
4

2p
3

p
2

p
3

p
4

p
6

�p
4

�p
2

�3p
4

�pU

�45�90�135�180
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1.3 Trigonometric Functions 23

x

y

x

y

Positive
measure

Initial ray

Terminal ray

Terminal
ray

Initial ray

Negative
measure

FIGURE 1.39 Angles in standard position in the xy-plane.

x

y

4
9�

x

y

3�

x

y

4
–3�

x

y

2
–5�

FIGURE 1.40 Nonzero radian measures can be positive or negative and can go beyond 2p.
hypotenuse

adjacent

opposite

�

sin ��
opp
hyp

��
adj
hyp

cos

tan ��
opp
adj

csc ��
hyp
opp

��
hyp
adj

sec

cot ��
adj
opp

FIGURE 1.41 Trigonometric
ratios of an acute angle.

An angle in the xy-plane is said to be in standard position if its vertex lies at the origin
and its initial ray lies along the positive x-axis (Figure 1.39). Angles measured counter-
clockwise from the positive x-axis are assigned positive measures; angles measured clock-
wise are assigned negative measures.

Angles describing counterclockwise rotations can go arbitrarily far beyond radi-
ans or 360 . Similarly, angles describing clockwise rotations can have negative measures
of all sizes (Figure 1.40).

°
2p

Angle Convention: Use Radians From now on, in this book it is assumed that all angles
are measured in radians unless degrees or some other unit is stated explicitly. When we talk
about the angle , we mean radians (which is 60 ), not degrees. We use radians
because it simplifies many of the operations in calculus, and some results we will obtain 
involving the trigonometric functions are not true when angles are measured in degrees.

The Six Basic Trigonometric Functions

You are probably familiar with defining the trigonometric functions of an acute angle in
terms of the sides of a right triangle (Figure 1.41). We extend this definition to obtuse and
negative angles by first placing the angle in standard position in a circle of radius r. 
We then define the trigonometric functions in terms of the coordinates of the point P(x, y)
where the angle’s terminal ray intersects the circle (Figure 1.42).

sine: cosecant:

cosine: secant:

tangent: cotangent:

These extended definitions agree with the right-triangle definitions when the angle is acute.
Notice also that whenever the quotients are defined,

csc u =
1

sin u
sec u =

1
cos u

cot u =
1

tan u
tan u =

sin u
cos u

cot u =
x
ytan u =

y
x

sec u =
r
xcos u =

x
r

csc u =
r
ysin u =

y
r

p>3°p>3p>3

x

y

P(x, y)
r

rO

�

y

x

FIGURE 1.42 The trigonometric
functions of a general angle are
defined in terms of x, y, and r.

u
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24 Chapter 1: Functions

As you can see, and are not defined if This means they are not
defined if is Similarly, and are not defined for values of 
for which namely 

The exact values of these trigonometric ratios for some angles can be read from the
triangles in Figure 1.43. For instance,

The CAST rule (Figure 1.44) is useful for remembering when the basic trigonometric func-
tions are positive or negative. For instance, from the triangle in Figure 1.45, we see that

sin 
2p
3

=

23
2

,  cos 
2p
3

= -
1
2

,  tan 
2p
3

= -23.

tan 
p
3

= 23tan 
p
6

=
1

23
tan 
p
4

= 1

cos 
p
3

=
1
2

cos 
p
6

=

23
2

cos 
p
4

=
1

22

sin 
p
3

=

23
2

sin 
p
6

=
1
2

sin 
p
4

=
1

22

u = 0, ;p, ;2p, Á .y = 0,
ucsc ucot u;p>2, ;3p>2, Á .u

x = cos u = 0.sec utan u

1

1

�
2

�
4

�
4�2

FIGURE 1.43 Radian angles and side
lengths of two common triangles.

1

�
3

�
2

�
6

2 �3

y

x

S
sin pos

A
all pos

T
tan pos

C
cos pos

x

y

�3
2

1
2

1 2
3

�

⎛
⎝

⎛
⎝

⎛
⎝

⎛
⎝

2
3

, ,cos � 2
3

sin �� 1
2

–
2

P

�3

FIGURE 1.44 The CAST rule,
remembered by the statement
“Calculus Activates Student
Thinking,” tells which
trigonometric functions are
positive in each quadrant.

FIGURE 1.45 The triangle for
calculating the sine and cosine of 
radians. The side lengths come from the
geometry of right triangles.

2p>3

Using a similar method we determined the values of sin , cos , and tan shown in Table 1.3.uuu

TABLE 1.3 Values of and for selected values of 

Degrees 0 30 45 60 90 120 135 150 180 270 360

(radians) 0

0 0 1 0 0

0 1 0 0 1

0 1 0 1 0 0
-23

3
-1-2323

23
3

-1tan u

-1
-23

2
-22

2
-

1
2

1
2

22
2

23
2

22
2

-22
2

-1cos u

-1
1
2

22
2

23
2

23
2

22
2

1
2

-22
2

-1
-22

2
sin u

2p
3p
2

p
5p
6

3p
4

2p
3

p
2

p
3

p
4

p
6

�p
4

�p
2

�3p
4

�pu

�45�90�135�180

utan usin u, cos u,
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1.3 Trigonometric Functions 25

Periodicity and Graphs of the Trigonometric Functions

When an angle of measure and an angle of measure are in standard position, their
terminal rays coincide. The two angles therefore have the same trigonometric function values:

, and so on. Similarly, 
, and so on. We describe this repeating behavior by saying that the six

basic trigonometric functions are periodic.
sin(u - 2p) = sin u

cos(u - 2p) = cos u,tan(u + 2p) = tan usin(u + 2p) = sin u,

u + 2pu

DEFINITION A function ƒ(x) is periodic if there is a positive number p such that
for every value of x. The smallest such value of p is the period of ƒ.ƒ(x + p) = ƒ(x)

When we graph trigonometric functions in the coordinate plane, we usually denote the in-
dependent variable by x instead of Figure 1.46 shows that the tangent and cotangent
functions have period , and the other four functions have period Also, the sym-
metries in these graphs reveal that the cosine and secant functions are even and the other
four functions are odd (although this does not prove those results). 

2p.p = p

u.

y � sin x

(a) (b) (c)

(f)(e)(d)

xx

x

y

x

y y

x

y

x

y y

y � cos x

Domain: –	 � x � 	
Range:    –1 � y � 1
Period:     2�

0–� � 2�–�
2

�
2

3�
2

0–� � 2�–�
2

�
2

3�
2

y � sin x

y � tan x

Domain: –	 � x � 	
Range:    –1 � y � 1
Period:    2�

3�
2

– –� –�
2

0 �
2

� 3�
2

�
2

3�
2

Domain: x ��    , �       , . . . 

Range:    –	 � y � 	
Period:    �

y � sec x y � csc x y � cot x

3�
2

– –� –�
2

0

1

�
2

� 3�
2

0

1

–� � 2�–�
2

�
2

3�
2

0

1

–� � 2�–�
2

�
2

3�
2

Domain: x � 0, ��, �2�, . . .
Range:    y � –1 or y � 1
Period:    2�

Domain: x � 0, ��, �2�, . . .
Range:    –	 � y � 	
Period:    �

Domain: x ��    , �       , . . . 

Range:    y � –1 or y � 1
Period:    2�

�
2

3�
2

FIGURE 1.46 Graphs of the six basic trigonometric functions using radian measure. The shading
for each trigonometric function indicates its periodicity.

Even

sec s -xd = sec x

cos s -xd = cos x

Odd

cot s -xd = -cot x

csc s -xd = -csc x

tan s -xd = - tan x

sin s -xd = -sin x

Periods of Trigonometric Functions
Period

Period

csc sx + 2pd = csc x
sec sx + 2pd = sec x
cos sx + 2pd = cos x
sin sx + 2pd = sin x2P :

cot sx + pd = cot x
tan sx + pd = tan xP :

Trigonometric Identities

The coordinates of any point P(x, y) in the plane can be expressed in terms of the point’s
distance r from the origin and the angle that ray OP makes with the positive x-axis
(Figure 1.42). Since and we have

When we can apply the Pythagorean theorem to the reference right triangle in
Figure 1.47 and obtain the equation

r = 1

x = r cos u, y = r sin u .

y>r = sin u,x>r = cos u

u

(3)cos2 u + sin2 u = 1.

y

x

�

1

P(cos �, sin �) x2 � y2 � 1

�cos � �

�sin � �

O

FIGURE 1.47 The reference
triangle for a general angle u .
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26 Chapter 1: Functions

This equation, true for all values of , is the most frequently used identity in trigonometry.
Dividing this identity in turn by and givessin2 ucos2 u

u

1 + cot2 u = csc2 u

1 + tan2 u = sec2 u

The following formulas hold for all angles A and B (Exercise 58).

Addition Formulas

(4)
 sin sA + Bd = sin A cos B + cos A sin B

 cos sA + Bd = cos A cos B - sin A sin B

There are similar formulas for and (Exercises 35 and 36). All
the trigonometric identities needed in this book derive from Equations (3) and (4). For ex-
ample, substituting for both A and B in the addition formulas givesu

sin sA - Bdcos sA - Bd

Double-Angle Formulas

(5)
 sin 2u = 2 sin u cos u

 cos 2u = cos2 u - sin2 u

Additional formulas come from combining the equations

We add the two equations to get and subtract the second from the
first to get This results in the following identities, which are useful
in integral calculus.

2 sin2 u = 1 - cos 2u .
2 cos2 u = 1 + cos 2u

cos2 u + sin2 u = 1, cos2 u - sin2 u = cos 2u .

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if is the angle opposite c, thenu

Half-Angle Formulas

(6)

(7) sin2 u =

1 - cos 2u
2

 cos2 u =

1 + cos 2u
2

(8)c2
= a2

+ b2
- 2ab cos u .

This equation is called the law of cosines.
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1.3 Trigonometric Functions 27

We can see why the law holds if we introduce coordinate axes with the origin at C and
the positive x-axis along one side of the triangle, as in Figure 1.48. The coordinates of A
are (b, 0); the coordinates of B are The square of the distance between A
and B is therefore

The law of cosines generalizes the Pythagorean theorem. If then 
and 

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-
marized in the following diagram apply to the trigonometric functions we have discussed
in this section.

c2
= a2

+ b2.
cos u = 0u = p>2,

 = a2
+ b2

- 2ab cos u .

 

= a2scos2 u + sin2 ud + b2
- 2ab cos u

('')''*

1

 c2
= sa cos u - bd2

+ sa sin ud2

sa cos u, a sin ud .

y

x
C

a
c

b

B(a cos �, a sin �)

A(b, 0)

�

FIGURE 1.48 The square of the distance
between A and B gives the law of cosines.

y = aƒ(bsx + cdd + d

Vertical stretch or compression;
reflection about x-axis if negative

Vertical shift

Horizontal stretch or compression;
reflection about y-axis if negative

Horizontal shift

The transformation rules applied to the sine function give the general sine function
or sinusoid formula

where is the amplitude, is the period, C is the horizontal shift, and D is the
vertical shift. A graphical interpretation of the various terms is revealing and given below.

ƒ B ƒƒ A ƒ

ƒ(x) = A sin a2p
B

 (x - C )b + D,

D

y

x

Vertical
shift (D)

Horizontal
shift (C)

D � A

D � A

Amplitude (A)

This distance is
the period (B).

This axis is the
line y � D.

y � A sin � D(x � C)(                    )2�
B

0

Two Special Inequalities

For any angle measured in radians,u

- ƒ u ƒ … sin u … ƒ u ƒ   and  - ƒ u ƒ … 1 - cos u … ƒ u ƒ .
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28 Chapter 1: Functions

To establish these inequalities, we picture as a nonzero angle in standard position
(Figure 1.49). The circle in the figure is a unit circle, so equals the length of the circular
arc AP. The length of line segment AP is therefore less than .

Triangle APQ is a right triangle with sides of length

From the Pythagorean theorem and the fact that we get

(9)

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than
their sum and hence is less than or equal to :

By taking square roots, this is equivalent to saying that

so

These inequalities will be useful in the next chapter.

- ƒ u ƒ … sin u … ƒ u ƒ   and  - ƒ u ƒ … 1 - cos u … ƒ u ƒ .

ƒ sin u ƒ … ƒ u ƒ   and  ƒ 1 - cos u ƒ … ƒ u ƒ ,

sin2 u … u2  and  (1 - cos u)2
… u2.

u2

sin2 u + (1 - cos u)2
= (AP)2

… u2.

AP 6 ƒ u ƒ ,

QP = ƒ sin u ƒ ,  AQ = 1 - cos u.

ƒ u ƒ

ƒ u ƒ

u

�

1

P

A(1, 0)

cos � 1 – cos �

sin �

O Q

�

x

y

FIGURE 1.49 From the geometry
of this figure, drawn for 

we get the inequality
sin2 u + (1 - cos u)2

… u2.
u 7 0,

Exercises 1.3

Radians and Degrees
1. On a circle of radius 10 m, how long is an arc that subtends a cen-

tral angle of (a) radians? (b) 110°?

2. A central angle in a circle of radius 8 is subtended by an arc of
length Find the angle’s radian and degree measures.

3. You want to make an 80° angle by marking an arc on the perime-
ter of a 12-in.-diameter disk and drawing lines from the ends of
the arc to the disk’s center. To the nearest tenth of an inch, how
long should the arc be?

4. If you roll a 1-m-diameter wheel forward 30 cm over level
ground, through what angle will the wheel turn? Answer in radi-
ans (to the nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions
5. Copy and complete the following table of function values. If the

function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

0

6. Copy and complete the following table of function values. If the
function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

csc u

sec u

cot u
tan u

cos u

sin u

3P>4P>2�2P>3�PU

10p .

4p>5

In Exercises 7–12, one of sin x, cos x, and tan x is given. Find the other
two if x lies in the specified interval.

7. 8.

9. 10.

11. 12.

Graphing Trigonometric Functions
Graph the functions in Exercises 13–22. What is the period of each
function?

13. sin 2x 14. sin ( )

15. 16.

17. 18.

19. 20. sin ax +

p

6
bcos ax -

p

2
b

-cos 2px-sin 
px
3

cos 
px
2

cos px

x>2

sin x = -

1
2

, x H cp, 
3p
2
dtan x =

1
2

, x H cp, 
3p
2
d

cos x = -

5
13

, x H cp
2

, p dcos x =

1
3

, x H c- p
2

, 0 d
tan x = 2, x H c0, 

p

2
dsin x =

3
5

, x H cp
2

, p d

csc u

sec u

cot u
tan u

cos u

sin u

5P>6P>4�P>6�P>3�3P>2U
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1.3 Trigonometric Functions 29

21. 22.

Graph the functions in Exercises 23–26 in the ts-plane (t-axis horizon-
tal, s-axis vertical). What is the period of each function? What sym-
metries do the graphs have?

23. 24.

25. 26.

27. a. Graph and together for 
Comment on the behavior of sec x in relation to the

signs and values of cos x.

b. Graph and together for 
Comment on the behavior of csc x in relation to the signs and
values of sin x.

28. Graph and together for Com-
ment on the behavior of cot x in relation to the signs and values of
tan x.

29. Graph and together. What are the domain
and range of 

30. Graph and together. What are the domain
and range of 

Using the Addition Formulas
Use the addition formulas to derive the identities in Exercises 31–36.

31. 32.

33. 34.

35. (Exercise 57 provides a
different derivation.)

36.

37. What happens if you take in the trigonometric identity
Does the result agree

with something you already know?

38. What happens if you take in the addition formulas? Do
the results agree with something you already know?

In Exercises 39–42, express the given quantity in terms of sin x and
cos x.

39. 40.

41. 42.

43. Evaluate as 

44. Evaluate as 

45. Evaluate 46. Evaluate 

Using the Half-Angle Formulas
Find the function values in Exercises 47–50.

47. 48.

49. 50. sin2 
3p
8

sin2 
p

12

cos2 
5p
12

cos2 
p

8

sin 
5p
12

.cos 
p

12
.

cos ap
4

+

2p
3
b .cos 

11p
12

sin ap
4

+

p

3
b .sin 

7p
12

cos a3p
2

+ xbsin a3p
2

- xb
sin s2p - xdcos sp + xd

B = 2p

cos sA - Bd = cos A cos B + sin A sin B?
B = A

sin sA - Bd = sin A cos B - cos A sin B

cos sA - Bd = cos A cos B + sin A sin B

sin ax -

p

2
b = -cos xsin ax +

p

2
b = cos x

cos ax +

p

2
b = -sin xcos ax -

p

2
b = sin x

<sin x= ?
y = <sin x=y = sin x

:sin x; ?
y = :sin x;y = sin x

-7 … x … 7.y = cot xy = tan x

-p … x … 2p .y = csc xy = sin x

…  3p>2.
-3p>2 … xy = sec xy = cos x

s = csc a t
2
bs = sec apt

2
b

s = - tan pts = cot 2t

cos ax +

2p
3
b - 2sin ax -

p

4
b + 1

Solving Trigonometric Equations
For Exercises 51–54, solve for the angle where 

51. 52.

53. 54.

Theory and Examples
55. The tangent sum formula The standard formula for the tan-

gent of the sum of two angles is

Derive the formula.

56. (Continuation of Exercise 55.) Derive a formula for 

57. Apply the law of cosines to the triangle in the accompanying fig-
ure to derive the formula for 

58. a. Apply the formula for to the identity 

to obtain the addition formula for 

b. Derive the formula for by substituting for B
in the formula for from Exercise 35.

59. A triangle has sides and and angle Find
the length of side c.

60. A triangle has sides and and angle Find
the length of side c.

61. The law of sines The law of sines says that if a, b, and c are the
sides opposite the angles A, B, and C in a triangle, then

Use the accompanying figures and the identity 
if required, to derive the law.

62. A triangle has sides and and angle (as in
Exercise 59). Find the sine of angle B using the law of sines.

C = 60°b = 3a = 2

A

B Ca

hc b

A

B Ca

hc
b

sin u ,
sin sp - ud =

sin A
a =

sin B
b

=

sin C
c .

C = 40° .b = 3a = 2

C = 60° .b = 3a = 2

cos sA - Bd
-Bcos sA + Bd

sin sA + Bd .cos ap
2

- ub
sin u =cos sA - Bd

x

y

A
B

0 1

1

1

cos sA - Bd .

tan sA - Bd .

tansA + Bd =

tan A + tan B
1 - tan A tan B

.

cos 2u + cos u = 0sin 2u - cos u = 0

sin2 u = cos2 usin2 u =

3
4

0 … u … 2p.u,

T

T
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30 Chapter 1: Functions

63. A triangle has side and angles and 
Find the length a of the side opposite A.

64. The approximation sin x x It is often useful to know that,
when x is measured in radians, for numerically small val-
ues of x. In Section 3.11, we will see why the approximation holds.
The approximation error is less than 1 in 5000 if

a. With your grapher in radian mode, graph and 
together in a viewing window about the origin. What do you
see happening as x nears the origin?

b. With your grapher in degree mode, graph and
together about the origin again. How is the picture dif-

ferent from the one obtained with radian mode?

General Sine Curves
For

identify A, B, C, and D for the sine functions in Exercises 65–68 and
sketch their graphs.

65. 66.

67. 68.

COMPUTER EXPLORATIONS
In Exercises 69–72, you will explore graphically the general sine
function

as you change the values of the constants A, B, C, and D. Use a CAS
or computer grapher to perform the steps in the exercises.

ƒsxd = A sin a2p
B

 sx - Cdb + D

y =

L
2p

 sin 
2pt
L

, L 7 0y = -

2
p sin ap

2
 tb +

1
p

y =

1
2

 sin spx - pd +

1
2

y = 2 sin sx + pd - 1

ƒsxd = A sin a2p
B

 sx - Cdb + D ,

y = x
y = sin x

y = xy = sin x

ƒ x ƒ 6 0.1 .

sin x L x
L

B = p>3.A = p>4c = 2 69. The period B Set the constants 

a. Plot ƒ(x) for the values over the interval
Describe what happens to the graph of the

general sine function as the period increases.

b. What happens to the graph for negative values of B? Try it
with and 

70. The horizontal shift C Set the constants 

a. Plot ƒ(x) for the values and 2 over the interval
Describe what happens to the graph of the

general sine function as C increases through positive values.

b. What happens to the graph for negative values of C?

c. What smallest positive value should be assigned to C so the
graph exhibits no horizontal shift? Confirm your answer with
a plot.

71. The vertical shift D Set the constants 

a. Plot ƒ(x) for the values and 3 over the interval
Describe what happens to the graph of the

general sine function as D increases through positive values.

b. What happens to the graph for negative values of D?

72. The amplitude A Set the constants 

a. Describe what happens to the graph of the general sine func-
tion as A increases through positive values. Confirm your an-
swer by plotting ƒ(x) for the values and 9.

b. What happens to the graph for negative values of A?

A = 1, 5 ,

B = 6, C = D = 0.

-4p … x … 4p .
D = 0, 1 ,

A = 3, B = 6, C = 0.

-4p … x … 4p .
C = 0, 1 ,

A = 3, B = 6, D = 0.

B = -2p .B = -3

-4p … x … 4p .
B = 1, 3, 2p, 5p

A = 3, C = D = 0.

T

1.4 Graphing with Calculators and Computers

A graphing calculator or a computer with graphing software enables us to graph very com-
plicated functions with high precision. Many of these functions could not otherwise be
easily graphed. However, care must be taken when using such devices for graphing pur-
poses, and in this section we address some of the issues involved. In Chapter 4 we will see
how calculus helps us determine that we are accurately viewing all the important features
of a function’s graph.

Graphing Windows

When using a graphing calculator or computer as a graphing tool, a portion of the graph is
displayed in a rectangular display or viewing window. Often the default window gives an in-
complete or misleading picture of the graph. We use the term square window when the units
or scales on both axes are the same. This term does not mean that the display window itself is
square (usually it is rectangular), but instead it means that the x-unit is the same as the y-unit.

When a graph is displayed in the default window, the x-unit may differ from the y-unit of
scaling in order to fit the graph in the window. The viewing window is set by specifying an
interval [a, b] for the x-values and an interval [c, d] for the y-values. The machine selects
equally spaced x-values in [a, b] and then plots the points (x, ƒ(x)). A point is plotted if and
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1.4 Graphing with Calculators and Computers 31

only if x lies in the domain of the function and ƒ(x) lies within the interval [c, d]. A short line
segment is then drawn between each plotted point and its next neighboring point. We now
give illustrative examples of some common problems that may occur with this procedure.

EXAMPLE 1 Graph the function in each of the following dis-
play or viewing windows:

(a) by (b) by (c) by 

Solution

(a) We select and to specify the interval of x-values
and the range of y-values for the window. The resulting graph is shown in Figure
1.50a. It appears that the window is cutting off the bottom part of the graph and that
the interval of x-values is too large. Let’s try the next window.

d = 10a = -10, b = 10, c = -10,

[-60, 60][-4, 10][-50, 10][-4, 4][-10, 10][-10, 10]

ƒsxd = x3
- 7x2

+ 28

10

–10

10–10

10

–50

4–4

(a) (b) (c)

60

–60

10–4

FIGURE 1.50 The graph of in different viewing windows. Selecting a window that gives a clear
picture of a graph is often a trial-and-error process (Example 1).

ƒsxd = x3
- 7x2

+ 28

(b) Now we see more features of the graph (Figure 1.50b), but the top is missing and we
need to view more to the right of as well. The next window should help.

(c) Figure 1.50c shows the graph in this new viewing window. Observe that we get a
more complete picture of the graph in this window, and it is a reasonable graph of a
third-degree polynomial.

EXAMPLE 2 When a graph is displayed, the x-unit may differ from the y-unit, as in the
graphs shown in Figures 1.50b and 1.50c. The result is distortion in the picture, which may
be misleading. The display window can be made square by compressing or stretching the
units on one axis to match the scale on the other, giving the true graph. Many systems have
built-in functions to make the window “square.” If yours does not, you will have to do
some calculations and set the window size manually to get a square window, or bring to
your viewing some foreknowledge of the true picture.

Figure 1.51a shows the graphs of the perpendicular lines and 
together with the semicircle in a nonsquare by display
window. Notice the distortion. The lines do not appear to be perpendicular, and the semi-
circle appears to be elliptical in shape.

Figure 1.51b shows the graphs of the same functions in a square window in which the
x-units are scaled to be the same as the y-units. Notice that the scaling on the x-axis for
Figure 1.51a has been compressed in Figure 1.51b to make the window square. Figure
1.51c gives an enlarged view of Figure 1.51b with a square  by [0, 4] window.

If the denominator of a rational function is zero at some x-value within the viewing
window, a calculator or graphing computer software may produce a steep near-vertical line
segment from the top to the bottom of the window. Here is an example.

[-3, 3]

[-6, 8][-4, 4]y = 29 - x2 ,
y = -x + 322,y = x

x = 4
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32 Chapter 1: Functions

(a)

8

–6

4–4

(b)

4

–4

6–6

(c)

4

0

3–3

FIGURE 1.51 Graphs of the perpendicular lines and and the semicircle 
appear distorted (a) in a nonsquare window, but clear (b) and (c) in square windows (Example 2).

y = 29 - x2y = -x + 322,y = x

(a)

10

–10

10–10

(b)

4

–4

6–6

FIGURE 1.52 Graphs of the function . A vertical line may appear

without a careful choice of the viewing window (Example 3).

y =

1
2 - x

EXAMPLE 3 Graph the function 

Solution Figure 1.52a shows the graph in the by default square
window with our computer graphing software. Notice the near-vertical line segment at

It is not truly a part of the graph and does not belong to the domain of the
function. By trial and error we can eliminate the line by changing the viewing window to
the smaller by view, revealing a better graph (Figure 1.52b).[-4, 4][-6, 6]

x = 2x = 2.

[-10, 10][-10, 10]

y =
1

2 - x
.

(a)

1

–1

12–12

(b)

1

–1

6–6

(c)

1

–1

0.1–0.1

FIGURE 1.53 Graphs of the function in three viewing windows. Because the period is 
the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 4).

2p>100 L 0.063 ,y = sin 100x

Sometimes the graph of a trigonometric function oscillates very rapidly. When a calcula-
tor or computer software plots the points of the graph and connects them, many of the maxi-
mum and minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 4 Graph the function 

Solution Figure 1.53a shows the graph of ƒ in the viewing window by
We see that the graph looks very strange because the sine curve should oscillate

periodically between and 1. This behavior is not exhibited in Figure 1.53a. We might-1
[-1, 1] .

[-12, 12]

ƒsxd = sin 100x .
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1.4 Graphing with Calculators and Computers 33

experiment with a smaller viewing window, say by but the graph is not
better (Figure 1.53b). The difficulty is that the period of the trigonometric function

is very small If we choose the much smaller viewing
window by we get the graph shown in Figure 1.53c. This graph reveals
the expected oscillations of a sine curve.

EXAMPLE 5 Graph the function 

Solution In the viewing window by the graph appears much like the co-
sine function with some small sharp wiggles on it (Figure 1.54a). We get a better look
when we significantly reduce the window to by [0.8, 1.02], obtaining the graph
in Figure 1.54b. We now see the small but rapid oscillations of the second term,

added to the comparatively larger values of the cosine curve.1>50 sin 50x ,

[-0.6, 0.6]

[-1, 1][-6, 6]

y = cos x +
1

50
 sin 50x .

[-1, 1][-0.1, 0.1]
s2p>100 L 0.063d .y = sin 100x

[-1, 1] ,[-6, 6]

(a)

1

–1

6–6

(b)

1.02

0.8
0.6–0.6

FIGURE 1.54 In (b) we see a close-up view of the function

graphed in (a). The term cos x clearly dominates the

second term, which produces the rapid oscillations along the

cosine curve. Both views are needed for a clear idea of the graph (Example 5).

1
50

 sin 50x ,

y = cos x +

1
50

 sin 50x

(a)

2

–2

3–3

(b)

2

–2

3–3

FIGURE 1.55 The graph of is missing the left branch in (a). In

(b) we graph the function obtaining both branches. (See

Example 6.)

ƒsxd =

x
ƒ x ƒ

#
ƒ x ƒ

1>3,
y = x1>3

Obtaining a Complete Graph

Some graphing devices will not display the portion of a graph for when Usu-
ally that happens because of the procedure the device is using to calculate the function val-
ues. Sometimes we can obtain the complete graph by defining the formula for the function
in a different way.

EXAMPLE 6 Graph the function 

Solution Some graphing devices display the graph shown in Figure 1.55a. When we
compare it with the graph of in Figure 1.17, we see that the left branch fory = x1>3

= 23 x

y = x1>3 .

x 6 0.ƒ(x)
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34 Chapter 1: Functions

is missing. The reason the graphs differ is that many calculators and computer soft-
ware programs calculate as Since the logarithmic function is not defined for
negative values of x, the computing device can produce only the right branch, where

(Logarithmic and exponential functions are introduced in the next two sections.)
To obtain the full picture showing both branches, we can graph the function

This function equals except at (where ƒ is undefined, although ). The
graph of ƒ is shown in Figure 1.55b.

01>3
= 0x = 0x1>3

ƒsxd =
x

ƒ x ƒ

#
ƒ x ƒ

1>3 .

x 7 0.

e s1>3dln x .x1>3x 6 0

Exercises 1.4

Choosing a Viewing Window
In Exercises 1–4, use a graphing calculator or computer to determine
which of the given viewing windows displays the most appropriate
graph of the specified function.

1.

a. by b. by 

c. by d. by 

2.

a. by b. by 

c. by d. by 

3.

a. by b. by 

c. by d. by 

4.

a. by b. by 

c. by [0, 10] d. by 

Finding a Viewing Window
In Exercises 5–30, find an appropriate viewing window for the given
function and use it to display its graph.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. y = 1 -

1
x + 3

y =

x + 3
x + 2

y = ƒ x2
- x ƒy = ƒ x2

- 1 ƒ

y = x2>3s5 - xdy = 5x2>5
- 2x

y = x1>3sx2
- 8dy = 2x - 3x2>3

ƒsxd = x2s6 - x3dƒsxd = x29 - x2

ƒsxd = 4x3
- x4ƒsxd = x5

- 5x4
+ 10

ƒsxd =

x3

3
-

x2

2
- 2x + 1ƒsxd = x4

- 4x3
+ 15

[-10, 10][-10, 10][-3, 7]

[-1, 4][-2, 6][-2, 2][-2, 2]

ƒsxd = 25 + 4x - x2

[-15, 25][-4, 5][-20, 20][-4, 4]

[-10, 10][-5, 5][-1, 1][-1, 1]

ƒsxd = 5 + 12x - x3

[-100, 100][-20, 20][-10, 20][-5, 5]

[-10, 10][-3, 3][-5, 5][-1, 1]

ƒsxd = x3
- 4x2

- 4x + 16

[-25, 15][-5, 5][-10, 10][-10, 10]

[-5, 5][-2, 2][-1, 1][-1, 1]

ƒsxd = x4
- 7x2

+ 6x

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. Graph the lower half of the circle defined by the equation

32. Graph the upper branch of the hyperbola 

33. Graph four periods of the function 

34. Graph two periods of the function 

35. Graph the function 

36. Graph the function 

Graphing in Dot Mode
Another way to avoid incorrect connections when using a graphing
device is through the use of a “dot mode,” which plots only the points.
If your graphing utility allows that mode, use it to plot the functions in
Exercises 37–40.

37. 38.

39. 40. y =

x3
- 1

x2
- 1

y = x:x;
y = sin 

1
xy =

1
x - 3

ƒsxd = sin3 x .

ƒsxd = sin 2x + cos 3x .

ƒsxd = 3 cot 
x
2

+ 1.

ƒsxd = -  tan 2x .

y2
- 16x2

= 1.

x2
+ 2x = 4 + 4y - y2 .

y = x2
+

1
50

 cos 100xy = x +

1
10

 sin 30x

y =

1
10

 sin a x
10
by = cos a x

50
b

y = 3 cos 60xy = sin 250x

ƒsxd =

x2
- 3

x - 2
ƒsxd =

6x2
- 15x + 6

4x2
- 10x

ƒsxd =

8
x2

- 9
ƒsxd =

x - 1
x2

- x - 6

ƒsxd =

x2
- 1

x2
+ 1

ƒsxd =

x2
+ 2

x2
+ 1T

T

T

1.5 Exponential Functions

Exponential functions are among the most important in mathematics and occur in a wide
variety of applications, including interest rates, radioactive decay, population growth, the
spread of a disease, consumption of natural resources, the earth’s atmospheric pressure,
temperature change of a heated object placed in a cooler environment, and the dating of
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1.5 Exponential Functions 35

fossils. In this section we introduce these functions informally, using an intuitive approach.
We give a rigorous development of them in Chapter 7, based on important calculus ideas
and results.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes
2P. If it doubles again, it becomes and a third doubling gives 
Continuing to double in this fashion leads us to the consideration of the function

We call this an exponential function because the variable x appears in the
exponent of Functions such as and are other examples of ex-
ponential functions. In general, if is a positive constant, the function

is the exponential function with base a.

EXAMPLE 1 In 2000, $100 is invested in a savings account, where it grows by accru-
ing interest that is compounded annually (once a year) at an interest rate of 5.5%. 
Assuming no additional funds are deposited to the account and no money is withdrawn,
give a formula for a function describing the amount A in the account after x years have
elapsed.

Solution If at the end of the first year the amount in the account is the original
amount plus the interest accrued, or

At the end of the second year the account earns interest again and grows to

Continuing this process, after x years the value of the account is

This is a multiple of the exponential function with base 1.055. Table 1.4 shows the
amounts accrued over the first four years. Notice that the amount in the account each year
is always 1.055 times its value in the previous year.

A = 100 # (1.055)x.

P = 100(1 + 0.055) # (1.055P) = (1.055)2P = 100 # (1.055)2.

P + a 5.5
100
bP = (1 + 0.055)P = (1.055)P.

P = 100,

ƒ(x) = ax

a Z 1
h(x) = (1>2)xg(x) = 10x2x.

ƒ(x) = 2x.

2(22P) = 23P.2(2P) = 22P,

TABLE 1.4 Savings account growth

Year Amount (dollars) Increase (dollars)

2000 100

2001 5.50

2002 5.80

2003 6.12

2004 6.46100(1.055)4
= 123.88

100(1.055)3
= 117.42

100(1.055)2
= 111.30

100(1.055) = 105.50

In general, the amount after x years is given by where r is the interest rate
(expressed as a decimal).

P(1 + r)x,

Don’t confuse with the power ,
where the variable x is the base, not the
exponent.

x22x
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36 Chapter 1: Functions

For integer and rational exponents, the value of an exponential function is
obtained arithmetically as follows. If is a positive integer, the number is given by
multiplying a by itself n times:

1442443
n factors

If then and if for some positive integer n, then

If for some positive integer n, then

which is the positive number that when multiplied by itself n times gives a. If is
any rational number, then

If x is irrational, the meaning of is not so clear, but its value can be defined by con-
sidering values for rational numbers that get closer and closer to x. This informal approach
is based on the graph of the exponential function. In Chapter 7 we define the meaning in a
rigorous way.

We displayed the graphs of several exponential functions in Section 1.1, and show
them again here in Figure 1.56. These graphs describe the values of the exponential func-
tions for all real inputs x. The value at an irrational number x is chosen so that the graph of

has no “holes” or “jumps.” Of course, these words are not mathematical terms, but they
do convey the informal idea. We mean that the value of , when x is irrational, is chosen
so that the function is continuous, a notion that will be carefully explored in the
next chapter. This choice ensures the graph retains its increasing behavior when or
decreasing behavior when (see Figure 1.56).

Arithmetically, the graphical idea can be described in the following way, using the ex-
ponential as an illustration. Any particular irrational number, say has
a decimal expansion

We then consider the list of numbers, given as follows in the order of taking more and
more digits in the decimal expansion,

(1)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to given by 1, 1.7, 1.73, 1.732, and so on, are all rational numbers. As these
decimal approximations get closer and closer to , it seems reasonable that the list of
numbers in (1) gets closer and closer to some fixed number, which we specify to be  .

Table 1.5 illustrates how taking better approximations to gives better approxima-
tions to the number . It is the completeness property of the real numbers
(discussed briefly in Appendix 6) which guarantees that this procedure gives a single number
we define to be (although it is beyond the scope of this text to give a proof ). In a similar
way, we can identify the number (or ) for any irrational x. By identifying the
number for both rational and irrational x, we eliminate any “holes” or “gaps” in the graph
of . In practice you can use a calculator to find the number for irrational x, taking suc-
cessive decimal approximations to x and creating a table similar to Table 1.5.

Exponential functions obey the familiar rules of exponents listed on the next page. 
It is easy to check these rules using algebra when the exponents are integers or rational
numbers. We prove them for all real exponents in Chapters 4 and 7.

axax
ax

ax, a 7 02x
213

213
L 3.321997086

23
223

23
23

21, 21.7, 21.73, 21.732, 21.7320, 21.73205, . . . .

23 = 1.732050808 . . . .

x = 23,ƒ(x) = 2x

0 6 a 6 1
a 7 1,

ƒ(x) = ax
ax

ax

ax

ap>q
= 2q ap

= A2q a Bp.
x = p>q

a1>n
= 2n a ,

x = 1>n
a-n

=
1
an = a1a b

n

.

x = -na0
= 1,x = 0,

an
= a # a # Á # a .

anx = n
ƒ(x) = ax

(a)  y � 2x, y � 3x, y � 10x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

y � 2x

y � 3x

y � 10x

(b) y � 2–x, y � 3–x, y � 10–x

y � 2–x

y � 3–x

y � 10–x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.56 Graphs of exponential
functions.

TABLE 1.5 Values of for 
rational r closer and closer to

r

1.0 2.000000000

1.7 3.249009585

1.73 3.317278183

1.732 3.321880096

1.7320 3.321880096

1.73205 3.321995226

1.732050 3.321995226

1.7320508 3.321997068

1.73205080 3.321997068

1.732050808 3.321997086

2r

23
213
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1.5 Exponential Functions 37

EXAMPLE 2 We illustrate using the rules for exponents.

1.

2.

3.

4.

5.

The Natural Exponential Function 

The most important exponential function used for modeling natural, physical, and eco-
nomic phenomena is the natural exponential function, whose base is the special number
e. The number e is irrational, and its value is 2.718281828 to nine decimal places. It might
seem strange that we would use this number for a base rather than a simple number like 2
or 10. The advantage in using e as a base is that it simplifies many of the calculations in
calculus.

If you look at Figure 1.56a you can see that the graphs of the exponential functions
get steeper as the base a gets larger. This idea of steepness is conveyed by the

slope of the tangent line to the graph at a point. Tangent lines to graphs of functions are
defined precisely in the next chapter, but intuitively the tangent line to the graph at a
point is a line that just touches the graph at the point, like a tangent to a circle. Figure
1.57 shows the slope of the graph of as it crosses the y-axis for several values of
a. Notice that the slope is exactly equal to 1 when a equals the number e. The slope is
smaller than 1 if and larger than 1 if This is the property that makes the
number e so useful in calculus: The graph of has slope 1 when it crosses the
y-axis.

y � ex
a 7 e.a 6 e,

y = ax

y = ax

ex

a4
9
b1>2

=
41>2
91>2 =

2
3

7p # 8p = (56)p
A522 B22

= 522 # 22
= 52

= 25

A210 B3
210

= A210 B3 - 1
= A210 B2 = 10

31.1 # 30.7
= 31.1 + 0.7

= 31.8

Rules for Exponents
If and the following rules hold true for all real numbers x and y.

1. 2.

3. 4.

5.
ax

bx = aa
b
b x

ax # bx
= (ab)x(ax)y

= (ay)x
= axy

ax

ay = ax - yax # ay
= ax + y

b 7 0,a 7 0

0
x

y

m � 0.7

(a)

y � 2x

x

y

0

(c)

m � 1.1

y � 3x

x

y

0

(b)

m � 1

y � e x

1 1 1

FIGURE 1.57 Among the exponential functions, the graph of has the property that the
slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is smaller
for a base less than e, such as , and larger for a base greater than e, such as 3x.2x

y = ex
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38 Chapter 1: Functions

In Chapter 3 we use that slope property to prove e is the number the quantity
approaches as x becomes large without bound. That result provides one way to

compute the value of e, at least approximately. The graph and table in Figure 1.58 show the
behavior of this expression and how it gets closer and closer to the line 

as x gets larger and larger. (This limit idea is made precise in the next
chapter.) A more complete discussion of e is given in Chapter 7.
e L 2.718281828

y =

(1 + 1>x)x

Exponential Growth and Decay

The exponential functions , where k is a nonzero constant, are frequently used for
modeling exponential growth or decay. The function is a model for exponential
growth if and a model for exponential decay if Here y0 represents a con-
stant. An example of exponential growth occurs when computing interest compounded
continuously modeled by where P is the initial investment, r is the interest
rate as a decimal, and t is time in units consistent with r. An example of exponential decay
is the model , which represents how the radioactive element carbon-14
decays over time. Here A is the original amount of carbon-14 and t is the time in years.
Carbon-14 decay is used to date the remains of dead organisms such as shells, seeds, and
wooden artifacts. Figure 1.59 shows graphs of exponential growth and exponential decay.

y = A # e-1.2 * 10-4t

y = P # ert,

k 6 0.k 7 0
y = y0 ekx

y = ekx

–10 –8 –6 –4 –2 20 4 6 8 10

2

4

6

8

10

x

y

x (1 � 1�x)x

1000
2000
3000
4000
5000
6000
7000

2.7169
2.7176
2.7178
2.7179
2.7180
2.7181
2.7181

f (x) � (1 � 1�x)x 

y � 2.718281...

FIGURE 1.58 A graph and table of values for both suggest that as x gets 
larger and larger, gets closer and closer to e L 2.7182818 Á .ƒ(x)

ƒ(x) = (1 + 1>x)x

FIGURE 1.59 Graphs of (a) exponential growth, and (b) exponential decay,
k = -1.2 6 0.

k = 1.5 7 0,

(b)

00 0.5

0.6

0.2

1.5

1.4

2.5–0.5–0.5 1

1

2 3

y � e–1.2xy � e1.5x

(a)

1.50.5 1–1

15

10

5

20

2
x

y

x

y

EXAMPLE 3 Investment companies often use the model in calculating the
growth of an investment. Use this model to track the growth of $100 invested in 2000 at an
annual interest rate of 5.5%.

Solution Let represent 2000, represent 2001, and so on. Then the exponen-
tial growth model is , where (the initial investment), (ther = 0.055P = 100y(t) = Pert

t = 1t = 0

y = Pert
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annual interest rate expressed as a decimal), and t is time in years. To predict the amount in
the account in 2004, after four years have elapsed, we take and calculate

Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually
from Example 1.

EXAMPLE 4 Laboratory experiments indicate that some atoms emit a part of their
mass as radiation, with the remainder of the atom re-forming to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually
decays into lead. If is the number of radioactive nuclei present at time zero, the number
still present at any later time t will be

The number r is called the decay rate of the radioactive substance. (We will see how this
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined ex-
perimentally to be about when t is measured in years. Predict the percent
of carbon-14 present after 866 years have elapsed.

Solution If we start with an amount of carbon-14 nuclei, after 866 years we are left
with the amount

Calculator evaluation

That is, after 866 years, we are left with about 90% of the original amount of carbon-14, so
about 10% of the original nuclei have decayed. In Example 7 in the next section, you will
see how to find the number of years required for half of the radioactive nuclei present in a
sample to decay (called the half-life of the substance).

You may wonder why we use the family of functions for different values of the con-
stant k instead of the general exponential functions In the next section, we show
that the exponential function is equal to for an appropriate value of k. So the formula

covers the entire range of possibilities, and we will see that it is easier to use.y = ekx
ekxax

y = ax.
y = ekx

 L (0.901)y0.

y(866) = y0 e (-1.2 * 10-4)(866)

y0

r = 1.2 * 10-4

y = y0 e-rt,  r 7 0.

y0

 = 124.61.

 = 100e0.22

y(4) = 100e0.055(4)

t = 4

1.5 Exponential Functions 39

Exercises 1.5

Sketching Exponential Curves
In Exercises 1–6, sketch the given curves together in the appropriate
coordinate plane and label each curve with its equation.

1.

2.

3. and 4. and 

5. and 6. and 

In each of Exercises 7–10, sketch the shifted exponential curves.

7. and 

8. and 

9. and 

10. and y = -1 - e-xy = -1 - ex

y = 1 - e-xy = 1 - ex

y = 3-x
+ 2y = 3x

+ 2

y = 2-x
- 1y = 2x

- 1

y = -e-xy = -exy = 1>exy = ex

y = -3ty = 3-ty = -2ty = 2-t

y = 3x, y = 8x, y = 2-x, y = (1>4)x

y = 2x, y = 4x, y = 3-x, y = (1>5)x

Applying the Laws of Exponents
Use the laws of exponents to simplify the expressions in Exercises
11–20.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. a26
3
b2a 2

22
b4

A23 B1>2 # A212 B1>2223 # 723

A1322 B22>2A251>8 B4
35>3
32>3

44.2

43.7

91>3 # 91>6162 # 16-1.75
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Composites Involving Exponential Functions
Find the domain and range for each of the functions in Exercises
21–24.

21. 22.

23. 24.

Applications
In Exercises 25–28, use graphs to find approximate solutions.

25. 26.

27. 28.

In Exercises 29–36, use an exponential model and a graphing calcula-
tor to estimate the answer in each problem.
29. Population growth The population of Knoxville is 500,000 and

is increasing at the rate of 3.75% each year. Approximately when
will the population reach 1 million?

30. Population growth The population of Silver Run in the year
1890 was 6250. Assume the population increased at a rate of
2.75% per year.

a. Estimate the population in 1915 and 1940.

b. Approximately when did the population reach 50,000?

31. Radioactive decay The half-life of phosphorus-32 is about
14 days. There are 6.6 grams present initially.

3 - 2-x
= 03x

- 0.5 = 0

ex
= 42x

= 5

ƒ(x) =

3
1 - e2x

g(t) = 21 + 3-t

g(t) = cos(e-t)ƒ(x) =

1
2 + ex

40 Chapter 1: Functions

a. Express the amount of phosphorus-32 remaining as a function
of time t.

b. When will there be 1 gram remaining?

32. If John invests $2300 in a savings account with a 6% interest rate
compounded annually, how long will it take until John’s account
has a balance of $4150?

33. Doubling your money Determine how much time is required
for an investment to double in value if interest is earned at the rate
of 6.25% compounded annually.

34. Tripling your money Determine how much time is required for
an investment to triple in value if interest is earned at the rate of
5.75% compounded continuously.

35. Cholera bacteria Suppose that a colony of bacteria starts with
1 bacterium and doubles in number every half hour. How many
bacteria will the colony contain at the end of 24 hr?

36. Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000
cases today, how many years will it take

a. to reduce the number of cases to 1000?

b. to eliminate the disease; that is, to reduce the number of cases
to less than 1?

T

T

1.6 Inverse Functions and Logarithms

A function that undoes, or inverts, the effect of a function ƒ is called the inverse of ƒ.
Many common functions, though not all, are paired with an inverse. In this section we
present the natural logarithmic function as the inverse of the exponential function

, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion assigns the same value, 1, to both of the numbers and ; the sines of

and are both Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

13>2.2p>3p>3 +1-1ƒsxd = x2

y = ex
y = ln x

DEFINITION A function ƒ(x) is one-to-one on a domain D if 
whenever in D.x1 Z x2

ƒsx1d Z ƒsx2d

EXAMPLE 1 Some functions are one-to-one on their entire natural domain. Other
functions are not one-to-one on their entire domain, but by restricting the function to a
smaller domain we can create a function that is one-to-one. The original and restricted
functions are not the same functions, because they have different domains. However, the
two functions have the same values on the smaller domain, so the original function is an
extension of the restricted function from its smaller domain to the larger domain.

7001_AWLThomas_ch01p001-057.qxd  10/1/09  2:24 PM  Page 40



(a) is one-to-one on any domain of nonnegative numbers because 
whenever 

(b) is not one-to-one on the interval because 
In fact, for each element in the subinterval there is a corresponding ele-
ment in the subinterval satisfying so distinct elements in
the domain are assigned to the same value in the range. The sine function is one-to-
one on however, because it is an increasing function on giving dis-
tinct outputs for distinct inputs.

The graph of a one-to-one function can intersect a given horizontal line at
most once. If the function intersects the line more than once, it assumes the same y-value
for at least two different x-values and is therefore not one-to-one (Figure 1.60).

y = ƒsxd

[0, p>2][0, p>2],

sin x1 = sin x2,sp>2, p]x2

[0, p>2dx1

sin sp>6d = sin s5p>6d .[0, p]gsxd = sin x

x1 Z x2 .1x2

1x1 Zƒsxd = 1x

1.6 Inverse Functions and Logarithms 41

The Horizontal Line Test for One-to-One Functions
A function is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

y = ƒsxd

DEFINITION Suppose that ƒ is a one-to-one function on a domain D with range
R. The inverse function is defined by

The domain of is R and the range of is D.ƒ -1ƒ -1

ƒ -1sbd = a if ƒsad = b .

ƒ -1

x 1 2 3 4 5 6 7 8

ƒ(x) 3 4.5 7 10.5 15 20.5 27 34.5

y 3 4.5 7 10.5 15 20.5 27 34.5

1 2 3 4 5 6 7 8ƒ-1syd

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the
function can be inverted to send an output back to the input from which it came.

The symbol for the inverse of ƒ is read “ƒ inverse.” The “ ” in is not an 
exponent; does not mean 1 ƒ(x). Notice that the domains and ranges of ƒ and 
are interchanged.

EXAMPLE 2 Suppose a one-to-one function is given by a table of valuesy = ƒsxd

ƒ -1>ƒ -1sxd
ƒ -1

-1ƒ -1

A table for the values of can then be obtained by simply interchanging the val-
ues in the columns (or rows) of the table for ƒ:

x = ƒ -1s yd

If we apply ƒ to send an input x to the output ƒ(x) and follow by applying to ƒ(x)
we get right back to x, just where we started. Similarly, if we take some number y in the
range of ƒ, apply to it, and then apply ƒ to the resulting value we get back the
value y with which we began. Composing a function and its inverse has the same effect as
doing nothing.

 sƒ � ƒ -1dsyd = y, for all y in the domain of ƒ -1 sor range of ƒd

 sƒ -1 � ƒdsxd = x, for all x in the domain of ƒ

ƒ -1syd ,ƒ -1

ƒ -1

0 0

(a) One-to-one: Graph meets each
      horizontal line at most once.

x

y y

y � x3 y � �x

x

FIGURE 1.60 (a) and are
one-to-one on their domains and

(b) and are not
one-to-one on their domains s - q , q d .

y = sin xy = x2[0, q d.
s - q , q d

y = 1xy = x3

0–1 1

0.5

(b) Not one-to-one: Graph meets one or
      more horizontal lines more than once.

1

y

y

x x

y � x2

Same y-value

Same y-value

y � sin x

�
6

5�
6
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Only a one-to-one function can have an inverse. The reason is that if and
for two distinct inputs and then there is no way to assign a value to 

that satisfies both and 
A function that is increasing on an interval so it satisfies the inequality 

when is one-to-one and has an inverse. Decreasing functions also have an inverse.
Functions that are neither increasing nor decreasing may still be one-to-one and have an
inverse, as with the function for and defined on 
and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function
from its graph, we start at a point x on the x-axis, go vertically to the graph, and then move
horizontally to the y-axis to read the value of y. The inverse function can be read from the
graph by reversing this process. Start with a point y on the y-axis, go horizontally to the
graph of and then move vertically to the x-axis to read the value of 
(Figure 1.61).

x = ƒ -1sydy = ƒsxd,

(- q , q )ƒ(0) = 0,x Z 0ƒ(x) = 1>x
x2 7 x1

ƒsx2d 7 ƒsx1d
ƒ -1sƒsx2dd = x2 .ƒ -1sƒsx1dd = x1

ƒ -1sydx2 ,x1ƒsx2d = y
ƒsx1d = y
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x

y

0 x

y

R
A

N
G

E
 O

F 
f

DOMAIN OF f

(a) To find the value of f at x, we start at x,
go up to the curve, and then over to the y-axis.

y 5 f (x)

x

y

0 x

y

D
O

M
A

IN
 O

F 
f

–1

RANGE OF f –1

x 5 f –1(y)

(b) The graph of  f –1 is the graph of f, but
with x and y interchanged.  To find the x that
gave y, we start at y and go over to the curve
and down to the x-axis. The domain of f –1 is the
range of f.  The range of f –1 is the domain of f.

y

x

0

(b, a)

(a, b)

y 5 x

x 5 f –1(y)

R
A

N
G

E
 O

F 
f

–1

DOMAIN OF f –1

(c) To draw the graph of f –1 in the
more usual way, we reflect the
system across the line y 5 x. 

x

y

0
DOMAIN OF f –1

R
A

N
G

E
 O

F 
f–1

y 5 f –1(x)

(d) Then we interchange the letters x and y.
We now have a normal-looking graph of f –1

as a function of x.

FIGURE 1.61 Determining the graph of from the graph of The graph
of is obtained by reflecting the graph of ƒ about the line y = x.ƒ -1

y = ƒsxd .y = ƒ -1sxd

We want to set up the graph of so that its input values lie along the x-axis, as is
usually done for functions, rather than on the y-axis. To achieve this we interchange the x

ƒ -1
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and y axes by reflecting across the 45° line After this reflection we have a new graph
that represents The value of can now be read from the graph in the usual way,
by starting with a point x on the x-axis, going vertically to the graph, and then horizontally
to the y-axis to get the value of Figure 1.61 indicates the relationship between the
graphs of ƒ and The graphs are interchanged by reflection through the line 

The process of passing from ƒ to can be summarized as a two-step procedure.

1. Solve the equation for x. This gives a formula where x is ex-
pressed as a function of y.

2. Interchange x and y, obtaining a formula where is expressed in the
conventional format with x as the independent variable and y as the dependent variable.

EXAMPLE 3 Find the inverse of expressed as a function of x.

Solution

1. Solve for x in terms of y:

2. Interchange x and y:

The inverse of the function is the function (See
Figure 1.62.) To check, we verify that both composites give the identity function:

EXAMPLE 4 Find the inverse of the function expressed as a function
of x.

Solution We first solve for x in terms of y:

We then interchange x and y, obtaining

The inverse of the function is the function (Figure 1.63).
Notice that the function with domain restricted to the nonnegative

real numbers, is one-to-one (Figure 1.63) and has an inverse. On the other hand, the func-
tion , with no domain restrictions, is not one-to-one (Figure 1.60b) and therefore
has no inverse.

Logarithmic Functions

If a is any positive real number other than 1, the base a exponential function is
one-to-one. It therefore has an inverse. Its inverse is called the logarithm function with
base a.

ƒ(x) = ax

y = x2

y = x2, x Ú 0,
y = 1xy = x2, x Ú 0,

y = 1x .

ƒ x ƒ = x because x Ú 0 2y = 2x2
= ƒ x ƒ = x

 y = x2

y = x2, x Ú 0,

 ƒsƒ -1sxdd =
1
2

 s2x - 2d + 1 = x - 1 + 1 = x .

 ƒ -1sƒsxdd = 2 a1
2

 x + 1b - 2 = x + 2 - 2 = x

ƒ -1sxd = 2x - 2.ƒsxd = s1>2dx + 1

y = 2x - 2.

 x = 2y - 2.

 2y = x + 2

 y =
1
2

 x + 1

y =
1
2

 x + 1,

ƒ -1y = ƒ -1sxd

x = ƒ -1s ydy = ƒsxd

ƒ -1
y = x .ƒ -1 .

ƒ -1sxd .

ƒ -1sxdƒ -1 .
y = x .
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x

y

0

y � x2, x � 0

y � x

y � �x

FIGURE 1.63 The functions 
and are inverses of one
another (Example 4).

y = x2, x Ú 0,
y = 1x

x

y

–2

1

–2

1

y � 2x � 2
y � x

y � x � 11
2

FIGURE 1.62 Graphing
and 

together shows the graphs’ symmetry with
respect to the line (Example 3).y = x

ƒ -1sxd = 2x - 2ƒsxd = s1>2dx + 1

DEFINITION The logarithm function with base a, , is the inverse
of the base a exponential function y = ax (a 7 0, a Z 1).

y = loga x
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The domain of is the range of The range of is the do-
main of 

Figure 1.23 in Section 1.1 shows the graphs of four logarithmic functions with 
Figure 1.64a shows the graph of The graph of increases rap-
idly for so its inverse, increases slowly for 

Because we have no technique yet for solving the equation for x in terms of y,
we do not have an explicit formula for computing the logarithm at a given value of x. Nev-
ertheless, we can obtain the graph of by reflecting the graph of the exponential

across the line Figure 1.64 shows the graphs for and 
Logarithms with base 2 are commonly used in computer science. Logarithms with

base e and base 10 are so important in applications that calculators have special keys for
them. They also have their own special notation and names:

is written as

is written as

The function is called the natural logarithm function, and is
often called the common logarithm function. For the natural logarithm,

y = log xy = ln  x

log x.log10 x

ln x.loge x

a = e.a = 2y = x.y = ax
y = loga x

y = ax
x 7 1.y = loga x,x 7 0,

y = ax, a 7 1,y = log2 x.
a 7 1.

ax.
(- q , q ),loga xax.(0, q ),loga x

44 Chapter 1: Functions

ln x = y 3  ey
= x.

x

y

1
2

0 1 2

y � log2x

y � 2x

y � x

(a)

ln e = 1

HISTORICAL BIOGRAPHY*

John Napier
(1550–1617)

In particular, if we set we obtainx = e,

because 

Properties of Logarithms

Logarithms, invented by John Napier, were the single most important improvement in
arithmetic calculation before the modern electronic computer. What made them so useful
is that the properties of logarithms reduce multiplication of positive numbers to addition of
their logarithms, division of positive numbers to subtraction of their logarithms, and expo-
nentiation of a number to multiplying its logarithm by the exponent.

We summarize these properties for the natural logarithm as a series of rules that we
prove in Chapter 3. Although here we state the Power Rule for all real powers r, the case
when r is an irrational number cannot be dealt with properly until Chapter 4. We also es-
tablish the validity of the rules for logarithmic functions with any base a in Chapter 7.

e1
= e.

THEOREM 1—Algebraic Properties of the Natural Logarithm For any numbers
and the natural logarithm satisfies the following rules:

1. Product Rule:

2. Quotient Rule:

3. Reciprocal Rule: Rule 2 with

4. Power Rule: ln xr
= r ln x

b = 1ln 
1
x = - ln x

ln 
b
x = ln b - ln x

ln bx = ln b + ln x

x 7 0,b 7 0

*To learn more about the historical figures mentioned in the text and the development of many major ele-
ments and topics of calculus, visit www.aw.com/thomas.

x

y

1

10 2 e 4

2

e

4

–1–2

5

6

7

8

(1, e)

y � ln x

y � ex

(b)

FIGURE 1.64 (a) The graph of and its
inverse, (b) The graph of and its
inverse, ln .x

exlog2 x.
2x
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EXAMPLE 5 Here are examples of the properties in Theorem 1.

(a) Product Rule

(b) Quotient Rule

(c) Reciprocal Rule

Power Rule

Because and are inverses, composing them in either order gives the identity function.loga xax

 = - ln 23
= -3 ln 2

ln 
1
8

= - ln 8

ln 
x + 1
2x - 3

= ln (x + 1) - ln (2x - 3)

ln 4 + ln sin x = ln (4 sin x)

1.6 Inverse Functions and Logarithms 45

Inverse Properties for and 

1. Base a:

2. Base e: x 7 0ln ex
= x,e ln x

= x,

a 7 0, a Z 1, x 7 0loga ax
= x,a loga x

= x,

loga xax

Every exponential function is a power of the natural exponential function.

That is, is the same as raised to the power for k = ln a.ln a: ax
= ekxexax

ax
= ex ln a

Substituting for x in the equation enables us to rewrite as a power of e:

Substitute for x in

Power Rule for logs

Exponent rearranged

Thus, the exponential function is the same as for k = ln a.ekxax

 = e (ln a) x.

 = ex ln a

x = e ln x.axax
= e ln (ax)

axx = e ln xax

For example,

, and

Returning once more to the properties of and we have

Inverse Property for and 

Power Rule for logarithms, with

Rewriting this equation as shows that every logarithmic function is a
constant multiple of the natural logarithm This allows us to extend the algebraic prop-
erties for to For instance, loga bx = loga b + loga x.loga x.ln x

ln x.
loga x = (ln x)>(ln a)

r = loga x = (loga x)(ln a).

loga xaxln x = ln (a loga x)

loga x,ax

5- 3x
= e (ln 5) ( - 3x)

= e - 3x ln 5. 2x
= e (ln 2) x

= ex ln 2

Change of Base Formula
Every logarithmic function is a constant multiple of the natural logarithm.

(a 7 0, a Z 1)loga x =
ln x
ln a

Applications

In Section 1.5 we looked at examples of exponential growth and decay problems. Here we
use properties of logarithms to answer more questions concerning such problems.

EXAMPLE 6 If $1000 is invested in an account that earns 5.25% interest compounded
annually, how long will it take the account to reach $2500?
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Solution From Example 1, Section 1.5 with and , the amount in
the account at any time t in years is so we need to solve the equation

Thus we have

Divide by 1000.

Take logarithms of both sides.

Power Rule

Values obtained by calculator

The amount in the account will reach $2500 in 18 years, when the annual interest payment
is deposited for that year.

EXAMPLE 7 The half-life of a radioactive element is the time required for half of the
radioactive nuclei present in a sample to decay. It is a remarkable fact that the half-life is a
constant that does not depend on the number of radioactive nuclei initially present in the
sample, but only on the radioactive substance.

To see why, let be the number of radioactive nuclei initially present in the sample.
Then the number y present at any later time t will be We seek the value of t at
which the number of radioactive nuclei present equals half the original number:

Reciprocal Rule for logarithms

(1)

This value of t is the half-life of the element. It depends only on the value of k; the number
does not have any effect.

The effective radioactive lifetime of polonium-210 is so short that we measure it in
days rather than years. The number of radioactive atoms remaining after t days in a sample
that starts with radioactive atoms is

The element’s half-life is

Eq. (1)

The k from polonium’s decay equation

Inverse Trigonometric Functions

The six basic trigonometric functions of a general radian angle x were reviewed in Section
1.3. These functions are not one-to-one (their values repeat periodically). However, we can
restrict their domains to intervals on which they are one-to-one. The sine function 

 L 139 days.

 =
ln 2

5 * 10-3

Half-life =
ln 2
k

y = y0 e-5 * 10-3 t.

y0

y0

t =
ln 2

k
.

-kt = ln 
1
2

= - ln 2

e-kt
=

1
2

y0 e-kt
=

1
2

 y0

y = y0 e-kt .
y0

 t =
ln 2.5

ln 1.0525
L 17.9

t ln 1.0525 = ln 2.5

ln (1.0525)t
= ln 2.5

 (1.0525)t
= 2.5

1000(1.0525)t
= 2500.

1000(1.0525)t,
r = 0.0525P = 1000
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increases from at to at By restricting its domain to the inter-
val we make it one-to-one, so that it has an inverse (Figure 1.65).
Similar domain restrictions can be applied to all six trigonometric functions.

sin-1 x[-p>2, p>2]
x = p>2.+1x = -p>2-1

1.6 Inverse Functions and Logarithms 47

Domain:
Range:

x

y

1–1

x � sin y

�
2

�
2

–

y � sin–1x
–1 � x � 1

–�/2 � y � �/2

FIGURE 1.65 The graph of y = sin-1 x.

0

1

�
2

– �
2

csc x

x

y

0

1

��
2

sec x

x

y

0 � �
2

cot x

x

y

tan x

x

y

0 �
2

�
2

–0 � �
2

cos x

x

y

x

y

0 �
2

�
2

–

sin x

Domain: 
Range: [-1, 1]

[-p>2, p>2]
y = sin x

Domain: 
Range: [-1, 1]

[0, p]
y = cos x

Domain: 
Range: s - q , q d

s -p>2, p>2d
y = tan x

Domain: 
Range: s - q , q d

s0, pd
y = cot x

Domain: 
Range: s - q , -1] ´ [1, q d

[0, p>2d ´ sp>2, p]
y = sec x

Domain: 
Range: s - q , -1] ´ [1, q d

[-p>2, 0d ´ s0, p>2]
y = csc x

Domain restrictions that make the trigonometric functions one-to-one

Since these restricted functions are now one-to-one, they have inverses, which we de-
note by

These equations are read “y equals the arcsine of x” or “y equals arcsin x” and so on.

Caution The in the expressions for the inverse means “inverse.” It does not mean
reciprocal. For example, the reciprocal of sin x is 

The graphs of the six inverse trigonometric functions are shown in Figure 1.66. We
can obtain these graphs by reflecting the graphs of the restricted trigonometric functions
through the line We now take a closer look at two of these functions.

The Arcsine and Arccosine Functions

We define the arcsine and arccosine as functions whose values are angles (measured in ra-
dians) that belong to restricted domains of the sine and cosine functions.

y = x.

ssin xd-1
= 1>sin x = csc x .

-1

 y = csc-1 x or  y = arccsc x

 y = sec-1 x or  y = arcsec x

 y = cot-1 x or  y = arccot x

 y = tan-1 x or  y = arctan x

y = cos-1 x or y = arccos x

 y = sin-1 x or  y = arcsin x

The “Arc” in Arcsine 
and Arccosine
The accompanying figure gives a
geometric interpretation of 
and for radian angles in the
first quadrant. For a unit circle, the
equation becomes so
central angles and the arcs they subtend
have the same measure. If 
then, in addition to being the angle
whose sine is x, y is also the length of arc
on the unit circle that subtends an angle
whose sine is x. So we call y “the arc
whose sine is x.”

x = sin y ,

s = u ,s = ru

y = cos-1 x
y = sin-1 x

Arc whose sine is x

Arc whose
cosine is x

x2 1 y2 5 1

Angle whose
sine is x

Angle whose
cosine is x

x

y

0 x 1
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The graph of (Figure 1.67b) is symmetric about the origin (it lies along the
graph of ). The arcsine is therefore an odd function:

(2)

The graph of (Figure 1.68b) has no such symmetry.

EXAMPLE 8 Evaluate (a) and (b)

Solution

(a) We see that

because and belongs to the range of the arcsine
function. See Figure 1.69a.

(b) We have

because and belongs to the range of the arccosine
function. See Figure 1.69b.

[0, p]2p>3cos (2p>3) = -1>2
cos-1 a-

1
2
b =

2p
3

[-p>2, p>2]p>3sin (p>3) = 23>2
sin-1 a23

2
b =

p
3

cos-1 a-
1
2
b .sin-1 a23

2
b

y = cos-1 x

sin-1s -xd = -sin-1 x .

x = sin y
y = sin-1 x
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x

y

�
2

�
2

–

1–1

(a)

Domain:
Range:

–1 � x � 1
� y ��

2
– �

2

y � sin–1x

x

y

�

�

2

1–1

Domain:
Range:

–1 � x � 1
0 � y � �

(b)

y � cos–1x

x

y

(c)

Domain:
Range:

–∞ � x � ∞
� y ��

2
– �

2

1–1–2 2

�
2

�
2

–

y � tan–1x

x

y

(d)

Domain:
Range:

x � –1 or x � 1
0 � y � �, y �

1–1–2 2

y � sec–1x

�

�
2

�
2

x

y

Domain:
Range:

x � –1 or x � 1
� y � , y � 0�

2
– �

2

(e)

1–1–2 2

�
2

�
2

–

y � csc–1x

x

y

Domain:
Range: 0 � y � �

(f )

�

�
2

1–1–2 2

y � cot–1x

–∞ � x � ∞

FIGURE 1.66 Graphs of the six basic inverse trigonometric functions.

DEFINITION

 y � cos�1 x is the number in [0, p]  for which cos y = x .

 y � sin�1 x is the number in [-p>2, p>2]  for which  sin y = x .

x

y

x

y

1

–1
0

0 1–1

(a)

(b)

�
2

�
2

�
2

–

�
2

–

y � sin x, �
2

�
2

– � x �

Domain:
Range:

[–�/2, �/2]
[–1, 1] 

x � sin y

y � sin–1x
Domain:
Range:

[–1, 1] 
[–�/2, �/2]

FIGURE 1.67 The graphs of 
(a) and 
(b) its inverse, The graph of

obtained by reflection across the
line is a portion of the curve
x = sin y .

y = x ,
sin-1 x ,

y = sin-1 x .
y = sin x, -p>2 … x … p>2,
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Using the same procedure illustrated in Example 8, we can create the following table of
common values for the arcsine and arccosine functions.

1.6 Inverse Functions and Logarithms 49

FIGURE 1.69 Values of the arcsine and arccosine functions
(Example 8).

x

y

�
3

0 1

2 �3

�
3

sin �
�3
2

�
3

sin–1 �
�3
2

(a)

0–1
x

y

�3
2

p
3
2

p
3
2–⎛

⎝
⎛
⎝

cos–1 1
2

�

p
3
2cos � –1

2
⎛
⎝

⎛
⎝

(b)

x

1 2

5p>6-23>2
3p>4-22>2
2p>3-1>2
p>3>
p>422>2
p>623>2

cos-1 xx

1 2

-p>3-23>2
-p>4-22>2
-p>6-1>2
p>6>
p>422>2
p>323>2

sin-1 x

EXAMPLE 9 During an airplane flight from Chicago to St. Louis, the navigator deter-
mines that the plane is 12 mi off course, as shown in Figure 1.70. Find the angle a for a
course parallel to the original correct course, the angle b, and the drift correction angle

Solution From Figure 1.70 and elementary geometry, we see that and
so

Identities Involving Arcsine and Arccosine

As we can see from Figure 1.71, the arccosine of x satisfies the identity

(3)

or

(4)

Also, we can see from the triangle in Figure 1.72 that for 

(5)sin-1 x + cos-1 x = p>2.

x 7 0,

cos-1 s -xd = p - cos-1 x .

cos-1 x + cos-1s -xd = p ,

 c = a + b L 15°.

 b = sin-1 
12
62

L 0.195 radian L 11.2°

 a = sin-1 
12
180

L 0.067 radian L 3.8°

62 sin b = 12,
180 sin a = 12

c = a + b .

Chicago

Springfield

Plane
St. Louis

62
61 12

180

179

a

b

c

FIGURE 1.70 Diagram for drift
correction (Example 9), with distances
rounded to the nearest mile (drawing not
to scale).

FIGURE 1.71 and are
supplementary angles (so their sum is ).p

cos-1s -xdcos-1 x

x

y

0–x x–1 1

cos–1x

cos–1(–x)

x

y

x

y

0 � �
2

y � cos x, 0 � x � �

Domain:
Range:

[0, �]
[–1, 1] 

y � cos–1x
Domain:
Range:

[–1, 1] 
[0, �]

1

–1

(a)

(b)

�

�

2

0–1 1

x � cos y

FIGURE 1.68 The graphs of 
(a) and 
(b) its inverse, The graph of

obtained by reflection across the
line is a portion of the curve
x = cos y .

y = x ,
cos-1 x ,

y = cos-1 x .
0 … x … p ,y = cos x,
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Equation (5) holds for the other values of x in as well, but we cannot conclude this
from the triangle in Figure 1.72. It is, however, a consequence of Equations (2) and (4)
(Exercise 74).

The arctangent, arccotangent, arcsecant, and arccosecant functions are defined in
Section 3.9. There we develop additional properties of the inverse trigonometric functions
in a calculus setting using the identities discussed here.

[-1, 1]
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1
x

cos–1x

sin–1x

FIGURE 1.72 and are
complementary angles (so their sum is ).p>2

cos-1 xsin-1 x

Exercises 1.6

Identifying One-to-One Functions Graphically
Which of the functions graphed in Exercises 1–6 are one-to-one, and
which are not?

1. 2.

3. 4.

5. 6.

In Exercises 7–10, determine from its graph if the function is 
one-to-one.

7.

8.

9.

10. ƒsxd = e2 - x2, x … 1

x2, x 7 1

ƒsxd = d 1 -

x
2

, x … 0

x
x + 2

, x 7 0

ƒsxd = e2x + 6, x … -3

x + 4, x 7 -3

ƒsxd = e3 - x, x 6 0

3, x Ú 0

x

y

y � x1/3

x

y

0

y � 1
x

x

y

y � int x

y

x

y � 2�x�

x

y

0–1 1

y � x4 � x2

x

y

0

y � �3x3

Graphing Inverse Functions
Each of Exercises 11–16 shows the graph of a function 
Copy the graph and draw in the line Then use symmetry with
respect to the line to add the graph of to your sketch. (It is
not necessary to find a formula for ) Identify the domain and
range of 

11. 12.

13. 14.

15. 16.

17. a. Graph the function What
symmetry does the graph have?

b. Show that ƒ is its own inverse. (Remember that if
)

18. a. Graph the function What symmetry does the
graph have?

b. Show that ƒ is its own inverse.

ƒsxd = 1>x .

x Ú 0.
2x2

= x

ƒsxd = 21 - x2, 0 … x … 1.

x

y

0

1

–1 3

–2

x � 1,    �1 � x � 0

�2 �    x,    0 � x � 3
f (x) � 2

3

x

y

0

6

3

f (x) 5 6 2 2x,
0 � x � 3

�
2

�
2

–

y � f (x) � tan x,

� x �

x

y

0 �
2

�
2

–x

y

0 �
2

�
2

–

1

–1

�
2

�
2

–

y � f (x) � sin x,

� x �

x

y

10

1
y � f (x) � 1 � , x � 01

x

x

y

10

1

y � f (x) � , x � 01
x2 � 1

ƒ -1 .
ƒ -1 .

ƒ -1y = x
y = x .

y = ƒsxd .
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Formulas for Inverse Functions
Each of Exercises 19–24 gives a formula for a function 
and shows the graphs of ƒ and Find a formula for in each
case.

19. 20.

21. 22.

23. 24.

Each of Exercises 25–34 gives a formula for a function In
each case, find and identify the domain and range of As a
check, show that 

25. 26.

27. 28.

29. 30.

31. 32.

33.

(Hint: Complete the square.)

34. ƒsxd = s2x3
+ 1d1>5

ƒsxd = x2
- 2x, x … 1

ƒsxd =

2x

2x - 3
ƒsxd =

x + 3
x - 2

ƒsxd = 1>x3, x Z 0ƒsxd = 1>x2, x 7 0

ƒsxd = s1>2dx - 7>2ƒsxd = x3
+ 1

ƒsxd = x4, x Ú 0ƒsxd = x5

ƒsƒ -1sxdd = ƒ -1sƒsxdd = x .
ƒ -1 .ƒ -1sxd

y = ƒsxd .

x

y

0

1

1

y � f –1(x)

y � f (x)

x

y

0

1

–1

1–1

y � f (x)

y � f –1(x)

ƒsxd = x2>3, x Ú 0ƒsxd = sx + 1d2, x Ú -1

x

y

1

10

y � f (x)

y � f –1(x)

x

y

1

1–1

–1

y � f (x)

y � f –1(x)

ƒsxd = x2
- 2x + 1, x Ú 1ƒsxd = x3

- 1

x

y

1

10

y � f –1(x)

y � f (x)

x

y

1

10

y � f (x)

y � f –1(x)

ƒsxd = x2, x … 0ƒsxd = x2
+ 1, x Ú 0

ƒ -1ƒ -1 .
y = ƒsxd

1.6 Inverse Functions and Logarithms 51

Inverses of Lines
35. a. Find the inverse of the function where m is a con-

stant different from zero.

b. What can you conclude about the inverse of a function
whose graph is a line through the origin with a

nonzero slope m?

36. Show that the graph of the inverse of where 
m and b are constants and is a line with slope 1 m and 
y-intercept 

37. a. Find the inverse of Graph ƒ and its inverse
together. Add the line to your sketch, drawing it with
dashes or dots for contrast.

b. Find the inverse of (b constant). How is the
graph of related to the graph of ƒ?

c. What can you conclude about the inverses of functions whose
graphs are lines parallel to the line 

38. a. Find the inverse of Graph the line
together with the line At what angle do

the lines intersect?

b. Find the inverse of (b constant). What angle
does the line make with the line 

c. What can you conclude about the inverses of functions whose
graphs are lines perpendicular to the line 

Logarithms and Exponentials
39. Express the following logarithms in terms of ln 2 and ln 3.

a. ln 0.75 b. ln (4 9)

c. ln (1 2) d.

e. f.

40. Express the following logarithms in terms of ln 5 and ln 7.

a. ln (1 125) b. ln 9.8

c. d. ln 1225

e. ln 0.056 f.

Use the properties of logarithms to simplify the expressions in Exer-
cises 41 and 42.

41. a. b.

c.

42. a. b.

c.

Find simpler expressions for the quantities in Exercises 43–46.

43. a. b. c.

44. a. b. c.

45. a. b. c.

46. a. b. c.

In Exercises 47–52, solve for y in terms of t or x, as appropriate.

47. 48.

49. 50.

51.

52. ln s y2
- 1d - ln s y + 1d = ln ssin xd

ln s y - 1d - ln 2 = x + ln x

ln s1 - 2yd = tln s y - 40d = 5t

ln y = - t + 5ln y = 2t + 4

ln se2 ln xdln se sexddln sesec ud
ln se-x2

- y2

dln sln eed2 ln 2e

e ln px - ln 2e-ln 0.3e ln sx2
+ y2d

e ln x - ln ye-ln x2

e ln 7.2

3 ln23 t2
- 1 - ln st + 1d

ln s8x + 4d - 2 ln 2ln sec u + ln cos u

1
2

 ln s4t4d - ln 2

ln s3x2
- 9xd + ln a 1

3x
bln sin u - ln asin u

5
b

sln 35 + ln s1>7dd>sln 25d
ln 727

>
ln 213.5ln 322

ln23 9>
>

y = x?

y = x?y = -x + b
ƒsxd = -x + b

y = x .y = -x + 1
ƒsxd = -x + 1.

y = x?

ƒ -1
ƒsxd = x + b

y = x
ƒsxd = x + 1.

-b>m .
>m Z 0,

ƒsxd = mx + b ,

y = ƒsxd

ƒsxd = mx ,
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In Exercises 53 and 54, solve for k.

53. a. b. c.

54. a. b. c.

In Exercises 55–58, solve for t.

55. a. b. c.

56. a. b. c.

57. 58.

Simplify the expressions in Exercises 59–62.

59. a. b. c.

d. e. f.

60. a. b. c.

d. e. f.

61. a. b. c.

62. a. b. c.

Express the ratios in Exercises 63 and 64 as ratios of natural loga-
rithms and simplify.

63. a. b. c.

64. a. b. c.

Arcsine and Arccosine
In Exercises 65–68, find the exact value of each expression.

65. a. b. c.

66. a. b. c.

67. a. b. arccos (0)

68. a. b.

Theory and Examples
69. If ƒ(x) is one-to-one, can anything be said about 

Is it also one-to-one? Give reasons for your answer.

70. If ƒ(x) is one-to-one and ƒ(x) is never zero, can anything be said
about Is it also one-to-one? Give reasons for your
answer.

71. Suppose that the range of g lies in the domain of ƒ so that the
composite is defined. If ƒ and g are one-to-one, can any-
thing be said about Give reasons for your answer.ƒ � g?

ƒ � g

hsxd = 1>ƒsxd?

gsxd = -ƒsxd?

arcsin a-  
1

22
barcsin (-1)

arccos (-1)

cos-1 a23
2
bcos-1 a -1

22
bcos-1 a1

2
b

sin-1 a-23
2
bsin-1 a 1

22
bsin-1 a-1

2
b

log a b

log b a

log210  x

log22  x
log 9 x

log 3 x

log x a

log x2 a

log 2 x

log 8 x

log 2 x

log 3 x

log4 s2ex sin xdloge sexd25log5 s3x2d

log2 se sln 2dssin xdd9log3 x2log4 x

log3 a1
9
blog121 11log11 121

plogp 710log10 s1>2d2log2 3

log4 a1
4
blog323log4 16

1.3log1.3 758log8225log5 7

e sx2de s2x + 1d
= ete2t

= x2

e sln 2dt
=

1
2

ekt
=

1
10

e-0.01t
= 1000

e sln 0.2dt
= 0.4ekt

=

1
2

e-0.3t
= 27

e sln 0.8dk
= 0.880ek

= 1e5k
=

1
4

ek>1000
= a100e10k

= 200e2k
= 4
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72. If a composite is one-to-one, must g be one-to-one? Give
reasons for your answer.

73. Find a formula for the inverse function and verify that

a. b.

74. The identity Figure 1.72 establishes
the identity for To establish it for the rest of 
verify by direct calculation that it holds for 0, and 
Then, for values of x in let and apply
Eqs. (3) and (5) to the sum 

75. Start with the graph of Find an equation of the graph
that results from

a. shifting down 3 units.

b. shifting right 1 unit.

c. shifting left 1, up 3 units.

d. shifting down 4, right 2 units.

e. reflecting about the y-axis.

f. reflecting about the line 

76. Start with the graph of Find an equation of the graph
that results from

a. vertical stretching by a factor of 2.

b. horizontal stretching by a factor of 3.

c. vertical compression by a factor of 4.

d. horizontal compression by a factor of 2.

77. The equation has three solutions: and one
other. Estimate the third solution as accurately as you can by
graphing.

78. Could possibly be the same as for ? Graph the two
functions and explain what you see.

79. Radioactive decay The half-life of a certain radioactive sub-
stance is 12 hours. There are 8 grams present initially.

a. Express the amount of substance remaining as a function of
time t.

b. When will there be 1 gram remaining?

80. Doubling your money Determine how much time is required
for a $500 investment to double in value if interest is earned at the
rate of 4.75% compounded annually.

81. Population growth The population of Glenbrook is 375,000
and is increasing at the rate of 2.25% per year. Predict when the
population will be 1 million.

82. Radon-222 The decay equation for radon-222 gas is known to
be with t in days. About how long will it take the
radon in a sealed sample of air to fall to 90% of its original value?

y = y0 e-0.18t ,

x 7 02ln xx ln 2

x = 2, x = 4,x2
= 2x

y = ln x.

y = x.

y = ln x.

sin-1s -ad + cos-1s -ad .
x = -a, a 7 0,s -1, 0d ,

-1.x = 1,
[-1, 1] ,0 6 x 6 1.

sin-1 x + cos-1 x = P>2
ƒ(x) =

50
1 + 1.1-xƒ(x) =

100
1 + 2-x

(ƒ -1 � ƒ)(x) = x.(ƒ � ƒ -1)(x) =

ƒ -1

ƒ � g

T

T

Chapter 1 Questions to Guide Your Review

1. What is a function? What is its domain? Its range? What is an ar-
row diagram for a function? Give examples.

2. What is the graph of a real-valued function of a real variable?
What is the vertical line test?

3. What is a piecewise-defined function? Give examples.

4. What are the important types of functions frequently encountered
in calculus? Give an example of each type.
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5. What is meant by an increasing function? A decreasing function?
Give an example of each.

6. What is an even function? An odd function? What symmetry
properties do the graphs of such functions have? What advantage
can we take of this? Give an example of a function that is neither
even nor odd.

7. If ƒ and g are real-valued functions, how are the domains of
and related to the domains of ƒ and g?

Give examples.

8. When is it possible to compose one function with another? Give
examples of composites and their values at various points. Does
the order in which functions are composed ever matter?

9. How do you change the equation to shift its graph verti-
cally up or down by Horizontally to the left or right?
Give examples.

10. How do you change the equation to compress or stretch
the graph by a factor Reflect the graph across a coordi-
nate axis? Give examples.

11. What is the standard equation of an ellipse with center (h, k)?
What is its major axis? Its minor axis? Give examples.

12. What is radian measure? How do you convert from radians to de-
grees? Degrees to radians?

13. Graph the six basic trigonometric functions. What symmetries do
the graphs have?

14. What is a periodic function? Give examples. What are the periods
of the six basic trigonometric functions?

15. Starting with the identity and the formulas
for and show how a variety of other
trigonometric identities may be derived.

16. How does the formula for the general sine function 
relate to the shifting, stretching,A sin ss2p>Bdsx - Cdd + D

ƒsxd =

sin sA + Bd ,cos sA + Bd
sin2 u + cos2 u = 1

c 7 1?
y = ƒsxd

ƒ k ƒ  units?
y = ƒsxd

ƒ>gƒ + g, ƒ - g, ƒg ,

Chapter 1 Practice Exercises 53

compressing, and reflection of its graph? Give examples.
Graph the general sine curve and identify the constants A, B, C,
and D.

17. Name three issues that arise when functions are graphed using a
calculator or computer with graphing software. Give examples.

18. What is an exponential function? Give examples. What laws of
exponents does it obey? How does it differ from a simple power
function like ? What kind of real-world phenomena are
modeled by exponential functions?

19. What is the number e, and how is it defined? What are the domain
and range of ? What does its graph look like? How do
the values of relate to and so on?

20. What functions have inverses? How do you know if two functions
ƒ and g are inverses of one another? Give examples of functions
that are (are not) inverses of one another.

21. How are the domains, ranges, and graphs of functions and their
inverses related? Give an example.

22. What procedure can you sometimes use to express the inverse of a
function of x as a function of x?

23. What is a logarithmic function? What properties does it satisfy?
What is the natural logarithm function? What are the domain and
range of ? What does its graph look like?

24. How is the graph of related to the graph of ln x? What truth
is there in the statement that there is really only one exponential
function and one logarithmic function?

25. How are the inverse trigonometric functions defined? How can
you sometimes use right triangles to find values of these func-
tions? Give examples.

loga x

y = ln x

x2, x3,ex
ƒ(x) = ex

ƒ(x) = xn

Chapter 1 Practice Exercises

Functions and Graphs
1. Express the area and circumference of a circle as functions of the

circle’s radius. Then express the area as a function of the circum-
ference.

2. Express the radius of a sphere as a function of the sphere’s sur-
face area. Then express the surface area as a function of the
volume.

3. A point P in the first quadrant lies on the parabola Ex-
press the coordinates of P as functions of the angle of inclination
of the line joining P to the origin.

4. A hot-air balloon rising straight up from a level field is tracked by
a range finder located 500 ft from the point of liftoff. Express the
balloon’s height as a function of the angle the line from the range
finder to the balloon makes with the ground.

In Exercises 5–8, determine whether the graph of the function is sym-
metric about the y-axis, the origin, or neither.

5. 6.

7. 8. y = e-x2

y = x2
- 2x - 1

y = x2>5y = x1>5

y = x2 .

In Exercises 9–16, determine whether the function is even, odd, or neither.

9. 10.

11. 12.

13. 14.

15. 16.

17. Suppose that ƒ and g are both odd functions defined on the entire
real line. Which of the following (where defined) are even? odd?

a. b. c. d. e.

18. If show that is an even
function.

In Exercises 19–28, find the (a) domain and (b) range.

19. 20.

21. 22.

23. 24.

25. 26. y = x2>5y = 2 sin s3x + pd - 1

y = tan s2x - pdy = 2e-x
- 3

y = 32 - x
+ 1y = 216 - x2

y = -2 + 21 - xy = ƒ x ƒ - 2

gsxd = ƒsx + adƒsa - xd = ƒsa + xd,
ƒ g ƒgssec xdƒssin xdƒ3ƒg

y = x cos xy = x + cos x

y = x - sin xy =

x4
+ 1

x3
- 2x

y = sec x tan xy = 1 - cos x

y = x5
- x3

- xy = x2
+ 1
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27. 28.

29. State whether each function is increasing, decreasing, or neither.

a. Volume of a sphere as a function of its radius

b. Greatest integer function

c. Height above Earth’s sea level as a function of atmospheric
pressure (assumed nonzero)

d. Kinetic energy as a function of a particle’s velocity

30. Find the largest interval on which the given function is 
increasing.

a. b.

c. d.

Piecewise-Defined Functions
In Exercises 31 and 32, find the (a) domain and (b) range.

31.

32.

In Exercises 33 and 34, write a piecewise formula for the function.

33. 34.

Composition of Functions
In Exercises 35 and 36, find

a. b.

c. d.

35.

36.

In Exercises 37 and 38, (a) write formulas for and and
find the (b) domain and (c) range of each.

37.

38.

For Exercises 39 and 40, sketch the graphs of ƒ and 

39.

40. ƒsxd = b x + 1, -2 … x 6 0

x - 1, 0 … x … 2

ƒsxd = •
-x - 2, -4 … x … -1

-1, -1 6 x … 1

x - 2, 1 6 x … 2

ƒ � ƒ.

ƒsxd = 2x, g sxd = 21 - x

ƒsxd = 2 - x2, g sxd = 2x + 2

g � ƒƒ � g

ƒsxd = 2 - x, g sxd = 23 x + 1

ƒsxd =

1
x , g sxd =

1

2x + 2

sg � gdsxd .sƒ � ƒdsxd .

sg � ƒds2d .sƒ � gds -1d .

x

5
(2, 5)

0 4

y

x

1

10 2

y

y = •
-x - 2, -2 … x … -1

  x, -1 6 x … 1

-x + 2, 1 6 x … 2

y = e2-x, -4 … x … 0

2x, 0 6 x … 4

Rsxd = 22x - 1gsxd = s3x - 1d1>3
ƒsxd = sx + 1d4ƒsxd = ƒ x - 2 ƒ + 1

y = -1 + 23 2 - xy = ln sx - 3d + 1

54 Chapter 1: Functions

Composition with absolute values In Exercises 41–48, graph 
and together. Then describe how applying the absolute value func-
tion in affects the graph of .

41. x

42.

43.

44.

45.

46.

47.

48. sin x

Shifting and Scaling Graphs
49. Suppose the graph of g is given. Write equations for the graphs

that are obtained from the graph of g by shifting, scaling, or 
reflecting, as indicated.

a. Up unit, right 3 

b. Down 2 units, left 

c. Reflect about the y-axis 

d. Reflect about the x-axis 

e. Stretch vertically by a factor of 5 

f. Compress horizontally by a factor of 5 

50. Describe how each graph is obtained from the graph of

a. b.

c. d.

e. f.

In Exercises 51–54, graph each function, not by plotting points, but
by starting with the graph of one of the standard functions presented
in Figures 1.15–1.17, and applying an appropriate transformation.

51. 52.

53. 54.

Trigonometry
In Exercises 55–58, sketch the graph of the given function. What is
the period of the function?

55. 56.

57. 58.

59. Sketch the graph 

60. Sketch the graph y = 1 + sin ax +

p

4
b .

y = 2 cos ax -

p

3
b .

y = cos 
px
2

y = sin px

y = sin 
x
2

y = cos 2x

y = s -5xd1>3y =

1
2x2 + 1

y = 1 -

x
3

y = -A1 +

x
2

y = -3ƒsxd +

1
4

y = ƒ ax
3
b - 4

y = ƒs2x + 1dy = ƒs -3xd
y = ƒs4xdy = ƒsx - 5d

y = ƒsxd.

2
3

1
2

sin ƒ x ƒ

2ƒ x ƒ2x

1
ƒ x ƒ

1
x

ƒ 4 - x2
ƒ4 - x2

ƒ x2
+ x ƒx2

+ x

ƒ x3
ƒx3

ƒ x ƒ
2x2

ƒ x ƒ

ƒ2sxdƒ1sxd

ƒ1ƒ2

ƒ2

ƒ1
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In Exercises 61–64, ABC is a right triangle with the right angle at C.
The sides opposite angles A, B, and C are a, b, and c, respectively.

61. a. Find a and b if 

b. Find a and c if 

62. a. Express a in terms of A and c.

b. Express a in terms of A and b.

63. a. Express a in terms of B and b.

b. Express c in terms of A and a.

64. a. Express sin A in terms of a and c.

b. Express sin A in terms of b and c.

65. Height of a pole Two wires stretch from the top T of a vertical
pole to points B and C on the ground, where C is 10 m closer to
the base of the pole than is B. If wire BT makes an angle of 35°
with the horizontal and wire CT makes an angle of 50° with the
horizontal, how high is the pole?

66. Height of a weather balloon Observers at positions A and B
2 km apart simultaneously measure the angle of elevation of a
weather balloon to be 40° and 70°, respectively. If the balloon is
directly above a point on the line segment between A and B, find
the height of the balloon.

67. a. Graph the function 

b. What appears to be the period of this function?

c. Confirm your finding in part (b) algebraically.

68. a. Graph 

b. What are the domain and range of ƒ?

c. Is ƒ periodic? Give reasons for your answer.

Transcendental Functions
In Exercises 69–72, find the domain of each function.

69. a. b.

70. a. b.

71. a. b.

72. a. b.

73. If and find the functions
and their domains.ƒ � g, g � ƒ, ƒ � ƒ, g � g,

g(x) = 4 - x2,ƒ(x) = ln x

ƒ(x) = 2p - sin-1 xh(x) = ln (cos-1 x)

ƒ(x) = cos-1 (2x - 1)h(x) = sin-1 ax
3
b

g(x) = ln ƒ 4 - x2
ƒƒ(x) = e1>x2

g(x) = ex
+ ln 2xƒ(x) = 1 + e-sin x

ƒsxd = sin s1>xd .

ƒsxd = sin x + cossx>2d .

b = 2, B = p>3.

c = 2, B = p>3.
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74. Determine whether ƒ is even, odd, or neither.

a. b.

c. d.

75. Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) to-
gether for What is going on? Explain.

76. Graph for and 5. How does
the graph change when c changes?

77. Graph in the window 
Explain what you see. How could you change the formula to turn
the arches upside down?

78. Graph the three functions and to-
gether on the same screen for and 20. For large values
of x, which of these functions has the largest values and which has
the smallest values?

Theory and Examples
In Exercises 79 and 80, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers and
comment on any differences you see.

79. a. b.

80. a. b.

81. Use a graph to decide whether ƒ is one-to-one.

a. b.

82. Use a graph to find to 3 decimal places the values of x for which

83. a. Show that and are inverses of one
another.

b. Graph ƒ and g over an x-interval large enough to show the
graphs intersecting at (1, 1) and Be sure the picture
shows the required symmetry in the line 

84. a. Show that and are inverses of one
another.

b. Graph h and k over an x-interval large enough to show the
graphs intersecting at (2, 2) and Be sure the picture
shows the required symmetry in the line y = x.

(-2, -2).

k(x) = (4x)1>3h(x) = x3>4
y = x.

(-1, -1).

g(x) = 23 xƒ(x) = x3
ex

7 10,000,000.

ƒ(x) = x3
+

x
2

ƒ(x) = x3
-

x
2

y = cos (cos-1 x)y = cos-1 (cos x)

y = sin (sin-1 x)y = sin-1 (sin x)

a = 2, 10,
y = loga xy = xa, y = ax,

0 … x … 22, -2 … y … 0.y = ln ƒ sin x ƒ

c = -4, -2, 0, 3,y = ln (x2
+ c)

0 6 x … 10.

ƒ(x) = e ln ƒx ƒ + 1ƒ(x) = ƒ ex
ƒ

ƒ(x) = 1 + sin-1 (-x)ƒ(x) = e-x2
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Functions and Graphs
1. Are there two functions ƒ and g such that Give

reasons for your answer.

2. Are there two functions ƒ and g with the following property? The
graphs of ƒ and g are not straight lines but the graph of is a
straight line. Give reasons for your answer.

3. If ƒ(x) is odd, can anything be said of What if
ƒ is even instead? Give reasons for your answer.

4. If g (x) is an odd function defined for all values of x, can anything
be said about g (0)? Give reasons for your answer.

g sxd = ƒsxd - 2?

ƒ � g

ƒ � g = g � ƒ ?
5. Graph the equation 

6. Graph the equation 

Derivations and Proofs
7. Prove the following identities.

a. b.
1 - cos x
1 + cos x

= tan2 
x
2

1 - cos x
sin x

=

sin x
1 + cos x

y + ƒ y ƒ = x + ƒ x ƒ .

ƒ x ƒ + ƒ y ƒ = 1 + x .

T

T

T

T

T

T

T

T

T
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8. Explain the following “proof without words” of the law of cosines.
(Source: “Proof without Words: The Law of Cosines,” Sidney H.
Kung, Mathematics Magazine, Vol. 63, No. 5, Dec. 1990, p. 342.)

9. Show that the area of triangle ABC is given by

10. Show that the area of triangle ABC is given by 

where is the
semiperimeter of the triangle.

11. Show that if ƒ is both even and odd, then for every x in
the domain of ƒ.

12. a. Even-odd decompositions Let ƒ be a function whose do-
main is symmetric about the origin, that is, belongs to the
domain whenever x does. Show that ƒ is the sum of an even
function and an odd function:

where E is an even function and O is an odd function. (Hint:
Let Show that so
that E is even. Then show that is odd.)

b. Uniqueness Show that there is only one way to write ƒ as
the sum of an even and an odd function. (Hint: One way is
given in part (a). If also where is
even and is odd, show that Then use
Exercise 11 to show that and )

Grapher Explorations—Effects of Parameters
13. What happens to the graph of as

a. a changes while b and c remain fixed?

b. b changes (a and c fixed, )?

c. c changes (a and b fixed, )?

14. What happens to the graph of as

a. a changes while b and c remain fixed?

b. b changes (a and c fixed, )?

c. c changes (a and b fixed, )?

Geometry
15. An object’s center of mass moves at a constant velocity along a

straight line past the origin. The accompanying figure shows the
coordinate system and the line of motion. The dots show positions
that are 1 sec apart. Why are the areas in the figure
all equal? As in Kepler’s equal area law (see Section 13.6), the

A5A2 , Á ,A1,

y

a Z 0

a Z 0

y = asx + bd3
+ c

a Z 0

a Z 0

y = ax2
+ bx + c

O = O1 .E = E1

E - E1 = O1 - O .O1

E1ƒsxd = E1sxd + O1sxd

O sxd = ƒsxd - Esxd
Es -xd = Esxd ,Esxd = sƒsxd + ƒs -xdd>2.

ƒsxd = Esxd + O sxd ,

-x

ƒsxd = 0

s = sa + b + cd>22sss - adss - bdss - cd

BA

C

ab

c

s1>2dab sin C = s1>2dbc sin A = s1>2dca sin B .

a a

a

c b

a � c
2a cos � � b

�

56 Chapter 1: Functions

line that joins the object’s center of mass to the origin sweeps out
equal areas in equal times.

16. a. Find the slope of the line from the origin to the midpoint P of
side AB in the triangle in the accompanying figure 

b. When is OP perpendicular to AB?

17. Consider the quarter-circle of radius 1 and right triangles ABE
and ACD given in the accompanying figure. Use standard area
formulas to conclude that

18. Let and What condition must be
satisfied by the constants a, b, c, d in order that 

for every value of x?

Theory and Examples
19. Domain and range Suppose that and 

Determine the domain and range of the function.

a. b.

20. Inverse functions Let

a. Give a convincing argument that ƒ is one-to-one.

b. Find a formula for the inverse of ƒ.

ad - bc Z 0 .c Z 0 ,ƒ(x) =

ax + b
cx + d

,

y = a logb (x - c) + dy = a(bc - x) + d

b 7 0.a Z 0, b Z 1,

sg � ƒdsxd
sƒ � gdsxd =

gsxd = cx + d.ƒsxd = ax + b

x

y

B

E

C(0, 1)

A (1, 0)
D

1

u

1
2

 sin u cos u 6

u

2
6

1
2

 
sin u

cos u
.

x

y

P

B(0, b)

A(a, 0)O

sa, b 7 0d .

x

y

0 5 10 15

Kilometers

5

10

K
ilo

m
et

er
s

A5

A4

A3
A2

A1

t � 6

t � 5

t � 1

t � 2

y�t

y�t

7001_AWLThomas_ch01p001-057.qxd  10/1/09  2:24 PM  Page 56



21. Depreciation Smith Hauling purchased an 18-wheel truck for
$100,000. The truck depreciates at the constant rate of $10,000
per year for 10 years.

a. Write an expression that gives the value y after x years.

b. When is the value of the truck $55,000?

22. Drug absorption A drug is administered intravenously for
pain. The function

gives the number of units of the drug remaining in the body after t
hours.

a. What was the initial number of units of the drug administered?

b. How much is present after 2 hours?

c. Draw the graph of ƒ.

23. Finding investment time If Juanita invests $1500 in a retire-
ment account that earns 8% compounded annually, how long will
it take this single payment to grow to $5000?

24. The rule of 70 If you use the approximation (in
place of 0.69314 . . .), you can derive a rule of thumb that says,

ln 2 L 0.70

0 … t … 4ƒ(t) = 90 - 52 ln (1 + t),

Chapter 1 Technology Application Projects 57

“To estimate how many years it will take an amount of money to
double when invested at r percent compounded continuously, di-
vide r into 70.” For instance, an amount of money invested at 5%
will double in about years. If you want it to double in
10 years instead, you have to invest it at Show how
the rule of 70 is derived. (A similar “rule of 72” uses 72 instead of
70, because 72 has more integer factors.)

25. For what does ? Give reasons for your answer.

26. a. If must 

b. If must 

Give reasons for your answers.

27. The quotient has a constant value. What value?
Give reasons for your answer.

28. vs. How does compare with
Here is one way to find out.

a. Use the equation to express ƒ(x) and
g(x) in terms of natural logarithms.

b. Graph ƒ and g together. Comment on the behavior of ƒ in re-
lation to the signs and values of g.

loga b = sln bd>sln ad
gsxd = log2 sxd?

ƒsxd = logx s2dlog2 sxdlogx s2d

slog4 xd>slog2 xd

x = 1>2?sln xd>x = -2 ln 2 ,

x = 2?sln xd>x = sln 2d>2,

x (xx)
= (xx)xx 7 0

70>10 = 7%.
70>5 = 14

Chapter 1 Technology Application Projects

An Overview of Mathematica
An overview of Mathematica sufficient to complete the Mathematica modules appearing on the Web site.

Mathematica/Maple Module:

Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish, and Mammals
Construct and interpret mathematical models, analyze and improve them, and make predictions using them.

T

T
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58

2
LIMITS AND CONTINUITY

OVERVIEW Mathematicians of the seventeenth century were keenly interested in the study
of motion for objects on or near the earth and the motion of planets and stars. This study
involved both the speed of the object and its direction of motion at any instant, and they
knew the direction was tangent to the path of motion. The concept of a limit is fundamen-
tal to finding the velocity of a moving object and the tangent to a curve. In this chapter we
develop the limit, first intuitively and then formally. We use limits to describe the way a
function varies. Some functions vary continuously; small changes in x produce only small
changes in ƒ(x). Other functions can have values that jump, vary erratically, or tend to in-
crease or decrease without bound. The notion of limit gives a precise way to distinguish
between these behaviors.

2.1 Rates of Change and Tangents to Curves

Calculus is a tool to help us understand how functional relationships change, such as the
position or speed of a moving object as a function of time, or the changing slope of a
curve being traversed by a point moving along it. In this section we introduce the ideas of
average and instantaneous rates of change, and show that they are closely related to the
slope of a curve at a point P on the curve. We give precise developments of these impor-
tant concepts in the next chapter, but for now we use an informal approach so you will see
how they lead naturally to the main idea of the chapter, the limit. You will see that limits
play a major role in calculus and the study of change.

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest (not
moving) near the surface of the earth and allowed to fall freely will fall a distance propor-
tional to the square of the time it has been falling. This type of motion is called free fall. It
assumes negligible air resistance to slow the object down, and that gravity is the only force
acting on the falling body. If y denotes the distance fallen in feet after t seconds, then
Galileo’s law is

where 16 is the (approximate) constant of proportionality. (If y is measured in meters, the
constant is 4.9.)

A moving body’s average speed during an interval of time is found by dividing 
the distance covered by the time elapsed. The unit of measure is length per unit time:
kilometers per hour, feet (or meters) per second, or whatever is appropriate to the prob-
lem at hand.

y = 16t2,

HISTORICAL BIOGRAPHY

Galileo Galilei
(1564–1642)
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2.1 Rates of Change and Tangents to Curves 59

EXAMPLE 1 A rock breaks loose from the top of a tall cliff. What is its average speed

(a) during the first 2 sec of fall?

(b) during the 1-sec interval between second 1 and second 2?

Solution The average speed of the rock during a given time interval is the change in dis-
tance, , divided by the length of the time interval, . (Increments like and are
reviewed in Appendix 3.) Measuring distance in feet and time in seconds, we have the
following calculations:

(a) For the first 2 sec:

(b) From sec 1 to sec 2:

We want a way to determine the speed of a falling object at a single instant instead of
using its average speed over an interval of time. To do this, we examine what happens
when we calculate the average speed over shorter and shorter time intervals starting at .
The next example illustrates this process. Our discussion is informal here, but it will be
made precise in Chapter 3.

EXAMPLE 2 Find the speed of the falling rock in Example 1 at and 

Solution We can calculate the average speed of the rock over a time interval 
having length as

(1)

We cannot use this formula to calculate the “instantaneous” speed at the exact moment 
by simply substituting because we cannot divide by zero. But we can use it to cal-
culate average speeds over increasingly short time intervals starting at and 
When we do so, we see a pattern (Table 2.1).

t0 = 2.t0 = 1
h = 0,

t0

¢y

¢t
=

16st0 + hd2
- 16t0 

2

h
.

¢t = h ,
[t0 , t0 + h] ,

t = 2 sec.t = 1

t0

t0,

¢y

¢t
=

16s2d2
- 16s1d2

2 - 1
= 48 

ft
sec

¢y

¢t
=

16s2d2
- 16s0d2

2 - 0
= 32 

ft
sec

¢t¢y¢t¢y

TABLE 2.1 Average speeds over short time intervals 

Length of Average speed over Average speed over
time interval interval of length h interval of length h
h starting at starting at 

1 48 80

0.1 33.6 65.6

0.01 32.16 64.16

0.001 32.016 64.016

0.0001 32.0016 64.0016

t0 � 2t0 � 1

Average speed: 
¢y

¢t
=

16st0 + hd2
- 16t0 

2

h

[t0, t0 + h]

The average speed on intervals starting at seems to approach a limiting value
of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed
of 32 ft sec at Let’s confirm this algebraically.t0 = 1 sec.>

t0 = 1
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60 Chapter 2: Limits and Continuity

If we set and then expand the numerator in Equation (1) and simplify, we find that

For values of h different from 0, the expressions on the right and left are equivalent and the
average speed is We can now see why the average speed has the limiting
value as h approaches 0.

Similarly, setting in Equation (1), the procedure yields

for values of h different from 0. As h gets closer and closer to 0, the average speed has the
limiting value 64 ft sec when  as suggested by Table 2.1.

The average speed of a falling object is an example of a more general idea which we
discuss next.

Average Rates of Change and Secant Lines

Given an arbitrary function we calculate the average rate of change of y with
respect to x over the interval by dividing the change in the value of y,

by the length of the interval over which the
change occurs. (We use the symbol h for to simplify the notation here and later on.)¢x

¢x = x2 - x1 = h¢y = ƒsx2d - ƒsx1d ,
[x1, x2]

y = ƒsxd ,

t0 = 2 sec,>

¢y

¢t
= 64 + 16h

t0 = 2
32 + 16s0d = 32 ft>sec

32 + 16h ft>sec.

 =
32h + 16h2

h
= 32 + 16h .

 
¢y

¢t
=

16s1 + hd2
- 16s1d2

h
=

16s1 + 2h + h2d - 16
h

t0 = 1

DEFINITION The average rate of change of with respect to x over the
interval is

¢y

¢x
=

ƒsx2d - ƒsx1d
x2 - x1

=

ƒsx1 + hd - ƒsx1d
h

, h Z 0.

[x1, x2]
y = ƒsxd

y

x
0

Secant

P(x1, f (x1))

Q(x2, f (x2))

�x � h

�y

x2x1

y � f (x)

FIGURE 2.1 A secant to the graph
Its slope is the

average rate of change of ƒ over the
interval [x1 , x2] .

¢y>¢x ,y = ƒsxd .
Geometrically, the rate of change of ƒ over is the slope of the line through the
points and (Figure 2.1). In geometry, a line joining two points of
a curve is a secant to the curve. Thus, the average rate of change of ƒ from to is iden-
tical with the slope of secant PQ. Let’s consider what happens as the point Q approaches
the point P along the curve, so the length h of the interval over which the change occurs
approaches zero.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it
rises or falls—its rate of change as the graph of a linear function. But what is meant by the
slope of a curve at a point P on the curve? If there is a tangent line to the curve at P—a
line that just touches the curve like the tangent to a circle—it would be reasonable to iden-
tify the slope of the tangent as the slope of the curve at P. So we need a precise meaning
for the tangent at a point on a curve.

For circles, tangency is straightforward. A line L is tangent to a circle at a point P if L
passes through P perpendicular to the radius at P (Figure 2.2). Such a line just touches the circle.
But what does it mean to say that a line L is tangent to some other curve C at a point P?

x2x1

Qsx2 , ƒsx2ddPsx1, ƒsx1dd
[x1, x2]

P

L

O

FIGURE 2.2 L is tangent to the
circle at P if it passes through P
perpendicular to radius OP.
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To define tangency for general curves, we need an approach that takes into account
the behavior of the secants through P and nearby points Q as Q moves toward P along the
curve (Figure 2.3). Here is the idea:

1. Start with what we can calculate, namely the slope of the secant PQ.

2. Investigate the limiting value of the secant slope as Q approaches P along the curve.
(We clarify the limit idea in the next section.)

3. If the limit exists, take it to be the slope of the curve at P and define the tangent to the
curve at P to be the line through P with this slope.

This procedure is what we were doing in the falling-rock problem discussed in Example 2.
The next example illustrates the geometric idea for the tangent to a curve.

2.1 Rates of Change and Tangents to Curves 61

P

Q
Secants

P

Tangent

Tangent

Q

Secants

FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of
the secant slopes as from either side.Q : P

HISTORICAL BIOGRAPHY

Pierre de Fermat
(1601–1665)

EXAMPLE 3 Find the slope of the parabola at the point P(2, 4). Write an equa-
tion for the tangent to the parabola at this point.

Solution We begin with a secant line through P(2, 4) and nearby.
We then write an expression for the slope of the secant PQ and investigate what happens to
the slope as Q approaches P along the curve:

If then Q lies above and to the right of P, as in Figure 2.4. If then Q lies to
the left of P (not shown). In either case, as Q approaches P along the curve, h approaches
zero and the secant slope approaches 4. We take 4 to be the parabola’s slope at P.h + 4

h 6 0,h 7 0,

 =
h2

+ 4h
h

= h + 4.

 Secant slope =

¢y

¢x
=

s2 + hd2
- 22

h
=

h2
+ 4h + 4 - 4

h

Qs2 + h, s2 + hd2d

y = x2

x

y

0 2

NOT TO SCALE

Tangent slope � 4

Δy � (2 � h)2 � 4

y � x2

Q(2 � h, (2 � h)2)

Δx � h

2 � h

P(2, 4)

Secant slope is � h � 4.
(2 � h)2 � 4

h

FIGURE 2.4 Finding the slope of the parabola at the point P(2, 4) as the
limit of secant slopes (Example 3).

y = x2
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62 Chapter 2: Limits and Continuity

The tangent to the parabola at P is the line through P with slope 4:

Point-slope equation

Instantaneous Rates of Change and Tangent Lines

The rates at which the rock in Example 2 was falling at the instants and are
called instantaneous rates of change. Instantaneous rates and slopes of tangent lines are
intimately connected, as we will now see in the following examples.

EXAMPLE 4 Figure 2.5 shows how a population p of fruit flies (Drosophila) grew in a
50-day experiment. The number of flies was counted at regular intervals, the counted val-
ues plotted with respect to time t, and the points joined by a smooth curve (colored blue in
Figure 2.5). Find the average growth rate from day 23 to day 45.

Solution There were 150 flies on day 23 and 340 flies on day 45. Thus the number of
flies increased by in days. The average rate of change
of the population from day 23 to day 45 was

Average rate of change: 
¢p

¢t
=

340 - 150
45 - 23

=
190
22

L 8.6 flies>day.

45 - 23 = 22340 - 150 = 190

t = 2t = 1

 y = 4x - 4.

 y = 4 + 4sx - 2d

t

p

100 20 30 40 50

50

100

150

200

250

300

350

P(23, 150)

Q(45, 340)

�t � 22

�p � 190

�t
�p

� 8.6 flies/day

Time (days)

N
um

be
r 

 o
f 

fl
ie

s

FIGURE 2.5 Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days is the slope

of the secant line (Example 4).¢p>¢t

This average is the slope of the secant through the points P and Q on the graph in
Figure 2.5.

The average rate of change from day 23 to day 45 calculated in Example 4 does not
tell us how fast the population was changing on day 23 itself. For that we need to examine
time intervals closer to the day in question.

EXAMPLE 5 How fast was the number of flies in the population of Example 4 growing
on day 23?

Solution To answer this question, we examine the average rates of change over increas-
ingly short time intervals starting at day 23. In geometric terms, we find these rates by
calculating the slopes of secants from P to Q, for a sequence of points Q approaching P
along the curve (Figure 2.6).
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2.1 Rates of Change and Tangents to Curves 63

FIGURE 2.6 The positions and slopes of four secants through the point P on the fruit fly graph (Example 5).

Slope of 
Q (flies day)

(45, 340)

(40, 330)

(35, 310)

(30, 265)
265 - 150
30 - 23

L 16.4

310 - 150
35 - 23

L 13.3

330 - 150
40 - 23

L 10.6

340 - 150
45 - 23

L 8.6

/
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A(14, 0)

P(23, 150)

B(35, 350)

Q(45, 340)

The values in the table show that the secant slopes rise from 8.6 to 16.4 as the
t-coordinate of Q decreases from 45 to 30, and we would expect the slopes to rise slightly
higher as t continued on toward 23. Geometrically, the secants rotate about P and seem to
approach the red tangent line in the figure. Since the line appears to pass through the
points (14, 0) and (35, 350), it has slope

(approximately).

On day 23 the population was increasing at a rate of about 16.7 flies day.

The instantaneous rates in Example 2 were found to be the values of the average
speeds, or average rates of change, as the time interval of length h approached 0. That is,
the instantaneous rate is the value the average rate approaches as the length h of the in-
terval over which the change occurs approaches zero. The average rate of change corre-
sponds to the slope of a secant line; the instantaneous rate corresponds to the slope of
the tangent line as the independent variable approaches a fixed value. In Example 2, the
independent variable t approached the values and . In Example 3, the inde-
pendent variable x approached the value . So we see that instantaneous rates and
slopes of tangent lines are closely connected. We investigate this connection thoroughly
in the next chapter, but to do so we need the concept of a limit.

x = 2
t = 2t = 1

>
350 - 0
35 - 14

= 16.7 flies>day

Exercises 2.1

Average Rates of Change
In Exercises 1–6, find the average rate of change of the function over
the given interval or intervals.

1.

a. [2, 3] b.

2.

a. b.

3.

a. b.

4.

a. b. [-p, p][0, p]

g std = 2 + cos t

[p>6, p>2][p>4, 3p>4]

hstd = cot t

[-2, 0][-1, 1]

g sxd = x2

[-1, 1]

ƒsxd = x3
+ 1

5.

6.

Slope of a Curve at a Point
In Exercises 7–14, use the method in Example 3 to find (a) the slope
of the curve at the given point P, and (b) an equation of the tangent
line at P.

7.

8.

9.

10.

11. y = x3, P(2, 8)

y = x2
- 4x, P(1, -3)

y = x2
- 2x - 3, P(2, -3)

y = 5 - x2, P(1, 4)

y = x2
- 3, P(2, 1)

Psud = u3
- 4u2

+ 5u; [1, 2]

Rsud = 24u + 1; [0, 2]
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64 Chapter 2: Limits and Continuity

T

12.

13.

14.

Instantaneous Rates of Change
15. Speed of a car The accompanying figure shows the time-

to-distance graph for a sports car accelerating from a standstill.

a. Estimate the slopes of secants and 
arranging them in order in a table like the one in Figure 2.6.
What are the appropriate units for these slopes?

b. Then estimate the car’s speed at time 

16. The accompanying figure shows the plot of distance fallen versus
time for an object that fell from the lunar landing module a dis-
tance 80 m to the surface of the moon.

a. Estimate the slopes of the secants and 
arranging them in a table like the one in Figure 2.6.

b. About how fast was the object going when it hit the surface?

17. The profits of a small company for each of the first five years of
its operation are given in the following table:

a. Plot points representing the profit as a function of year, and
join them by as smooth a curve as you can.

Year Profit in $1000s

2000 6
2001 27
2002 62
2003 111
2004 174

t

y
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(m
)
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P
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Q4

PQ4 ,PQ1 , PQ2 , PQ3 ,

t = 20 sec .

PQ4 ,PQ1 , PQ2 , PQ3 ,

0 5

200

100
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)

10 15 20

300

400

500

600
650

P

Q1

Q2

Q3

Q4

t

s

y = x3
- 3x2

+ 4, P(2, 0)

y = x3
- 12x, P(1, -11)

y = 2 - x3, P(1, 1) b. What is the average rate of increase of the profits between
2002 and 2004?

c. Use your graph to estimate the rate at which the profits were
changing in 2002.

18. Make a table of values for the function 
at the points 

and 

a. Find the average rate of change of F(x) over the intervals [1, x]
for each in your table.

b. Extending the table if necessary, try to determine the rate of
change of F(x) at 

19. Let for 

a. Find the average rate of change of g(x) with respect to x over
the intervals [1, 2], [1, 1.5] and 

b. Make a table of values of the average rate of change of g with
respect to x over the interval for some values of h
approaching zero, say 
and 0.000001.

c. What does your table indicate is the rate of change of g(x)
with respect to x at 

d. Calculate the limit as h approaches zero of the average rate of
change of g(x) with respect to x over the interval 

20. Let for 

a. Find the average rate of change of ƒ with respect to t over the
intervals (i) from to and (ii) from to 

b. Make a table of values of the average rate of change of ƒ with
respect to t over the interval [2, T ], for some values of T ap-
proaching 2, say and
2.000001.

c. What does your table indicate is the rate of change of ƒ with
respect to t at 

d. Calculate the limit as T approaches 2 of the average rate of
change of ƒ with respect to t over the interval from 2 to T. You
will have to do some algebra before you can substitute 

21. The accompanying graph shows the total distance s traveled by a
bicyclist after t hours.

a. Estimate the bicyclist’s average speed over the time intervals
[0, 1], [1, 2.5], and [2.5, 3.5].

b. Estimate the bicyclist’s instantaneous speed at the times 
and .

c. Estimate the bicyclist’s maximum speed and the specific time
at which it occurs.

t = 3t = 2,
t =

1
2,

10

10

20

30

40

2 3 4

Elapsed time (hr)

D
is

ta
nc

e 
tr

av
el

ed
 (

m
i)

t

s

T = 2.

t = 2?

T = 2.1, 2.01, 2.001, 2.0001, 2.00001,

t = T .t = 2t = 3,t = 2

t Z 0.ƒstd = 1>t
[1, 1 + h] .

x = 1?

h = 0.1, 0.01, 0.001, 0.0001, 0.00001,
[1, 1 + h]

[1, 1 + h] .

x Ú 0.g sxd = 2x

x = 1.

x Z 1

x = 1. x = 10001>10000,
x = 1001>1000,x = 1.2, x = 11>10, x = 101>100,

Fsxd = sx + 2d>sx - 2dT

T

T
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22. The accompanying graph shows the total amount of gasoline A in
the gas tank of an automobile after being driven for t days.

310
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2.2 Limit of a Function and Limit Laws 65

a. Estimate the average rate of gasoline consumption over the
time intervals [0, 3], [0, 5], and [7, 10].

b. Estimate the instantaneous rate of gasoline consumption at
the times , , and .

c. Estimate the maximum rate of gasoline consumption and the
specific time at which it occurs.

t = 8t = 4t = 1

2.2 Limit of a Function and Limit Laws

In Section 2.1 we saw that limits arise when finding the instantaneous rate of change of a
function or the tangent to a curve. Here we begin with an informal definition of limit and
show how we can calculate the values of limits. A precise definition is presented in the
next section.

Limits of Function Values

Frequently when studying a function , we find ourselves interested in the func-
tion’s behavior near a particular point , but not at . This might be the case, for instance,
if is an irrational number, like or , whose values can only be approximated by
“close” rational numbers at which we actually evaluate the function instead. Another situa-
tion occurs when trying to evaluate a function at leads to division by zero, which is un-
defined. We encountered this last circumstance when seeking the instantaneous rate of
change in y by considering the quotient function for h closer and closer to zero.
Here’s a specific example where we explore numerically how a function behaves near a
particular point at which we cannot directly evaluate the function.

EXAMPLE 1 How does the function

behave near 

Solution The given formula defines ƒ for all real numbers x except (we cannot di-
vide by zero). For any we can simplify the formula by factoring the numerator and
canceling common factors:

The graph of ƒ is the line with the point (1, 2) removed. This removed point is
shown as a “hole” in Figure 2.7. Even though ƒ(1) is not defined, it is clear that we can
make the value of ƒ(x) as close as we want to 2 by choosing x close enough to 1 (Table 2.2).

y = x + 1

ƒsxd =

sx - 1dsx + 1d
x - 1

= x + 1 for x Z 1.

x Z 1,
x = 1

x = 1?

ƒsxd =
x2

- 1
x - 1

¢y>h
x0

22px0

x0x0

y = ƒ(x)

HISTORICAL ESSAY

Limits

x

y

0 1

2

1

x

y

0 1

2

1
y � f (x) � x2 � 1

x � 1

y � x � 1

–1

–1

FIGURE 2.7 The graph of ƒ is
identical with the line 
except at where ƒ is not
defined (Example 1).

x = 1,
y = x + 1
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66 Chapter 2: Limits and Continuity

TABLE 2.2 The closer x gets to 1, the closer 
seems to get to 2

Values of x below and above 1

0.9 1.9

1.1 2.1

0.99 1.99

1.01 2.01

0.999 1.999

1.001 2.001

0.999999 1.999999

1.000001 2.000001

ƒ(x) � 
x2 � 1
x � 1

 � x � 1, x � 1

ƒ(x) = (x2
- 1)>(x - 1)

Let’s generalize the idea illustrated in Example 1.

Suppose ƒ(x) is defined on an open interval about except possibly at itself. If ƒ(x)
is arbitrarily close to L (as close to L as we like) for all x sufficiently close to we say
that ƒ approaches the limit L as x approaches and write

which is read “the limit of ƒ(x) as x approaches is L.” For instance, in Example 1 we
would say that ƒ(x) approaches the limit 2 as x approaches 1, and write

Essentially, the definition says that the values of ƒ(x) are close to the number L whenever x is
close to (on either side of ). This definition is “informal” because phrases like arbitrarily
close and sufficiently close are imprecise; their meaning depends on the context. (To a machin-
ist manufacturing a piston, close may mean within a few thousandths of an inch. To an as-
tronomer studying distant galaxies, close may mean within a few thousand light-years.) Never-
theless, the definition is clear enough to enable us to recognize and evaluate limits of specific
functions. We will need the precise definition of Section 2.3, however, when we set out to
prove theorems about limits. Here are several more examples exploring the idea of limits.

EXAMPLE 2 This example illustrates that the limit value of a function does not depend
on how the function is defined at the point being approached. Consider the three functions
in Figure 2.8. The function ƒ has limit 2 as even though ƒ is not defined at x = 1.x : 1

x0x0

lim
x:1

 ƒsxd = 2, or lim
x:1

 
x2

- 1
x - 1

= 2.

x0

lim
x:x0

 ƒsxd = L ,

x0 ,
x0 ,

x0x0 ,

x2 � 1
x � 1

x

y

0 1

2

1

x

y

0 1

2

1

x

y

0 1–1–1–1

2

1

⎧
⎪
⎨
⎪
⎩ 1,

,
(a)  f (x) � (b)  g(x) �x2 � 1

x � 1

   x � 1

   x � 1

(c)  h(x) � x � 1

FIGURE 2.8 The limits of ƒ(x), g(x), and h(x) all equal 2 as x approaches 1. However,
only h(x) has the same function value as its limit at (Example 2).x = 1
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The function g has limit 2 as even though The function h is the only one
of the three functions in Figure 2.8 whose limit as equals its value at For h,
we have This equality of limit and function value is significant, and
we return to it in Section 2.5.

EXAMPLE 3

(a) If ƒ is the identity function then for any value of (Figure 2.9a),

(b) If ƒ is the constant function (function with the constant value k), then for
any value of (Figure 2.9b),

For instances of each of these rules we have

We prove these rules in Example 3 in Section 2.3.

Some ways that limits can fail to exist are illustrated in Figure 2.10 and described in
the next example.

lim
x:3

 x = 3 and lim
x: -7

s4d = lim
x:2

s4d = 4.

lim
x:x0

 ƒsxd = lim
x:x0

 k = k .

x0

ƒsxd = k

lim
x:x0

 ƒsxd = lim
x:x0

 x = x0 .

x0ƒsxd = x ,

limx:1 hsxd = hs1d .
x = 1.x : 1

2 Z g s1d .x : 1

2.2 Limit of a Function and Limit Laws 67

EXAMPLE 4 Discuss the behavior of the following functions as 

(a)

(b)

(c) ƒsxd = • 0, x … 0

sin 
1
x , x 7 0

g sxd = L 1
x , x Z 0

0, x = 0

Usxd = e0, x 6 0

1, x Ú 0

x : 0.

(a) Identity function

(b) Constant function

0

k

x

y

x

y

y � x

x0

x0

x0

y � k

FIGURE 2.9 The functions in Example 3
have limits at all points .x0

x

y

0

⎧
⎪
⎨
⎪
⎩

x

y

0

1

⎧
⎨
⎩

x

y

0

1

–1

⎧
⎪
⎨
⎪
⎩

y �
0,   x � 0

1,   x � 0

(a) Unit step function U(x) (b) g(x) (c) f (x)

y �
1
x ,  x � 0

0, x � 0

y �
0,         x � 0

1
xsin   ,  x 	 0

FIGURE 2.10 None of these functions has a limit as x approaches 0 (Example 4).
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68 Chapter 2: Limits and Continuity

Solution

(a) It jumps: The unit step function U(x) has no limit as because its values jump
at For negative values of x arbitrarily close to zero, For positive
values of x arbitrarily close to zero, There is no single value L approached
by U(x) as (Figure 2.10a).

(b) It grows too “large” to have a limit: g(x) has no limit as because the values of g
grow arbitrarily large in absolute value as and do not stay close to any fixed
real number (Figure 2.10b).

(c) It oscillates too much to have a limit: ƒ(x) has no limit as because the function’s
values oscillate between and in every open interval containing 0. The values
do not stay close to any one number as  (Figure 2.10c).

The Limit Laws

When discussing limits, sometimes we use the notation if we want to emphasize
the point that is being approached in the limit process (usually to enhance the clarity of
a particular discussion or example). Other times, such as in the statements of the following
theorem, we use the simpler notation or which avoids the subscript in . In
every case, the symbols , c, and a refer to a single point on the x-axis that may or may
not belong to the domain of the function involved. To calculate limits of functions that are
arithmetic combinations of functions having known limits, we can use several easy rules.

x0

x0x : ax : c

x0

x : x0

x : 0
-1+1

x : 0

x : 0
x : 0

x : 0
Usxd = 1.

Usxd = 0.x = 0.
x : 0

In words, the Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the
next rules say that the limit of a difference is the difference of the limits; the limit of a con-
stant times a function is the constant times the limit of the function; the limit of a product is
the product of the limits; the limit of a quotient is the quotient of the limits (provided that the
limit of the denominator is not 0); the limit of a positive integer power (or root) of a function
is the integer power (or root) of the limit (provided that the root of the limit is a real number).

It is reasonable that the properties in Theorem 1 are true (although these intuitive ar-
guments do not constitute proofs). If x is sufficiently close to c, then ƒ(x) is close to L and
g (x) is close to M, from our informal definition of a limit. It is then reasonable that

is close to is close to kƒ(x) is close to kL;
ƒ(x)g(x) is close to LM; and is close to if M is not zero. We prove the
Sum Rule in Section 2.3, based on a precise definition of limit. Rules 2–5 are proved in

L>Mƒ(x)>g (x)
L - M ;L + M; ƒsxd - g sxdƒsxd + g sxd

THEOREM 1—Limit Laws If L, M, c, and k are real numbers and

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule:

4. Product Rule:

5. Quotient Rule:

6. Power Rule: a positive integer

7. Root Rule: a positive integer

(If n is even, we assume that )lim
x:c

ƒ(x) = L 7 0.

lim
x:c
2n ƒ(x) = 2n L = L1>n, n

lim
x:c

[ƒ(x)]n
= Ln, n

lim
x:c

  
ƒsxd
g sxd

=
L
M

, M Z 0

lim
x:c

sƒsxd # g sxdd = L # M

lim
x:c

sk # ƒsxdd = k # L

lim
x:c

sƒsxd - g sxdd = L - M

lim
x:c

sƒsxd + g sxdd = L + M

lim
x:c

 ƒsxd = L and lim
x:c

 g sxd = M, then
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Appendix 4. Rule 6 is obtained by applying Rule 4 repeatedly. Rule 7 is proved in more
advanced texts. The sum, difference, and product rules can be extended to any number of
functions, not just two.

EXAMPLE 5 Use the observations and (Example 3) and
the properties of limits to find the following limits.

(a) (b) (c)

Solution

(a) Sum and Difference Rules

Power and Multiple Rules

(b) Quotient Rule

Sum and Difference Rules

Power or Product Rule

(c)

Difference Rule

Product and Multiple Rules

Two consequences of Theorem 1 further simplify the task of calculating limits of polyno-
mials and rational functions. To evaluate the limit of a polynomial function as x ap-
proaches c, merely substitute c for x in the formula for the function. To evaluate the limit
of a rational function as x approaches a point c at which the denominator is not zero, sub-
stitute c for x in the formula for the function. (See Examples 5a and 5b.) We state these re-
sults formally as theorems.

 = 213

 = 216 - 3

 = 24s -2d2
- 3

 = 2 lim
x: -2

 4x2
- lim

x: -2
 3

Root Rule with n = 2lim
x: -2

24x2
- 3 = 2 lim

x: -2
s4x2

- 3d

 =
c4

+ c2
- 1

c2
+ 5

 =

lim
x:c

 x4
+ lim

x:c
 x2

- lim
x:c

 1

lim
x:c

 x2
+ lim

x:c
 5

 lim
x:c

 
x4

+ x2
- 1

x2
+ 5

=

lim
x:c

sx4
+ x2

- 1d

lim
x:c

sx2
+ 5d

 = c3
+ 4c2

- 3

 lim
x:c

sx3
+ 4x2

- 3d = lim
x:c

 x3
+ lim

x:c
 4x2

- lim
x:c

 3

lim
x: -2

24x2
- 3lim

x:c
 
x4

+ x2
- 1

x2
+ 5

lim
x:c

sx3
+ 4x2

- 3d

limx:c x = climx:c k = k

2.2 Limit of a Function and Limit Laws 69

THEOREM 2—Limits of Polynomials

If then

lim
x:c

 Psxd = Pscd = an cn
+ an - 1 cn - 1

+
Á

+ a0 .

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a0 ,

THEOREM 3—Limits of Rational Functions

If P(x) and Q(x) are polynomials and then

lim
x:c

  
Psxd
Qsxd

=

Pscd
Qscd

.

Qscd Z 0,

7001_AWLThomas_ch02p058-121.qxd  10/1/09  2:33 PM  Page 69



70 Chapter 2: Limits and Continuity

EXAMPLE 6 The following calculation illustrates Theorems 2 and 3:

Eliminating Zero Denominators Algebraically

Theorem 3 applies only if the denominator of the rational function is not zero at the limit
point c. If the denominator is zero, canceling common factors in the numerator and de-
nominator may reduce the fraction to one whose denominator is no longer zero at c. If this
happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE 7 Evaluate

Solution We cannot substitute because it makes the denominator zero. We test the
numerator to see if it, too, is zero at It is, so it has a factor of in common
with the denominator. Canceling the gives a simpler fraction with the same val-
ues as the original for 

Using the simpler fraction, we find the limit of these values as by substitution:

See Figure 2.11.

Using Calculators and Computers to Estimate Limits

When we cannot use the Quotient Rule in Theorem 1 because the limit of the denominator
is zero, we can try using a calculator or computer to guess the limit numerically as x gets
closer and closer to c. We used this approach in Example 1, but calculators and computers
can sometimes give false values and misleading impressions for functions that are unde-
fined at a point or fail to have a limit there, as we now illustrate.

EXAMPLE 8 Estimate the value of 

Solution Table 2.3 lists values of the function for several values near As x ap-
proaches 0 through the values and the function seems to ap-
proach the number 0.05.

As we take even smaller values of x, and 
the function appears to approach the value 0.

Is the answer 0.05 or 0, or some other value? We resolve this question in the next
example.

;0.000001,;0.0005, ;0.0001, ;0.00001,

;0.01,;1, ;0.5, ;0.10,
x = 0.

lim
x:0

 
2x2

+ 100 - 10
x2 .

lim
x:1

 
x2

+ x - 2
x2

- x
= lim

x:1
 
x + 2

x =
1 + 2

1
= 3.

x : 1

x2
+ x - 2

x2
- x

=

sx - 1dsx + 2d
xsx - 1d

=
x + 2

x , if x Z 1.

x Z 1:
sx - 1d’s

sx - 1dx = 1.
x = 1

lim
x:1

 
x2

+ x - 2
x2

- x
.

lim
x: -1

 
x3

+ 4x2
- 3

x2
+ 5

=

s -1d3
+ 4s -1d2

- 3

s -1d2
+ 5

=
0
6

= 0

Identifying Common Factors
It can be shown that if Q(x) is a
polynomial and then 

is a factor of Q(x). Thus, if
the numerator and denominator of a
rational function of x are both zero 
at they have as a
common factor.

sx - cdx = c ,

sx - cd
Qscd = 0,

x

y

1–2 0

(1, 3)

(b)

3

x

y

10–2

(1, 3)

(a)

3

y � x2 � x � 2
x2 � x

y � x � 2
x

FIGURE 2.11 The graph of
in

part (a) is the same as the graph of
in part (b) except at

, where ƒ is undefined. The functions
have the same limit as (Example 7).x : 1
x = 1
g sxd = sx + 2d>x
ƒsxd = sx2

+ x - 2d>sx2
- xd
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Using a computer or calculator may give ambiguous results, as in the last example.
We cannot substitute in the problem, and the numerator and denominator have no
obvious common factors (as they did in Example 7). Sometimes, however, we can create a
common factor algebraically.

EXAMPLE 9 Evaluate

Solution This is the limit we considered in Example 8. We can create a common factor
by multiplying both numerator and denominator by the conjugate radical expression

(obtained by changing the sign after the square root). The preliminary
algebra rationalizes the numerator:

Common factor x2

Cancel x2 for 

Therefore,

This calculation provides the correct answer, in contrast to the ambiguous computer results
in Example 8.

We cannot always algebraically resolve the problem of finding the limit of a quotient
where the denominator becomes zero. In some cases the limit might then be found with the

 =
1

20
= 0.05.

 =
1

202
+ 100 + 10

 lim
x:0

 
2x2

+ 100 - 10
x2 = lim

x:0
 

1

2x2
+ 100 + 10

x Z 0 =
1

2x2
+ 100 + 10

.

 =
x2

x2 A2x2
+ 100 + 10 B

 =
x2

+ 100 - 100

x2 A2x2
+ 100 + 10 B

 
2x2

+ 100 - 10
x2 =

2x2
+ 100 - 10

x2
#
2x2

+ 100 + 10

2x2
+ 100 + 10

2x2
+ 100 + 10

lim
x:0

 
2x2

+ 100 - 10
x2 .

x = 0

2.2 Limit of a Function and Limit Laws 71

TABLE 2.3 Computer values of near 

x ƒ(x)

;0.0005 0.050000

;0.0001 0.000000

;0.00001 0.000000

;0.000001 0.000000

t  approaches 0?

;1     0.049876

;0.5     0.049969

;0.1     0.049999

;0.01     0.050000

t  approaches 0.05?

x = 0ƒ(x) =

2x2
+ 100 - 10

x2

Denominator not 0 at
; substitutex = 0
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72 Chapter 2: Limits and Continuity

aid of some geometry applied to the problem (see the proof of Theorem 7 in Section 2.4),
or through methods of calculus (illustrated in Section 7.5). The next theorem is also
useful.

The Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the Sandwich
Theorem because it refers to a function ƒ whose values are sandwiched between the values
of two other functions g and h that have the same limit L at a point c. Being trapped be-
tween the values of two functions that approach L, the values of ƒ must also approach L
(Figure 2.12). You will find a proof in Appendix 4.

The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 10 Given that

find no matter how complicated u is.

Solution Since

the Sandwich Theorem implies that (Figure 2.13).

EXAMPLE 11 The Sandwich Theorem helps us establish several important limit rules:

(a) (b)

(c) For any function ƒ, implies .

Solution

(a) In Section 1.3 we established that for all (see Figure 2.14a).
Since we have

(b) From Section 1.3, for all (see Figure 2.14b), and we have
or

(c) Since and and have limit 0 as  it
follows that .limx:c ƒ(x) = 0

x : c,ƒ ƒsxd ƒ- ƒ ƒsxd ƒ- ƒ ƒsxd ƒ … ƒsxd … ƒ ƒsxd ƒ

lim
u:0

 cos u = 1.

limu:0 s1 - cos ud = 0
u0 … 1 - cos u … ƒ u ƒ

lim
u:0

 sin u = 0.

limu:0 ƒ u ƒ = 0,limu:0 s - ƒ u ƒd =

u- ƒ u ƒ … sin u … ƒ u ƒ

lim
x:c

 ƒ(x) = 0lim
x:c

 ƒƒ(x) ƒ = 0

lim
u:0

 cos u = 1lim
u:0

 sin u = 0

limx:0 usxd = 1

lim
x:0

s1 - sx2>4dd = 1 and lim
x:0

s1 + sx2>2dd = 1,

limx:0 usxd ,

1 -
x2

4
… usxd … 1 +

x2

2
 for all x Z 0,

x

y

0

L

c

h

f

g

FIGURE 2.12 The graph of ƒ is
sandwiched between the graphs of g and h.

x

y

0 1–1

2

1

y � 1 � x2

2

y � 1 � x2

4

y � u(x)

FIGURE 2.13 Any function u(x) whose
graph lies in the region between

and has
limit 1 as (Example 10).x : 0

y = 1 - sx2>4dy = 1 + sx2>2d

THEOREM 4—The Sandwich Theorem Suppose that for
all x in some open interval containing c, except possibly at itself. Suppose
also that

Then limx:c ƒsxd = L .

lim
x:c

 g sxd = lim
x:c

 hsxd = L .

x = c
g sxd … ƒsxd … hsxd

y � ⎢� ⎢ 

y � – ⎢� ⎢ 

y � sin �  

�

1

–1

–� �

y

(a)

y � ⎢� ⎢ 

y � 1 � cos �

�

y

(b)

2

2

1

1–1–2 0

FIGURE 2.14 The Sandwich Theorem
confirms the limits in Example 11.
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2.2 Limit of a Function and Limit Laws 73

The assertion resulting from replacing the less than or equal to inequality by the
strict less than inequality in Theorem 5 is false. Figure 2.14a shows that for 

but in the limit as equality holds.u: 0,- ƒ u ƒ 6 sin u 6 ƒ u ƒ ,
u Z 0,(6 )

(… )

THEOREM 5 If for all x in some open interval containing c, except
possibly at itself, and the limits of ƒ and g both exist as x approaches c,
then

lim
x:c

 ƒsxd … lim
x:c

 g sxd .

x = c
ƒsxd … g sxd

Exercises 2.2

Limits from Graphs
1. For the function g(x) graphed here, find the following limits or

explain why they do not exist.

a. b. c. d.

2. For the function ƒ(t) graphed here, find the following limits or ex-
plain why they do not exist.

a. b. c. d.

3. Which of the following statements about the function 
graphed here are true, and which are false?

a. exists.

b.

c.

d.

e.

f. exists at every point in 

g. does not exist.lim
x:1

 ƒsxd

s -1, 1d .x0lim
x:x0

 ƒsxd
lim
x:1

 ƒsxd = 0

lim
x:1

 ƒsxd = 1

lim
x:0

 ƒsxd = 1

lim
x:0

 ƒsxd = 0

lim
x:0

 ƒsxd

y = ƒsxd

t

s

1

10

s � f (t)

–1

–1–2

lim
t: -0.5

 ƒstdlim
t:0

 ƒstdlim
t: -1

 ƒstdlim
t: -2

 ƒstd

3
x

y

2

1

1

y � g(x)

lim
x:2.5

 g sxdlim
x:3

 g sxdlim
x:2

 g sxdlim
x:1

 g sxd

4. Which of the following statements about the function 
graphed here are true, and which are false?

a. does not exist.

b.

c. does not exist.

d. exists at every point in 

e. exists at every point in (1, 3).

Existence of Limits
In Exercises 5 and 6, explain why the limits do not exist.

5. 6.

7. Suppose that a function ƒ(x) is defined for all real values of x ex-
cept Can anything be said about the existence of

Give reasons for your answer.

8. Suppose that a function ƒ(x) is defined for all x in Can
anything be said about the existence of Give rea-
sons for your answer.

limx:0 ƒsxd?
[-1, 1] .

limx:x0 ƒsxd?
x = x0 .

lim
x:1

  
1

x - 1
lim
x:0

  
x
ƒ x ƒ

x

y

321–1

1

–1

–2

y � f (x)

x0lim
x:x0

 ƒsxd

s -1, 1d .x0lim
x:x0

 ƒsxd
lim
x:1

 ƒsxd
lim
x:2

 ƒsxd = 2

lim
x:2

 ƒsxd

y = ƒsxd

x

y

21–1

1

–1

y � f (x)

Another important property of limits is given by the next theorem. A proof is given in
the next section.
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74 Chapter 2: Limits and Continuity

9. If must ƒ be defined at If it is, must
Can we conclude anything about the values of ƒ at

Explain.

10. If must exist? If it does, then must
Can we conclude anything about 

Explain.

Calculating Limits
Find the limits in Exercises 11–22.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Limits of quotients Find the limits in Exercises 23–42.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

Limits with trigonometric functions Find the limits in Exercises
43–50.

43. 44.

45. 46.

47. 48.

49. 50. lim
x:0

  27 + sec2 xlim
x: -p

  2x + 4 cos (x + p)

lim
x:0

  (x2
- 1)(2 - cos x)lim

x:0
  
1 + x + sin x

3 cos x

lim
x:0

  tan xlim
x:0

  sec x

lim
x:0

  sin2 xlim
x:0

  (2 sin x - 1)

lim
x:4

  
4 - x

5 - 2x2
+ 9

lim
x: -3

 
2 - 2x2

- 5
x + 3

lim
x: -2

 
x + 2

2x2
+ 5 - 3

lim
x:2

 
2x2

+ 12 - 4
x - 2

lim
x: -1

 
2x2

+ 8 - 3
x + 1

lim
x:1

 
x - 1

2x + 3 - 2

lim
x:4

  
4x - x2

2 - 2x
lim
x:9

 
2x - 3
x - 9

lim
y:2

  
y3

- 8
y4

- 16
lim
u:1

  
u4

- 1
u3

- 1

lim
x:0

  

1
x - 1 +

1
x + 1

x
lim
x:1

  

1
x - 1

x - 1

lim
y:0

  
5y3

+ 8y2

3y4
- 16y2lim

x: -2
  

-2x - 4
x3

+ 2x2

lim
t: -1

  
t2

+ 3t + 2
t2

- t - 2
lim
t:1

 
t2

+ t - 2
t2

- 1

lim
x:2

  
x2

- 7x + 10
x - 2

lim
x: -5

 
x2

+ 3x - 10
x + 5

lim
x: -3

  
x + 3

x2
+ 4x + 3

lim
x:5

  
x - 5

x2
- 25

lim
h:0

 
25h + 4 - 2

h
lim
h:0

 
3

23h + 1 + 1

lim
z:0

 s2z - 8d1>3lim
y: -3

s5 - yd4>3
lim
y:2

  
y + 2

y2
+ 5y + 6

lim
x: -1

 3s2x - 1d2

lim
s:2>3 3ss2s - 1dlim

x:2
  
x + 3
x + 6

lim
x: -2

sx3
- 2x2

+ 4x + 8dlim
t:6

 8st - 5dst - 7d

lim
x:2

s -x2
+ 5x - 2dlim

x: -7
s2x + 5d

limx:1 ƒsxd?limx:1 ƒsxd = 5?
limx:1 ƒsxdƒs1d = 5,

x = 1?
ƒs1d = 5?

x = 1?limx:1 ƒsxd = 5, Using Limit Rules
51. Suppose and Name the

rules in Theorem 1 that are used to accomplish steps (a), (b), and
(c) of the following calculation.

(a)

(b)

(c)

52. Let and 
Name the rules in Theorem 1 that are used to accomplish steps
(a), (b), and (c) of the following calculation.

(a)

(b)

(c)

53. Suppose and Find

a. b.

c. d.

54. Suppose and Find

a. b.

c. d.

55. Suppose and Find

a. b.

c. d.

56. Suppose that and
Find

a.

b.

c. lim
x: -2

s -4psxd + 5r sxdd>ssxd

lim
x: -2

  psxd # r sxd # ssxd

lim
x: -2

 spsxd + r sxd + ssxdd
ssxd = -3.limx:-2

limx:-2  psxd = 4, limx:-2  r sxd = 0,

lim
x:b

 ƒsxd>g sxdlim
x:b

 4g sxd

lim
x:b

 ƒsxd # g sxdlim
x:b

 sƒsxd + g sxdd
limx:b g sxd = -3.limx:b ƒsxd = 7

lim
x:4

  
g sxd

ƒsxd - 1
lim
x:4

 sg sxdd2

lim
x:4

 xƒsxdlim
x:4

 sg sxd + 3d
limx:4 g sxd = -3.limx:4 ƒsxd = 0

lim
x:c

  
ƒsxd

ƒsxd - g sxd
lim
x:c

 sƒsxd + 3g sxdd

lim
x:c

 2ƒsxdg sxdlim
x:c

 ƒsxdg sxd
limx:c g sxd = -2.limx:c ƒsxd = 5

 =

2s5ds5d
s1ds4 - 2d

=

5
2

 =

45 lim
x:1

 hsxd

A lim
x:1

 p(x) B A lim
x:1

 4 - lim
x:1

 r (x) B

 =

4lim
x:1

 5hsxd

A lim
x:1

 p(x) B A lim
x:1

 A4 - r(x) B B

 lim
x:1

  
25hsxd

psxds4 - rsxdd
=

lim
x:1
25hsxd

lim
x:1

 spsxds4 - rsxddd

limx:1 r sxd = 2.limx:1 hsxd = 5, limx:1 psxd = 1,

 =

s2ds1d - s -5d

s1 + 7d2>3 =

7
4

 =

2 lim
x:0

 ƒsxd - lim
x:0

 g sxd

A lim
x:0

 ƒ(x) + lim
x:0

 7 B2>3

 =

lim
x:0

 2ƒsxd - lim
x:0

 g sxd

A lim
x:0

 Aƒsxd + 7 B B2>3

 lim
x:0

  
2ƒsxd - g sxd

sƒsxd + 7d2>3 =

lim
x:0

 s2ƒsxd - g sxdd

lim
x:0

 sƒsxd + 7d2>3

limx:0 g sxd = -5.limx:0 ƒsxd = 1
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Limits of Average Rates of Change
Because of their connection with secant lines, tangents, and instanta-
neous rates, limits of the form

occur frequently in calculus. In Exercises 57–62, evaluate this limit
for the given value of x and function ƒ.

57. 58.

59. 60.

61. 62.

Using the Sandwich Theorem

63. If for find 

64. If for all x, find 

65. a. It can be shown that the inequalities

hold for all values of x close to zero. What, if anything, does
this tell you about

Give reasons for your answer.

b. Graph

together for Comment on the behavior
of the graphs as 

66. a. Suppose that the inequalities

hold for values of x close to zero. (They do, as you will see in
Section 10.9.) What, if anything, does this tell you about

Give reasons for your answer.

b. Graph the equations 
and together for 

Comment on the behavior of the graphs as 

Estimating Limits
You will find a graphing calculator useful for Exercises 67–76.

67. Let 

a. Make a table of the values of ƒ at the points 
and so on as far as your calculator can go.

Then estimate What estimate do you arrive at if
you evaluate ƒ at instead?

b. Support your conclusions in part (a) by graphing ƒ near
and using Zoom and Trace to estimate y-values on

the graph as 

c. Find algebraically, as in Example 7.

68. Let 

a. Make a table of the values of g at the points 
and so on through successive decimal approximations

of Estimate limx:22  g sxd .22.

1.414 ,
x = 1.4, 1.41,

g sxd = sx2
- 2d>(x - 22).

limx:-3 ƒsxd
x : -3.

x0 = -3

x = -2.9, -2.99, -2.999, Á

limx:-3 ƒsxd .
-3.01, -3.001 ,

x = -3.1,

ƒsxd = sx2
- 9d>sx + 3d .

x : 0.
-2 … x … 2.y = 1>2y = s1 - cos xd>x2 ,

y = s1>2d - sx2>24d,

lim
x:0

 
1 - cos x

x2 ?

1
2

-

x2

24
6

1 - cos x

x2 6

1
2

x : 0.
-2 … x … 2.y = 1

y = 1 - sx2>6d, y = sx sin xd>s2 - 2 cos xd,  and 

lim
x:0

  
x sin x

2 - 2 cos x
?

1 -

x2

6
6

x sin x
2 - 2 cos x

6 1

limx:0 g sxd .2 - x2
… g sxd … 2 cos x

ƒsxd .limx:0

-1 … x … 1,25 - 2x2
… ƒsxd … 25 - x2

ƒsxd = 23x + 1, x = 0ƒsxd = 2x, x = 7

ƒsxd = 1>x, x = -2ƒsxd = 3x - 4, x = 2

ƒsxd = x2, x = -2ƒsxd = x2, x = 1

lim
h:0

 
ƒsx + hd - ƒsxd

h

2.2 Limit of a Function and Limit Laws 75

b. Support your conclusion in part (a) by graphing g near

and using Zoom and Trace to estimate y-values on
the graph as 

c. Find algebraically.

69. Let 

a. Make a table of the values of G at 
and so on. Then estimate What estimate do
you arrive at if you evaluate G at 

instead?

b. Support your conclusions in part (a) by graphing G and
using Zoom and Trace to estimate y-values on the graph as

c. Find algebraically.

70. Let 

a. Make a table of the values of h at and so
on. Then estimate What estimate do you arrive
at if you evaluate h at instead?

b. Support your conclusions in part (a) by graphing h near
and using Zoom and Trace to estimate y-values on the

graph as 

c. Find algebraically.

71. Let 

a. Make tables of the values of ƒ at values of x that
approach from above and below. Then estimate

b. Support your conclusion in part (a) by graphing ƒ near
and using Zoom and Trace to estimate y-values on

the graph as 

c. Find algebraically.

72. Let 

a. Make tables of values of F at values of x that
approach from above and below. Then estimate

b. Support your conclusion in part (a) by graphing F near
and using Zoom and Trace to estimate y-values on

the graph as 

c. Find algebraically.

73. Let 

a. Make a table of the values of g at values of that approach
from above and below. Then estimate 

b. Support your conclusion in part (a) by graphing g near

74. Let 

a. Make tables of values of G at values of t that approach 
from above and below. Then estimate 

b. Support your conclusion in part (a) by graphing G near

75. Let 

a. Make tables of values of ƒ at values of x that approach 
from above and below. Does ƒ appear to have a limit as

If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing ƒ near
x0 = 1.

x : 1?

x0 = 1

ƒsxd = x1>s1 - xd .

t0 = 0.

limt:0 Gstd .
t0 = 0

Gstd = s1 - cos td>t2 .

u0 = 0.

limu:0 g sud .u0 = 0
u

g sud = ssin ud>u .

limx:-2 Fsxd
x : -2.

x0 = -2

limx:-2 Fsxd .
x0 = -2

Fsxd = sx2
+ 3x + 2d>s2 - ƒ x ƒ d .

limx:-1 ƒsxd
x : -1.

x0 = -1

limx:-1 ƒsxd .
x0 = -1

ƒsxd = sx2
- 1d>s ƒ x ƒ - 1d .

limx:3 hsxd
x : 3.

x0 = 3

x = 3.1, 3.01, 3.001, Á

limx:3 hsxd .
x = 2.9, 2.99, 2.999,

hsxd = sx2
- 2x - 3d>sx2

- 4x + 3d .

limx:-6 Gsxd
x : -6.

-6.001, Á

x = -6.1, -6.01,
limx:-6 Gsxd .

x = -5.9, -5.99, -5.999,

Gsxd = sx + 6d>sx2
+ 4x - 12d .

limx:22  g sxd
x : 22.

x0 = 22

T

T

T
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76 Chapter 2: Limits and Continuity

76. Let 

a. Make tables of values of ƒ at values of x that approach 
from above and below. Does ƒ appear to have a limit as

If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing ƒ near 

Theory and Examples
77. If for x in and for

and at what points c do you automatically know
What can you say about the value of the limit at

these points?

78. Suppose that for all and suppose that

Can we conclude anything about the values of ƒ, g, and h at
Could Could Give reasons

for your answers.

79. If find 

80. If find

a. b.

81. a. If find lim
x:2

 ƒsxd .lim
x:2

 
ƒsxd - 5

x - 2
= 3,

lim
x: -2

 
ƒsxd

xlim
x: -2

 ƒsxd

lim
x: -2

 
ƒsxd

x2 = 1,

lim
x:4

 ƒsxd .lim
x:4

 
ƒsxd - 5

x - 2
= 1,

limx:2 ƒsxd = 0?ƒs2d = 0?x = 2?

lim
x:2

 g sxd = lim
x:2

 hsxd = -5.

x Z 2g sxd … ƒsxd … hsxd

limx:c ƒsxd?
x 7 1,x 6 -1

x2
… ƒsxd … x4[-1, 1]x4

… ƒsxd … x2

x0 = 0.

x : 0?

x0 = 0

ƒsxd = s3x
- 1d>x .

b. If find 

82. If find

a. b.

83. a. Graph to estimate zooming
in on the origin as necessary.

b. Confirm your estimate in part (a) with a proof.

84. a. Graph to estimate zooming
in on the origin as necessary.

b. Confirm your estimate in part (a) with a proof.

COMPUTER EXPLORATIONS
Graphical Estimates of Limits
In Exercises 85–90, use a CAS to perform the following steps:

a. Plot the function near the point being approached.

b. From your plot guess the value of the limit.

85. 86.

87. 88.

89. 90. lim
x:0

  
2x2

3 - 3 cos x
lim
x:0

  
1 - cos x

x sin x

lim
x:3

  
x2

- 9

2x2
+ 7 - 4

lim
x:0

  
23 1 + x - 1

x

lim
x: -1

  
x3

- x2
- 5x - 3

sx + 1d2lim
x:2

  
x4

- 16
x - 2

x0

limx:0 hsxd ,hsxd = x2 cos s1>x3d

limx:0 g sxd ,g sxd = x sin s1>xd

lim
x:0

 
ƒsxd

xlim
x:0

 ƒsxd

lim
x:0

 
ƒsxd

x2 = 1,

lim
x:2

 ƒsxd .lim
x:2

 
ƒsxd - 5

x - 2
= 4,

T

2.3 The Precise Definition of a Limit

We now turn our attention to the precise definition of a limit. We replace vague phrases
like “gets arbitrarily close to” in the informal definition with specific conditions that can
be applied to any particular example. With a precise definition, we can prove the limit
properties given in the preceding section and establish many important limits.

To show that the limit of ƒ(x) as equals the number L, we need to show that the
gap between ƒ(x) and L can be made “as small as we choose” if x is kept “close enough” to

Let us see what this would require if we specified the size of the gap between ƒ(x) and L.

EXAMPLE 1 Consider the function near Intuitively it appears that
y is close to 7 when x is close to 4, so However, how close to

does x have to be so that differs from 7 by, say, less than 2 units?

Solution We are asked: For what values of x is To find the answer we
first express in terms of x:

The question then becomes: what values of x satisfy the inequality To
find out, we solve the inequality:

Keeping x within 1 unit of will keep y within 2 units of (Figure 2.15).y0 = 7x0 = 4

 -1 6 x - 4 6 1.

 3 6 x 6 5

 6 6 2x 6 10

 -2 6 2x - 8 6 2

 ƒ 2x - 8 ƒ 6 2

ƒ 2x - 8 ƒ 6 2?

ƒ y - 7 ƒ = ƒ s2x - 1d - 7 ƒ = ƒ 2x - 8 ƒ .

ƒ y - 7 ƒ

ƒ y - 7 ƒ 6 2?

y = 2x - 1x0 = 4
limx:4 s2x - 1d = 7.

x0 = 4.y = 2x - 1

x0 .

x : x0

T

⎧
⎪
⎨
⎪
⎩

⎧ ⎨ ⎩

x

y

0

5

3 54

7

9
To satisfy
this

Restrict
to this

Lower bound:
y � 5

Upper bound:
y � 9

y � 2x � 1

FIGURE 2.15 Keeping x within 1 unit of
will keep y within 2 units of
(Example 1).y0 = 7

x0 = 4
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In the previous example we determined how close x must be to a particular value to
ensure that the outputs ƒ(x) of some function lie within a prescribed interval about a limit
value L. To show that the limit of ƒ(x) as actually equals L, we must be able to show
that the gap between ƒ(x) and L can be made less than any prescribed error, no matter how
small, by holding x close enough to 

Definition of Limit

Suppose we are watching the values of a function ƒ(x) as x approaches (without taking
on the value of itself). Certainly we want to be able to say that ƒ(x) stays within one-
tenth of a unit from L as soon as x stays within some distance of (Figure 2.16). But
that in itself is not enough, because as x continues on its course toward what is to pre-
vent ƒ(x) from jittering about within the interval from to without
tending toward L?

We can be told that the error can be no more than or or .
Each time, we find a new about so that keeping x within that interval satisfies
the new error tolerance. And each time the possibility exists that ƒ(x) jitters away from L at
some stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel
between a skeptic and a scholar. The skeptic presents to prove that the limit
does not exist or, more precisely, that there is room for doubt. The scholar answers every
challenge with a around that keeps the function values within of L.

How do we stop this seemingly endless series of challenges and responses? By prov-
ing that for every error tolerance that the challenger can produce, we can find, calculate,
or conjure a matching distance that keeps x “close enough” to to keep ƒ(x) within that
tolerance of L (Figure 2.17). This leads us to the precise definition of a limit.

x0d

P

Px0d-interval

P-challenges

x0d-interval
1>100,0001>10001>100

L + (1>10)L - (1>10)
x0 ,

x0d

x0

x0

x0 .

x : x0

x0

2.3 The Precise Definition of a Limit 77

0

L

x
��

x

y

x0 � � x0 x0 � �

f (x)

for all x � x0
in here

f (x) lies
in here

L �
1
10

L �
1
10

FIGURE 2.16 How should we define
so that keeping x within the interval

will keep ƒ(x) within the

interval aL -

1
10

, L +

1
10
b ?

sx0 - d, x0 + dd
d 7 0

DEFINITION Let ƒ(x) be defined on an open interval about except pos-
sibly at itself. We say that the limit of ƒ(x) as x approaches is the 
number L, and write

if, for every number there exists a corresponding number such that
for all x,

0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0,

lim
x:x0

 ƒsxd = L ,

x0x0

x0 ,

x

y

0

L

x
��

f (x) lies
in here

for all x � x0
in here

L � �

L � �

f (x)

x0 � � x0 x0 � �

FIGURE 2.17 The relation of and in
the definition of limit.

Pd

One way to think about the definition is to suppose we are machining a generator
shaft to a close tolerance. We may try for diameter L, but since nothing is perfect, we must
be satisfied with a diameter ƒ(x) somewhere between and The is the
measure of how accurate our control setting for x must be to guarantee this degree of accu-
racy in the diameter of the shaft. Notice that as the tolerance for error becomes stricter, we
may have to adjust That is, the value of how tight our control setting must be, de-
pends on the value of the error tolerance.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it en-
ables us to verify that a suspected limit is correct. The following examples show how the
definition can be used to verify limit statements for specific functions. However, the real
purpose of the definition is not to do calculations like this, but rather to prove general the-
orems so that the calculation of specific limits can be simplified.

P ,
d ,d .

dL + P .L - P
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78 Chapter 2: Limits and Continuity

EXAMPLE 2 Show that

Solution Set and in the definition of limit. For any given
we have to find a suitable so that if and x is within distance of
that is, whenever

it is true that ƒ(x) is within distance of so

ƒ ƒsxd - 2 ƒ 6 P .

L = 2,P

0 6 ƒ x - 1 ƒ 6 d ,

x0 = 1,
dx Z 1d 7 0P 7 0,

L = 2x0 = 1, ƒsxd = 5x - 3,

lim
x:1

 s5x - 3d = 2.

y

x

L

L �
1
10

L �
1
10

0

y � f (x)

x0

The challenge:

     Make 
 f (x) – L 
 � � � 1
10

y

x

L

L �
1
10

L �
1
10

0

y � f (x)

x0
x0 � �1/10 x0 � �1/10

Response:

      
 x � x0 
 � �1/10 (a number)

y

x

L

L �
1

100

L �
1

100

0

y � f (x)

x0

New challenge:

     Make 
 f (x) – L 
 � � � 1
100

y

x

L

L �
1

100

L �
1

100

0

y � f (x)

x0
x0 � �1/100 x0 � �1/100

Response:

      
 x � x0 
 � �1/100

y

x

L

L �
1

1000

L �
1

1000

0

y � f (x)

x0

New challenge:

       � � 1
1000

y

x

L

L �
1

1000

L � �

L � �

L �
1

1000

0

y � f (x)

x0

Response:

      
 x � x0 
 � �1/1000

y

x

L

L �
1

100,000

L �
1

100,000

0

y � f (x)

x0

New challenge:
1

100,000
� �

y

x
0

y � f (x)

x0

Response:

      
 x � x0 
 � �1/100,000

L

L �
1

100,000

L �
1

100,000

y

L

0

y � f (x)

x0

New challenge:

       � � ...

x
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We find by working backward from the 

Thus, we can take (Figure 2.18). If then

which proves that 
The value of is not the only value that will make imply

Any smaller positive will do as well. The definition does not ask for a
“best” positive just one that will work.

EXAMPLE 3 Prove the following results presented graphically in Section 2.2.

(a) (b) (k constant)

Solution

(a) Let be given. We must find such that for all x

The implication will hold if equals or any smaller positive number (Figure 2.19).
This proves that 

(b) Let be given. We must find such that for all x

Since we can use any positive number for and the implication will hold
(Figure 2.20). This proves that

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about for which was less than 
was symmetric about and we could take to be half the length of that interval. When
such symmetry is absent, as it usually is, we can take to be the distance from to the
interval’s nearer endpoint.

EXAMPLE 4 For the limit find a that works for 
That is, find a such that for all x

Solution We organize the search into two steps, as discussed below.

1. Solve the inequality to find an interval containing on
which the inequality holds for all

2 6 x 6 10

1 6 x - 1 6 9

1 6 2x - 1 6 3

-1 6 2x - 1 - 2 6 1

ƒ2x - 1 - 2 ƒ 6 1

x Z x0 .
x0 = 5ƒ2x - 1 - 2 ƒ 6 1

0 6 ƒ x - 5 ƒ 6 d Q ƒ2x - 1 - 2 ƒ 6 1.

d 7 0
P = 1.d 7 0limx:52x - 1 = 2,

x0d

dx0

Pƒ ƒsxd - L ƒx0

limx:x0 k = k.
dk - k = 0,

0 6 ƒ x - x0 ƒ 6 d implies ƒ k - k ƒ 6 P .

d 7 0P 7 0

limx:x0 x = x0 .
Pd

0 6 ƒ x - x0 ƒ 6 d implies ƒ x - x0 ƒ 6 P .

d 7 0P 7 0

lim
x:x0

 k = klim
x:x0

 x = x0

d ,
dƒ 5x - 5 ƒ 6 P .

0 6 ƒ x - 1 ƒ 6 dd = P>5limx:1s5x - 3d = 2.

ƒ s5x - 3d - 2 ƒ = ƒ 5x - 5 ƒ = 5 ƒ x - 1 ƒ 6 5sP>5d = P ,

0 6 ƒ x - 1 ƒ 6 d = P>5,d = P>5
 ƒ x - 1 ƒ 6 P>5.

 5 ƒ x - 1 ƒ 6 P

 ƒ s5x - 3d - 2 ƒ = ƒ 5x - 5 ƒ 6 P

P-inequality:d

2.3 The Precise Definition of a Limit 79

x

y

0

2

1

2 � �

2 � �

y � 5x � 3

1 �
5
� 1 �

5
�

–3

NOT TO SCALE

k � �

k � �
k

0 x0 � � x0 � �x0

x

y

y � k

FIGURE 2.18 If then
guarantees that

(Example 2).ƒ ƒsxd - 2 ƒ 6 P

0 6 ƒ x - 1 ƒ 6 P>5
ƒsxd = 5x - 3,

x0 � �

x0 � �

x0 � �

x0 � �

x0

0 x0 � � x0 � �x0
x

y

y � x

FIGURE 2.19 For the function 
we find that will
guarantee whenever

(Example 3a).d … P

ƒ ƒsxd - x0 ƒ 6 P

0 6 ƒ x - x0 ƒ 6 d

ƒsxd = x ,

FIGURE 2.20 For the function 
we find that for any
positive (Example 3b).d

ƒ ƒsxd - k ƒ 6 P

ƒsxd = k ,
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80 Chapter 2: Limits and Continuity

The inequality holds for all x in the open interval (2, 10), so it holds for all in
this interval as well.

2. Find a value of to place the centered interval (centered
at ) inside the interval (2, 10). The distance from 5 to the nearer endpoint of
(2, 10) is 3 (Figure 2.21). If we take or any smaller positive number, then the
inequality will automatically place x between 2 and 10 to make

(Figure 2.22):

0 6 ƒ x - 5 ƒ 6 3 Q ƒ2x - 1 - 2 ƒ 6 1.

ƒ2x - 1 - 2 ƒ 6 1

0 6 ƒ x - 5 ƒ 6 d

d = 3
x0 = 5

5 - d 6 x 6 5 + dd 7 0

x Z 5

EXAMPLE 5 Prove that if

Solution Our task is to show that given there exists a such that for all x

1. Solve the inequality to find an open interval containing on
which the inequality holds for all

For we have and the inequality to solve is 

The inequality holds for all in the open interval 

(Figure 2.23).

2. Find a value of that places the centered interval inside the in-

terval

Take to be the distance from to the nearer endpoint of 

In other words, take the minimum (the d = min E2 - 24 - P, 24 + P - 2F ,
A24 - P, 24 + P B .x0 = 2d

A24 - P, 24 + P B .
s2 - d, 2 + ddd 7 0

24 + P B A24 - P,x Z 2ƒ ƒsxd - 4 ƒ 6 P

 24 - P 6 x 6 24 + P .

 24 - P 6 ƒ x ƒ 6 24 + P

 4 - P 6 x2
6 4 + P

 -P 6 x2
- 4 6 P

ƒ x2
- 4 ƒ 6 P

ƒ x2
- 4 ƒ 6 P :ƒsxd = x2 ,x Z x0 = 2,

x Z x0 .
x0 = 2ƒ ƒsxd - 4 ƒ 6 P

0 6 ƒ x - 2 ƒ 6 d Q ƒ ƒsxd - 4 ƒ 6 P .

d 7 0P 7 0

ƒsxd = e x2, x Z 2

1, x = 2.

limx:2 ƒsxd = 4

x

y

0 1 2 5 8 10

1

2

3

3 3

y � �x � 1

NOT TO SCALE

How to Find Algebraically a for a Given ƒ, L, and 

The process of finding a such that for all x

can be accomplished in two steps.

1. Solve the inequality to find an open interval (a, b) containing
on which the inequality holds for all 

2. Find a value of that places the open interval centered
at inside the interval (a, b). The inequality will hold for all

in this d-interval.x Z x0

ƒ ƒsxd - L ƒ 6 Px0

sx0 - d, x0 + ddd 7 0

x Z x0 .x0

ƒ ƒsxd - L ƒ 6 P

0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P

d 7 0

P>0x0 ,D

x
102 8

3

5

3

FIGURE 2.21 An open interval of
radius 3 about will lie inside the
open interval (2, 10).

x0 = 5

FIGURE 2.22 The function and intervals
in Example 4.

0

4

4 � �

4 � �

(2, 1)

(2, 4)

2
x

y

�4 � � �4 � �

y � x2

FIGURE 2.23 An interval containing
so that the function in Example 5

satisfies ƒ ƒsxd - 4 ƒ 6 P .
x = 2

Assumes see below.P 6 4 ;

An open interval about 
that solves the inequality

x0 = 2
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smaller) of the two numbers and If has this or any
smaller positive value, the inequality will automatically place x be-

tween and to make For all x,

This completes the proof for .
If , then we take to be the distance from to the nearer endpoint of 

the interval . In other words, take (See
Figure 2.23.)

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as those
in the preceding examples. Rather we appeal to general theorems about limits, in particular
the theorems of Section 2.2. The definition is used to prove these theorems (Appendix 4). As
an example, we prove part 1 of Theorem 1, the Sum Rule.

EXAMPLE 6 Given that and prove that

Solution Let be given. We want to find a positive number such that for all x

Regrouping terms, we get

Since there exists a number such that for all x

Similarly, since there exists a number such that for all x

Let the smaller of and If then 
so and so Therefore

This shows that 

Next we prove Theorem 5 of Section 2.2.

EXAMPLE 7 Given that and and that 
for all x in an open interval containing c (except possibly c itself), prove that 

Solution We use the method of proof by contradiction. Suppose, on the contrary, that
Then by the limit of a difference property in Theorem 1,

lim
x:c

 s g sxd - ƒsxdd = M - L .

L 7 M .

L … M .
ƒsxd … g sxdlimx:c g sxd = M ,limx:c ƒsxd = L

limx:c sƒsxd + g sxdd = L + M .

ƒ ƒsxd + g sxd - sL + Md ƒ 6
P

2
+

P

2
= P .

ƒ g sxd - M ƒ 6 P>2.ƒ x - c ƒ 6 d2 ,ƒ ƒsxd - L ƒ 6 P>2,
ƒ x - c ƒ 6 d1 ,0 6 ƒ x - c ƒ 6 dd2 .d1d = min 5d1, d26 ,

0 6 ƒ x - c ƒ 6 d2 Q ƒ g sxd - M ƒ 6 P>2.

d2 7 0limx:c g sxd = M ,

0 6 ƒ x - c ƒ 6 d1 Q ƒ ƒsxd - L ƒ 6 P>2.

d1 7 0limx:c ƒsxd = L ,

 … ƒ ƒsxd - L ƒ + ƒ g sxd - M ƒ .

 ƒ ƒsxd + g sxd - sL + Md ƒ = ƒ sƒsxd - Ld + sg sxd - Md ƒ

0 6 ƒ x - c ƒ 6 d Q ƒ ƒsxd + g sxd - sL + M d ƒ 6 P .

dP 7 0

lim
x:c 

sƒsxd + g sxdd = L + M .

limx:c g sxd = M ,limx:c ƒsxd = L

d = min E2, 24 + P - 2F .A0, 24 + P B x0 = 2dP Ú 4
P 6 4

0 6 ƒ x - 2 ƒ 6 d Q ƒ ƒsxd - 4 ƒ 6 P .

ƒ ƒsxd - 4 ƒ 6 P .24 + P24 - P

0 6 ƒ x - 2 ƒ 6 d

d24 + P - 2.2 - 24 - P

2.3 The Precise Definition of a Limit 81

Triangle Inequality:

ƒ a + b ƒ … ƒ a ƒ + ƒ b ƒ
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82 Chapter 2: Limits and Continuity

Therefore, for any there exists such that

Since by hypothesis, we take in particular and we have a number
such that

Since for any number a, we have

which simplifies to

But this contradicts Thus the inequality must be false. Therefore
L … M .

L 7 Mƒsxd … g sxd .

g sxd 6 ƒsxd whenever 0 6 ƒ x - c ƒ 6 d .

sg sxd - ƒsxdd - sM - Ld 6 L - M whenever 0 6 ƒ x - c ƒ 6 d

a … ƒ a ƒ

ƒ sg sxd - ƒsxdd - sM - Ld ƒ 6 L - M whenever 0 6 ƒ x - c ƒ 6 d .

d 7 0
P = L - ML - M 7 0

ƒ sg sxd - ƒsxdd - sM - Ld ƒ 6 P whenever 0 6 ƒ x - c ƒ 6 d .

d 7 0P 7 0,

Exercises 2.3

Centering Intervals About a Point
In Exercises 1–6, sketch the interval (a, b) on the x-axis with the
point x0 inside. Then find a value of such that for all

1.

2.

3.

4.

5.

6.

Finding Deltas Graphically
In Exercises 7–14, use the graphs to find a such that for all x

7. 8.

x

y

0

7.65
7.5
7.35

NOT TO SCALE

–3
–3.1 –2.9

f (x) � –   x � 33
2

y � –   x � 33
2

� � 0.15
L � 7.5

x0 � –3

x

y

0

6.2
6

5.8

5
5.14.9

y � 2x � 4

f (x) � 2x � 4

NOT TO SCALE

x0 � 5
L � 6
� � 0.2

0 6 ƒ x - x0 ƒ 6 d   Q    ƒ ƒsxd - L ƒ 6 P .
d 7 0

a = 2.7591, b = 3.2391, x0 = 3

a = 4>9, b = 4>7, x0 = 1>2
a = -7>2, b = -1>2, x0 = -3>2
a = -7>2, b = -1>2, x0 = -3

a = 1, b = 7, x0 = 2

a = 1, b = 7, x0 = 5

x, 0 6 ƒ x - x0 ƒ 6 d Q  a 6 x 6 b .
d 7 0

9. 10.

11. 12.

3.25

3

2.75

y

x

y � 4 � x2

–1

L � 3

f (x) � 4 � x2

x0 � –1

� � 0.25

�5
2

– �3
2

–
0

NOT TO SCALE

L � 4

x

y

0

5

4

3

2

NOT TO SCALE

y � x2

f (x) � x2

x0 � 2

� � 1

�3 �5

f (x) � 2�x � 1

y � 2�x � 1

x

y

4.2
4

3.8

2

–1 0 2.61 3 3.41

NOT TO SCALE

� � 0.2
L � 4

x0 � 3

x

y

0

1

1

f (x) � �x

y � �x
1
4

� � 5
4

3
4

9
16

25
16

L � 1
x0 � 1
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13. 14.

Finding Deltas Algebraically

Each of Exercises 15–30 gives a function ƒ(x) and numbers , and
In each case, find an open interval about on which the in-

equality holds. Then give a value for such that
for all x satisfying the inequality 
holds.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
P = 0.05
ƒsxd = mx + b, m 7 0, L = m + b, x0 = 1,

x0 = 1>2, P = c 7 0
ƒsxd = mx + b, m 7 0, L = sm>2d + b,

P = c 7 0ƒsxd = mx, m 7 0, L = 3m, x0 = 3,

ƒsxd = mx,        m 7 0,        L = 2m,        x0 = 2,        P = 0.03

ƒsxd = 120>x, L = 5, x0 = 24, P = 1

ƒsxd = x2
- 5, L = 11, x0 = 4, P = 1

ƒsxd = 1>x, L = -1, x0 = -1, P = 0.1

ƒsxd = x2, L = 4, x0 = -2, P = 0.5

ƒsxd = x2, L = 3, x0 = 23, P = 0.1

ƒsxd = 1>x, L = 1>4, x0 = 4, P = 0.05

ƒsxd = 2x - 7, L = 4, x0 = 23, P = 1

ƒsxd = 219 - x, L = 3, x0 = 10, P = 1

ƒsxd = 2x, L = 1>2, x0 = 1>4, P = 0.1

ƒsxd = 2x + 1, L = 1, x0 = 0, P = 0.1

ƒsxd = 2x - 2, L = -6, x0 = -2, P = 0.02

ƒsxd = x + 1, L = 5, x0 = 4, P = 0.01

ƒ ƒsxd - L ƒ 6 P0 6 ƒ x - x0 ƒ 6 d

d 7 0ƒ ƒsxd - L ƒ 6 P

x0P 7 0.
L, x0

0

y

x

x0 �

L � 2
� � 0.01

y � 1
x

f (x) � 1
x
1
22.01

2

1.99

1
21

2.01
1

1.99
NOT TO SCALE

2.5

2

1.5

y

x
–1

L � 2

f (x) �

x0 � –1

� � 0.5

16
9

– 16
25

– 0

�–x
2

y �
�–x

2
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Using the Formal Definition
Each of Exercises 31–36 gives a function ƒ(x), a point , and a posi-
tive number Find Then find a number such

that for all x

31.

32.

33.

34.

35.

36.

Prove the limit statements in Exercises 37–50.

37. 38.

39. 40.

41.

42.

43. 44.

45. 46.

47.

48.

49.

x

y

y � x sin 1
x

1
�– 1

�

1
2�

– 1
2�

lim
x:0

 x sin 
1
x = 0

lim
x:0

 ƒsxd = 0 if ƒsxd = e2x, x 6 0

x>2, x Ú 0

lim
x:1

 ƒsxd = 2 if ƒsxd = e4 - 2x, x 6 1

6x - 4, x Ú 1

lim
x:1

  
x2

- 1
x - 1

= 2lim
x: -3

  
x2

- 9
x + 3

= -6

lim
x:23

  
1
x2 =

1
3

lim
x:1

 
1
x = 1

lim
x: -2

 ƒsxd = 4 if ƒsxd = e x2, x Z -2

1, x = -2

lim
x:1

 ƒsxd = 1 if ƒsxd = e x2, x Z 1

2, x = 1

lim
x:0
24 - x = 2lim

x:9
2x - 5 = 2

lim
x:3

 s3x - 7d = 2lim
x:4

 s9 - xd = 5

ƒsxd = 4>x, x0 = 2, P = 0.4

ƒsxd = 21 - 5x, x0 = -3, P = 0.5

ƒsxd =

x2
+ 6x + 5
x + 5

, x0 = -5, P = 0.05

ƒsxd =

x2
- 4

x - 2
, x0 = 2, P = 0.05

ƒsxd = -3x - 2, x0 = -1, P = 0.03

ƒsxd = 3 - 2x, x0 = 3, P = 0.02

0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0L = lim
x:x0

 ƒsxd .P .
x0
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84 Chapter 2: Limits and Continuity

50.

Theory and Examples

51. Define what it means to say that 

52. Prove that if and only if 

53. A wrong statement about limits Show by example that the fol-
lowing statement is wrong.

The number L is the limit of ƒ(x) as x approaches 
if ƒ(x) gets closer to L as x approaches 

Explain why the function in your example does not have the given
value of L as a limit as 

54. Another wrong statement about limits Show by example that
the following statement is wrong.

The number L is the limit of ƒ(x) as x approaches if, given
any there exists a value of x for which 

Explain why the function in your example does not have the given
value of L as a limit as 

55. Grinding engine cylinders Before contracting to grind engine
cylinders to a cross-sectional area of you need to know how
much deviation from the ideal cylinder diameter of in.
you can allow and still have the area come within of the
required To find out, you let and look for the
interval in which you must hold x to make What
interval do you find?

56. Manufacturing electrical resistors Ohm’s law for electrical
circuits like the one shown in the accompanying figure states that

In this equation, V is a constant voltage, I is the current
in amperes, and R is the resistance in ohms. Your firm has been
asked to supply the resistors for a circuit in which V will be 120
volts and I is to be In what interval does R have to
lie for I to be within 0.1 amp of the value 

V RI
�

�

I0 = 5?
5 ; 0.1 amp.

V = RI .

ƒ A - 9 ƒ … 0.01 .
A = psx>2d29 in2 .

0.01 in2
x0 = 3.385

9 in2 ,

x : x0 .

ƒ ƒsxd - L ƒ 6 P .P 7 0,
x0

x : x0 .

x0 .
x0

lim
h:0

 ƒsh + cd = L .lim
x:c

 ƒsxd = L

lim
x:0

 g sxd = k .

x

y

1

–1

0 1–1

y � x2

y � –x2

y � x2 sin 1
x

2
�

2
�–

lim
x:0

 x2 sin 
1
x = 0 When Is a Number L Not the Limit of ƒ(x) as ? 

Showing L is not a limit We can prove that by
providing an such that no possible satisfies the condition

We accomplish this for our candidate by showing that for each
there exists a value of x such that

57.

a. Let Show that no possible satisfies the
following condition:

That is, for each show that there is a value of x such
that

This will show that 

b. Show that 

c. Show that limx:1 ƒsxd Z 1.5 .

limx:1 ƒsxd Z 1.

limx:1 ƒsxd Z 2.

0 6 ƒ x - 1 ƒ 6 d and ƒ ƒsxd - 2 ƒ Ú 1>2.

d 7 0

For all x, 0 6 ƒ x - 1 ƒ 6 d    Q     ƒ ƒsxd - 2 ƒ 6 1>2.

d 7 0P = 1>2.

x

y

y � x � 1

y � x

y � f (x)

1

1

2

Let ƒsxd = e x, x 6 1

x + 1, x 7 1.

y

x
0 x0 x0 � �x0 � �

L

L � �

L � �

y � f (x)

a value of x for which

0 � 
 x � x0
 � � and 
 f (x) � L 
 � �

 f (x)

0 6 ƒ x - x0 ƒ 6 d and ƒ ƒsxd - L ƒ Ú P .

d 7 0
P

for all x, 0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0
limx:x0 ƒsxd Z L

x : x0

T
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58.

Show that

a.

b.

c.

59. For the function graphed here, explain why

a.

b.

c.

60. a. For the function graphed here, show that 

b. Does appear to exist? If so, what is the value of
the limit? If not, why not?

limx : -1 g sxd
limx : -1 g sxd Z 2.

x

y

0 3

3

4

4.8

y � f (x)

lim
x:3

 ƒsxd Z 3

lim
x:3

 ƒsxd Z 4.8

lim
x:3

 ƒsxd Z 4

lim
x:2

 hsxd Z 2

lim
x:2

 hsxd Z 3

lim
x:2

 hsxd Z 4

x

y

0 2

1

2

3

4 y � h(x)

y � x2

y � 2

Let hsxd = •
x2, x 6 2

3, x = 2

2, x 7 2.

2.4 One-Sided Limits 85

COMPUTER EXPLORATIONS
In Exercises 61–66, you will further explore finding deltas graphi-
cally. Use a CAS to perform the following steps:

a. Plot the function near the point being approached.

b. Guess the value of the limit L and then evaluate the limit sym-
bolically to see if you guessed correctly.

c. Using the value graph the banding lines 
and together with the function ƒ near 

d. From your graph in part (c), estimate a such that for all x

Test your estimate by plotting and over the interval
For your viewing window use

and If any
function values lie outside the interval your
choice of was too large. Try again with a smaller estimate.

e. Repeat parts (c) and (d) successively for and
0.001.

61.

62.

63.

64.

65.

66. ƒsxd =

3x2
- s7x + 1d2x + 5

x - 1
, x0 = 1

ƒsxd =

23 x - 1
x - 1

, x0 = 1

ƒsxd =

xs1 - cos xd
x - sin x

, x0 = 0

ƒsxd =

sin 2x
3x

, x0 = 0

ƒsxd =

5x3
+ 9x2

2x5
+ 3x2 , x0 = 0

ƒsxd =

x4
- 81

x - 3
, x0 = 3

P = 0.1, 0.05 ,

d

[L - P, L + P] ,
L - 2P … y … L + 2P .x0 + 2dx0 - 2d … x …

0 6 ƒ x - x0 ƒ 6 d .
y2ƒ, y1 ,

0 6 ƒ x - x0 ƒ 6 d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0

x0 .y2 = L + P

y1 = L - PP = 0.2 ,

x0y = ƒsxd

y

x

y � g(x)

–1 0

1

2

2.4 One-Sided Limits

In this section we extend the limit concept to one-sided limits, which are limits as x ap-
proaches the number from the left-hand side (where ) or the right-hand side

only. 

One-Sided Limits

To have a limit L as x approaches c, a function ƒ must be defined on both sides of c and its
values ƒ(x) must approach L as x approaches c from either side. Because of this, ordinary
limits are called two-sided.

sx 7 cd
x 6 cc
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86 Chapter 2: Limits and Continuity

If ƒ fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a
limit if the approach is only from one side. If the approach is from the right, the limit is a
right-hand limit. From the left, it is a left-hand limit.

The function (Figure 2.24) has limit 1 as x approaches 0 from the right,
and limit as x approaches 0 from the left. Since these one-sided limit values are not the
same, there is no single number that ƒ(x) approaches as x approaches 0. So ƒ(x) does not
have a (two-sided) limit at 0.

Intuitively, if ƒ(x) is defined on an interval (c, b), where and approaches arbi-
trarily close to L as x approaches c from within that interval, then ƒ has right-hand limit L
at c. We write

The symbol means that we consider only values of x greater than c.
Similarly, if ƒ(x) is defined on an interval (a, c), where and approaches arbi-

trarily close to M as x approaches c from within that interval, then ƒ has left-hand limit M
at c. We write

The symbol means that we consider only x values less than c.
These informal definitions of one-sided limits are illustrated in Figure 2.25. For the

function in Figure 2.24 we have

lim
x:0+

 ƒsxd = 1 and lim
x:0-

 ƒsxd = -1.

ƒsxd = x> ƒ x ƒ

“x : c- ”

lim
x:c-

 ƒsxd = M .

a 6 c
“x : c+ ”

lim
x:c+

 ƒsxd = L .

c 6 b ,

-1
ƒsxd = x> ƒ x ƒ

x

y

1

0

–1

y �
x

x


FIGURE 2.24 Different right-hand and
left-hand limits at the origin.

x

y

0
x

y

c cx x

L f (x)

0

M
f (x)

lim    f (x) � L
x:c+

lim    f (x) � M(b)(a)
x:c

_

FIGURE 2.25 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x
approaches c.

EXAMPLE 1 The domain of is its graph is the semicircle in
Figure 2.26. We have

The function does not have a left-hand limit at or a right-hand limit at It
does not have ordinary two-sided limits at either  or 2.

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-
hand limit of the sum of two functions is the sum of their right-hand limits, and so on. The
theorems for limits of polynomials and rational functions hold with one-sided limits, as 
do the Sandwich Theorem and Theorem 5. One-sided limits are related to limits in the 
following way.

-2
x = 2.x = -2

lim
x: -2+

24 - x2
= 0 and lim

x:2-

24 - x2
= 0.

[-2, 2] ;ƒsxd = 24 - x2

x

y

0 2–2

y � �4 � x2

FIGURE 2.26 and

(Example 1).lim
x: - 2+

24 - x2
= 0

lim
x:2-

24 - x2
= 0

THEOREM 6 A function ƒ(x) has a limit as x approaches c if and only if it has
left-hand and right-hand limits there and these one-sided limits are equal:

lim
x:c

 ƒsxd = L 3 lim
x:c-

 ƒsxd = L and lim
x:c+

 ƒsxd = L .
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EXAMPLE 3 Prove that

Solution Let be given. Here and so we want to find a such
that for all x

or

0 6 x 6 d Q 2x 6 P .

0 6 x 6 d Q ƒ2x - 0 ƒ 6 P ,

d 7 0L = 0,x0 = 0P 7 0

lim
x:0+

2x = 0.

2.4 One-Sided Limits 87

EXAMPLE 2 For the function graphed in Figure 2.27,

At 

and do not exist. The function is not de-
fined to the left of 

At even though 

does not exist. The right- and left-hand limits are not
equal.

At 

even though 

At 

At even though 

and do not exist. The function is not de-
fined to the right of 

At every other point c in [0, 4], ƒ(x) has limit ƒ(c).

Precise Definitions of One-Sided Limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided
limits.

x = 4.
limx:4 ƒsxdlimx:4+ ƒsxd

ƒs4d Z 1,limx:4- ƒsxd = 1x = 4:

limx:3- ƒsxd = limx:3+ ƒsxd = limx:3 ƒsxd = ƒs3d = 2.x = 3:

ƒs2d = 2.limx:2 ƒsxd = 1

limx:2+ ƒsxd = 1,

limx:2- ƒsxd = 1,x = 2:

limx:1 ƒsxd
limx:1+ ƒsxd = 1,

ƒs1d = 1,limx:1- ƒsxd = 0x = 1:

x = 0.
limx:0 ƒsxdlimx:0- ƒsxd

limx:0+ ƒsxd = 1,x = 0:

x

y

321

2

1

40

y � f (x)

FIGURE 2.27 Graph of the function
in Example 2.

DEFINITIONS We say that ƒ(x) has right-hand limit L at and write

(see Figure 2.28)

if for every number there exists a corresponding number such that
for all x

We say that ƒ has left-hand limit L at and write

(see Figure 2.29)

if for every number there exists a corresponding number such that
for all x

x0 - d 6 x 6 x0 Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0

lim
x:x0

-

 ƒsxd = L

x0 ,

x0 6 x 6 x0 + d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0

lim
x:x0

+

 ƒsxd = L

x0 ,

y

x
0

L

x
�

f (x) lies
in here

for all x � x0
in here

L � �

L � �
f (x)

x0 x0 � �

FIGURE 2.28 Intervals associated with
the definition of right-hand limit.

y

x
0

L

x
�

f (x) lies
in here

for all x � x0
in here

L � �

L � �
f (x)

x0x0 � �

FIGURE 2.29 Intervals associated with
the definition of left-hand limit.
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88 Chapter 2: Limits and Continuity

Squaring both sides of this last inequality gives

If we choose we have

or

According to the definition, this shows that (Figure 2.30).

The functions examined so far have had some kind of limit at each point of interest. In
general, that need not be the case.

EXAMPLE 4 Show that has no limit as x approaches zero from either
side (Figure 2.31).

y = sin s1>xd

limx:0+2x = 0

0 6 x 6 P
2 Q ƒ2x - 0 ƒ 6 P .

0 6 x 6 d = P
2 Q 2x 6 P ,

d = P
2

x 6 P
2 if 0 6 x 6 d .

x

y

�

f (x)

xL � 0 � � �2

 f (x) � �x

FIGURE 2.30 in Example 3.lim
x:0+

1x = 0

x

y

0

–1

1

y � sin 1
x

FIGURE 2.31 The function has neither a right-
hand nor a left-hand limit as x approaches zero (Example 4).
The graph here omits values very near the y-axis.

y = sin s1>xd

Solution As x approaches zero, its reciprocal, , grows without bound and the values
of sin ( ) cycle repeatedly from to 1. There is no single number L that the function’s
values stay increasingly close to as x approaches zero. This is true even if we restrict x to
positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit at 

Limits Involving 

A central fact about is that in radian measure its limit as is 1. We can see
this in Figure 2.32 and confirm it algebraically using the Sandwich Theorem. You will see
the importance of this limit in Section 3.5, where instantaneous rates of change of the
trigonometric functions are studied.

u: 0ssin ud>u
(sin U)/U

x = 0.

-11>x 1>x

y

�

1

NOT TO SCALE

2��–�–2�–3� 3�

y � (radians)sin �
�

FIGURE 2.32 The graph of suggests that the right-
and left-hand limits as approaches 0 are both 1.u

ƒsud = ssin ud>u
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Proof The plan is to show that the right-hand and left-hand limits are both 1. Then we
will know that the two-sided limit is 1 as well.

To show that the right-hand limit is 1, we begin with positive values of less than 
(Figure 2.33). Notice that

We can express these areas in terms of as follows:

(2)

Thus,

This last inequality goes the same way if we divide all three terms by the number
( ) which is positive since 

Taking reciprocals reverses the inequalities:

Since (Example 11b, Section 2.2), the Sandwich Theorem gives

Recall that and are both odd functions (Section 1.1). Therefore, 
is an even function, with a graph symmetric about the y-axis (see Figure 2.32).

This symmetry implies that the left-hand limit at 0 exists and has the same value as the
right-hand limit:

so by Theorem 6.

EXAMPLE 5 Show that (a) and (b) lim
x:0

 
sin 2x

5x
=

2
5 .lim

h:0
 
cos h - 1

h
= 0

limu:0 ssin ud>u = 1

lim
u:0-

 
sin u
u

= 1 = lim
u:0+

 
sin u
u

,

ssin ud>u ƒsud =usin u

lim
u:0+

 
sin u
u

= 1.

limu:0+ cos u = 1

1 7

sin u
u

7 cos u.

1 6

u
sin u

6
1

cos u
.

0 6 u 6 p>2:sin u ,1>2

1
2

 sin u 6
1
2

 u 6
1
2

 tan u .

Area ¢OAT =
1
2

 base * height =
1
2

 s1dstan ud =
1
2

 tan u .

 Area sector OAP =
1
2

 r2u =
1
2

 s1d2u =

u
2

Area ¢OAP =
1
2

 base * height =
1
2

 s1dssin ud =
1
2

 sin u

u

Area ¢OAP 6  area sector OAP 6  area ¢OAT .

p>2u

2.4 One-Sided Limits 89

THEOREM 7

(1)lim
u:0

 
sin u
u

= 1 su in radiansd

x

y

O

1

1

Q

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
tan �

P

sin � 

cos � 

1

T

A(1, 0)

�

FIGURE 2.33 The figure for the proof of
Theorem 7. By definition, 
but so TA = tan u .OA = 1,

TA>OA = tan u ,

Equation (2) is where radian measure
comes in: The area of sector OAP is 
only if is measured in radians.u

u>2
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90 Chapter 2: Limits and Continuity

Solution

(a) Using the half-angle formula we calculate

(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,
not a 5x. We produce it by multiplying numerator and denominator by :

EXAMPLE 6 Find .

Solution From the definition of tan t and sec 2t, we have

Eq. (1) and Example 11b
in Section 2.2=

1
3

 (1)(1)(1) =
1
3

.

lim
t:0

 
tan t sec 2t

3t
=

1
3

 lim
t:0

 
sin t

t
# 1
cos t

# 1
cos 2t

lim
t:0

 
tan t sec 2t

3t

 =
2
5 s1d =

2
5

 =
2
5 lim

x:0
 
sin 2x

2x

 lim
x:0

 
sin 2x

5x
= lim

x:0
 
s2>5d #  sin 2x

s2>5d # 5x

2>5

Eq. (1) and Example 11a
in Section 2.2 = - s1ds0d = 0.

Let u = h>2. = - lim
u:0

 
sin u
u

 sin u

 lim
h:0

 
cos h - 1

h
= lim

h:0
-

2 sin2 sh>2d
h

cos h = 1 - 2 sin2sh>2d ,

Exercises 2.4

Finding Limits Graphically
1. Which of the following statements about the function 

graphed here are true, and which are false?

a. b.

c. d.

e. f.

g. h.

i. j.

k. l.

2. Which of the following statements about the function 
graphed here are true, and which are false?

y = ƒsxd

lim
x:2+

 ƒsxd = 0lim
x: -1-

 ƒsxd does not exist .

lim
x:2-

 ƒsxd = 2lim
x:1

 ƒsxd = 0

lim
x:1

 ƒsxd = 1lim
x:0

 ƒsxd = 1

lim
x:0

 ƒsxd = 0lim
x:0

 ƒsxd exists.

lim
x:0-

 ƒsxd = lim
x:0+

 ƒsxdlim
x:0-

 ƒsxd = 1

lim
x:0-

 ƒsxd = 0lim
x: -1+

 ƒsxd = 1

x

y

21–1

1

0

y � f (x)

y = ƒsxd

a. b. does not exist.

c. d.

e. f. does not exist.

g.

h. exists at every c in the open interval 

i. exists at every c in the open interval (1, 3).

j. k. does not exist.lim
x:3+

 ƒsxdlim
x: -1-

 ƒsxd = 0

lim
x:c

 ƒsxd

s -1, 1d .lim
x:c

 ƒsxd

lim
x:0+

 ƒsxd = lim
x:0-

 ƒsxd

lim
x:1

 ƒsxdlim
x:1+

 ƒsxd = 1

lim
x:1-

 ƒsxd = 2lim
x:2

 ƒsxd = 2

lim
x:2

 ƒsxdlim
x: -1+

 ƒsxd = 1

x

y

0

1

2

1–1 2 3

y � f (x)

Now, Eq. (1) applies with
u = 2x.
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3. Let 

a. Find and 

b. Does exist? If so, what is it? If not, why not?

c. Find and 

d. Does exist? If so, what is it? If not, why not?

4. Let 

a. Find and ƒ(2).

b. Does exist? If so, what is it? If not, why not?

c. Find and 

d. Does exist? If so, what is it? If not, why not?

5. Let 

a. Does exist? If so, what is it? If not, why not?

b. Does exist? If so, what is it? If not, why not?

c. Does exist? If so, what is it? If not, why not?limx:0 ƒsxd
limx:0- ƒsxd
limx:0+ ƒsxd

x

y

0

–1

1

1
xsin    ,

⎧
⎪
⎨
⎪
⎩

y �
0, x � 0

x 	 0

ƒsxd = •
0, x … 0

sin 
1
x , x 7 0.

limx:-1 ƒsxd
limx:-1+ ƒsxd .limx:-1- ƒsxd

limx:2 ƒsxd
limx:2+ ƒsxd, limx:2- ƒsxd ,

x

y

y � 3 � x

0

3

2–2

y �
2
x

ƒsxd = d 3 - x, x 6 2

2, x = 2

x
2

, x 7 2.

limx:4 ƒsxd
limx:4+ ƒsxd .limx:4- ƒsxd

limx:2 ƒsxd
limx:2- ƒsxd .limx:2+ ƒsxd

x

y

3

20 4

y � 3 � x

y �    � 1x
2

ƒsxd = •
3 - x, x 6 2

x
2

+ 1, x 7 2.

2.4 One-Sided Limits 91

6. Let 

a. Does exist? If so, what is it? If not, why not?

b. Does exist? If so, what is it? If not, why not?

c. Does exist? If so, what is it? If not, why not?

7. a. Graph 

b. Find and 

c. Does exist? If so, what is it? If not, why not?

8. a. Graph 

b. Find and 

c. Does exist? If so, what is it? If not, why not?

Graph the functions in Exercises 9 and 10. Then answer these questions.

a. What are the domain and range of ƒ?

b. At what points c, if any, does exist?

c. At what points does only the left-hand limit exist?

d. At what points does only the right-hand limit exist?

9.

10.

Finding One-Sided Limits Algebraically
Find the limits in Exercises 11–18.

11. 12.

13.

14.

15. lim
h:0+

 
2h2

+ 4h + 5 - 25
h

lim
x:1-

a 1
x + 1

b ax + 6
x b a3 - x

7
b

lim
x: -2+

a x
x + 1

b a2x + 5
x2

+ x
b

lim
x:1+A

x - 1
x + 2

lim
x: -0.5-A

x + 2
x + 1

ƒsxd = •
x,  -1 … x 6 0, or 0 6 x … 1

1,  x = 0

0,  x 6 -1 or x 7 1

ƒsxd = •
21 - x2,  0 … x 6 1

1,  1 … x 6 2

2,  x = 2

limx:c ƒsxd

limx:1 ƒsxd
limx:1- ƒsxd .limx:1+ ƒsxd

ƒsxd = e1 - x2, x Z 1

2, x = 1.

limx:1 ƒsxd
limx:1+ ƒsxd .limx:1- ƒsxd

ƒsxd = e x3, x Z 1

0, x = 1.

limx:0 g sxd
limx:0- g sxd
limx:0+ g sxd

x
0

–1

1

y

y � �x

y � –�x

11
�

1
2�

2
�

y � �x sin 1
x

g sxd = 2x sins1>xd .
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92 Chapter 2: Limits and Continuity

16.

17. a. b.

18. a. b.

Use the graph of the greatest integer function Figure 1.10 in
Section 1.1, to help you find the limits in Exercises 19 and 20.

19. a. b.

20. a. b.

Using 

Find the limits in Exercises 21–42.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40. lim
y:0

 
sin 3y cot 5y

y cot 4y
lim
x:0

  
tan 3x
sin 8x

lim
u:0

 sin u cot 2ulim
u:0

 u cos u

lim
x:0

  
sin 5x
sin 4x

lim
u:0

  
sin u

sin 2u

lim
h:0

 
sin ssin hd

sin h
lim
t:0

 
sin s1 - cos td

1 - cos t

lim
x:0

 
x - x cos x

sin2 3x
lim
u:0

 
1 - cos u

sin 2u

lim
x:0

 
x2

- x + sin x
2x

lim
x:0

 
x + x cos x
sin x cos x

lim
x:0

 6x2scot xdscsc 2xdlim
x:0

 
x csc 2x
cos 5x

lim
t:0

  
2t

tan tlim
x:0

 
tan 2x

x

lim
h:0-

 
h

sin 3h
lim
y:0

 
sin 3y

4y

lim
t:0

 
sin kt

t  sk constantdlim
u:0

 
sin22u

22u

lim
U:0

 
sin U
U

� 1

lim
t:4-

st - : t; dlim
t:4+

st - : t; d
lim
u:3-

 
:u;
u

lim
u:3+

 
:u;
u

y = :x; ,
lim

x:1-

 
22x sx - 1d

ƒ x - 1 ƒ

lim
x:1+

 
22x sx - 1d

ƒ x - 1 ƒ

lim
x: -2-

sx + 3d 
ƒ x + 2 ƒ

x + 2
lim

x: -2+

sx + 3d 
ƒ x + 2 ƒ

x + 2

lim
h:0-

 
26 - 25h2

+ 11h + 6
h

41. 42.

Theory and Examples
43. Once you know and at an interior point

of the domain of ƒ, do you then know Give reasons
for your answer.

44. If you know that exists, can you find its value by cal-
culating Give reasons for your answer.

45. Suppose that ƒ is an odd function of x. Does knowing that
tell you anything about Give rea-

sons for your answer.

46. Suppose that ƒ is an even function of x. Does knowing that
tell you anything about either or

Give reasons for your answer.

Formal Definitions of One-Sided Limits
47. Given find an interval such that if

x lies in I, then What limit is being verified and
what is its value?

48. Given find an interval such that if
x lies in I, then What limit is being verified and
what is its value?

Use the definitions of right-hand and left-hand limits to prove the
limit statements in Exercises 49 and 50.

49. 50.

51. Greatest integer function Find (a) and
(b) then use limit definitions to verify your find-
ings. (c) Based on your conclusions in parts (a) and (b), can you
say anything about Give reasons for your answer.

52. One-sided limits Let 

Find (a) and (b) then use limit defini-
tions to verify your findings. (c) Based on your conclusions in
parts (a) and (b), can you say anything about Give
reasons for your answer.

limx:0 ƒsxd?

limx:0- ƒsxd ;limx:0+ ƒsxd

ƒsxd = e x2 sin s1>xd, x 6 0

2x, x 7 0.

limx:400:x; ?

limx:400- :x; ;
limx:400+ :x;

lim
x:2+

 
x - 2
ƒ x - 2 ƒ

= 1lim
x:0-

 
x
ƒ x ƒ

= -1

24 - x 6 P .
I = s4 - d, 4d, d 7 0,P 7 0,

2x - 5 6 P .
I = s5, 5 + dd, d 7 0,P 7 0,

limx:-2+ ƒsxd?
limx:-2- ƒsxdlimx:2- ƒsxd = 7

limx:0- ƒsxd?limx:0+ ƒsxd = 3

limx:c+ ƒsxd?
limx:c ƒsxd

limx:a ƒsxd?
limx:a- ƒsxdlimx:a+ ƒsxd

lim
u:0

  
u cot 4u

sin2 u cot2 2u
lim
u:0

  
tan u

u2 cot 3u

2.5 Continuity

When we plot function values generated in a laboratory or collected in the field, we often
connect the plotted points with an unbroken curve to show what the function’s values are
likely to have been at the times we did not measure (Figure 2.34). In doing so, we are
assuming that we are working with a continuous function, so its outputs vary continuously
with the inputs and do not jump from one value to another without taking on the values
in between. The limit of a continuous function as x approaches c can be found simply by
calculating the value of the function at c. (We found this to be true for polynomials in
Theorem 2.)

Intuitively, any function whose graph can be sketched over its domain in one
continuous motion without lifting the pencil is an example of a continuous function. In
this section we investigate more precisely what it means for a function to be continuous.

y = ƒsxd
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We also study the properties of continuous functions, and see that many of the function
types presented in Section 1.1 are continuous.

Continuity at a Point

To understand continuity, it helps to consider a function like that in Figure 2.35, whose
limits we investigated in Example 2 in the last section.

EXAMPLE 1 Find the points at which the function ƒ in Figure 2.35 is continuous and
the points at which ƒ is not continuous.

Solution The function ƒ is continuous at every point in its domain [0, 4] except at
and At these points, there are breaks in the graph. Note the relation-

ship between the limit of ƒ and the value of ƒ at each point of the function’s domain.

Points at which ƒ is continuous:

At 

At 

At 

Points at which ƒ is not continuous:

At does not exist.

At but 

At but 

At these points are not in the domain of ƒ.

To define continuity at a point in a function’s domain, we need to define continuity at
an interior point (which involves a two-sided limit) and continuity at an endpoint (which
involves a one-sided limit) (Figure 2.36).

c 6 0, c 7 4,

1 Z ƒs4d .lim
x:4-

 ƒsxd = 1,x = 4,

1 Z ƒs2d .lim
x:2

 ƒsxd = 1,x = 2,

lim
x:1

 ƒsxdx = 1,

lim
x:c

 ƒsxd = ƒscd .0 6 c 6 4, c Z 1, 2 ,

lim
x:3

 ƒsxd = ƒs3d .x = 3,

lim
x:0+

 ƒsxd = ƒs0d .x = 0,

x = 4.x = 1, x = 2,

2.5 Continuity 93
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Q2
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Q4

FIGURE 2.34 Connecting plotted points
by an unbroken curve from experimental
data for a falling object.Q1 , Q2 , Q3 , Á

x
a c b

y � f (x)

Continuity
from the left

Two-sided
continuity

Continuity
from the right

FIGURE 2.36 Continuity at points a, b,
and c.

x

y

321

2

1

40

y � f (x)

FIGURE 2.35 The function is continuous
on [0, 4] except at and

(Example 1).x = 4
x = 1, x = 2,

If a function ƒ is not continuous at a point c, we say that ƒ is discontinuous at c and
that c is a point of discontinuity of ƒ. Note that c need not be in the domain of ƒ.

A function ƒ is right-continuous (continuous from the right) at a point in its
domain if It is left-continuous (continuous from the left) at c if

Thus, a function is continuous at a left endpoint a of its domain if itlimx:c- ƒsxd = ƒscd .
limx:c+ ƒsxd = ƒscd .

x = c

DEFINITION
Interior point: A function is continuous at an interior point c of its
domain if

Endpoint: A function is continuous at a left endpoint a or is
continuous at a right endpoint b of its domain if

lim
x:a+

 ƒsxd = ƒsad or lim
x:b-

 ƒsxd = ƒsbd, respectively.

y = ƒsxd

lim
x:c

 ƒsxd = ƒscd .

y = ƒsxd
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94 Chapter 2: Limits and Continuity

is right-continuous at a and continuous at a right endpoint b of its domain if it is left-
continuous at b. A function is continuous at an interior point c of its domain if and only if
it is both right-continuous and left-continuous at c (Figure 2.36).

EXAMPLE 2 The function is continuous at every point of its do-
main (Figure 2.37), including where ƒ is right-continuous, and

where ƒ is left-continuous.

EXAMPLE 3 The unit step function U(x), graphed in Figure 2.38, is right-continuous at
but is neither left-continuous nor continuous there. It has a jump discontinuity at

We summarize continuity at a point in the form of a test.

x = 0.
x = 0,

x = 2,
x = -2,[-2, 2]

ƒsxd = 24 - x2
x

y

0–2 2

2
y � �4 � x2

FIGURE 2.37 A function that is
continuous at every domain point
(Example 2).

Continuity Test
A function ƒ(x) is continuous at an interior point of its domain if and only
if it meets the following three conditions.

1. ƒ(c) exists (c lies in the domain of ƒ).

2. exists (ƒ has a limit as ).

3. (the limit equals the function value).limx:c ƒsxd = ƒscd
x : climx:c ƒsxd

x = c

x

y

0

1
y � U(x)

FIGURE 2.38 A function
that has a jump discontinuity
at the origin (Example 3).

For one-sided continuity and continuity at an endpoint, the limits in parts 2 and 3 of
the test should be replaced by the appropriate one-sided limits.

EXAMPLE 4 The function introduced in Section 1.1 is graphed in Figure 2.39.
It is discontinuous at every integer because the left-hand and right-hand limits are not equal
as :

.

Since , the greatest integer function is right-continuous at every integer n (but not
left-continuous).

The greatest integer function is continuous at every real number other than the inte-
gers. For example,

In general, if n an integer, then

Figure 2.40 displays several common types of discontinuities. The function in Figure
2.40a is continuous at The function in Figure 2.40b would be continuous if it had

The function in Figure 2.40c would be continuous if ƒ(0) were 1 instead of 2.
The discontinuities in Figure 2.40b and c are removable. Each function has a limit as

and we can remove the discontinuity by setting ƒ(0) equal to this limit.
The discontinuities in Figure 2.40d through f are more serious: does not

exist, and there is no way to improve the situation by changing ƒ at 0. The step function in
Figure 2.40d has a jump discontinuity: The one-sided limits exist but have different val-
ues. The function in Figure 2.40e has an infinite discontinuity. The function
in Figure 2.40f has an oscillating discontinuity: It oscillates too much to have a limit as
x : 0.

ƒsxd = 1>x2

limx:0 ƒsxd
x : 0,

ƒs0d = 1.
x = 0.

lim
x:c
:x; = n - 1 = :c; .

n - 1 6 c 6 n ,

lim
x:1.5

:x; = 1 = :1.5; .

:n; = n

lim
x:n-

:x; = n - 1 and lim
x:n+

:x; = n

x : n

y = :x;

x

y

3

3

21–1

2

–2

1

4

4

y � ⎣x⎦

FIGURE 2.39 The greatest integer
function is continuous at every
noninteger point. It is right-continuous,
but not left-continuous, at every integer
point (Example 4).
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2.5 Continuity 95

Continuous Functions

A function is continuous on an interval if and only if it is continuous at every point of the
interval. For example, the semicircle function graphed in Figure 2.37 is continuous on the
interval which is its domain. A continuous function is one that is continuous at
every point of its domain. A continuous function need not be continuous on every interval.

EXAMPLE 5

(a) The function (Figure 2.41) is a continuous function because it is continuous
at every point of its domain. It has a point of discontinuity at however, because
it is not defined there; that is, it is discontinuous on any interval containing .

(b) The identity function and constant functions are continuous everywhere by
Example 3, Section 2.3.

Algebraic combinations of continuous functions are continuous wherever they are
defined.

ƒsxd = x

x = 0
x = 0,

y = 1>x

[-2, 2] ,

y

(a) (b) (c)

(e)

(d)

y

x
0

1

y y

0

0

1

x xx

x

y

000

y

x

111

2

(f)

1

–1

y � f (x) y � f (x) y � f (x)

y � f (x)

y � f (x) � 1
x2

y � sin 1
x

FIGURE 2.40 The function in (a) is continuous at the functions in (b) through (f )
are not.

x = 0;

THEOREM 8—Properties of Continuous Functions If the functions ƒ and
g are continuous at then the following combinations are continuous at

1. Sums:

2. Differences:

3. Constant multiples: for any number k

4. Products:

5. Quotients: , provided 

6. Powers: n a positive integer

7. Roots: , provided it is defined on an open interval
containing c, where n is a positive integer

2n ƒ

ƒn,

g scd Z 0ƒ>g
ƒ # g

k # ƒ,

ƒ - g

ƒ + g

x = c .
x = c ,

0
x

y

y � 1
x

FIGURE 2.41 The function is
continuous at every value of x except

It has a point of discontinuity at
(Example 5).x = 0

x = 0.

y = 1>x
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96 Chapter 2: Limits and Continuity

Most of the results in Theorem 8 follow from the limit rules in Theorem 1, Section
2.2. For instance, to prove the sum property we have

Sum Rule, Theorem 1

Continuity of ƒ, g at c

This shows that is continuous.

EXAMPLE 6

(a) Every polynomial is continuous because
by Theorem 2, Section 2.2.

(b) If P(x) and Q(x) are polynomials, then the rational function is continuous
wherever it is defined by Theorem 3, Section 2.2.

EXAMPLE 7 The function is continuous at every value of x. If we
have a polynomial. If we have another polynomial. Finally,
at the origin, 

The functions and are continuous at by Example 11 of
Section 2.2. Both functions are, in fact, continuous everywhere (see Exercise 70). It
follows from Theorem 8 that all six trigonometric functions are then continuous wherever
they are defined. For example, is continuous on 

Inverse Functions and Continuity

The inverse function of any function continuous on an interval is continuous over its do-
main. This result is suggested from the observation that the graph of , being the reflec-
tion of the graph of ƒ across the line , cannot have any breaks in it when the graph of
ƒ has no breaks. A rigorous proof that is continuous whenever ƒ is continuous on an in-
terval is given in more advanced texts. It follows that the inverse trigonometric functions
are all continuous over their domains.

We defined the exponential function in Section 1.5 informally by its graph.
Recall that the graph was obtained from the graph of for x a rational number by
filling in the holes at the irrational points x, so the function was defined to be con-
tinuous over the entire real line. The inverse function is also continuous. In par-
ticular, the natural exponential function and the natural logarithm function

are both continuous over their domains.

Composites

All composites of continuous functions are continuous. The idea is that if ƒ(x) is continu-
ous at and g(x) is continuous at then is continuous at (Figure
2.42). In this case, the limit as is g(ƒ(c)).x : c

x = cg � ƒx = ƒscd ,x = c

y = ln x
y = ex

y = loga x
y = ax

y = ax
y = ax

ƒ-1
y = x

ƒ-1

sp>2, 3p>2d ´
Á .

Á
´ s -p>2, p>2d ´y = tan x

x = 0y = cos xy = sin x

limx:0 ƒ x ƒ = 0 = ƒ 0 ƒ .
ƒsxd = -x ,x 6 0,ƒsxd = x ,

x 7 0,ƒsxd = ƒ x ƒ

sQscd Z 0d
Psxd>Qsxd

lim
x:c

 Psxd = Pscd
Psxd = an xn

+ an - 1x
n - 1

+
Á

+ a0

ƒ + g

 = sƒ + gdscd .

 = ƒscd + g scd

 = lim
x:c

 ƒsxd + lim
x:c

 g sxd, 

 lim
x:c

sƒ + gdsxd = lim
x:c

sƒsxd + g sxdd

c

f g

 g ˚ f

Continuous at c

Continuous
at f (c)

Continuous
at c

f (c)  g( f (c))

FIGURE 2.42 Composites of continuous functions are continuous.
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Intuitively, Theorem 9 is reasonable because if x is close to c, then ƒ(x) is close to ƒ(c),
and since g is continuous at ƒ(c), it follows that g(ƒ(x)) is close to g(ƒ(c)).

The continuity of composites holds for any finite number of functions. The only re-
quirement is that each function be continuous where it is applied. For an outline of the
proof of Theorem 9, see Exercise 6 in Appendix 4.

EXAMPLE 8 Show that the following functions are continuous everywhere on their re-
spective domains.

(a) (b)

(c) (d)

Solution

(a) The square root function is continuous on because it is a root of the continu-
ous identity function (Part 7, Theorem 8). The given function is then the
composite of the polynomial with the square root function

and is continuous on its domain.

(b) The numerator is the cube root of the identity function squared; the denominator is an
everywhere-positive polynomial. Therefore, the quotient is continuous.

(c) The quotient is continuous for all and the function
is the composition of this quotient with the continuous absolute value function
(Example 7).

(d) Because the sine function is everywhere-continuous (Exercise 70), the numerator term
x sin x is the product of continuous functions, and the denominator term is an
everywhere-positive polynomial. The given function is the composite of a quotient of
continuous functions with the continuous absolute value function (Figure 2.43).

Theorem 9 is actually a consequence of a more general result which we now state and
prove.

x2
+ 2

x Z ;22,sx - 2d>sx2
- 2d

g std = 2t ,
ƒsxd = x2

- 2x - 5
ƒsxd = x

[0, q d

y = ` x sin x
x2

+ 2
`y = ` x - 2

x2
- 2
`

y =
x2>3

1 + x4y = 2x2
- 2x - 5

2.5 Continuity 97

Proof Let be given. Since g is continuous at b, there exists a number such that

Since there exists a such that

If we let , we then have that

,

which implies from the first statement that 
whenever . From the definition of limit, this proves that
limx:c g(ƒ(x)) = g(b).

0 6 ƒ x - c ƒ 6 d
ƒ g( y) - g(b) ƒ = ƒ g(ƒ(x)) - g(b) ƒ 6 P

ƒ y - b ƒ 6 d1 whenever 0 6 ƒ x - c ƒ 6 d

y = ƒ(x)

ƒ ƒ(x) - b ƒ 6 d1 whenever 0 6 ƒ x - c ƒ 6 d.

d 7 0limx:c ƒ(x) = b,

ƒ g( y) - g(b) ƒ 6 P whenever 0 6 ƒ y - b ƒ 6 d1.

d1 7 0P 7 0

THEOREM 10—Limits of Continuous Functions If g is continuous at the point
b and then

limx:c g(ƒ(x)) = g(b) = g(limx:c ƒ(x)).

limx:c ƒ(x) = b,

x

y

0

0.1

0.2

0.3

0.4

2�–�–2� �

FIGURE 2.43 The graph suggests that
is continuous

(Example 8d).
y = ƒ sx sin xd>sx2

+ 2d ƒ

THEOREM 9—Composite of Continuous Functions If ƒ is continuous at c and
g is continuous at ƒ(c), then the composite is continuous at c.g � ƒ
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98 Chapter 2: Limits and Continuity

EXAMPLE 9 As an application of Theorem 10, we have the following calculations.

(a)

(b)

(c)

Continuous Extension to a Point

The function is continuous at every point except In this it is
like the function But is different from in that it has a fi-
nite limit as (Theorem 7). It is therefore possible to extend the function’s domain to
include the point in such a way that the extended function is continuous at 
We define a new function

The function F(x) is continuous at because

(Figure 2.44).

lim
x:0

 
sin x

x = Fs0d

x = 0

Fsxd = L
sin x

x , x Z 0

1, x = 0.

x = 0.x = 0
x : 0

y = 1>xy = ssin xd>xy = 1>x .
x = 0.y = ƒ(x) = ssin xd>x

 = 1 # e0
= 1

 lim
x:0

 2x + 1 e tan x
= lim

x:0
 2x + 1 # exp a lim

x:0
 tan xb

 = sin-1 
1
2

=
p
6

 = sin-1 a lim
x:1

 
1

1 + x
b

 lim
x:1

 sin-1 a 1 - x
1 - x2 b = sin-1 a lim

x:1
 

1 - x
1 - x2 b

= cos (p + sin 2p) = cos p = -1.

lim
x:p/2

 cos a2x + sin a3p
2

+ xb b = cos a lim
x:p/2

 2x + lim
x:p/2

 sin a3p
2

+ xb b

(0, 1)

(a)

�
2

�
2

– 0

f (x)

x

y

⎛
⎝

⎛
⎝

,�
2 �

2– ⎛
⎝

⎛
⎝

,�
2 �

2

(0, 1)

(b)

�
2

�
2

– 0

F(x)

x

y

⎛
⎝

⎛
⎝

,�
2 �

2– ⎛
⎝

⎛
⎝

,�
2 �

2

FIGURE 2.44 The graph (a) of for does not include
the point (0, 1) because the function is not defined at (b) We can remove the
discontinuity from the graph by defining the new function F(x) with and

everywhere else. Note that Fs0d = limx:0 ƒsxd .Fsxd = ƒsxd
Fs0d = 1

x = 0.
-p>2 … x … p>2ƒsxd = ssin xd>x

Exponential is
continuous.

Cancel common
factor (1 - x).

Arcsine is
continuous.

More generally, a function (such as a rational function) may have a limit even at a
point where it is not defined. If ƒ(c) is not defined, but exists, we can de-
fine a new function F(x) by the rule

Fsxd = eƒsxd, if x is in the domain of ƒ

L, if x = c.

limx:c ƒsxd = L

We sometimes denote by exp 
when is a complicated mathematical
expression.

u
ueu
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The function F is continuous at It is called the continuous extension of ƒ to
For rational functions ƒ, continuous extensions are usually found by canceling

common factors.

EXAMPLE 10 Show that

,

has a continuous extension to and find that extension.

Solution Although ƒ(2) is not defined, if we have

The new function

is equal to ƒ(x) for but is continuous at having there the value of . Thus
F is the continuous extension of ƒ to and

The graph of ƒ is shown in Figure 2.45. The continuous extension F has the same graph
except with no hole at (2, ). Effectively, F is the function ƒ with its point of discontinu-
ity at removed.

Intermediate Value Theorem for Continuous Functions

Functions that are continuous on intervals have properties that make them particularly use-
ful in mathematics and its applications. One of these is the Intermediate Value Property. A
function is said to have the Intermediate Value Property if whenever it takes on two val-
ues, it also takes on all the values in between.

x = 2
5>4

lim
x:2

 
x2

+ x - 6
x2

- 4
= lim

x:2
 ƒsxd =

5
4

.

x = 2,
5>4x = 2,x Z 2,

Fsxd =
x + 3
x + 2

ƒsxd =
x2

+ x - 6
x2

- 4
=

sx - 2dsx + 3d
sx - 2dsx + 2d

=
x + 3
x + 2

.

x Z 2

x = 2,

x Z 2ƒsxd =
x2

+ x - 6
x2

- 4

x = c .
x = c .

2.5 Continuity 99

Theorem 11 says that continuous functions over finite closed intervals have the Inter-
mediate Value Property. Geometrically, the Intermediate Value Theorem says that any hor-
izontal line crossing the y-axis between the numbers ƒ(a) and ƒ(b) will cross the
curve at least once over the interval [a, b].

The proof of the Intermediate Value Theorem depends on the completeness property
of the real number system (Appendix 6) and can be found in more advanced texts.

y = ƒsxd
y = y0

y

x

x

y

0

1

2

–1 1 2 3 4

0

1

2

–1 1 2 3 4

(a)

(b)

y �
x2 � x � 6

x2 � 4

5
4

y �
x � 3
x � 2

FIGURE 2.45 (a) The graph of
ƒ(x) and (b) the graph of its
continuous extension F(x)
(Example 10).

THEOREM 11—The Intermediate Value Theorem for Continuous Functions If ƒ
is a continuous function on a closed interval [a, b], and if is any value between
ƒ(a) and ƒ(b), then for some c in [a, b].

x

y

0 a c b

y � f (x)

f (b)

f (a)

y0

y0 = ƒscd
y0
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100 Chapter 2: Limits and Continuity

The continuity of ƒ on the interval is essential to Theorem 11. If ƒ is discontinuous at
even one point of the interval, the theorem’s conclusion may fail, as it does for the function
graphed in Figure 2.46 (choose as any number between 2 and 3).

A Consequence for Graphing: Connectedness Theorem 11 implies that the graph of a
function continuous on an interval cannot have any breaks over the interval. It will be
connected—a single, unbroken curve. It will not have jumps like the graph of the greatest
integer function (Figure 2.39), or separate branches like the graph of (Figure 2.41).

A Consequence for Root Finding We call a solution of the equation a root of
the equation or zero of the function ƒ. The Intermediate Value Theorem tells us that if ƒ is
continuous, then any interval on which ƒ changes sign contains a zero of the function.

In practical terms, when we see the graph of a continuous function cross the horizon-
tal axis on a computer screen, we know it is not stepping across. There really is a point
where the function’s value is zero. 

EXAMPLE 11 Show that there is a root of the equation between 1 and 2.

Solution Let . Since and 
, we see that is a value between ƒ(1) and ƒ(2). Since ƒ is

continuous, the Intermediate Value Theorem says there is a zero of ƒ between 1 and 2.
Figure 2.47 shows the result of zooming in to locate the root near   x = 1.32.

y0 = 023
- 2 - 1 = 5 7 0

ƒ(2) =ƒ(1) = 1 - 1 - 1 = -1 6 0ƒ(x) = x3
- x - 1

x3
- x - 1 = 0

ƒsxd = 0

1>x

y0

EXAMPLE 12 Use the Intermediate Value Theorem to prove that the equation

has a solution (Figure 2.48).

Solution We rewrite the equation as

and set . Now is continuous on the interval
since it is the composite of the square root function with the nonnegative linear[-5>2, q)

g(x) = 22x + 5ƒ(x) = 22x + 5 + x2

22x + 5 + x2
= 4,

22x + 5 = 4 - x2

x

y

0

2

1

1 2 3 4

3

FIGURE 2.46 The function 

does not take on all values between
and it misses all the

values between 2 and 3.
ƒs4d = 3;ƒs1d = 0

ƒsxd = e2x - 2, 1 … x 6 2

3, 2 … x … 4

(a)

5

–2

2–1

(b)

1

–1

1.61

(c)

0.02

–0.02

1.3301.320

(d)

0.003

–0.003

1.32481.3240

FIGURE 2.47 Zooming in on a zero of the function The zero is near
(Example 11).x = 1.3247

ƒsxd = x3
- x - 1.

1

0 2

4

3

2

x

y

y 5 4 2 x2

y 5 �2x 1 5

c

FIGURE 2.48 The curves 
and have the same value at

where 
(Example 12).

22x + 5 = 4 - x2x = c
y = 4 - x2

y = 22x + 5
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2.5 Continuity 101

Exercises 2.5

Continuity from Graphs
In Exercises 1–4, say whether the function graphed is continuous on

If not, where does it fail to be continuous and why?

1. 2.

3. 4.

Exercises 5–10 refer to the function

graphed in the accompanying figure.

The graph for Exercises 5–10.

2

x

y

0 3

(1, 2)

21–1

(1, 1)

 

y � f (x)

y � –2x � 4

y � x2 � 1 –1

y � 2x

ƒsxd = e
  x2

- 1, -1 … x 6 0

  2x,   0 6 x 6 1

  1,   x = 1

-2x + 4,   1 6 x 6 2

  0,   2 6 x 6 3

x

y

0 1–1 3

1

2

2

y � k(x)

x

y

0 1 3

2

–1 2

1

y � h(x)

x

y

0 1–1 3

1

2

2

y � g(x)

x

y

0 1–1 3

1

2

2

y � f (x)

[-1, 3] .

5. a. Does exist?

b. Does exist?

c. Does 

d. Is ƒ continuous at 

6. a. Does ƒ(1) exist?

b. Does exist?

c. Does 

d. Is ƒ continuous at 

7. a. Is ƒ defined at (Look at the definition of ƒ.)

b. Is ƒ continuous at 

8. At what values of x is ƒ continuous?

9. What value should be assigned to ƒ(2) to make the extended func-
tion continuous at 

10. To what new value should ƒ(1) be changed to remove the discon-
tinuity?

Applying the Continuity Test
At which points do the functions in Exercises 11 and 12 fail to be con-
tinuous? At which points, if any, are the discontinuities removable?
Not removable? Give reasons for your answers.

11. Exercise 1, Section 2.4 12. Exercise 2, Section 2.4

At what points are the functions in Exercises 13–30 continuous?

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. y = s2 - xd1>5y = s2x - 1d1>3
y = 24 3x - 1y = 22x + 3

y =

2x4
+ 1

1 + sin2 x
y =

x tan x

x2
+ 1

y = tan 
px
2

y = csc 2x

y =

x + 2
cos xy =

cos x
x

y =

1
ƒ x ƒ + 1

-

x2

2
y = ƒ x - 1 ƒ + sin x

y =

x + 3
x2

- 3x - 10
y =

x + 1
x2

- 4x + 3

y =

1
sx + 2d2 + 4y =

1
x - 2

- 3x

x = 2?

x = 2?

x = 2?

x = 1?

limx:1 ƒsxd = ƒs1d?

limx:1 ƒsxd

x = -1?

limx:-1+ ƒsxd = ƒs -1d?

limx: -1+ ƒsxd
ƒs -1d

function . Then ƒ is the sum of the function g and the quadratic function
and the quadratic function is continuous for all values of x. It follows that

is continuous on the interval . By trial and error, we

find the function values and and note that ƒ is
also continuous on the finite closed interval . Since the value is
between the numbers 2.24 and 7, by the Intermediate Value Theorem there is a number

such that That is, the number c solves the original equation.ƒ(c) = 4.c H [0, 2]

y0 = 4[0, 2] ( [-5>2, q)
ƒ(2) = 29 + 4 = 7,ƒ(0) = 25 L 2.24

[-5>2, q)ƒ(x) = 22x + 5 + x2
y = x2,

y = 2x + 5
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102 Chapter 2: Limits and Continuity

29.

30.

Limits Involving Trigonometric Functions
Find the limits in Exercises 31–38. Are the functions continuous at the
point being approached?

31. 32.

33.

34.

35. 36.

37. 38.

Continuous Extensions
39. Define g(3) in a way that extends to be

continuous at 

40. Define h(2) in a way that extends 
to be continuous at 

41. Define ƒ(1) in a way that extends to
be continuous at 

42. Define g(4) in a way that extends

to be continuous at 

43. For what value of a is

continuous at every x?

44. For what value of b is

continuous at every x?

45. For what values of a is

continuous at every x?

46. For what value of b is

continuous at every x?

gsxd = •
x - b
b + 1

, x 6 0

x2
+ b, x 7 0

ƒsxd = ba2x - 2a, x Ú 2

12, x 6 2

g sxd = e x, x 6 -2

bx2, x Ú -2

ƒsxd = e x2
- 1, x 6 3

2ax, x Ú 3

x = 4.

sx2
- 3x - 4dg sxd = sx2

- 16d>

s = 1.
ƒssd = ss3

- 1d>ss2
- 1d

t = 2.
hstd = st2

+ 3t - 10d>st - 2d
x = 3.

g sxd = sx2
- 9d>sx - 3d

lim
x:1

 cos-1 (ln 2x)lim
x:0+

 sin ap
2

 e2xb

lim
x:p/6

 2csc2 x + 513 tan xlim
t:0

 cos a p

219 - 3 sec 2t
b

lim
x:0

 tan ap
4

 cos ssin x1>3db
lim
y:1

 sec s y sec2 y - tan2 y - 1d

lim
t:0

 sin ap
2

 cos stan tdblim
x:p

 sin sx - sin xd

ƒsxd = d x3
- 8

x2
- 4

, x Z 2, x Z -2

3, x = 2

4, x = -2

gsxd = •
x2

- x - 6
x - 3

, x Z 3

5, x = 3

47. For what values of a and b is

continuous at every x?

48. For what values of a and b is

continuous at every x?

In Exercises 49–52, graph the function ƒ to see whether it appears to
have a continuous extension to the origin. If it does, use Trace and Zoom
to find a good candidate for the extended function’s value at 
If the function does not appear to have a continuous extension, can it be
extended to be continuous at the origin from the right or from the left? 
If so, what do you think the extended function’s value(s) should be?

49. 50.

51. 52.

Theory and Examples
53. A continuous function is known to be negative at 

and positive at Why does the equation have at
least one solution between and Illustrate with a
sketch.

54. Explain why the equation has at least one solution.

55. Roots of a cubic Show that the equation 
has three solutions in the interval 

56. A function value Show that the function 
takes on the value for some value of x.

57. Solving an equation If show that
there are values c for which ƒ(c) equals (a) (b)
(c) 5,000,000.

58. Explain why the following five statements ask for the same infor-
mation.

a. Find the roots of 

b. Find the x-coordinates of the points where the curve 
crosses the line 

c. Find all the values of x for which 

d. Find the x-coordinates of the points where the cubic curve
crosses the line 

e. Solve the equation 

59. Removable discontinuity Give an example of a function ƒ(x)
that is continuous for all values of x except where it has
a removable discontinuity. Explain how you know that ƒ is dis-
continuous at and how you know the discontinuity is
removable.

60. Nonremovable discontinuity Give an example of a function
g(x) that is continuous for all values of x except where it
has a nonremovable discontinuity. Explain how you know that g is
discontinuous there and why the discontinuity is not removable.

x = -1,

x = 2,

x = 2,

x3
- 3x - 1 = 0.

y = 1.y = x3
- 3x

x3
- 3x = 1.

y = 3x + 1.
y = x3

ƒsxd = x3
- 3x - 1.

-23;p ;
ƒsxd = x3

- 8x + 10,

sa + bd>2sx - bd2
+ x

Fsxd = sx - ad2 #

[-4, 4] .
x3

- 15x + 1 = 0

cos x = x

x = 1?x = 0
ƒsxd = 0x = 1.

x = 0y = ƒsxd

ƒsxd = s1 + 2xd1>xƒsxd =

sin x
ƒ x ƒ

ƒsxd =

10 ƒ x ƒ
- 1

xƒsxd =

10x
- 1

x

x = 0.

gsxd = •
ax + 2b, x … 0

x2
+ 3a - b, 0 6 x … 2

3x - 5, x 7 2

ƒsxd = •
-2, x … -1

ax - b, -1 6 x 6 1

3, x Ú 1

T
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61. A function discontinuous at every point

a. Use the fact that every nonempty interval of real numbers
contains both rational and irrational numbers to show that the
function

is discontinuous at every point.

b. Is ƒ right-continuous or left-continuous at any point?

62. If functions ƒ(x) and g(x) are continuous for could
possibly be discontinuous at a point of [0, 1]? Give rea-

sons for your answer.

63. If the product function is continuous at 
must ƒ(x) and g(x) be continuous at Give reasons for your
answer.

64. Discontinuous composite of continuous functions Give an ex-
ample of functions ƒ and g, both continuous at for which
the composite is discontinuous at Does this contra-
dict Theorem 9? Give reasons for your answer.

65. Never-zero continuous functions Is it true that a continuous
function that is never zero on an interval never changes sign on
that interval? Give reasons for your answer.

66. Stretching a rubber band Is it true that if you stretch a rubber
band by moving one end to the right and the other to the left,
some point of the band will end up in its original position? Give
reasons for your answer.

67. A fixed point theorem Suppose that a function ƒ is continuous
on the closed interval [0, 1] and that for every x in
[0, 1]. Show that there must exist a number c in [0, 1] such that

(c is called a fixed point of ƒ).ƒscd = c

0 … ƒsxd … 1

x = 0.ƒ � g
x = 0,

x = 0?
x = 0,hsxd = ƒsxd # g sxd

ƒ(x)>g (x)
0 … x … 1,

ƒsxd = e1, if x is rational

0, if x is irrational

2.6 Limits Involving Infinity; Asymptotes of Graphs 103

68. The sign-preserving property of continuous functions Let ƒ
be defined on an interval (a, b) and suppose that at some
c where ƒ is continuous. Show that there is an interval

about c where ƒ has the same sign as ƒ(c). 

69. Prove that ƒ is continuous at c if and only if

70. Use Exercise 69 together with the identities

to prove that both and are continuous
at every point 

Solving Equations Graphically
Use the Intermediate Value Theorem in Exercises 71–78 to prove that
each equation has a solution. Then use a graphing calculator or com-
puter grapher to solve the equations.

71.

72.

73.

74.

75.

76.

77. Make sure you are using radian mode.

78. Make sure you are using radian
mode.
2 sin x = x sthree rootsd .

cos x = x sone rootd .

x3
- 15x + 1 = 0 sthree rootsd

2x + 21 + x = 4

xx
= 2

xsx - 1d2
= 1 sone rootd

2x3
- 2x2

- 2x + 1 = 0

x3
- 3x - 1 = 0

x = c .
g sxd = cos xƒsxd = sin x

sin h sin ccos h cos c -cos sh + cd =

cos h sin c ,sin h cos c +sin sh + cd =

lim
h:0

 ƒsc + hd = ƒscd .

sc - d, c + dd

ƒscd Z 0

2.6 Limits Involving Infinity; Asymptotes of Graphs

In this section we investigate the behavior of a function when the magnitude of the inde-
pendent variable x becomes increasingly large, or . We further extend the concept
of limit to infinite limits, which are not limits as before, but rather a new use of the term
limit. Infinite limits provide useful symbols and language for describing the behavior of
functions whose values become arbitrarily large in magnitude. We use these limit ideas to
analyze the graphs of functions having horizontal or vertical asymptotes.

Finite Limits as 

The symbol for infinity does not represent a real number. We use to describe the
behavior of a function when the values in its domain or range outgrow all finite bounds.
For example, the function is defined for all (Figure 2.49). When x is
positive and becomes increasingly large, becomes increasingly small. When x is
negative and its magnitude becomes increasingly large, again becomes small. We
summarize these observations by saying that has limit 0 as or

or that 0 is a limit of at infinity and negative infinity. Here are 
precise definitions.

ƒsxd = 1>xx : - q ,
x : qƒsxd = 1>x1>x1>x x Z 0ƒsxd = 1>x

qs q d

x : —ˆ

x : ;q

T

y

0

1

–1
1–1 2 3 4

2

3

4

x

1
xy �

FIGURE 2.49 The graph of 
approaches 0 as or .x : - qx : q

y = 1>x
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104 Chapter 2: Limits and Continuity

Intuitively, if, as x moves increasingly far from the origin in the positive
direction, ƒ(x) gets arbitrarily close to L. Similarly, if, as x moves in-
creasingly far from the origin in the negative direction, ƒ(x) gets arbitrarily close to L.

The strategy for calculating limits of functions as is similar to the one for
finite limits in Section 2.2. There we first found the limits of the constant and identity
functions and We then extended these results to other functions by applying
Theorem 1 on limits of algebraic combinations. Here we do the same thing, except that the
starting functions are and instead of and 

The basic facts to be verified by applying the formal definition are

(1)

We prove the second result and leave the first to Exercises 87 and 88.

EXAMPLE 1 Show that

(a) (b)

Solution

(a) Let be given. We must find a number M such that for all x

The implication will hold if or any larger positive number (Figure 2.50).
This proves 

(b) Let be given. We must find a number N such that for all x

The implication will hold if or any number less than (Figure 2.50).
This proves 

Limits at infinity have properties similar to those of finite limits.

limx:-q s1>xd = 0.
-1>PN = -1>P

x 6 N Q ` 1x - 0 ` = ` 1x ` 6 P .

P 7 0

limx:q s1>xd = 0.
M = 1>P

x 7 M Q ` 1x - 0 ` = ` 1x ` 6 P .

P 7 0

lim
x: -q

  
1
x = 0.lim

x: q

  
1
x = 0

lim
x: ;q

 k = k  and  lim
x: ;q

  
1
x = 0.

y = x .y = ky = 1>xy = k

y = x .y = k

x : ; q

limx:-q ƒsxd = L
limx:q ƒsxd = L

x

y
No matter what
positive number � is,
the graph enters
this band at x �
and stays.

1
�

y � �

M � 1
�

N � – 1
�

y � –�

0

No matter what
positive number � is,
the graph enters
this band at x � –
and stays.

1
�

�

–�

y � 1
x

FIGURE 2.50 The geometry behind the
argument in Example 1.

THEOREM 12 All the limit laws in Theorem 1 are true when we replace
by or . That is, the variable x may approach a finite

number c or ; q .
limx:- qlimx: qlimx:c

DEFINITIONS
1. We say that ƒ(x) has the limit L as x approaches infinity and write

if, for every number there exists a corresponding number M such that for all x

2. We say that ƒ(x) has the limit L as x approaches minus infinity and write

if, for every number there exists a corresponding number N such that for all x

x 6 N Q ƒ ƒsxd - L ƒ 6 P .

P 7 0,

lim
x: -q

 ƒsxd = L

x 7 M Q ƒ ƒsxd - L ƒ 6 P .

P 7 0,

lim
x: q

 ƒsxd = L

7001_AWLThomas_ch02p058-121.qxd  10/1/09  2:34 PM  Page 104



2.6 Limits Involving Infinity; Asymptotes of Graphs 105

EXAMPLE 2 The properties in Theorem 12 are used to calculate limits in the same way
as when x approaches a finite number c.

(a) Sum Rule

Known limits

(b)

Product Rule

Known limits

Limits at Infinity of Rational Functions

To determine the limit of a rational function as we first divide the numerator
and denominator by the highest power of x in the denominator. The result then depends on
the degrees of the polynomials involved.

EXAMPLE 3 These examples illustrate what happens when the degree of the numerator
is less than or equal to the degree of the denominator.

(a)

(b)

A case for which the degree of the numerator is greater than the degree of the denom-
inator is illustrated in Example 10.

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a
point on the graph moves increasingly far from the origin, we say that the graph ap-
proaches the line asymptotically and that the line is an asymptote of the graph.

Looking at (see Figure 2.49), we observe that the x-axis is an asymptote
of the curve on the right because

and on the left because

We say that the x-axis is a horizontal asymptote of the graph of ƒsxd = 1>x .

lim
x: -q

 
1
x = 0.

lim
x: q

 
1
x = 0

ƒsxd = 1>x

See Fig. 2.52. =
0 + 0
2 - 0

= 0

Divide numerator and
denominator by x3. lim

x: -q

 
11x + 2
2x3

- 1
= lim

x: -q

 
s11>x2d + s2>x3d

2 - s1>x3d

See Fig. 2.51. =
5 + 0 - 0

3 + 0
=

5
3

Divide numerator and
denominator by x2. lim

x: q

 
5x2

+ 8x - 3
3x2

+ 2
= lim

x: q

 
5 + s8>xd - s3>x2d

3 + s2>x2d

x : ; q ,

 = p23 # 0 # 0 = 0

 = lim
x: -q

 p23 # lim
x: -q

 
1
x

# lim
x: -q

 
1
x

lim
x: -q

 
p23

x2 = lim
x: -q

 p23 # 1
x

# 1
x

 = 5 + 0 = 5

 lim
x: q

a5 +
1
x b = lim

x: q

 5 + lim
x: q

 
1
x

x

y

0

–2

–4

–6

–8

2–2–4 4 6

2

4

6

8
y �

11x � 2

2x3 � 1

FIGURE 2.52 The graph of the
function in Example 3b. The graph
approaches the x-axis as increases.ƒ x ƒ

DEFINITION A line is a horizontal asymptote of the graph of a func-
tion if either

lim
x: q

 ƒsxd = b or lim
x: -q

 ƒsxd = b .

y = ƒsxd
y = b

x

y

0

–1

–2

1

2

5–5 10

y � 5x2 � 8x � 3
3x2 � 2

NOT TO SCALE

Line y � 5
3

FIGURE 2.51 The graph of the function
in Example 3a. The graph approaches the
line as increases.ƒ x ƒy = 5>3
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106 Chapter 2: Limits and Continuity

The graph of the function

sketched in Figure 2.51 (Example 3a) has the line as a horizontal asymptote on
both the right and the left because

EXAMPLE 4 Find the horizontal asymptotes of the graph of

Solution We calculate the limits as 

The horizontal asymptotes are and The graph is displayed in Figure 2.53.
Notice that the graph crosses the horizontal asymptote for a positive value
of x.

EXAMPLE 5 The x-axis (the line ) is a horizontal asymptote of the graph of
because

To see this, we use the definition of a limit as x approaches . So let be given, but
arbitrary. We must find a constant N such that for all x,

Now , so the condition that needs to be satisfied whenever is

Let be the number where . Since is an increasing function, if ,
then . We find N by taking the natural logarithm of both sides of the equation

, so (see Figure 2.54). With this value of N the condition is satisfied, and
we conclude that 

EXAMPLE 6 Find (a) and (b)

Solution

(a) We introduce the new variable From Example 1, we know that as
(see Figure 2.49). Therefore,

lim
x: q

 sin 
1
x = lim

t:0+

 sin t = 0.

x : q

t : 0+t = 1>x .

lim
x: ;q

 x sin s1>xd.lim
x: q

 sin s1>xd

limx:-q e
x

= 0.
N = ln PeN

=  P
ex

6  P
x 6 Nexex

=  Px = N

ex
6 P.

x 6 Nƒex
- 0 ƒ = ex

x 6 N Q  ƒex
- 0 ƒ 6 P.

P 7 0-q

lim
x: - q

 ex
= 0.

y = ex
y = 0

y = -1
y = 1.y = -1

For x 6 0: lim
x: -q

 
x3

- 2

ƒ x ƒ
3

+ 1
= lim

x: -q

 
x3

- 2
(-x)3

+ 1
= lim

x: -q

 
1 - (2>x3)

-1 + (1>x3)
= -1.

For x Ú 0: lim
x: q

 
x3

- 2

ƒ x ƒ
3

+ 1
= lim

x: q

 
x3

- 2
x3

+ 1
= lim

x: q

 
1 - (2>x3)

1 + (1>x3)
= 1.

x : ; q .

ƒsxd =
x3

- 2

ƒ x ƒ
3

+ 1.

lim
x: q

 ƒsxd =
5
3
 and lim

x: -q

 ƒsxd =
5
3

.

y = 5>3
ƒsxd =

5x2
+ 8x - 3

3x2
+ 2

FIGURE 2.53 The graph of the
function in Example 4 has two
horizontal asymptotes.

0

–2

2

x

y

y � –1

f(x) � x3 – 2
�x �3 + 1

y � 1

1

x

y

y � ex

N � ln �

�

FIGURE 2.54 The graph of 
approaches the x-axis as 
(Example 5).

x : - q

y = ex
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(b) We calculate the limits as and 

The graph is shown in Figure 2.55, and we see that the line is a horizontal 
asymptote.

Likewise, we can investigate the behavior of as by investigating
as , where .

EXAMPLE 7 Find .

Solution We let . From Figure 2.49, we can see that as . (We
make this idea more precise further on.) Therefore,

Example 5

(Figure 2.56).

The Sandwich Theorem also holds for limits as You must be sure, though,
that the function whose limit you are trying to find stays between the bounding functions
at very large values of x in magnitude consistent with whether or 

EXAMPLE 8 Using the Sandwich Theorem, find the horizontal asymptote of the curve

Solution We are interested in the behavior as Since

and we have by the Sandwich Theorem.
Hence,

and the line is a horizontal asymptote of the curve on both left and right (Figure 2.57).
This example illustrates that a curve may cross one of its horizontal asymptotes many

times.

EXAMPLE 9 Find 

Solution Both of the terms x and approach infinity as so what hap-
pens to the difference in the limit is unclear (we cannot subtract from because the
symbol does not represent a real number). In this situation we can multiply the numerator
and the denominator by the conjugate radical expression to obtain an equivalent algebraic
result: 

.= lim
x: q

 
x2

- (x2
+ 16)

x + 2x2
+ 16

= lim
x: q

 
-16

x + 2x2
+ 16

lim
x: q

 Ax - 2x2
+ 16 B = lim

x: q

 Ax - 2x2
+ 16 B  x + 2x2

+ 16

x + 2x2
+ 16

qq

x : q ,2x2
+ 16

lim
x: q

 Ax - 2x2
+ 16 B .

y = 2

lim
x: ;q

a2 +
sin x

x b = 2 + 0 = 2,

limx:;q ssin xd>x = 0limx:;q ƒ 1>x ƒ = 0,

0 … ` sin x
x ` … ` 1x `

x : ; q.

y = 2 +
sin x

x .

x : - q .x : q

x : ; q .

lim
x:0-

e1>x
= lim

t: - q

et
= 0

x : 0-t : -qt = 1>x
lim

x:0-

e1>x

t = 1>xt : ; qy = ƒ(t)
x : 0y = ƒ(1>x)

y = 1

lim
x: q

 x sin 
1
x = lim

t:0+

 
sin t

t = 1  and  lim
x: -q

 x sin 
1
x = lim

t:0-

 
sin t

t = 1.

x : - q :x : q
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1

–1 1
x

y

y � x sin 1
x

FIGURE 2.55 The line is a
horizontal asymptote of the function
graphed here (Example 6b).

y = 1

x

y

1

0

2

2��–�–2�–3� 3�

y � 2 � sin x
x

FIGURE 2.57 A curve may cross one of
its asymptotes infinitely often (Example 8).

y � e1 ⁄x

–1–2–3 0

0.2
0.4
0.6
0.8

1

y

x

FIGURE 2.56 The graph of 
for shows 
(Example 7).

limx:0- e1>x
= 0x 6 0

y = e1>x
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108 Chapter 2: Limits and Continuity

As the denominator in this last expression becomes arbitrarily large, so we see that
the limit is 0. We can also obtain this result by a direct calculation using the Limit Laws: 

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the de-
nominator, the graph has an oblique or slant line asymptote. We find an equation for the
asymptote by dividing numerator by denominator to express ƒ as a linear function plus a
remainder that goes to zero as 

EXAMPLE 10 Find the oblique asymptote of the graph of

in Figure 2.58.

Solution We are interested in the behavior as . We divide into

This tells us that

As , the remainder, whose magnitude gives the vertical distance between the
graphs of ƒ and g, goes to zero, making the slanted line

an asymptote of the graph of ƒ (Figure 2.58). The line is an asymptote both to the
right and to the left. The next subsection will confirm that the function ƒ(x) grows arbitrarily
large in absolute value as (where the denominator is zero), as shown in the graph.

Notice in Example 10 that if the degree of the numerator in a rational function is greater
than the degree of the denominator, then the limit as becomes large is or de-
pending on the signs assumed by the numerator and denominator.

Infinite Limits

Let us look again at the function As the values of ƒ grow without
bound, eventually reaching and surpassing every positive real number. That is, given any
positive real number B, however large, the values of ƒ become larger still (Figure 2.59).

x : 0+ ,ƒsxd = 1>x .

- q ,+ qƒ x ƒ

x : 2

y = g(x)

g(x) =
x
2

+ 1

x : ; q

ƒsxd =
x2

- 3
2x - 4

= ¢ x
2

+ 1≤ + ¢ 1
2x - 4 ≤  .

x
2

+ 1   

2x - 4�x2
- 3  

x2
- 2x  

2x - 3

2x - 4

1

sx2
- 3d :

s2x - 4dx : ; q

ƒsxd =
x2

- 3
2x - 4

x : ; q .

lim
x: q

 
-16

x + 2x2
+ 16

= lim
x: q

 
-  

16
x

1 + A
x2

x2 +
16
x2

=
0

1 + 21 + 0
= 0.

x : q ,

You can get as high
as you want by
taking x close enough
to 0.  No  matter how
high B is, the graph
goes higher.

x

y

You can get as low as
you want by taking
x close enough to 0.

No matter how
low –B is,  the
graph goes lower.

x

x

B

–B

y � 1
x

0

FIGURE 2.59 One-sided infinite limits:

lim
x:0+

 
1
x = q  and  lim

x:0-

 
1
x = - q .

x

y

0 1 2 3 4 x–1

1

–1

–2

–3

2

3

4

5

6

x 5 2 Oblique
asymptote

The vertical distance
between curve and
line goes to zero as x → `

y 5    1 1x
2

y 5 5 1 1 1x2 2 3
2x 2 4

1
2x 2 4

x
2

FIGURE 2.58 The graph of the function
in Example 10 has an oblique asymptote.

123
linear g(x)

14243
remainder
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Thus, ƒ has no limit as It is nevertheless convenient to describe the behavior of ƒ
by saying that ƒ(x) approaches as We write

In writing this equation, we are not saying that the limit exists. Nor are we saying that there
is a real number for there is no such number. Rather, we are saying that 
does not exist because becomes arbitrarily large and positive as

As the values of become arbitrarily large and negative. Given
any negative real number the values of ƒ eventually lie below (See Figure 2.59.)
We write

Again, we are not saying that the limit exists and equals the number There is no real
number We are describing the behavior of a function whose limit as does not
exist because its values become arbitrarily large and negative.

EXAMPLE 11 Find and

Geometric Solution The graph of is the graph of shifted 1 unit
to the right (Figure 2.60). Therefore, behaves near 1 exactly the way

behaves near 0:

Analytic Solution Think about the number and its reciprocal. As we have
and As we have and 

EXAMPLE 12 Discuss the behavior of

Solution As x approaches zero from either side, the values of are positive and be-
come arbitrarily large (Figure 2.61). This means that

The function shows no consistent behavior as We have if
but if All we can say about is that it does not

exist. The function is different. Its values approach infinity as x approaches zero
from either side, so we can say that 

EXAMPLE 13 These examples illustrate that rational functions can behave in various
ways near zeros of the denominator.

(a)

(b) lim
x:2

  
x - 2
x2

- 4
= lim

x:2
  

x - 2
sx - 2dsx + 2d

= lim
x:2

  
1

x + 2
=

1
4

lim
x:2

  
sx - 2d2

x2
- 4

= lim
x:2

  
sx - 2d2

sx - 2dsx + 2d
= lim

x:2
  
x - 2
x + 2

= 0

limx:0 s1>x2d = q .
y = 1>x2

limx:0 s1>xdx : 0- .1>x : - qx : 0+ ,
1>x : qx : 0.y = 1>x

lim
x:0

 ƒsxd = lim
x:0

 
1
x2 = q .

1>x2

ƒsxd =
1
x2    as    x : 0.

- q .
1>sx - 1d :sx - 1d : 0-x : 1- ,1>sx - 1d : q .sx - 1d : 0+

x : 1+ ,x - 1

lim
x:1+

 
1

x - 1
= q  and  lim

x:1-

 
1

x - 1
= - q .

y = 1>x y = 1>sx - 1d
y = 1>xy = 1>sx - 1d

lim
x:1-

 
1

x - 1
.lim

x:1+

 
1

x - 1

x : 0-

- q .
- q .

lim
x:0-

 ƒsxd = lim
x:0-

 
1
x = - q .

-B .-B ,
ƒsxd = 1>xx : 0- ,

x : 0+ .1>x limx:0+ s1>xdq ,

lim
x:0+

 ƒsxd = lim
x:0+

 
1
x = q .

x : 0+ .q

x : 0+ .

2.6 Limits Involving Infinity; Asymptotes of Graphs 109

x

y

1

0 1 2 3–1

y �
x � 1

1

FIGURE 2.60 Near the function
behaves the way the

function behaves near 
Its graph is the graph of shifted 
1 unit to the right (Example 11).

y = 1>x
x = 0.y = 1>x

y = 1>sx - 1d
x = 1,

FIGURE 2.61 The graph of in
Example 12 approaches infinity as .x : 0

ƒ(x)

x

y

No matter how
high B is, the graph
goes higher.

B

0x x

f (x) � 1
x2
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110 Chapter 2: Limits and Continuity

(c)

(d)

(e)

(f)

In parts (a) and (b) the effect of the zero in the denominator at is canceled be-
cause the numerator is zero there also. Thus a finite limit exists. This is not true in part (f ),
where cancellation still leaves a zero factor in the denominator.

Precise Definitions of Infinite Limits

Instead of requiring ƒ(x) to lie arbitrarily close to a finite number L for all x sufficiently
close to the definitions of infinite limits require ƒ(x) to lie arbitrarily far from zero. Ex-
cept for this change, the language is very similar to what we have seen before. Figures 2.62
and 2.63 accompany these definitions.

x0 ,

x = 2

lim
x:2

  
2 - x

sx - 2d3 = lim
x:2

  
- sx - 2d
sx - 2d3 = lim

x:2
  

-1
sx - 2d2 = - q

lim
x:2

  
x - 3
x2

- 4
= lim

x:2
  

x - 3
sx - 2dsx + 2d

  does not exist .

lim
x:2-

  
x - 3
x2

- 4
= lim

x:2-

  
x - 3

sx - 2dsx + 2d
= q

lim
x:2+

  
x - 3
x2

- 4
= lim

x:2+

  
x - 3

sx - 2dsx + 2d
= - q

The precise definitions of one-sided infinite limits at are similar and are stated in the
exercises.

EXAMPLE 14 Prove that 

Solution Given we want to find such that

Now,

or, equivalently,

ƒ x ƒ 6
1

2B
.

1
x2 7 B if and only if x2

6
1
B

0 6 ƒ x - 0 ƒ 6 d implies 1
x2 7 B .

d 7 0B 7 0,

lim
x:0

  
1
x2 = q .

x0

y

x
0

B

y � f (x)

x0 � � x0 � �
x0

FIGURE 2.62 For 
the graph of ƒ(x) lies above the line y = B.

x0 - d 6 x 6 x0 + d,

x

y

0

–B

y � f (x)

x0 � � x0 � �
x0

FIGURE 2.63 For 
the graph of ƒ(x) lies below the line
y = -B.

x0 - d 6 x 6 x0 + d,

The values are positive
for near 2.x 6 2, x

See parts (c) and (d).

The values are negative
for near 2.x 7 2, x

DEFINITIONS
1. We say that ƒ(x) approaches infinity as x approaches x0 , and write

if for every positive real number B there exists a corresponding such
that for all x

2. We say that ƒ(x) approaches minus infinity as x approaches x0 , and write

if for every negative real number there exists a corresponding such
that for all x

0 6 ƒ x - x0 ƒ 6 d Q ƒsxd 6 -B .

d 7 0-B

lim
x:x0

 ƒsxd = - q ,

0 6 ƒ x - x0 ƒ 6 d Q ƒsxd 7 B .

d 7 0

lim
x:x0

 ƒsxd = q ,
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Thus, choosing (or any smaller positive number), we see that

Therefore, by definition,

Vertical Asymptotes

Notice that the distance between a point on the graph of and the y-axis
approaches zero as the point moves vertically along the graph and away from the origin
(Figure 2.64). The function is unbounded as x approaches 0 because

We say that the line (the y-axis) is a vertical asymptote of the graph of .
Observe that the denominator is zero at and the function is undefined there.x = 0

ƒ(x) = 1>xx = 0

lim
x:0+

 
1
x = q and lim

x:0-

 
1
x = - q .

ƒ(x) = 1>x
ƒsxd = 1>x

lim
x:0

  
1
x2 = q .

ƒ x ƒ 6 d implies 1
x2 7

1
d2 Ú B .

d = 1>2B

2.6 Limits Involving Infinity; Asymptotes of Graphs 111

x

y

0
–1

–2

–3

–4

1–1–2–3–4–5

1

2 3

2

3

4

5

6

y �
x � 3
x � 2

� 1 �
1

x � 2

Vertical
asymptote,
x � –2

Horizontal
asymptote,
y � 1

FIGURE 2.65 The lines and
are asymptotes of the curve in

Example 15.
x = -2

y = 1

x
0

1

1

y

Horizontal
asymptote,
y � 0

Horizontal
asymptote

Vertical asymptote

Vertical asymptote,
x � 0

y � 1
x

FIGURE 2.64 The coordinate axes are
asymptotes of both branches of the
hyperbola y = 1>x .

DEFINITION A line is a vertical asymptote of the graph of a function
if either

lim
x:a+

 ƒsxd = ; q or lim
x:a-

 ƒsxd = ; q .

y = ƒsxd
x = a

EXAMPLE 15 Find the horizontal and vertical asymptotes of the curve

Solution We are interested in the behavior as and the behavior as 
where the denominator is zero.

The asymptotes are quickly revealed if we recast the rational function as a polynomial
with a remainder, by dividing into 

This result enables us to rewrite y as:

As , the curve approaches the horizontal asymptote as the curve
approaches the vertical asymptote . We see that the curve in question is the graph
of shifted 1 unit up and 2 units left (Figure 2.65). The asymptotes, instead of
being the coordinate axes, are now the lines  and  x = -2.y = 1

ƒ(x) = 1>x x = -2
x : -2,y = 1;x : ; q

y = 1 +
1

x + 2
.

1   
x + 2�x + 3

x + 2

1

sx + 3d:sx + 2d

x : -2,x : ; q

y =
x + 3
x + 2

.
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112 Chapter 2: Limits and Continuity

EXAMPLE 16 Find the horizontal and vertical asymptotes of the graph of

Solution We are interested in the behavior as and as where the
denominator is zero. Notice that ƒ is an even function of x, so its graph is symmetric with
respect to the y-axis.

(a) The behavior as Since the line is a horizontal 
asymptote of the graph to the right. By symmetry it is an asymptote to the left as well
(Figure 2.66). Notice that the curve approaches the x-axis from only the negative side
(or from below). Also, 

(b) The behavior as Since

the line is a vertical asymptote both from the right and from the left. By sym-
metry, the line is also a vertical asymptote.

There are no other asymptotes because ƒ has a finite limit at every other point.

EXAMPLE 17 The graph of the natural logarithm function has the y-axis (the line )
as a vertical asymptote. We see this from the graph sketched in Figure 2.67 (which is the
reflection of the graph of the natural exponential function across the line ) and the
fact that the x-axis is a horizontal asymptote of (Example 5). Thus,

The same result is true for whenever 

EXAMPLE 18 The curves

both have vertical asymptotes at odd-integer multiples of where (Figure 2.68).cos x = 0p>2,

y = sec x =
1

cos x and y = tan x =
sin x
cos x

a 7 1.y = loga x

lim
x:0+

 ln x = - q .

y = ex
y = x

x = 0

x = -2
x = 2

lim
x:2+

 ƒsxd = - q and lim
x:2-

 ƒsxd = q ,

x : ;2.

ƒs0d = 2.

y = 0limx:q ƒsxd = 0,x : ; q .

x : ;2,x : ; q

ƒsxd = -
8

x2
- 4

.

x

y

0 1–1

1

Vertical
asymptote, x � 2

Horizontal
asymptote, y � 02

3
4
5
6
7
8

3 42–2–3–4

Vertical
asymptote,

x � –2

y � – 8
x2 � 4

FIGURE 2.66 Graph of the function in
Example 16. Notice that the curve
approaches the x-axis from only one side.
Asymptotes do not have to be two-sided.

–1 1 2 3 4
–1

1

2

3

4

x

y
y � ex

y � ln x

FIGURE 2.67 The line is a vertical
asymptote of the natural logarithm
function (Example 17).

x = 0

x

y

0

1
x

y

0

1

–1

y � sec x y � tan x

�
2

�
2

�–� 3�
2

3�
2

––�
2

�
2

�–� 3�
2

3�
2

––

FIGURE 2.68 The graphs of sec x and tan x have infinitely many vertical 
asymptotes (Example 18).

Dominant Terms

In Example 10 we saw that by long division we could rewrite the function

ƒ(x) =
x2

- 3
2x - 4
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2.6 Limits Involving Infinity; Asymptotes of Graphs 113

as a linear function plus a remainder term:

This tells us immediately that

For x numerically large, is near 0.

For x near 2, this term is very large.

If we want to know how ƒ behaves, this is the way to find out. It behaves like
when x is numerically large and the contribution of to the total

value of ƒ is insignificant. It behaves like when x is so close to 2 that
makes the dominant contribution.

We say that dominates when x is numerically large, and we say that
dominates when x is near 2. Dominant terms like these help us predict a

function’s behavior.

EXAMPLE 19 Let and Show that
although ƒ and g are quite different for numerically small values of x, they are virtually
identical for very large, in the sense that their ratios approach 1 as or

.

Solution The graphs of ƒ and g behave quite differently near the origin (Figure 2.69a),
but appear as virtually identical on a larger scale (Figure 2.69b).

We can test that the term in ƒ, represented graphically by g, dominates the polyno-
mial ƒ for numerically large values of x by examining the ratio of the two functions as

We find that

which means that ƒ and g appear nearly identical for large.

Summary

In this chapter we presented several important calculus ideas that are made meaningful
and precise by the concept of the limit. These include the three ideas of the exact rate of
change of a function, the slope of the graph of a function at a point, and the continuity of a
function. The primary methods used for calculating limits of many functions are captured
in the algebraic limit laws of Theorem 1 and in the Sandwich Theorem, all of which are
proved from the precise definition of the limit. We saw that these computational rules also
apply to one-sided limits and to limits at infinity. Moreover, we can sometimes apply these
rules to calculating limits of simple transcendental functions, as illustrated by our exam-
ples or in cases like the following:

 lim
x:0

  
ex

- 1
e2x

- 1
= lim

x:0
  

ex
- 1

(ex
- 1)(ex

+ 1)
= lim

x:0
  

1
ex

+ 1
=

1
1 + 1

=
1
2

 .

ƒ x ƒ

 = 1, 

 = lim
x: ;q

a1 -
2
3x

+
1
x2 -

5
3x3 +

2
x4 b

 lim
x: ;q

 
ƒsxd
g sxd

= lim
x: ;q

 
3x4

- 2x3
+ 3x2

- 5x + 6
3x4

x : ; q .

3x4

x : - q

x : qƒ x ƒ

g sxd = 3x4 .ƒsxd = 3x4
- 2x3

+ 3x2
- 5x + 6

1>s2x - 4d
sx>2d + 1

1>s2x - 4d
1>s2x - 4d

1>s2x - 4dy = sx>2d + 1

 ƒsxd L
1

2x - 4

1
2x - 4

 ƒsxd L
x
2

+ 1

ƒ(x) = ¢ x
2

+ 1≤ + ¢ 1
2x - 4 ≤ .

x

y

–20 –10 10 20

–100,000

0

100,000

300,000

500,000

(b)

x

y

f (x)

–2 –1 1 2

–5

0

5

10

15

20

(a)

g(x) � 3x4

FIGURE 2.69 The graphs of ƒ and g
are (a) distinct for small, and
(b) nearly identical for large
(Example 19).

ƒ x ƒ

ƒ x ƒ
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114 Chapter 2: Limits and Continuity

Exercises 2.6

Finding Limits
1. For the function ƒ whose graph is given, determine the following

limits.

a. b. c.

d. e. f.

g. h. i.

2. For the function ƒ whose graph is given, determine the following
limits.

a. b. c.

d. e. f.

g. h. i.

j. k. l.

In Exercises 3–8, find the limit of each function (a) as and
(b) as (You may wish to visualize your answer with a
graphing calculator or computer.)

3. 4. ƒsxd = p -

2
x2ƒsxd =

2
x - 3

x : - q .
x : q

y

x

–2

–3

2 3 4 5 61–1–2–3–4–5–6

f
3

2

1

–1

lim
x: -q

 ƒ(x)lim
x: q

 ƒ(x)lim
x:0

 ƒ(x)

lim
x:0 -

 ƒ(x)lim
x:0 +

 ƒ(x)lim
x: -3

 ƒ(x)

lim
x: -3 -

 ƒ(x)lim
x: -3 +

 ƒ(x)lim
x:2

 ƒ(x)

lim
x:2 -

 ƒ(x)lim
x:2 +

 ƒ(x)lim
x:4

 ƒ(x)

y

x

–2

–1

1

2

3

–3

2 3 4 5 61–1–2–3–4–5–6

f

lim
x: -q

 ƒ(x)lim
x: q

 ƒ(x)lim
x:0

 ƒ(x)

lim
x:0 -

 ƒ(x)lim
x:0 +

 ƒ(x)lim
x: -3

 ƒ(x)

lim
x: -3 -

 ƒ(x)lim
x: -3 +

 ƒ(x)lim
x:2

 ƒ(x)

5. 6.

7. 8.

Find the limits in Exercises 9–12.

9. 10.

11. 12.

Limits of Rational Functions
In Exercises 13–22, find the limit of each rational function (a) as

and (b) as 

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Limits as or 
The process by which we determine limits of rational functions
applies equally well to ratios containing noninteger or negative
powers of x: divide numerator and denominator by the highest
power of x in the denominator and proceed from there. Find the lim-
its in Exercises 23–36.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32. lim
x: -q

  
23 x - 5x + 3

2x + x2>3
- 4

lim
x: q

  
2x5>3

- x1>3
+ 7

x8>5
+ 3x + 2x

lim
x: q

  
x-1

+ x-4

x-2
- x-3lim

x: -q

  
23 x -

52x

23 x +
52x

lim
x: q

  
2 + 2x

2 - 2x
lim

x: q

  
22x + x-1

3x - 7

lim
x: q

 A
x2

- 5x

x3
+ x - 2

lim
x: -q

 ¢ 1 - x3

x2
+ 7x

≤5

lim
x: -q

 ¢ x2
+ x - 1

8x2
- 3

≤1>3
lim

x: q

 A
8x2

- 3
2x2

+ x

x : � ˆx : ˆ

hsxd =

-x4

x4
- 7x3

+ 7x2
+ 9

hsxd =

-2x3
- 2x + 3

3x3
+ 3x2

- 5x

hsxd =

9x4
+ x

2x4
+ 5x2

- x + 6
g sxd =

10x5
+ x4

+ 31
x6

g sxd =

1
x3

- 4x + 1
hsxd =

7x3

x3
- 3x2

+ 6x

ƒsxd =

3x + 7
x2

- 2
ƒsxd =

x + 1
x2

+ 3

ƒsxd =

2x3
+ 7

x3
- x2

+ x + 7
ƒsxd =

2x + 3
5x + 7

x : - q .x : q

lim
r: q

  
r + sin r

2r + 7 - 5 sin r
lim

t: -q

 
2 - t + sin t

t + cos t

lim
u: -q

 
cos u

3u
lim

x: q

 
sin 2x

x

hsxd =

3 - s2>xd

4 + (22>x2)
hsxd =

-5 + s7>xd

3 - s1>x2d

g sxd =

1
8 - s5>x2d

g sxd =

1
2 + s1>xd

However, calculating more complicated limits involving transcendental functions such as

and

requires more than simple algebraic techniques. The derivative is exactly the tool we need
to calculate limits in these kinds of cases (see Section 4.5), and this notion is the main sub-
ject of our next chapter.

lim
x:0

 a1 +
1
x b

x

lim
x:0

  
x

e2x
- 1

, lim
x:0

  
ln x
x ,
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2.6 Limits Involving Infinity; Asymptotes of Graphs 115

33. 34.

35. 36.

Infinite Limits
Find the limits in Exercises 37–48.

37. 38.

39. 40.

41. 42.

43. 44.

45. a. b.

46. a. b.

47. 48.

Find the limits in Exercises 49–52.

49. 50.

51. 52.

Find the limits in Exercises 53–58.

53.

a. b.

c. d.

54.

a. b.

c. d.

55.

a. b.

c. d.

56.

a. b.
c. d.

57.

a. b.
c. d.

e. What, if anything, can be said about the limit as 

58.

a. b.
c. d.

e. What, if anything, can be said about the limit as x : 0?

x : 1+x : 0-

x : -2+x : 2+

lim 
x2

- 3x + 2
x3

- 4x
  as

x : 0?

x : 2x : 2-

x : 2+x : 0+

lim 
x2

- 3x + 2
x3

- 2x2  as

x : 0-x : 1+

x : -2-x : -2+

lim 
x2

- 1
2x + 4

 as

x : -1x : 23 2

x : 0-x : 0+

lim ax2

2
-

1
x b  as

x : -1-x : -1+

x : 1-x : 1+

lim 
x

x2
- 1

 as

x : -2-x : -2+

x : 2-x : 2+

lim 
1

x2
- 4

 as

lim
u:0

 s2 - cot udlim
u:0-  

s1 + csc ud

lim
x: s-p>2d+

 sec xlim
x: sp>2d-

 tan x

lim
x:0

  
1

x2>3lim
x:0

  
4

x2>5

lim
x:0-

 
2

x1>5lim
x:0+

 
2

x1>5

lim
x:0-

 
2

3x1>3lim
x:0+

 
2

3x1>3

lim
x:0

  
-1

x2sx + 1d
lim
x:7

  
4

sx - 7d2

lim
x: -5-

 
3x

2x + 10
lim

x: -8+

 
2x

x + 8

lim
x:3+

 
1

x - 3
lim

x:2-

 
3

x - 2

lim
x:0-

 
5
2x

lim
x:0+

 
1
3x

lim
x: -q

 
4 - 3x3

2x6
+ 9

lim
x: q

 
x - 3

24x2
+ 25

lim
x: -q

 
2x2

+ 1
x + 1

lim
x: q

 
2x2

+ 1
x + 1

Find the limits in Exercises 59–62.

59.

a. b.

60.

a. b.

61.

a. b.

c. d.

62.

a. b.

c. d.

Graphing Simple Rational Functions
Graph the rational functions in Exercises 63–68. Include the graphs
and equations of the asymptotes and dominant terms.

63. 64.

65. 66.

67. 68.

Inventing Graphs and Functions
In Exercises 69–72, sketch the graph of a function that satis-
fies the given conditions. No formulas are required—just label the coor-
dinate axes and sketch an appropriate graph. (The answers are not unique,
so your graphs may not be exactly like those in the answer section.)

69. and

70. and

71.

72.

In Exercises 73–76, find a function that satisfies the given conditions
and sketch its graph. (The answers here are not unique. Any function
that satisfies the conditions is acceptable. Feel free to use formulas de-
fined in pieces if that will help.)

73.

74.

75. and

76. lim
x: ;q

 k sxd = 1, lim
x:1-

 k sxd = q , and lim
x:1+

 k sxd = - q

 lim
x:0+

 hsxd = 1

lim
x: -q

 hsxd = -1, lim
x: q

 hsxd = 1, lim
x:0-

 hsxd = -1,

lim
x: ;q

 g sxd = 0, lim
x:3-

 g sxd = - q , and lim
x:3+

 g sxd = q

lim
x: ;q

 ƒsxd = 0, lim
x:2-

 ƒsxd = q , and lim
x:2+

 ƒsxd = q

 lim
x:0-

 ƒsxd = - q , and lim
x: -q

 ƒsxd = 1

ƒs2d = 1, ƒs -1d = 0, lim
x: q

 ƒsxd = 0, lim
x:0+

 ƒsxd = q ,

lim
x:1 +

 ƒsxd = - q , and lim
x: -1-

 ƒsxd = - q

ƒs0d = 0, lim
x: ;q

 ƒsxd = 0, lim
x:1-

 ƒsxd = lim
x: -1+

 ƒsxd = q , 

lim
x:0-

 ƒsxd = -2

ƒs0d = 0, lim
x: ;q

 ƒsxd = 0, lim
x:0+

 ƒsxd = 2, 

lim
x: q

 ƒsxd = 1

ƒs0d = 0, ƒs1d = 2, ƒs -1d = -2, lim
x: -q

 ƒsxd = -1,

y = ƒsxd

y =

2x
x + 1

y =

x + 3
x + 2

y =

-3
x - 3

y =

1
2x + 4

y =

1
x + 1

y =

1
x - 1

x : 1-x : 1+

x : 0-x : 0+

lim a 1

x1>3 -

1

sx - 1d4>3 b  as

x : 1-x : 1+

x : 0-x : 0+

lim a 1

x2>3 +

2

sx - 1d2>3 b  as

t : 0-t : 0+

lim a 1

t3>5 + 7b  as

t : 0-t : 0+

lim a2 -

3

t1>3 b  as
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116 Chapter 2: Limits and Continuity

77. Suppose that ƒ(x) and g(x) are polynomials in x and that
Can you conclude anything about

Give reasons for your answer.

78. Suppose that ƒ(x) and g(x) are polynomials in x. Can the graph of
have an asymptote if g(x) is never zero? Give reasons

for your answer.

79. How many horizontal asymptotes can the graph of a given ra-
tional function have? Give reasons for your answer.

Finding Limits of Differences when 
Find the limits in Exercises 80–86.

80.

81.

82.

83.

84.

85.

86.

Using the Formal Definitions
Use the formal definitions of limits as to establish the limits
in Exercises 87 and 88.

87. If ƒ has the constant value then 

88. If ƒ has the constant value then 

Use formal definitions to prove the limit statements in Exercises
89–92.

89. 90.

91. 92.

93. Here is the definition of infinite right-hand limit.

lim
x: -5

  
1

sx + 5d2 = qlim
x:3

  
-2

sx - 3d2 = - q

lim
x:0

  
1
ƒ x ƒ

= qlim
x:0

  
-1
x2 = - q

lim
x: -q

 ƒsxd = k .ƒsxd = k ,

lim
x: q

 ƒsxd = k .ƒsxd = k ,

x : ; q

lim
x: q

A2x2
+ x - 2x2

- x B
lim

x: q

 A2x2
+ 3x - 2x2

- 2x B
lim

x: q

 A29x2
- x - 3x B

lim
x: -q

 A2x + 24x2
+ 3x - 2 B

lim
x: -q

 A2x2
+ 3 + x B

lim
x: q

 A2x2
+ 25 - 2x2

- 1 B
lim

x: q

 A2x + 9 - 2x + 4 B
x : ; ˆ

ƒ(x)>g (x)

limx:-q sƒsxd>g sxdd?
limx:q sƒsxd>g sxdd = 2.

Modify the definition to cover the following cases.

a.

b.

c.

Use the formal definitions from Exercise 93 to prove the limit state-
ments in Exercises 94–98.

94. 95.

96. 97.

98.

Oblique Asymptotes
Graph the rational functions in Exercises 99–104. Include the graphs
and equations of the asymptotes.

99. 100.

101. 102.

103. 104.

Additional Graphing Exercises
Graph the curves in Exercises 105–108. Explain the relationship
between the curve’s formula and what you see.

105. 106.

107. 108.

Graph the functions in Exercises 109 and 110. Then answer the fol-
lowing questions.

a. How does the graph behave as 

b. How does the graph behave as 

c. How does the graph behave near and 

Give reasons for your answers.

109. 110. y =

3
2

 a x
x - 1

b2>3
y =

3
2

 ax -

1
x b

2>3

x = -1?x = 1

x : ; q?

x : 0+?

y = sin a p

x2
+ 1
by = x2>3

+

1

x1>3

y =

-1

24 - x2
y =

x

24 - x2

y =

x3
+ 1

x2y =

x2
- 1
x

y =

x2
- 1

2x + 4
y =

x2
- 4

x - 1

y =

x2
+ 1

x - 1
y =

x2

x - 1

lim
x:1-

 
1

1 - x2 = q

lim
x:2+

 
1

x - 2
= qlim

x:2-

 
1

x - 2
= - q

lim
x:0-

 
1
x = - qlim

x:0+

 
1
x = q

lim
x:x0

-

 ƒsxd = - q

lim
x:x0

+

 ƒsxd = - q

lim
x:x0

-

 ƒsxd = q

Chapter 2 Questions to Guide Your Review

1. What is the average rate of change of the function g(t) over the in-
terval from to How is it related to a secant line?

2. What limit must be calculated to find the rate of change of a func-
tion g(t) at t = t0 ?

t = b?t = a
3. Give an informal or intuitive definition of the limit

Why is the definition “informal”? Give examples.

lim
x:x0

 ƒsxd = L.

We say that ƒ(x) approaches infinity as x approaches 
from the right, and write

if, for every positive real number B, there exists a corre-
sponding number such that for all x

x0 6 x 6 x0 + d Q ƒsxd 7 B .

d 7 0

lim
x:x0

+

ƒsxd = q ,

x0

T

T
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Chapter 2 Practice Exercises 117

13. What does it mean for a function to be right-continuous at a
point? Left-continuous? How are continuity and one-sided conti-
nuity related?

14. What does it mean for a function to be continuous on an interval?
Give examples to illustrate the fact that a function that is not con-
tinuous on its entire domain may still be continuous on selected
intervals within the domain.

15. What are the basic types of discontinuity? Give an example of
each. What is a removable discontinuity? Give an example.

16. What does it mean for a function to have the Intermediate Value
Property? What conditions guarantee that a function has this
property over an interval? What are the consequences for graph-
ing and solving the equation 

17. Under what circumstances can you extend a function ƒ(x) to be
continuous at a point Give an example.

18. What exactly do and mean?
Give examples.

19. What are (k a constant) and How do
you extend these results to other functions? Give examples.

20. How do you find the limit of a rational function as 
Give examples.

21. What are horizontal and vertical asymptotes? Give examples.

x : ; q ?

limx:;q s1>xd?limx:;q k

limx:-q ƒsxd = Llimx:q ƒsxd = L

x = c?

ƒsxd = 0?

Chapter 2 Practice Exercises

Limits and Continuity
1. Graph the function

Then discuss, in detail, limits, one-sided limits, continuity, and
one-sided continuity of ƒ at and 1. Are any of the dis-
continuities removable? Explain.

2. Repeat the instructions of Exercise 1 for

3. Suppose that ƒ(t) and g(t) are defined for all t and that 
and Find the limit as of the

following functions.

a. 3ƒ(t) b.

c. d.
ƒstd

g std - 7
ƒstd # g std

sƒstdd2

t : t0limt:t0 g std = 0.ƒstd = -7
limt:t0

ƒsxd = d   0, x … -1

1>x, 0 6 ƒ x ƒ 6 1

  0, x = 1

  1, x 7 1.

x = -1, 0 ,

ƒsxd = e
  1, x … -1

-x, -1 6 x 6 0

  1, x = 0

-x, 0 6 x 6 1

  1, x Ú 1.

e. cos (g(t)) f.

g. h.

4. Suppose the functions ƒ(x) and g(x) are defined for all x and that
and Find the limits as

of the following functions.

a. b.

c. d.

e. f.

In Exercises 5 and 6, find the value that must have if the
given limit statements hold.

5.

6.

7. On what intervals are the following functions continuous?

a. b.

c. d.

8. On what intervals are the following functions continuous?

a. b.

c. d. ksxd =

sin x
xhsxd =

cos x
x - p

g sxd = csc xƒsxd = tan x

ksxd = x-1>6hsxd = x-2>3
g sxd = x3>4ƒsxd = x1>3

lim
x: -4

ax lim
x:0

 g sxdb = 2

lim
x:0
a4 - g sxd

x b = 1

limx:0 g sxd

ƒsxd #  cos x

x - 1
x + ƒsxd

1>ƒ(x)ƒsxd + g sxd
g sxd # ƒsxd-g sxd

x : 0
limx:0 g sxd = 22.limx:0 ƒsxd = 1>2

1>ƒ(t)ƒstd + g std
ƒ ƒstd ƒ

4. Does the existence and value of the limit of a function ƒ(x) as x
approaches ever depend on what happens at Explain
and give examples.

5. What function behaviors might occur for which the limit may fail
to exist? Give examples.

6. What theorems are available for calculating limits? Give exam-
ples of how the theorems are used.

7. How are one-sided limits related to limits? How can this relation-
ship sometimes be used to calculate a limit or prove it does not
exist? Give examples.

8. What is the value of Does it matter whether 
is measured in degrees or radians? Explain.

9. What exactly does mean? Give an example in
which you find a for a given and in the pre-
cise definition of limit.

10. Give precise definitions of the following statements.

a. b.

c. d.

11. What conditions must be satisfied by a function if it is to be con-
tinuous at an interior point of its domain? At an endpoint?

12. How can looking at the graph of a function help you tell where
the function is continuous?

limx:2 ƒsxd = - qlimx:2 ƒsxd = q

limx:2+ ƒsxd = 5limx:2- ƒsxd = 5

P 7 0ƒ, L, x0 ,d 7 0
limx:x0 ƒsxd = L

ulim u:0 sssin ud>ud?

x = x0 ?x0
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118 Chapter 2: Limits and Continuity

Finding Limits
In Exercises 9–28, find the limit or explain why it does not exist.

9.

a. as b. as 

10.

a. as b. as 

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–32, find the limit of g (x) as x approaches the indi-
cated value.

29.

30.

31.

32.

Continuous Extension
33. Can be extended to be continuous at

or Give reasons for your answers. (Graph the func-
tion—you will find the graph interesting.)

34. Explain why the function has no continuous ex-
tension to 

In Exercises 35–38, graph the function to see whether it appears to
have a continuous extension to the given point a. If it does, use Trace
and Zoom to find a good candidate for the extended function’s value
at a. If the function does not appear to have a continuous extension,
can it be extended to be continuous from the right or left? If so, what
do you think the extended function’s value should be?

x = 0.
ƒsxd = sin s1>xd

-1?x = 1
ƒsxd = xsx2

- 1d> ƒ x2
- 1 ƒ

lim
x: -2

  
5 - x2

2g sxd
= 0

lim
x:1

  
3x2

+ 1
g sxd

= q

lim
x:25

   
1

x + g sxd
= 2

lim
x:0+ 

s4g sxdd1>3
= 2

lim
z:0+

 
2e1>z

e1>z
+ 1

lim
u:0+

2uecos (p>u)

lim
t:1

 t2 ln A2 - 2t Blim
t:3+

 ln (t - 3)

lim
x:0

 
cos 2x - 1

sin x
lim
x:0

  
8x

3 sin x - x

lim
x:p

 cos2 sx - tan xdlim
x:p

 sin ax
2

+ sin xb
lim

x:p-

 csc xlim
x:0

 
tan (2x)

tan (px)

lim
x:64

 
x2>3

- 16

2x - 8
lim
x:1

 
x1>3

- 1

2x - 1

lim
x:0

 
s2 + xd3

- 8
xlim

x:0
 

1
2 + x

-

1
2

x

lim
x:0

 
sx + hd2

- x2

h
lim
h:0

 
sx + hd2

- x2

h

lim
x:a

  
x2

- a2

x4
- a4lim

x:1
 
1 - 2x

1 - x

x : -1x : 0

lim 
x2

+ x

x5
+ 2x4

+ x3

x : 2x : 0

lim 
x2

- 4x + 4
x3

+ 5x2
- 14x

35.

36.

37.

38.

Roots
39. Let 

a. Use the Intermediate Value Theorem to show that ƒ has a zero
between and 2.

b. Solve the equation graphically with an error of
magnitude at most 

c. It can be shown that the exact value of the solution in part (b) is

Evaluate this exact answer and compare it with the value you
found in part (b).

40. Let 

a. Use the Intermediate Value Theorem to show that ƒ has a zero
between and 0.

b. Solve the equation graphically with an error of
magnitude at most 

c. It can be shown that the exact value of the solution in part (b) is

Evaluate this exact answer and compare it with the value you
found in part (b).

Limits at Infinity
Find the limits in Exercises 41–54.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

51. 52.

53. 54. lim
t: -q

 e3t sin-1 
1
tlim

x: -q

 tan-1 x

lim
t: q

 ln a1 +

1
t blim

x: q

 e1>x cos  
1
x

lim
x: q

  
x2>3

+ x-1

x2>3
+ cos2 x

lim
x: q

 
x + sin x + 22x

x + sin x

lim
u: q

 
cos u - 1
u
 sIf you have a grapher, try graphing

ƒsxd = xscos s1>xd - 1d near the origin to

“see” the limit at infinity.d

lim
x: q

  
sin x:x; sIf you have a grapher, try graphing the function

for -5 … x … 5.d

lim
x: q

  
x4

+ x3

12x3
+ 128

lim
x: -q

 
x2

- 7x
x + 1

lim
x: q

  
1

x2
- 7x + 1

lim
x: -q

 
x2

- 4x + 8
3x3

lim
x: -q

  
2x2

+ 3
5x2

+ 7
lim

x: q

  
2x + 3
5x + 7

aA
19
27

- 1b1>3
- aA

19
27

+ 1b1>3
.

10-4 .
ƒsud = 0

-2

ƒsud = u3
- 2u + 2.

a1
2

+

269
18
b1>3

+ a1
2

-

269
18
b1>3

.

10-8 .
ƒsxd = 0

-1

ƒsxd = x3
- x - 1.

k sxd =

x

1 - 2 ƒ x ƒ

, a = 0

hstd = s1 + ƒ t ƒd1>t, a = 0

g sud =

5 cos u

4u - 2p
 , a = p>2

ƒsxd =

x - 1

x -
42x

 , a = 1

T

T

T
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T

Chapter 2 Additional and Advanced Exercises

1. Assigning a value to The rules of exponents tell us that
if a is any number different from zero. They also tell us

that if n is any positive number.
If we tried to extend these rules to include the case we

would get conflicting results. The first rule would say 
whereas the second would say 

We are not dealing with a question of right or wrong here.
Neither rule applies as it stands, so there is no contradiction. We
could, in fact, define to have any value we wanted as long as
we could persuade others to agree.

What value would you like to have? Here is an example
that might help you to decide. (See Exercise 2 below for another
example.)

a. Calculate for 0.01, 0.001, and so on as far as your
calculator can go. Record the values you get. What pattern do
you see?

b. Graph the function for Even though the
function is not defined for the graph will approach the
y-axis from the right. Toward what y-value does it seem to be
headed? Zoom in to further support your idea.

2. A reason you might want 00 to be something other than 0 or 1
As the number x increases through positive values, the numbers

and 1 (ln x) both approach zero. What happens to the number

as x increases? Here are two ways to find out.

a. Evaluate ƒ for 100, 1000, and so on as far as your
calculator can reasonably go. What pattern do you see?

b. Graph ƒ in a variety of graphing windows, including windows
that contain the origin. What do you see? Trace the y-values
along the graph. What do you find?

3. Lorentz contraction In relativity theory, the length of an ob-
ject, say a rocket, appears to an observer to depend on the speed at
which the object is traveling with respect to the observer. If the
observer measures the rocket’s length as at rest, then at speed y
the length will appear to be

This equation is the Lorentz contraction formula. Here, c is the
speed of light in a vacuum, about What happens
to L as y increases? Find Why was the left-hand limit
needed?

limy:c- L .
3 * 108 m>sec .

L = L0B1 -

y2

c2 .

L0

x = 10,

ƒsxd = a1x b
1>sln xd

>1>x

x … 0,
0 6 x … 1.y = xx

x = 0.1 ,xx

00

00

00
= 0.

00
= 1,

00 ,
0n

= 0
a0

= 1
00 4. Controlling the flow from a draining tank Torricelli’s law

says that if you drain a tank like the one in the figure shown, the
rate y at which water runs out is a constant times the square root of
the water’s depth x. The constant depends on the size and shape of
the exit valve.

Suppose that for a certain tank. You are trying to
maintain a fairly constant exit rate by adding water to the tank
with a hose from time to time. How deep must you keep the water
if you want to maintain the exit rate

a. within of the rate 

b. within of the rate 

5. Thermal expansion in precise equipment As you may know,
most metals expand when heated and contract when cooled. The
dimensions of a piece of laboratory equipment are sometimes so
critical that the shop where the equipment is made must be held
at the same temperature as the laboratory where the equipment is
to be used. A typical aluminum bar that is 10 cm wide at 70°F
will be

centimeters wide at a nearby temperature t. Suppose that you are
using a bar like this in a gravity wave detector, where its width
must stay within 0.0005 cm of the ideal 10 cm. How close to

must you maintain the temperature to ensure that this
tolerance is not exceeded?

6. Stripes on a measuring cup The interior of a typical 1-L
measuring cup is a right circular cylinder of radius 6 cm (see
accompanying figure). The volume of water we put in the cup is
therefore a function of the level h to which the cup is filled, the
formula being

How closely must we measure h to measure out 1 L of water
with an error of no more than 1% s10 cm3d?s1000 cm3d

V = p62h = 36ph .

t0 = 70°F

y = 10 + st - 70d * 10-4

y0 = 1 ft3>min?0.1 ft3>min

y0 = 1 ft3>min?0.2 ft3>min

y = 2x>2

x
Exit rate y ft3�min

Horizontal and Vertical Asymptotes
55. Use limits to determine the equations for all vertical asymptotes.

a. b.

c. y =

x2
+ x - 6

x2
+ 2x - 8

ƒ(x) =

x2
- x - 2

x2
- 2x + 1

y =

x2
+ 4

x - 3

56. Use limits to determine the equations for all horizontal asymptotes.

a. b.

c. d. y = A x2
+ 9

9x2
+ 1

g(x) =

2x2
+ 4

x

ƒ(x) =

2x + 4

2x + 4
y =

1 - x2

x2
+ 1

T
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120 Chapter 2: Limits and Continuity

A 1-L measuring cup (a), modeled as a right circular cylinder (b)
of radius 

Precise Definition of Limit
In Exercises 7–10, use the formal definition of limit to prove that the
function is continuous at 

7. 8.

9. 10.

11. Uniqueness of limits Show that a function cannot have two dif-
ferent limits at the same point. That is, if and

then 

12. Prove the limit Constant Multiple Rule:

13. One-sided limits If and 
find

a. b.

c. d.

14. Limits and continuity Which of the following statements are
true, and which are false? If true, say why; if false, give a coun-
terexample (that is, an example confirming the falsehood).

a. If exists but does not exist, then
does not exist.

b. If neither nor exists, then
does not exist.

c. If ƒ is continuous at x, then so is 

d. If is continuous at a, then so is ƒ.

In Exercises 15 and 16, use the formal definition of limit to prove that
the function has a continuous extension to the given value of x.

15. 16. g sxd =

x2
- 2x - 3
2x - 6

, x = 3ƒsxd =

x2
- 1

x + 1
, x = -1

ƒ ƒ ƒ

ƒ ƒ ƒ .

limx:a sƒsxd + g sxdd
limx:a g sxdlimx:a ƒsxd

limx:asƒsxd + g sxdd
limx:a g sxdlimx:a ƒsxd

limx:0- ƒsx2
- x4dlimx:0+ ƒsx2

- x4d
limx:0- ƒsx3

- xdlimx:0+ ƒsx3
- xd

limx:0- ƒsxd = B ,limx:0+ ƒsxd = A

lim
x:c

 kƒsxd = k lim
x:c

 ƒsxd  for any constant k .

L1 = L2 .limx:x0 ƒsxd = L2 ,
limx:x0 ƒsxd = L1

Fsxd = 29 - x, x0 = 5hsxd = 22x - 3, x0 = 2

g sxd = 1>s2xd, x0 = 1>4ƒsxd = x2
- 7, x0 = 1

x0 .

r = 6 cm

Stripes
about
1 mm
wide

r � 6 cm

Liquid volume
V � 36�h

(a)

(b)

h

17. A function continuous at only one point Let

a. Show that ƒ is continuous at 

b. Use the fact that every nonempty open interval of real num-
bers contains both rational and irrational numbers to show
that ƒ is not continuous at any nonzero value of x.

18. The Dirichlet ruler function If x is a rational number, then x
can be written in a unique way as a quotient of integers 
where and m and n have no common factors greater than 1.
(We say that such a fraction is in lowest terms. For example, 
written in lowest terms is .) Let ƒ(x) be defined for all x in the
interval [0, 1] by

For instance, 
and so on.

a. Show that ƒ is discontinuous at every rational number in [0, 1].

b. Show that ƒ is continuous at every irrational number in [0, 1].
(Hint: If is a given positive number, show that there are only
finitely many rational numbers r in [0, 1] such that )

c. Sketch the graph of ƒ. Why do you think ƒ is called the “ruler
function”?

19. Antipodal points Is there any reason to believe that there is al-
ways a pair of antipodal (diametrically opposite) points on Earth’s
equator where the temperatures are the same? Explain.

20. If and find

21. Roots of a quadratic equation that is almost linear The equa-
tion where a is a constant, has two roots if

and one positive and one negative:

a. What happens to as As 

b. What happens to as As 

c. Support your conclusions by graphing and as
functions of a. Describe what you see.

d. For added support, graph simultane-
ously for and 0.05.

22. Root of an equation Show that the equation 
has at least one solution.

23. Bounded functions A real-valued function ƒ is bounded from
above on a set D if there exists a number N such that 
for all x in D. We call N, when it exists, an upper bound for ƒ on
D and say that ƒ is bounded from above by N. In a similar manner,
we say that ƒ is bounded from below on D if there exists a num-
ber M such that for all x in D. We call M, when it
exists, a lower bound for ƒ on D and say that ƒ is bounded from
below by M. We say that ƒ is bounded on D if it is bounded from
both above and below.

a. Show that ƒ is bounded on D if and only if there exists a num-
ber B such that for all x in D.ƒ ƒsxd ƒ … B

ƒsxd Ú M

ƒsxd … N

x + 2 cos x = 0

a = 1, 0.5, 0.2, 0.1,
ƒsxd = ax2

+ 2x - 1

r-sadr+sad
a : -1+ ?a : 0?r-sad
a : -1+ ?a : 0?r+sad

r+sad =

-1 + 21 + a
a , r-sad =

-1 - 21 + a
a .

a Z 0,a 7 -1
ax2

+ 2x - 1 = 0,

lim
x:c

 ƒsxdg sxd .

lim
x:c

 sƒsxd - g sxdd = -1,lim
x:c

 sƒsxd + g sxdd = 3

ƒsrd Ú P .
P

ƒs1>4d = ƒs3>4d = 1>4,1>3,
ƒs1>3d = ƒ(2>3) =ƒs1>2d = 1>2,ƒs0d = ƒs1d = 1,

ƒsxd = e1>n, if x = m>n is a rational number in lowest terms

0, if x is irrational.

3>2 6>4n 7 0
m>n

x = 0.

ƒsxd = e x, if x is rational

0, if x is irrational.
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Chapter 2 Technology Application Projects 121

b. Suppose that ƒ is bounded from above by N. Show that if
then 

c. Suppose that ƒ is bounded from below by M. Show that if
then 

24. Max and min

a. Show that the expression

equals a if and equals b if In other words,
max {a, b} gives the larger of the two numbers a and b.

b. Find a similar expression for min , the smaller of
a and b.

Generalized Limits Involving 

The formula can be generalized. If 
and ƒ(x) is never zero in an open interval containing the

point except possibly c itself, then

Here are several examples.

a.

b. lim
x:0

 
sin x 2

x = lim
x:0

 
sin x 2

x 2  lim
x:0

 
x 2

x = 1 # 0 = 0

lim
x:0

 
sin x 2

x 2 = 1

lim
x:c

 
sin ƒsxd

ƒsxd
= 1.

x = c ,
ƒsxd = 0

limx:cssin ud>u = 1limu:0

sin U
U

5a, b6
b Ú a .a Ú b

max 5a, b6 =

a + b
2

+

ƒ a - b ƒ

2

5a, b65a, b6
L Ú M .limx:x0 ƒsxd = L ,

L … N .limx:x0 ƒsxd = L , c.

d.

Find the limits in Exercises 25–30.

25. 26.

27. 28.

29. 30.

Oblique Asymptotes
Find all possible oblique asymptotes in Exercises 31–34.

31. 32.

33. 34. y = 2x2
+ 2xy = 2x2

+ 1

y = x + x sin (1>x)y =

2x3>2
+ 2x - 3

2x + 1

lim
x:9

 
sin A2x - 3 B

x - 9
lim
x:2

 
sin sx2

- 4d
x - 2

lim
x:0

 
sin sx2

+ xd
xlim

x:0
 
sin ssin xd

x

lim
x:0+

 
sin x

sin2x
lim
x:0

 
sin s1 - cos xd

x

1 # lim
x:1

 
A1 - 2x B A1 + 2x B
sx - 1d A1 + 2x B = lim

x:1
 

1 - x

sx - 1d A1 + 2x B = -

1
2

lim
x:1

 
sin A1 - 2x B

x - 1
= lim

x:1
 
sin A1 - 2x B

1 - 2x
 
1 - 2x

x - 1
=

lim
x: -1

 
sx2

- x - 2d
x + 1

= 1 # lim
x: -1

 
sx + 1dsx - 2d

x + 1
= -3

lim
x: -1

 
sin sx2

- x - 2d
x + 1

= lim
x: -1

 
sin sx2

- x - 2d
sx2

- x - 2d
#

Chapter 2 Technology Application Projects

Mathematica/Maple Modules:
Take It to the Limit
Part I
Part II (Zero Raised to the Power Zero: What Does it Mean?)
Part III (One-Sided Limits)
Visualize and interpret the limit concept through graphical and numerical explorations.
Part IV (What a Difference a Power Makes)
See how sensitive limits can be with various powers of x.

Going to Infinity
Part I (Exploring Function Behavior as or )
This module provides four examples to explore the behavior of a function as or 
Part II (Rates of Growth)
Observe graphs that appear to be continuous, yet the function is not continuous. Several issues of continuity are explored to obtain results that you
may find surprising.

x : - q .x : q

x : �ˆx : ˆ
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3
DIFFERENTIATION

OVERVIEW In the beginning of Chapter 2 we discussed how to determine the slope of a
curve at a point and how to measure the rate at which a function changes. Now that we
have studied limits, we can define these ideas precisely and see that both are interpreta-
tions of the derivative of a function at a point. We then extend this concept from a single
point to the derivative function, and we develop rules for finding this derivative function
easily, without having to calculate any limits directly. These rules are used to find deriva-
tives of most of the common functions reviewed in Chapter 1, as well as various combina-
tions of them. The derivative is one of the key ideas in calculus, and we use it to solve a
wide range of problems involving tangents and rates of change.

3.1 Tangents and the Derivative at a Point

In this section we define the slope and tangent to a curve at a point, and the derivative
of a function at a point. Later in the chapter we interpret the derivative as the instanta-
neous rate of change of a function, and apply this interpretation to the study of certain
types of motion.

Finding a Tangent to the Graph of a Function

To find a tangent to an arbitrary curve at a point we use the procedure
introduced in Section 2.1. We calculate the slope of the secant through P and a nearby point

We then investigate the limit of the slope as (Figure 3.1). If the
limit exists, we call it the slope of the curve at P and define the tangent at P to be the line
through P having this slope.

h : 0Qsx0 + h, ƒsx0 + hdd .

Psx0 , ƒsx0dd ,y = ƒ(x)

DEFINITIONS The slope of the curve at the point is the
number

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

m = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
 

Psx0 , ƒsx0ddy = ƒsxd
0

h

y

x

y � f (x)

Q(x0 � h,  f (x0 � h))

f (x0 � h) � f (x0)

P(x0,  f (x0))

x0 � hx0

FIGURE 3.1 The slope of the tangent 

line at P is lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
 .

In Section 2.1, Example 3, we applied these definitions to find the slope of the
parabola at the point P(2, 4) and the tangent line to the parabola at P. Let’s look
at another example.

ƒ(x) = x2
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3.1 Tangents and the Derivative at a Point 123

EXAMPLE 1

(a) Find the slope of the curve at any point What is the slope at the
point 

(b) Where does the slope equal 

(c) What happens to the tangent to the curve at the point (a, ) as a changes?

Solution

(a) Here The slope at (a, ) is

Notice how we had to keep writing before each fraction until the stage
where we could evaluate the limit by substituting The number a may be posi-
tive or negative, but not 0. When the slope is (Figure 3.2).

(b) The slope of at the point where is It will be provided
that

This equation is equivalent to so or The curve has slope
at the two points (2, ) and (Figure 3.3).

(c) The slope is always negative if As the slope approaches 
and the tangent becomes increasingly steep (Figure 3.2). We see this situation again as

As a moves away from the origin in either direction, the slope approaches 
and the tangent levels off to become horizontal.

Rates of Change: Derivative at a Point

The expression

is called the difference quotient of ƒ at with increment h. If the difference quotient
has a limit as h approaches zero, that limit is given a special name and notation.

x0

ƒsx0 + hd - ƒsx0d
h

, h Z 0

0a : 0- .

- qa : 0+,a Z 0.-1>a2

s -2, -1>2d1>2-1>4 a = -2.a = 2a2
= 4,

-
1
a2 = -

1
4

.

-1>4-1>a2.x = ay = 1>x
-1>(-1)2

= -1a = -1,
h = 0.

“limh:0”

 = lim
h:0

  
-h

hasa + hd
= lim

h:0
  

-1
asa + hd

= -
1
a2 .

lim
h:0

 
ƒsa + hd - ƒsad

h
= lim

h:0
 

1
a + h

-
1
a

h
= lim

h:0
  
1
h

 
a - sa + hd

asa + hd

1>aƒsxd = 1>x .

1>a
-1>4?

x = -1?
x = a Z 0.y = 1>x

x

y

2,⎛
⎝

⎛
⎝

y � 1
x

1
2

–2,⎛
⎝

⎛
⎝

1
2

– slope is – 1
4

slope is – 1
4

FIGURE 3.3 The two tangent lines to
having slope (Example 1).-1>4y = 1>x

x

y

y 5 1
x

slope is – 1
a2

slope is –1
at x 5 –1 

a0

FIGURE 3.2 The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away
(Example 1).

DEFINITION The derivative of a function ƒ at a point , denoted , is

provided this limit exists.

ƒ¿(x0) = lim
h:0

 
ƒ(x0 + h) - ƒ(x0)

h

ƒ¿(x0)x0

If we interpret the difference quotient as the slope of a secant line, then the deriva-
tive gives the slope of the curve at the point Exercise 31 showsP(x0, ƒ(x0)).y = ƒ(x)
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that the derivative of the linear function at any point is simply the slope
of the line, so

which is consistent with our definition of slope.
If we interpret the difference quotient as an average rate of change (Section 2.1), the

derivative gives the function’s instantaneous rate of change with respect to x at the point
We study this interpretation in Section 3.4.

EXAMPLE 2 In Examples 1 and 2 in Section 2.1, we studied the speed of a rock falling
freely from rest near the surface of the earth. We knew that the rock fell feet dur-
ing the first t sec, and we used a sequence of average rates over increasingly short intervals
to estimate the rock’s speed at the instant What was the rock’s exact speed at this
time?

Solution We let The average speed of the rock over the interval between
and seconds, for was found to be

The rock’s speed at the instant is then

Our original estimate of 32 ft sec in Section 2.1 was right.

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a
function, and the derivative of a function at a point. All of these ideas refer to the same
limit.

>
lim
h:0

 16sh + 2d = 16s0 + 2d = 32 ft>sec.

t = 1

ƒs1 + hd - ƒs1d
h

=

16s1 + hd2
- 16s1d2

h
=

16sh2
+ 2hd

h
= 16sh + 2d .

h 7 0,t = 1 + ht = 1
ƒstd = 16t 2 .

t = 1.

y = 16t 2

x = x0 .

ƒ¿(x0) = m,

x0ƒ(x) = mx + b

124 Chapter 3: Differentiation

The following are all interpretations for the limit of the difference quotient,

1. The slope of the graph of at 

2. The slope of the tangent to the curve at 

3. The rate of change of ƒ(x) with respect to x at 

4. The derivative at a pointƒ¿(x0)

x = x0

x = x0y = ƒsxd
x = x0y = ƒsxd

lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
.

In the next sections, we allow the point to vary across the domain of the function ƒ.x0
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3.1 Tangents and the Derivative at a Point 125

Exercises 3.1

Slopes and Tangent Lines
In Exercises 1–4, use the grid and a straight edge to make a rough esti-
mate of the slope of the curve (in y-units per x-unit) at the points 
and 

1. 2.

3. 4.

In Exercises 5–10, find an equation for the tangent to the curve at the
given point. Then sketch the curve and tangent together.

5. 6.

7. 8.

9. 10.

In Exercises 11–18, find the slope of the function’s graph at the given
point. Then find an equation for the line tangent to the graph there.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–22, find the slope of the curve at the point indicated.

19. 20.

21. 22. y =

x - 1
x + 1

 , x = 0y =

1
x - 1

 , x = 3

y = 1 - x2, x = 2y = 5x2, x = -1

ƒsxd = 2x + 1, s8, 3dƒsxd = 2x, s4, 2d
hstd = t3

+ 3t, s1, 4dhstd = t3, s2, 8d

g sxd =

8
x2 , s2, 2dg sxd =

x
x - 2

 , s3, 3d

ƒsxd = x - 2x2, s1, -1dƒsxd = x2
+ 1, s2, 5d

y =

1
x 3 , a-2, -

1
8
by = x3, s -2, -8d

y =

1
x 2 , s -1, 1dy = 22x, s1, 2d

y = sx - 1d2
+ 1, s1, 1dy = 4 - x2, s -1, 3d

y

0 1–1

1

2

3

x

4

–2 2

P1 P2

x

y

1 2

2

1

0

P1
P2

x

y

0 1 2

2

1

–1

–2

P1

P2

–1–2

x

y

1

2

10

P1

P2

P2 .
P1

Tangent Lines with Specified Slopes
At what points do the graphs of the functions in Exercises 23 and 24
have horizontal tangents?

23. 24.

25. Find equations of all lines having slope that are tangent to the
curve 

26. Find an equation of the straight line having slope that is tan-
gent to the curve 

Rates of Change
27. Object dropped from a tower An object is dropped from the

top of a 100-m-high tower. Its height above ground after t sec is
How fast is it falling 2 sec after it is dropped?

28. Speed of a rocket At t sec after liftoff, the height of a rocket is
How fast is the rocket climbing 10 sec after liftoff ?

29. Circle’s changing area What is the rate of change of the area of
a circle with respect to the radius when the radius is

30. Ball’s changing volume What is the rate of change of the vol-
ume of a ball with respect to the radius when the
radius is 

31. Show that the line is its own tangent line at any
point 

32. Find the slope of the tangent to the curve at the point
where 

Testing for Tangents
33. Does the graph of

have a tangent at the origin? Give reasons for your answer.

34. Does the graph of

have a tangent at the origin? Give reasons for your answer.

Vertical Tangents
We say that a continuous curve has a vertical tangent at the
point where if or 
For example, has a vertical tangent at (see accompa-
nying figure):

 = lim
h:0

 
1

h2>3 = q .

 lim
h:0

 
ƒs0 + hd - ƒs0d

h
= lim

h:0
 
h1>3

- 0
h

x = 0y = x1>3
- q .lim h:0 sƒsx0 + hd - ƒsx0dd>h = qx = x0

y = ƒsxd

g sxd = e x sin s1>xd, x Z 0

0, x = 0

ƒsxd = e x2 sin s1>xd, x Z 0

0, x = 0

x = 4.
y = 1>2x

(x0, mx0 + b).
y = mx + b

r = 2?
sV = s4>3dpr3d

r = 3?
sA = pr2d

3t2 ft.

100 - 4.9t2 m.

y = 2x .
1>4

y = 1>sx - 1d .
-1

g sxd = x3
- 3xƒsxd = x2

+ 4x - 1
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However, has no vertical tangent at (see next figure):

does not exist, because the limit is from the right and from the
left.

35. Does the graph of

have a vertical tangent at the origin? Give reasons for your answer.

ƒsxd = •
-1, x 6 0

0, x = 0

1, x 7 0

x

y

0
NO VERTICAL TANGENT AT ORIGIN

y � g(x) � x2�3

- qq

 = lim
h:0

 
1

h1>3

 lim
h:0

 
g s0 + hd - g s0d

h
= lim

h:0
 
h2>3

- 0
h

x = 0y = x2>3

x

y

0

VERTICAL TANGENT AT ORIGIN

y � f (x) � x1�3
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36. Does the graph of

have a vertical tangent at the point (0, 1)? Give reasons for your
answer.

Graph the curves in Exercises 37–46.

a. Where do the graphs appear to have vertical tangents?

b. Confirm your findings in part (a) with limit calculations. But
before you do, read the introduction to Exercises 35 and 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in Exer-
cises 47–50:

a. Plot over the interval 

b. Holding fixed, the difference quotient

at becomes a function of the step size h. Enter this function
into your CAS workspace.

c. Find the limit of q as 

d. Define the secant lines for 
and 1. Graph them together with ƒ and the tangent line over the
interval in part (a).

47. 48.

49.

50. ƒsxd = cos x + 4 sin s2xd, x0 = p

ƒsxd = x + sin s2xd, x0 = p>2
ƒsxd = x +

5
x  , x0 = 1ƒsxd = x3

+ 2x, x0 = 0

h = 3, 2 ,y = ƒsx0d + q # sx - x0d
h : 0.

x0

qshd =

ƒsx0 + hd - ƒsx0d
h

x0

sx0 - 1>2d … x … sx0 + 3d .y = ƒsxd

y = 2 ƒ 4 - x ƒy = e -2ƒ x ƒ , x … 0

2x, x 7 0

y = x1>3
+ sx - 1d1>3y = x2>3

- sx - 1d1>3
y = x5>3

- 5x2>3y = 4x2>5
- 2x

y = x3>5y = x1>5
y = x4>5y = x2>5

Usxd = e0, x 6 0

1, x Ú 0

T

3.2 The Derivative as a Function

In the last section we defined the derivative of at the point to be the limit

We now investigate the derivative as a function derived from ƒ by considering the limit at
each point x in the domain of ƒ.

ƒ¿sx0d = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
.

x = x0y = ƒsxd

DEFINITION The derivative of the function ƒ(x) with respect to the variable x is
the function whose value at x is

provided the limit exists.

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
,

ƒ¿

HISTORICAL ESSAY

The Derivative
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We use the notation ƒ(x) in the definition to emphasize the independent variable x
with respect to which the derivative function is being defined. The domain of is
the set of points in the domain of ƒ for which the limit exists, which means that the domain
may be the same as or smaller than the domain of ƒ. If exists at a particular x, we say
that ƒ is differentiable (has a derivative) at x. If exists at every point in the domain of
ƒ, we call ƒ differentiable.

If we write then and h approaches 0 if and only if z approaches x.
Therefore, an equivalent definition of the derivative is as follows (see Figure 3.4). This
formula is sometimes more convenient to use when finding a derivative function.

h = z - xz = x + h ,

ƒ¿

ƒ¿

ƒ¿ƒ¿(x)

3.2 The Derivative as a Function 127

Alternative Formula for the Derivative

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x .

x z � x � h

h � z � x

P(x, f (x))

Q(z, f (z))

f (z) � f (x)

y � f (x)

Secant slope is
f (z) � f (x)

z � x

Derivative of f at x is

f '(x) � lim
h→0

� lim
z→x

f (x � h) � f (x)
h

f (z) � f (x)
z � x

FIGURE 3.4 Two forms for the difference
quotient.

Derivative of the Reciprocal Function

d
dx
a1x b = -

1
x2, x Z 0

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function we use the notation

as another way to denote the derivative Example 1 of Section 3.1 illustrated the dif-
ferentiation process for the function when For x representing any point in
the domain, we get the formula

Here are two more examples in which we allow x to be any point in the domain of ƒ.

EXAMPLE 1 Differentiate 

Solution We use the definition of derivative, which requires us to calculate and

then subtract to obtain the numerator in the difference quotient. We have

and

Definition

Simplify.

Cancel .h Z 0 = lim
h:0

 
-1

sx + h - 1dsx - 1d
=

-1
sx - 1d2 .

 = lim
h:0

 
1
h

# -h
sx + h - 1dsx - 1d

a
b

-

c
d

=

ad - cb
bd

 = lim
h:0

 
1
h

#
sx + hdsx - 1d - xsx + h - 1d

sx + h - 1dsx - 1d

 = lim
h:0

 

x + h
x + h - 1

-
x

x - 1
h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h

ƒsx + hd =

sx + hd
sx + hd - 1

 , soƒsxd =
x

x - 1

ƒ(x)

ƒ(x + h)

ƒsxd =
x

x - 1
.

d
dx
a1x b = -

1
x2 .

x = a.y = 1>xƒ¿sxd .

d
dx

 ƒsxd

y = ƒsxd ,
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EXAMPLE 2

(a) Find the derivative of for 

(b) Find the tangent line to the curve at 

Solution

(a) We use the alternative formula to calculate 

(b) The slope of the curve at is

The tangent is the line through the point (4, 2) with slope (Figure 3.5):

Notations

There are many ways to denote the derivative of a function where the independ-
ent variable is x and the dependent variable is y. Some common alternative notations for
the derivative are

The symbols and D indicate the operation of differentiation. We read as
“the derivative of y with respect to x,” and and ( )ƒ(x) as “the derivative of ƒ
with respect to x.” The “prime” notations and come from notations that Newton
used for derivatives. The notations are similar to those used by Leibniz. The sym-
bol should not be regarded as a ratio (until we introduce the idea of “differen-
tials” in Section 3.11).

To indicate the value of a derivative at a specified number we use the notation

For instance, in Example 2

Graphing the Derivative

We can often make a reasonable plot of the derivative of by estimating the slopes
on the graph of ƒ. That is, we plot the points in the xy-plane and connect them
with a smooth curve, which represents y = ƒ¿sxd .

sx, ƒ¿sxdd
y = ƒsxd

ƒ¿s4d =
d
dx

 1x `
x = 4

=
1

21x
`
x = 4

=
1

224
=

1
4

.

ƒ¿sad =

dy
dx
`
x = a

=

df
dx
`
x = a

=
d
dx

 ƒsxd `
x = a

.

x = a,

dy>dx
d>dx

ƒ¿y¿

d>dxdƒ>dx
dy>dxd>dx

ƒ¿sxd = y¿ =

dy
dx

=

dƒ
dx

=
d
dx

 ƒsxd = Dsƒdsxd = Dx ƒsxd .

y = ƒsxd ,

 y =
1
4

 x + 1.

 y = 2 +
1
4

 sx - 4d

1>4
ƒ¿s4d =

1

224
=

1
4

.

x = 4

 = lim
z:x

 
1

1z + 1x
=

1
21x

 .

 = lim
z:x

 
1z - 1x

A1z - 1x B A1z + 1x B

 = lim
z:x

 
1z - 1x

z - x

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

ƒ¿ :

x = 4.y = 1x

x 7 0.ƒsxd = 1x

128 Chapter 3: Differentiation

Derivative of the Square Root
Function

d
dx

 2x =

1

22x
 , x 7 0

x

y

0 4

(4, 2)

1

y � �x

y �    x � 11
4

FIGURE 3.5 The curve and its
tangent at (4, 2). The tangent’s slope is
found by evaluating the derivative at 
(Example 2).

x = 4

y = 1x
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EXAMPLE 3 Graph the derivative of the function in Figure 3.6a.

Solution We sketch the tangents to the graph of ƒ at frequent intervals and use their
slopes to estimate the values of at these points. We plot the corresponding 
pairs and connect them with a smooth curve as sketched in Figure 3.6b.

What can we learn from the graph of At a glance we can see

1. where the rate of change of ƒ is positive, negative, or zero;

2. the rough size of the growth rate at any x and its size in relation to the size of ƒ(x);

3. where the rate of change itself is increasing or decreasing.

Differentiable on an Interval; One-Sided Derivatives

A function is differentiable on an open interval (finite or infinite) if it has a
derivative at each point of the interval. It is differentiable on a closed interval [a, b] if it
is differentiable on the interior (a, b) and if the limits

Right-hand derivative at a

Left-hand derivative at b

exist at the endpoints (Figure 3.7).
Right-hand and left-hand derivatives may be defined at any point of a function’s do-

main. Because of Theorem 6, Section 2.4, a function has a derivative at a point if and only if
it has left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 4 Show that the function is differentiable on and 
but has no derivative at 

Solution From Section 3.1, the derivative of is the slope m. Thus, to the
right of the origin,

To the left,

(Figure 3.8). There is no derivative at the origin because the one-sided derivatives differ
there:

 = lim
h:0-

-1 = -1.

 = lim
h:0-

 
-h
h

 Left-hand derivative of ƒ x ƒ at zero = lim
h:0-

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0-

 
ƒ h ƒ

h

 = lim
h:0+

1 = 1

 = lim
h:0+

 
h
h

 Right-hand derivative of ƒ x ƒ at zero = lim
h:0+

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0+

 
ƒ h ƒ

h

ƒ x ƒ = -x
d
dx

 s ƒ x ƒ d =
d
dx

 s -xd =
d
dx

 s -1 # xd = -1

ƒ x ƒ = x
d
dx

 smx + bd = m ,
d
dx

 s ƒ x ƒ d =
d
dx

 sxd =
d
dx

 s1 # xd = 1.

y = mx + b

x = 0.
s0, q ds - q , 0dy = ƒ x ƒ

lim
h:0-

 
ƒsb + hd - ƒsbd

h

lim
h:0+

 
ƒsa + hd - ƒsad

h

y = ƒsxd

y = ƒ¿sxd?

sx, ƒ¿sxddƒ¿sxd

y = ƒsxd
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0 10

(a)

5 15

5

10

Slope 0

A

B

C
D

E

Slope 0

105 15

1

2

3

4

–1

–2

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧ ⎪ ⎨ ⎪ ⎩

(b)

Slope –1

4
3

Slope 

y � f (x)

� 8

� 4 x-units

A'

y � f '(x)

B'
C'

D'

E'

Vertical coordinate –1

y

x

x

Slope

–

FIGURE 3.6 We made the graph of
in (b) by plotting slopes from 

the graph of in (a). The vertical
coordinate of is the slope at B and so on.
The slope at E is approximately 
In (b) we see that the rate of change of ƒ is
negative for x between and the rate 
of change is positive for x to the right of D¿.

D¿;A¿

8>4 = 2.
B¿

y = ƒsxd
y = ƒ¿sxd

a ba � h
h � 0

b � h
h � 0

lim
h→0�

f (a � h) � f (a)
h

Slope �

y � f (x)

lim
h→0�

f (b � h) � f (b)
h

Slope �

x

FIGURE 3.7 Derivatives at endpoints are
one-sided limits.

ƒ h ƒ = h when h 7 0

ƒ h ƒ = -h when h 6 0
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EXAMPLE 5 In Example 2 we found that for 

We apply the definition to examine if the derivative exists at 

Since the (right-hand) limit is not finite, there is no derivative at Since the slopes
of the secant lines joining the origin to the points on a graph of approach

the graph has a vertical tangent at the origin. (See Figure 1.17 on page 9).

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point if the slopes of the secant lines through 
and a nearby point Q on the graph approach a finite limit as Q approaches P. Whenever the
secants fail to take up a limiting position or become vertical as Q approaches P, the derivative
does not exist. Thus differentiability is a “smoothness” condition on the graph of ƒ. A
function can fail to have a derivative at a point for many reasons, including the existence of
points where the graph has

1. a corner, where the one-sided 2. a cusp, where the slope of PQ approaches
derivatives differ. from one side and from the other.

3. a vertical tangent, a discontinuity (two examples shown).
where the slope of PQ
approaches from both
sides or approaches 
from both sides (here, ).- q

- q

q

- qq

P

Q�

Q�

P

Q� Q�

Psx0, ƒsx0ddx0

q ,
y = 1x(h, 1h)

x = 0.

lim
h:0+

 
20 + h - 20

h
= lim

h:0+

 
1
1h

= q .

x = 0:

d
dx

 1x =
1

21x
 .

x 7 0,
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x

y

0
y' not defined at x � 0:
right-hand derivative
� left-hand derivative

y' � –1 y' � 1

y �⏐x⏐

FIGURE 3.8 The function is
not differentiable at the origin where
the graph has a “corner” (Example 4).

y = ƒ x ƒ

P

Q�

Q�

P

Q�

Q�

P

Q�

Q�

4.
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Another case in which the derivative may fail to exist occurs when the function’s slope is
oscillating rapidly near P, as with near the origin, where it is discontinu-
ous (see Figure 2.31).

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

ƒ(x) = sin (1>x)

3.2 The Derivative as a Function 131

THEOREM 1—Differentiability Implies Continuity If ƒ has a derivative at
then ƒ is continuous at x = c .x = c ,

Proof Given that exists, we must show that or equivalently,
that If then

Now take limits as By Theorem 1 of Section 2.2, 

Similar arguments with one-sided limits show that if ƒ has a derivative from one side
(right or left) at then ƒ is continuous from that side at 

Theorem 1 says that if a function has a discontinuity at a point (for instance, a jump
discontinuity), then it cannot be differentiable there. The greatest integer function

fails to be differentiable at every integer (Example 4, Section 2.5).

Caution The converse of Theorem 1 is false. A function need not have a derivative at
a point where it is continuous, as we saw in Example 4.

x = ny = :x;

x = c .x = c

 = ƒscd.

 = ƒscd + 0

 = ƒscd + ƒ¿scd # 0

 lim
h:0

 ƒsc + hd = lim
h:0

 ƒscd + lim
h:0

 
ƒsc + hd - ƒscd

h
# lim

h:0
h

h : 0.

 = ƒscd +

ƒsc + hd - ƒscd
h

# h .

 ƒsc + hd = ƒscd + sƒsc + hd - ƒscdd

h Z 0,limh:0 ƒsc + hd = ƒscd .
limx:c ƒsxd = ƒscd ,ƒ¿scd

Exercises 3.2

Finding Derivative Functions and Values
Using the definition, calculate the derivatives of the functions in Exer-
cises 1–6. Then find the values of the derivatives as specified.

1.

2.

3.

4.

5. psud = 23u ; p¿s1d, p¿s3d, p¿s2>3d

k szd =

1 - z
2z

 ; k¿s -1d, k¿s1d, k¿ A22 B
g std =

1
t2 ; g¿s -1d, g¿s2d, g¿ A23 B

Fsxd = sx - 1d2
+ 1; F¿s -1d, F¿s0d, F¿s2d

ƒsxd = 4 - x2; ƒ¿s -3d, ƒ¿s0d, ƒ¿s1d

6.

In Exercises 7–12, find the indicated derivatives.

7. 8.

9. 10.

11. 12.
dz
dw

 if z =

1

23w - 2

dp

dq
 if p =

1

2q + 1

dy
dt
 if y = t -

1
t

ds
dt
 if s =

t
2t + 1

dr
ds
 if r = s3

- 2s2
+ 3

dy

dx
 if y = 2x3

r ssd = 22s + 1 ; r¿s0d, r¿s1d, r¿s1>2d
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132 Chapter 3: Differentiation

Slopes and Tangent Lines
In Exercises 13–16, differentiate the functions and find the slope of
the tangent line at the given value of the independent variable.

13. 14.

15. 16.

In Exercises 17–18, differentiate the functions. Then find an equation
of the tangent line at the indicated point on the graph of the function.

17.

18.

In Exercises 19–22, find the values of the derivatives.

19.

20.

21.

22.

Using the Alternative Formula for Derivatives
Use the formula

to find the derivative of the functions in Exercises 23–26.

23. 24.

25. 26.

Graphs
Match the functions graphed in Exercises 27–30 with the derivatives
graphed in the accompanying figures (a)–(d).

y'

0
x

(d)

y'

0
x

(c)

y'

0
x

(a)

y'

0
x

(b)

g sxd = 1 + 1xg sxd =

x
x - 1

ƒsxd = x2
- 3x + 4ƒsxd =

1
x + 2

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

dw
dz
`
z = 4

 if w = z + 1z

dr
du
`
u= 0

 if r =

2

24 - u

dy

dx
`
x =23

 if y = 1 -

1
x

ds
dt
`
t = -1

 if s = 1 - 3t2

w = g szd = 1 + 24 - z, sz, wd = s3, 2d

y = ƒsxd =

8

2x - 2
 , sx, yd = s6, 4d

y =

x + 3
1 - x

, x = -2s = t3
- t2, t = -1

k sxd =

1
2 + x

 , x = 2ƒsxd = x +

9
x  , x = -3

27. 28.

29. 30.

31. a. The graph in the accompanying figure is made of line seg-
ments joined end to end. At which points of the interval

is not defined? Give reasons for your answer.

b. Graph the derivative of ƒ.
The graph should show a step function.

32. Recovering a function from its derivative

a. Use the following information to graph the function ƒ over
the closed interval 

i) The graph of ƒ is made of closed line segments joined
end to end.

ii) The graph starts at the point 

iii) The derivative of ƒ is the step function in the figure
shown here.

b. Repeat part (a) assuming that the graph starts at 
instead of s -2, 3d .

s -2, 0d

x
0 1–2 3 5

1

y'

y' � f '(x)

–2

s -2, 3d .

[-2, 5] .

x

y

0 1 6

(0, 2) (6, 2)

(–4, 0)

y � f (x)

(4, –2)(1, –2)

ƒ¿[-4, 6]

y

0
x

y � f4(x)

y

0
x

y � f3(x)

x

y

0

y � f2(x)

x

y

0

y � f1(x)
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3.2 The Derivative as a Function 133

36. Weight loss Jared Fogle, also known as the “Subway Sandwich
Guy,” weighed 425 lb in 1997 before losing more than 240 lb in
12 months (http://en.wikipedia.org/wiki/Jared_Fogle). A chart
showing his possible dramatic weight loss is given in the accom-
panying figure.

a. Estimate Jared’s rate of weight loss when

i) ii) iii)

b. When does Jared lose weight most rapidly and what is this
rate of weight loss?

c. Use the graphical technique of Example 3 to graph the deriva-
tive of weight W.

One-Sided Derivatives
Compute the right-hand and left-hand derivatives as limits to show that
the functions in Exercises 37–40 are not differentiable at the point P.

37. 38.

39. 40.

In Exercises 41 and 42, determine if the piecewise defined function is
differentiable at the origin.

41.

42. gsxd = e x2>3, x Ú 0

x1>3, x 6 0

ƒsxd = e2x - 1, x Ú 0

x2
+ 2x + 7, x 6 0

y

y � 1
x

y � f (x)

x

P(1, 1)

y � x
1

1

y

y � f (x)

y � 2x � 1

x

P(1, 1)

0

1

1

y � �x

x

y

y � f (x)

y � 2x

y � 2

1

2

0 1 2

P(1, 2)

x

y

y � f (x)y � x2

y � x

P(0, 0)

t = 11t = 4t = 1

3 4 5 7 8 10 111 20

100

200

300

425

500

6 9 12

Time (months)

W
ei

gh
t (

lb
s)

W

t

33. Growth in the economy The graph in the accompanying figure
shows the average annual percentage change in the U.S.
gross national product (GNP) for the years 1983–1988. Graph

(where defined).

34. Fruit flies (Continuation of Example 4, Section 2.1.) Popula-
tions starting out in closed environments grow slowly at first,
when there are relatively few members, then more rapidly as the
number of reproducing individuals increases and resources are
still abundant, then slowly again as the population reaches the
carrying capacity of the environment.

a. Use the graphical technique of Example 3 to graph the deriva-
tive of the fruit fly population. The graph of the population is
reproduced here.

b. During what days does the population seem to be increasing
fastest? Slowest?

35. Temperature The given graph shows the temperature T in °F at
Davis, CA, on April 18, 2008, between 6 A.M. and 6 P.M.

a. Estimate the rate of temperature change at the times

i) 7 A.M. ii) 9 A.M. iii) 2 P.M. iv) 4 P.M.

b. At what time does the temperature increase most rapidly? De-
crease most rapidly? What is the rate for each of those times?

c. Use the graphical technique of Example 3 to graph the deriva-
tive of temperature T versus time t.

30

40

50

60

70

80

6 9 12
9 a.m.6 a.m. 12 noon 3 p.m. 6 p.m.

Time (hrs)

Te
m

pe
ra

tu
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)

T

t
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50
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N
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 f
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s

p

t

1983 1984 1985 1986 1987 1988
0
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4

5

6

7%

dy>dt

y = ƒstd
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Differentiability and Continuity on an Interval
Each figure in Exercises 43–48 shows the graph of a function over a
closed interval D. At what domain points does the function appear to be

a. differentiable?

b. continuous but not differentiable?

c. neither continuous nor differentiable?

Give reasons for your answers.

43. 44.

45. 46.

47. 48.

Theory and Examples
In Exercises 49–52,

a. Find the derivative of the given function 

b. Graph and side by side using separate sets of
coordinate axes, and answer the following questions.

c. For what values of x, if any, is positive? Zero? Negative?

d. Over what intervals of x-values, if any, does the function
increase as x increases? Decrease as x increases? How

is this related to what you found in part (c)? (We will say more
about this relationship in Section 4.3.)

49. 50.

51. 52.

53. Tangent to a parabola Does the parabola 
have a tangent whose slope is If so, find an equation for the
line and the point of tangency. If not, why not?

-1?
y = 2x2

- 13x + 5

y = x4>4y = x3>3
y = -1>xy = -x2

y = ƒsxd

ƒ¿

y = ƒ¿sxdy = ƒsxd
y = ƒsxd .ƒ¿sxd

y � f (x)
D:  –3 � x � 3

x

y

–3 –2 –1 0

2
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y
y � f (x)
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D:  –2 � x � 3
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y � f (x)
D:  –3 � x � 2
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54. Tangent to Does any tangent to the curve 
cross the x-axis at If so, find an equation for the line
and the point of tangency. If not, why not?

55. Derivative of Does knowing that a function ƒ(x) is differen-
tiable at tell you anything about the differentiability of the
function at Give reasons for your answer.

56. Derivative of multiples Does knowing that a function g (t) is
differentiable at tell you anything about the differentiability
of the function 3g at Give reasons for your answer.

57. Limit of a quotient Suppose that functions g(t) and h(t) are 
defined for all values of t and Can

exist? If it does exist, must it equal zero?
Give reasons for your answers.

58. a. Let ƒ(x) be a function satisfying for 
Show that ƒ is differentiable at and find 

b. Show that

is differentiable at and find 

59. Graph in a window that has Then, on
the same screen, graph

for Then try Explain what
is going on.

60. Graph in a window that has 
Then, on the same screen, graph

for Then try Explain what is
going on.

61. Derivative of Graph the derivative of Then
graph What can you conclude?

62. Weierstrass’s nowhere differentiable continuous function
The sum of the first eight terms of the Weierstrass function

is

Graph this sum. Zoom in several times. How wiggly and bumpy
is this graph? Specify a viewing window in which the displayed
portion of the graph is smooth.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in
Exercises 63–68.

a. Plot to see that function’s global behavior.

b. Define the difference quotient q at a general point x, with
general step size h.

c. Take the limit as What formula does this give?

d. Substitute the value and plot the function 
together with its tangent line at that point.

y = ƒsxdx = x0

h : 0.

y = ƒsxd

  + s2>3d3 cos s93pxd +
Á

+ s2>3d7 cos s97pxd .

 g sxd = cos spxd + s2>3d1 cos s9pxd + s2>3d2 cos s92pxd

g
q

n = 0 s2>3dn cos s9npxdƒ(x) =

y = s ƒ x ƒ - 0d>sx - 0d = ƒ x ƒ >x .
ƒsxd = ƒ x ƒ .y � �x �

h = -2, -1, -0.2 .h = 2, 1, 0.2 .

y =

sx + hd3
- x3

h

-2 … x … 2, 0 … y … 3.y = 3x2

h = -1, -0.5, -0.1 .h = 1, 0.5, 0.1 .

y =

1x + h - 1x
h

0 … x … 2.y = 1> A21x B
ƒ¿s0d .x = 0

ƒsxd = L x2 sin 
1
x , x Z 0

0, x = 0

ƒ¿s0d .x = 0
-1 … x … 1.ƒ ƒsxd ƒ … x2

limt:0 sg stdd>shstdd
g s0d = hs0d = 0.

t = 7?
t = 7

x = x0 ?-ƒ
x = x0

�ƒ

x = -1?
y = 1xy � 1x

T

T

T
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e. Substitute various values for x larger and smaller than into
the formula obtained in part (c). Do the numbers make sense
with your picture?

f. Graph the formula obtained in part (c). What does it mean
when its values are negative? Zero? Positive? Does this
make sense with your plot from part (a)? Give reasons for
your answer.

63. ƒsxd = x3
+ x2

- x, x0 = 1

x0

3.3 Differentiation Rules 135

64.

65.

66.

67.

68. ƒsxd = x2 cos x, x0 = p>4
ƒsxd = sin 2x, x0 = p>2
ƒsxd =

x - 1
3x2

+ 1
, x0 = -1

ƒsxd =

4x

x2
+ 1

, x0 = 2

ƒsxd = x1>3
+ x2>3, x0 = 1

Proof We apply the definition of the derivative to the function whose outputs
have the constant value c (Figure 3.9). At every value of x, we find that

From Section 3.1, we know that

From Example 2 of the last section we also know that

.

These two examples illustrate a general rule for differentiating a power . We first prove
the rule when n is a positive integer.

xn

d
dx

 A2x B =
1

22x
,  or d

dx
 Ax1>2 B =

1
2

 x - 1>2

d
dx
a1x b = -

1
x2,  or d

dx Ax - 1 B = -x - 2.

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
c - c

h
= lim

h:0
0 = 0.

ƒsxd = c ,

3.3 Differentiation Rules

This section introduces several rules that allow us to differentiate constant functions,
power functions, polynomials, exponential functions, rational functions, and certain com-
binations of them, simply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differences

A simple rule of differentiation is that the derivative of every constant function is zero.

Derivative of a Constant Function
If ƒ has the constant value then

dƒ
dx

=
d
dx

 scd = 0.

ƒsxd = c ,

x

y

0 x

c

h

y � c
(x � h, c)(x, c)

x � h

FIGURE 3.9 The rule is
another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point.

sd>dxdscd = 0

Power Rule for Positive Integers:

If n is a positive integer, then

d
dx

 xn
= nxn - 1 .
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Proof of the Positive Integer Power Rule The formula

can be verified by multiplying out the right-hand side. Then from the alternative formula
for the definition of the derivative,

n terms

The Power Rule is actually valid for all real numbers n. We have seen examples for a
negative integer and fractional power, but n could be an irrational number as well. To apply
the Power Rule, we subtract 1 from the original exponent n and multiply the result by n.
Here we state the general version of the rule, but postpone its proof until Section 3.8.

 = nxn - 1.

 = lim
z:x

sz n - 1
+ z n - 2x +

Á
+ zxn - 2

+ xn - 1d

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x = lim
z:x

 
z n

- xn

z - x

z n
- xn

= sz - xdsz n - 1
+ z n - 2 x +

Á
+ zx n - 2

+ xn - 1d
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HISTORICAL BIOGRAPHY

Richard Courant
(1888–1972)

EXAMPLE 1 Differentiate the following powers of x.

(a) (b) (c) (d) (e) (f)

Solution

(a) (b)

(c) (d)

(e)

(f)

The next rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant.

d
dx A2x 2 +p B =

d
dx Ax1 + (p>2) B = a1 +

p
2
bx1 + (p>2) - 1

=
1
2

(2 + p)2xp

d
dx

 (x-4>3) = -
4
3

 x-(4>3) - 1
= -

4
3

 x-7>3

d
dx
a 1

x4 b =
d
dx

(x-4) = -4x-4 - 1
= -4x-5

= -
4
x5

d
dx Ax22 B = 22x22 - 1

d
dx

 (x2>3) =
2
3

 x (2>3) - 1
=

2
3

 x-1>3d
dx

(x3) = 3x3 - 1
= 3x2

2x2 +px-4>31
x4x22x2/3x3

Power Rule (General Version)
If n is any real number, then

,

for all x where the powers and are defined.xn - 1xn

d
dx

 x n
= nx n - 1

Derivative Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

d
dx

 scud = c 
du
dx

.

In particular, if n is any real number, then

d
dx

 scxnd = cnxn - 1 .
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Proof

Constant Multiple Limit Property

u is differentiable.

EXAMPLE 2

(a) The derivative formula

says that if we rescale the graph of by multiplying each y-coordinate by 3, then
we multiply the slope at each point by 3 (Figure 3.10).

(b) Negative of a function

The derivative of the negative of a differentiable function u is the negative of the func-
tion’s derivative. The Constant Multiple Rule with gives

The next rule says that the derivative of the sum of two differentiable functions is the
sum of their derivatives.

d
dx

 s -ud =
d
dx

 s -1 # ud = -1 # d
dx

 sud = -
du
dx

.

c = -1

y = x2

d
dx

 s3x2d = 3 # 2x = 6x

 = c 
du
dx

 = c lim
h:0

 
usx + hd - usxd

h

 
d
dx

 cu = lim
h:0

 
cusx + hd - cusxd

h
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x

y

0 1

1
(1, 1)

2

2

3 (1, 3)
 

Slope

Slope
Slope � 2x

� 2(1) � 2

y � x2

y � 3x2

Slope � 3(2x)
� 6x
� 6(1) � 6

FIGURE 3.10 The graphs of and
Tripling the y-coordinate triples

the slope (Example 2).
y = 3x2 .

y = x2

For example, if , then y is the sum of and We
then have

Proof We apply the definition of the derivative to 

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives:

d
dx

 su - yd =
d
dx

 [u + s -1dy] =
du
dx

+ s -1d 
dy
dx

=
du
dx

-
dy
dx

 .

 = lim
h:0

 
usx + hd - usxd

h
+ lim

h:0
 
ysx + hd - ysxd

h
=

du
dx

+
dy
dx

.

 = lim
h:0

 cusx + hd - usxd
h

+

ysx + hd - ysxd
h

d
 
d
dx

 [usxd + ysxd] = lim
h:0

 
[usx + hd + ysx + hd] - [usxd + ysxd]

h

ƒsxd = usxd + ysxd :

dy
dx

=
d
dx

 (x4) +
d
dx

 (12x) = 4x3
+ 12.

y(x) = 12x.u(x) = x4y = x4
+ 12x

Derivative definition

with ƒsxd = cusxd

Derivative Sum Rule
If u and are differentiable functions of x, then their sum is differentiable
at every point where u and are both differentiable. At such points,

d
dx

 su + yd =
du
dx

+
dy
dx

.

y

u + yy

Denoting Functions by u and
The functions we are working with when
we need a differentiation formula are
likely to be denoted by letters like ƒ and g.
We do not want to use these same letters
when stating general differentiation rules,
so we use letters like u and instead that
are not likely to be already in use.

y

Y
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The Sum Rule also extends to finite sums of more than two functions. If
are differentiable at x, then so is and

For instance, to see that the rule holds for three functions we compute

A proof by mathematical induction for any finite number of terms is given in Appendix 2.

EXAMPLE 3 Find the derivative of the polynomial 

Solution Sum and Difference Rules

We can differentiate any polynomial term by term, the way we differentiated the poly-
nomial in Example 3. All polynomials are differentiable at all values of x.

EXAMPLE 4 Does the curve have any horizontal tangents? If so,
where?

Solution The horizontal tangents, if any, occur where the slope is zero. We have

Now solve the equation 

The curve has horizontal tangents at and The corre-
sponding points on the curve are (0, 2), (1, 1) and See Figure 3.11. We will see in
Chapter 4 that finding the values of x where the derivative of a function is equal to zero is
an important and useful procedure.

Derivatives of Exponential Functions

We briefly reviewed exponential functions in Section 1.5. When we apply the definition of
the derivative to  ƒ(x) � ax, we get

Derivative definition

ax�h = ax ah

Factoring out ax

ax is constant as  

(1)= ¢ lim
h:0

 
ah

- 1
h
≤ # ax.

h : 0.= ax # lim
h:0

 
ah

- 1
h

= lim
h:0

a x # ah
- 1
h

#
= lim

h:0

a x # ah
- a x

h

d
dx

(ax
 ) = lim

h:0

a x + h
- ax

h

s -1, 1d .
-1.x = 0, 1 ,y = x4

- 2x2
+ 2

 x = 0, 1, -1.

 4xsx2
- 1d = 0

 4x3
- 4x = 0

dy
dx

= 0 for x :

dy
dx

=
d
dx

 sx4
- 2x2

+ 2d = 4x3
- 4x .

dy>dx

y = x4
- 2x2

+ 2

 = 3x2
+

4
3

# 2x - 5 + 0 = 3x2
+

8
3

 x - 5

dy
dx

=
d
dx

 x3
+

d
dx

 a4
3

 x2b -
d
dx

 s5xd +
d
dx

 s1d

y = x3
+

4
3

 x2
- 5x + 1.

d
dx

 su1 + u2 + u3d =

d
dx

 ssu1 + u2d + u3d =

d
dx

 su1 + u2d +  
du3

dx
=

du1

dx
+

du2

dx
+

du3

dx
 .

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx
.

u1 + u2 +
Á

+ un ,u1 , u2 , Á , un
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(++)++*

a fixed numberL

x

y

0 1–1

(1, 1)(–1, 1)
1

(0, 2)

y � x4 � 2x2 � 2

FIGURE 3.11 The curve in Example 4
and its horizontal tangents.
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Thus we see that the derivative of is a constant multiple L of . The constant L is a limit
unlike any we have encountered before. Note, however, that it equals the derivative of

at :

.

The limit L is therefore the slope of the graph of where it crosses the y-axis. In
Chapter 7, where we carefully develop the logarithmic and exponential functions, we
prove that the limit L exists and has the value ln a. For now we investigate values of L by
graphing the function and studying its behavior as h approaches 0.

Figure 3.12 shows the graphs of for four different values of a. The
limit L is approximately 0.69 if , about 0.92 if , and about 1.1 if . It ap-
pears that the value of L is 1 at some number a chosen between 2.5 and 3. That number is
given by With this choice of base we obtain the natural exponen-
tial function as in Section 1.5, and see that it satisfies the property

(2)

That the limit is 1 implies an important relationship between the natural exponential func-
tion and its derivative:

Eq. (1) with

Eq. (2)

Therefore the natural exponential function is its own derivative.

=  1 # ex
= ex.

a = e
d
dx

 (ex) = lim
h:0 
¢ eh

- 1
h
≤ # ex

ex

ƒ¿(0) = lim
h:0 

eh
- 1
h

= 1.

ƒ(x) = ex
a = e L 2.718281828.

a = 3a = 2.5a = 2
y = (ah

- 1)>hy = (ah
- 1)>h

ƒ(x) = ax

ƒ¿(0) = lim
h:0

ah
- a0

h
=  lim

h:0

ah
- 1
h

= L

x = 0ƒ(x) = ax

axax
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EXAMPLE 5 Find an equation for a line that is tangent to the graph of and goes
through the origin.

Solution Since the line passes through the origin, its equation is of the form ,
where m is the slope. If it is tangent to the graph at the point , the slope is

The slope of the natural exponential at is . Because these
slopes are the same, we then have that . It follows that and , so the
equation of the tangent line is . See Figure 3.13.

We might ask if there are functions other than the natural exponential function that are
their own derivatives. The answer is that the only functions that satisfy the property that

are functions that are constant multiples of the natural exponential function,
, c any constant. We prove this fact in Section 7.2. Note from the Constant

Multiple Rule that indeed

d
dx

 (c # ex) = c # d
dx

 (ex) = c # ex.

ƒ(x) = c # ex
ƒ¿(x) = ƒ(x)

y = ex
m = ea = 1ea

= ea>a eax = am = (ea
- 0)>(a - 0).

(a, ea)
y = mx

y = ex

h

y
a � 3 a � 2.5

a � 2

a � e

1.1

0

1.0

0.92

0.69 y �            , a � 0ah � 1
h

FIGURE 3.12 The position of the curve
varies continu-

ously with a.
y = (ah

- 1)>h, a 7 0,

–1 a

2

4

6

x

y

(a, ea)

y � e x

FIGURE 3.13 The line through the origin
is tangent to the graph of when

(Example 5).a = 1
y = ex

Derivative of the Natural Exponential Function

d
dx

 (ex) = ex
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Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

The derivative of a product of two functions is the sum of two products, as we now explain.

d
dx

 sx # xd =
d
dx

 sx2d = 2x, while d
dx

 sxd # d
dx

 sxd = 1 # 1 = 1.

Derivative Product Rule
If u and are differentiable at x, then so is their product u , and

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

yy

The derivative of the product u is u times the derivative of plus times the deriva-
tive of u. In prime notation, In function notation,

EXAMPLE 6 Find the derivative of (a) , (b)

Solution

(a) We apply the Product Rule with and 

(b)

Proof of the Derivative Product Rule

To change this fraction into an equivalent one that contains difference quotients for the de-
rivatives of u and , we subtract and add in the numerator:

As h approaches zero, approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of at x and at x. In short,

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

.

du>dxdy>dx
usx + hd

 = lim
h:0

usx + hd # lim
h:0

 
ysx + hd - ysxd

h
+ ysxd # lim

h:0
 
usx + hd - usxd

h
.

 = lim
h:0

 cusx + hd 
ysx + hd - ysxd

h
+ ysxd 

usx + hd - usxd
h

d
 
d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usx + hdysxd + usx + hdysxd - usxdysxd

h

usx + hdysxdy

d
dx

 suyd = lim
h:0

 
usx + hdysx + hd - usxdysxd

h

d
dx

 (e2x) =
d
dx

 (ex # ex) = ex # d
dx

 (ex) + ex # d
dx

 (ex) = 2ex # ex
= 2e2x

 = 1 + (x - 1) 
ex

x2 .

 = 2 +
ex

x - 1 -
ex

x2

 
d
dx

 c1x  Ax2
+ ex B d =

1
x  A2x + ex B + Ax2

+ ex B a- 1
x2 b
y = x2

+ ex :u = 1>x

y = e2x.y =
1
x  Ax2

+ ex B
d
dx

 [ƒsxdg sxd] = ƒsxdg¿sxd + g sxdƒ¿sxd .

suyd¿ = uy¿ + yu¿ .
yyy

d
dx

 a1x b = -

1

x2

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

, and

0

y(x � h)

y(x)

	y

u(x)y(x)

u(x � h) 	y

y(x) 	u

u(x � h)u(x)
	u

Then the change in the product uy is the
difference in areas of the larger and
smaller “squares,” which is the sum of the
upper and right-hand reddish-shaded
rectangles. That is,

Division by h gives

The limit as gives the Product
Rule.

h : 0 +

¢(uy)

h
= u(x + h)

¢y

h
+ y(x)

¢u
h

.

= u(x + h)¢y + y(x)¢u.
¢(uy) = u(x + h)y(x + h) - u(x)y(x)

Picturing the Product Rule

Suppose u(x) and (x) are positive and
increase when x increases, and h 7 0.

y
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EXAMPLE 7 Find the derivative of 

Solution

(a) From the Product Rule with and we find

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

This is in agreement with our first calculation.

The derivative of the quotient of two functions is given by the Quotient Rule.

 
dy
dx

= 5x4
+ 3x2

+ 6x .

 y = sx2
+ 1dsx3

+ 3d = x5
+ x3

+ 3x2
+ 3

 = 5x4
+ 3x2

+ 6x .

 = 3x4
+ 3x2

+ 2x4
+ 6x

 
d
dx

 C sx2
+ 1dsx3

+ 3d D = sx2
+ 1ds3x2d + sx3

+ 3ds2xd

y = x3
+ 3,u = x2

+ 1

y = sx2
+ 1dsx3

+ 3d .
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Derivative Quotient Rule
If u and are differentiable at x and if then the quotient is differ-
entiable at x, and

d
dx

 auy b =

y 
du
dx

- u 
dy
dx

y2 .

u>yysxd Z 0,y

In function notation,

EXAMPLE 8 Find the derivative of (a) (b) .

Solution

(a) We apply the Quotient Rule with and 

.

(b)
d
dx

 (e - x) =  
d
dx
a 1

ex b =
ex # 0 - 1 # ex

(ex)2 =
-1
ex = -e - x

 =
- t4

+ 3t2
+ 2t

st3
+ 1d2

 =
2t4

+ 2t - 3t4
+ 3t2

st3
+ 1d2

d
dt

 auy b =

ysdu>dtd - usdy>dtd

y2
 
dy
dt

=

st3
+ 1d # 2t - st2

- 1d # 3t2

st3
+ 1d2

y = t3
+ 1:u = t2

- 1

y = e-xy =
t2

- 1
t3

+ 1
,

d
dx

 c ƒsxd
g sxd

d =

g sxdƒ¿sxd - ƒsxdg¿sxd
g2sxd

.

d
dx

 suyd = u 
dy
dx

+ y 
du
dx
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Proof of the Derivative Quotient Rule

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of u and , we subtract and add (x)u(x) in the numerator. We then get

Taking the limits in the numerator and denominator now gives the Quotient Rule.

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 9 Rather than using the Quotient Rule to find the derivative of

expand the numerator and divide by 

Then use the Sum and Power Rules:

Second- and Higher-Order Derivatives

If is a differentiable function, then its derivative is also a function. If is
also differentiable, then we can differentiate to get a new function of x denoted by 
So The function is called the second derivative of ƒ because it is the deriv-
ative of the first derivative. It is written in several ways:

The symbol means the operation of differentiation is performed twice.
If then and we have

Thus D2(x6) = 30x4 .

y– =

dy¿

dx
=

d
dx

 (6x5) = 30x4 .

y¿ = 6x5y = x6 ,
D2

ƒ–sxd =

d2y

dx2 =
d
dx

 ady
dx
b =

dy¿

dx
= y– = D2sƒdsxd = Dx

2 ƒsxd .

ƒ–ƒ– = sƒ¿ d¿ .
ƒ–.ƒ¿

ƒ¿ƒ¿sxdy = ƒsxd

 = -
1
x2 +

6
x3 -

6
x4 .

 
dy
dx

= -x-2
- 3s -2dx-3

+ 2s -3dx-4

y =

sx - 1dsx2
- 2xd

x4 =
x3

- 3x2
+ 2x

x4 = x-1
- 3x-2

+ 2x-3 .

x4 :

y =

sx - 1dsx2
- 2xd

x4 ,

 = lim
h:0

 
ysxd 

usx + hd - usxd
h

- usxd 
ysx + hd - ysxd

h
ysx + hdysxd

 .

 
d
dx

 auy b = lim
h:0

 
ysxdusx + hd - ysxdusxd + ysxdusxd - usxdysx + hd

hysx + hdysxd

yy

 = lim
h:0

 
ysxdusx + hd - usxdysx + hd

hysx + hdysxd

 
d
dx

 auy b = lim
h:0

 

usx + hd
ysx + hd

-

usxd
ysxd

h
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3.3 Differentiation Rules 143

How to Read the Symbols for
Derivatives

“y prime”
“y double prime”

“d squared y dx squared”

“y triple prime”
“y super n”

“d to the n of y by dx to the n”

“D to the n”Dn

dny

dxn

y snd
y‡

d2y

dx2

y–

y¿

If is differentiable, its derivative, , is the third derivative
of y with respect to x. The names continue as you imagine, with

denoting the nth derivative of y with respect to x for any positive integer n.
We can interpret the second derivative as the rate of change of the slope of the tangent

to the graph of at each point. You will see in the next chapter that the second de-
rivative reveals whether the graph bends upward or downward from the tangent line as we
move off the point of tangency. In the next section, we interpret both the second and third
derivatives in terms of motion along a straight line.

EXAMPLE 10 The first four derivatives of are

First derivative:

Second derivative:

Third derivative:

Fourth derivative:

The function has derivatives of all orders, the fifth and later derivatives all being zero.

 y s4d
= 0.

 y‡ = 6

 y– = 6x - 6

 y¿ = 3x2
- 6x

y = x3
- 3x2

+ 2

y = ƒsxd

y snd
=

d
dx

 y sn - 1d
=

dny

dxn = Dny

y‡ = dy–>dx = d3y>dx3y–

Exercises 3.3

Derivative Calculations
In Exercises 1–12, find the first and second derivatives.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, find (a) by applying the Product Rule and
(b) by multiplying the factors to produce a sum of simpler terms to
differentiate.

13. 14.

15. 16.

Find the derivatives of the functions in Exercises 17–40.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. r = 2 a 1

2u + 2uby =

1 + x - 41x
x

u =

5x + 1
21x

ƒssd =

1s - 1

1s + 1

w = s2x - 7d-1sx + 5dy = s1 - tds1 + t2d-1

ƒstd =

t2
- 1

t2
+ t - 2

g sxd =

x2
- 4

x + 0.5

z =

4 - 3x

3x2
+ x

y =

2x + 5
3x - 2

y = s1 + x2dsx3>4
- x-3dy = sx2

+ 1d ax + 5 +

1
x b

y = s2x + 3ds5x2
- 4xdy = s3 - x2dsx3

- x + 1d

y¿

r =

12
u

-

4
u3 +

1
u4r =

1
3s2 -

5
2s

y = 4 - 2x - x-3y = 6x2
- 10x - 5x-2

s = -2t -1
+

4
t2w = 3z-2

-

1
z

y =

x3

3
+

x2

2
+

x
4

y =

4x3

3
- x + 2ex

w = 3z7
- 7z3

+ 21z2s = 5t3
- 3t5

y = x2
+ x + 8y = -x2

+ 3

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Find the derivatives of all orders of the functions in Exercises 41–44.

41. 42.

43. 44.

Find the first and second derivatives of the functions in Exercises
45–52.

45. 46.

47. 48.

49. 50.

51. 52. w = ezsz - 1dsz2
+ 1dw = 3z2e2z

p =

q2
+ 3

sq - 1d3
+ sq + 1d3w = a1 + 3z

3z
b s3 - zd

u =

sx2
+ xdsx2

- x + 1d
x4r =

su - 1dsu2
+ u + 1d
u3

s =

t2
+ 5t - 1

t2y =

x3
+ 7
x

y = s4x3
+ 3xds2 - xdy = sx - 1dsx2

+ 3x - 5d

y =

x5

120
y =

x4

2
-

3
2

 x2
- x

r = eu a 1
u2 + u-p>2br =

es

s

y = 23 x9.6
+ 2e1.3y =

72x2
- xe

w =

1
z1.4 +

p

2z
s = 2t3>2

+ 3e2

y = x-3>5
+ p3>2y = x9>4

+ e-2x

w =  re-ry =  x3ex

y =

x2
+ 3ex

2ex
- x

y = 2e-x
+ e3x

y =

sx + 1dsx + 2d
sx - 1dsx - 2d

y =

1
sx2

- 1dsx2
+ x + 1d
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53. Suppose u and are functions of x that are differentiable at 
and that

Find the values of the following derivatives at 

a. b. c. d.

54. Suppose u and are differentiable functions of x and that

Find the values of the following derivatives at 

a. b. c. d.

Slopes and Tangents
55. a. Normal to a curve Find an equation for the line perpendicular

to the tangent to the curve at the point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope?

c. Tangents having specified slope Find equations for the tan-
gents to the curve at the points where the slope of the curve is 8.

56. a. Horizontal tangents Find equations for the horizontal tan-
gents to the curve Also find equations for
the lines that are perpendicular to these tangents at the points
of tangency.

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope? Find
an equation for the line that is perpendicular to the curve’s
tangent at this point.

57. Find the tangents to Newton’s serpentine (graphed here) at the 
origin and the point (1, 2).

58. Find the tangent to the Witch of Agnesi (graphed here) at the point
(2, 1).

59. Quadratic tangent to identity function The curve 
passes through the point (1, 2) and is tangent to the

line at the origin. Find a, b, and c.

60. Quadratics having a common tangent The curves 
and have a common tangent line at

the point (1, 0). Find a, b, and c.

61. Find all points (x, y) on the graph of with tan-
gent lines parallel to the line y = 8x + 5.

ƒsxd = 3x2
- 4x

y = cx - x2x2
+ ax + b

y =

y = x
ax2

+ bx + c
y =

x

y

0

1

1 2

2
(2, 1)

3

y � 8
x2 � 4

x

y

0

1

1 2

2
(1, 2)

3 4

y � 4x
x2 � 1

y = x3
- 3x - 2.

y = x3
- 4x + 1

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 1.

us1d = 2, u¿s1d = 0, ys1d = 5, y¿s1d = -1.

y

d
dx

 s7y - 2udd
dx

 ayu bd
dx

 auy bd
dx

 suyd

x = 0.

us0d = 5, u¿s0d = -3, ys0d = -1, y¿s0d = 2.

x = 0y
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62. Find all points (x, y) on the graph of with
tangent lines parallel to the line 

63. Find all points (x, y) on the graph of with tangent
lines perpendicular to the line 

64. Find all points (x, y) on the graph of with tangent lines
passing through the point (3, 8).

65. a. Find an equation for the line that is tangent to the curve
at the point 

b. Graph the curve and tangent line together. The tangent inter-
sects the curve at another point. Use Zoom and Trace to esti-
mate the point’s coordinates.

c. Confirm your estimates of the coordinates of the second in-
tersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

66. a. Find an equation for the line that is tangent to the curve
at the origin.

b. Graph the curve and tangent together. The tangent intersects
the curve at another point. Use Zoom and Trace to estimate
the point’s coordinates.

c. Confirm your estimates of the coordinates of the second in-
tersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

Theory and Examples
For Exercises 67 and 68 evaluate each limit by first converting each to
a derivative at a particular x-value.

67. 68.

69. Find the value of a that makes the following function differen-
tiable for all x-values.

70. Find the values of a and b that make the following function differ-
entiable for all x-values.

71. The general polynomial of degree n has the form

where Find P¿sxd .an Z 0.

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a2 x2
+ a1 x + a0

ƒsxd = eax + b, x 7 -1

bx2
- 3, x … -1

gsxd = eax, if x 6 0

x2
- 3x, if x Ú 0

 lim
x: -1

 
x2>9

- 1
x + 1

 lim
x:1

 
x50

- 1
x - 1

y = x3
- 6x2

+ 5x

s -1, 0d .y = x3
- x

y

x

(3, 8)

–2

2

2 4

6

10
f (x) 5 x2

(x, y)

ƒsxd = x2

y = 2x + 3.
y = x>(x - 2)

8x - 2y = 1.
gsxd =

1
3 x3

-
3
2 x2

+ 1

T

T

T

T
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72. The body’s reaction to medicine The reaction of the body to a
dose of medicine can sometimes be represented by an equation of
the form

where C is a positive constant and M is the amount of medicine ab-
sorbed in the blood. If the reaction is a change in blood pressure, R
is measured in millimeters of mercury. If the reaction is a change
in temperature, R is measured in degrees, and so on.

Find . This derivative, as a function of M, is called the
sensitivity of the body to the medicine. In Section 4.5, we will see
how to find the amount of medicine to which the body is most
sensitive.

73. Suppose that the function in the Derivative Product Rule has a
constant value c. What does the Derivative Product Rule then say?
What does this say about the Derivative Constant Multiple Rule?

74. The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function
(x) is differentiable and different from zero,

Show that the Reciprocal Rule is a special case of the Deriva-
tive Quotient Rule.

b. Show that the Reciprocal Rule and the Derivative Product
Rule together imply the Derivative Quotient Rule.

75. Generalizing the Product Rule The Derivative Product Rule
gives the formula

for the derivative of the product u of two differentiable functions
of x.

a. What is the analogous formula for the derivative of the prod-
uct u w of three differentiable functions of x?

b. What is the formula for the derivative of the product 
of four differentiable functions of x?

u1 u2 u3 u4

y

y

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

d
dx

 a1y b = -

1
y2 

dy
dx

.

y

y

dR>dM

R = M2 aC
2

-

M
3
b ,
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c. What is the formula for the derivative of a product
of a finite number n of differentiable functions

of x?

76. Power Rule for negative integers Use the Derivative Quotient
Rule to prove the Power Rule for negative integers, that is,

where m is a positive integer.

77. Cylinder pressure If gas in a cylinder is maintained at a con-
stant temperature T, the pressure P is related to the volume V by a
formula of the form

in which a, b, n, and R are constants. Find . (See accompa-
nying figure.)

78. The best quantity to order One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

where q is the quantity you order when things run low (shoes, ra-
dios, brooms, or whatever the item might be); k is the cost of plac-
ing an order (the same, no matter how often you order); c is the cost
of one item (a constant); m is the number of items sold each week
(a constant); and h is the weekly holding cost per item (a constant
that takes into account things such as space, utilities, insurance,
and security). Find and d2A>dq2 .dA>dq

Asqd =

km
q + cm +

hq

2
,

dP>dV

P =

nRT
V - nb

-

an2

V 2 ,

d
dx

 (x-m) = -mx-m - 1

u1 u2 u3
Á un

3.4 The Derivative as a Rate of Change

In Section 2.1 we introduced average and instantaneous rates of change. In this section we
study further applications in which derivatives model the rates at which things change. It is
natural to think of a quantity changing with respect to time, but other variables can be
treated in the same way. For example, an economist may want to study how the cost of pro-
ducing steel varies with the number of tons produced, or an engineer may want to know
how the power output of a generator varies with its temperature.

Instantaneous Rates of Change

If we interpret the difference quotient as the average rate of change
in ƒ over the interval from x to we can interpret its limit as as the rate at
which ƒ is changing at the point x.

h : 0x + h ,
sƒsx + hd - ƒsxdd>h
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146 Chapter 3: Differentiation

Thus, instantaneous rates are limits of average rates.

It is conventional to use the word instantaneous even when x does not represent time.
The word is, however, frequently omitted. When we say rate of change, we mean
instantaneous rate of change.

EXAMPLE 1 The area A of a circle is related to its diameter by the equation

How fast does the area change with respect to the diameter when the diameter is 10 m?

Solution The rate of change of the area with respect to the diameter is

When the area is changing with respect to the diameter at the rate of

Motion Along a Line: Displacement, Velocity, Speed,
Acceleration, and Jerk

Suppose that an object is moving along a coordinate line (an s-axis), usually horizontal or
vertical, so that we know its position s on that line as a function of time t:

The displacement of the object over the time interval from t to (Figure 3.14) is

and the average velocity of the object over that time interval is

To find the body’s velocity at the exact instant t, we take the limit of the average ve-
locity over the interval from t to as shrinks to zero. This limit is the derivative of
ƒ with respect to t.

¢tt + ¢t

yay =

displacement
travel time

=
¢s
¢t

=

ƒst + ¢td - ƒstd
¢t

.

¢s = ƒst + ¢td - ƒstd ,

t + ¢t

s = ƒstd .

sp>2d10 = 5p m2>m L 15.71 m2>m.
D = 10 m,

dA
dD

=
p
4

# 2D =
pD
2

.

A =
p
4

 D2 .

DEFINITION Velocity (instantaneous velocity) is the derivative of position
with respect to time. If a body’s position at time t is then the body’s
velocity at time t is

ystd =
ds
dt

= lim
¢t:0

 
ƒst + ¢td - ƒstd

¢t
.

s = ƒstd ,

DEFINITION The instantaneous rate of change of ƒ with respect to x at is
the derivative

provided the limit exists.

ƒ¿sx0d = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
,

x0

s
Δs

Position at time t … and at time t � Δ t

s � f (t) s � Δs � f (t � Δt)

FIGURE 3.14 The positions of a body
moving along a coordinate line at time t
and shortly later at time Here the
coordinate line is horizontal.

t + ¢t .
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Besides telling how fast an object is moving along the horizontal line in Figure 3.14, its
velocity tells the direction of motion. When the object is moving forward (s increasing), the
velocity is positive; when the object is moving backward (s decreasing), the velocity is neg-
ative. If the coordinate line is vertical, the object moves upward for positive velocity and
downward for negative velocity. The blue curves in Figure 3.15 represent position along the
line over time; they do not portray the path of motion, which lies along the s-axis.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30
on the way over but it will not show on the way back, even though our distance from
home is decreasing. The speedometer always shows speed, which is the absolute value of
velocity. Speed measures the rate of progress regardless of direction.

-30
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t

s

0
s increasing:
positive slope so
moving upward

s � f (t)

ds
dt

� 0

t

s

0
s decreasing:
negative slope so
moving downward

s � f (t)

ds
dt

� 0

(a)

(b)

FIGURE 3.15 For motion 
along a straight line (the vertical axis),

is (a) positive when s
increases and (b) negative when s
decreases.

y = ds>dt

s = ƒstd

HISTORICAL BIOGRAPHY

Bernard Bolzano
(1781–1848)

EXAMPLE 2 Figure 3.16 shows the graph of the velocity of a particle moving
along a horizontal line (as opposed to showing a position function such as in Figure
3.15). In the graph of the velocity function, it’s not the slope of the curve that tells us if the par-
ticle is moving forward or backward along the line (which is not shown in the figure), but rather
the sign of the velocity. Looking at Figure 3.16, we see that the particle moves forward for the
first 3 sec (when the velocity is positive), moves backward for the next 2 sec (the velocity is
negative), stands motionless for a full second, and then moves forward again. The particle is
speeding up when its positive velocity increases during the first second, moves at a steady
speed during the next second, and then slows down as the velocity decreases to zero during the
third second. It stops for an instant at (when the velocity is zero) and reverses direc-
tion as the velocity starts to become negative. The particle is now moving backward and gain-
ing in speed until at which time it achieves its greatest speed during its backward
motion. Continuing its backward motion at time the particle starts to slow down again
until it finally stops at time (when the velocity is once again zero). The particle now re-
mains motionless for one full second, and then moves forward again at speeding up
during the final second of the forward motion indicated in the velocity graph.

The rate at which a body’s velocity changes is the body’s acceleration. The accelera-
tion measures how quickly the body picks up or loses speed.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky,
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

t = 6 sec,
t = 5

t = 4,
t = 4 sec,

t = 3 sec

s = ƒstd
y = ƒ¿std

DEFINITION Speed is the absolute value of velocity.

Speed = ƒ ystd ƒ = ` ds
dt
`

DEFINITIONS Acceleration is the derivative of velocity with respect to time.
If a body’s position at time t is then the body’s acceleration at time t is

Jerk is the derivative of acceleration with respect to time:

jstd =
da
dt

=
d3s
dt3 .

astd =
dy
dt

=
d2s
dt2 .

s = ƒstd ,

Near the surface of the Earth all bodies fall with the same constant acceleration.
Galileo’s experiments with free fall (see Section 2.1) lead to the equation

s =
1
2

 gt2 ,
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where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation
holds in a vacuum, where there is no air resistance, and closely models the fall of dense,
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the
effects of air resistance are significant.

The value of g in the equation depends on the units used to measure
t and s. With t in seconds (the usual unit), the value of g determined by measurement at sea level
is approximately (feet per second squared) in English units, and 
(meters per second squared) in metric units. (These gravitational constants depend on 
the distance from Earth’s center of mass, and are slightly lower on top of Mt. Everest, for
example.)

The jerk associated with the constant acceleration of gravity is zero:

An object does not exhibit jerkiness during free fall.

EXAMPLE 3 Figure 3.17 shows the free fall of a heavy ball bearing released from rest
at time 

(a) How many meters does the ball fall in the first 2 sec?

(b) What is its velocity, speed, and acceleration when ?

Solution

(a) The metric free-fall equation is During the first 2 sec, the ball falls

(b) At any time t, velocity is the derivative of position:

ystd = s¿std =
d
dt

 s4.9t2d = 9.8t .

ss2d = 4.9s2d2
= 19.6 m.

s = 4.9t2 .

t = 2

t = 0 sec.

j =
d
dt

 sgd = 0.

sg = 32 ft>sec2d

g = 9.8 m>sec232 ft>sec2

s = s1>2dgt2
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0

5

10

15

20

25

30

35

40

45t � 3

s (meters)t (seconds)

t � 0

t � 1

t � 2

FIGURE 3.17 A ball bearing
falling from rest (Example 3).

0 1 2 3 4 5 6

 

7

MOVES FORWARD

(y � 0)

MOVES BACKWARD

(y � 0)

FORWARD
AGAIN

(y � 0)

Speeds
up

Speeds
up

Speeds
up

Slows
down

Slows
down

Steady

(y � const)

Velocity y � f '(t)

Stands
still
(y � 0)

t (sec)

Greatest
speed

y

FIGURE 3.16 The velocity graph of a particle moving along a horizontal line,
discussed in Example 2.
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At the velocity is

in the downward (increasing s) direction. The speed at is

The acceleration at any time t is

At the acceleration is  

EXAMPLE 4 A dynamite blast blows a heavy rock straight up with a launch velocity of
160 ft sec (about 109 mph) (Figure 3.18a). It reaches a height of after
t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?

Solution

(a) In the coordinate system we have chosen, s measures height from the ground up, so
the velocity is positive on the way up and negative on the way down. The instant the
rock is at its highest point is the one instant during the flight when the velocity is 0. To
find the maximum height, all we need to do is to find when and evaluate s at
this time.

At any time t during the rock’s motion, its velocity is

The velocity is zero when

The rock’s height at is

See Figure 3.18b.

(b) To find the rock’s velocity at 256 ft on the way up and again on the way down, we first
find the two values of t for which

To solve this equation, we write

The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec after the
explosion. The rock’s velocities at these times are

 ys8d = 160 - 32s8d = 160 - 256 = -96 ft>sec.

 ys2d = 160 - 32s2d = 160 - 64 = 96 ft>sec.

 t = 2 sec, t = 8 sec.

 st - 2dst - 8d = 0

 16st2
- 10t + 16d = 0

 16t2
- 160t + 256 = 0

sstd = 160t - 16t2
= 256.

smax = ss5d = 160s5d - 16s5d2
= 800 - 400 = 400 ft .

t = 5 sec

160 - 32t = 0 or t = 5 sec.

y =
ds
dt

=
d
dt

 s160t - 16t2d = 160 - 32t ft>sec.

y = 0

s = 160t - 16t2 ft>

9.8 m>sec2 .t = 2,

astd = y¿std = s–std = 9.8 m>sec2 .

speed = ƒ ys2d ƒ = 19.6 m>sec.

t = 2

ys2d = 19.6 m>sec

t = 2,
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s

H
ei

gh
t (

ft
)

(a)

smax

s � 0

256 t � ?

y � 0

t
0

400

5 10

(b)

160

–160

s, y

s � 160t � 16t2

y � � 160 � 32tds
dt

FIGURE 3.18 (a) The rock in Example 4.
(b) The graphs of s and y as functions of
time; s is largest when 
The graph of s is not the path of the rock:
It is a plot of height versus time. The slope
of the plot is the rock’s velocity, graphed
here as a straight line.

y = ds>dt = 0.
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At both instants, the rock’s speed is 96 ft sec. Since the rock is moving up-
ward (s is increasing) at it is moving downward (s is decreasing) at 
because 

(c) At any time during its flight following the explosion, the rock’s acceleration is a
constant

The acceleration is always downward. As the rock rises, it slows down; as it falls, it
speeds up.

(d) The rock hits the ground at the positive time t for which The equation
factors to give so it has solutions and

At the blast occurred and the rock was thrown upward. It returned to
the ground 10 sec later.

Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of functions
describing motion. Economists, too, have a specialized vocabulary for rates of change and
derivatives. They call them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the num-
ber of units produced. The marginal cost of production is the rate of change of cost with
respect to level of production, so it is .

Suppose that c(x) represents the dollars needed to produce x tons of steel in one week.
It costs more to produce tons per week, and the cost difference, divided by h, is the
average cost of producing each additional ton:

The limit of this ratio as is the marginal cost of producing more steel per week
when the current weekly production is x tons (Figure 3.19):

Sometimes the marginal cost of production is loosely defined to be the extra cost of
producing one additional unit:

which is approximated by the value of at x. This approximation is acceptable if the
slope of the graph of c does not change quickly near x. Then the difference quotient will be
close to its limit , which is the rise in the tangent line if (Figure 3.20). The
approximation works best for large values of x.

Economists often represent a total cost function by a cubic polynomial

where represents fixed costs such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs such as the costs of raw materials,
taxes, and labor. Fixed costs are independent of the number of units produced, whereas
variable costs depend on the quantity produced. A cubic polynomial is usually adequate to
capture the cost behavior on a realistic quantity interval.

EXAMPLE 5 Suppose that it costs

csxd = x3
- 6x2

+ 15x

d

csxd = ax3
+ bx2

+ gx + d

¢x = 1dc>dx

dc>dx

¢c
¢x

=

csx + 1d - csxd
1

,

dc
dx

= lim
h:0

 
csx + hd - csxd

h
= marginal cost of production.

h : 0

csx + hd - csxd
h

=

average cost of each of the additional
h tons of steel produced.

x + h

dc>dx

t = 0,t = 10.
t = 016t s10 - td = 0,160t - 16t2

= 0
s = 0.

a =
dy
dt

=
d
dt

 s160 - 32td = -32 ft>sec2 .

ys8d 6 0.
t = 8t = 2 sec;

ys2d 7 0,>
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x
0

Production (tons/week)
x

Cost y (dollars)

y � c (x)
Slope �

marginal cost

x � h

FIGURE 3.19 Weekly steel production:
c(x) is the cost of producing x tons per
week. The cost of producing an additional
h tons is csx + hd - csxd .

x

y

0 x

⎧
⎪
⎨
⎪
⎩

dc
dx

x � 1

�x � 1

�c

y � c(x)

FIGURE 3.20 The marginal cost is
approximately the extra cost of
producing more unit.¢x = 1

¢c
dc>dx
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dollars to produce x radiators when 8 to 30 radiators are produced and that

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators
a day. About how much extra will it cost to produce one more radiator a day, and what is
your estimated increase in revenue for selling 11 radiators a day?

Solution The cost of producing one more radiator a day when 10 are produced is about

The additional cost will be about $195. The marginal revenue is

The marginal revenue function estimates the increase in revenue that will result from sell-
ing one additional unit. If you currently sell 10 radiators a day, you can expect your rev-
enue to increase by about

if you increase sales to 11 radiators a day.

EXAMPLE 6 To get some feel for the language of marginal rates, consider marginal tax
rates. If your marginal income tax rate is 28% and your income increases by $1000, you
can expect to pay an extra $280 in taxes. This does not mean that you pay 28% of your en-
tire income in taxes. It just means that at your current income level I, the rate of increase of
taxes T with respect to income is You will pay $0.28 in taxes out of every
extra dollar you earn. Of course, if you earn a lot more, you may land in a higher tax
bracket and your marginal rate will increase.

Sensitivity to Change

When a small change in x produces a large change in the value of a function ƒ(x), we say
that the function is relatively sensitive to changes in x. The derivative is a measure of
this sensitivity.

EXAMPLE 7 Genetic Data and Sensitivity to Change

The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas and
other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of the
gene for smooth skin in peas (dominant) and is the frequency of the gene for wrin-
kled skin in peas, then the proportion of smooth-skinned peas in the next generation will be

The graph of y versus p in Figure 3.21a suggests that the value of y is more sensitive to a
change in p when p is small than when p is large. Indeed, this fact is borne out by the de-
rivative graph in Figure 3.21b, which shows that is close to 2 when p is near 0 and
close to 0 when p is near 1.

The implication for genetics is that introducing a few more smooth skin genes into a
population where the frequency of wrinkled skin peas is large will have a more dramatic
effect on later generations than will a similar increase when the population has a large pro-
portion of smooth skin peas.

dy>dp

y = 2ps1 - pd + p2
= 2p - p2 .

s1 - pd

ƒ¿sxd

dT>dI = 0.28.

r¿s10d = 3s100d - 6s10d + 12 = $252

r¿sxd =
d
dx

 (x3
- 3x2

+ 12x) = 3x2
- 6x + 12.

 c¿s10d = 3s100d - 12s10d + 15 = 195.

 c¿sxd =
d
dx

 Ax3
- 6x2

+ 15x B = 3x2
- 12x + 15

c¿s10d :

rsxd = x3
- 3x2

+ 12x
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p

y

0 1

1

(a)

 y � 2p � p2

dy /dp

p
0 1

2

(b)

� 2 � 2p
dy
dp

FIGURE 3.21 (a) The graph of
describing the proportion 

of smooth-skinned peas in the next
generation. (b) The graph of 
(Example 7).

dy>dp

y = 2p - p2 ,
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Exercises 3.4

Motion Along a Coordinate Line
Exercises 1–6 give the positions of a body moving on a coor-
dinate line, with s in meters and t in seconds.

a. Find the body’s displacement and average velocity for the
given time interval.

b. Find the body’s speed and acceleration at the endpoints of the
interval.

c. When, if ever, during the interval does the body change direction?

1.

2.

3.

4.

5.

6.

7. Particle motion At time t, the position of a body moving along
the s-axis is 

a. Find the body’s acceleration each time the velocity is zero.

b. Find the body’s speed each time the acceleration is zero.

c. Find the total distance traveled by the body from to 

8. Particle motion At time the velocity of a body moving
along the horizontal s-axis is 

a. Find the body’s acceleration each time the velocity is zero.

b. When is the body moving forward? Backward?

c. When is the body’s velocity increasing? Decreasing?

Free-Fall Applications
9. Free fall on Mars and Jupiter The equations for free fall at the

surfaces of Mars and Jupiter (s in meters, t in seconds) are
on Mars and on Jupiter. How long does it

take a rock falling from rest to reach a velocity of 27.8 m sec
(about 100 km h) on each planet?

10. Lunar projectile motion A rock thrown vertically upward
from the surface of the moon at a velocity of 24 m sec (about
86 km h) reaches a height of in t sec.

a. Find the rock’s velocity and acceleration at time t. (The accel-
eration in this case is the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?

c. How high does the rock go?

d. How long does it take the rock to reach half its maximum
height?

e. How long is the rock aloft?

11. Finding g on a small airless planet Explorers on a small airless
planet used a spring gun to launch a ball bearing vertically upward
from the surface at a launch velocity of 15 m sec. Because the 
acceleration of gravity at the planet’s surface was the 
explorers expected the ball bearing to reach a height of

t sec later. The ball bearing reached its max-
imum height 20 sec after being launched. What was the value of gs ?
s = 15t - s1>2dgs t2 m

gs m>sec2 ,
>

s = 24t - 0.8t2 m> >
> >s = 11.44t2s = 1.86t2

y = t2
- 4t + 3.

t Ú 0,

t = 2.t = 0

s = t3
- 6t2

+ 9t m.

s =

25
t + 5

, -4 … t … 0

s =

25
t2 -

5
t , 1 … t … 5

s = st4>4d - t3
+ t2, 0 … t … 3

s = - t3
+ 3t2

- 3t, 0 … t … 3

s = 6t - t2, 0 … t … 6

s = t2
- 3t + 2, 0 … t … 2

s = ƒstd
12. Speeding bullet A 45-caliber bullet shot straight up from the

surface of the moon would reach a height of ft
after t sec. On Earth, in the absence of air, its height would be

ft after t sec. How long will the bullet be aloft in
each case? How high will the bullet go?

13. Free fall from the Tower of Pisa Had Galileo dropped a can-
nonball from the Tower of Pisa, 179 ft above the ground, the ball’s
height above the ground t sec into the fall would have been

a. What would have been the ball’s velocity, speed, and accelera-
tion at time t ?

b. About how long would it have taken the ball to hit the ground?

c. What would have been the ball’s velocity at the moment of impact?

14. Galileo’s free-fall formula Galileo developed a formula for a
body’s velocity during free fall by rolling balls from rest down in-
creasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was ver-
tical and the ball fell freely; see part (a) of the accompanying
figure. He found that, for any given angle of the plank, the ball’s
velocity t sec into motion was a constant multiple of t. That is, the
velocity was given by a formula of the form The value of
the constant k depended on the inclination of the plank.

In modern notation—part (b) of the figure—with distance in
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle the ball’s velocity t sec into
the roll was

a. What is the equation for the ball’s velocity during free fall?

b. Building on your work in part (a), what constant acceleration
does a freely falling body experience near the surface of Earth?

Understanding Motion from Graphs
15. The accompanying figure shows the velocity 

(m sec) of a body moving along a coordinate line.

a. When does the body reverse direction?

b. When (approximately) is the body moving at a constant speed?

0

–3

2 4

3

6 8 10

y (m/sec)

y � f (t)

t (sec)

> y = ds>dt = ƒstd

(a)

?

(b)

θ

Free-fall
position

y = 9.8ssin udt m>sec .

u ,

y = kt .

s = 179 - 16t2 .

s = 832t - 16t2

s = 832t - 2.6t2
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c. Graph the body’s speed for 

d. Graph the acceleration, where defined.

16. A particle P moves on the number line shown in part (a) of the ac-
companying figure. Part (b) shows the position of P as a function
of time t.

a. When is P moving to the left? Moving to the right? Standing
still?

b. Graph the particle’s velocity and speed (where defined).

17. Launching a rocket When a model rocket is launched, the pro-
pellant burns for a few seconds, accelerating the rocket upward.
After burnout, the rocket coasts upward for a while and then be-
gins to fall. A small explosive charge pops out a parachute
shortly after the rocket starts down. The parachute slows the
rocket to keep it from breaking when it lands.

The figure here shows velocity data from the flight of the
model rocket. Use the data to answer the following.

a. How fast was the rocket climbing when the engine stopped?

b. For how many seconds did the engine burn?

c. When did the rocket reach its highest point? What was its
velocity then?

d. When did the parachute pop out? How fast was the rocket
falling then?

e. How long did the rocket fall before the parachute opened?

f. When was the rocket’s acceleration greatest?

g. When was the acceleration constant? What was its value then
(to the nearest integer)?

0 2 4 6 8 10 12

100

50

0

–50

–100

150

200

Time after launch (sec)

V
el

oc
ity

 (
ft

/s
ec

)

0

–2

–4

1 2

2

3 4 5 6

(b)

0

(a)

P
s (cm)

s (cm)

s � f (t)

t (sec)

(6, �4)

0 … t … 10.
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18. The accompanying figure shows the velocity of a parti-
cle moving on a horizontal coordinate line.

a. When does the particle move forward? Move backward?
Speed up? Slow down?

b. When is the particle’s acceleration positive? Negative? Zero?

c. When does the particle move at its greatest speed?

d. When does the particle stand still for more than an instant?

19. Two falling balls The multiflash photograph in the accompany-
ing figure shows two balls falling from rest. The vertical rulers
are marked in centimeters. Use the equation (the free-
fall equation for s in centimeters and t in seconds) to answer the
following questions.

a. How long did it take the balls to fall the first 160 cm? What
was their average velocity for the period?

b. How fast were the balls falling when they reached the 160-cm
mark? What was their acceleration then?

c. About how fast was the light flashing (flashes per second)?

s = 490t2

t (sec)

y

0 1 2 3 4 5 6 7 8 9

y � f(t)

y = ƒstd
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20. A traveling truck The accompanying graph shows the position
s of a truck traveling on a highway. The truck starts at and
returns 15 h later at 

a. Use the technique described in Section 3.2, Example 3, to
graph the truck’s velocity Then
repeat the process, with the velocity curve, to graph the
truck’s acceleration .

b. Suppose that Graph and and
compare your graphs with those in part (a).

21. The graphs in the accompanying figure show the position s, ve-
locity and acceleration of a body moving
along a coordinate line as functions of time t. Which graph is
which? Give reasons for your answers.

22. The graphs in the accompanying figure show the position s, the
velocity and the acceleration of a body
moving along the coordinate line as functions of time t. Which
graph is which? Give reasons for your answers.

t

y

0

A

B

C

a = d2s>dt2y = ds>dt ,

t

y

0

A B

C

a = d2s>dt2y = ds>dt ,

0

100

200

300

400

500

5 10 15
Elapsed time, t (hr)

Po
si

tio
n,

 s
 (

km
)

d2s>dt2ds>dts = 15t2
- t3 .

dy>dt

y = ds>dt for 0 … t … 15.

t = 15.
t = 0
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Economics
23. Marginal cost Suppose that the dollar cost of producing x

washing machines is 

a. Find the average cost per machine of producing the first 100
washing machines.

b. Find the marginal cost when 100 washing machines are pro-
duced.

c. Show that the marginal cost when 100 washing machines are
produced is approximately the cost of producing one more
washing machine after the first 100 have been made, by cal-
culating the latter cost directly.

24. Marginal revenue Suppose that the revenue from selling x
washing machines is

dollars.

a. Find the marginal revenue when 100 machines are produced.

b. Use the function to estimate the increase in revenue that
will result from increasing production from 100 machines a
week to 101 machines a week.

c. Find the limit of as How would you interpret
this number?

Additional Applications
25. Bacterium population When a bactericide was added to a nu-

trient broth in which bacteria were growing, the bacterium popu-
lation continued to grow for a while, but then stopped growing
and began to decline. The size of the population at time t (hours)
was Find the growth rates at

a.

b.

c.

26. Draining a tank The number of gallons of water in a tank t
minutes after the tank has started to drain is 

How fast is the water running out at the end of 
10 min? What is the average rate at which the water flows out dur-
ing the first 10 min?

27. Draining a tank It takes 12 hours to drain a storage tank by
opening the valve at the bottom. The depth y of fluid in the tank t
hours after the valve is opened is given by the formula

a. Find the rate (m h) at which the tank is draining at time t.

b. When is the fluid level in the tank falling fastest? Slowest?
What are the values of at these times?

c. Graph y and together and discuss the behavior of y in
relation to the signs and values of .

28. Inflating a balloon The volume of a spherical
balloon changes with the radius.

a. At what rate does the volume change with respect to
the radius when 

b. By approximately how much does the volume increase when
the radius changes from 2 to 2.2 ft?

r = 2 ft?
sft3>ftd

V = s4>3dpr3

dy>dt
dy>dt

dy>dt

>dy>dt

y = 6 a1 -

t
12
b2

 m.

200s30 - td2 .
Qstd =

t = 10 hours .

t = 5 hours .

t = 0 hours .

b = 106
+ 104t - 103t2 .

x : q .r¿sxd

r¿sxd

rsxd = 20,000 a1 -

1
x b

csxd = 2000 + 100x - 0.1x2 .

T
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29. Airplane takeoff Suppose that the distance an aircraft travels
along a runway before takeoff is given by where D
is measured in meters from the starting point and t is measured in
seconds from the time the brakes are released. The aircraft will be-
come airborne when its speed reaches 200 km h. How long will it
take to become airborne, and what distance will it travel in that time?

30. Volcanic lava fountains Although the November 1959 Kilauea
Iki eruption on the island of Hawaii began with a line of fountains
along the wall of the crater, activity was later confined to a single
vent in the crater’s floor, which at one point shot lava 1900 ft
straight into the air (a Hawaiian record). What was the lava’s exit
velocity in feet per second? In miles per hour? (Hint: If is the
exit velocity of a particle of lava, its height t sec later will be

Begin by finding the time at which 
Neglect air resistance.)

Analyzing Motion Using Graphs
Exercises 31–34 give the position function of an object moving
along the s-axis as a function of time t. Graph ƒ together with the 

s = ƒstd

ds>dt = 0.s = y0 t - 16t2 ft .

y0

>

D = s10>9dt2 ,
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velocity function and the acceleration function
Comment on the object’s behavior in relation

to the signs and values of and a. Include in your commentary such
topics as the following:

a. When is the object momentarily at rest?

b. When does it move to the left (down) or to the right (up)?

c. When does it change direction?

d. When does it speed up and slow down?

e. When is it moving fastest (highest speed)? Slowest?

f. When is it farthest from the axis origin?

31. (a heavy object fired straight
up from Earth’s surface at 200 ft sec)

32.

33.

34. s = 4 - 7t + 6t2
- t3, 0 … t … 4

s = t3
- 6t2

+ 7t, 0 … t … 4

s = t2
- 3t + 2, 0 … t … 5

>s = 200t - 16t2, 0 … t … 12.5

y

astd = d2s>dt2
= ƒ–std .
ystd = ds>dt = ƒ¿std

3.5 Derivatives of Trigonometric Functions

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms,
tides, weather). The derivatives of sines and cosines play a key role in describing periodic
changes. This section shows how to differentiate the six basic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of for x measured in radians, we combine the
limits in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine
function:

If then

= sin x # 0 + cos x # 1 = cos x . = sin x # lim
h:0

 
cos h - 1

h
+ cos x # lim

h:0
 
sin h

h

 = lim
h:0

 asin x # cos h - 1
h

b + lim
h:0

 acos x # sin h
h
b

= lim
h:0

 
sin x scos h - 1d + cos x sin h

h
 = lim

h:0
 
ssin x cos h + cos x sin hd - sin x

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
= lim

h:0
 
sin sx + hd - sin x

h

ƒsxd = sin x ,

sin sx + hd = sin x cos h + cos x sin h .

ƒsxd = sin x ,

The derivative of the sine function is the cosine function:

d
dx

 ssin xd = cos x .

Example 5a and
Theorem 7, Section 2.4

Derivative definition

(+++)+++*

limit 0
(+)+*

limit 1

T
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EXAMPLE 1 We find derivatives of the sine function involving differences, products,
and quotients.

(a) Difference Rule

(b) Product Rule

(c) Quotient Rule

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine function,

we can compute the limit of the difference quotient:

Derivative definition

 = -sin x .

 = cos x # 0 - sin x # 1

 = cos x # lim
h:0

 
cos h - 1

h
- sin x # lim

h:0
 
sin h

h

 = lim
h:0

 cos x # cos h - 1
h

- lim
h:0

 sin x # sin h
h

 = lim
h:0

 
cos x scos h - 1d - sin x sin h

h

 = lim
h:0

 
scos x cos h - sin x sin hd - cos x

h

 
d
dx

 scos xd = lim
h:0

 
cos sx + hd - cos x

h

cos sx + hd = cos x cos h - sin x sin h ,

 =
x cos x - sin x

x2

 
dy
dx

=

x # d
dx

 (sin x) - sin x # 1

x2y =
sin x

x :

 = ex (cos x + sin x)

 = ex cos x + ex sin x

 
dy
dx

= ex 
d
dx

 (sin x) +
d
dx

 (ex) sin xy = exsin x :

 = 2x - cos x

 
dy
dx

= 2x -
d
dx

 (sin x)y = x2
- sin x :
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The derivative of the cosine function is the negative of the sine function:

d
dx

 scos xd = -sin x.

Example 5a and
Theorem 7, Section 2.4

Cosine angle sum
identity

1

x

y

0–� �
–1

1

x

y'

0–� �
–1

y � cos x

y' � –sin x

FIGURE 3.22 The curve as
the graph of the slopes of the tangents to
the curve y = cos x .

y¿ = -sin x
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Figure 3.22 shows a way to visualize this result in the same way we did for graphing deriv-
atives in Section 3.2, Figure 3.6.

EXAMPLE 2 We find derivatives of the cosine function in combinations with other
functions.

(a)

Sum Rule

(b)

Product Rule

(c)

Quotient Rule

Simple Harmonic Motion

The motion of an object or weight bobbing freely up and down with no resistance on the
end of a spring is an example of simple harmonic motion. The motion is periodic and 
repeats indefinitely, so we represent it using trigonometric functions. The next example
describes a case in which there are no opposing forces such as friction or buoyancy to slow
the motion.

EXAMPLE 3 A weight hanging from a spring (Figure 3.23) is stretched down 5 units
beyond its rest position and released at time to bob up and down. Its position at any
later time t is

What are its velocity and acceleration at time t ?

Solution We have

Position:

Velocity:

Acceleration: a =
dy
dt

=
d
dt

 s -5 sin td = -5 cos t .

y =
ds
dt

=
d
dt

 s5 cos td = -5 sin t

s = 5 cos t

s = 5 cos t .

t = 0

 =
1

1 - sin x

sin2 x + cos2 x = 1 =
1 - sin x

s1 - sin xd2

 =

s1 - sin xds -sin xd - cos x s0 - cos xd
s1 - sin xd2

 
dy
dx

=

(1 - sin x) 
d
dx

 (cos x) - cos x 
d
dx

 (1 - sin x)

s1 - sin xd2

y =
cos x

1 - sin x
:

 = cos2 x - sin2 x

 = sin x s -sin xd + cos x scos xd

 
dy
dx

= sin x 
d
dx

 (cos x) + cos x 
d
dx

 (sin x)

y = sin x cos x :

 = 5ex
- sin x

 
dy
dx

=
d
dx

 s5exd +
d
dx

 (cos x)

y = 5ex
+ cos x :
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s

0

–5

5

Rest
position

Position at
t � 0

FIGURE 3.23 A weight hanging from
a vertical spring and then displaced
oscillates above and below its rest position
(Example 3).
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Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between and on the
s-axis. The amplitude of the motion is 5. The period of the motion is the period of
the cosine function.

2. The velocity attains its greatest magnitude, 5, when as the
graphs show in Figure 3.24. Hence, the speed of the weight, is great-
est when that is, when (the rest position). The speed of the weight is
zero when This occurs when at the endpoints of the in-
terval of motion.

3. The acceleration value is always the exact opposite of the position value. When the
weight is above the rest position, gravity is pulling it back down; when the weight is
below the rest position, the spring is pulling it back up.

4. The acceleration, is zero only at the rest position, where and
the force of gravity and the force from the spring balance each other. When the weight
is anywhere else, the two forces are unequal and acceleration is nonzero. The acceler-
ation is greatest in magnitude at the points farthest from the rest position, where

EXAMPLE 4 The jerk associated with the simple harmonic motion in Example 3 is

It has its greatest magnitude when not at the extremes of the displacement but
at the rest position, where the acceleration changes direction and sign.

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative
signs in the derivative formulas for the cofunctions.

tan x =
sin x
cos x , cot x =

cos x
sin x

 , sec x =
1

cos x , and csc x =
1

sin x

sin t = ;1,

j =
da
dt

=
d
dt

 s -5 cos td = 5 sin t .

cos t = ;1.

cos t = 0a = -5 cos t ,

s = 5 cos t = ;5,sin t = 0.
s = 0cos t = 0,

ƒ y ƒ = 5 ƒ  sin t ƒ ,
cos t = 0,y = -5 sin t

2p,
s = 5s = -5

158 Chapter 3: Differentiation

t
0

s, y

y � –5 sin t s � 5 cos t

� �
2

3� 2�
2

5�
2

5

–5

FIGURE 3.24 The graphs of the position
and velocity of the weight in Example 3.

To show a typical calculation, we find the derivative of the tangent function. The other
derivations are left to Exercise 60.

The derivatives of the other trigonometric functions:

 
d
dx

 scsc xd = -csc x cot x 
d
dx

 ssec xd = sec x tan x

 
d
dx

 scot xd = -csc2 x 
d
dx

 stan xd = sec2 x
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EXAMPLE 5 Find d(tan x) dx.

Solution We use the Derivative Quotient Rule to calculate the derivative:

Quotient Rule

.

EXAMPLE 6 Find 

Solution Finding the second derivative involves a combination of trigonometric deriva-
tives.

Derivative rule for secant function

Derivative Product Rule

Derivative rules

The differentiability of the trigonometric functions throughout their domains gives
another proof of their continuity at every point in their domains (Theorem 1, Section 3.2).
So we can calculate limits of algebraic combinations and composites of trigonometric
functions by direct substitution.

EXAMPLE 7 We can use direct substitution in computing limits provided there is no
division by zero, which is algebraically undefined.

lim
x:0

 
22 + sec x

cos sp - tan xd
=

22 + sec 0
cos sp - tan 0d

=

22 + 1
cos sp - 0d

=

23
-1

= -23

 = sec3 x + sec x tan2 x

 = sec x ssec2 xd + tan x ssec x tan xd

 = sec x 
d
dx

 (tan x) + tan x 
d
dx

 (sec x)

 y– =
d
dx

 ssec x tan xd

 y¿ = sec x tan x

 y = sec x

y– if y = sec x .

 =
1

cos2 x
= sec2 x

 =
cos2 x + sin2 x

cos2 x

 =

cos x cos x - sin x s -sin xd
cos2 x

 
d
dx

 stan xd =
d
dx

 a sin x
cos x b =

cos x 
d
dx

 ssin xd - sin x 
d
dx

 scos xd

cos2 x

>
3.5 Derivatives of Trigonometric Functions 159

Exercises 3.5

Derivatives
In Exercises 1–18, find .

1. 2.

3. 4. y = 2x sec x + 3y = x2 cos x

y =

3
x + 5 sin xy = -10x + 3 cos x

dy>dx
5. 6.

7. 8.

9.

10. y = ssin x + cos xd sec x

y = ssec x + tan xdssec x - tan xd
gsxd = csc x cot xƒsxd = sin x tan x

y = x2 cot x -

1
x2y = csc x - 41x + 7
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11. 12.

13. 14.

15.

16.

17. 18.

In Exercises 19–22, find .

19. 20.

21. 22.

In Exercises 23–26, find 

23. 24.

25. 26.

In Exercises 27–32, find .

27. 28.

29. 30.

31. 32.

33. Find if

a. b.

34. Find if

a. b.

Tangent Lines
In Exercises 35–38, graph the curves over the given intervals, together
with their tangents at the given values of x. Label each curve and tan-
gent with its equation.

35.

36.

37.

38.

Do the graphs of the functions in Exercises 39–42 have any horizontal
tangents in the interval If so, where? If not, why not?
Visualize your findings by graphing the functions with a grapher.

39.

40.

41.

42.

43. Find all points on the curve where
the tangent line is parallel to the line Sketch the curve
and tangent(s) together, labeling each with its equation.

y = 2x .
y = tan x, -p>2 6 x 6 p>2,

y = x + 2 cos x

y = x - cot x

y = 2x + sin x

y = x + sin x

0 … x … 2p?

 x = -p>3, 3p>2
 y = 1 + cos x, -3p>2 … x … 2p

 x = -p>3, p>4
 y = sec x, -p>2 6 x 6 p>2
 x = -p>3, 0, p>3
 y = tan x, -p>2 6 x 6 p>2
 x = -p, 0, 3p>2
 y = sin x, -3p>2 … x … 2p

y = 9 cos x .y = -2 sin x .

y s4d
= d4 y>dx4

y = sec x .y = csc x .

y–

p =

3q + tan q
q sec qp =

q sin q

q2
- 1

p =

tan q

1 + tan q
p =

sin q + cos q
cos q

p = s1 + csc qd cos qp = 5 +

1
cot q

dp>dq

r = s1 + sec ud sin ur = sec u csc u

r = u sin u + cos ur = 4 - u2 sin u

dr>du .

s =

sin t
1 - cos t

s =

1 + csc t
1 - csc t

s = t2
- sec t + 5ets = tan t - e-t

ds>dt

gsxd = s2 - xd tan2 xƒsxd = x3 sin x cos x

y = x2 cos x - 2x sin x - 2 cos x

y = x2 sin x + 2x cos x - 2 sin x

y =

cos x
x +

x
cos xy =

4
cos x +

1
tan x

y =

cos x
1 + sin x

y =

cot x
1 + cot x

160 Chapter 3: Differentiation

44. Find all points on the curve where the
tangent line is parallel to the line Sketch the curve and
tangent(s) together, labeling each with its equation.

In Exercises 45 and 46, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

45. 46.

Trigonometric Limits
Find the limits in Exercises 47–54.

47.

48.

49. 50.

51.

52.

53. 54.

Theory and Examples
The equations in Exercises 55 and 56 give the position of a
body moving on a coordinate line (s in meters, t in seconds). Find the
body’s velocity, speed, acceleration, and jerk at time 

55. 56.

57. Is there a value of c that will make

continuous at Give reasons for your answer.

58. Is there a value of b that will make

continuous at Differentiable at Give reasons for
your answers.

x = 0?x = 0?

g sxd = e x + b, x 6 0

cos x, x Ú 0

x = 0?

ƒsxd = L
sin2 3x

x2 , x Z 0

c, x = 0

s = sin t + cos ts = 2 - 2 sin t

t = p>4 sec .

s = ƒstd

lim
u:0

 cos a pu
sin u

blim
t:0

 tan a1 -

sin t
t b

lim
x:0

 sin a p + tan x
tan x - 2 sec x

b

lim
x:0

 sec cex
+ p tan a p

4 sec x
b - 1 d

 lim
u:p>4 

tan u - 1
u -

p
4

 lim
u:p>6 

sin u -
1
2

u -
p
6

lim
x: -p>621 + cos sp csc xd

lim
x:2

 sin a1x -

1
2
b

x

y

0 1 2

4

3

Q

⎛
⎝

⎛
⎝

�
4

P     , 4

�
4

y � 1 � �2 csc x � cot x

x

y

0

1

1 2

2

Q

y � 4 � cot x � 2csc x

⎛
⎝

⎛
⎝

�
2

P     , 2

�
2

y = -x .
y = cot x, 0 6 x 6 p ,

T
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59. Find 

60. Derive the formula for the derivative with respect to x of

a. sec x. b. csc x. c. cot x.

61. A weight is attached to a spring and reaches its equilibrium posi-
tion It is then set in motion resulting in a displacement of

where x is measured in centimeters and t is measured in seconds.
See the accompanying figure.

a. Find the spring’s displacement when and

b. Find the spring’s velocity when and 

62. Assume that a particle’s position on the x-axis is given by

where x is measured in feet and t is measured in seconds.

a. Find the particle’s position when and 

b. Find the particle’s velocity when and 

63. Graph for On the same screen, graph

for and 0.1. Then, in a new window, try
and What happens as As 

What phenomenon is being illustrated here?

64. Graph for On the same screen,
graph

for and 0.1. Then, in a new window, try
and What happens as As 

What phenomenon is being illustrated here?

65. Centered difference quotients The centered difference quotient

is used to approximate in numerical work because (1) its
limit as equals when exists, and (2) it usually
gives a better approximation of for a given value of h than
the difference quotient

ƒsx + hd - ƒsxd
h

.

ƒ¿sxd
ƒ¿sxdƒ¿sxdh : 0

ƒ¿sxd

ƒsx + hd - ƒsx - hd
2h

h : 0- ?h : 0+ ?-0.3 .h = -1, -0.5 ,
h = 1,  0.5,  0.3,

y =

cos sx + hd - cos x

h

-p … x … 2p .y = -sin x

h : 0- ?h : 0+ ?-0.3 .h = -1, -0.5 ,
h = 1,  0.5,  0.3,

y =

sin sx + hd - sin x

h

-p … x … 2p .y = cos x

t = p.t = 0, t = p>2,

t = p.t = 0, t = p>2,

x = 3 cos t + 4 sin t,

t = 3p>4.t = 0, t = p>3,

t = 3p>4.
t = 0, t = p>3,

x

0

–10

10

Equilibrium
position
at x 5 0

x = 10 cos t,

sx = 0d.

d999>dx999 scos xd .

3.5 Derivatives of Trigonometric Functions 161

See the accompanying figure.

a. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval for and 0.3. Compare
the results with those obtained in Exercise 63 for the same
values of h.

b. To see how rapidly the centered difference quotient for
converges to graph 

together with

over the interval and 0.3. Compare
the results with those obtained in Exercise 64 for the same
values of h.

66. A caution about centered difference quotients (Continuation
of Exercise 65. ) The quotient

may have a limit as when ƒ has no derivative at x. As a case
in point, take and calculate

As you will see, the limit exists even though has no de-
rivative at Moral: Before using a centered difference quo-
tient, be sure the derivative exists.

67. Slopes on the graph of the tangent function Graph 
and its derivative together on Does the graph of the
tangent function appear to have a smallest slope? A largest slope?
Is the slope ever negative? Give reasons for your answers.

s -p>2, p>2d .
y = tan x

x = 0.
ƒsxd = ƒ x ƒ

lim
h:0

 
ƒ 0 + h ƒ - ƒ 0 - h ƒ

2h
.

ƒsxd = ƒ x ƒ

h : 0

ƒsx + hd - ƒsx - hd
2h

[-p, 2p] for h = 1, 0.5 ,

y =

cos sx + hd - cos sx - hd
2h

y = -sin xƒ¿sxd = -sin x ,ƒsxd = cos x

h = 1, 0.5 ,[-p, 2p]

y =

sin sx + hd - sin sx - hd
2h

y = cos xƒ¿sxd = cos x ,ƒsxd = sin x

x

y

0 x

A

hh

C B

x � h x � h

y � f (x)

Slope � f '(x)

Slope �

Slope �

h
f (x � h) � f (x)

f (x � h) � f (x � h)
2h

T

T

T

T
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68. Slopes on the graph of the cotangent function Graph 
and its derivative together for Does the graph of the
cotangent function appear to have a smallest slope? A largest
slope? Is the slope ever positive? Give reasons for your answers.

69. Exploring (sin kx) x Graph 
and together over the interval 
Where does each graph appear to cross the y-axis? Do the graphs
really intersect the axis? What would you expect the graphs of

and to do as Why?
What about the graph of for other values of k ?
Give reasons for your answers.

70. Radians versus degrees: degree mode derivatives What hap-
pens to the derivatives of sin x and cos x if x is measured in de-
grees instead of radians? To find out, take the following steps.

a. With your graphing calculator or computer grapher in degree
mode, graph

and estimate Compare your estimate with
Is there any reason to believe the limit should be

p>180?
p>180.

limh:0 ƒshd .

ƒshd =

sin h
h

y = ssin kxd>x x : 0?y = ssin s -3xdd>xy = ssin 5xd>x

-2 … x … 2.y = ssin 4xd>x y = ssin 2xd>x ,y = ssin xd>x ,/

0 6 x 6 p .
y = cot x

162 Chapter 3: Differentiation

b. With your grapher still in degree mode, estimate

c. Now go back to the derivation of the formula for the deriva-
tive of sin x in the text and carry out the steps of the deriva-
tion using degree-mode limits. What formula do you obtain
for the derivative?

d. Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you 
obtain for the derivative?

e. The disadvantages of the degree-mode formulas become ap-
parent as you start taking derivatives of higher order. Try it.
What are the second and third degree-mode derivatives of
sin x and cos x?

lim
h:0

 
cos h - 1

h
.

T

T

T

3.6 The Chain Rule

How do we differentiate This function is the composite of two
functions and that we know how to differentiate.
The answer, given by the Chain Rule, says that the derivative is the product of the deriva-
tives of ƒ and g. We develop the rule in this section.

Derivative of a Composite Function

The function is the composite of the functions and 

We have

Since we see in this case that

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If changes half as fast as u and changes three
times as fast as x, then we expect y to change times as fast as x. This effect is much like
that of a multiple gear train (Figure 3.25). Let’s look at another example.

EXAMPLE 1 The function

y = s3x2
+ 1d2

3>2 u = g sxdy = ƒsud

dy
dx

=

dy
du

# du
dx

.

3
2

=
1
2

# 3,

dy
dx

=
3
2

, dy
du

=
1
2

, and du
dx

= 3.

u = 3x .y =
1
2

 uy =
3
2

 x =
1
2

 s3xd

u = g sxd = x2
- 4y = ƒ(u) = sin u

ƒ � gF(x) = sin (x2
- 4)?

32

1

C: y turns B: u turns A: x turns

FIGURE 3.25 When gear A makes x
turns, gear B makes u turns and gear
C makes y turns. By comparing
circumferences or counting teeth, we 
see that (C turns one-half turn 
for each B turn) and (B turns 
three times for A’s one), so 
Thus, 
sdy>dudsdu>dxd .

s1>2ds3d =dy>dx = 3>2 =
y = 3x>2.

u = 3x
y = u>2
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is the composite of and Calculating derivatives, we
see that

Calculating the derivative from the expanded formula gives
the same result:

The derivative of the composite function ƒ(g(x)) at x is the derivative of ƒ at g(x) times
the derivative of g at x. This is known as the Chain Rule (Figure 3.26).

 = 36x3
+ 12x .

 
dy
dx

=
d
dx

 (9x4
+ 6x2

+ 1)

(3x2
+ 1)2

= 9x4
+ 6x2

+ 1

 = 36x3
+ 12x .

 = 2s3x2
+ 1d # 6x

 
dy
du

# du
dx

= 2u # 6x

u = g(x) = 3x2
+ 1.y = ƒ(u) = u2

3.6 The Chain Rule 163

x

g f

Composite f ˚ g

Rate of change at
x is f '(g(x)) • g'(x).

Rate of change
at x is g'(x).

Rate of change
at g(x) is f '(g(x)).

u � g(x) y � f (u) � f (g(x))

FIGURE 3.26 Rates of change multiply: The derivative of at x is the
derivative of ƒ at g(x) times the derivative of g at x.

ƒ � g

THEOREM 2—The Chain Rule If ƒ(u) is differentiable at the point 
and is differentiable at x, then the composite function 
is differentiable at x, and

In Leibniz’s notation, if and then

where is evaluated at u = g sxd .dy>du

dy
dx

=

dy
du

# du
dx

,

u = g sxd ,y = ƒsud

sƒ � gd¿sxd = ƒ¿sg sxdd # g¿sxd .

sƒ � gdsxd = ƒsg sxddg (x)
u = g sxd

Intuitive “Proof” of the Chain Rule:

Let be the change in u when x changes by so that

Then the corresponding change in y is

If we can write the fraction as the product

(1)
¢y

¢x
=

¢y

¢u
# ¢u

¢x

¢y>¢x¢u Z 0,

¢y = ƒsu + ¢ud - ƒsud .

¢u = g sx + ¢xd - g sxd.

¢x,¢u
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and take the limit as 

The problem with this argument is that it could be true that even when so
the cancellation of in Equation (1) would be invalid. A proof requires a different ap-
proach that avoids this flaw, and we give one such proof in Section 3.11.

EXAMPLE 2 An object moves along the x-axis so that its position at any time is
given by Find the velocity of the object as a function of t.

Solution We know that the velocity is . In this instance, x is a composite function:
and We have

By the Chain Rule,

“Outside-Inside” Rule

A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-
tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to think about
the Chain Rule using functional notation. If , then

In words, differentiate the “outside” function ƒ and evaluate it at the “inside” function g(x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 3 Differentiate with respect to x.

Solution We apply the Chain Rule directly and find

d
dx

 sin (x2
+ ex) = cos (x2

+ ex) # (2x + ex).

sin sx2
+ exd

dy
dx

= ƒ¿sg sxdd # g¿sxd .

y = ƒ(g(x))

 = -2t sin st2
+ 1d .

 = -sin st2
+ 1d # 2t

 = -sin sud # 2t

 
dx
dt

=
dx
du

# du
dt

u = t2
+ 1 

du
dt

= 2t .

x = cossud 
dx
du

= -sin sud

u = t2
+ 1.x = cos sud

dx>dt

xstd = cos st2
+ 1d .

t Ú 0

¢u
¢x Z 0,¢u = 0

 =

dy
du

# du
dx

.

 = lim
¢u:0

 
¢y

¢u
# lim

¢x:0
 
¢u
¢x

 = lim
¢x:0

 
¢y

¢u
# lim

¢x:0
 
¢u
¢x

 = lim
¢x:0

 
¢y

¢u
# ¢u

¢x

 
dy
dx

= lim
¢x:0

 
¢y

¢x

¢x : 0:

164 Chapter 3: Differentiation

(Note that as
since g is continuous.)

¢x : 0¢u : 0

(+)+*

inside
(+)+*

inside
left alone

(+)+*

derivative of
the inside

evaluated at u
dx
du
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3.6 The Chain Rule 165

Derivative of tan u with
u = 5 - sin 2t

Derivative of 
with u = 2t

5 - sin u

HISTORICAL BIOGRAPHY

Johann Bernoulli
(1667–1748)

EXAMPLE 4 Differentiate 

Solution Here the inside function is and the outside function is the
exponential function Applying the Chain Rule, we get

Generalizing Example 4, we see that the Chain Rule gives the formula

dy
dx

=
d
dx

 (ecos x) = ecos x 
d
dx

 (cos x) = ecos x (-sin x) = -ecos x sin x.

ƒ(x) = ex.
u = g (x) = cos x

y = ecos x.

.
d
dx

 eu
= eu 

du
dx

Thus, for example,

and

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.

EXAMPLE 5 Find the derivative of 

Solution Notice here that the tangent is a function of whereas the sine is 
a function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

The Chain Rule with Powers of a Function

If ƒ is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing into the Chain Rule formula

leads to the formula

If n is any real number and ƒ is a power function, the Power Rule tells us
that If u is a differentiable function of x, then we can use the Chain Rule to
extend this to the Power Chain Rule:

d
du

 Aun B = nun - 1d
dx

 sund = nun - 1 
du
dx

.

ƒ¿sud = nun - 1 .
ƒsud = un ,

d
dx

 ƒsud = ƒ¿sud 
du
dx

.

dy
dx

=

dy
du

# du
dx

y = ƒsud

 = -2scos 2td sec2 s5 - sin 2td .

 = sec2 s5 - sin 2td # s -cos 2td # 2

 = sec2 s5 - sin 2td # a0 - cos 2t #
d
dt

 (2t)b
 = sec2 s5 - sin 2td # d

dt
 (5 - sin 2t)

 g¿std =
d
dt

 (tan (5 - sin 2t))

5 - sin 2t ,

g std = tan s5 - sin 2td .

d
dx

 Aex2 B = ex2
# d
dx

 (x2) = 2xex2

.

d
dx

 (ekx) = ekx # d
dx

 (kx) = kekx,  for any constant k
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EXAMPLE 6 The Power Chain Rule simplifies computing the derivative of a power of
an expression.

(a)

(b)

In part (b) we could also find the derivative with the Derivative Quotient Rule.

(c)
Power Chain Rule with ,

(d)

Power Chain Rule with 

EXAMPLE 7 In Section 3.2, we saw that the absolute value function is not
differentiable at x � 0. However, the function is differentiable at all other real numbers as

we now show. Since , we can derive the following formula:

EXAMPLE 8 Show that the slope of every line tangent to the curve is
positive.

Solution We find the derivative:

Power Chain Rule with 

 =
6

s1 - 2xd4.

 = -3s1 - 2xd-4 # s -2d

u = s1 - 2xd, n = -3 = -3s1 - 2xd-4 # d
dx

 s1 - 2xd

 
dy
dx

=
d
dx

 s1 - 2xd-3

y = 1>s1 - 2xd3

 =
x

ƒ x ƒ

,  x Z 0.

 =
1

2 ƒ x ƒ

# 2x

 =
1

22x2
# d
dx

 (x2)

d
dx

 ( ƒ x ƒ ) =
d
dx
2x2

ƒ x ƒ = 2x2

y = ƒ x ƒ

 =
3

223x + 1
 e23x + 1

u = 3x + 1, n = 1>2 = e23x + 1 # 1
2

 (3x + 1)-1>2 # 3

d
dx

 Ae23x + 1 B = e23x + 1 # d
dx

 A23x + 1 B
 = 5 sin4 x cos x

u = sin x, n = 5d
dx

 (sin5 x) = 5 sin4 x # d
dx

 sin x

 = -
3

s3x - 2d2

 = -1s3x - 2d-2s3d

 = -1s3x - 2d-2 
d
dx

 s3x - 2d

 
d
dx

 a 1
3x - 2

b =
d
dx

s3x - 2d-1

 = 7s5x3
- x4d6s15x2

- 4x3d

 = 7s5x3
- x4d6s5 # 3x2

- 4x3d

 
d
dx

 s5x3
- x4d7

= 7s5x3
- x4d6 

d
dx

 (5x3
- x4)

166 Chapter 3: Differentiation

Derivative of the 
Absolute Value Function

d
dx

 ( ƒ x ƒ ) =

x
ƒ x ƒ

, x Z 0

Power Chain Rule with
u = 5x3

- x4, n = 7

Power Chain Rule with
u = 3x - 2, n = -1

because sinn x means ssin xdn, n Z -1.

Power Chain Rule with

u = x2, n = 1>2, x Z 0

2x2
= ƒ x ƒ
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3.6 The Chain Rule 167

x

y

1

180
y � sin x

y � sin(x°) � sin �x
180

FIGURE 3.27 oscillates only times as often as oscillates. Its
maximum slope is at (Example 9).x = 0p>180

sin xp>180Sin sx°d

Exercises 3.6

Derivative Calculations
In Exercises 1–8, given and find 

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–22, write the function in the form and
Then find as a function of x.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. y = 5 cos-4 xy = sin3 x

y = cot ap -

1
x by = sec stan xd

y = 23x2
- 4x + 6y = ax2

8
+ x -

1
x b

4

y = ax
2

- 1b-10

y = a1 -

x
7
b-7

y = s4 - 3xd9y = s2x + 1d5

dy>dxu = gsxd .
y = ƒsud

y = -sec u, u = x2
+ 7xy = tan u, u = 10x - 5

y = sin u, u = x - cos xy = cos u, u = sin x

y = cos u, u = -x>3y = sin u, u = 3x + 1

y = 2u3, u = 8x - 1y = 6u - 9, u = s1>2dx4

ƒ¿sgsxddg¿sxd .
dy>dx =u = gsxd ,y = ƒsud

19. 20.

21. 22.

Find the derivatives of the functions in Exercises 23–50.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33. 34.

35. 36.

37. 38.

39. 40. k sxd = x2 sec a1x bhsxd = x tan A21x B + 7

y = (9x2
- 6x + 2)e x3

y = (x2
- 2x + 2)e 5x>2

y = (1 + 2x)e-2xy = xe-x
+ e 3x

y = s2x - 5d-1sx2
- 5xd6y = s4x + 3d4sx + 1d-3

y = s5 - 2xd-3
+

1
8

 a2x + 1b4

y =

1
21

 s3x - 2d7
+ a4 -

1
2x2 b

-1

y =

1
x  sin-5 x -

x
3

 cos3 xy = x2 sin4 x + x cos-2 x

r = 6ssec u - tan ud3>2r = scsc u + cot ud-1

s = sin a3pt
2
b + cos a3pt

2
bs =

4
3p

 sin 3t +

4
5p

 cos 5t

q = 23 2r - r2p = 23 - t

y = e A42x + x2By = e 5 - 7x

y = e 2x>3y = e-5x

At any point (x, y) on the curve, and the slope of the tangent line is

the quotient of two positive numbers.

EXAMPLE 9 The formulas for the derivatives of both sin x and cos x were obtained un-
der the assumption that x is measured in radians, not degrees. The Chain Rule gives us new
insight into the difference between the two. Since radians, radi-
ans where x° is the size of the angle measured in degrees.

By the Chain Rule,

See Figure 3.27. Similarly, the derivative of 
The factor would compound with repeated differentiation. We see here the 

advantage for the use of radian measure in computations.
p>180

cos sx°d is - sp>180d sin sx°d .

d
dx

 sin sx°d =
d
dx

 sin a px
180
b =

p
180

 cos a px
180
b =

p
180

 cos sx°d .

x° = px>180180° = p

dy
dx

=
6

s1 - 2xd4 ,

x Z 1>2
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41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51–70, find .

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

Second Derivatives
Find in Exercises 71–78.

71. 72.

73. 74.

75. 76.

77. 78.

Finding Derivative Values
In Exercises 79–84, find the value of at the given value of x.

79.

80.

81.

82.

83.

84.

85. Assume that and 
What is at 

86. If and then what is 
at t = 0?

dr>dtƒ¿s0d = 4,r = sin sƒstdd, ƒs0d = p>3,

x = 2?y¿

y = ƒsgsxdd.ƒ¿s3d = -1, g¿s2d = 5, gs2d = 3,

ƒsud = au - 1
u + 1

b2

, u = g sxd =

1
x2 - 1, x = -1

ƒsud =

2u

u2
+ 1

 , u = g sxd = 10x2
+ x + 1, x = 0

ƒsud = u +

1
cos2 u

 , u = g sxd = px, x = 1>4
ƒsud = cot 

pu
10

 , u = g sxd = 51x, x = 1

ƒsud = 1 -

1
u , u = g sxd =

1
1 - x

 , x = -1

ƒsud = u5
+ 1, u = g sxd = 1x, x = 1

sƒ � gd¿

y = sin (x2ex)y = ex2

+ 5x

y = x2 sx3
- 1d5y = x s2x + 1d4

y = 9 tan ax
3
by =

1
9

 cot s3x - 1d

y = A1 - 1x B-1y = a1 +

1
x b

3

y–

y = 43t + 32 + 21 - ty = 3t s2t2
- 5d4

y = cos4 ssec2 3tdy = tan2 ssin3 td
y = 4 sin A21 + 1t By = 21 + cos st2d

y =

1
6

 A1 + cos2 s7td B3y = a1 + tan4 a t
12
b b3

y = cos a5 sin a t
3
b by = sin scos s2t - 5dd

y = a3t - 4
5t + 2

b-5

y = a t2

t3
- 4t

b3

y = Ae sin (t>2) B3y = ecos2 (pt - 1)

y = st -3>4 sin td4>3y = st tan td10

y = s1 + cot st>2dd-2y = s1 + cos 2td-4

y = sec2 pty = sin2 spt - 2d

dy>dt

y = u3e-2u cos 5uy = cos Ae-u2 B
q = cot asin t

t bq = sin a t

2t + 1
b

r = sec2u tan a1
u
br = sin su2d cos s2ud

g std = a1 + sin 3t
3 - 2t

b-1

ƒsud = a sin u

1 + cos u
b2

g sxd =

tan 3x

sx + 7d4ƒsxd = 27 + x sec x

168 Chapter 3: Differentiation

87. Suppose that functions ƒ and g and their derivatives with respect
to x have the following values at and 

x ƒ(x) g(x) ƒ�(x) g�(x)

2 8 2
3 3 5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. b.

c. d.

e. f.

g. h.

88. Suppose that the functions ƒ and g and their derivatives with re-
spect to x have the following values at and 

x ƒ(x) g(x) ƒ�(x) g�(x)

0 1 1 5
1 3

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. b.

c. d.

e. f.

g.

89. Find when if and 

90. Find when if and 

Theory and Examples
What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule says
you should. Try it with the functions in Exercises 91 and 92.

91. Find if by using the Chain Rule with y as a compos-
ite of

a.

b.

92. Find if by using the Chain Rule with y as a com-
posite of

a.

b.

93. Find the tangent to at 

94. Find the tangent to at 

95. a. Find the tangent to the curve 

b. Slopes on a tangent curve What is the smallest value the
slope of the curve can ever have on the interval 

Give reasons for your answer.

96. Slopes on sine curves

a. Find equations for the tangents to the curves and
at the origin. Is there anything special about

how the tangents are related? Give reasons for your answer.
y = -sin sx>2d

y = sin 2x

-2 6 x 6 2?

y = 2 tan spx>4d at x = 1.

x = 2.y = 2x2
- x + 7

x = 0.y = ssx - 1d>sx + 1dd2

y = 1u and u = x3 .

y = u3 and u = 1x

y = x3>2dy>dx

y = 1 + s1>ud and u = 1>sx - 1d .

y = su>5d + 7 and u = 5x - 35

y = xdy>dx

dx>dt = 1>3.y = x2
+ 7x - 5x = 1dy>dt

du>dt = 5.s = cos uu = 3p>2ds>dt

ƒsx + g sxdd, x = 0

sx11
+ ƒsxdd-2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
 , x = 1

ƒsxdg3sxd, x = 05ƒsxd - g sxd, x = 1

-8>3-1>3-4
1>3

x = 1.x = 0

2ƒ2sxd + g2sxd, x = 21>g2sxd, x = 3

2ƒsxd, x = 2ƒsg sxdd, x = 2

ƒsxd>g sxd, x = 2ƒsxd # g sxd, x = 3

ƒsxd + g sxd, x = 32ƒsxd, x = 2

2p-4
-31>3

x = 3.x = 2
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b. Can anything be said about the tangents to the curves
and at the origin

Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the
curves and can ever have? Give
reasons for your answer.

d. The function completes one period on the interval
the function completes two periods, the

function completes half a period, and so on. Is
there any relation between the number of periods 
completes on and the slope of the curve 
at the origin? Give reasons for your answer.

97. Running machinery too fast Suppose that a piston is moving
straight up and down and that its position at time t sec is

with A and b positive. The value of A is the amplitude of the mo-
tion, and b is the frequency (number of times the piston moves up
and down each second). What effect does doubling the frequency
have on the piston’s velocity, acceleration, and jerk? (Once you
find out, you will know why some machinery breaks when you
run it too fast.)

98. Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in
Fairbanks, Alaska, during a typical 365-day year. The equation
that approximates the temperature on day x is

and is graphed in the accompanying figure.

a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?

99. Particle motion The position of a particle moving along a co-
ordinate line is with s in meters and t in seconds.
Find the particle’s velocity and acceleration at 

100. Constant acceleration Suppose that the velocity of a falling
body is (k a constant) at the instant the body
has fallen s m from its starting point. Show that the body’s accel-
eration is constant.

101. Falling meteorite The velocity of a heavy meteorite entering
Earth’s atmosphere is inversely proportional to when it is 
s km from Earth’s center. Show that the meteorite’s acceleration
is inversely proportional to s2 .

1s

y = k1s m>sec

t = 6 sec.
s = 21 + 4t ,

Ja
n

Feb M
ar

Apr
M

ay Ju
n Ju

l
Aug Sep Oct

Nov Dec Ja
n

Feb M
ar

0

–20

20

40

60

x

y

........ .. ......
... .....

...
.

....

....
....
.......

.......
. ..... ................

..........................
........................ ....

....
.

...
.

T
em

pe
ra

tu
re

 (
˚F

)

y = 37 sin c 2p
365

 sx - 101d d + 25

s = A cos s2pbtd ,

y = sin mx[0, 2p]
y = sin mx

y = sin sx>2d
y = sin 2x[0, 2p] ,

y = sin x

y = -sin sx>mdy = sin mx

sm a constant Z 0d?
y = -sin sx>mdy = sin mx

3.6 The Chain Rule 169

102. Particle acceleration A particle moves along the x-axis with
velocity Show that the particle’s acceleration is

103. Temperature and the period of a pendulum For oscillations
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

where g is the constant acceleration of gravity at the pendulum’s lo-
cation. If we measure g in centimeters per second squared, we
measure L in centimeters and T in seconds. If the pendulum is made
of metal, its length will vary with temperature, either increasing or
decreasing at a rate that is roughly proportional to L. In symbols,
with u being temperature and k the proportionality constant,

Assuming this to be the case, show that the rate at which the pe-
riod changes with respect to temperature is .

104. Chain Rule Suppose that and Then the
composites

are both differentiable at even though g itself is not differ-
entiable at Does this contradict the Chain Rule? Explain.

105. The derivative of sin 2x Graph the function for
Then, on the same screen, graph

for and 0.2. Experiment with other values of h, in-
cluding negative values. What do you see happening as 
Explain this behavior.

106. The derivative of Graph for
Then, on the same screen, graph

for Experiment with other values of h.
What do you see happening as Explain this behavior.

Using the Chain Rule, show that the Power Rule 
holds for the functions in Exercises 107 and 108.

107. 108.

COMPUTER EXPLORATIONS
Trigonometric Polynomials
109. As the accompanying figure shows, the trigonometric “polynomial”

gives a good approximation of the sawtooth function 
on the interval How well does the derivative of ƒ ap-
proximate the derivative of g at the points where is de-
fined? To find out, carry out the following steps.

dg>dt
[-p, p] .

s = g std

- 0.02546 cos 10t - 0.01299 cos 14t

 s = ƒstd = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

x3>4
= 2x1xx1>4

= 21x

xn
sd>dxdxn

= nxn - 1

h : 0?
h = 1.0, 0.7, and 0.3 .

y =

cos ssx + hd2d - cos sx2d
h

-2 … x … 3.
y = -2x sin sx2dcos sx2d

h : 0?
h = 1.0, 0.5 ,

y =

sin 2sx + hd - sin 2x

h

-2 … x … 3.5 .
y = 2 cos 2x

x = 0.
x = 0

sƒ � gdsxd = ƒ x ƒ
2

= x2 and sg � ƒdsxd = ƒ x2
ƒ = x2

g sxd = ƒ x ƒ .ƒsxd = x2

kT>2

dL
du

= kL .

T = 2pA
L
g  ,

ƒsxdƒ¿sxd .
dx>dt = ƒsxd .

T
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a. Graph (where defined) over 

b. Find .

c. Graph . Where does the approximation of by
seem to be best? Least good? Approximations by

trigonometric polynomials are important in the theories of
heat and oscillation, but we must not expect too much of
them, as we see in the next exercise.

110. (Continuation of Exercise 109.) In Exercise 109, the trigonometric
polynomial that approximated the sawtooth function g(t) on

had a derivative that approximated the derivative of the
sawtooth function. It is possible, however, for a trigonometric
polynomial to approximate a function in a reasonable way with-
out its derivative approximating the function’s derivative at all
well. As a case in point, the “polynomial”

[-p, p]
ƒ(t)

t

s

0–� �

2
�

s � g(t)

s � f (t)

dƒ>dt
dg>dtdƒ>dt

dƒ>dt

[-p, p] .dg>dt
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x

y

0 5

5

A

x3 � y3 � 9xy � 0

y � f1(x)
(x0, y1)

y � f2(x)

y � f3(x)

(x0, y2)

(x0, y3)

x0

FIGURE 3.28 The curve
is not the graph of

any one function of x. The curve can,
however, be divided into separate arcs that
are the graphs of functions of x. This
particular curve, called a folium, dates to
Descartes in 1638.

x3
+ y3

- 9xy = 0

graphed in the accompanying figure approximates the step func-
tion shown there. Yet the derivative of h is nothing like
the derivative of k.

a. Graph (where defined) over 

b. Find 

c. Graph to see how badly the graph fits the graph of
. Comment on what you see.dk>dt

dh>dt

dh>dt.

[-p, p] .dk>dt

1

t

s

0 �
2

�–� �
2

–

–1

s � k(t)

s � h(t)

s = kstd

 + 0.18189 sin 14t + 0.14147 sin 18t

 s = hstd = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

3.7 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the
form that expresses y explicitly in terms of the variable x. We have learned rules
for differentiating functions defined in this way. Another situation occurs when we en-
counter equations like

(See Figures 3.28, 3.29, and 3.30.) These equations define an implicit relation between the
variables x and y. In some cases we may be able to solve such an equation for y as an ex-
plicit function (or even several functions) of x. When we cannot put an equation

in the form to differentiate it in the usual way, we may still be able
to find by implicit differentiation. This section describes the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function
of x to calculate in the usual way. Then we differentiate the equations implicitly, and
find the derivative to compare the two methods. Following the examples, we summarize
the steps involved in the new method. In the examples and exercises, it is always assumed
that the given equation determines y implicitly as a differentiable function of x so that

exists.

EXAMPLE 1 Find if 

Solution The equation defines two differentiable functions of x that we can actu-
ally find, namely and (Figure 3.29). We know how to calculate the
derivative of each of these for 

dy1

dx
=

1
21x
 and dy2

dx
= -

1
21x

 .

x 7 0:
y2 = -1xy1 = 1x

y2
= x

y2
= x .dy>dx

dy>dx

dy>dx

dy>dx
y = ƒsxdFsx, yd = 0

x3
+ y3

- 9xy = 0, y2
- x = 0, or   x2

+ y2
- 25 = 0.

y = ƒsxd
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But suppose that we knew only that the equation defined y as one or more differ-
entiable functions of x for without knowing exactly what these functions were.
Could we still find ?

The answer is yes. To find , we simply differentiate both sides of the equation
with respect to x, treating as a differentiable function of x:

This one formula gives the derivatives we calculated for both explicit solutions 
and 

EXAMPLE 2 Find the slope of the circle at the point 

Solution The circle is not the graph of a single function of x. Rather it is the combined
graphs of two differentiable functions, and (Figure
3.30). The point lies on the graph of so we can find the slope by calculating the
derivative directly, using the Power Chain Rule:

We can solve this problem more easily by differentiating the given equation of the
circle implicitly with respect to x:

The slope at is 

Notice that unlike the slope formula for which applies only to points 
below the x-axis, the formula applies everywhere the circle has a slope.
Notice also that the derivative involves both variables x and y, not just the independent
variable x.

To calculate the derivatives of other implicitly defined functions, we proceed as in 
Examples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual
rules to differentiate both sides of the defining equation.

dy>dx = -x>y dy2>dx ,

-
x
y `

s3, -4d
= -

3
-4

=
3
4

 .s3, -4d

 
dy
dx

= -
x
y .

 2x + 2y 
dy
dx

= 0

 
d
dx

 (x2) +
d
dx

 (y2) =
d
dx

 (25)

dy2

dx
`
x = 3

= -
-2x

2225 - x2
`
x = 3

= -
-6

2225 - 9
=

3
4

 .

y2 ,s3, -4d
y2 = -225 - x2y1 = 225 - x2

s3, -4d .x2
+ y2

= 25

dy1

dx
=

1
2y1

=
1

21x
 and dy2

dx
=

1
2y2

=
1

2 A -1x B = -
1

21x
 .

y2 = -1x :
y1 = 1x

 
dy
dx

=
1
2y

 .

 2y 
dy
dx

= 1

 y2
= x

y = ƒsxdy2
= x

dy>dx
dy>dx

x 7 0
y2

= x
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x

y

0

y2 � x

Slope � �
2y1

1
2�x

1

Slope � � �
2y2

1
2�x

1

y1 � �x

y2 � ��x

P(x, �x )

Q(x, ��x )

FIGURE 3.29 The equation 
or as it is usually written, defines
two differentiable functions of x on the
interval Example 1 shows how to
find the derivatives of these functions
without solving the equation for y.y2

= x

x 7 0.

y2
= x

y2
- x = 0,

-

1
2

 (25 - x2)-1>2(-2x)

d
dx

- (25 - x2)1>2
=

The Chain Rule gives 

d
dx

 [ƒsxd]2
= 2ƒsxdƒ¿sxd = 2y 

dy

dx
.

d
dx

 Ay2 B =

0 5–5
x

y

Slope � – �y
x

4
3

(3, –4)

y1 � �25 � x2

y2 � –�25 � x2

FIGURE 3.30 The circle combines the
graphs of two functions. The graph of is
the lower semicircle and passes through
s3, -4d .

y2
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EXAMPLE 3 Find if (Figure 3.31).

Solution We differentiate the equation implicitly.

Treat xy as a product.

Collect terms with .

Solve for 

Notice that the formula for applies everywhere that the implicitly defined curve has
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives.

EXAMPLE 4 Find if

Solution To start, we differentiate both sides of the equation with respect to x in order to
find 

Treat y as a function of x.

Solve for 

We now apply the Quotient Rule to find 

Finally, we substitute to express in terms of x and y.

y– =
2x
y -

x2

y2 ax2

y b =
2x
y -

x4

y3 , when y Z 0

y–y¿ = x2>y
y– =

d
dx

 ax2

y b =

2xy - x2y¿

y2 =
2x
y -

x2

y2
# y¿

y– .

y¿. y¿ =
x2

y , when y Z 0

 6x2
- 6yy¿ = 0

 
d
dx

 (2x3
- 3y2) =

d
dx

 s8d

y¿ = dy>dx .

2x3
- 3y2

= 8.d2y>dx2

dy>dx

dy>dx. 
dy
dx

=

2x + y cos xy
2y - x cos xy

 s2y - x cos xyd 
dy
dx

= 2x + y cos xy

dy>dx 2y 
dy
dx

- scos xyd ax 
dy
dx
b = 2x + scos xydy

 2y 
dy
dx

= 2x + scos xyd ay + x 
dy
dx
b

 2y 
dy
dx

= 2x + scos xyd 
d
dx

 Axy B
 
d
dx

 Ay2 B =
d
dx

 Ax2 B +
d
dx

 Asin xy B
 y2

= x2
+ sin xy

y2
= x2

+ sin xydy>dx
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y2 � x2 � sin xy

y

x

4

2

0 2 4–2–4

–2

–4

FIGURE 3.31 The graph of
in Example 3.y2

= x2
+ sin xy

Implicit Differentiation
1. Differentiate both sides of the equation with respect to x, treating y as a differ-

entiable function of x.

2. Collect the terms with on one side of the equation and solve for .dy>dxdy>dx

Differentiate both sides with
respect to x Á

treating y as a function of
x and using the Chain Rule.
Á
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Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important an-
gles are the angles the light makes with the line perpendicular to the surface of the lens at
the point of entry (angles A and B in Figure 3.32). This line is called the normal to the sur-
face at the point of entry. In a profile view of a lens like the one in Figure 3.32, the normal
is the line perpendicular to the tangent of the profile curve at the point of entry.

EXAMPLE 5 Show that the point (2, 4) lies on the curve Then
find the tangent and normal to the curve there (Figure 3.33).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation
given for the curve: 

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a
formula for :

Solve for .

We then evaluate the derivative at 

The tangent at (2, 4) is the line through (2, 4) with slope :

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line
through (2, 4) with slope 

The quadratic formula enables us to solve a second-degree equation like
for y in terms of x. There is a formula for the three roots of a cubic

equation that is like the quadratic formula but much more complicated. If this formula is
used to solve the equation in Example 5 for y in terms of x, then three
functions determined by the equation are

y = ƒsxd =
3C-

x3

2
+ B

x6

4
- 27x3

+
3C-

x3

2
- B

x6

4
- 27x3

x3
+ y3

= 9xy

y2
- 2xy + 3x2

= 0

 y = -
5
4

 x +
13
2

.

 y = 4 -
5
4

 sx - 2d

-5>4:

 y =
4
5 x +

12
5 .

 y = 4 +
4
5 sx - 2d

4>5

dy
dx
`
s2, 4d

=

3y - x2

y2
- 3x

`
s2, 4d

=

3s4d - 22

42
- 3s2d

=
8

10
=

4
5 .

sx, yd = s2, 4d :

dy>dx 
dy
dx

=

3y - x2

y2
- 3x

 .

 3sy2
- 3xd 

dy
dx

= 9y - 3x2

 s3y2
- 9xd 

dy
dx

+ 3x2
- 9y = 0

 3x2
+ 3y2 

dy
dx

- 9 ax 
dy
dx

+ y 
dx
dx
b = 0

 
d
dx

 (x3) +
d
dx

 (y3) -
d
dx

 (9xy) =
d
dx

 (0)

 x3
+ y3

- 9xy = 0

dy>dx

23
+ 43

- 9s2ds4d = 8 + 64 - 72 = 0.

x3
+ y3

- 9xy = 0.

3.7 Implicit Differentiation 173

A

Normal line

Light ray
Tangent

Point of entry
P

B

Curve of lens
surface

FIGURE 3.32 The profile of a lens,
showing the bending (refraction) of a ray
of light as it passes through the lens
surface.

x

y

0 2

4

 Tan
gen

t

N
orm

alx3 � y3 � 9xy � 0

FIGURE 3.33 Example 5 shows how to
find equations for the tangent and normal
to the folium of Descartes at (2, 4).

Differentiate both sides
with respect to x.

Treat xy as a product and y
as a function of x.
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174 Chapter 3: Differentiation

and

Using implicit differentiation in Example 5 was much simpler than calculating di-
rectly from any of the above formulas. Finding slopes on curves defined by higher-degree
equations usually requires implicit differentiation.

dy>dx

y =
1
2

 c-ƒsxd ; 2-3 aC3 -
x3

2
+ B

x6

4
- 27x3

- C3 -
x3

2
- B

x6

4
- 27x3b d .

Exercise 3.7

Differentiating Implicitly
Use implicit differentiation to find in Exercises 1–16.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

Find in Exercises 17–20.

17. 18.

19. 20.

Second Derivatives
In Exercises 21–26, use implicit differentiation to find and then

21. 22.

23. 24.

25. 26.

27. If find the value of at the point (2, 2).

28. If find the value of at the point 

In Exercises 29 and 30, find the slope of the curve at the given points.

29. and 

30. and 

Slopes, Tangents, and Normals
In Exercises 31–40, verify that the given point is on the curve and find
the lines that are (a) tangent and (b) normal to the curve at the given
point.

31.

32.

33.

34.

35. 6x2
+ 3xy + 2y2

+ 17y - 6 = 0, s -1, 0d
y2

- 2x - 4y - 1 = 0, s -2, 1d
x2y2

= 9, s -1, 3d
x2

+ y2
= 25, s3, -4d

x2
+ xy - y2

= 1, s2, 3d

s1, -1dsx2
+ y2d2

= sx - yd2 at s1, 0d
s -2, -1dy2

+ x2
= y4

- 2x at s -2, 1d

s0, -1d .d 2y>dx2xy + y2
= 1,

d 2y>dx2x3
+ y3

= 16,

xy + y2
= 121y = x - y

y2
- 2x = 1 - 2yy2

= ex2

+ 2x

x2>3
+ y2>3

= 1x2
+ y2

= 1

d 2y>dx 2 .
dy>dx

cos r + cot u = erusin srud =

1
2

r - 22u =

3
2

 u2>3
+

4
3

 u3>4u1>2
+ r1>2

= 1

dr>du
ex2y

= 2x + 2ye2x
= sin (x + 3y)

x cos s2x + 3yd = y sin xy sin a1y b = 1 - xy

x4
+ sin y = x3y2x + tan (xy) = 0

xy = cot sxydx = tan y

x3
=

2x - y

x + 3y
y2

=

x - 1
x + 1

s3xy + 7d2
= 6yx2sx - yd2

= x2
- y2

x3
- xy + y3

= 12xy + y2
= x + y

x3
+ y3

= 18xyx2y + xy2
= 6

dy>dx
36.

37.

38.

39.

40.

41. Parallel tangents Find the two points where the curve
crosses the x-axis, and show that the tangents

to the curve at these points are parallel. What is the common
slope of these tangents?

42. Normals parallel to a line Find the normals to the curve
that are parallel to the line 

43. The eight curve Find the slopes of the curve at
the two points shown here.

44. The cissoid of Diocles (from about 200 B.C.) Find equations for
the tangent and normal to the cissoid of Diocles 
at (1, 1).

45. The devil’s curve (Gabriel Cramer, 1750) Find the slopes of
the devil’s curve at the four indicated points.y4

- 4y2
= x4

- 9x2

x

y

1

1

(1, 1)

0

y2(2 2 x) 5 x3

y2s2 - xd = x3

x

y

0

1

–1

y4 5 y2 2 x2

⎛
⎝

⎛
⎝

�3
4

�3
2

,

⎛
⎝

⎛
⎝

�3
4

1
2

,

y4
= y2

- x2

2x + y = 0.xy + 2x - y = 0

x2
+ xy + y2

= 7

x2 cos2 y - sin y = 0, s0, pd
y = 2 sin spx - yd, s1, 0d
x sin 2y = y cos 2x, sp>4, p>2d
2xy + p sin y = 2p, s1, p>2d
x2

- 23xy + 2y2
= 5, A23, 2 B
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46. The folium of Descartes (See Figure 3.28.)

a. Find the slope of the folium of Descartes 
at the points (4, 2) and (2, 4).

b. At what point other than the origin does the folium have a
horizontal tangent?

c. Find the coordinates of the point A in Figure 3.28, where the
folium has a vertical tangent.

Theory and Examples
47. Intersecting normal The line that is normal to the curve 

at (1, 1) intersects the curve at what other
point?

48. Power rule for rational exponents Let p and q be integers with
If differentiate the equivalent equation 

implicitly and show that, for 

49. Normals to a parabola Show that if it is possible to draw three
normals from the point (a, 0) to the parabola shown in the
accompanying diagram, then a must be greater than . One of
the normals is the x-axis. For what value of a are the other two
normals perpendicular?

50. Is there anything special about the tangents to the curves 
and at the points Give reasons for your
answer.

x

y

0

(1, 1)

y2 � x3

2x2 � 3y2 � 5

(1, –1)

s1, ;1d?2x2
+ 3y2

= 5
y2

= x3

x

y

0 (a, 0)

x � y2

1>2x = y2

d
dx

xp>q
=

p
q x(p>q)-1.

y Z 0,
yq

= xpy = xp>q,q 7 0.

2xy - 3y 2
= 0x2 +

x3
+ y3

- 9xy = 0

x

y

3–3

2

–2

(3, 2)

(3, –2)

(–3, 2)

(–3, –2)

y4 2 4y2 5 x4 2 9x2
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51. Verify that the following pairs of curves meet orthogonally.

a.

b.

52. The graph of is called a semicubical parabola and is
shown in the accompanying figure. Determine the constant b so
that the line meets this graph orthogonally.

In Exercises 53 and 54, find both (treating y as a differentiable
function of x) and (treating x as a differentiable function of y).
How do and seem to be related? Explain the relationship
geometrically in terms of the graphs.

53.

54.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 55–62.

a. Plot the equation with the implicit plotter of a CAS. Check to
see that the given point P satisfies the equation.

b. Using implicit differentiation, find a formula for the deriva-
tive and evaluate it at the given point P.

c. Use the slope found in part (b) to find an equation for the tan-
gent line to the curve at P. Then plot the implicit curve and
tangent line together on a single graph.

55.

56.

57.

58.

59.

60.

61.

62. x21 + 2y + y = x2, P s1, 0d

2y2
+ sxyd1>3

= x2
+ 2, Ps1, 1d

xy3
+ tan (x + yd = 1, P ap

4
, 0b

x + tan ayx b = 2, P a1, 
p

4
b

y3
+ cos xy = x2, Ps1, 0d

y2
+ y =

2 + x
1 - x

 , Ps0, 1d

x5
+ y3x + yx2

+ y4
= 4, Ps1, 1d

x3
- xy + y3

= 7, Ps2, 1d

dy>dx

x3
+ y2

= sin2 y

xy3
+ x2y = 6

dx>dydy>dx
dx>dy

dy>dx

x

y

0

y2 5 x3

y 5 2   x 1 b1
3

y = -
1
3 x + b

y2
= x3

x = 1 - y2, x =

1
3

 y2

x2
+ y2

= 4, x2
= 3y2

T
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3.8 Derivatives of Inverse Functions and Logarithms

In Section 1.6 we saw how the inverse of a function undoes, or inverts, the effect of that
function. We defined there the natural logarithm function as the inverse of
the natural exponential function This is one of the most important function-
inverse pairs in mathematics and science. We learned how to differentiate the exponential
function in Section 3.3. Here we learn a rule for differentiating the inverse of a differen-
tiable function and we apply the rule to find the derivative of the natural logarithm function.

Derivatives of Inverses of Differentiable Functions

We calculated the inverse of the function as in
Example 3 of Section 1.6. Figure 3.34 shows again the graphs of both functions. If we cal-
culate their derivatives, we see that

The derivatives are reciprocals of one another, so the slope of one line is the reciprocal of
the slope of its inverse line. (See Figure 3.34.)

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the
line always inverts the line’s slope. If the original line has slope , the reflected
line has slope 1 m.> m Z 0y = x

 
d
dx

 ƒ -1sxd =
d
dx

 s2x - 2d = 2.

 
d
dx

 ƒsxd =
d
dx

 a1
2

 x + 1b =
1
2

ƒ -1sxd = 2x - 2ƒsxd = s1>2dx + 1

ƒ(x) = ex.
ƒ -1(x) = ln x
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x

y

–2

1

–2

1

y � 2x � 2
y � x

y � x � 11
2

FIGURE 3.34 Graphing a line and its
inverse together shows the graphs’
symmetry with respect to the line 
The slopes are reciprocals of each other.

y = x .

x

y

0 a
x

y

0

b = f (a) (a,  b)

y = f (x)

(b, a)

y = f –1(x)

b

a = f –1(b)

The slopes are reciprocal: ( f –1)'(b) =          or ( f –1)'(b) =1
f'(a)

1
f '( f –1(b))

FIGURE 3.35 The graphs of inverse functions have reciprocal
slopes at corresponding points.

The reciprocal relationship between the slopes of ƒ and holds for other functions
as well, but we must be careful to compare slopes at corresponding points. If the slope of

at the point (a, ƒ(a)) is and then the slope of at the
point (ƒ(a), a) is the reciprocal (Figure 3.35). If we set then

If has a horizontal tangent line at (a, ƒ(a)) then the inverse function has a
vertical tangent line at (ƒ(a), a), and this infinite slope implies that is not differentiable
at ƒ(a). Theorem 3 gives the conditions under which is differentiable in its domain
(which is the same as the range of ƒ).

ƒ -1
ƒ -1

ƒ -1y = ƒsxd

sƒ -1d¿sbd =
1

ƒ¿sad
=

1
ƒ¿sƒ -1sbdd

.

b = ƒsad ,1>ƒ¿sad
y = ƒ -1sxdƒ¿sad Z 0,ƒ¿sady = ƒsxd

ƒ -1
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Theorem 3 makes two assertions. The first of these has to do with the conditions
under which is differentiable; the second assertion is a formula for the derivative of

when it exists. While we omit the proof of the first assertion, the second one is proved
in the following way:

Inverse function relationship

Differentiating both sides

Chain Rule

Solving for the derivative

EXAMPLE 1 The function and its inverse have deriva-

tives and 
Let’s verify that Theorem 3 gives the same formula for the derivative of :

Theorem 3 gives a derivative that agrees with the known derivative of the square root
function.

Let’s examine Theorem 3 at a specific point. We pick (the number a) and
(the value b). Theorem 3 says that the derivative of ƒ at 2, and the 

derivative of at ƒ(2), are reciprocals. It states that

See Figure 3.36.

We will use the procedure illustrated in Example 1 to calculate formulas for the derivatives
of many inverse functions throughout this chapter. Equation (1) sometimes enables us to
find specific values of without knowing a formula for ƒ -1 .dƒ -1>dx

sƒ -1d¿s4d =
1

ƒ¿sƒ -1s4dd
=

1
ƒ¿s2d

=
1
2x
`
x = 2

=
1
4

 .

sƒ -1d¿s4d ,ƒ -1
ƒ¿s2d = 4,ƒs2d = 4

x = 2

 =
1

2s1xd
.

 =
1

2sƒ -1sxdd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

ƒ -1sxd
sƒ -1d¿sxd = 1> A21x B .ƒ¿sxd = 2x

ƒ-1sxd = 1xƒsxd = x2, x Ú 0

 
d
dx

 ƒ -1sxd =
1

ƒ¿sƒ -1sxdd
.

 ƒ¿sƒ -1sxdd # d
dx

 ƒ -1sxd = 1

 
d
dx

 ƒsƒ -1sxdd = 1

 ƒsƒ -1sxdd = x

ƒ -1
ƒ -1
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THEOREM 3—The Derivative Rule for Inverses If ƒ has an interval I as domain
and exists and is never zero on I, then is differentiable at every point in
its domain (the range of ƒ). The value of at a point b in the domain of 
is the reciprocal of the value of at the point 

(1)

or

dƒ -1

dx
 `

x = b
=

1
dƒ
dx
`

 
 

x = ƒ -1sbd

sƒ -1d¿sbd =
1

ƒ¿sƒ -1sbdd

a = ƒ -1sbd :ƒ¿

ƒ -1sƒ -1d¿

ƒ -1ƒ¿sxd

x

y

Slope

1

10

1–
4

Slope 4

2 3 4

2

3

4 (2, 4)

(4, 2)

y � x2, x � 0

y � �x

FIGURE 3.36 The derivative of
at the point (4, 2) is the

reciprocal of the derivative of 
at (2, 4) (Example 1).

ƒsxd = x2
ƒ -1sxd = 1x

with x replaced

by ƒ-1sxd
ƒ¿sxd = 2x
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EXAMPLE 2 Let Find the value of at without
finding a formula for 

Solution We apply Theorem 3 to obtain the value of the derivative of at 

. Eq. (1)

See Figure 3.37.

Derivative of the Natural Logarithm Function

Since we know the exponential function is differentiable everywhere, we can
apply Theorem 3 to find the derivative of its inverse 

Theorem 3

Inverse function relationship

Alternate Derivation Instead of applying Theorem 3 directly, we can find the derivative
of using implicit differentiation, as follows:

Inverse function relationship

Differentiate implicitly

Chain Rule

No matter which derivation we use, the derivative of with respect to x is

The Chain Rule extends this formula for positive functions 

d
dx

 ln u =
d

du
 ln u # du

dx

usxd:

d
dx

 (ln x) =
1
x , x 7 0.

y = ln x

ey
= x 

dy
dx

=
1
ey =

1
x .

 ey 
dy
dx

= 1

d
dx

 (ey) =
d
dx

 (x)

 ey
= x

 y = ln x

y = ln x

 =
1
x .

 =
1

e ln x

ƒ¿(u) = eu =
1

eƒ -1(x)

(ƒ -1)¿(x) =
1

ƒ¿(ƒ -1(x))

ƒ -1(x) = ln x:
ƒ(x) = ex

 
dƒ -1

dx
 `

x = ƒs2d
=

1
dƒ
dx

 `
x = 2

=
1

12

 
dƒ
dx

 `
x = 2

= 3x2 `
x = 2

= 12

x = 6:ƒ -1

ƒ -1sxd .
x = 6 = ƒs2ddƒ -1>dxƒsxd = x3

- 2.
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x

y

0

–2

–2 6

6 (2, 6)

Reciprocal slope:

(6, 2)

y � x3 � 2
Slope 3x2 � 3(2)2 � 12

1
12

FIGURE 3.37 The derivative of
at tells us the

derivative of at (Example 2).x = 6ƒ -1
x = 2ƒsxd = x3

- 2

(2)
d
dx

 ln u =
1
u

 
du
dx

 , u 7 0.
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EXAMPLE 3 We use Equation (2) to find derivatives.

(a)

(b) Equation (2) with gives

Notice the remarkable occurrence in Example 3a. The function has the
same derivative as the function This is true of for any constant b, pro-
vided that :

(3)

If and then and Equation (3) still applies. In particular, if and
we get

for 

Since when and when , we have the following important
result.

x 6 0ƒ x ƒ = -xx 7 0ƒ x ƒ = x

x 6 0.
d
dx

 ln (-x) =
1
x

b = -1
x 6 0bx 7 0b 6 0,x 6 0

d
dx

 ln bx =
1
bx

# d
dx

 sbxd =
1
bx

 sbd =
1
x  .

bx 7 0
y = ln bxy = ln x .

y = ln 2x

d
dx

 ln sx2
+ 3d =

1
x2

+ 3
# d
dx

 sx2
+ 3d =

1
x2

+ 3
# 2x =

2x
x2

+ 3
.

u = x2
+ 3

d
dx

 ln 2x =
1
2x

 
d
dx

 s2xd =
1
2x

 s2d =
1
x , x 7 0

3.8 Derivatives of Inverse Functions and Logarithms 179

, (4)x Z 0
d
dx

 ln ƒ x ƒ =
1
x

EXAMPLE 4 A line with slope m passes through the origin and is tangent to the graph of
What is the value of m?

Solution Suppose the point of tangency occurs at the unknown point Then we
know that the point (a, ln a) lies on the graph and that the tangent line at that point has slope

(Figure 3.38). Since the tangent line passes through the origin, its slope is

Setting these two formulas for m equal to each other, we have

The Derivatives of and logau

We start with the equation which was established in Section 1.6:

 = ax ln a .

d
dx

 eu
= eu 

du
dx

 
d
dx

 ax
=

d
dx

 ex ln a
= ex ln a # d

dx
 sx ln ad

ax
= e ln (a x )

= ex ln a ,

au

 m =
1
e .

 a = e
e ln a

= e1

ln a = 1

ln a
a =

1
a

m =
ln a - 0

a - 0
=

ln a
a .

m = 1>a
x = a 7 0.

y = ln x.

1 2 3 4 5

1

0

2

x

y

(a, ln a)

y � ln x

Slope � a
1

FIGURE 3.38 The tangent line intersects
the curve at some point (a, ln a), where the
slope of the curve is (Example 4).1>a
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If then

This equation shows why is the exponential function preferred in calculus. If 
then and the derivative of simplifies to

With the Chain Rule, we get a more general form for the derivative of a general expo-
nential function.

d
dx

 ex
= ex ln e = ex .

axln a = 1
a = e ,ex

d
dx

 ax
= ax ln a .

a 7 0,

180 Chapter 3: Differentiation

EXAMPLE 5 We illustrate using Equation (5). 

(a) Eq. (5) with

(b) Eq. (5) with 

(c)

In Section 3.3 we looked at the derivative for the exponential functions 
at various values of the base a. The number is the limit, , and

gives the slope of the graph of when it crosses the y-axis at the point (0, 1). We now see
that the value of this slope is

(6)

In particular, when we obtain

However, we have not fully justified that these limits actually exist. While all of the argu-
ments given in deriving the derivatives of the exponential and logarithmic functions are
correct, they do assume the existence of these limits. In Chapter 7 we will give another de-
velopment of the theory of logarithmic and exponential functions which fully justifies
that both limits do in fact exist and have the values derived above.

To find the derivative of for an arbitrary base we start with the
change-of-base formula for logarithms (reviewed in Section 1.6) and express in
terms of natural logarithms,

loga x =
ln x
ln a

.

loga u
(a 7 0, a Z 1),loga u

lim
h:0

 
eh

- 1
h

= ln e = 1.

a = e

lim
h:0

 
ah

- 1
h

= ln a.

ax
limh:0 (a

h
- 1)>hƒ¿(0)ax

f (x) =ƒ¿(0)

Á , u = sin x
d
dx

 3sin x
= 3sin xsln 3d 

d
dx

 ssin xd = 3sin x sln 3d cos x

a = 3, u = -x
d
dx

 3-x
= 3-x sln 3d 

d
dx

 s -xd = -3-x ln 3

 a = 3, u = x
d
dx

 3x
= 3x ln 3

If and u is a differentiable function of x, then is a differentiable function
of x and

(5)
d
dx

 au
= au ln a  

du
dx

.

aua 7 0
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Taking derivatives, we have

ln a is a constant.

If u is a differentiable function of x and the Chain Rule gives the following formula.u 7 0,

 =
1

x ln a
.

 =
1

ln a
# 1
x

 =
1

ln a
# d
dx

 ln x

d
dx

 loga x =
d
dx

 aln x
ln a
b

3.8 Derivatives of Inverse Functions and Logarithms 181

For and 

(7)
d
dx

 loga u =
1

u ln a
 
du
dx

.

a Z 1,a 7 0

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients,
and powers can often be found more quickly if we take the natural logarithm of both sides
before differentiating. This enables us to use the laws of logarithms to simplify the formu-
las before differentiating. The process, called logarithmic differentiation, is illustrated in
the next example.

EXAMPLE 6 Find dy dx if

Solution We take the natural logarithm of both sides and simplify the result with the al-
gebraic properties of logarithms from Theorem 1 in Section 1.6:

Rule 2

Rule 1

Rule 4

We then take derivatives of both sides with respect to x, using Equation (2) on the left:

Next we solve for dy dx:

dy
dx

= y a 2x
x2

+ 1
+

1
2x + 6

-
1

x - 1
b .

>
1
y  

dy
dx

=
1

x2
+ 1

 # 2x +
1
2

 #  
1

x + 3
-

1
x - 1

.

 = ln sx2
+ 1d +

1
2

 ln sx + 3d - ln sx - 1d .

 = ln sx2
+ 1d + ln sx + 3d1>2

- ln sx - 1d

 = ln ssx2
+ 1dsx + 3d1>2d - ln sx - 1d

 ln y = ln 
sx2

+ 1dsx + 3d1>2
x - 1

y =

sx2
+ 1dsx + 3d1>2

x - 1
 ,    x 7 1.

>
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Finally, we substitute for y:

Proof of the Power Rule (General Version)

The definition of the general exponential function enables us to make sense of raising any
positive number to a real power n, rational or irrational. That is, we can define the power
function for any exponent n.y = xn

dy
dx

=

sx2
+ 1dsx + 3d1>2

x - 1
 a 2x

x2
+ 1

+
1

2x + 6
-

1
x - 1

b .

182 Chapter 3: Differentiation

DEFINITION For any and for any real number n,

xn
= en ln x.

x 7 0

General Power Rule for Derivatives
For and any real number n,

If then the formula holds whenever the derivative, and all exist.xn - 1xn,x … 0,

d
dx

 xn
= nxn - 1.

x 7 0

Because the logarithm and exponential functions are inverses of each other, the defi-
nition gives

That is, the Power Rule for the natural logarithm holds for all real exponents n, not just for
rational exponents.

The definition of the power function also enables us to establish the derivative Power
Rule for any real power n, as stated in Section 3.3.

ln xn
= n ln x, for all real numbers n.

Proof Differentiating with respect to x gives

Definition of 

Chain Rule for 

Definition and derivative of ln x

In short, whenever 

For , if , and all exist, then

ln ƒ y ƒ = ln ƒ x ƒ
n

= n ln ƒ x ƒ.

xn - 1y = xn, y¿x 6 0

d
dx

 xn
= nxn - 1 .

x 7 0,

xn # x-1
= xn - 1 = nxn - 1 .

 = xn # n
x

eu = en ln x # d
dx

 sn ln xd

 xn,  x 7 0 
d
dx

 xn
=

d
dx

 en ln x

xn
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Using implicit differentiation (which assumes the existence of the derivative ) and Equa-
tion (4), we have

.

Solving for the derivative,

.

It can be shown directly from the definition of the derivative that the derivative equals 0
when and . This completes the proof of the general version of the Power Rule
for all values of x.

EXAMPLE 7 Differentiate 

Solution We note that so differentiation gives

The Number e Expressed as a Limit

In Section 1.5 we defined the number e as the base value for which the exponential func-
tion has slope 1 when it crosses the y-axis at (0, 1). Thus e is the constant that sat-
isfies the equation

Slope equals ln e from Eq. (6)

We also stated that e could be calculated as or by substituting
as We now prove this result.limx:0 (1 + x)1>x.y = 1>x,

limy: q  (1 + 1>y)y,

lim
h:0

 
eh

- 1
h

= ln e = 1.

y = ax

x 7 0 = xx (ln x + 1).

 = ex ln x aln x + x # 1
x b

d
dx eu, u = x ln x = ex ln x 

d
dx

 (x ln x)

ƒ¿(x) =
d
dx

 (ex ln x)

ƒ(x) = xx
= ex ln x,

x 7 0.ƒ(x) = xx,

n Ú 1x = 0

y¿ = n 
y
x = n 

xn

x = nxn - 1

y¿

y =
n
x

y¿
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Proof If then so But, by the definition of derivative,

 = lim
x:0

 ln s1 + xd1>x
= ln c lim

x:0
s1 + xd1>x d .

ln 1 = 0 = lim
x:0

 
ln s1 + xd - ln 1

x = lim
x:0

  
1
x   ln s1 + xd

ƒ¿s1d = lim
h:0

 
ƒs1 + hd - ƒs1d

h
= lim

x:0
 
ƒs1 + xd - ƒs1d

x

ƒ¿s1d = 1.ƒ¿sxd = 1>x ,ƒsxd = ln x ,

THEOREM 4—The Number e as a Limit The number e can be calculated as the
limit

e = lim
x:0

 s1 + xd1>x .

ln is continuous,
Theorem 10 in
Chapter 2
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Because we have

.

Therefore, exponentiating both sides we get

.

Approximating the limit in Theorem 4 by taking x very small gives approximations to e.
Its value is to 15 decimal places.e L 2.718281828459045

lim
x:0

 s1 + xd1>x
= e

ln c lim
x:0

s1 + xd1>x d = 1

ƒ¿s1d = 1,

184 Chapter 3: Differentiation

Exercises 3.8

Derivatives of Inverse Functions
In Exercises 1–4:

a. Find 

b. Graph ƒ and together.

c. Evaluate dƒ dx at and at to show that at
these points 

1. 2.

3. 4.

5. a. Show that and are inverses of one an-
other.

b. Graph ƒ and g over an x-interval large enough to show the
graphs intersecting at (1, 1) and Be sure the pic-
ture shows the required symmetry about the line 

c. Find the slopes of the tangents to the graphs of ƒ and g at
(1, 1) and (four tangents in all).

d. What lines are tangent to the curves at the origin?

6. a. Show that and are inverses of one
another.

b. Graph h and k over an x-interval large enough to show the
graphs intersecting at (2, 2) and Be sure the pic-
ture shows the required symmetry about the line 

c. Find the slopes of the tangents to the graphs at h and k at
(2, 2) and 

d. What lines are tangent to the curves at the origin?

7. Let Find the value of at
the point 

8. Let Find the value of at the
point 

9. Suppose that the differentiable function has an inverse
and that the graph of ƒ passes through the point (2, 4) and has a
slope of 1 3 there. Find the value of at 

10. Suppose that the differentiable function has an inverse
and that the graph of g passes through the origin with slope 2.
Find the slope of the graph of at the origin.

Derivatives of Logarithms
In Exercises 11–40, find the derivative of y with respect to x, t, or as
appropriate.

11. 12. y = ln kx, k constanty = ln 3x

u ,

g-1

y = gsxd
x = 4.dƒ -1>dx>

y = ƒsxd
x = 0 = ƒs5d .

dƒ -1>dxƒsxd = x2
- 4x - 5, x 7 2.

x = -1 = ƒs3d .
dƒ -1>dxƒsxd = x3

- 3x2
- 1, x Ú 2.

s -2, -2d .

y = x .
s -2, -2d .

ksxd = s4xd1>3hsxd = x3>4
s -1, -1d

y = x .
s -1, -1d .

g sxd = 1 
3 xƒsxd = x3

ƒsxd = 2x2, x Ú 0, a = 5ƒsxd = 5 - 4x, a = 1>2
ƒsxd = s1>5dx + 7, a = -1ƒsxd = 2x + 3, a = -1

dƒ -1>dx = 1>sdƒ>dxd .
x = ƒsaddƒ -1>dxx = a>

ƒ -1

ƒ -1sxd .

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33. 34.

35. 36.

37. 38.

39. 40.

Logarithmic Differentiation
In Exercises 41–54, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52. y = C
sx + 1d10

s2x + 1d5y =

x2x2
+ 1

sx + 1d2>3

y =

u sin u

2sec u
y =

u + 5
u cos u

y =

1
t st + 1dst + 2d

y = t st + 1dst + 2d

y = stan ud22u + 1y = 2u + 3 sin u

y = A
1

t st + 1d
y = A

t
t + 1

y = 2sx2
+ 1dsx - 1d2y = 2xsx + 1d

y = ln C
sx + 1d5

sx + 2d20y = ln asx2
+ 1d5

21 - x
b

y = ln a2sin u cos u

1 + 2 ln u
by = ln ssec sln udd

y = 2ln 1ty =

1 + ln t
1 - ln t

y =

1
2

 ln 
1 + x
1 - x

y = ln 
1

x2x + 1

y = ln ssec u + tan ud

y = ussin sln ud + cos sln udd

y = ln sln sln xddy = ln sln xd

y =

x ln x
1 + ln x

y =

ln x
1 + ln x

y =

1 + ln t
ty =

ln t
t

y = (x2 ln x)4y =

x4

4
 ln x -

x4

16

y = t2ln ty = t sln td2

y = sln xd3y = ln x3

y = ln s2u + 2dy = ln su + 1d

y = ln 
10
xy = ln 

3
x

y = ln st3>2dy = ln st2d
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53. 54.

Finding Derivatives
In Exercises 55–62, find the derivative of y with respect to x, t, or as
appropriate.

55. 56.

57. 58.

59. 60.

61. 62.

In Exercises 63–66, find dy dx.

63. 64.

65. 66.

In Exercises 67–88, find the derivative of y with respect to the given
independent variable.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87. 88.

Logarithmic Differentiation with Exponentials
In Exercises 89–96, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

89. 90.

91. 92.

93. 94.

95. 96.

Theory and Applications

97. If we write g(x) for Equation (1) can be written as

If we then write x for a, we get

The latter equation may remind you of the Chain Rule, and indeed
there is a connection.

Assume that ƒ and g are differentiable functions that are in-
verses of one another, so that Differentiate bothsg � ƒdsxd = x .

g¿sƒsxdd # ƒ¿sxd = 1.

g¿sƒsadd =

1
ƒ¿sad

, or g¿sƒsadd # ƒ¿sad = 1.

ƒ -1sxd ,

y = sln xdln xy = x ln x

y = xsin xy = ssin xdx

y = t2ty = s1tdt

y = xsx + 1dy = sx + 1dx

y = t log 3 Aessin tdsln 3d By = log 2 s8t ln 2d
y = 3 log8 slog2 tdy = 3log2 t

y = log2 a x2e2

22x + 1
by = log5 ex

y = log7 asin u cos u

eu 2u
by = u sin slog7 ud

y = log5 B a
7x

3x + 2
b ln 5

y = log3 a ax + 1
x - 1

b ln 3b
y = log3 r # log9 ry = log2 r # log4 r

y = log25 ex
- log51xy = log4 x + log4 x2

y = log3 s1 + u ln 3dy = log2 5u

y = t 1 - ey = xp
y = 2ss2dy = 52s

y = 3-xy = 2x

tan y = ex
+ ln xxy

= yx

ln xy = ex + yln y = ey sin x

>
y = esin t sln t2

+ 1dy = escos t +  ln td

y = ln a 2u
1 + 2u by = ln a eu

1 + eu
b

y = ln s2e-t sin tdy = ln s3te-td

y = ln s3ue-udy = ln (cos2 u)

u ,

y = B
3 xsx + 1dsx - 2d

sx2
+ 1ds2x + 3d

y = B
3 xsx - 2d

x2
+ 1

sides of this equation with respect to x, using the Chain Rule to
express as a product of derivatives of g and ƒ.
What do you find? (This is not a proof of Theorem 3 because
we assume here the theorem’s conclusion that is
differentiable.)

98. Show that for any 

99. If where A and B are constants,
show that

100. Using mathematical induction, show that

COMPUTER EXPLORATIONS
In Exercises 101–108, you will explore some functions and their in-
verses together with their derivatives and tangent line approximations
at specified points. Perform the following steps using your CAS:

a. Plot the function together with its derivative over
the given interval. Explain why you know that ƒ is one-to-one
over the interval.

b. Solve the equation for x as a function of y, and
name the resulting inverse function g.

c. Find the equation for the tangent line to ƒ at the specified
point 

d. Find the equation for the tangent line to g at the point
located symmetrically across the 45° line 

(which is the graph of the identity function). Use Theorem 3
to find the slope of this tangent line.

e. Plot the functions ƒ and g, the identity, the two tangent lines,
and the line segment joining the points and

Discuss the symmetries you see across the main
diagonal.

101.

102.

103.

104.

105.

106.

107.

108.

In Exercises 109 and 110, repeat the steps above to solve for the func-
tions and defined implicitly by the given equa-
tions over the interval.

109.

110. cos y = x1>5, 0 … x … 1, x0 = 1>2
y1>3

- 1 = sx + 2d3, -5 … x … 5, x0 = -3>2
x = ƒ -1sydy = ƒsxd

y = sin x, -

p

2
… x …

p

2
, x0 = 1

y = ex, -3 … x … 5, x0 = 1

y = 2 - x - x3, -2 … x … 2, x0 =

3
2

y = x3
- 3x2

- 1, 2 … x … 5, x0 =

27
10

y =

x3

x2
+ 1

, -1 … x … 1, x0 = 1>2
y =

4x

x 2
+ 1

, -1 … x … 1, x0 = 1>2
y =

3x + 2
2x - 11

, -2 … x … 2, x0 = 1>2
y = 23x - 2, 2

3
… x … 4, x0 = 3

sƒsx0d, x0d .
sx0 , ƒsx0dd

y = xsƒsx0d, x0d

sx0 , ƒsx0dd .

y = ƒsxd

y = ƒsxd

dn

dxn ln x = (-1)n - 1 
(n - 1)!

xn .

x2y– + xy¿ + y = 0.

y = A sin (ln x) + B cos (ln x),

x 7 0.lim n: q a1 +

x
n b

n

= ex

g = ƒ -1

sg � ƒd¿sxd
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3.9 Inverse Trigonometric Functions

We introduced the six basic inverse trigonometric functions in Section 1.6, but focused
there on the arcsine and arccosine functions. Here we complete the study of how all six in-
verse trigonometric functions are defined, graphed, and evaluated, and how their deriva-
tives are computed.

Inverses of and 

The graphs of all six basic inverse trigonometric functions are shown in Figure 3.39. We
obtain these graphs by reflecting the graphs of the restricted trigonometric functions (as
discussed in Section 1.6) through the line Let’s take a closer look at the arctangent,
arccotangent, arcsecant, and arccosecant functions.

y = x.

csc xtan x, cot x, sec x,

186 Chapter 3: Differentiation

x

y

�
2

�
2

–

1–1

(a)

Domain:
Range:

–1 � x � 1
� y ��

2
– �

2

y � sin–1x

x

y

�

�

2

1–1

Domain:
Range:

–1 � x � 1
0 � y � �

(b)

y � cos–1x

x

y

(c)

Domain:
Range:

–∞ � x � ∞
� y ��

2
– �

2

1–1–2 2

�
2

�
2

–

y � tan–1x

x

y

(d)

Domain:
Range:

x � –1 or x � 1
0 � y � �, y �

1–1–2 2

y � sec–1x

�

�
2

�
2

x

y

Domain:
Range:

x � –1 or x � 1
� y � , y � 0�

2
– �

2

(e)

1–1–2 2

�
2

�
2

–

y � csc–1x

x

y

Domain:
Range: 0 � y � �

(f )

�

�
2

1–1–2 2

y � cot–1x

–∞ � x � ∞

FIGURE 3.39 Graphs of the six basic inverse trigonometric functions.

DEFINITION

 y � cot�1 x is the number in s0, pd for which cot y = x .

 y � tan�1 x is the number in s -p>2, p>2d for which tan y = x .

The arctangent of x is a radian angle whose tangent is x. The arccotangent of x is an angle
whose cotangent is x. The angles belong to the restricted domains of the tangent and cotan-
gent functions.
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We use open intervals to avoid values where the tangent and cotangent are undefined.
The graph of is symmetric about the origin because it is a branch of the

graph that is symmetric about the origin (Figure 3.39c). Algebraically this
means that

the arctangent is an odd function. The graph of has no such symmetry
(Figure 3.39f). Notice from Figure 3.39c that the graph of the arctangent function has two
horizontal asymptotes; one at and the other at .

The inverses of the restricted forms of sec x and csc x are chosen to be the functions
graphed in Figures 3.39d and 3.39e.

Caution There is no general agreement about how to define for negative values
of x. We chose angles in the second quadrant between and This choice makes

It also makes an increasing function on each interval of its
domain. Some tables choose to lie in for and some texts
choose it to lie in (Figure 3.40). These choices simplify the formula for the de-
rivative (our formula needs absolute value signs) but fail to satisfy the computational
equation From this, we can derive the identity

(1)

by applying Equation (5) in Section 1.6.

EXAMPLE 1 The accompanying figures show two values of tan�1 x.

sec-1 x = cos-1 a1x b =
p
2

 -  sin-1 a1x b

sec-1 x = cos-1 s1>xd .

[p, 3p>2d
x 6 0[-p, -p>2dsec-1 x

sec-1 xsec-1 x = cos-1 s1>xd .
p .p>2 sec-1 x

y = -p>2y = p>2
y = cot-1 x

tan-1 s -xd = - tan-1 x ;

x = tan y
y = tan-1 x

3.9 Inverse Trigonometric Functions 187

The angles come from the first and fourth quadrants because the range of is

The Derivative of 

We know that the function is differentiable in the interval 
and that its derivative, the cosine, is positive there. Theorem 3 in Section 3.8 therefore as-
sures us that the inverse function is differentiable throughout the interval

We cannot expect it to be differentiable at or because the
tangents to the graph are vertical at these points (see Figure 3.41).

x = -1x = 1-1 6 x 6 1.
y = sin-1 x

-p>2 6 y 6 p>2x = sin y

y = sin-1 u

s -p>2, p>2d .
tan-1 x

3�
2

y � sec–1x

–1 10

�
2

3�
2

�
2

–

–

x

y

�

–�

Domain: �x� � 1
Range: 0 � y � �, y � �

2

B

A

C

FIGURE 3.40 There are several logical
choices for the left-hand branch of

With choice A,
a useful identity

employed by many calculators.
sec-1 x = cos-1 s1>xd ,
y = sec-1 x .

x

1

-p>3-23

-p>4-1

-p>6-23>3
p>623>3
p>4
p>323

tan-1 x

x

y

0
x

y

0
1

2

3
�3tan–1 1

�3
�
6

tan–1   –�3   �
3

2
1

�3
–�3

�
6

tan     ��
6

1
�3

⎛
⎝

⎛
⎝tan           � –�3�

3
–

�
3

–

� tan–1 � � –⎛
⎝

⎛
⎝
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We find the derivative of by applying Theorem 3 with and

Theorem 3

If u is a differentiable function of x with we apply the Chain Rule to getƒ u ƒ 6 1,

sin ssin-1 xd = x =
1

21 - x2
.

cos u = 21 - sin2 u =
1

21 - sin2 ssin-1 xd

 ƒ¿sud = cos u =
1

cos ssin-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

ƒ -1sxd = sin-1 x:
ƒsxd = sin xy = sin-1 x

188 Chapter 3: Differentiation

y

1–1
x

y � sin–1x
Domain:
Range:

– �
2

�
2 –1 � x � 1

–�/2 � y � �/2

FIGURE 3.41 The graph of 
has vertical tangents at and x = 1.x = -1

y = sin-1 x

d
dx

 ssin-1 ud =
1

21 - u2
 
du
dx

 , ƒ u ƒ 6 1.

EXAMPLE 2 Using the Chain Rule, we calculate the derivative

.

The Derivative of 

We find the derivative of by applying Theorem 3 with and
Theorem 3 can be applied because the derivative of tan x is positive for

Theorem 3

The derivative is defined for all real numbers. If u is a differentiable function of x, we get
the Chain Rule form:

tan stan-1 xd = x =
1

1 + x2.

sec2 u = 1 + tan2 u =
1

1 + tan2 stan-1 xd

ƒ¿sud = sec2 u =
1

sec2 stan-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

-p>2 6 x 6 p>2:
ƒ -1sxd = tan-1 x .

ƒsxd = tan xy = tan-1 x

y = tan-1 u

d
dx

 ssin-1 x2d =
1

21 - sx2d2
 #  

d
dx

 sx2d =
2x

21 - x4

d
dx

  stan-1 ud =
1

1 + u2 
du
dx

.

The Derivative of 

Since the derivative of sec x is positive for and Theorem 3
says that the inverse function is differentiable. Instead of applying the formulay = sec-1 x

p>2 6 x 6 p ,0 6 x 6 p/2

y = sec-1 u

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:22 PM  Page 188



in Theorem 3 directly, we find the derivative of using implicit dif-
ferentiation and the Chain Rule as follows:

Inverse function relationship

Differentiate both sides.

Chain Rule

.

To express the result in terms of x, we use the relationships

to get

Can we do anything about the sign? A glance at Figure 3.42 shows that the slope of the
graph is always positive. Thus,

With the absolute value symbol, we can write a single expression that eliminates the 
ambiguity:

If u is a differentiable function of x with we have the formulaƒ u ƒ 7 1,

d
dx

 sec-1 x =
1

ƒ x ƒ2x2
- 1

 .

“;”

d
dx

 sec-1 x = d +  
1

x2x2
- 1

if x 7 1

-  
1

x2x2
- 1

if x 6 -1.

y = sec-1 x
;

dy
dx

= ;  
1

x2x2
- 1

 .

sec y = x and tan y = ;2sec2 y - 1 = ;2x2
- 1

 
dy
dx

=
1

sec y tan y

 sec y tan y 
dy
dx

= 1

 
d
dx

 ssec yd =
d
dx

 x

 sec y = x

 y = sec-1 x

y = sec-1 x, ƒ x ƒ 7 1,
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x

y

0

�

1–1

y � sec–1x

�
2

FIGURE 3.42 The slope of the curve
is positive for both 

and x 7 1.
x 6 -1y = sec-1 x

d
dx

 ssec-1 ud =
1

ƒ u ƒ2u2
- 1

 
du
dx

 , ƒ u ƒ 7 1.

EXAMPLE 3 Using the Chain Rule and derivative of the arcsecant function, we find

 =
4

x225x8
- 1

.

5x4
7 1 7 0 =

1

5x4225x8
- 1

 s20x3d

 
d
dx

 sec-1 s5x4d =
1

ƒ5x4
ƒ2s5x4d2

- 1
 
d
dx

 s5x4d

Since lies in
and

sec y tan y Z 0.
s0, p>2d ´ sp>2, pd

ƒ x ƒ 7 1, y
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190 Chapter 3: Differentiation

Derivatives of the Other Three Inverse Trigonometric Functions

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is an easier way,
thanks to the following identities.

TABLE 3.1 Derivatives of the inverse trigonometric functions

1.

2.

3.

4.

5.

6.
dscsc-1 ud

dx
= -

1

ƒ u ƒ2u2
- 1

 
du
dx

, ƒ u ƒ 7 1

dssec-1 ud
dx

=
1

ƒ u ƒ2u2
- 1

 
du
dx

, ƒ u ƒ 7 1

dscot-1 ud
dx

= -
1

1 + u2 
du
dx

dstan-1 ud
dx

=
1

1 + u2 
du
dx

dscos-1 ud
dx

= -
1

21 - u2
 
du
dx

,  ƒ u ƒ 6 1

dssin-1 ud
dx

=
1

21 - u2
 
du
dx

,  ƒ u ƒ 6 1

Inverse Function–Inverse Cofunction Identities

 csc-1 x = p>2 - sec-1 x

 cot-1 x = p>2 - tan-1 x

 cos-1 x = p>2 - sin-1 x

We saw the first of these identities in Equation (5) of Section 1.6. The others are de-
rived in a similar way. It follows easily that the derivatives of the inverse cofunctions are
the negatives of the derivatives of the corresponding inverse functions. For example, the
derivative of is calculated as follows:

Identity

Derivative of arcsine

The derivatives of the inverse trigonometric functions are summarized in Table 3.1.

 = -
1

21 - x2
.

 = -
d
dx

 (sin-1 x)

 
d
dx

 (cos-1 x) =
d
dx

 ap
2

- sin-1 xb

cos-1 x
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3.9 Inverse Trigonometric Functions 191

Exercises 3.9

Common Values
Use reference triangles like those in Example 1 to find the angles in
Exercises 1–8.

1. a. b. c.

2. a. b. c.

3. a. b. c.

4. a. b. c.

5. a. b. c.

6. a. b. c.

7. a. b. c.

8. a. b. c.

Evaluations
Find the values in Exercises 9–12.

9. 10.

11. 12.

Limits
Find the limits in Exercises 13–20. (If in doubt, look at the function’s
graph.)

13. 14.

15. 16.

17. 18.

19. 20.

Finding Derivatives
In Exercises 21–42, find the derivative of y with respect to the appro-
priate variable.

21. 22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32.

33. 34. y = tan-1 sln xdy = ln stan-1 xd

y = cot-1 2t - 1y = cot-1 2t

y = sin-1 
3
t2y = sec-1 

1
t , 0 6 t 6 1

y = csc-1 
x
2

y = csc-1 sx2
+ 1d, x 7 0

y = sec-1 5sy = sec-1 s2s + 1d

y = sin-1 s1 - tdy = sin-122 t

y = cos-1 s1>xdy = cos-1 sx2d

lim
x: -q

 csc-1 xlim
x: q

 csc-1 x

lim
x: -q

 sec-1 xlim
x: q

 sec-1 x

lim
x: -q

 tan-1 xlim
x: q

 tan-1 x

lim
x: -1+

 cos-1 xlim
x:1-

 sin-1 x

cot asin-1 a- 23
2
b btan asin-1 a- 1

2
b b

sec acos-1 
1
2
bsin acos-1 a22

2
b b

cot-1 a -1

23
bcot-1 A23 Bcot-1 s -1d

sec-1s -2dsec-1 a 2

23
bsec-1 A -22 B

csc-1 2csc-1 a -2

23
bcsc-1 22

cos-1 a23
2
bcos-1 a -1

22
bcos-1 a1

2
b

sin-1 a23
2
bsin-1 a -1

22
bsin-1 a1

2
b

sin-1 a-23
2
bsin-1 a 1

22
bsin-1 a-1

2
b

tan-1 a -1

23
btan-123tan-1s -1d

tan-1 a 1

23
btan-1 A -23 Btan-1 1

35. 36.

37. 38.

39.

40. 41.

42.

Theory and Examples

43. You are sitting in a classroom next to the wall looking at the
blackboard at the front of the room. The blackboard is 12 ft long
and starts 3 ft from the wall you are sitting next to. Show that your
viewing angle is

if you are x ft from the front wall.

44. Find the angle 

45. Here is an informal proof that 
Explain what is going on.

tan-1 1 + tan-1 2 + tan-1 3 = p .

65°

21

50
�

�

a .

B
la

ck
bo

ar
d

12'

3'
Wall

You
�

x

a = cot-1 
x

15
- cot-1 

x
3

y = ln sx2
+ 4d - x tan-1 ax

2
b

y = x sin-1 x + 21 - x2y = cot-1 
1
x - tan-1 x

y = tan-12x2
- 1 + csc-1 x, x 7 1

y = 2s2
- 1 - sec-1 sy = s21 - s2

+ cos-1 s

y = cos-1 se-tdy = csc-1 setd
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46. Two derivations of the identity

a. (Geometric) Here is a pictorial proof that 
See if you can tell what is going on.

b. (Algebraic) Derive the identity by
combining the following two equations from the text:

Eq. (4), Section 1.6

Eq. (1)

Which of the expressions in Exercises 47–50 are defined, and which
are not? Give reasons for your answers.

47. a. b.

48. a. b.

49. a. b.

50. a. b.

51. Use the identity

to derive the formula for the derivative of in Table 3.1
from the formula for the derivative of 

52. Derive the formula

for the derivative of by differentiating both sides of
the equivalent equation 

53. Use the Derivative Rule in Section 3.8, Theorem 3, to derive

54. Use the identity

to derive the formula for the derivative of in Table 3.1
from the formula for the derivative of tan-1 u .

cot-1 u

cot-1 u =

p

2
- tan-1 u

d
dx

 sec-1 x =

1

ƒ x ƒ2x2
- 1

, ƒ x ƒ 7 1.

tan y = x .
y = tan-1 x

dy

dx
=

1
1 + x2

sec-1 u .
csc-1 u

csc-1 u =

p

2
- sec-1 u

cos-1 s -5dcot-1 s -1>2d
sin-122sec-1 0

csc-1 2csc-1 (1>2)

cos-1 2tan-1 2

sec-1 x = cos-1 s1>xd

cos-1 s -xd = p - cos-1 x

sec-1 s -xd = p - sec-1 x

x

y

0

�

1 x–1–x

y � sec–1x

�
2

p - sec-1 x .
sec-1 s -xd =

sec-1 s �xd = P � sec�1 x

192 Chapter 3: Differentiation

55. What is special about the functions

Explain.

56. What is special about the functions

Explain.

57. Find the values of

a. b. c.

58. Find the values of

a. b. c.

In Exercises 59–61, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

59. a. b.

60. a. b.

61. a. b.

Use your graphing utility for Exercises 62–66.

62. Graph Explain what you
see.

63. Newton’s serpentine Graph Newton’s serpentine, 
Then graph in the same graph-

ing window. What do you see? Explain.

64. Graph the rational function Then graph 
in the same graphing window. What do you see?

Explain.

65. Graph together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to
the signs and values of and 

66. Graph together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to
the signs and values of and ƒ–.ƒ¿

ƒsxd = tan-1 x

ƒ–.ƒ¿

ƒsxd = sin-1 x

cos s2 sec-1 xd
y =y = s2 - x2d>x2 .

y = 2 sin s2 tan-1 xd4x>sx2
+ 1d .

y =

y = sec ssec-1 xd = sec scos-1s1>xdd .

y = cos scos-1 xdy = cos-1 scos xd
y = sin ssin-1 xdy = sin-1 ssin xd
y = tan stan-1 xdy = tan-1 stan xd

cot-1 s -2dcsc-1 1.7sec-1s -3d

cot-1 2csc-1 s -1.5dsec-1 1.5

ƒsxd = sin-1 
1

2x2
+ 1

 and g sxd = tan-1  
1
x ?

ƒsxd = sin-1  
x - 1
x + 1

, x Ú 0, and g sxd = 2 tan-1 1x?

3.10 Related Rates

In this section we look at problems that ask for the rate at which some variable changes
when it is known how the rate of some other related variable (or perhaps several variables)
changes. The problem of finding a rate of change from other known rates of change is
called a related rates problem.

T

T

T

T
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3.10 Related Rates 193

Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an
instant of time, then

Using the Chain Rule, we differentiate both sides with respect to t to find an equation 
relating the rates of change of V and r,

So if we know the radius r of the balloon and the rate at which the volume is in-
creasing at a given instant of time, then we can solve this last equation for to find
how fast the radius is increasing at that instant. Note that it is easier to directly measure the
rate of increase of the volume (the rate at which air is being pumped into the balloon) than
it is to measure the increase in the radius. The related rates equation allows us to calculate

from .
Very often the key to relating the variables in a related rates problem is drawing a picture

that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1 Water runs into a conical tank at the rate of The tank stands
point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level
rising when the water is 6 ft deep?

Solution Figure 3.43 shows a partially filled conical tank. The variables in the problem are

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-
sions of the tank. We are asked for when

The water forms a cone with volume

This equation involves x as well as V and y. Because no information is given about x and
at the time in question, we need to eliminate x. The similar triangles in Figure 3.43

give us a way to express x in terms of y:

Therefore, find

to give the derivative

dV
dt

=
p
12

# 3y2 
dy
dt

=
p
4

 y2 
dy
dt

.

V =
1
3

 p ay
2
b2

y =
p
12

 y3

x
y =

5
10
 or x =

y
2

.

dx>dt

V =
1
3

 px2y .

y = 6 ft and dV
dt

= 9 ft3>min.

dy>dt

 y = depth sftd of the water in the tank at time t .

 x = radius sftd of the surface of the water at time t

 V = volume sft3d of the water in the tank at time t smind

9 ft3>min.

dV>dtdr>dt

dr>dt
dV>dt

dV
dt

=
dV
dr

 
dr
dt

= 4pr2 
dr
dt

.

V =
4
3

 pr3 .

10 ft

y

5 ft

x
dy
dt

� ?

when y � 6 ft

dV
dt

� 9 ft3/min

FIGURE 3.43 The geometry of the
conical tank and the rate at which water
fills the tank determine how fast the water
level rises (Example 1).
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Finally, use and to solve for .

At the moment in question, the water level is rising at about 0.32 ft min.>
 
dy
dt

=
1
p L 0.32

 9 =
p
4

 s6d2 
dy
dt

dy>dtdV>dt = 9y = 6

194 Chapter 3: Differentiation

Related Rates Problem Strategy
1. Draw a picture and name the variables and constants. Use t for time. Assume

that all variables are differentiable functions of t.

2. Write down the numerical information (in terms of the symbols you have chosen).

3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two or
more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the
rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

� ?
y

Range
finder

Balloon

500 ft

�

� 0.14  rad/min
dt
d�

when � � �/4 
dt
dywhen � � �/4 

FIGURE 3.44 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).

EXAMPLE 2 A hot air balloon rising straight up from a level field is tracked by a range
finder 500 ft from the liftoff point. At the moment the range finder’s elevation angle is

the angle is increasing at the rate of 0.14 rad min. How fast is the balloon rising at
that moment?

Solution We answer the question in six steps.

1. Draw a picture and name the variables and constants (Figure 3.44). The variables in
the picture are

angle in radians the range finder makes with the ground.

height in feet of the balloon.

We let t represent time in minutes and assume that and y are differentiable functions of t.
The one constant in the picture is the distance from the range finder to the liftoff point

(500 ft). There is no need to give it a special symbol.

2. Write down the additional numerical information.

3. Write down what we are to find. We want when 

4. Write an equation that relates the variables y and

5. Differentiate with respect to t using the Chain Rule. The result tells how (which
we want) is related to (which we know).

6. Evaluate with and to find .

At the moment in question, the balloon is rising at the rate of 140 ft min.>
sec 
p

4
= 22

dy
dt

= 500 A22 B2s0.14d = 140

dy>dtdu>dt = 0.14u = p>4
dy
dt

= 500 ssec2 ud 
du
dt

du>dt
dy>dt

y
500

= tan u or y = 500 tan u

u .

u = p>4.dy>dt

du
dt

= 0.14 rad>min when u =
p
4

u

y = the

u = the

>p>4,

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:22 PM  Page 194



3.10 Related Rates 195

EXAMPLE 3 A police cruiser, approaching a right-angled intersection from the north, is
chasing a speeding car that has turned the corner and is now moving straight east. When the
cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police deter-
mine with radar that the distance between them and the car is increasing at 20 mph. If the
cruiser is moving at 60 mph at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.45).
We let t represent time and set

We assume that x, y, and s are differentiable functions of t.
We want to find when

Note that is negative because y is decreasing.
We differentiate the distance equation

(we could also use ), and obtain

Finally, we use and solve for .

At the moment in question, the car’s speed is 70 mph.

EXAMPLE 4 A particle P moves clockwise at a constant rate along a circle of radius 10 ft
centered at the origin. The particle’s initial position is (0, 10) on the y-axis and its final
destination is the point (10, 0) on the x-axis. Once the particle is in motion, the tangent line
at P intersects the x-axis at a point Q (which moves over time). If it takes the particle 30 sec
to travel from start to finish, how fast is the point Q moving along the x-axis when it is 20 ft
from the center of the circle?

Solution We picture the situation in the coordinate plane with the circle centered at the
origin (see Figure 3.46). We let t represent time and let denote the angle from the x-axis
to the radial line joining the origin to P. Since the particle travels from start to finish in
30 sec, it is traveling along the circle at a constant rate of radians in or

In other words, with t being measured in minutes. The negative
sign appears because is decreasing over time.u

du>dt = -p,p rad>min.
1>2 min,p>2

u

 
dx
dt

=

202s0.8d2
+ s0.6d2

+ s0.6ds60d
0.8

= 70

 20 =
1

2s0.8d2
+ s0.6d2

 a0.8 
dx
dt

+ (0.6)(-60)b
dx>dtx = 0.8, y = 0.6, dy>dt = -60, ds>dt = 20,

 =
1

2x2
+ y2

 ax 
dx
dt

+ y 
dy
dt
b .

 
ds
dt

=
1
s  ax 

dx
dt

+ y 
dy
dt
b

 2s 
ds
dt

= 2x 
dx
dt

+ 2y 
dy
dt

s = 2x2
+ y2

s2
= x2

+ y2

dy>dt

x = 0.8 mi, y = 0.6 mi, dy
dt

= -60 mph, ds
dt

= 20 mph.

dx>dt

 s = distance between car and cruiser at time t .

 y = position of cruiser at time t

 x = position of car at time t

x

y

0 x

y

Situation when
x � 0.8, y � 0.6

� –60
� 20

� ?dx
dt

dy
dt

ds
dt

FIGURE 3.45 The speed of the car is
related to the speed of the police cruiser
and the rate of change of the distance
between them (Example 3).

x
0

10

u

y

P

Q

(x, 0)

FIGURE 3.46 The particle P
travels clockwise along the circle
(Example 4).

7001_AWLThomas_ch03p122-221.qxd  10/12/09  2:22 PM  Page 195



196 Chapter 3: Differentiation

Setting to be the distance at time t from the point Q to the origin, we want to find
when

and

To relate the variables x and we see from Figure 3.46 that or
Differentiation of this last equation gives

Note that is negative because x is decreasing (Q is moving towards the origin).

When and Also, It
follows that

At the moment in question, the point Q is moving towards the origin at the speed of

EXAMPLE 5 A jet airliner is flying at a constant altitude of 12,000 ft above sea level as it
approaches a Pacific island. The aircraft comes within the direct line of sight of a radar station
located on the island, and the radar indicates the initial angle between sea level and its line of
sight to the aircraft is 30°. How fast (in miles per hour) is the aircraft approaching the island
when first detected by the radar instrument if it is turning upward (counterclockwise) at the
rate of in order to keep the aircraft within its direct line of sight?

Solution The aircraft A and radar station R are pictured in the coordinate plane, using
the positive x-axis as the horizontal distance at sea level from R to A, and the positive 
y-axis as the vertical altitude above sea level. We let t represent time and observe that

is a constant. The general situation and line-of-sight angle are depicted in
Figure 3.47. We want to find when rad and 

From Figure 3.47, we see that

or

Using miles instead of feet for our distance units, the last equation translates to

Differentiation with respect to t gives

When so Converting to radians
per hour, we find

Substitution into the equation for then gives

The negative sign appears because the distance x is decreasing, so the aircraft is approaching
the island at a speed of approximately  when first detected by the radar.380 mi>hr

dx
dt

= a-
1200
528
b s4d a2

3
b a p

180
b s3600d L -380.

dx>dt

1 hr = 3600 sec, 1 deg = p>180 rad
du
dt

=
2
3
a p

180
b s3600d rad>hr.

du>dt = 2>3 deg>seccsc2 u = 4.u = p>6, sin2 u = 1>4,

dx
dt

= -
1200
528

 csc2 u 
du
dt

.

x =

12,000
5280

 cot u.

x = 12,000 cot u.
12,000

x = tan u

du>dt = 2>3 deg>sec.u = p>6dx>dt
uy = 12,000

2>3 deg>sec

2023p L 108.8 ft>min.

dx
dt

= s -10pds2d A23 B = -2023p.

tan u = 2sec2 u - 1 = 23.sec u = 2.x = 20, cos u = 1>2
dx>dt

dx
dt

= 10 sec u tan u 
du
dt

= -10p sec u tan u.

x = 10 sec u.
x cos u = 10,u,

du
dt

= -p rad>min.x = 20 ft

dx>dt
xstd

R

12,000

A

u
x

FIGURE 3.47 Jet airliner A
traveling at constant altitude
toward radar station R
(Example 5).
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EXAMPLE 6 Figure 3.48(a) shows a rope running through a pulley at P and bearing a
weight W at one end. The other end is held 5 ft above the ground in the hand M of a worker.
Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worker is walking
rapidly away from the vertical line PW at the rate of How fast is the weight being
raised when the worker’s hand is 21 ft away from PW ?

Solution We let OM be the horizontal line of length x ft from a point O directly below
the pulley to the worker’s hand M at any instant of time (Figure 3.48). Let h be the height
of the weight W above O, and let z denote the length of rope from the pulley P to the
worker’s hand. We want to know when given that Note that the
height of P above O is 20 ft because O is 5 ft above the ground. We assume the angle at O
is a right angle.

At any instant of time t we have the following relationships (see Figure 3.48b):

Total length of rope is 45 ft.

Angle at O is a right angle.

If we solve for in the first equation, and substitute into the second equation,
we have

(1)

Differentiating both sides with respect to t gives

and solving this last equation for we find

(2)

Since we know it remains only to find at the instant when From
Equation (1),

so that

or

Equation (2) now gives

as the rate at which the weight is being raised when  x = 21 ft.

dh
dt

=
21
29

# 6 =
126
29

L 4.3 ft>sec

25 + h = 29.s25 + hd2
= 841,

202
+ 212

= s25 + hd2

x = 21.25 + hdx>dt,

dh
dt

=
x

25 + h
 
dx
dt

.

dh>dt

2x 
dx
dt

= 2s25 + hd 
dh
dt

,

202
+ x2

= s25 + hd2.

z = 25 + h

 202
+ x2

= z2.

 20 - h + z = 45

dx>dt = 6.x = 21dh>dt

6 ft>sec.
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x

z

h

M

P

O

W
20 ft

(b)

x

M

P

O

W

5 ft

6 ft/sec

(a)

FIGURE 3.48 A worker at M
walks to the right pulling the
weight W upwards as the rope
moves through the pulley P
(Example 6).

Exercises 3.10

1. Area Suppose that the radius r and area of a circle are
differentiable functions of t. Write an equation that relates 
to .

2. Surface area Suppose that the radius r and surface area
of a sphere are differentiable functions of t. Write an

equation that relates to .

3. Assume that and Find 

4. Assume that and Find 

5. If and then what is when x = -1?dy>dtdx>dt = 3,y = x2

dx>dt.dy>dt = -2.2x + 3y = 12

dy>dt.dx>dt = 2.y = 5x

dr>dtdS>dt
S = 4pr2

dr>dt
dA>dt

A = pr2 6. If and then what is when 

7. If and then what is when 
and 

8. If and then what is when 

9. If and find when
and 

10. If and find 
when and s = 1.r = 3

dy>dtds>dt = -3,r + s2
+ y3

= 12, dr>dt = 4,

y = 12.x = 5
dL>dtdy>dt = 3,L = 2x2

+ y2, dx>dt = -1,

x = 2?dx>dtdy>dt = 1>2,x2y3
= 4>27

y = -4?
x = 3dy>dtdx>dt = -2,x2

+ y2
= 25

y = 2?dx>dtdy>dt = 5,x = y3
- y
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11. If the original 24 m edge length x of a cube decreases at the rate
of when m at what rate does the cube’s

a. surface area change?

b. volume change?

12. A cube’s surface area increases at the rate of At what rate
is the cube’s volume changing when the edge length is 

13. Volume The radius r and height h of a right circular cylinder are
related to the cylinder’s volume V by the formula 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

14. Volume The radius r and height h of a right circular cone are re-
lated to the cone’s volume V by the equation 

a. How is related to if r is constant?

b. How is related to if h is constant?

c. How is related to and if neither r nor h is
constant?

15. Changing voltage The voltage V (volts), current I (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation Suppose that V is in-
creasing at the rate of 1 volt sec while I is decreasing at the rate
of 1 3 amp sec. Let t denote time in seconds.

a. What is the value of ?

b. What is the value of ?

c. What equation relates to and ?

d. Find the rate at which R is changing when volts and
amp. Is R increasing, or decreasing?

16. Electrical power The power P (watts) of an electric circuit is
related to the circuit’s resistance R (ohms) and current I (amperes)
by the equation 

a. How are , , and related if none of P, R, and I
are constant?

b. How is related to if P is constant?

17. Distance Let x and y be differentiable functions of t and let
be the distance between the points (x, 0) and (0, y)

in the xy-plane.

a. How is related to if y is constant?

b. How is related to and if neither x nor y is
constant?

c. How is related to if s is constant?

18. Diagonals If x, y, and z are lengths of the edges of a rectangular
box, the common length of the box’s diagonals is 

2x2
+ y2

+ z2 .

s =

dy>dtdx>dt

dy>dtdx>dtds>dt

dx>dtds>dt

s = 2x2
+ y2

dI>dtdR>dt

dI>dtdR>dtdP>dt

P = RI2 .

I = 2
V = 12

dI>dtdV>dtdR>dt

dI>dt

dV>dt

V

R

I

� �

>> > V = IR .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = s1>3dpr2h .

dh>dtdr>dtdV>dt

dr>dtdV>dt

dh>dtdV>dt

V = pr2h .

x = 3 in?
72 in2>sec.

x = 35 m>min,
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a. Assuming that x, y, and z are differentiable functions of t, how
is related to , , and ?

b. How is related to and if x is constant?

c. How are , , and related if s is constant?

19. Area The area A of a triangle with sides of lengths a and b
enclosing an angle of measure is

a. How is related to if a and b are constant?

b. How is related to and if only b is constant?

c. How is related to and if none of a,
b, and are constant?

20. Heating a plate When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0.01 cm min. At what rate
is the plate’s area increasing when the radius is 50 cm?

21. Changing dimensions in a rectangle The length l of a rectangle
is decreasing at the rate of 2 cm sec while the width w is increasing
at the rate of 2 cm sec. When and find the
rates of change of (a) the area, (b) the perimeter, and (c) the
lengths of the diagonals of the rectangle. Which of these quantities
are decreasing, and which are increasing?

22. Changing dimensions in a rectangular box Suppose that the
edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

Find the rates at which the box’s (a) volume, (b) surface area, and

(c) diagonal length are changing at the 
instant when and 

23. A sliding ladder A 13-ft ladder is leaning against a house when
its base starts to slide away (see accompanying figure). By the
time the base is 12 ft from the house, the base is moving at the
rate of 5 ft sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

c. At what rate is the angle between the ladder and the ground
changing then?

24. Commercial air traffic Two commercial airplanes are flying at
an altitude of 40,000 ft along straight-line courses that intersect at
right angles. Plane A is approaching the intersection point at a
speed of 442 knots (nautical miles per hour; a nautical mile is
2000 yd). Plane B is approaching the intersection at 481 knots. At
what rate is the distance between the planes changing when A is 5

x
0

y

13-ft ladder

y(t)

x(t)

�

u

>

z = 2.x = 4, y = 3,
s = 2x2

+ y2
+ z2

dx
dt

= 1 m>sec, 
dy

dt
= -2 m>sec, dz

dt
= 1 m>sec .

w = 5 cm,l = 12 cm> >

>
u

db>dtdu>dt, da>dt ,dA>dt

da>dtdu>dtdA>dt

du>dtdA>dt

A =

1
2

 ab sin u .

u

dz>dtdy>dtdx>dt

dz>dtdy>dtds>dt

dz>dtdy>dtdx>dtds>dt
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nautical miles from the intersection point and B is 12 nautical
miles from the intersection point?

25. Flying a kite A girl flies a kite at a height of 300 ft, the wind car-
rying the kite horizontally away from her at a rate of 25 ft sec. How
fast must she let out the string when the kite is 500 ft away from her?

26. Boring a cylinder The mechanics at Lincoln Automotive are
reboring a 6-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one thousandth of an
inch every 3 min. How rapidly is the cylinder volume increasing
when the bore (diameter) is 3.800 in.?

27. A growing sand pile Sand falls from a conveyor belt at the rate
of onto the top of a conical pile. The height of the pile
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer
in centimeters per minute.

28. A draining conical reservoir Water is flowing at the rate of
from a shallow concrete conical reservoir (vertex

down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then?
Answer in centimeters per minute.

29. A draining hemispherical reservoir Water is flowing at the rate
of from a reservoir shaped like a hemispherical bowl of
radius 13 m, shown here in profile. Answer the following ques-
tions, given that the volume of water in a hemispherical bowl of ra-
dius R is when the water is y meters deep.

a. At what rate is the water level changing when the water is 8 m
deep?

b. What is the radius r of the water’s surface when the water is
y m deep?

c. At what rate is the radius r changing when the water is 8 m deep?

30. A growing raindrop Suppose that a drop of mist is a perfect
sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area. Show that under these
circumstances the drop’s radius increases at a constant rate.

31. The radius of an inflating balloon A spherical balloon is in-
flated with helium at the rate of How fast is the
balloon’s radius increasing at the instant the radius is 5 ft? How
fast is the surface area increasing?

32. Hauling in a dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow.
The rope is hauled in at the rate of 2 ft sec.

a. How fast is the boat approaching the dock when 10 ft of rope
are out?

b. At what rate is the angle changing at this instant (see the
figure)?

u

>

100p ft3>min.

r

y

13

Center of sphere

Water level

V = sp>3dy2s3R - yd

6 m3>min

50 m3>min

10 m3>min

>
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33. A balloon and a bicycle A balloon is rising vertically above a
level, straight road at a constant rate of 1 ft sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft sec passes under it. How fast is the distance s(t)
between the bicycle and balloon increasing 3 sec later?

34. Making coffee Coffee is draining from a conical filter into 
a cylindrical coffeepot at the rate of 

a. How fast is the level in the pot rising when the coffee in the
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

6"

6"

6"

How fast
is this
level rising?

How fast
is this
level falling?

10 in3>min.

y

x
0

y(t)

s(t)

x(t)

>
>

�

Ring at edge
of dock

6'
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35. Cardiac output In the late 1860s, Adolf Fick, a professor of
physiology in the Faculty of Medicine in Würzberg, Germany, 
developed one of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardiac output as
you read this sentence is probably about 7 L min. At rest it is
likely to be a bit under 6 L min. If you are a trained marathon run-
ner running a marathon, your cardiac output can be as high as
30 L min.

Your cardiac output can be calculated with the formula

where Q is the number of milliliters of you exhale in a
minute and D is the difference between the concentration
(ml L) in the blood pumped to the lungs and the concentra-
tion in the blood returning from the lungs. With 
and 

fairly close to the 6 L min that most people have at basal (resting)
conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan Col-
lege of Medicine, East Tennessee State University.)

Suppose that when and we also know
that D is decreasing at the rate of 2 units a minute but that Q re-
mains unchanged. What is happening to the cardiac output?

36. Moving along a parabola A particle moves along the parabola
in the first quadrant in such a way that its x-coordinate

(measured in meters) increases at a steady 10 m sec. How fast is
the angle of inclination of the line joining the particle to the ori-
gin changing when 

37. Motion in the plane The coordinates of a particle in the metric
xy-plane are differentiable functions of time t with 

How fast is the particle’s
distance from the origin changing as it passes through the point
(5, 12)?

38. Videotaping a moving car You are videotaping a race from a
stand 132 ft from the track, following a car that is moving at
180 mi h (264 ft sec), as shown in the accompanying figure.
How fast will your camera angle be changing when the car is
right in front of you? A half second later?

39. A moving shadow A light shines from the top of a pole 50 ft
high. A ball is dropped from the same height from a point 30 ft

Car

Camera

132'

�

u

>>

-1 m>sec and dy>dt = -5 m>sec .
dx>dt =

x = 3 m?
u

>y = x2

D = 41,Q = 233

>
y =

233 ml>min

41 ml>L L 5.68 L>min,

D = 97 - 56 = 41 ml>L,
Q = 233 ml>min

CO2> CO2

CO2

y =

Q

D
,

>
> >
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away from the light. (See accompanying figure.) How fast is the
shadow of the ball moving along the ground sec later? 
(Assume the ball falls a distance )

40. A building’s shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long. At the moment in question, the angle the
sun makes with the ground is increasing at the rate of 0.27° min.
At what rate is the shadow decreasing? (Remember to use radians.
Express your answer in inches per minute, to the nearest tenth.)

41. A melting ice layer A spherical iron ball 8 in. in diameter is
coated with a layer of ice of uniform thickness. If the ice melts at
the rate of how fast is the thickness of the ice de-
creasing when it is 2 in. thick? How fast is the outer surface area
of ice decreasing?

42. Highway patrol A highway patrol plane flies 3 mi above a
level, straight road at a steady 120 mi h. The pilot sees an oncom-
ing car and with radar determines that at the instant the line-of-
sight distance from plane to car is 5 mi, the line-of-sight distance
is decreasing at the rate of 160 mi h. Find the car’s speed along
the highway.

43. Baseball players A baseball diamond is a square 90 ft on a
side. A player runs from first base to second at a rate of 16 ft sec.

a. At what rate is the player’s distance from third base changing
when the player is 30 ft from first base?

b. At what rates are angles and (see the figure) changing at
that time?

u2u1

>

>

>

10 in3>min,

80'

�

>u

x

Light

30

Shadow

0

50-ft
pole

Ball at time t � 0

1/2 sec later

x(t)

NOT TO SCALE

s = 16t2 ft in t sec .
1>2
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c. The player slides into second base at the rate of 15 ft sec. At
what rates are angles and changing as the player touches
base?

90'

Second base

Player

Home

30' First
base

Third
base

�1

�2

u2u1

> 44. Ships Two ships are steaming straight away from a point O
along routes that make a 120° angle. Ship A moves at 14 knots
(nautical miles per hour; a nautical mile is 2000 yd). Ship B
moves at 21 knots. How fast are the ships moving apart when

and OB = 3 nautical miles?OA = 5

3.11 Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the ac-
curacy we want for specific applications and are easier to work with. The approximating
functions discussed in this section are called linearizations, and they are based on tangent
lines. Other approximating functions, such as polynomials, are discussed in Chapter 10.

We introduce new variables dx and dy, called differentials, and define them in a way
that makes Leibniz’s notation for the derivative a true ratio. We use dy to esti-
mate error in measurement, which then provides for a precise proof of the Chain Rule
(Section 3.6).

Linearization

As you can see in Figure 3.49,  the tangent to the curve lies close to the curve near
the point of tangency. For a brief interval to either side, the y-values along the tangent line

y = x2

dy>dx

4

0
3–1

2

0
20

y � x2 and its tangent y � 2x � 1 at (1, 1). Tangent and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent and curve very close throughout
entire x-interval shown.

Tangent and curve closer still. Computer
screen cannot distinguish tangent from
curve on this x-interval.

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

y � x2

y � 2x � 1

(1, 1)

FIGURE 3.49 The more we magnify the graph of a function near a point where the
function is differentiable, the flatter the graph becomes and the more it resembles its
tangent.
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202 Chapter 3: Differentiation

give good approximations to the y-values on the curve. We observe this phenomenon by
zooming in on the two graphs at the point of tangency or by looking at tables of values for
the difference between ƒ(x) and its tangent line near the x-coordinate of the point of tan-
gency. The phenomenon is true not just for parabolas; every differentiable curve behaves
locally like its tangent line.

In general, the tangent to at a point where ƒ is differentiable
(Figure 3.50), passes through the point (a, ƒ(a)), so its point-slope equation is

Thus, this tangent line is the graph of the linear function

For as long as this line remains close to the graph of ƒ, L(x) gives a good approximation to
ƒ(x).

Lsxd = ƒsad + ƒ¿sadsx - ad .

y = ƒsad + ƒ¿sadsx - ad .

x = a ,y = ƒsxd

x

y

0–1

2

1

1 2 3 4

y � �
5
4

x
4y � 1 � x

2

y � �1 � x

FIGURE 3.51 The graph of and its
linearizations at and Figure 3.52 shows a
magnified view of the small window about 1 on the y-axis.

x = 3.x = 0
y = 21 + x

1.0

0–0.1 0.1 0.2

1.1

0.9

y � 1 �

y � �1 � x

2
x

FIGURE 3.52 Magnified view of the
window in Figure 3.51.

x

y

0 a

Slope � f '(a)

y � f (x)

y � L(x)(a,  f (a))

FIGURE 3.50 The tangent to the curve

Lsxd = ƒsad + ƒ¿sadsx - ad .
y = ƒsxd at x = a is the line

Solution Since

we have and giving the linearization

See Figure 3.52.

The following table shows how accurate the approximation 
from Example 1 is for some values of x near 0. As we move away from zero, we lose 

21 + x L 1 + sx>2d

Lsxd = ƒsad + ƒ¿sadsx - ad = 1 +
1
2

 sx - 0d = 1 +
x
2

.

ƒ¿s0d = 1>2,ƒs0d = 1

ƒ¿sxd =
1
2

 s1 + xd-1>2 ,

DEFINITIONS If ƒ is differentiable at then the approximating function

is the linearization of ƒ at a. The approximation

of ƒ by L is the standard linear approximation of ƒ at a. The point is the
center of the approximation.

x = a

ƒsxd L Lsxd

Lsxd = ƒsad + ƒ¿sadsx - ad

x = a ,

EXAMPLE 1 Find the linearization of (Figure 3.51).ƒsxd = 21 + x at x = 0
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3.11 Linearization and Differentials 203

accuracy. For example, for the linearization gives 2 as the approximation for 
which is not even accurate to one decimal place.

23,x = 2,

Approximation True value

1.095445

1.024695

1.002497 610-521.005 L 1 +
0.005

2
= 1.00250

610-321.05 L 1 +
0.05

2
 = 1.025

610-221.2 L 1 +
0.2
2

   = 1.10

ƒ True value � approximation ƒ

Do not be misled by the preceding calculations into thinking that whatever we do
with a linearization is better done with a calculator. In practice, we would never use a
linearization to find a particular square root. The utility of a linearization is its ability to
replace a complicated formula by a simpler one over an entire interval of values. If we
have to work with for x close to 0 and can tolerate the small amount of error in-
volved, we can work with instead. Of course, we then need to know how much
error there is. We further examine the estimation of error in Chapter 10.

A linear approximation normally loses accuracy away from its center. As Figure 3.51
suggests, the approximation will probably be too crude to be use-
ful near There, we need the linearization at 

EXAMPLE 2 Find the linearization of at 

Solution We evaluate the equation defining With

we have

At the linearization in Example 2 gives

which differs from the true value by less than one one-thousandth. The
linearization in Example 1 gives

a result that is off by more than 25%.

EXAMPLE 3 Find the linearization of at (Figure 3.53).

Solution Since and 
we find the linearization at to be

 = -x +
p
2

.

 = 0 + s -1d ax -
p
2
b

 Lsxd = ƒsad + ƒ¿sadsx - ad

a = p>2-1,
-sin sp>2d =ƒ¿sp>2d =ƒ¿sxd = -sin x,ƒsp>2d = cos sp>2d = 0,

x = p>2ƒsxd = cos x

21 + x = 21 + 3.2 L 1 +
3.2
2

= 1 + 1.6 = 2.6,

24.2 L 2.04939

21 + x = 21 + 3.2 L
5
4

+
3.2
4

= 1.250 + 0.800 = 2.050,

x = 3.2,

Lsxd = 2 +
1
4

 (x - 3) =
5
4

+
x
4

.

ƒs3d = 2, ƒ¿s3d =
1
2

 s1 + xd-1>2 `
x = 3

=
1
4

,

Lsxd at a = 3.

x = 3.ƒsxd = 21 + x

x = 3.x = 3.
21 + x L 1 + sx>2d

1 + sx>2d
21 + x

x

y

0 �
2 y � cos x

y � –x � �
2

FIGURE 3.53 The graph of 
and its linearization at Near

(Example 3).
x = p>2, cos x L -x + sp>2d

x = p>2.
ƒsxd = cos x
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An important linear approximation for roots and powers is

(Exercise 15). This approximation, good for values of x sufficiently close to zero, has
broad application. For example, when x is small,

Differentials

We sometimes use the Leibniz notation to represent the derivative of y with respect
to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx
and dy with the property that when their ratio exists, it is equal to the derivative.

dy>dx

 
1

21 - x2
= s1 - x2d-1>2

L 1 + a- 1
2
b s -x2d = 1 +

1
2

 x2

k = 1>3;  replace x by 5x4 . 23 1 + 5x4
= s1 + 5x4d1>3

L 1 +
1
3

 s5x4d = 1 +
5
3

 x4

k = -1;  replace x by -x . 
1

1 - x
= s1 - xd-1

L 1 + s -1ds -xd = 1 + x

k = 1>2 21 + x L 1 +
1
2

 x

s1 + xdk
L 1 + kx sx near 0; any number kd

204 Chapter 3: Differentiation

replace x by -x2 .

k = -1>2;

DEFINITION Let be a differentiable function. The differential dx is
an independent variable. The differential dy is

dy = ƒ¿sxd dx .

y = ƒsxd

Unlike the independent variable dx, the variable dy is always a dependent variable. It
depends on both x and dx. If dx is given a specific value and x is a particular number in the
domain of the function ƒ, then these values determine the numerical value of dy.

EXAMPLE 4

(a) Find dy if 

(b) Find the value of dy when and 

Solution

(a)

(b) Substituting and in the expression for dy, we have

The geometric meaning of differentials is shown in Figure 3.54. Let and set
The corresponding change in is

The corresponding change in the tangent line L is

 = ƒ¿(a) dx.

 = ƒ(a) + ƒ¿(a)[(a + dx) - a] - ƒ(a)

 ¢L = L(a + dx) - L(a)

¢y = ƒsa + dxd - ƒsad .

y = ƒsxddx = ¢x .
x = a

dy = s5 # 14
+ 37d0.2 = 8.4.

dx = 0.2x = 1

dy = s5x4
+ 37d dx

dx = 0.2.x = 1

y = x5
+ 37x .

(++++++)++++++*

L(a � dx)
()*

L(a)
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That is, the change in the linearization of ƒ is precisely the value of the differential dy
when and Therefore, dy represents the amount the tangent line rises or
falls when x changes by an amount 

If then the quotient of the differential dy by the differential dx is equal to the
derivative because

We sometimes write

in place of calling dƒ the differential of ƒ. For instance, if 
then

Every differentiation formula like

has a corresponding differential form like

EXAMPLE 5 We can use the Chain Rule and other differentiation rules to find differ-
entials of functions.

(a)

(b)

Estimating with Differentials

Suppose we know the value of a differentiable function ƒ(x) at a point a and want to esti-
mate how much this value will change if we move to a nearby point If dx � is
small, then we can see from Figure 3.54 that is approximately equal to the differential
dy. Since

¢x = dxƒsa + dxd = ƒsad + ¢y ,

¢y
¢xa + dx .

d a x
x + 1

b =

sx + 1d dx - x dsx + 1d
sx + 1d2 =

x dx + dx - x dx
sx + 1d2 =

dx
sx + 1d2

dstan 2xd = sec2s2xd ds2xd = 2 sec2 2x dx

dsu + yd = du + dy or dssin ud = cos u du .

dsu + yd
dx

=
du
dx

+
dy
dx
 or dssin ud

dx
= cos u  

du
dx

dƒ = ds3x2
- 6d = 6x dx .

ƒsxd = 3x2
- 6,dy = ƒ¿sxd dx ,

dƒ = ƒ¿sxd dx

dy , dx =

ƒ¿sxd dx
dx

= ƒ¿sxd =

dy
dx

.

ƒ¿sxd
dx Z 0,

dx = ¢x.
dx = ¢x .x = a

3.11 Linearization and Differentials 205

x

y

0 a

y � f (x)

�y � f (a � dx) � f (a)

�L � f '(a)dx

dx � �x

(a, f (a))

Tangent
line

a � dx

When dx is a small change in x,
the corresponding change in
the linearization is precisely dy.

(a � dx, f (a � dx))

FIGURE 3.54 Geometrically, the differential dy is the change
in the linearization of ƒ when changes by an amount

dx = ¢x .
x = a¢L
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the differential approximation gives

when Thus the approximation can be used to estimate 
when ƒ(a) is known and dx is small.

EXAMPLE 6 The radius r of a circle increases from to 10.1 m (Figure 3.55).
Use dA to estimate the increase in the circle’s area A. Estimate the area of the enlarged cir-
cle and compare your estimate to the true area found by direct calculation.

Solution Since the estimated increase is

Thus, since we have

The area of a circle of radius 10.1 m is approximately 
The true area is

The error in our estimate is which is the difference 

Error in Differential Approximation

Let ƒ(x) be differentiable at and suppose that is an increment of x. We
have two ways to describe the change in ƒ as x changes from a to 

How well does dƒ approximate 
We measure the approximation error by subtracting dƒ from 

As the difference quotient

ƒsa + ¢xd - ƒsad
¢x

¢x : 0,

 = P
#
¢x .

 = aƒ(a + ¢x) - ƒ(a)

¢x
- ƒ¿(a)b #

¢x

 = ƒ(a + ¢x) - ƒ(a) - ƒ¿(a)¢x

 = ¢ƒ - ƒ¿sad¢x

 Approximation error = ¢ƒ - dƒ

¢ƒ:
¢ƒ?

 The differential estimate: dƒ = ƒ¿sad ¢x .

The true change:  ¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x :
dx = ¢xx = a

¢A - dA .0.01p m2,

 = 102.01p m2.

 As10.1d = ps10.1d2

102p m2.

 = ps10d2
+ 2p = 102p .

 As10 + 0.1d L As10d + 2p

Asr + ¢rd L Asrd + dA,

dA = A¿sad dr = 2pa dr = 2ps10ds0.1d = 2p m2.

A = pr2 ,

a = 10 m

ƒsa + dxd¢y L dydx = ¢x .

ƒsa + dxd L ƒsad + dy
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�A ≈ dA � 2�a dr

a � 10

dr � 0.1

FIGURE 3.55 When dr is
small compared with a, the
differential gives the estimate

(Example 6).
Asa + drd = pa2

+ dA
dA

(++++)++++*

�ƒ

(+++++++)+++++++*

Call this part .P
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approaches (remember the definition of ), so the quantity in parentheses be-
comes a very small number (which is why we called it ). In fact, as When

is small, the approximation error is smaller still.

Although we do not know the exact size of the error, it is the product of two small
quantities that both approach zero as For many common functions, whenever 
is small, the error is still smaller.

¢x¢x : 0.
P
#
¢x

¢ƒ = ƒ¿(a)¢x + P ¢x

P ¢x¢x
¢x : 0.P : 0P

ƒ¿sadƒ¿sad
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()*

true
change

(+)+*

estimated
change

()*

error

Change in near 

If is differentiable at and x changes from a to the
change in ƒ is given by

(1)

in which as ¢x : 0.P : 0

¢y = ƒ¿sad ¢x + P ¢x

¢y
a + ¢x ,x = ay = ƒsxd

x � ay � ƒsxd

In Example 6 we found that

so the approximation error is and 

Proof of the Chain Rule

Equation (1) enables us to prove the Chain Rule correctly. Our goal is to show that if ƒ(u)
is a differentiable function of u and is a differentiable function of x, then the
composite is a differentiable function of x. Since a function is differentiable
if and only if it has a derivative at each point in its domain, we must show that whenever g
is differentiable at and ƒ is differentiable at then the composite is differentiable at

and the derivative of the composite satisfies the equation

Let be an increment in x and let and be the corresponding increments in 
u and y. Applying Equation (1) we have

where Similarly,

where as Notice also that Combining the equations
for and gives

so

¢y

¢x
= ƒ¿su0dg¿sx0d + P2 g¿sx0d + ƒ¿su0dP1 + P2P1 .

¢y = sƒ¿su0d + P2dsg¿sx0d + P1d¢x ,

¢y¢u
¢u : 0 as ¢x : 0.¢u : 0.P2 : 0

¢y = ƒ¿su0d¢u + P2 ¢u = sƒ¿su0d + P2d¢u ,

P1 : 0 as ¢x : 0.

¢u = g¿sx0d¢x + P1 ¢x = sg¿sx0d + P1d¢x ,

¢y¢u¢x

dy
dx
`
x=x0

= ƒ¿s gsx0dd # g¿sx0d .

x0

g sx0d ,x0

y = ƒsg sxdd
u = g sxd

0.01p>0.1 = 0.1p m.
P = 0.01p>¢r =¢A - dA = P¢r = 0.01p

¢A = p(10.1)2
- p(10)2

= (102.01 - 100)p = (2p + 0.01p) m2
()*

error

()*

dA
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Since and go to zero as goes to zero, three of the four terms on the right vanish in
the limit, leaving

Sensitivity to Change

The equation tells how sensitive the output of ƒ is to a change in input at dif-
ferent values of x. The larger the value of at x, the greater the effect of a given change dx.
As we move from a to a nearby point we can describe the change in ƒ in three ways:

True Estimated

Absolute change

Relative change

Percentage change

EXAMPLE 7 You want to calculate the depth of a well from the equation by
timing how long it takes a heavy stone you drop to splash into the water below. How sensi-
tive will your calculations be to a 0.1-sec error in measuring the time?

Solution The size of ds in the equation

depends on how big t is. If the change caused by is about

Three seconds later at the change caused by the same dt is

For a fixed error in the time measurement, the error in using ds to estimate the depth is
larger when the time it takes until the stone splashes into the water is longer.

EXAMPLE 8 In the late 1830s, French physiologist Jean Poiseuille (“pwa-ZOY”) 
discovered the formula we use today to predict how much the radius of a partially clogged
artery decreases the normal volume of flow. His formula,

says that the volume V of fluid flowing through a small pipe or tube in a unit of time at a
fixed pressure is a constant times the fourth power of the tube’s radius r. How does a 10%
decrease in r affect V? (See Figure 3.56.)

Solution The differentials of r and V are related by the equation

The relative change in V is

The relative change in V is 4 times the relative change in r, so a 10% decrease in r will 
result in a 40% decrease in the flow.

dV
V

=
4kr3 dr

kr4 = 4 
dr
r .

dV =
dV
dr

 dr = 4kr3 dr .

V = kr4 ,

ds = 32s5ds0.1d = 16 ft .

t = 5 sec,

ds = 32s2ds0.1d = 6.4 ft .

dt = 0.1t = 2 sec,

ds = 32t dt

s = 16t2

dƒ

ƒsad
* 100

¢ƒ

ƒsad
* 100

dƒ

ƒsad
¢ƒ

ƒsad

dƒ = ƒ¿sad dx¢ƒ = ƒsa + dxd - ƒsad

a + dx ,
ƒ¿

df = ƒ¿sxd dx

dy
dx
`
x=x0

= lim
¢x:0

 
¢y

¢x
= ƒ¿su0dg¿sx0d = ƒ¿sgsx0dd # g¿sx0d .

¢xP2P1
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EXAMPLE 9 Newton’s second law,

is stated with the assumption that mass is constant, but we know this is not strictly true be-
cause the mass of a body increases with velocity. In Einstein’s corrected formula, mass has
the value

where the “rest mass” represents the mass of a body that is not moving and c is the
speed of light, which is about 300,000 km sec. Use the approximation

(2)

to estimate the increase in mass resulting from the added velocity .

Solution When is very small compared with is close to zero and it is safe to
use the approximation

Eq. (2) with 

to obtain

or

(3)

Equation (3) expresses the increase in mass that results from the added velocity

Converting Mass to Energy

Equation (3) derived in Example 9 has an important interpretation. In Newtonian physics,
is the kinetic energy (KE) of the body, and if we rewrite Equation (3) in the

form

sm - m0dc2
L

1
2

 m0 y2 ,

s1>2dm0 y2

y.

m L m0 +
1
2

 m0 y2 a 1
c2 b .

m =

m0

21 - y2>c2
L m0 c1 +

1
2

 ay2

c2 b d = m0 +
1
2

 m0 y2 a 1
c2 b ,

x =

y
c

1

21 - y2>c2
L 1 +

1
2

 ay2

c2 b

c, y2>c2y

y¢m

1

21 - x2
L 1 +

1
2

 x2

>m0

m =

m0

21 - y2>c2
,

F =
d
dt

 smyd = m 
dy
dt

= ma ,
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Blockage

Opaque
dye

Inflatable
balloon on
    catheter

Angiography Angioplasty 

FIGURE 3.56 To unblock a clogged artery,
an opaque dye is injected into it to make the
inside visible under X-rays. Then a balloon-
tipped catheter is inflated inside the artery to
widen it at the blockage site.
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we see that

or

So the change in kinetic energy in going from velocity 0 to velocity is approxi-
mately equal to the change in mass times the square of the speed of light. Using

we see that a small change in mass can create a large change in
energy.
c L 3 * 108 m>sec,

s¢mdc2 ,
y¢sKEd

s¢mdc2
L ¢sKEd .

sm - m0dc2
L

1
2

 m0 y2
=

1
2

 m0 y2
-

1
2

 m0s0d2
= ¢sKEd ,

210 Chapter 3: Differentiation

Exercises 3.11

Finding Linearizations
In Exercises 1–5, find the linearization L(x) of ƒ(x) at 

1.

2.

3.

4.

5.

6. Common linear approximations at Find the lineariza-
tions of the following functions at 

(a) sin x (b) cos x (c) tan x (d) (e)

Linearization for Approximation
In Exercises 7–14, find a linearization at a suitably chosen integer near

at which the given function and its derivative are easy to evaluate.

7.

8.

9.

10.

11.

12.

13.

14.

15. Show that the linearization of at is

16. Use the linear approximation to find an ap-
proximation for the function ƒ(x) for values of x near zero.

a. b.

c. d.

e. f.

17. Faster than a calculator Use the approximation 
to estimate the following.

a. b. 23 1.009s1.0002d50

1 + kx
s1 + xdk L

ƒsxd =
3

B
a1 -

1
2 + x

b2

ƒsxd = s4 + 3xd1>3

ƒsxd = 22 + x2ƒsxd =

1

21 + x

ƒsxd =

2
1 - x

ƒsxd = s1 - xd6

s1 + xdk
L 1 + kx

Lsxd = 1 + kx .
x = 0ƒsxd = s1 + xdk

ƒ(x) = sin-1 x, x0 = p>12

ƒ(x) = e-x, x0 = -0.1

ƒsxd =

x
x + 1

, x0 = 1.3

ƒsxd = 23 x, x0 = 8.5

ƒsxd = 1 + x, x0 = 8.1

ƒsxd = 2x2
+ 3x - 3, x0 = -0.9

ƒsxd = x-1, x0 = 0.9

ƒsxd = x2
+ 2x, x0 = 0.1

x0

ln (1 + x)ex

x = 0.
x = 0

ƒ(x) = tan x, a = p

ƒsxd = 23 x, a = -8

ƒsxd = x +

1
x  , a = 1

ƒsxd = 2x2
+ 9, a = -4

ƒsxd = x3
- 2x + 3, a = 2

x = a .
18. Find the linearization of How

is it related to the individual linearizations of and sin x
at 

Derivatives in Differential Form
In Exercises 19–38, find dy.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

Approximation Error
In Exercises 39–44, each function ƒ(x) changes value when x changes
from Find

a. the change 

b. the value of the estimate and

c. the approximation error 

x

y

0

dx

x0 � dx

df � f '(x0) dx

� f � f (x0 � dx) � f (x0)

Tangent

(x0, f (x0))

y � f (x)

x0

ƒ ¢ƒ - dƒ ƒ .

dƒ = ƒ¿sx0d dx ;

¢ƒ = ƒsx0 + dxd - ƒsx0d ;

x0 to x0 + dx .

y = etan-1 2x2
+ 1y = sec-1 (e-x)

y = cot-1 a 1
x2 b + cos-1 2xy = tan-1 (ex2

)

y = ln a x + 1

2x - 1
by = ln (1 + x2)

y = xe-xy = e2x

y = 2 cot a 1
1x
by = 3 csc s1 - 21xd

y = sec sx2
- 1dy = 4 tan sx3>3d

y = cos sx2dy = sin s51xd
xy2

- 4x3>2
- y = 02y3>2

+ xy - x = 0

y =

21x

3s1 + 1xd
y =

2x

1 + x2

y = x21 - x2y = x3
- 31x

x = 0?
2x + 1

ƒsxd = 2x + 1 + sin x at x = 0.
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39.

40.

41.

42.

43.

44.

Differential Estimates of Change
In Exercises 45–50, write a differential formula that estimates the
given change in volume or surface area.

45. The change in the volume of a sphere when the 
radius changes from to 

46. The change in the volume of a cube when the edge
lengths change from to 

47. The change in the surface area of a cube when the edge
lengths change from to 

48. The change in the lateral surface area of a
right circular cone when the radius changes from to 
and the height does not change

49. The change in the volume of a right circular cylinder
when the radius changes from to and the height does
not change

50. The change in the lateral surface area of a right circular
cylinder when the height changes from to and the 
radius does not change

Applications
51. The radius of a circle is increased from 2.00 to 2.02 m.

a. Estimate the resulting change in area.

b. Express the estimate as a percentage of the circle’s original
area.

52. The diameter of a tree was 10 in. During the following year, the
circumference increased 2 in. About how much did the tree’s 
diameter increase? The tree’s cross-section area?

53. Estimating volume Estimate the volume of material in a cylindri-
cal shell with length 30 in., radius 6 in., and shell thickness 0.5 in.

54. Estimating height of a building A surveyor, standing 30 ft
from the base of a building, measures the angle of elevation to the
top of the building to be 75°. How accurately must the angle be
measured for the percentage error in estimating the height of the
building to be less than 4%?

55. Tolerance The radius r of a circle is measured with an error of
at most 2%. What is the maximum corresponding percentage 
error in computing the circle’s

a. circumference? b. area?

56. Tolerance The edge x of a cube is measured with an error of at
most 0.5%. What is the maximum corresponding percentage error
in computing the cube’s

a. surface area? b. volume?

6 in.
0.5 in.

30 in.

h0 + dhh0

S = 2prh

r0 + drr0

V = pr2h

r0 + drr0

S = pr2r2
+ h2

x0 + dxx0

S = 6x2

x0 + dxx0

V = x3

r0 + drr0

V = s4>3dpr 3

ƒsxd = x3
- 2x + 3, x0 = 2, dx = 0.1

ƒsxd = x-1, x0 = 0.5, dx = 0.1

ƒsxd = x4, x0 = 1, dx = 0.1

ƒsxd = x3
- x, x0 = 1, dx = 0.1

ƒsxd = 2x2
+ 4x - 3, x0 = -1, dx = 0.1

ƒsxd = x2
+ 2x, x0 = 1, dx = 0.1
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57. Tolerance The height and radius of a right circular cylinder are
equal, so the cylinder’s volume is The volume is to be
calculated with an error of no more than 1% of the true value.
Find approximately the greatest error that can be tolerated in the
measurement of h, expressed as a percentage of h.

58. Tolerance

a. About how accurately must the interior diameter of a 10-m-
high cylindrical storage tank be measured to calculate the
tank’s volume to within 1% of its true value?

b. About how accurately must the tank’s exterior diameter be
measured to calculate the amount of paint it will take to paint
the side of the tank to within 5% of the true amount?

59. The diameter of a sphere is measured as and the vol-
ume is calculated from this measurement. Estimate the percent-
age error in the volume calculation.

60. Estimate the allowable percentage error in measuring the diameter D
of a sphere if the volume is to be calculated correctly to within 3%.

61. The effect of flight maneuvers on the heart The amount of
work done by the heart’s main pumping chamber, the left ventri-
cle, is given by the equation

where W is the work per unit time, P is the average blood pres-
sure, V is the volume of blood pumped out during the unit of time,

(“delta”) is the weight density of the blood, is the average ve-
locity of the exiting blood, and g is the acceleration of gravity.

When and remain constant, W becomes a function
of g, and the equation takes the simplified form

As a member of NASA’s medical team, you want to know how sen-
sitive W is to apparent changes in g caused by flight maneuvers,
and this depends on the initial value of g. As part of your investiga-
tion, you decide to compare the effect on W of a given change dg on
the moon, where with the effect the same change
dg would have on Earth, where Use the simplified
equation above to find the ratio of to 

62. Measuring acceleration of gravity When the length L of a
clock pendulum is held constant by controlling its temperature,
the pendulum’s period T depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from
place to place on the earth’s surface, depending on the change in g.
By keeping track of we can estimate the variation in g from the
equation that relates T, g, and L.

a. With L held constant and g as the independent variable,
calculate dT and use it to answer parts (b) and (c).

b. If g increases, will T increase or decrease? Will a pendulum
clock speed up or slow down? Explain.

c. A clock with a 100-cm pendulum is moved from a location
where to a new location. This increases the
period by Find dg and estimate the value of
g at the new location.

63. The linearization is the best linear approximation Suppose
that is differentiable at and that 

is a linear function in which m and c are constants.msx - ad + c
g sxd =x = ay = ƒsxd

dT = 0.001 sec .
g = 980 cm>sec2

T = 2psL>gd1>2¢T ,

dWEarth .dWmoon

g = 32 ft>sec2 .
g = 5.2 ft>sec2 ,

W = a +

b
g  sa, b constantd .

yP, V, d ,

yd

W = PV +

Vdy2

2g
,

100 ; 1 cm

V = ph3 .
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If the error were small enough near 
we might think of using g as a linear approximation of ƒ instead
of the linearization Show that if we
impose on g the conditions

1. The approximation error is zero at 

2.

then Thus, the linearization L(x)
gives the only linear approximation whose error is both zero at

and negligible in comparison with 

64. Quadratic approximations

a. Let be a quadratic 
approximation to ƒ(x) at with the properties:

i)

ii)

iii)

Determine the coefficients and 

b. Find the quadratic approximation to at

c. Graph and its quadratic approximation at
Then zoom in on the two graphs at the point (0, 1).

Comment on what you see.

d. Find the quadratic approximation to at 
Graph g and its quadratic approximation together. Comment
on what you see.

e. Find the quadratic approximation to at
Graph h and its quadratic approximation together.

Comment on what you see.
x = 0.

hsxd = 21 + x

x = 1.gsxd = 1>x
x = 0.

ƒsxd = 1>s1 - xd
x = 0.

ƒsxd = 1>s1 - xd
b2 .b0 , b1 ,

Q–sad = ƒ–sad.
Q¿sad = ƒ¿sad
Qsad = ƒsad

x = a
Qsxd = b0 + b1sx - ad + b2sx - ad2

x
a

y � f (x)

(a, f (a))

The linearization, L(x):
y � f (a) � f '(a)(x � a)

Some other linear
approximation, g(x):
y � m(x � a) � c

x - a .x = a

g sxd = ƒsad + ƒ¿sadsx - ad .

lim
x:a

  
Esxd

x - a = 0

x = a .Esad = 0

Lsxd = ƒsad + ƒ¿sadsx - ad .

x = a ,Esxd = ƒsxd - g sxd
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f. What are the linearizations of ƒ, g, and h at the respective
points in parts (b), (d), and (e)?

65. The linearization of

a. Find the linearization of at Then round its
coefficients to two decimal places.

b. Graph the linearization and function together for
and 

66. The linearization of 

a. Find the linearization of at Then round
its coefficients to two decimal places.

b. Graph the linearization and function together in the window
and 

COMPUTER EXPLORATIONS
In Exercises 67–72, use a CAS to estimate the magnitude of the error
in using the linearization in place of the function over a specified in-
terval I. Perform the following steps:

a. Plot the function ƒ over I.

b. Find the linearization L of the function at the point a.

c. Plot ƒ and L together on a single graph.

d. Plot the absolute error and find its 
maximum value.

e. From your graph in part (d), estimate as large a as you
can, satisfying

for Then check graphically to see if
your holds true.

67.

68.

69.

70.

71.

72. ƒ(x) = 2x sin-1 x, [0, 1], a =

1
2

ƒ(x) = x2x, [0, 2], a = 1

ƒsxd = 1x - sin x, [0, 2p], a = 2

ƒsxd = x2>3sx - 2d, [-2, 3], a = 2

ƒsxd =

x - 1
4x2

+ 1
, c- 3

4, 1 d , a =

1
2

ƒsxd = x3
+ x2

- 2x, [-1, 2], a = 1

d-estimate
P = 0.5, 0.1, and 0.01.

ƒ x - a ƒ 6 d Q ƒ ƒsxd - Lsxd ƒ 6 P

d 7 0

ƒ ƒsxd - Lsxd ƒ  over I

2 … x … 4.0 … x … 8

x = 3.ƒsxd = log3 x

log3 x

-1 … x … 1.-3 … x … 3

x = 0.ƒsxd = 2x

2x

The error is negligible when compared
with x - a .

T

T

T

T

T

Chapter 3 Questions to Guide Your Review

1. What is the derivative of a function ƒ? How is its domain related
to the domain of ƒ? Give examples.

2. What role does the derivative play in defining slopes, tangents,
and rates of change?

3. How can you sometimes graph the derivative of a function when
all you have is a table of the function’s values?

4. What does it mean for a function to be differentiable on an open
interval? On a closed interval?

5. How are derivatives and one-sided derivatives related?

6. Describe geometrically when a function typically does not have a
derivative at a point.

7. How is a function’s differentiability at a point related to its conti-
nuity there, if at all?

8. What rules do you know for calculating derivatives? Give some
examples.
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9. Explain how the three formulas

a.

b.

c.

enable us to differentiate any polynomial.

10. What formula do we need, in addition to the three listed in Ques-
tion 9, to differentiate rational functions?

11. What is a second derivative? A third derivative? How many deriv-
atives do the functions you know have? Give examples.

12. What is the derivative of the exponential function ? How does the
domain of the derivative compare with the domain of the function?

13. What is the relationship between a function’s average and instan-
taneous rates of change? Give an example.

14. How do derivatives arise in the study of motion? What can you
learn about a body’s motion along a line by examining the deriva-
tives of the body’s position function? Give examples.

15. How can derivatives arise in economics?

16. Give examples of still other applications of derivatives.

17. What do the limits and 
have to do with the derivatives of the sine and cosine functions?
What are the derivatives of these functions?

18. Once you know the derivatives of sin x and cos x, how can you
find the derivatives of tan x, cot x, sec x, and csc x? What are the
derivatives of these functions?

19. At what points are the six basic trigonometric functions continu-
ous? How do you know?

20. What is the rule for calculating the derivative of a composite of
two differentiable functions? How is such a derivative evaluated?
Give examples.

limh:0 sscos h - 1d>hdlimh:0 sssin hd>hd

e x

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx

d
dx

 scud = c 
du
dx

d
dx

 sxnd = nxn - 1
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21. If u is a differentiable function of x, how do you find if
n is an integer? If n is a real number? Give examples.

22. What is implicit differentiation? When do you need it? Give 
examples.

23. What is the derivative of the natural logarithm function ln x? How
does the domain of the derivative compare with the domain of the
function?

24. What is the derivative of the exponential function and
? What is the geometric significance of the limit of

as ? What is the limit when a is the number e?

25. What is the derivative of Are there any restrictions on a?

26. What is logarithmic differentiation? Give an example.

27. How can you write any real power of x as a power of e? Are there
any restrictions on x? How does this lead to the Power Rule for
differentiating arbitrary real powers?

28. What is one way of expressing the special number e as a limit?
What is an approximate numerical value of e correct to 7 decimal
places?

29. What are the derivatives of the inverse trigonometric functions?
How do the domains of the derivatives compare with the domains
of the functions?

30. How do related rates problems arise? Give examples.

31. Outline a strategy for solving related rates problems. Illustrate
with an example.

32. What is the linearization L(x) of a function ƒ(x) at a point 
What is required of ƒ at a for the linearization to exist? How are
linearizations used? Give examples.

33. If x moves from a to a nearby value how do you estimate
the corresponding change in the value of a differentiable function
ƒ(x)? How do you estimate the relative change? The percentage
change? Give an example.

a + dx ,

x = a?

loga x ?

h : 0(ah
- 1)>ha Z 1

ax, a 7 0

sd>dxdsund
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Derivatives of Functions
Find the derivatives of the functions in Exercises 1–64.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. s = csc5 s1 - t + 3t2ds = ssec t + tan td5

s = cot3 a2t bs = cos4 s1 - 2td

y =

1
sin2 x

-

2
sin x

y = 2 tan2 x - sec2 x

s =

1
1t - 1

s =

1t

1 + 1t

y = a-1 -

csc u

2
-

u2

4
b2

y = su2
+ sec u + 1d3

y = s2x - 5ds4 - xd-1y = sx + 1d2sx2
+ 2xd

y = x7
+ 27x -

1
p + 1

y = x3
- 3sx2

+ p2d

y = 3 - 0.7x3
+ 0.3x7y = x5

- 0.125x2
+ 0.25x

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. y = 4x2x + 1xy = B
x2

+ x

x2

y = a 21x

21x + 1
b2

y = a 1x
1 + x

b2

s =

-1
15s15t - 1d3s = a 4t

t + 1
b-2

y = x-2 sin2 sx3dy = x2 sin2 s2x2d
y = x2 cot 5xy = 5 cot x2

y = 1x csc sx + 1d3y = x-1>2 sec s2xd2

y = 21x sin 1xy =

1
2

 x2 csc 
2
x

r = sin Au + 2u + 1 Br = sin 22u

r = 2u2cos ur = 22u sin u
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35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Implicit Differentiation
In Exercises 65–78, find by implicit differentiation.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

In Exercises 79 and 80, find .

79. 80.

In Exercises 81 and 82, find .

81. 82.

83. Find by implicit differentiation:

a. b.

84. a. By differentiating implicitly, show that

b. Then show that d2y>dx2
= -1>y3 .

dy>dx = x>y .
x2

- y2
= 1

y2
= 1 -

2
xx3

+ y3
= 1

d2y>dx2

2rs - r - s + s2
= -3r cos 2s + sin2 s = p

dr>ds

q = s5p2
+ 2pd-3>2p3

+ 4pq - 3q2
= 2

dp>dq

xy
= 22ye tan-1 x

= 2

x sin-1 y = 1 + x2ln (x>y) = 1

y2
= 2e-1>xex + 2y

= 1

y2
= A

1 + x
1 - x

y2
=

x
x + 1

x2y2
= 11xy = 1

5x4>5
+ 10y6>5

= 15x3
+ 4xy - 3y4>3

= 2x

x2
+ xy + y2

- 5x = 2xy + 2x + 3y = 1

dy>dx

y = s1 + x2detan-1 x

y = csc-1 ssec ud, 0 6 u 6 p>2
y = 22x - 1  sec-1 1x

y = z sec-1 z - 2z2
- 1, z 7 1

y = s1 + t2d cot-1 2t

y = t tan-1 t -

1
2

 ln t

y = z cos-1 z - 21 - z2

y = ln cos-1 x

y = sin-1 a 1

2y b , y 7 1

y = sin-121 - u2, 0 6 u 6 1

y = 2sln xdx>2y = sx + 2dx + 2

y = 22x-22y = 5x3.6

y = 92ty = 8-t

y = log5 s3x - 7dy = log2 sx2>2d

y = ln ssec2 udy = ln ssin2 ud

y = x2e-2>xy =

1
4

 xe4x
-

1
16

 e4x

y = 22e22xy = 10e-x>5
y = s3 + cos3 3xd-1>3y =

3

s5x2
+ sin 2xd3>2

y = 20s3x - 4d1>4s3x - 4d-1>5y = s2x + 1d22x + 1

r = a1 + sin u

1 - cos u
b2

r = a sin u

cos u - 1
b2

214 Chapter 3: Differentiation

Numerical Values of Derivatives
85. Suppose that functions ƒ(x) and g(x) and their first derivatives

have the following values at and 

x ƒ(x) g (x) ƒ�(x) g�(x)

0 1 1
1 3 5

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

g.

86. Suppose that the function ƒ(x) and its first derivative have the 
following values at and 

x ƒ(x) ƒ�(x)

0 9
1

Find the first derivatives of the following combinations at the
given value of x.

a. b.

c. d.

e. f.

87. Find the value of at if and 

88. Find the value of at if and 

89. Find the value of at if and

90. Find the value of at if and

91. If find the value of at the point (0, 1).

92. If find at the point (8, 8).

Applying the Derivative Definition
In Exercises 93 and 94, find the derivative using the definition.

93.

94.

95. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.

x = 0?

x = 0?

ƒsxd = e x2, -1 … x 6 0

-x2,   0 … x … 1.

g sxd = 2x2
+ 1

ƒstd =

1
2t + 1

d2y>dx2x1>3
+ y1>3

= 4,

d2y>dx2y3
+ y = 2 cos x ,

u2t + u = 1.
r = su2

+ 7d1>3t = 0dr>dt

r = 3 sin ss + p>6d .
w = sin Ae1r Bs = 0dw>ds

su2
+ 2ud1>3 .

t =s = t2
+ 5tu = 2ds>du

x = t2
+ p .y = 3 sin 2xt = 0dy>dt

10 sin apx
2
b  ƒ 2sxd, x = 1

ƒsxd
2 + cos x

 , x = 0

ƒs1 - 5 tan xd, x = 0ƒs1xd, x = 1

2ƒsxd, x = 01x ƒsxd, x = 1

1>5-3
-2

x = 1.x = 0

ƒsx + g sxdd, x = 0

sx + ƒsxdd3>2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
, x = 1

ƒsxdg2sxd, x = 06ƒsxd - g sxd, x = 1

-41>2 1>2-3

x = 1.x = 0
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96. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.
97. a. Graph the function

b. Is ƒ continuous at 

c. Is ƒ differentiable at 

Give reasons for your answers.
98. For what value or values of the constant m, if any, is

a. continuous at 

b. differentiable at 

Give reasons for your answers.

Slopes, Tangents, and Normals
99. Tangents with specified slope Are there any points on the

curve where the slope is If so,
find them.

100. Tangents with specified slope Are there any points on the
curve where the slope is 2? If so, find them.

101. Horizontal tangents Find the points on the curve 
where the tangent is parallel to the 

x-axis.

102. Tangent intercepts Find the x- and y-intercepts of the line that
is tangent to the curve at the point 

103. Tangents perpendicular or parallel to lines Find the points
on the curve where the tangent is

a. perpendicular to the line 

b. parallel to the line 

104. Intersecting tangents Show that the tangents to the curve
at and intersect at right angles.

105. Normals parallel to a line Find the points on the curve
where the normal is parallel to

the line Sketch the curve and normals together, la-
beling each with its equation.

106. Tangent and normal lines Find equations for the tangent and
normal to the curve at the point Sketch
the curve, tangent, and normal together, labeling each with its
equation.

107. Tangent parabola The parabola is to be tangent
to the line Find C.

108. Slope of tangent Show that the tangent to the curve at
any point meets the curve again at a point where the
slope is four times the slope at 

109. Tangent curve For what value of c is the curve 
tangent to the line through the points 

110. Normal to a circle Show that the normal line at any point of
the circle passes through the origin.x2

+ y2
= a2

s0, 3d and s5, -2d?
y = c>sx + 1d

sa, a3d .
sa, a3d

y = x3

y = x .
y = x2

+ C

sp>2, 1d .y = 1 + cos x

y = -x>2.
y = tan x, -p>2 6 x 6 p>2,

x = -px = py = sp sin xd>x
y = 22 - 12x .

y = 1 - sx>24d .

y = 2x3
- 3x2

- 12x + 20

s -2, -8d .y = x3

2x3
- 3x2

- 12x + 20
y =

y = x - e-x

-3>2?y = sx>2d + 1>s2x - 4d

x = 0?

x = 0?

ƒsxd = e sin 2x, x … 0

mx, x 7 0

x = 1?

x = 1?

ƒsxd = e x, 0 … x … 1

2 - x, 1 6 x … 2.

x = 0?

x = 0?

ƒsxd = e x, -1 … x 6 0

tan x,   0 … x … p>4.
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In Exercises 111–116, find equations for the lines that are tangent and
normal to the curve at the given point.

111.

112.

113.

114.

115.

116.

117. Find the slope of the curve at the points (1, 1)
and 

118. The graph shown suggests that the curve 
might have horizontal tangents at the x-axis. Does it? Give rea-
sons for your answer.

Analyzing Graphs
Each of the figures in Exercises 119 and 120 shows two graphs, the
graph of a function together with the graph of its derivative

Which graph is which? How do you know?

119. 120.

121. Use the following information to graph the function 
for 

i) The graph of ƒ is made of line segments joined end to end.

ii) The graph starts at the point 

iii) The derivative of ƒ, where defined, agrees with the step
function shown here.

x

y

1–1 2

1

–1
3 4 5 6

–2

y � f '(x)

s -1, 2d .

-1 … x … 6.
y = ƒsxd

ƒ¿sxd .
y = ƒsxd

x

y

0

–1

1
y � sin (x � sin x)

� 2�–2� –�

y = sin sx - sin xd
s1, -1d .

x3y3
+ y2

= x + y

x3>2
+ 2y3>2

= 17, s1, 4d
x + 1xy = 6, s4, 1d
s y - xd2

= 2x + 4, s6, 2d
xy + 2x - 5y = 2, s3, 2d
ex

+ y2
= 2, s0, 1d

x2
+ 2y2

= 9, s1, 2d

x

y

0 1–1

1

–1

–2

2A

B

x

y

0 1

1

A

B

2

2

3

4
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122. Repeat Exercise 121, supposing that the graph starts at 
instead of 

Exercises 123 and 124 are about the accompanying graphs. The
graphs in part (a) show the numbers of rabbits and foxes in a small
arctic population. They are plotted as functions of time for 200 days.
The number of rabbits increases at first, as the rabbits reproduce. But
the foxes prey on rabbits and, as the number of foxes increases, the
rabbit population levels off and then drops. Part (b) shows the graph of
the derivative of the rabbit population, made by plotting slopes.

123. a. What is the value of the derivative of the rabbit population
when the number of rabbits is largest? Smallest?

b. What is the size of the rabbit population when its derivative is
largest? Smallest (negative value)?

124. In what units should the slopes of the rabbit and fox population
curves be measured?

s -1, 2d .
s -1, 0d
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Show how to extend the functions in Exercises 133 and 134 to be con-
tinuous at the origin.

133. 134.

Logarithmic Differentiation
In Exercises 135–140, use logarithmic differentiation to find the 
derivative of y with respect to the appropriate variable.

135. 136.

137.

138.

139. 140.

Related Rates
141. Right circular cylinder The total surface area S of a right cir-

cular cylinder is related to the base radius r and height h by the
equation 

a. How is related to if h is constant?

b. How is related to if r is constant?

c. How is related to and if neither r nor h is
constant?

d. How is related to if S is constant?

142. Right circular cone The lateral surface area S of a right circu-
lar cone is related to the base radius r and height h by the equa-
tion 

a. How is related to if h is constant?

b. How is related to if r is constant?

c. How is related to and if neither r nor h is
constant?

143. Circle’s changing area The radius of a circle is changing at
the rate of At what rate is the circle’s area chang-
ing when 

144. Cube’s changing edges The volume of a cube is increasing at
the rate of at the instant its edges are 20 cm long.
At what rate are the lengths of the edges changing at that instant?

145. Resistors connected in parallel If two resistors of and 
ohms are connected in parallel in an electric circuit to make an
R-ohm resistor, the value of R can be found from the equation

If is decreasing at the rate of 1 ohm sec and is increasing
at the rate of 0.5 ohm sec, at what rate is R changing when

and R2 = 50 ohms?R1 = 75 ohms
> R2>R1

�
R

�
R2R1

1
R

=

1
R1

+

1
R2

.

R2R1

1200 cm3>min

r = 10 m?
-2>p m>sec.

dh>dtdr>dtdS>dt

dh>dtdS>dt

dr>dtdS>dt

S = pr2r2
+ h2 .

dh>dtdr>dt

dh>dtdr>dtdS>dt

dh>dtdS>dt

dr>dtdS>dt

S = 2pr2
+ 2prh .

y = sln xd1>sln xdy = ssin ud2u

y =

2u2u

2u2
+ 1

y = ast + 1dst - 1d
st - 2dst + 3d

b5

, t 7 2

y =
10

A
3x + 4
2x - 4

y =

2sx2
+ 1d

2cos 2x

ƒsxd =

tan stan xd
sin ssin xd

g sxd =

tan stan xd
tan x

(20, 1700)

0 50 100 150 200

1000

2000

(a)

(20, 40)

0 50 100 150 200

50

–50

–100

Derivative of the rabbit population

0

(b)

Number
of rabbits

Initial no. rabbits � 1000
Initial no. foxes � 40

Time (days)

Number
of foxes

�100

Time (days)

Trigonometric Limits
Find the limits in Exercises 125–132.

125. 126.

127. 128.

129.

130.

131. 132. lim
u:0

 
1 - cos u

u2lim
x:0

  
x sin x

2 - 2 cos x

lim
u:0+

 
1 - 2 cot2 u

5 cot2 u - 7 cot u - 8

lim
u: sp>2d-

 
4 tan2 u + tan u + 1

tan2 u + 5

lim
u:0

 
sin ssin ud
u

lim
r:0

  
sin r

tan 2r

lim
x:0

 
3x - tan 7x

2x
lim
x:0

  
sin x

2x2
- x
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146. Impedance in a series circuit The impedance Z (ohms) in a
series circuit is related to the resistance R (ohms) and reactance
X (ohms) by the equation If R is increasing at
3 ohms sec and X is decreasing at 2 ohms sec, at what rate is Z
changing when and 

147. Speed of moving particle The coordinates of a particle mov-
ing in the metric xy-plane are differentiable functions of time t
with and How fast is the
particle moving away from the origin as it passes through the
point 

148. Motion of a particle A particle moves along the curve 
in the first quadrant in such a way that its distance from the origin in-
creases at the rate of 11 units per second. Find when 

149. Draining a tank Water drains from the conical tank shown in
the accompanying figure at the rate of 

a. What is the relation between the variables h and r in the figure?

b. How fast is the water level dropping when 

150. Rotating spool As television cable is pulled from a large spool
to be strung from the telephone poles along a street, it unwinds
from the spool in layers of constant radius (see accompanying
figure). If the truck pulling the cable moves at a steady 6 ft sec
(a touch over 4 mph), use the equation to find how fast
(radians per second) the spool is turning when the layer of radius
1.2 ft is being unwound.

151. Moving searchlight beam The figure shows a boat 1 km off-
shore, sweeping the shore with a searchlight. The light turns at a
constant rate, 

a. How fast is the light moving along the shore when it reaches
point A?

b. How many revolutions per minute is 0.6 rad sec?>

du>dt = -0.6 rad/sec.

1.2'

s = ru
>

r

h

Exit rate: 5 ft3/min

10'

4'

h = 6 ft?

5 ft3>min.

x = 3.dx>dt

y = x3>2
s3, -4d?

dy>dt = 5 m>sec .dx>dt = 10 m>sec

X = 20 ohms?R = 10 ohms
>> Z = 2R2

+ X 2 .
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152. Points moving on coordinate axes Points A and B move along
the x- and y-axes, respectively, in such a way that the distance r
(meters) along the perpendicular from the origin to the line AB
remains constant. How fast is OA changing, and is it increasing,
or decreasing, when and B is moving toward O at the
rate of 0.3r m sec?

Linearization
153. Find the linearizations of

a. b.

Graph the curves and linearizations together.

154. We can obtain a useful linear approximation of the function
by combining the approximations

to get

Show that this result is the standard linear approximation of
at 

155. Find the linearization of 

156. Find the linearization of 

Differential Estimates of Change
157. Surface area of a cone Write a formula that estimates the

change that occurs in the lateral surface area of a right circular
cone when the height changes from and the radius
does not change.

158. Controlling error

a. How accurately should you measure the edge of a cube to be
reasonably sure of calculating the cube’s surface area with 
an error of no more than 2%?

b. Suppose that the edge is measured with the accuracy
required in part (a). About how accurately can the cube’s

(Lateral surface area)

h

r

1
3

V 5    pr2h

S 5 pr�r2 1 h2

h0 to h0 + dh

at x = 0.
ƒsxd = 2>s1 - xd + 21 + x - 3.1

ƒsxd = 21 + x + sin x - 0.5 at x = 0.

x = 0.1>s1 + tan xd

1
1 + tan x

L 1 - x .

1
1 + x

L 1 - x and tan x L x

ƒsxd = 1>s1 + tan xd at x = 0

sec x at x = -p>4.tan x at x = -p>4

> OB = 2r

1 km
A

x

�
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volume be calculated from the edge measurement? To find
out, estimate the percentage error in the volume calculation
that might result from using the edge measurement.

159. Compounding error The circumference of the equator of a
sphere is measured as 10 cm with a possible error of 0.4 cm.
This measurement is then used to calculate the radius. The
radius is then used to calculate the surface area and volume 
of the sphere. Estimate the percentage errors in the calculated
values of

a. the radius.

b. the surface area.

c. the volume.

160. Finding height To find the height of a lamppost (see accom-
panying figure), you stand a 6 ft pole 20 ft from the lamp and

218 Chapter 3: Differentiation

measure the length a of its shadow, finding it to be 15 ft, give or
take an inch. Calculate the height of the lamppost using the
value and estimate the possible error in the result.

h

6 ft

20 ft
a

a = 15

Chapter 3 Additional and Advanced Exercises

1. An equation like is called an identity be-
cause it holds for all values of An equation like is
not an identity because it holds only for selected values of 
not all. If you differentiate both sides of a trigonometric iden-
tity in with respect to the resulting new equation will also
be an identity.

Differentiate the following to show that the resulting equa-
tions hold for all 

a.

b.

2. If the identity is differen-
tiated with respect to x, is the resulting equation also an identity?
Does this principle apply to the equation 
Explain.

3. a. Find values for the constants a, b, and c that will make

satisfy the conditions

b. Find values for b and c that will make

satisfy the conditions

c. For the determined values of a, b, and c, what happens for the
third and fourth derivatives of ƒ and g in each of parts 
(a) and (b)?

4. Solutions to differential equations

a. Show that and 
(a and b constants) all satisfy the equation

y– + y = 0.

y = a cos x + b sin xy = sin x, y = cos x ,

ƒs0d = g s0d and ƒ¿s0d = g¿s0d .

ƒsxd = sin sx + ad and g sxd = b sin x + c cos x

ƒs0d = g s0d, ƒ¿s0d = g¿s0d, and ƒ–s0d = g–s0d .

ƒsxd = cos x and g sxd = a + bx + cx2

x2
- 2x - 8 = 0?

sin sx + ad = sin x cos a + cos x sin a

cos 2u = cos2 u - sin2 u

sin 2u = 2 sin u cos u

u .

u ,u

u ,
sin u = 0.5u .

sin2 u + cos2 u = 1 b. How would you modify the functions in part (a) to satisfy the
equation

Generalize this result.

5. An osculating circle Find the values of h, k, and a that make
the circle tangent to the parabola

at the point (1, 2) and that also make the second de-
rivatives have the same value on both curves there. Cir-
cles like this one that are tangent to a curve and have the same
second derivative as the curve at the point of tangency are called
osculating circles (from the Latin osculari, meaning “to kiss”).
We encounter them again in Chapter 13.

6. Marginal revenue A bus will hold 60 people. The number x of
people per trip who use the bus is related to the fare charged
( p dollars) by the law Write an expression
for the total revenue r (x) per trip received by the bus company.
What number of people per trip will make the marginal revenue

equal to zero? What is the corresponding fare? (This fare is
the one that maximizes the revenue, so the bus company should
probably rethink its fare policy.)

7. Industrial production

a. Economists often use the expression “rate of growth” in
relative rather than absolute terms. For example, let 
be the number of people in the labor force at time t in a given
industry. (We treat this function as though it were differentiable
even though it is an integer-valued step function.)

Let be the average production per person in the
labor force at time t. The total production is then 
If the labor force is growing at the rate of 4% per year

and the production per worker is growing
at the rate of 5% per year find the rate of
growth of the total production, y.

sdy>dt = 0.05yd ,
sdu>dt = 0.04ud

y = uy .
y = g std

u = ƒstd

dr>dx

p = [3 - sx>40d]2 .

d2y>dx2
y = x2

+ 1
sx - hd2

+ s y - kd2
= a2

y– + 4y = 0?
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b. Suppose that the labor force in part (a) is decreasing at
the rate of 2% per year while the production per person is
increasing at the rate of 3% per year. Is the total production
increasing, or is it decreasing, and at what rate?

8. Designing a gondola The designer of a 30-ft-diameter spherical
hot air balloon wants to suspend the gondola 8 ft below the bottom
of the balloon with cables tangent to the surface of the balloon, as
shown. Two of the cables are shown running from the top edges of
the gondola to their points of tangency, and 
How wide should the gondola be?

9. Pisa by parachute On August 5, 1988, Mike McCarthy of 
London jumped from the top of the Tower of Pisa. He then
opened his parachute in what he said was a world record low-level
parachute jump of 179 ft. Make a rough sketch to show the shape
of the graph of his speed during the jump. (Source: Boston Globe,
Aug. 6, 1988.)

10. Motion of a particle The position at time of a particle
moving along a coordinate line is

a. What is the particle’s starting position 

b. What are the points farthest to the left and right of the origin
reached by the particle?

c. Find the particle’s velocity and acceleration at the points in
part (b).

d. When does the particle first reach the origin? What are its
velocity, speed, and acceleration then?

11. Shooting a paper clip On Earth, you can easily shoot a paper
clip 64 ft straight up into the air with a rubber band. In t sec after
firing, the paper clip is above your hand.

a. How long does it take the paper clip to reach its maximum
height? With what velocity does it leave your hand?

b. On the moon, the same acceleration will send the paper clip
to a height of in t sec. About how long will
it take the paper clip to reach its maximum height, and how
high will it go?

12. Velocities of two particles At time t sec, the positions of two
particles on a coordinate line are 
and When do the particles have the
same velocities?

s2 = - t3
+ 9t2

- 12t m.
s1 = 3t3

- 12t2
+ 18t + 5 m

s = 64t - 2.6t2 ft

s = 64t - 16t2 ft

st = 0d?

s = 10 cos st + p>4d .

t Ú 0

x
0

15 ft

Suspension
cables

Gondola
Width

8 ft

y

x2 � y2 � 225

(12, –9)(–12, –9)

NOT TO SCALE

s12, -9d .s -12, -9d
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13. Velocity of a particle A particle of constant mass m moves
along the x-axis. Its velocity and position x satisfy the equation

where and are constants. Show that whenever 

14. Average and instantaneous velocity

a. Show that if the position x of a moving point is given by a
quadratic function of then the average
velocity over any time interval is equal to the
instantaneous velocity at the midpoint of the time interval.

b. What is the geometric significance of the result in part (a)?

15. Find all values of the constants m and b for which the function

is

a. continuous at 

b. differentiable at 

16. Does the function

have a derivative at Explain.

17. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of ƒ.

18. a. For what values of a and b will

be differentiable for all values of x?

b. Discuss the geometry of the resulting graph of g.

19. Odd differentiable functions Is there anything special about
the derivative of an odd differentiable function of x? Give reasons
for your answer.

20. Even differentiable functions Is there anything special about
the derivative of an even differentiable function of x? Give rea-
sons for your answer.

21. Suppose that the functions ƒ and g are defined throughout an
open interval containing the point that ƒ is differentiable at 
that and that g is continuous at Show that the prod-
uct ƒg is differentiable at This process shows, for example,
that although is not differentiable at the product is
differentiable at x = 0.

x ƒ x ƒx = 0,ƒ x ƒ

x0 .
x0 .ƒsx0d = 0,

x0 ,x0 ,

g sxd = eax + b, x … -1

ax3
+ x + 2b, x 7 -1

ƒsxd = eax, x 6 2

ax2
- bx + 3, x Ú 2

x = 0?

ƒsxd = L
1 - cos x

x , x Z 0

0, x = 0

x = p .

x = p .

y = e sin x, x 6 p

mx + b, x Ú p

[t1, t2]
t, x = At2

+ Bt + C ,

m 
dy
dt

= -kx .

y Z 0,x0k, y0 ,

1
2

 msy2
- y0 

2d =

1
2

 k sx0 
2

- x2d ,

y
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22. (Continuation of Exercise 21.) Use the result of Exercise 21 to
show that the following functions are differentiable at 

a. b. c.

d.

23. Is the derivative of

continuous at How about the derivative of 
Give reasons for your answers.

24. Suppose that a function ƒ satisfies the following conditions for all
real values of x and y:

i)

ii) where 

Show that the derivative exists at every value of x and that

25. The generalized product rule Use mathematical induction to
prove that if is a finite product of differentiable
functions, then is differentiable on their common domain and

26. Leibniz’s rule for higher-order derivatives of products Leib-
niz’s rule for higher-order derivatives of products of differentiable
functions says that

a.

b.

c.

 +
Á

+ u 
dny

dxn .

 +

nsn - 1d Á sn - k + 1d
k!

 
dn - ku

dxn - k
 
dky

dxk

dnsuyd
dxn =

dnu
dxn  y + n 

dn - 1u

dxn - 1  
dy
dx

+
Á

d3suyd
dx3 =

d3u

dx3  y + 3 
d2u

dx2  
dy
dx

+ 3 
du
dx

 
d2y

dx2 + u 
d3y

dx3 .

d2suyd
dx2 =

d2u

dx2  y + 2 
du
dx

 
dy
dx

+ u 
d2y

dx2 .

dy

dx
=

du1

dx
 u2

Á un + u1 
du2

dx
Á un +

Á
+ u1 u2

Á un - 1 
dun

dx
.

y
y = u1 u2

Á un

ƒ¿sxd = ƒsxd .
ƒ¿sxd

limx:0 g sxd = 1.ƒsxd = 1 + xg sxd ,

ƒsx + yd = ƒsxd # ƒs yd .

k sxd = xhsxd?x = 0?

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

hsxd = e x2 sin s1>xd, x Z 0

0, x = 0

23 x s1 - cos xdx2>3 sin xƒ x ƒ sin x

x = 0.

220 Chapter 3: Differentiation

The equations in parts (a) and (b) are special cases of the
equation in part (c). Derive the equation in part (c) by
mathematical induction, using

27. The period of a clock pendulum The period T of a clock pen-
dulum (time for one full swing and back) is given by the formula

where T is measured in seconds, 
and L, the length of the pendulum, is measured in feet. Find 
approximately

a. the length of a clock pendulum whose period is 

b. the change dT in T if the pendulum in part (a) is lengthened
0.01 ft.

c. the amount the clock gains or loses in a day as a result of the
period’s changing by the amount dT found in part (b).

28. The melting ice cube Assume that an ice cube retains its cubi-
cal shape as it melts. If we call its edge length s, its volume is

and its surface area is We assume that V and s are dif-
ferentiable functions of time t. We assume also that the cube’s vol-
ume decreases at a rate that is proportional to its surface area.
(This latter assumption seems reasonable enough when we think
that the melting takes place at the surface: Changing the amount
of surface changes the amount of ice exposed to melt.) In mathe-
matical terms,

The minus sign indicates that the volume is decreasing. We assume
that the proportionality factor k is constant. (It probably depends on
many things, such as the relative humidity of the surrounding air, the
air temperature, and the incidence or absence of sunlight, to name
only a few.) Assume a particular set of conditions in which the cube
lost 1 4 of its volume during the first hour, and that the volume is 
when How long will it take the ice cube to melt?t = 0.

V0>

dV
dt

= -k s6s2d, k 7 0.

6s2 .V = s3

T = 1 sec .

32.2 ft>sec2 ,g =T 2
= 4p2L>g ,

am
k
b + a m

k + 1
b =

m!
k!sm - kd!

+

m!
sk + 1d!sm - k - 1d!

.
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Chapter 3 Technology Application Projects 221

Chapter 3 Technology Application Projects

Mathematica/Maple Modules:

Convergence of Secant Slopes to the Derivative Function
You will visualize the secant line between successive points on a curve and observe what happens as the distance between them becomes small.
The function, sample points, and secant lines are plotted on a single graph, while a second graph compares the slopes of the secant lines with the
derivative function.

Derivatives, Slopes, Tangent Lines, and Making Movies
Parts I–III. You will visualize the derivative at a point, the linearization of a function, and the derivative of a function. You learn how to plot the
function and selected tangents on the same graph.
Part IV (Plotting Many Tangents)
Part V (Making Movies). Parts IV and V of the module can be used to animate tangent lines as one moves along the graph of a function.

Convergence of Secant Slopes to the Derivative Function
You will visualize right-hand and left-hand derivatives.

Motion Along a Straight Line:
Observe dramatic animated visualizations of the derivative relations among the position, velocity, and acceleration functions. Figures in the text
can be animated.

Position : Velocity : Acceleration
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222

4
APPLICATIONS OF

DERIVATIVES

OVERVIEW In this chapter we use derivatives to find extreme values of functions, to
determine and analyze the shapes of graphs, and to find numerically where a function
equals zero. We also introduce the idea of recovering a function from its derivative. The
key to many of these applications is the Mean Value Theorem, which paves the way to
integral calculus in Chapter 5.

4.1 Extreme Values of Functions

This section shows how to locate and identify extreme (maximum or minimum) values of
a function from its derivative. Once we can do this, we can solve a variety of  problems in
which we find the optimal (best) way to do something in a given situation (see Section
4.6). Finding maximum and minimum values is one of the most important applications of
the derivative.

Maximum and minimum values are called extreme values of the function ƒ. Absolute
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval the function takes on
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On
the same interval, the function takes on a maximum value of 1 and a
minimum value of (Figure 4.1).

Functions with the same defining rule or formula can have different extrema
(maximum or minimum values), depending on the domain. We see this in the following
example.

-1
g sxd = sin x

ƒsxd = cos x[-p>2, p>2]

DEFINITIONS Let ƒ be a function with domain D. Then ƒ has an absolute
maximum value on D at a point c if

and an absolute minimum value on D at c if

ƒsxd Ú ƒscd for all x in D .

ƒsxd … ƒscd for all x in D

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on

These values can depend
on the domain of a function.
[-p>2, p>2] .

x

y

0

1
y � sin x

y � cos x

–1

�
2

–�
2
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4.1 Extreme Values of Functions 223

Function rule Domain D Absolute extrema on D

(a) No absolute maximum.
Absolute minimum of 0 at 

(b) [0, 2] Absolute maximum of 4 at 
Absolute minimum of 0 at 

(c) (0, 2] Absolute maximum of 4 at 
No absolute minimum.

(d) (0, 2) No absolute extrema.y = x2

x = 2.y = x2

x = 0.
x = 2.y = x2

x = 0.
s - q , q dy = x2

x
2

(b) abs max and min

 y � x2

D � [0, 2]

y

x
2

(c) abs max only

 y � x2

D � (0, 2]

y

x
2

(d) no max or min

 y � x2

D � (0, 2)

y

x
2

(a) abs min only

 y � x2

D � (–�, �)

y

FIGURE 4.2 Graphs for Example 1.

THEOREM 1—The Extreme Value Theorem If ƒ is continuous on a closed interval
[a, b], then ƒ attains both an absolute maximum value M and an absolute
minimum value m in [a, b]. That is, there are numbers and in 
[a, b] with and for every other x in
[a, b].

m … ƒsxd … Mƒsx1d = m, ƒsx2d = M ,
x2x1

HISTORICAL BIOGRAPHY

Daniel Bernoulli
(1700–1789)

The proof of the Extreme Value Theorem requires a detailed knowledge of the real
number system (see Appendix 6) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval [a, b].
As we observed for the function it is possible that an absolute minimum (or ab-
solute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the
function be continuous, are key ingredients. Without them, the conclusion of the theorem

y = cos x ,

EXAMPLE 1 The absolute extrema of the following functions on their domains can be seen
in Figure 4.2. Notice that a function might not have a maximum or minimum if the domain is
unbounded or fails to contain an endpoint.

Some of the functions in Example 1 did not have a maximum or a minimum value.
The following theorem asserts that a function which is continuous at every point of a
closed interval [a, b] has an absolute maximum and an absolute minimum value on the in-
terval. We look for these extreme values when we graph a function.
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need not hold. Example 1 shows that an absolute extreme value may not exist if the inter-
val fails to be both closed and finite. Figure 4.4 shows that the continuity requirement can-
not be omitted.

Local (Relative) Extreme Values

Figure 4.5 shows a graph with five points where a function has extreme values on its do-
main [a, b]. The function’s absolute minimum occurs at a even though at e the function’s
value is smaller than at any other point nearby. The curve rises to the left and falls to the
right around c, making ƒ(c) a maximum locally. The function attains its absolute maxi-
mum at d. We now define what we mean by local extrema.

224 Chapter 4: Applications of Derivatives

x
a x2

x2

Maximum and minimum
at interior points

b

M

x
a b

M

m

Maximum and minimum
at endpoints

x
a

Maximum at interior point,
minimum at endpoint

M

b

m
x

a

Minimum at interior point,
maximum at endpoint

M

b

m

(x2, M)

(x1, m)

x1

y � f (x)

y � f (x)

y � f (x)

y � f (x)

x1

�m�

FIGURE 4.3 Some possibilities for a continuous function’s maximum and
minimum on a closed interval [a, b].

x

y

1
Smallest value

0

No largest value

1

y � x
0 � x � 1

FIGURE 4.4 Even a single point of
discontinuity can keep a function from
having either a maximum or minimum
value on a closed interval. The function

is continuous at every point of [0, 1]
except yet its graph over [0, 1]
does not have a highest point. 

x = 1,

y = e x, 0 … x 6 1

0, x = 1
DEFINITIONS A function ƒ has a local maximum value at a point c within its
domain D if

A function ƒ has a local minimum value at a point c within its domain D if
ƒsxd Ú ƒscd for all x H D lying in some open interval containing c .

ƒsxd … ƒscd for all x H D lying in some open interval containing c .

If the domain of ƒ is the closed interval [a, b], then ƒ has a local maximum at the endpoint
if for all x in some half-open interval Likewise, ƒ

has a local maximum at an interior point if for all x in some open inter-
val and a local maximum at the endpoint if for
all x in some half-open interval The inequalities are reversed for local
minimum values. In Figure 4.5, the function ƒ has local maxima at c and d and local min-
ima at a, e, and b. Local extrema are also called relative extrema. Some functions can
have infinitely many local extrema, even over a finite interval. One example is the func-
tion on the interval (0, 1]. (We graphed this function in Figure 2.40.)ƒ(x) = sin (1>x)

(b - d, b], d 7 0.
ƒ(x) … ƒ(b)x = b(c - d, c + d), d 7 0,

ƒ(x) … ƒ(c)x = c
[a, a + d), d 7 0.ƒ(x) … ƒ(a)x = a,
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4.1 Extreme Values of Functions 225

An absolute maximum is also a local maximum. Being the largest value overall, it is
also the largest value in its immediate neighborhood. Hence, a list of all local maxima will
automatically include the absolute maximum if there is one. Similarly, a list of all local
minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values to find a
function’s extrema.

x
ba c e d

Local minimum
No smaller value of
f  nearby.

Local minimum
No smaller value
of f  nearby.

Local maximum
No greater value of

f  nearby.

Absolute minimum
No smaller value of
f  anywhere. Also a

 local minimum.

Absolute maximum
No greater value of f anywhere.
Also a local maximum.

y � f (x)

FIGURE 4.5 How to identify types of maxima and minima for a function with domain
.a … x … b

THEOREM 2—The First Derivative Theorem for Local Extreme Values If ƒ has a
local maximum or minimum value at an interior point c of its domain, and if is
defined at c, then

ƒ¿scd = 0.

ƒ¿

x
c x

Local maximum value

x

Secant slopes � 0
(never negative)

Secant slopes � 0
(never positive)

y � f (x)

FIGURE 4.6 A curve with a local
maximum value. The slope at c,
simultaneously the limit of nonpositive
numbers and nonnegative numbers, is zero.

Proof To prove that is zero at a local extremum, we show first that cannot be
positive and second that cannot be negative. The only number that is neither positive
nor negative is zero, so that is what must be.

To begin, suppose that ƒ has a local maximum value at (Figure 4.6) so that
for all values of x near enough to c. Since c is an interior point of ƒ’s

domain, is defined by the two-sided limit

This means that the right-hand and left-hand limits both exist at and equal 
When we examine these limits separately, we find that

(1)

Similarly,

(2)

Together, Equations (1) and (2) imply 
This proves the theorem for local maximum values. To prove it for local minimum

values, we simply use which reverses the inequalities in Equations (1)
and (2).

ƒsxd Ú ƒscd ,

ƒ¿scd = 0.

ƒ¿scd = lim
x:c-

 
ƒsxd - ƒscd

x - c Ú 0.

ƒ¿scd = lim
x:c+

 
ƒsxd - ƒscd

x - c … 0.

ƒ¿scd .x = c

lim
x:c

 
ƒsxd - ƒscd

x - c .

ƒ¿scd
ƒsxd - ƒscd … 0

x = c
ƒ¿scd

ƒ¿scd
ƒ¿scdƒ¿scd

Because 
and  ƒsxd … ƒscd

sx - cd 7 0

Because 
and  ƒsxd … ƒscd

sx - cd 6 0

7001_AWLThomas_ch04p222-296.qxd  10/12/09  2:27 PM  Page 225



Theorem 2 says that a function’s first derivative is always zero at an interior point
where the function has a local extreme value and the derivative is defined. Hence the only
places where a function ƒ can possibly have an extreme value (local or global) are

1. interior points where 

2. interior points where is undefined,

3. endpoints of the domain of ƒ.

The following definition helps us to summarize.

ƒ¿

ƒ¿ = 0,

226 Chapter 4: Applications of Derivatives

Thus the only domain points where a function can assume extreme values are critical
points and endpoints. However, be careful not to misinterpret what is being said here. A
function may have a critical point at without having a local extreme value there.
For instance, both of the functions have critical points at the origin
and a zero value there, but each function is positive to the right of the origin and negative
to the left. So neither function has a local extreme value at the origin. Instead, each func-
tion has a point of inflection there (see Figure 4.7). We define and explore inflection
points in Section 4.4.

Most problems that ask for extreme values call for finding the absolute extrema of a
continuous function on a closed and finite interval. Theorem 1 assures us that such values
exist; Theorem 2 tells us that they are taken on only at critical points and endpoints. Often
we can simply list these points and calculate the corresponding function values to find
what the largest and smallest values are, and where they are located. Of course, if the in-
terval is not closed or not finite (such as or ), we have seen that
absolute extrema need not exist. If an absolute maximum or minimum value does exist, it
must occur at a critical point or at an included right- or left-hand endpoint of the interval.

a 6 x 6 qa 6 x 6 b

y = x3 and y = x1>3x = c

DEFINITION An interior point of the domain of a function ƒ where is zero
or undefined is a critical point of ƒ.

ƒ¿

–1

x

y

1–1

1

0

(a)

y � x3

–1

x

y

1–1

1

0

(b)

y � x1/3

FIGURE 4.7 Critical points without
extreme values. (a) is 0 at 
but has no extremum there. 
(b) is undefined at 
but has no extremum there.y = x1>3

x = 0,y¿ = s1>3dx-2>3
y = x3

x = 0,y¿ = 3x2

How to Find the Absolute Extrema of a Continuous Function ƒ on a
Finite Closed Interval
1. Evaluate ƒ at all critical points and endpoints.

2. Take the largest and smallest of these values.

EXAMPLE 2 Find the absolute maximum and minimum values of on

Solution The function is differentiable over its entire domain, so the only critical point is
where namely We need to check the function’s values at 
and at the endpoints and 

Critical point value:

Endpoint values:

The function has an absolute maximum value of 4 at and an absolute minimum
value of 0 at 

EXAMPLE 3 Find the absolute maximum and minimum values of 
on the interval [1, e2].

ƒ(x) = 10x (2 - ln x)

x = 0.
x = -2

ƒs1d = 1

ƒs -2d = 4

ƒs0d = 0

x = 1:x = -2
x = 0x = 0.ƒ¿sxd = 2x = 0,

[-2, 1] .
ƒsxd = x2
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4.1 Extreme Values of Functions 227

Solution Figure 4.8 suggests that ƒ  has its absolute maximum value near and its
absolute minimum value of 0 at Let’s verify this observation.

We evaluate the function at the critical points and endpoints and take the largest and
smallest of the resulting values.

The first derivative is

.

The only critical point in the domain is the point , where ln The values
of ƒ at this one critical point and at the endpoints are

We can see from this list that the function’s absolute maximum value is it oc-
curs at the critical interior point The absolute minimum value is 0 and occurs at the
right endpoint 

EXAMPLE 4 Find the absolute maximum and minimum values of on the
interval 

Solution We evaluate the function at the critical points and endpoints and take the
largest and smallest of the resulting values.

The first derivative

has no zeros but is undefined at the interior point The values of ƒ at this one criti-
cal point and at the endpoints are

Critical point value:

Endpoint values:

We can see from this list that the function’s absolute maximum value is and it
occurs at the right endpoint The absolute minimum value is 0, and it occurs at the
interior point where the graph has a cusp (Figure 4.9).x = 0

x = 3.
23 9 L 2.08,

ƒs3d = s3d2>3
= 23 9 .

ƒs -2d = s -2d2>3
= 23 4

ƒs0d = 0

x = 0.

ƒ¿sxd =
2
3

 x-1>3
=

2

323 x

[-2, 3] .
ƒsxd = x2>3

x = e2.
x = e.

10e L 27.2;

 ƒ(e2) = 10e2(2 - 2 ln e) = 0.

Endpoint values:  ƒ(1) = 10(2 - ln 1) = 20

Critical point value:  ƒ(e) = 10e

x = 1.x = e[1, e2]

ƒ¿(x) = 10(2 - ln x) - 10x a1x b = 10(1 - ln x)

x = e2.
x = 3

x

y

10 2 3–1–2

1

2

Absolute maximum;
also a local maximumLocal

maximum

Absolute minimum;
also a local minimum

y � x2/3,  –2 ≤ x ≤ 3

FIGURE 4.9 The extreme values of
on occur at and

(Example 4).x = 3
x = 0[-2, 3]ƒsxd = x2>3

Exercises 4.1

Finding Extrema from Graphs
In Exercises 1–6, determine from the graph whether the function has
any absolute extreme values on [a, b]. Then explain how your answer
is consistent with Theorem 1.

1. 2.

x

y

0 a c b

y � f (x)

x

y

0 a c1 bc2

y � h(x)

3. 4.

x

y

0 a bc

y � h(x)

x

y

0 a bc

y � f (x)

1 2 3 4 5 6 7 8

5

10

0

15

20

25

30

(1, 20)

(e, 10e)

(e2, 0)
x

y

FIGURE 4.8 The extreme values of
on occur at

and (Example 3).x = e2x = e
[1, e2]ƒ(x) = 10x(2 - ln x)
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5. 6.

In Exercises 7–10, find the absolute extreme values and where they occur.

7. 8.

9. 10.

In Exercises 11–14, match the table with a graph.

11. 12.

13. 14.

a b c a b c

a b c a b c

(a) (b)

(c) (d)

x ƒ �(x)

a does not exist
b does not exist
c �1.7

x ƒ �(x)

a does not exist
b 0
c �2

x ƒ �(x)

a 0
b 0
c �5

x ƒ �(x)

a 0
b 0
c 5

2
(1, 2)

–3 2
–1

x

y

0 2

5

x

y

2

2

–2 0

y

x1–1

1

–1

y

x

x

y

0 a c b

y � g(x)

x

y

0 a c b

y � g(x)
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In Exercises 15–20, sketch the graph of each function and determine
whether the function has any absolute extreme values on its domain.
Explain how your answer is consistent with Theorem 1.

15.

16.

17.

18.

19.

20.

Absolute Extrema on Finite Closed Intervals
In Exercises 21–40, find the absolute maximum and minimum values
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and in-
clude their coordinates.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40. g(x) = e-x2

, -2 … x … 1

ƒ(x) =

1
x + ln x, 0.5 … x … 4

h(x) = ln (x + 1), 0 … x … 3

g(x) = xe-x, -1 … x … 1

ƒstd = ƒ t - 5 ƒ , 4 … t … 7

ƒstd = 2 - ƒ t ƒ , -1 … t … 3

g sxd = sec x, -

p

3
… x …

p

6

g sxd = csc x, p
3

… x …

2p
3

ƒsud = tan u, -

p

3
… u …

p

4

ƒsud = sin u, -

p

2
… u …

5p
6

g sxd = -25 - x2, -25 … x … 0

g sxd = 24 - x2, -2 … x … 1

hsxd = -3x2>3, -1 … x … 1

hsxd = 23 x, -1 … x … 8

Fsxd = -

1
x  , -2 … x … -1

Fsxd = -

1
x2 , 0.5 … x … 2

ƒsxd = 4 - x2, -3 … x … 1

ƒsxd = x2
- 1, -1 … x … 2

ƒsxd = -x - 4, -4 … x … 1

ƒsxd =

2
3

 x - 5, -2 … x … 3

ƒ(x) = L x + 1, -1 … x 6 0

cos x,      0 … x …

p

2

y = 3 sin x, 0 6 x 6 2p

h(x) = L
1
x ,   -1 … x 6 0

2x, 0 … x … 4

g(x) = e -x,     0 … x 6 1

x - 1, 1 … x … 2

y =

6
x2

+ 2
, -1 6 x 6 1

ƒ(x) = ƒ x ƒ , -1 6 x 6 2
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4.1 Extreme Values of Functions 229

In Exercises 41–44, find the function’s absolute maximum and mini-
mum values and say where they are assumed.

41.

42.

43.

44.

Finding Critical Points
In Exercises 45–52, determine all critical points for each function.

45. 46.

47. 48.

49. 50.

51. 52.

Finding Extreme Values
In Exercises 53–68, find the extreme values (absolute and local) of the
function and where they occur.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

Local Extrema and Critical Points
In Exercises 69–76, find the critical points, domain endpoints, and ex-
treme values (absolute and local) for each function.

69. 70.

71. 72.

73. 74.

75.

76.

In Exercises 77 and 78, give reasons for your answers.

77. Let 

a. Does exist?

b. Show that the only local extreme value of ƒ occurs at 

c. Does the result in part (b) contradict the Extreme Value Theorem?

d. Repeat parts (a) and (b) for replacing 2 by a.

78. Let 

a. Does exist? b. Does exist?

c. Does exist? d. Determine all extrema of ƒ.ƒ¿s -3d
ƒ¿s3dƒ¿s0d

ƒsxd = ƒ x3
- 9x ƒ .

ƒsxd = sx - ad2>3 ,

x = 2.

ƒ¿s2d
ƒsxd = sx - 2d2>3 .

y = • -

1
4

 x2
-

1
2

 x +

15
4

,  x … 1

x3
- 6x2

+ 8x,      x 7 1

y = e -x2
- 2x + 4,  x … 1

-x2
+ 6x - 4,  x 7 1

y = e3 - x,        x 6 0

3 + 2x - x2,  x Ú 0
y = e 4 - 2x,  x … 1

x + 1,   x 7 1

y = x223 - xy = x24 - x2

y = x2>3sx2
- 4dy = x2>3sx + 2d

y = sin-1 (ex)y = cos-1 (x2)

y = x2 ln xy = x ln x

y = ex
- e-xy = ex

+ e-x

y =

x + 1
x2

+ 2x + 2
y =

x

x2
+ 1

y = 23 + 2x - x2y =

1

23 1 - x2

y = x - 42xy = 2x2
- 1

y = x3(x - 5)2y = x3
+ x2

- 8x + 5

y = x3
- 2x + 4y = 2x2

- 8x + 9

g(x) = 22x - x2y = x2
- 322x

ƒ(x) =

x2

x - 2
y = x2

+

2
x

g(x) = (x - 1)2(x - 3)2ƒ(x) = x(4 - x)3

ƒ(x) = 6x2
- x3y = x2

- 6x + 7

hsud = 3u2>3, -27 … u … 8

g(ud = u3>5, -32 … u … 1

ƒsxd = x5>3, -1 … x … 8

ƒsxd = x4>3, -1 … x … 8

Theory and Examples
79. A minimum with no derivative The function has

an absolute minimum value at even though ƒ is not differ-
entiable at Is this consistent with Theorem 2? Give rea-
sons for your answer.

80. Even functions If an even function ƒ(x) has a local maximum
value at can anything be said about the value of ƒ at

Give reasons for your answer.

81. Odd functions If an odd function g(x) has a local minimum
value at can anything be said about the value of g at

Give reasons for your answer.

82. We know how to find the extreme values of a continuous function
ƒ(x) by investigating its values at critical points and endpoints. But
what if there are no critical points or endpoints? What happens
then? Do such functions really exist? Give reasons for your answers.

83. The function

models the volume of a box.

a. Find the extreme values of V.

b. Interpret any values found in part (a) in terms of the volume
of the box.

84. Cubic functions Consider the cubic function

a. Show that ƒ can have 0, 1, or 2 critical points. Give examples
and graphs to support your argument.

b. How many local extreme values can ƒ have?

85. Maximum height of a vertically moving body The height of a
body moving vertically is given by

with s in meters and t in seconds. Find the body’s maximum height.

86. Peak alternating current Suppose that at any given time t (in
seconds) the current i (in amperes) in an alternating current cir-
cuit is What is the peak current for this cir-
cuit (largest magnitude)?

Graph the functions in Exercises 87–90. Then find the extreme values
of the function on the interval and say where they occur.

87.

88.

89.

90.

COMPUTER EXPLORATIONS
In Exercises 91–98, you will use a CAS to help find the absolute ex-
trema of the given function over the specified closed interval. Perform
the following steps.

a. Plot the function over the interval to see its general behavior there.

b. Find the interior points where (In some exercises, you
may have to use the numerical equation solver to approximate a
solution.) You may want to plot as well.

c. Find the interior points where does not exist.ƒ¿

ƒ¿

ƒ¿ = 0.

ksxd = ƒ x + 1 ƒ + ƒ x - 3 ƒ , - q 6 x 6 q

hsxd = ƒ x + 2 ƒ - ƒ x - 3 ƒ , - q 6 x 6 q

gsxd = ƒ x - 1 ƒ - ƒ x - 5 ƒ , -2 … x … 7

ƒsxd = ƒ x - 2 ƒ + ƒ x + 3 ƒ , -5 … x … 5

i = 2 cos t + 2 sin t .

s = -

1
2

 gt2
+ y0 t + s0, g 7 0,

ƒsxd = ax3
+ bx2

+ cx + d .

V sxd = xs10 - 2xds16 - 2xd, 0 6 x 6 5,

x = -c?
x = c ,

x = -c?
x = c ,

x = 0.
x = 0

ƒsxd = ƒ x ƒ

T
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d. Evaluate the function at all points found in parts (b) and (c) and
at the endpoints of the interval.

e. Find the function’s absolute extreme values on the interval and
identify where they occur.

91.

92.

93. ƒsxd = x2>3s3 - xd, [-2, 2]

ƒsxd = -x4
+ 4x3

- 4x + 1, [-3>4, 3]

ƒsxd = x4
- 8x2

+ 4x + 2, [-20>25, 64>25]

230 Chapter 4: Applications of Derivatives

Proof Being continuous, ƒ assumes absolute maximum and minimum values on [a, b]
by Theorem 1. These can occur only

1. at interior points where is zero,

2. at interior points where does not exist,

3. at the endpoints of the function’s domain, in this case a and b.

By hypothesis, ƒ has a derivative at every interior point. That rules out possibility (2), leav-
ing us with interior points where and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then
by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints,
then because it must be the case that ƒ is a constant function with

for every Therefore and the point c can be taken
anywhere in the interior (a, b).

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph
may not have a horizontal tangent (Figure 4.11).

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show when
there is only one real solution of an equation , as we illustrate in the next example.

EXAMPLE 1 Show that the equation

has exactly one real solution.

x3
+ 3x + 1 = 0

ƒsxd = 0

ƒ¿sxd = 0x H [a, b] .ƒsxd = ƒsad = ƒsbd
ƒsad = ƒsbd

ƒ¿scd = 0

ƒ¿ = 0

ƒ¿

ƒ¿

THEOREM 3—Rolle’s Theorem Suppose that is continuous at every
point of the closed interval [a, b] and differentiable at every point of its interior
(a, b). If then there is at least one number c in (a, b) at which
ƒ¿scd = 0.

ƒsad = ƒsbd,

y = ƒsxd

f '(c3) � 0

f '(c2) � 0
f '(c1) � 0

f '(c) � 0

y � f (x)

y � f (x)

0 a c b

0 bc3c2c1a

(a)

(b)

x

x

y

y

FIGURE 4.10 Rolle’s Theorem says that
a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may
have just one (a), or it may have more (b).

HISTORICAL BIOGRAPHY

Michel Rolle
(1652–1719)

94.

95.

96.

97.

98. ƒ(x) = ln (2x + x sin x),   [1, 15]

ƒ(x) = px2e - 3x>2,   [0, 5]

ƒsxd = x3>4
- sin x +

1
2

, [0, 2p]

ƒsxd = 2x + cos x, [0, 2p]

ƒsxd = 2 + 2x - 3x2>3, [-1, 10>3]

4.2 The Mean Value Theorem

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives
over an interval, how are the functions related? We answer these and other questions in this
chapter by applying the Mean Value Theorem. First we introduce a special case, known as
Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tangent to the graph is
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.
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4.2 The Mean Value Theorem 231

a bx0a bx0a

(a) Discontinuous at an 
endpoint of [a, b]

(b) Discontinuous at an 
interior point of [a, b]

(c) Continuous on [a, b] but not
differentiable at an interior
point

b
x x x

y y y

y � f (x) y � f (x) y � f (x)

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.

Proof We picture the graph of ƒ and draw a line through the points A(a, ƒ(a)) and
B(b, ƒ(b)). (See Figure 4.14.) The line is the graph of the function

(2)

(point-slope equation). The vertical difference between the graphs of ƒ and g at x is

(3)

Figure 4.15 shows the graphs of ƒ, g, and h together.

 = ƒsxd - ƒsad -

ƒsbd - ƒsad
b - a

 sx - ad .

 hsxd = ƒsxd - g sxd

g sxd = ƒsad +

ƒsbd - ƒsad
b - a

 sx - ad

x

y

0 1

(1, 5)

1

(–1, –3)

–1

y � x3 � 3x � 1

FIGURE 4.12 The only real zero of the
polynomial is the one
shown here where the curve crosses the 
x-axis between and 0 (Example 1).-1

y = x3
+ 3x + 1

x

y

0 a

Tangent parallel to chord

c b

Slope

B

A

y � f (x)

Slope f '(c)

f (b) � f (a)
b � a

FIGURE 4.13 Geometrically, the Mean
Value Theorem says that somewhere
between a and b the curve has at least one
tangent parallel to chord AB.

THEOREM 4—The Mean Value Theorem Suppose is continuous on a
closed interval [a, b] and differentiable on the interval’s interior (a, b). Then there
is at least one point c in (a, b) at which

(1)
ƒsbd - ƒsad

b - a
= ƒ¿scd.

y = ƒsxd

HISTORICAL BIOGRAPHY

Joseph-Louis Lagrange
(1736–1813)

Solution We define the continuous function

Since and , the Intermediate Value Theorem tells us that the graph
of ƒ crosses the x-axis somewhere in the open interval . (See Figure 4.12.) The
derivative

is never zero (because it is always positive). Now, if there were even two points and
where ƒ(x) was zero, Rolle’s Theorem would guarantee the existence of a point
in between them where was zero. Therefore, ƒ has no more than one zero. 

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

The Mean Value Theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted
version of Rolle’s Theorem (Figure 4.13). The Mean Value Theorem guarantees that there
is a point where the tangent line is parallel to the chord AB.

ƒ¿x = c
x = b

x = a

ƒ¿sxd = 3x2
+ 3

(-1, 0)
ƒ(0) = 1ƒ(-1) = -3

ƒsxd = x3
+ 3x + 1.
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The function h satisfies the hypotheses of Rolle’s Theorem on [a, b]. It is continuous
on [a, b] and differentiable on (a, b) because both ƒ and g are. Also, 
because the graphs of ƒ and g both pass through A and B. Therefore at some
point This is the point we want for Equation (1).

To verify Equation (1), we differentiate both sides of Equation (3) with respect to x
and then set 

Derivative of Eq. (3) . . .

. . . with 

Rearranged

which is what we set out to prove.

The hypotheses of the Mean Value Theorem do not require ƒ to be differentiable at
either a or b. Continuity at a and b is enough (Figure 4.16).

EXAMPLE 2 The function (Figure 4.17) is continuous for and
differentiable for Since and the Mean Value Theorem
says that at some point c in the interval, the derivative must have the value

In this case we can identify c by solving the equation to
get However, it is not always easy to find c algebraically, even though we know it
always exists.

A Physical Interpretation

We can think of the number as the average change in ƒ over [a, b]
and as an instantaneous change. Then the Mean Value Theorem says that at some inte-
rior point the instantaneous change must equal the average change over the entire interval.

EXAMPLE 3 If a car accelerating from zero takes 8 sec to go 352 ft, its average veloc-
ity for the 8-sec interval is The Mean Value Theorem says that at some
point during the acceleration the speedometer must read exactly 30 mph 
(Figure 4.18).

(44 ft>sec)
352>8 = 44 ft>sec.

ƒ¿scd
sƒsbd - ƒsadd>sb - ad

c = 1.
2c = 2s4 - 0d>s2 - 0d = 2.

ƒ¿sxd = 2x
ƒs2d = 4,ƒs0d = 00 6 x 6 2.

0 … x … 2ƒsxd = x2

 ƒ¿scd =

ƒsbd - ƒsad
b - a

, 

h¿scd = 0 0 = ƒ¿scd -

ƒsbd - ƒsad
b - a

x = c h¿scd = ƒ¿scd -

ƒsbd - ƒsad
b - a

 h¿sxd = ƒ¿sxd -

ƒsbd - ƒsad
b - a

x = c :

c H sa, bd .
h¿scd = 0

hsad = hsbd = 0

232 Chapter 4: Applications of Derivatives

A(a, f (a))

B(b, f (b))
y � f (x)

x
ba

FIGURE 4.14 The graph of ƒ and the
chord AB over the interval [a, b].

x
ba x

B

A

h(x) � f (x) � g(x)

y � f (x)

y � g(x)

h(x)

FIGURE 4.15 The chord AB is the graph
of the function g(x). The function 

gives the vertical distance
between the graphs of ƒ and g at x.
ƒsxd - g sxd

hsxd =

x

y

0 1–1

1
y � �1 � x2, –1 � x � 1

FIGURE 4.16 The function 
satisfies the hypotheses (and

conclusion) of the Mean Value Theorem on
[�1, 1] even though ƒ is not differentiable
at and 1. -1

21 - x2
ƒsxd =

x

y

1

(1, 1)

2

B(2, 4)

y � x2

A(0, 0)

1

2

3

4

FIGURE 4.17 As we find in Example 2,
is where the tangent is parallel to

the chord. 
c = 1

t

s

0
5

80

160 At this point,
the car’s speed
was 30 mph.

Time (sec)

(8, 352)

240

320

400

D
is

ta
nc

e 
(f

t)

s � f (t)

FIGURE 4.18 Distance versus elapsed
time for the car in Example 3. 
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4.2 The Mean Value Theorem 233

Mathematical Consequences

At the beginning of the section, we asked what kind of function has a zero derivative over
an interval. The first corollary of the Mean Value Theorem provides the answer that only
constant functions have zero derivatives.

Proof We want to show that ƒ has a constant value on the interval (a, b). We do so by
showing that if and are any two points in (a, b) with , then 
Now ƒ satisfies the hypotheses of the Mean Value Theorem on It is differentiable
at every point of and hence continuous at every point as well. Therefore,

at some point c between and Since throughout (a, b), this equation implies
successively that

At the beginning of this section, we also asked about the relationship between two
functions that have identical derivatives over an interval. The next corollary tells us that
their values on the interval have a constant difference.

ƒsx2d - ƒsx1d
x2 - x1

= 0, ƒsx2d - ƒsx1d = 0, and ƒsx1d = ƒsx2d.

ƒ¿ = 0x2.x1

ƒsx2d - ƒsx1d
x2 - x1

= ƒ¿scd

[x1, x2]
[x1 , x2] :

ƒsx1d = ƒsx2d .x1 6 x2x2x1

Proof At each point the derivative of the difference function is

Thus, on (a, b) by Corollary 1. That is, on (a, b), so 

Corollaries 1 and 2 are also true if the open interval (a, b) fails to be finite. That is,
they remain true if the interval is 

Corollary 2 plays an important role when we discuss antiderivatives in Section 4.8. It
tells us, for instance, that since the derivative of any other
function with derivative 2x on must have the formula for some value of
C (Figure 4.19).

EXAMPLE 4 Find the function ƒ(x) whose derivative is sin x and whose graph passes
through the point (0, 2).

Solution Since the derivative of is , we see that ƒ and
g have the same derivative. Corollary 2 then says that for someƒsxd = -cos x + C

g¿(x) = sin xg sxd = -cos x

x2
+ Cs - q , q d

ƒsxd = x2 on s - q , q d is 2x ,

sa, q d, s - q , bd, or s - q , q d .

gsxd + C .
ƒsxd =ƒsxd - gsxd = Chsxd = C

h¿sxd = ƒ¿sxd - g¿sxd = 0.

h = ƒ - gx H sa, bd

COROLLARY 1 If at each point x of an open interval (a, b), then
for all where C is a constant.x H sa, bd,ƒsxd = C

ƒ¿sxd = 0

COROLLARY 2 If at each point x in an open interval (a, b), then
there exists a constant C such that for all That is,

is a constant function on (a, b).ƒ - g
x H sa, bd .ƒsxd = gsxd + C

ƒ¿sxd = g¿sxd

x

y

0

–1

–2

1

2

y 5 x2 1 C C 5 2

C 5 1

C 5 0

C 5 –1

C 5 –2

FIGURE 4.19 From a geometric point 
of view, Corollary 2 of the Mean Value
Theorem says that the graphs of functions
with identical derivatives on an interval
can differ only by a vertical shift there. 
The graphs of the functions with derivative
2x are the parabolas shown
here for selected values of C. 

y = x2
+ C ,
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constant C. Since the graph of ƒ passes through the point (0, 2), the value of C is deter-
mined from the condition that :

The function is 

Finding Velocity and Position from Acceleration

We can use Corollary 2 to find the velocity and position functions of an object moving
along a vertical line. Assume the object or body is falling freely from rest with acceleration

We assume the position s(t) of the body is measured positive downward from
the rest position (so the vertical coordinate line points downward, in the direction of the
motion, with the rest position at 0).

We know that the velocity is some function whose derivative is 9.8. We also know
that the derivative of is 9.8. By Corollary 2,

for some constant C. Since the body falls from rest, Thus

The velocity function must be What about the position function s(t)?
We know that s(t) is some function whose derivative is 9.8t. We also know that the de-

rivative of is 9.8t. By Corollary 2,

for some constant C. Since 

The position function is until the body hits the ground. 
The ability to find functions from their rates of change is one of the very powerful

tools of calculus. As we will see, it lies at the heart of the mathematical developments in
Chapter 5.

Proofs of the Laws of Logarithms

The algebraic properties of logarithms were stated in Section 1.6. We can prove those
properties by applying Corollary 2 of the Mean Value Theorem to each of them. The steps
in the proofs are similar to those used in solving problems involving logarithms.

Proof that The argument starts by observing that ln bx and ln x
have the same derivative:

According to Corollary 2 of the Mean Value Theorem, then, the functions must differ by a
constant, which means that

for some C.
Since this last equation holds for all positive values of x, it must hold for 

Hence,

 C = ln b.

ln 1 = 0 ln b = 0 + C

 ln (b # 1) = ln 1 + C

x = 1.

ln bx = ln x + C

 
d
dx

 ln (bx) =
b
bx

 =
1
x  =

d
dx

 ln x.

ln bx � ln b � ln x

sstd = 4.9t2

4.9s0d2
+ C = 0, and C = 0.

ss0d = 0,

sstd = 4.9t2
+ C

ƒstd = 4.9t2

ystd = 9.8t .

9.8s0d + C = 0, and C = 0.

ys0d = 0.

ystd = 9.8t + C

g std = 9.8t
y(t)

9.8 m>sec2.

ƒsxd = -cos x + 3.

ƒs0d = -cos s0d + C = 2, so C = 3.

ƒs0d = 2

234 Chapter 4: Applications of Derivatives
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4.2 The Mean Value Theorem 235

By substituting we conclude,

Proof that We use the same-derivative argument again. For all positive
values of x,

Chain Rule

Derivative Power Rule

Since and r ln x have the same derivative,

for some constant C. Taking x to be 1 identifies C as zero, and we’re done.

You are asked to prove the Quotient Rule for logarithms,

in Exercise 75. The Reciprocal Rule, is a special case of the Quotient
Rule, obtained by taking and noting that 

Laws of Exponents

The laws of exponents for the natural exponential are consequences of the algebraic
properties of . They follow from the inverse relationship between these functions.ln x

ex

ln 1 = 0.b = 1
ln (1>x) = - ln x,

ln abx b = ln b - ln x,

ln xr
= r ln x + C

ln xr

 = r # 1
x =

d
dx

 (r ln x).

 =
1
xr rxr - 1

 
d
dx

 ln xr
=

1
xr 

d
dx

 (xr)

ln xr � r ln x

ln bx = ln b + ln x.

Laws of Exponents for 

For all numbers x, and the natural exponential obeys the following laws:

1. 2.

3. 4. (ex1)x2
= ex1x2

= (ex2)x1ex1

ex2
= ex1 - x2

e-x
=

1
exex1 # ex2

= ex1 + x2

exx2,x1,

ex

Proof of Law 1 Let

(4)

Then

Exponentiate.

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercises 77 and 78).

 = ex1ex2.

e ln u
= u = y1 y2

 ex1 + x2
= e ln y1 y2

Product Rule for logarithms = ln y1 y2

 x1 + x2 = ln y1 + ln y2

 x1 = ln y1 and x2 = ln y2

y1 = ex1 and y2 = ex2.

Take logs of both
sides of Eqs. (4).
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Exercises 4.2

Checking the Mean Value Theorem
Find the value or values of c that satisfy the equation

in the conclusion of the Mean Value Theorem for the functions and in-
tervals in Exercises 1–8.

1.

2.

3.

4.

5.

6.

7.

8.

Which of the functions in Exercises 9–14 satisfy the hypotheses of the
Mean Value Theorem on the given interval, and which do not? Give
reasons for your answers.

9.

10.

11.

12.

13.

14.

15. The function

is zero at and and differentiable on (0, 1), but its de-
rivative on (0, 1) is never zero. How can this be? Doesn’t Rolle’s
Theorem say the derivative has to be zero somewhere in (0, 1)?
Give reasons for your answer.

16. For what values of a, m, and b does the function

satisfy the hypotheses of the Mean Value Theorem on the interval
[0, 2]?

ƒsxd = •
3, x = 0

-x2
+ 3x + a, 0 6 x 6 1

mx + b, 1 … x … 2

x = 1x = 0

ƒsxd = e x, 0 … x 6 1

0, x = 1

ƒ(x) = e2x - 3,           0 … x … 2

6x - x2
- 7, 2 6 x … 3

ƒ(x) = e x2
- x,             -2 … x … -1

2x2
- 3x - 3, -1 6 x … 0

ƒsxd = L
sin x

x  ,  -p … x 6 0

0, x = 0

ƒsxd = 2xs1 - xd, [0, 1]

ƒsxd = x4>5, [0, 1]

ƒsxd = x2>3, [-1, 8]

g(x) = e x3, -2 … x … 0

x2,    0 6 x … 2

ƒsxd = x3
- x2, [-1, 2]

ƒsxd = ln (x - 1), [2, 4]

ƒsxd = sin-1 x, [-1, 1]

ƒsxd = 2x - 1,  [1, 3]

ƒsxd = x +

1
x ,  c1

2
, 2 d

ƒsxd = x2>3, [0, 1]

ƒsxd = x2
+ 2x - 1, [0, 1]

ƒsbd - ƒsad
b - a

= ƒ¿scd

Roots (Zeros)
17. a. Plot the zeros of each polynomial on a line together with the

zeros of its first derivative.

i)

ii)

iii)

iv)

b. Use Rolle’s Theorem to prove that between every two zeros of
there lies a zero of

18. Suppose that is continuous on [a, b] and that ƒ has three zeros
in the interval. Show that has at least one zero in (a, b). Gener-
alize this result.

19. Show that if throughout an interval [a, b], then has at
most one zero in [a, b]. What if throughout [a, b] instead?

20. Show that a cubic polynomial can have at most three real zeros.

Show that the functions in Exercises 21–28 have exactly one zero in
the given interval.

21.

22.

23.

24.

25.

26.

27.

28.

Finding Functions from Derivatives
29. Suppose that and that for all x. Must

for all x? Give reasons for your answer.

30. Suppose that and that for all x. Must 
for all x? Give reasons for your answer.

31. Suppose that for all x. Find ƒ(2) if

a. b. c.

32. What can be said about functions whose derivatives are constant?
Give reasons for your answer.

In Exercises 33–38, find all possible functions with the given derivative.

33. a. b. c.

34. a. b. c.

35. a. b. c. y¿ = 5 +

1
x2y¿ = 1 -

1
x2y¿ = -

1
x2

y¿ = 3x2
+ 2x - 1y¿ = 2x - 1y¿ = 2x

y¿ = x3y¿ = x2y¿ = x

ƒs -2d = 3.ƒs1d = 0ƒs0d = 0

ƒ¿sxd = 2x

2x + 5
ƒsxd =ƒ¿sxd = 2ƒs0d = 5

ƒsxd = 3
ƒ¿sxd = 0ƒs -1d = 3

r sud = tan u - cot u - u, s0, p>2d

r sud = sec u -

1
u3 + 5, s0, p>2d

r sud = 2u - cos2 u + 22, s - q , q d

r sud = u + sin2 au
3
b - 8, s - q , q d

g std =

1
1 - t

+ 21 + t - 3.1, s -1, 1d

g std = 2t + 21 + t - 4, s0, q d

ƒsxd = x3
+

4
x2 + 7, s - q , 0d

ƒsxd = x4
+ 3x + 1, [-2, -1]

ƒ– 6 0
ƒ¿ƒ– 7 0

ƒ–

ƒ–

nxn - 1
+ sn - 1dan - 1x

n - 2
+

Á
+ a1.

xn
+ an - 1x

n - 1
+

Á
+ a1 x + a0

y = x3
- 33x2

+ 216x = xsx - 9dsx - 24d

y = x3
- 3x2

+ 4 = sx + 1dsx - 2d2

y = x2
+ 8x + 15

y = x2
- 4
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4.2 The Mean Value Theorem 237

36. a. b. c.

37. a. b. c.

38. a. b. c.

In Exercises 39–42, find the function with the given derivative whose
graph passes through the point P.

39.

40.

41.

42.

Finding Position from Velocity or Acceleration
Exercises 43–46 give the velocity and initial position of a
body moving along a coordinate line. Find the body’s position at
time t.

43.

44.

45.

46.

Exercises 47–50 give the acceleration initial velocity,
and initial position of a body moving on a coordinate line. Find the
body’s position at time t.

47.

48.

49.

50.

Applications
51. Temperature change It took 14 sec for a mercury thermometer

to rise from to 100�C when it was taken from a freezer and
placed in boiling water. Show that somewhere along the way the
mercury was rising at the rate of 8.5� .

52. A trucker handed in a ticket at a toll booth showing that in 2 hours
she had covered 159 mi on a toll road with speed limit 65 mph.
The trucker was cited for speeding. Why?

53. Classical accounts tell us that a 170-oar trireme (ancient Greek or
Roman warship) once covered 184 sea miles in 24 hours. Explain
why at some point during this feat the trireme’s speed exceeded
7.5 knots (sea miles per hour).

54. A marathoner ran the 26.2-mi New York City Marathon in 
2.2 hours. Show that at least twice the marathoner was running at
exactly 11 mph, assuming the initial and final speeds are zero.

55. Show that at some instant during a 2-hour automobile trip the car’s
speedometer reading will equal the average speed for the trip.

56. Free fall on the moon On our moon, the acceleration of gravity
is If a rock is dropped into a crevasse, how fast will it
be going just before it hits bottom 30 sec later?

1.6 m>sec2 .

C>sec

-19°C

a =

9

p2 cos 
3t
p , ys0d = 0, ss0d = -1

a = -4 sin 2t, ys0d = 2, ss0d = -3

a = 9.8, ys0d = -3, ss0d = 0

a = et, y(0) = 20, s(0) = 5

a = d2s>dt2 ,

y =

2
p cos 

2t
p , s(p2) = 1

y = sin pt, ss0d = 0

y = 32t - 2, ss0.5d = 4

y = 9.8t + 5, ss0d = 10

y = ds>dt

r¿std = sec t tan t - 1, Ps0, 0d

ƒ¿(x) = e2x,  P a0, 
3
2
b

g¿(x) =

1
x2 + 2x, P(-1, 1)

ƒ¿sxd = 2x - 1, Ps0, 0d

y¿ = 2u - sec2 uy¿ = 2uy¿ = sec2 u

y¿ = sin 2t + cos 
t
2

y¿ = cos 
t
2

y¿ = sin 2t

y¿ = 4x -

1

2x
y¿ =

1

2x
y¿ =

1

22x

Theory and Examples
57. The geometric mean of a and b The geometric mean of two

positive numbers a and b is the number Show that the value
of c in the conclusion of the Mean Value Theorem for 
on an interval of positive numbers 

58. The arithmetic mean of a and b The arithmetic mean of two
numbers a and b is the number Show that the value of
c in the conclusion of the Mean Value Theorem for on
any interval 

59. Graph the function

What does the graph do? Why does the function behave this way?
Give reasons for your answers.

60. Rolle’s Theorem

a. Construct a polynomial ƒ(x) that has zeros at 

b. Graph ƒ and its derivative together. How is what you see
related to Rolle’s Theorem?

c. Do and its derivative illustrate the same
phenomenon as ƒ and 

61. Unique solution Assume that ƒ is continuous on [a, b] and dif-
ferentiable on (a, b). Also assume that ƒ(a) and ƒ(b) have opposite
signs and that between a and b. Show that ex-
actly once between a and b.

62. Parallel tangents Assume that ƒ and g are differentiable on
[a, b] and that and Show that there is
at least one point between a and b where the tangents to the
graphs of ƒ and g are parallel or the same line. Illustrate with a
sketch.

63. Suppose that for . Show that 
.

64. Suppose that for all x-values. Show that
.

65. Show that for all x-values. (Hint: Consider
on [0, x].)

66. Show that for any numbers a and b, the sine inequality 
is true.

67. If the graphs of two differentiable functions ƒ(x) and g(x) start at
the same point in the plane and the functions have the same rate
of change at every point, do the graphs have to be identical? Give
reasons for your answer.

68. If for all values w and x and ƒ is a dif-
ferentiable function, show that for all x-values.

69. Assume that ƒ is differentiable on and that 
Show that is negative at some point between a and b.

70. Let ƒ be a function defined on an interval [a, b]. What conditions
could you place on ƒ to guarantee that

where and refer to the minimum and maximum
values of on [a, b]? Give reasons for your answers.ƒ¿

max ƒ¿min ƒ¿

min ƒ¿ …

ƒsbd - ƒsad
b - a

… max ƒ¿,

ƒ¿

ƒsbd 6 ƒsad.a … x … b

-1 … ƒ¿(x) … 1
ƒ ƒ(w) - ƒ(x) ƒ … ƒ w - x ƒ

sin a ƒ … ƒ b - a ƒƒ sin b -

ƒ(t) = cos t
ƒ cos x - 1 ƒ … ƒ x ƒ

ƒ(-1) 6 ƒ(1) 6 2 + ƒ(-1)
0 6 ƒ¿(x) 6 1>2

ƒ(1) … 3
ƒ(4) -1 … x … 4ƒ¿(x) … 1

ƒsbd = g sbd .ƒsad = g sad

ƒsxd = 0ƒ¿ Z 0

ƒ¿?
g¿gsxd = sin x

ƒ¿

1, and 2 .
x = -2, -1, 0,

ƒsxd = sin x sin sx + 2d - sin2 sx + 1d.

[a, b] is c = sa + bd>2.
ƒsxd = x2

sa + bd>2.

[a, b] is c = 2ab .
ƒsxd = 1>x

2ab .

T
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71. Use the inequalities in Exercise 70 to estimate 
for and 

72. Use the inequalities in Exercise 70 to estimate 
for and 

73. Let ƒ be differentiable at every value of x and suppose that
that and that 

a. Show that for all x.

b. Must Explain.

74. Let be a quadratic function defined on a
closed interval [a, b]. Show that there is exactly one point c in
(a, b) at which ƒ satisfies the conclusion of the Mean Value
Theorem.

ƒsxd = px2
+ qx + r

ƒ¿s1d = 0?

ƒsxd Ú 1

ƒ¿ 7 0 on s1, q d.ƒ¿ 6 0 on s - q , 1d ,ƒs1d = 1,

ƒs0d = 2.0 … x … 0.11>s1 - x4d
ƒs0.1d if ƒ¿sxd =

ƒs0d = 1.0 … x … 0.11>s1 + x4 cos xd
ƒs0.1d if ƒ¿sxd =

238 Chapter 4: Applications of Derivatives

4.3 Monotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function it is useful to know where it increases
(rises from left to right) and where it decreases (falls from left to right) over an interval.
This section gives a test to determine where it increases and where it decreases. We also
show how to test the critical points of a function to identify whether local extreme values
are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive de-
rivatives are increasing functions and functions with negative derivatives are decreasing
functions. A function that is increasing or decreasing on an interval is said to be monotonic
on the interval.

75. Use the same-derivative argument, as was done to prove the Prod-
uct and Power Rules for logarithms, to prove the Quotient Rule
property.

76. Use the same-derivative argument to prove the identities

a. b.

77. Starting with the equation derived in the text,
show that for any real number x. Then show that

for any numbers and 

78. Show that for any numbers and x2.x1(ex1)x2
= ex1 x2

= (ex2)x1

x2.x1ex1>ex2
= ex1 - x2

e-x
= 1>ex

ex1ex2
= ex1 + x2,

sec-1 x + csc-1 x =

p

2
tan-1 x + cot-1 x =

p

2

T

T

COROLLARY 3 Suppose that ƒ is continuous on [a, b] and differentiable on
(a, b).

If ƒ¿sxd 6 0 at each point x H sa, bd, then ƒ is decreasing on [a, b] .

If ƒ¿sxd 7 0 at each point x H sa, bd, then ƒ is increasing on [a, b] .

Proof Let and be any two points in [a, b] with The Mean Value Theorem
applied to ƒ on says that

for some c between and The sign of the right-hand side of this equation is the same
as the sign of because is positive. Therefore, if is positive
on (a, b) and if is negative on (a, b).

Corollary 3 is valid for infinite as well as finite intervals. To find the intervals where
a function ƒ is increasing or decreasing, we first find all of the critical points of ƒ. If

are two critical points for ƒ, and if the derivative is continuous but never zero on
the interval (a, b), then by the Intermediate Value Theorem applied to , the derivative
must be everywhere positive on (a, b), or everywhere negative there. One way we can de-
termine the sign of on (a, b) is simply by evaluating the derivative at a single point c in
(a, b). If then for all x in (a, b) so ƒ is increasing on [a, b] by Corol-
lary 3; if then ƒ is decreasing on [a, b]. The next example illustrates how we
use this procedure. 

ƒ¿(c) 6 0,
ƒ¿(x) 7 0ƒ¿(c) 7 0,

ƒ¿

ƒ¿

ƒ¿a 6 b

ƒ¿ƒsx2d 6 ƒsx1d
ƒ¿ƒsx2d 7 ƒsx1dx2 - x1ƒ¿scd

x2 .x1

ƒsx2d - ƒsx1d = ƒ¿scdsx2 - x1d

[x1, x2]
x1 6 x2 .x2x1
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4.3 Monotonic Functions and the First Derivative Test 239

EXAMPLE 1 Find the critical points of and identify the inter-
vals on which ƒ is increasing and on which ƒ is decreasing.

Solution The function ƒ is everywhere continuous and differentiable. The first derivative

is zero at and These critical points subdivide the domain of ƒ to create
nonoverlapping open intervals and on which is either pos-
itive or negative. We determine the sign of by evaluating at a convenient point in each
subinterval. The behavior of ƒ is determined by then applying Corollary 3 to each subin-
terval. The results are summarized in the following table, and the graph of ƒ is given in
Figure 4.20.

Interval

evaluated

Sign of 

Behavior of ƒ increasing decreasing increasing

We used “strict” less-than inequalities to specify the intervals in the summary table
for Example 1. Corollary 3 says that we could use inequalities as well. That is, the
function ƒ in the example is increasing on decreasing on 
and increasing on We do not talk about whether a function is increasing or
decreasing at a single point.

First Derivative Test for Local Extrema

In Figure 4.21, at the points where ƒ has a minimum value, immediately to the left
and immediately to the right. (If the point is an endpoint, there is only one side to
consider.) Thus, the function is decreasing on the left of the minimum value and it is in-
creasing on its right. Similarly, at the points where ƒ has a maximum value, imme-
diately to the left and immediately to the right. Thus, the function is increasing on
the left of the maximum value and decreasing on its right. In summary, at a local extreme
point, the sign of changes.ƒ¿sxd

ƒ¿ 6 0
ƒ¿ 7 0

ƒ¿ 7 0
ƒ¿ 6 0

2 … x 6 q .
-2 … x … 2,- q 6 x … -2,

…

+-+ƒœ

ƒ¿s3d = 15ƒ¿s0d = -12ƒ¿s -3d = 15ƒœ

2 6 x 6 q-2 6 x 6 2- q 6 x 6 -2

ƒ¿ƒ¿

ƒ¿s2, q ds - q , -2d, s -2, 2d ,
x = 2.x = -2

 = 3sx + 2dsx - 2d

 ƒ¿sxd = 3x2
- 12 = 3sx2

- 4d

ƒsxd = x3
- 12x - 5

These observations lead to a test for the presence and nature of local extreme values
of differentiable functions.

x

(–2, 11)

(2, –21)

y

1 2 3 4–2–3–4 –1 0

–10

–20

10

20

y � x3 – 12x  –  5

FIGURE 4.20 The function 
is monotonic on three

separate intervals (Example 1).
x3

- 12x - 5
ƒsxd =

x

y � f(x)

a bc1 c2 c5c4c3

Absolute min

Absolute max
 f '  undefined

Local min

Local max
 f ' � 0 No extremum

 f ' � 0

No extremum
 f ' � 0

Local min
 f ' � 0

 f ' � 0
 f ' � 0

 f ' � 0

 f ' � 0
 f ' � 0

 f ' � 0

FIGURE 4.21 The critical points of a function locate where it is increasing and where it is decreasing. The
first derivative changes sign at a critical point where a local extremum occurs.

HISTORICAL BIOGRAPHY

Edmund Halley
(1656–1742)
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The test for local extrema at endpoints is similar, but there is only one side to consider.

Proof of the First Derivative Test Part (1). Since the sign of changes from negative
to positive at c, there are numbers a and b such that on (a, c), and  

on (c, b). If then because implies that ƒ is decreas-
ing on [a, c]. If then because implies that ƒ is increasing
on [c, b]. Therefore, for every By definition, ƒ has a local mini-
mum at c.

Parts (2) and (3) are proved similarly.

EXAMPLE 2 Find the critical points of

Identify the intervals on which ƒ is increasing and decreasing. Find the function’s local and
absolute extreme values.

Solution The function ƒ is continuous at all x since it is the product of two continuous
functions, and The first derivative

is zero at and undefined at There are no endpoints in the domain, so the crit-
ical points and are the only places where ƒ might have an extreme value.

The critical points partition the x-axis into intervals on which is either positive or
negative. The sign pattern of reveals the behavior of ƒ between and at the critical points,
as summarized in the following table. 

Interval

Sign of

Behavior of ƒ decreasing decreasing increasing

Corollary 3 to the Mean Value Theorem tells us that ƒ decreases on de-
creases on [0, 1], and increases on The First Derivative Test for Local Extrema
tells us that ƒ does not have an extreme value at ( does not change sign) and that ƒ
has a local minimum at ( changes from negative to positive).

The value of the local minimum is This is also an ab-
solute minimum since ƒ is decreasing on and increasing on Figure 4.22
shows this value in relation to the function’s graph.

Note that so the graph of ƒ has a vertical tangent at the origin.lim
 x:0 ƒ¿sxd = - q ,

[1, q d .s - q , 1]
ƒs1d = 11>3s1 - 4d = -3.

ƒ¿x = 1
ƒ¿x = 0

[1, q d .
s - q , 0] ,

+--ƒœ

x 7 10 6 x 6 1x 6 0

ƒ¿

ƒ¿

x = 1x = 0
x = 0.x = 1

 =
4
3

 x-2>3Qx - 1R =

4sx - 1d
3x2>3

 ƒ¿sxd =
d
dx

 Qx4>3
- 4x1>3R =

4
3

 x1>3
-

4
3

 x-2>3

sx - 4d .x1>3

ƒsxd = x1>3sx - 4d = x4>3
- 4x1>3.

x H sa, bd .ƒsxd Ú ƒscd
ƒ¿ 7 0ƒscd 6 ƒsxdx H sc, bd ,

ƒ¿ 6 0ƒscd 6 ƒsxdx H sa, cd ,ƒ¿ 7 0
ƒ¿ 6 0a 6 c 6 b,

ƒ¿

240 Chapter 4: Applications of Derivatives

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function ƒ, and that ƒ is differen-
tiable at every point in some interval containing c except possibly at c itself.
Moving across this interval from left to right,

1. if changes from negative to positive at c, then ƒ has a local minimum at c;

2. if changes from positive to negative at c, then ƒ has a local maximum at c;

3. if does not change sign at c (that is, is positive on both sides of c or
negative on both sides), then ƒ has no local extremum at c.

ƒ¿ƒ¿

ƒ¿

ƒ¿

x

y

0 1 2 3 4

1

–1

–2

2

4

–3

–1

y � x1/3(x � 4)

(1, �3)

FIGURE 4.22 The function 
decreases when and

increases when (Example 2).x 7 1
x 6 1x1>3 sx - 4d
ƒsxd =
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4.3 Monotonic Functions and the First Derivative Test 241

EXAMPLE 3 Find the critical points of

Identify the intervals on which ƒ is increasing and decreasing. Find the function’s local and
absolute extreme values.

Solution The function ƒ is continuous and differentiable for all real numbers, so the crit-
ical points occur only at the zeros of 

Using the Derivative Product Rule, we find the derivative

Since is never zero, the first derivative is zero if and only if

The zeros and partition the x-axis into intervals as follows.

Interval

Sign of

Behavior of ƒ increasing decreasing increasing

We can see from the table that there is a local maximum (about 0.299) at and a
local minimum (about ) at . The local minimum value is also an absolute
minimum because for . There is no absolute maximum. The func-
tion increases on and and decreases on . Figure 4.23 shows
the graph.

(-3, 1)(1, q )(- q , -3)
ƒ x ƒ 7 23ƒ(x) 7 0

x = 1-5.437
x = -3

+-+ƒœ

1 6 x-3 6 x 6 1x 6 -3

x = 1x = -3

 (x + 3)(x - 1) = 0.

 x2
+ 2x - 3 = 0

ex

 = (x2
+ 2x - 3)ex.

 = (x2
- 3) # ex

+ (2x) # ex

 ƒ¿(x) = (x2
- 3) # d

dx
 ex

+
d
dx

 (x2
- 3) # ex

ƒ¿.

ƒ(x) = (x2
- 3)ex.

Exercises 4.3

Analyzing Functions from Derivatives
Answer the following questions about the functions whose derivatives
are given in Exercises 1–14:

a. What are the critical points of ƒ?

b. On what intervals is ƒ increasing or decreasing?

c. At what points, if any, does ƒ assume local maximum and
minimum values?

1. 2.

3. 4.

5.

6.

7.

8.

9. 10. ƒ¿(x) = 3 -

6

2x
 , x Z 0ƒ¿(x) = 1 -

4
x2 , x Z 0

ƒ¿(x) =

(x - 2)(x + 4)

(x + 1)(x - 3)
 , x Z -1, 3

ƒ¿(x) =

x2(x - 1)

x + 2
, x Z -2

ƒ¿sxd = sx - 7dsx + 1dsx + 5d
ƒ¿(x) = (x - 1)e-x

ƒ¿sxd = sx - 1d2sx + 2d2ƒ¿sxd = sx - 1d2sx + 2d
ƒ¿sxd = sx - 1dsx + 2dƒ¿sxd = xsx - 1d

11. 12.

13.

14.

Identifying Extrema
In Exercises 15–44:

a. Find the open intervals on which the function is increasing
and decreasing.

b. Identify the function’s local and absolute extreme values, if
any, saying where they occur.

15. 16.

ƒ¿(x) = (sin x + cos x)(sin x - cos x), 0 … x … 2p

ƒ¿(x) = (sin x - 1)(2 cos x + 1), 0 … x … 2p

ƒ¿sxd = x-1>2sx - 3dƒ¿sxd = x-1>3sx + 2d

–5 –4 –3 –2 –1 1 2 3

–6

–5

–4

–3

–2

–1

1

2

3

4

x

y y � (x2 � 3)ex

FIGURE 4.23 The graph of
(Example 3).ƒ(x) = (x2

- 3)ex

y 5 f (x)

y

x

–2

–1

1

2

2 31–1–2–3

y 5 f (x)

y

x

–2

–1

1

2

2 31–1–2–3
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17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

In Exercises 45–56:

a. Identify the function’s local extreme values in the given do-
main, and say where they occur.

b. Which of the extreme values, if any, are absolute?

c. Support your findings with a graphing calculator or computer
grapher.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

In Exercises 57–64:

a. Find the local extrema of each function on the given interval,
and say where they occur.

b. Graph the function and its derivative together. Comment on
the behavior of ƒ in relation to the signs and values of ƒ¿.

g sxd =

x2

4 - x2 , -2 6 x … 1

g sxd =

x - 2
x2

- 1
, 0 … x 6 1

ƒsxd = 2x2
- 2x - 3, 3 … x 6 q

ƒsxd = 225 - x2, -5 … x … 5

k sxd = x3
+ 3x2

+ 3x + 1, - q 6 x … 0

hsxd =

x3

3
- 2x2

+ 4x, 0 … x 6 q

ƒstd = t3
- 3t2, - q 6 t … 3

ƒstd = 12t - t3, -3 … t 6 q

g sxd = -x2
- 6x - 9, -4 … x 6 q

g sxd = x2
- 4x + 4, 1 … x 6 q

ƒsxd = sx + 1d2, - q 6 x … 0

ƒsxd = 2x - x2, - q 6 x … 2

ƒ(x) = x2 ln xƒ(x) = x ln x

ƒ(x) = e2xƒ(x) = e2x
+ e-x

k sxd = x2>3sx2
- 4dhsxd = x1>3sx2

- 4d
g sxd = x2>3sx + 5dƒsxd = x1>3sx + 8d

ƒsxd =

x3

3x2
+ 1

ƒsxd =

x2
- 3

x - 2
, x Z 2

g sxd = x225 - xg sxd = x28 - x2

g sxd = 42x - x2
+ 3ƒsxd = x - 62x - 1

Kstd = 15t3
- t5Hstd =

3
2

 t4
- t6

g sxd = x4
- 4x3

+ 4x2ƒsxd = x4
- 8x2

+ 16

hsrd = sr + 7d3ƒsrd = 3r3
+ 16r

ƒsud = 6u - u3ƒsud = 3u2
- 4u3

hsxd = 2x3
- 18xhsxd = -x3

+ 2x2

g std = -3t2
+ 9t + 5g std = - t2

- 3t + 3
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57.

58.

59.

60.

61.

62.

63.

64.

Theory and Examples
Show that the functions in Exercises 65 and 66 have local extreme val-
ues at the given values of and say which kind of local extreme the
function has.

65.

66.

67. Sketch the graph of a differentiable function through
the point (1, 1) if and

a.

b.

c.

d.

68. Sketch the graph of a differentiable function that has

a. a local minimum at (1, 1) and a local maximum at (3, 3);

b. a local maximum at (1, 1) and a local minimum at (3, 3);

c. local maxima at (1, 1) and (3, 3);

d. local minima at (1, 1) and (3, 3).

69. Sketch the graph of a continuous function such that

a. as 
as 

b. as 
and 

70. Sketch the graph of a continuous function such that

a.
and 

b.
and 

71. Discuss the extreme-value behavior of the function 
. How many critical points does this function

have? Where are they located on the x-axis? Does ƒ have an 
absolute minimum? An absolute maximum? (See Exercise 49 in
Section 2.3.)

72. Find the intervals on which the function 
is increasing and decreasing. Describe the reasoning be-

hind your answer.

73. Determine the values of constants a and b so that 
has an absolute maximum at the point (1, 2).

74. Determine the values of constants a, b, c, and d so that
has a local maximum at the point

(0, 0) and a local minimum at the point .(1, -1)
ƒ(x) = ax3

+ bx2
+ cx + d

ax2
+ bx

ƒ(x) =

a Z 0,
ƒsxd = ax2

+ bx + c,

x Z 0x sin (1>x),
ƒ(x) =

h¿sxd : - q  as x : 0+ .
hs0d = 0, -2 … hsxd … 0 for all x, h¿sxd : q  as x : 0-,

h¿sxd : q  as x : 0+ ;
hs0d = 0, -2 … hsxd … 2 for all x, h¿sxd : q  as x : 0-,

y = hsxd
g¿sxd : q  as x : 2+ .g¿ 7 0 for x 7 2,

x : 2-,g s2d = 2, g¿ 6 0 for x 6 2, g¿sxd : - q

x : 2+ ;-1 6 g¿ 6 0 for x 7 2, and g¿sxd : -1+

x : 2-,g s2d = 2, 0 6 g¿ 6 1 for x 6 2, g¿sxd : 1-

y = g sxd

y = ƒsxd
ƒ¿sxd 6 0 for x Z 1.

ƒ¿sxd 7 0 for x Z 1;

ƒ¿sxd 6 0 for x 6 1 and ƒ¿sxd 7 0 for x 7 1;

ƒ¿sxd 7 0 for x 6 1 and ƒ¿sxd 6 0 for x 7 1;

ƒ¿s1d = 0
y = ƒsxd

hsud = 5 sin 
u

2
 , 0 … u … p, at u = 0 and u = p

hsud = 3 cos 
u

2
 , 0 … u … 2p, at u = 0 and u = 2p

u ,

ƒsxd = sec2 x - 2 tan x, -p

2
6 x 6

p

2

ƒsxd = csc2 x - 2 cot x, 0 6 x 6 p

ƒsxd = -2 cos x - cos2 x, -p … x … p

ƒsxd =

x
2

- 2 sin 
x
2

 , 0 … x … 2p

ƒsxd = -2x + tan x, -p

2
6 x 6

p

2

ƒsxd = 23 cos x + sin x, 0 … x … 2p

ƒsxd = sin x - cos x, 0 … x … 2p

ƒsxd = sin 2x, 0 … x … p

y 5 f (x)

–2

–1

1

2

2 31–1–2–3
x

y y

x

–2

–1

1

2

2 31–1–2–3

y 5 f (x)

T

T
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4.4 Concavity and Curve Sketching 243

75. Locate and identify the absolute extreme values of

a. ln (cos x) on 

b. cos (ln x) on 

76. a. Prove that is increasing for 

b. Using part (a), show that if 

77. Find the absolute maximum and minimum values of 
on [0, 1].

78. Where does the periodic function take on its ex-
treme values and what are these values?

x

y

0

y � 2esin (x/2)

ƒsxd = 2esin sx>2d

ex
- 2x

ƒsxd =
x 7 1.ln x 6 x

x 7 1.ƒ(x) = x - ln x

[1>2, 2].

[-p>4, p>3],

79. Find the absolute maximum value of and say
where it is assumed.

80. a. Prove that if  

b. Use the result in part (a) to show that

81. Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any and in I, implies

Use the results of Exercise 81 to show that the functions in Exercises
82–86 have inverses over their domains. Find a formula for 
using Theorem 3, Section 3.8.

82. 83.

84. 85.

86. ƒsxd = x5>3
ƒsxd = s1 - xd3ƒsxd = 1 - 8x3

ƒsxd = 27x3ƒsxd = s1>3dx + s5>6d

dƒ -1>dx

ƒsx2d Z ƒsx1d.
x2 Z x1x2x1

ex
Ú 1 + x +

1
2

 x2.

x Ú 0.ex
Ú 1 + x

ƒsxd = x2 ln s1>xd

4.4 Concavity and Curve Sketching

We have seen how the first derivative tells us where a function is increasing, where it is de-
creasing, and whether a local maximum or local minimum occurs at a critical point. In this
section we see that the second derivative gives us information about how the graph of a
differentiable function bends or turns. With this knowledge about the first and second de-
rivatives, coupled with our previous understanding of asymptotic behavior and symmetry
studied in Sections 2.6 and 1.1, we can now draw an accurate graph of a function. By or-
ganizing all of these ideas into a coherent procedure, we give a method for sketching
graphs and revealing visually the key features of functions. Identifying and knowing the
locations of these features is of major importance in mathematics and its applications to
science and engineering, especially in the graphical analysis and interpretation of data.

Concavity

As you can see in Figure 4.24, the curve rises as x increases, but the portions de-
fined on the intervals and turn in different ways. As we approach the ori-
gin from the left along the curve, the curve turns to our right and falls below its tangents.
The slopes of the tangents are decreasing on the interval As we move away from
the origin along the curve to the right, the curve turns to our left and rises above its tan-
gents. The slopes of the tangents are increasing on the interval This turning or
bending behavior defines the concavity of the curve.

s0, q d .

s - q , 0d .

s0, q ds - q , 0d
y = x3

DEFINITION The graph of a differentiable function is

(a) concave up on an open interval I if is increasing on I;

(b) concave down on an open interval I if is decreasing on I.ƒ¿

ƒ¿

y = ƒsxd

If has a second derivative, we can apply Corollary 3 of the Mean Value Theorem
to the first derivative function. We conclude that increases if on I, and decreases
if ƒ– 6 0.

ƒ– 7 0ƒ¿

y = ƒsxd

x

y

0

CONCA
V

E
U

P

C
O

N
CA

V
E

DOW
Nf ' decreases

f ' increases

y � x3

FIGURE 4.24 The graph of is
concave down on and concave up
on (Example 1a).s0, q d

s - q , 0d
ƒsxd = x3
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If is twice-differentiable, we will use the notations and interchangeably
when denoting the second derivative.

EXAMPLE 1

(a) The curve (Figure 4.24) is concave down on where 
and concave up on where 

(b) The curve (Figure 4.25) is concave up on because its second deriv-
ative is always positive.

EXAMPLE 2 Determine the concavity of 

Solution The first derivative of is and the second derivative is
The graph of is concave down on where 

is negative. It is concave up on  where  is positive (Figure 4.26).

Points of Inflection

The curve in Example 2 changes concavity at the point Since the
first derivative exists for all x, we see that the curve has a tangent line of slope

at the point . This point is called a point of inflection of the curve. Notice from
Figure 4.26 that the graph crosses its tangent line at this point and that the second derivative

has value 0 when In general, we have the following definition.x = p.y– = -sin x

sp, 3d-1
y¿ = cos x

sp, 3d .y = 3 + sin x

y– = -sin xsp, 2pd ,
y– = -sin xs0, pd ,y = 3 + sin xy– = -sin x.

y¿ = cos x,y = 3 + sin x

y = 3 + sin x on [0, 2p] .

y– = 2
s - q , q dy = x2

y– = 6x 7 0.s0, q d
y– = 6x 6 0s - q , 0dy = x3

y–ƒ–y = ƒsxd

244 Chapter 4: Applications of Derivatives

We observed that the second derivative of is equal to zero at the
inflection point . Generally, if the second derivative exists at a point of inflection
(c, ƒ(c)), then This follows immediately from the Intermediate Value Theorem
whenever is continuous over an interval containing because the second derivative
changes sign moving across this interval. Even if the continuity assumption is dropped, it
is still true that provided the second derivative exists (although a more ad-
vanced agrument is required in this noncontinuous case). Since a tangent line must exist at
the point of inflection, either the first derivative exists (is finite) or a vertical tangent
exists at the point. At a vertical tangent neither the first nor second derivative exists. In
summary, we conclude the following result.

ƒ¿(c)

ƒ–(c) = 0,

x = cƒ–

ƒ–(c) = 0.
sp, 3d

ƒ(x) = 3 + sin x

The Second Derivative Test for Concavity

Let be twice-differentiable on an interval I.

1. If on I, the graph of ƒ over I is concave up.

2. If on I, the graph of ƒ over I is concave down.ƒ– 6 0

ƒ– 7 0

y = ƒsxd
C

O
N

C
A

V
E

U
P

C
O

N
C

A
V

E
U

P

–2 –1 0 1 2
x

1

2

3

4

y

y � x2

y'' � 0 y'' � 0

FIGURE 4.25 The graph of 
is concave up on every interval 
(Example 1b).

ƒsxd = x2

x

y
y 5 3 1 sinx 

p 2p0
–1

1

2

3

4

y'' 5 – sinx

(p, 3)

FIGURE 4.26 Using the sign of to
determine the concavity of y (Example 2).

y–

DEFINITION A point where the graph of a function has a tangent line and
where the concavity changes is a point of inflection.

At a point of inflection (c, ƒ(c)), either or fails to exist. ƒ–(c)ƒ–(c) = 0

The next example illustrates a function having a point of inflection where the first 
derivative exists, but the second derivative fails to exist.
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4.4 Concavity and Curve Sketching 245

EXAMPLE 3 The graph of has a horizontal tangent at the origin because
when However, the second derivative

fails to exist at Nevertheless, for and for so the
second derivative changes sign at and there is a point of inflection at the origin. The
graph is shown in Figure 4.27.

Here is an example showing that an inflection point need not occur even though both
derivatives exist and 

EXAMPLE 4 The curve has no inflection point at (Figure 4.28). Even
though the second derivative is zero there, it does not change sign.

As our final illustration, we show a situation in which a point of inflection occurs at a
vertical tangent to the curve where neither the first nor the second derivative exists.

EXAMPLE 5 The graph of has a point of inflection at the origin because the
second derivative is positive for and negative for 

However, both and fail to exist at and there is a vertical tangent
there. See Figure 4.29.

To study the motion of an object moving along a line as a function of time, we often
are interested in knowing when the object’s acceleration, given by the second derivative, is
positive or negative. The points of inflection on the graph of the object’s position function
reveal where the acceleration changes sign.

EXAMPLE 6 A particle is moving along a horizontal coordinate line (positive to the
right) with position function

Find the velocity and acceleration, and describe the motion of the particle.

Solution The velocity is

and the acceleration is

When the function s(t) is increasing, the particle is moving to the right; when s(t) is de-
creasing, the particle is moving to the left.

Notice that the first derivative is zero at the critical points and 

Interval

Sign of 

Behavior of s increasing decreasing increasing

Particle motion right left right

+-+Y � sœ

11>3 6 t1 6 t 6 11>30 6 t 6 1

t = 11>3.t = 1sy = s¿ d

astd = y¿std = s–std = 12t - 28 = 4s3t - 7d.

ystd = s¿std = 6t2
- 28t + 22 = 2st - 1ds3t - 11d ,

sstd = 2t3
- 14t2

+ 22t - 5, t Ú 0.

x = 0,y–y¿ = x-2>3>3
y– =

d2

dx2 ax1>3b =
d
dx

 a1
3

 x-2>3b = -
2
9

 x-5>3 .

x 7 0:x 6 0
y = x1>3

y– = 12x2
x = 0y = x4

ƒ– = 0.

x = 0
x 7 0,ƒ–(x) 7 0x 6 0ƒ–(x) 6 0x = 0.

ƒ–(x) =
d
dx
a5

3
 x2>3b =

10
9

 x-1>3

x = 0.ƒ¿(x) = (5>3)x2>3
= 0

ƒ(x) = x5>3

x

y

0

1

1

2

–1

y � x4

y'' � 0

FIGURE 4.28 The graph of has
no inflection point at the origin, even
though there (Example 4).y– = 0

y = x4

x

y

0

y 5 x1/3Point of
inflection

FIGURE 4.29 A point of
inflection where and fail
to exist (Example 5).

y–y¿

–2

–1

21–2

2

1

0

y 5 x5/3

x

y

Point of
inflection

–1

FIGURE 4.27 The graph of 
has a horizontal tangent at the origin where
the concavity changes, although does
not exist at (Example 3).x = 0

ƒ–

ƒ(x) = x5>3
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The particle is moving to the right in the time intervals [0, 1) and and moving
to the left in (1, ). It is momentarily stationary (at rest) at and 

The acceleration is zero when 

Interval

Sign of 

Graph of s concave down concave up

The particle starts out moving to the right while slowing down, and then reverses and
begins moving to the left at under the influence of the leftward acceleration over
the time interval The acceleration then changes direction at but the
particle continues moving leftward, while slowing down under the rightward accelera-
tion. At the particle reverses direction again: moving to the right in the same
direction as the acceleration.

Second Derivative Test for Local Extrema

Instead of looking for sign changes in at critical points, we can sometimes use the fol-
lowing test to determine the presence and nature of local extrema.

ƒ¿

t = 11>3
t = 7>3[0, 7>3).

t = 1

+-a � sfl

7>3 6 t0 6 t 6 7>3
t = 7>3.astd = s–std = 4s3t - 7d

t = 11>3.t = 111>3 s11>3, q d ,
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Proof Part (1). If then on some open interval I containing the
point c, since is continuous. Therefore, is decreasing on I. Since the sign
of changes from positive to negative at c so ƒ has a local maximum at c by the First
Derivative Test.

The proof of Part (2) is similar.
For Part (3), consider the three functions and For each

function, the first and second derivatives are zero at Yet the function has a
local minimum there, has a local maximum, and is increasing in any
open interval containing (having neither a maximum nor a minimum there). Thus
the test fails.

This test requires us to know only at c itself and not in an interval about c. This
makes the test easy to apply. That’s the good news. The bad news is that the test is incon-
clusive if or if does not exist at . When this happens, use the First Deriva-
tive Test for local extreme values.

Together and tell us the shape of the function’s graph—that is, where the critical
points are located and what happens at a critical point, where the function is increasing and
where it is decreasing, and how the curve is turning or bending as defined by its concavity.
We use this information to sketch a graph of the function that captures its key features.

EXAMPLE 7 Sketch a graph of the function

using the following steps.

(a) Identify where the extrema of ƒ occur.

(b) Find the intervals on which ƒ is increasing and the intervals on which ƒ is decreasing.

ƒsxd = x4
- 4x3

+ 10

ƒ–ƒ¿

x = cƒ–ƒ– = 0

ƒ–

x = 0
y = x3y = -x4

y = x4x = 0.
y = x3 .y = x4, y = -x4 ,

ƒ¿

ƒ¿scd = 0,ƒ¿ƒ–

ƒ–sxd 6 0ƒ–scd 6 0,

THEOREM 5—Second Derivative Test for Local Extrema Suppose is continuous
on an open interval that contains 

1. If and then ƒ has a local maximum at 

2. If and then ƒ has a local minimum at 

3. If and then the test fails. The function ƒ may have a 
local maximum, a local minimum, or neither.

ƒ–scd = 0,ƒ¿scd = 0

x = c.ƒ–scd 7 0,ƒ¿scd = 0

x = c.ƒ–scd 6 0,ƒ¿scd = 0

x = c.
ƒ–

f ' 5 0, f '' , 0
⇒ local max

f ' 5 0, f '' . 0
⇒ local min

7001_AWLThomas_ch04p222-296.qxd  10/12/09  2:28 PM  Page 246



4.4 Concavity and Curve Sketching 247

(c) Find where the graph of ƒ is concave up and where it is concave down.

(d) Sketch the general shape of the graph for ƒ.

(e) Plot some specific points, such as local maximum and minimum points, points of in-
flection, and intercepts. Then sketch the curve.

Solution The function ƒ is continuous since exists. The domain of
ƒ is and the domain of is also Thus, the critical points of ƒ occur
only at the zeros of Since

,

the first derivative is zero at and We use these critical points to define inter-
vals where ƒ is increasing or decreasing.

Interval

Sign of 

Behavior of ƒ decreasing decreasing increasing

(a) Using the First Derivative Test for local extrema and the table above, we see that there
is no extremum at and a local minimum at 

(b) Using the table above, we see that ƒ is decreasing on and [0, 3], and increas-
ing on 

(c) is zero at and We use these points
to define intervals where ƒ is concave up or concave down.

Interval

Sign of 

Behavior of ƒ concave up concave down concave up

We see that ƒ is concave up on the intervals and and concave down on
(0, 2).

(d) Summarizing the information in the last two tables, we obtain the following.

decreasing decreasing decreasing increasing

concave up concave down concave up concave up

The general shape of the curve is shown in the accompanying figure.

(e) Plot the curve’s intercepts (if possible) and the points where and are zero. Indicate
any local extreme values and inflection points. Use the general shape as a guide to sketch
the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of ƒ.

y–y¿

conc
down

conc
up

conc
up

conc
up

decr decr incrdecr

infl
point

infl
point

local
min

0 2 3

General shape

3<x2<x<30<x<2x<0

s2, q d ,s - q , 0d

+-+ƒfl

2 6 x0 6 x 6 2x 6 0

x = 2.x = 0ƒ–sxd = 12x2
- 24x = 12xsx - 2d

[3, q d .
s - q , 0]

x = 3.x = 0

+--ƒœ

3 6 x0 6 x 6 3x 6 0

x = 3.x = 0

ƒ¿sxd = 4x3
- 12x2

= 4x2sx - 3d

ƒ¿ .
s - q , q d .ƒ¿s - q , q d,

ƒ¿sxd = 4x3
- 12x2

x

y

0 1

5

–5
–1

–10

(0, 10)

2 3 4

–15

–20

10

15

20

Inflection
point

Local
minimum

Inflection
point

y � x4 � 4x3 � 10

(2, –6)

(3, –17)

FIGURE 4.30 The graph of 
(Example 7).x4

- 4x3
+ 10

ƒsxd =
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EXAMPLE 8 Sketch the graph of 

Solution

1. The domain of ƒ is and there are no symmetries about either axis or the
origin (Section 1.1).

2. Find and

3. Behavior at critical points. The critical points occur only at where 
(Step 2) since exists everywhere over the domain of ƒ. At 

yielding a relative minimum by the Second Derivative Test.
At yielding a relative maximum by the Second Derivative
test.

4. Increasing and decreasing. We see that on the interval the derivative
and the curve is decreasing. On the interval and the

curve is increasing; it is decreasing on where again.ƒ¿sxd 6 0s1, q d
s -1, 1d, ƒ¿sxd 7 0ƒ¿sxd 6 0,

s - q , -1d

x = 1,  f –(1) = -1 6 0
ƒ–(-1) = 1 7 0

x = -1,ƒ¿

ƒ¿sxd = 0x = ;1

 =

4xsx2
- 3d

s1 + x2d3

 ƒ–sxd =

s1 + x2d2 # 2s -2xd - 2s1 - x2d[2s1 + x2d # 2x]

s1 + x2d4

 =

2s1 - x2d
s1 + x2d2

 ƒ¿sxd =

s1 + x2d # 2sx + 1d - sx + 1d2 # 2x

s1 + x2d2

 ƒsxd =

sx + 1d2

1 + x2

ƒ– .ƒ¿

s - q , q d

ƒsxd =

sx + 1d2

1 + x2 .
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Procedure for Graphing 
1. Identify the domain of ƒ and any symmetries the curve may have.

2. Find the derivatives and 

3. Find the critical points of ƒ, if any, and identify the function’s behavior at each
one.

4. Find where the curve is increasing and where it is decreasing.

5. Find the points of inflection, if any occur, and determine the concavity of the
curve.

6. Identify any asymptotes that may exist (see Section 2.6).

7. Plot key points, such as the intercepts and the points found in Steps 3–5, and
sketch the curve together with any asymptotes that exist.

y– .y¿

y � ƒ(x)

The steps in Example 7 give a procedure for graphing the key features of a function.

at
x = 0
y-intercept sy = 1d

x = -1,x-intercept at

Critical points:
x = -1, x = 1

After some algebra
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4.4 Concavity and Curve Sketching 249

5. Inflection points. Notice that the denominator of the second derivative (Step 2) is 

always positive. The second derivative is zero when and The

second derivative changes sign at each of these points: negative on 

positive on negative on and positive again on Thus
each point is a point of inflection. The curve is concave down on the interval 

concave up on concave down on and concave

up again on 

6. Asymptotes. Expanding the numerator of ƒ(x) and then dividing both numerator and
denominator by gives

Expanding numerator

Dividing by 

We see that as and that as Thus, the line
is a horizontal asymptote.

Since ƒ decreases on and then increases on we know that
is a local minimum. Although ƒ decreases on it never crosses

the horizontal asymptote on that interval (it approaches the asymptote
from above). So the graph never becomes negative, and is an absolute
minimum as well. Likewise, is an absolute maximum because the graph
never crosses the asymptote on the interval approaching it
from below. Therefore, there are no vertical asymptotes (the range of ƒ is

).

7. The graph of ƒ is sketched in Figure 4.31. Notice how the graph is concave down as it
approaches the horizontal asymptote as and concave up in its ap-
proach to as 

EXAMPLE 9 Sketch the graph of 

Solution

1. The domain of ƒ is all nonzero real numbers. There are no intercepts because neither x
nor ƒ(x) can be zero. Since we note that ƒ is an odd function, so the
graph of ƒ is symmetric about the origin.

2. We calculate the derivatives of the function, but first rewrite it in order to simplify our
computations:

Function simplified for differentiation

Combine fractions to solve easily . 

Exists throughout the entire domain of ƒ

3. The critical points occur at where Since and
we see from the Second Derivative Test that a relative maximum occurs

at with and a relative minimum occurs at with
ƒ(2) = 2.

x = 2ƒ(-2) = -2,x = -2
ƒ–(2) 7 0,

ƒ–(-2) 6 0ƒ¿(x) = 0.x = ;2

ƒ–(x) =
4
x3

ƒ¿(x) = 0ƒ¿(x) =
1
2

-
2
x2 =

x2
- 4

2x2

ƒ(x) =
x2

+ 4
2x

=
x
2

+
2
x

ƒ(-x) = -ƒ(x),

ƒ(x) =
x2

+ 4
2x

.

x : q .y = 1
x : - q ,y = 1

0 … y … 2

s - q , -1d ,y = 1
ƒs1d = 2

ƒs -1d = 0
y = 1

s1, q d ,ƒs -1d = 0
s -1, 1d ,s - q , -1d

y = 1
x : - q .ƒsxd : 1-x : qƒsxd : 1+

x2 =

1 + s2>xd + s1>x2d

s1>x2d + 1
.

 ƒsxd =

sx + 1d2

1 + x2 =
x2

+ 2x + 1
1 + x2

x2

A23, q B . A0, 23 B ,A -23, 0 B ,A - q , -23 B ,
A23, q B .A0, 23 B ,A -23, 0 B , A - q , -23 B ,

23.x = -23, 0 ,ƒ–

–1 1

1

2

x

y

(1, 2)

Point of inflection
where x � �3

Point of inflection
where x � ��3

Horizontal
asymptote

y � 1

FIGURE 4.31 The graph of 

(Example 8).

y =

sx + 1d2

1 + x2
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4. On the interval the derivative is positive because so the
graph is increasing; on the interval the derivative is negative and the graph is
decreasing. Similarly, the graph is decreasing on the interval (0, 2) and increasing on

5. There are no points of inflection because whenever 
whenever and exists everywhere and is never zero throughout the domain
of ƒ. The graph is concave down on the interval and concave up on the inter-
val 

6. From the rewritten formula for ƒ(x), we see that

so the y-axis is a vertical asymptote. Also, as or as the graph of
ƒ(x) approaches the line Thus is an oblique asymptote.

7. The graph of ƒ is sketched in Figure 4.32.

EXAMPLE 10 Sketch the graph of 

Solution The domain of ƒ is and there are no symmetries about
either axis or the origin. The derivatives of ƒ are

and

Both derivatives exist everywhere over the domain of ƒ. Moreover, since and 
are both positive for all we see that everywhere over the domain and 
the graph is everywhere decreasing. Examining the second derivative, we see that

at . Since and , we have for 
and for . Therefore, the point is a point of inflection.
The curve is concave down on the interval and concave up over

From Example 7, Section 2.6, we see that . As we see that
so and the y-axis is a vertical asymptote. Also, as

and so Therefore, is a horizontal
asymptote. There are no absolute extrema since ƒ never takes on the value 0. The graph of
ƒ is sketched in Figure 4.33.

Graphical Behavior of Functions from Derivatives

As we saw in Examples 7–10, we can learn much about a twice-differentiable func-
tion by examining its first derivative. We can find where the function’s
graph rises and falls and where any local extrema are located. We can differentiate 
to learn how the graph bends as it passes over the intervals of rise and fall. We can
determine the shape of the function’s graph. Information we cannot get from the de-
rivative is how to place the graph in the xy-plane. But, as we discovered in Section 4.2,
the only additional information we need to position the graph is the value of ƒ at one
point. Information about the asymptotes is found using limits (Section 2.6). The following

y¿

y = ƒsxd

y = 1limx:-q ƒ(x) = e0
= 1.x : - q , 2>x : 0-

limx:0+ ƒ(x) = q2>x : q ,
x : 0+,limx:0- ƒ(x) = 0

(-1, 0)h (0, q ).
(- q , -1)

(-1, e-2)x 7 -1, x Z 0ƒ– 7 0
x 6 -1ƒ– 6 0x4

7 0e2>x
7 0x = -1ƒ–(x) = 0

ƒ¿ 6 0x Z 0,
x2e2>x

ƒ–(x) =

x2(2e2>x)(-2>x2) - 2e2>x(2x)

x4 =

4e2>x(1 + x)

x4 .

ƒ¿(x) = e2>x a-
2
x2 b = -

2e2>x
x2

(- q , 0)h (0, q )

ƒ(x) = e2>x.

y = x>2y = x>2.
x : - q ,x : q

lim
x:0 +

 ax
2

+
2
x b = + q   and  lim

x:0 -

 ax
2

+
2
x b = - q ,

(0, q ).
(- q , 0)

ƒ–x 7 0,
ƒ–(x) 7 0x 6 0,ƒ–(x) 6 0

(2, q ).

(-2, 0)
x2

- 4 7 0ƒ¿(- q , -2)
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–2

42–4 –2

4

2

0
x

y

–4

y 5
2
xx

x2 1 4y 5
2x

(2, 2)

(–2, –2)

FIGURE 4.32 The graph of 

(Example 9).

y =

x2
+ 4

2x

–2 –1 1 2 3

1

2

3

4

5

Inflection
point

y � e2�x

0 1 2 3
x

y

y � 1

FIGURE 4.33 The graph of has
a point of inflection at The line

is a horizontal asymptote and 
is a vertical asymptote (Example 10).

x = 0y = 1
(-1, e-2).

y = e2>x
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4.4 Concavity and Curve Sketching 251

oror

or

y � f (x) y � f (x) y � f (x)

Differentiable ⇒
smooth, connected; graph
may rise and fall

y' � 0 ⇒ rises from
left to right;
may be wavy

y' � 0 ⇒ falls from
left to right;
may be wavy

y'' � 0 ⇒ concave up
throughout; no waves; graph
may rise or fall

y'' � 0 ⇒ concave down
throughout; no waves;
graph may rise or fall

y'' changes sign at an
inflection point

y' changes sign ⇒ graph
has local maximum or local
minimum

y' � 0  and  y'' � 0
at a point; graph has
local maximum

y' � 0  and  y'' � 0
at a point; graph has
local minimum

Exercises 4.4

Analyzing Functions from Graphs
Identify the inflection points and local maxima and minima of the
functions graphed in Exercises 1–8. Identify the intervals on which
the functions are concave up and concave down.

1. 2.

3. 4.

0
x

y

y �     x1/3(x2 � 7)9
14

0
x

y

y �    (x2 � 1)2/33
4

0
x

y

y �      � 2x2 � 4x4

4

0
x

y

y �      �     � 2x �x3

3
1
3

x2

2

5. 6.

7. 8.

Graphing Equations
Use the steps of the graphing procedure on page 248 to graph the
equations in Exercises 9–58. Include the coordinates of any local and
absolute extreme points and inflection points.

9. 10.

11. 12. y = xs6 - 2xd2y = x3
- 3x + 3

y = 6 - 2x - x2y = x2
- 4x + 3

x

y

0–� 3�
2

y � 2 cos x � �2 x,  –� � x �
3�
2

x

y

y � sin �x�, –2� � x � 2�

0

NOT TO SCALE

x

y

y � tan x � 4x, –     � x ��
2

�
2

00
x

y

–

y � x � sin 2x, –       � x �2�
3

2�
3

2�
3

2�
3

figure summarizes how the derivative and second derivative affect the shape of a
graph.
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13. 14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

Sketching the General Shape, Knowing 
Each of Exercises 59–80 gives the first derivative of a continuous
function Find and then use steps 2–4 of the graphing
procedure on page 248 to sketch the general shape of the graph of ƒ.

59. 60.

61. 62.

63. 64. y¿ = sx - 1d2s2x + 3dy¿ = xsx2
- 12d

y¿ = x2s2 - xdy¿ = xsx - 3d2

y¿ = x2
- x - 6y¿ = 2 + x - x2

y–y = ƒsxd .

yœ

y =

ex

1 + exy =

1
1 + e-x

y =

ln x

2x
y = ln (cos x)

y = xe-xy = ex
- 2e-x

- 3x

y = x (ln x)2y = ln (3 - x2)

y =

ex

xy = xe1>x
y = 2ƒ x - 4 ƒ

y = 2 ƒ x ƒ = e2-x,  x 6 0

2x,    x Ú 0

y = ƒ x2 - 2 x ƒy = ƒ x2
- 1 ƒ

y =

5
x4

+ 5
y =

8x

x2
+ 4

y = 23 x3
+ 1y =

x2
- 3

x - 2

y = x2
+

2
xy = 216 - x2

y = (2 - x2)3>2y = x28 - x2

y = x2>3(x - 5)y = x2>3 a5
2

- xb
y = 5x2>5

- 2xy = 2x - 3x2>3
y =

21 - x2

2x + 1
y =

x

2x2
+ 1

y = x2>5y = x1>5
y = cos x + 23 sin x, 0 … x … 2p

y = sin x cos x, 0 … x … p

y =

4
3

 x - tan x, -p

2
6 x 6

p

2

y = 23x - 2 cos x, 0 … x … 2p

y = x - sin x, 0 … x … 2p

y = x + sin x, 0 … x … 2p

y = x ax
2

- 5b4

y = x5
- 5x4

= x4sx - 5d
y = x4

+ 2x3
= x3sx + 2d

y = 4x3
- x4

= x3s4 - xd
y = -x4

+ 6x2
- 4 = x2s6 - x2d - 4

y = x4
- 2x2

= x2sx2
- 2d

y = 1 - sx + 1d3

y = sx - 2d3
+ 1

y = 1 - 9x - 6x2
- x3y = -2x3

+ 6x2
- 3

252 Chapter 4: Applications of Derivatives

65. 66.

67.

68.

69. 70.

71.

72.

73.

74.

75. 76.

77. 78.

79.

80.

Sketching y from Graphs of and 
Each of Exercises 81–84 shows the graphs of the first and second de-
rivatives of a function Copy the picture and add to it a
sketch of the approximate graph of ƒ, given that the graph passes
through the point P.

81. 82.

83.

84.

Graphing Rational Functions
Graph the rational functions in Exercises 85–102.

85. 86.

87. 88.

89. 90. y =

x2

x2
- 1

y =

1
x2

- 1

y =

x2
- 4

2x
y =

x4
+ 1

x2

y =

x2
- 49

x2
+ 5x - 14

y =

2x2
+ x - 1

x2
- 1

y � f '(x)

y � f ''(x)

P

0
x

y

y � f '(x)

y � f ''(x)

P

0
x

y

y � f '(x)

y � f ''(x)
P

x

y

y � f '(x)

y � f ''(x)

P

x

y

y = ƒsxd .

yflyœ

y¿ = e -x2,  x … 0

x2,    x 7 0

y¿ = 2 ƒ x ƒ = e -2x,  x … 0

2x,    x 7 0

y¿ = x-4>5sx + 1dy¿ = x-2>3sx - 1d
y¿ = sx - 2d-1>3y¿ = sx + 1d-2>3

y¿ = sin t, 0 … t … 2p

y¿ = cos t, 0 … t … 2p

y¿ = 1 - cot2 u, 0 6 u 6 p

y¿ = tan2 u - 1, -

p

2
6 u 6

p

2

y¿ = csc2  
u

2
 , 0 6 u 6 2py¿ = cot  

u

2
 , 0 6 u 6 2p

y¿ = tan x, -

p

2
6 x 6

p

2

y¿ = sec2 x, -

p

2
6 x 6

p

2

y¿ = sx2
- 2xdsx - 5d2y¿ = s8x - 5x2d(4 - x)2
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4.4 Concavity and Curve Sketching 253

91. 92.

93. 94.

95. 96.

97. 98.

99. 100.

101.

102.

Theory and Examples
103. The accompanying figure shows a portion of the graph of a twice-

differentiable function At each of the five labeled
points, classify and as positive, negative, or zero.

104. Sketch a smooth connected curve with

105. Sketch the graph of a twice-differentiable function with
the following properties. Label coordinates where possible.

x y Derivatives

2 1

4 4

6 7

106. Sketch the graph of a twice-differentiable function that
passes through the points , , , , and (2, 2)
and whose first two derivatives have the following sign patterns.

y–: -     +     -

-1       1   

y¿: +     -     +     -

-2       0          2

s1, 1ds0, 0ds -1, 1ds -2, 2d
y = ƒsxd

y¿ 6 0, y– 6 0x 7 6
y¿ = 0, y– 6 0
y¿ 7 0, y– 6 04 6 x 6 6
y¿ 7 0, y– = 0
y¿ 7 0, y– 7 02 6 x 6 4
y¿ = 0, y– 7 0
y¿ 6 0, y– 7 0x 6 2

y = ƒsxd

ƒ–sxd 7 0 for x 7 0. ƒ¿sxd 7 0 for ƒ x ƒ 7 2,

ƒ–sxd 6 0 for x 6 0,  ƒs2d = 0,

ƒ¿sxd 6 0 for ƒ x ƒ 6 2,  ƒs0d = 4,

ƒ¿s2d = ƒ¿s -2d = 0,  ƒs -2d = 8,

y = ƒsxd

y � f (x)
S

TR

Q
P

x

y

0

y–y¿

y = ƒsxd .

y =

4x

x2
+ 4

  (Newton's serpentine)

y =

8
x2

+ 4
  (Agnesi's witch)

y =

x - 1
x2(x - 2)

y =

x

x2
- 1

y =

x3
+ x - 2

x - x2y =

x3
- 3x2

+ 3x - 1
x2

+ x - 2

y = -  
x2

- x + 1
x - 1

y =

x2
- x + 1
x - 1

y = -  
x2

- 4
x + 1

y =

x2

x + 1

y =

x2
- 4

x2
- 2

y = -  
x2

- 2
x2

- 1

Motion Along a Line The graphs in Exercises 107 and 108 show
the position of an object moving up and down on a coordi-
nate line. (a) When is the object moving away from the origin?
toward the origin? At approximately what times is the (b) velocity
equal to zero? (c) acceleration equal to zero? (d) When is the accel-
eration positive? negative?

107.

108.

109. Marginal cost The accompanying graph shows the hypotheti-
cal cost of manufacturing x items. At approximately
what production level does the marginal cost change from de-
creasing to increasing?

110. The accompanying graph shows the monthly revenue of the Wid-
get Corporation for the last 12 years. During approximately what
time intervals was the marginal revenue increasing? Decreasing?

111. Suppose the derivative of the function is

At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection? (Hint: Draw the
sign pattern for )y¿ .

y¿ = sx - 1d2sx - 2d .

y = ƒsxd

t

y

y � r(t)

50 10

C
os

t

c � f (x)

Thousands of units produced
20 40 60 80 100120

x

c

c = ƒsxd

D
is

pl
ac

em
en

t

s � f (t)

D
is

pl
ac

em
en

t
Time (sec)

5 10 150
t

s

D
is

pl
ac

em
en

t

s � f (t)

Time (sec)

5 10 150
t

s

s = ƒstd
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112. Suppose the derivative of the function is

At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection?

113. For sketch a curve that has and
Can anything be said about the concavity of such a

curve? Give reasons for your answer.

114. Can anything be said about the graph of a function that
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

115. If b, c, and d are constants, for what value of b will the curve
have a point of inflection at 

Give reasons for your answer.

116. Parabolas

a. Find the coordinates of the vertex of the parabola

b. When is the parabola concave up? Concave down? Give rea-
sons for your answers.

117. Quadratic curves What can you say about the inflection
points of a quadratic curve Give
reasons for your answer.

118. Cubic curves What can you say about the inflection points of
a cubic curve Give reasons
for your answer.

119. Suppose that the second derivative of the function is 

For what x-values does the graph of ƒ have an inflection point?

y– = (x + 1)(x - 2).

y = ƒsxd

y = ax3
+ bx2

+ cx + d, a Z 0?

y = ax2
+ bx + c, a Z 0?

y = ax2
+ bx + c, a Z 0.

x = 1?y = x3
+ bx2

+ cx + d

y = ƒsxd

ƒ¿sxd = 1>x .
ƒs1d = 0y = ƒsxdx 7 0,

y¿ = sx - 1d2sx - 2dsx - 4d .

y = ƒsxd

254 Chapter 4: Applications of Derivatives

120. Suppose that the second derivative of the function is 

For what x-values does the graph of ƒ have an inflection point?

121. Find the values of constants a, b, and c so that the graph of
has a local maximum at local min-

imum at and inflection point at .

122. Find the values of constants a, b, and c so that the graph of
has a local minimum at and a lo-

cal maximum at .

COMPUTER EXPLORATIONS
In Exercises 123–126, find the inflection points (if any) on the graph of
the function and the coordinates of the points on the graph where the
function has a local maximum or local minimum value. Then graph the
function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second
derivatives. How are the values at which these graphs intersect the 
x-axis related to the graph of the function? In what other ways are the
graphs of the derivatives related to the graph of the function?

123. 124.

125.

126.

127. Graph and its first two derivatives to-
gether. Comment on the behavior of ƒ in relation to the signs and
values of and 

128. Graph and its second derivative together for
Comment on the behavior of the graph of ƒ in re-

lation to the signs and values of ƒ– .
0 … x … 2p .

ƒsxd = x cos x

ƒ– .ƒ¿

ƒsxd = 2x4
- 4x2

+ 1

y =

x4

4
-

x3

3
- 4x2

+ 12x + 20

y =

4
5

 x5
+ 16x2

- 25

y = x3
- 12x2y = x5

- 5x4
- 240

(-1, -2)
x = 3y = (x2

+ a)>(bx + c)

(1, 11)x = -1,
x = 3,y = ax3

+ bx2
+ cx

y– = x2(x - 2)3(x + 3).

y = ƒsxd

4.5 Indeterminate Forms and L’Hôpital’s Rule

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or The rule is known
today as l’Hôpital’s Rule, after Guillaume de l’Hôpital. He was a French nobleman who
wrote the first introductory differential calculus text, where the rule first appeared in
print. Limits involving transcendental functions often require some use of the rule for
their calculation.

Indeterminate Form 

If we want to know how the function

behaves near (where it is undefined), we can examine the limit of as 
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit
of the denominator is 0. Moreover, in this case, both the numerator and denominator ap-
proach 0, and is undefined. Such limits may or may not exist in general, but the limit
does exist for the function under discussion by applying l’Hôpital’s Rule, as we will
see in Example 1d.

Fsxd
0>0

x : 0.Fsxdx = 0

Fsxd =
x - sin x

x3

0/0

+ q .
HISTORICAL BIOGRAPHY

Guillaume François Antoine de l’Hôpital
(1661–1704)
Johann Bernoulli
(1667–1748)
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4.5 Indeterminate Forms and L’Hôpital’s Rule 255

If the continuous functions ƒ(x) and are both zero at then

cannot be found by substituting The substitution produces , a meaningless ex-
pression, which we cannot evaluate. We use as a notation for an expression known as
an indeterminate form. Other meaningless expressions often occur, such as 

and which cannot be evaluated in a consistent way; these are
called indeterminate forms as well. Sometimes, but not always, limits that lead to indeter-
minate forms may be found by cancellation, rearrangement of terms, or other algebraic
manipulations. This was our experience in Chapter 2. It took considerable analysis in Sec-
tion 2.4 to find But we have had success with the limit

from which we calculate derivatives and which produces the indeterminant form when
we substitute . L’Hôpital’s Rule enables us to draw on our success with derivatives to
evaluate limits that otherwise lead to indeterminate forms.

x = a
0>0

ƒ¿sad = lim
x:a

 
ƒsxd - ƒsad

x - a  ,

limx:0 ssin xd>x .

1q,00,q - q ,q # 0,
q>q ,

0>0 0>0x = a .

lim
x:a

  
ƒ sxd
g sxd

x = a ,g (x)

THEOREM 6— L’Hôpital’s Rule Suppose that that ƒ and g are
differentiable on an open interval I containing a, and that 
Then

assuming that the limit on the right side of this equation exists.

lim
x:a

  
ƒsxd
g sxd

= lim
x:a

  
ƒ¿sxd
g¿sxd

 ,

g¿sxd Z 0 on I if x Z a .
ƒsad = g sad = 0,

Caution
To apply l’Hôpital’s Rule to , divide 
the derivative of ƒ by the derivative of g.
Do not fall into the trap of taking the
derivative of . The quotient to use is

not sƒ>gd¿ .ƒ¿>g¿,
ƒ>g

ƒ>g

We give a proof of Theorem 6 at the end of this section.

EXAMPLE 1 The following limits involve indeterminate forms, so we apply
l’Hôpital’s Rule. In some cases, it must be applied repeatedly.

(a)

(b)

(c)

Still differentiate again.

Not limit is found.
0
0

;= lim
x:0

 
- s1>4ds1 + xd-3>2

2
= -

1
8

0
0

;= lim
x:0

 
s1>2ds1 + xd-1>2

- 1>2
2x

0
0

lim
x:0

 
21 + x - 1 - x>2

x2

lim
x:0

 
21 + x - 1

x = lim
x:0

 

1

221 + x
1

=
1
2

lim
x:0

 
3x - sin x

x = lim
x:0

 
3 - cos x

1
=

3 - cos x
1

`
x=0

= 2

0>0
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(d)

limit is found.

Here is a summary of the procedure we followed in Example 1.

Not 
0
0

;= lim
x:0

 
cos x

6
=

1
6

Still 
0
0

= lim
x:0

 
sin x
6x

Still 
0
0

= lim
x:0

 
1 - cos x

3x2

0
0

lim
x:0

 
x - sin x

x3

256 Chapter 4: Applications of Derivatives

Using L’Hôpital’s Rule

To find

by l’Hôpital’s Rule, continue to differentiate ƒ and g, so long as we still get the
form at But as soon as one or the other of these derivatives is differ-
ent from zero at we stop differentiating. L’Hôpital’s Rule does not apply
when either the numerator or denominator has a finite nonzero limit.

x = a
x = a .0>0

lim
x:a

  
ƒsxd
g sxd

EXAMPLE 2 Be careful to apply l’Hôpital’s Rule correctly:

Not limit is found.

Up to now the calculation is correct, but if we continue to differentiate in an attempt to ap-
ply l’Hôpital’s Rule once more, we get

which is not the correct limit. L’Hôpital’s Rule can only be applied to limits that give inde-
terminate forms, and is not an indeterminate form.

L’Hôpital’s Rule applies to one-sided limits as well.

EXAMPLE 3 In this example the one-sided limits are different.

(a)

Positive for 

(b)

Negative for  

Indeterminate Forms 

Sometimes when we try to evaluate a limit as by substituting we get an inde-
terminant form like or instead of . We first consider the form
q>q .

0>0q - q ,q>q , q # 0,
x = ax : a

ˆ / ˆ , ˆ # 0, ˆ � ˆ

x 6 0= lim
x:0-

 
cos x

2x
= - q

0
0

lim
x:0-

 
sin x
x2

x 7 0= lim
x:0+

 
cos x

2x
= q

0
0

lim
x:0+

 
sin x
x2

0>1

lim
x:0

 
cos x

2
=

1
2

,

0
0

;= lim
x:0

 
sin x

1 + 2x
=

0
1

= 0.

0
0

lim
x:0

 
1 - cos x

x + x2

Recall that and mean the same
thing.

+ qq
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4.5 Indeterminate Forms and L’Hôpital’s Rule 257

In more advanced treatments of calculus it is proved that l’Hôpital’s Rule applies to the
indeterminate form as well as to . If and as then

provided the limit on the right exists. In the notation may be either finite or infi-
nite. Moreover, may be replaced by the one-sided limits or 

EXAMPLE 4 Find the limits of these forms:

(a) (b) (c)

Solution

(a) The numerator and denominator are discontinuous at so we investigate the
one-sided limits there. To apply l’Hôpital’s Rule, we can choose I to be any open in-
terval with as an endpoint.

from the left

The right-hand limit is 1 also, with as the indeterminate form. There-
fore, the two-sided limit is equal to 1.

(b)

(c)

Next we turn our attention to the indeterminate forms and Some-
times these forms can be handled by using algebra to convert them to a or 
form. Here again we do not mean to suggest that or is a number. They are
only notations for functional behaviors when considering limits. Here are examples of how
we might work with these indeterminate forms.

EXAMPLE 5 Find the limits of these forms:

(a) (b)

Solution

(a) ; Let

(b) converted to 

l’Hôpital’s Rule

 = lim
x:0+

A -22x B = 0

 = lim
x:0+

 
1>x

-1>2x3>2

q>qq # 0 lim
x:0+

 2x ln x = lim
x:0+

 
ln x

1>2x

h = 1>x.q # 0 lim
x: q

ax sin 
1
x b = lim

h:0+

a1
h

 sin hb =  lim
h:0+

 
sin h

h
= 1

lim
x:0+

 2x ln xlim
x: q

ax sin 
1
x b

q # 0

q - qq # 0
q>q0>0

q - q .q # 0

lim
x: q

  
ex

x2 = lim
x: q

  
ex

2x
= lim

x: q

  
ex

2
= q

1>x
1>2x

=

2x
x =

1

2x
lim

x: q

  
ln x

22x
= lim

x: q

  
1>x

1>2x
= lim

x: q

  
1

2x
= 0

s - q d>s - q d

= lim
x: sp>2d-

 
sec x tan x

sec2 x
= lim

x: sp>2d-

 sin x = 1

q

q
lim

x: sp>2d-

 
sec x

1 + tan x

x = p>2
x = p>2,

lim
x: q

  
ex

x2.lim
x: q

  
ln x

22x
lim

x:p>2  
sec x

1 + tan x

q>q
x : a-.x : a+x : a

x : a, a

lim
x:a

  
ƒsxd
g sxd

= lim
x:a

  
ƒ¿sxd
g¿sxd

x : a ,g sxd : ; qƒsxd : ; q0>0q>q
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EXAMPLE 6 Find the limit of this form:

Solution If then and

Similarly, if then and

Neither form reveals what happens in the limit. To find out, we first combine the fractions:

Common denominator is x sin x.

Then we apply l’Hôpital’s Rule to the result:

Still 

Indeterminate Powers

Limits that lead to the indeterminate forms and can sometimes be handled by
first taking the logarithm of the function. We use l’Hôpital’s Rule to find the limit of the
logarithm expression and then exponentiate the result to find the original function limit.
This procedure is justified by the continuity of the exponential function and Theorem 10 in
Section 2.5, and it is formulated as follows. (The formula is also valid for one-sided limits.)

q
01q, 00,

 = lim
x:0

  
sin x

2 cos x - x sin x
=

0
2

= 0.

0
0

 = lim
x:0

  
1 - cos x

sin x + x cos x

0
0

 lim
x:0
a 1

sin x
-

1
x b = lim

x:0
  
x - sin x

x sin x

1
sin x

-
1
x =

x - sin x
x sin x

1
sin x

-
1
x : - q - s - q d = - q + q .

sin x : 0-x : 0- ,

1
sin x

-
1
x : q - q .

sin x : 0+x : 0+ ,

lim
x:0
a 1

sin x
-

1
x b .

q - q

If , then

Here a may be either finite or infinite.

lim
x:a

 ƒ(x) = lim
x:a

 e ln ƒ(x)
= eL.

limx:a ln ƒ(x) = L

EXAMPLE 7 Apply l’Hôpital’s Rule to show that .

Solution The limit leads to the indeterminate form . We let and
find . Since

ln ƒ(x) = ln (1 + x)1>x
=

1
x  ln (1 + x),

limx:0+ ln ƒ(x)
ƒ(x) = (1 + x)1>x1q

limx:0+ (1 + x)1>x
= e
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4.5 Indeterminate Forms and L’Hôpital’s Rule 259

l’Hôpital’s Rule now applies to give

Therefore, 

EXAMPLE 8 Find 

Solution The limit leads to the indeterminate form . We let and find
. Since

l’Hôpital’s Rule gives

Therefore 

Proof of L’Hôpital’s Rule

The proof of l’Hôpital’s Rule is based on Cauchy’s Mean Value Theorem, an extension of
the Mean Value Theorem that involves two functions instead of one. We prove Cauchy’s
Theorem first and then show how it leads to l’Hôpital’s Rule.

lim
x: q

 x1>x
= lim

x: q

 ƒ(x) = lim
x: q

 e ln ƒ(x)
= e0

= 1.

 =
0
1

= 0.

 = lim
x: q

 
1>x
1

q

q
 lim
x: q

 ln ƒ(x) = lim
x: q

 
ln x

x

 ln ƒ(x) = ln x1>x
=

ln x
x ,

limx:q ln ƒ(x)
ƒ(x) = x1>x

q
0

limx:q  x
1>x.

lim
x:0+

 (1 + x)1>x
= lim

x:0+

 ƒ(x) = lim
x:0+

 e ln ƒ(x)
= e1

= e.

 =
1
1

= 1.

 = lim
x:0+

 

1
1 + x

1

0
0

 lim
x:0+

 ln ƒ(x) = lim
x:0+

 
ln (1 + x)

x

THEOREM 7—Cauchy’s Mean Value Theorem Suppose functions ƒ and g are
continuous on [a, b] and differentiable throughout (a, b) and also suppose

throughout (a, b). Then there exists a number c in (a, b) at which

ƒ¿scd
g¿scd

=

ƒsbd - ƒsad
g sbd - g sad

.

g¿sxd Z 0

HISTORICAL BIOGRAPHY

Augustin-Louis Cauchy
(1789–1857)

Proof We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show
that For if  did equal , then the Mean Value Theorem would give

for some c between a and b, which cannot happen because in (a, b).g¿sxd Z 0

g¿scd =

g sbd - g sad
b - a

= 0

g sadg sbdg sad Z g sbd .
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We next apply the Mean Value Theorem to the function

This function is continuous and differentiable where ƒ and g are, and 
Therefore, there is a number c between a and b for which When expressed in
terms of ƒ and g, this equation becomes

so that

Notice that the Mean Value Theorem in Section 4.2 is Theorem 7 with 
Cauchy’s Mean Value Theorem has a geometric interpretation for a general winding

curve C in the plane joining the two points and In
Chapter 11 you will learn how the curve C can be formulated so that there is at least one
point P on the curve for which the tangent to the curve at P is parallel to the secant line
joining the points A and B. The slope of that tangent line turns out to be the quotient 
evaluated at the number c in the interval which is the left-hand side of the equation
in Theorem 7. Because the slope of the secant line joining A and B is

the equation in Cauchy’s Mean Value Theorem says that the slope of the tangent line
equals the slope of the secant line. This geometric interpretation is shown in Figure 4.34.
Notice from the figure that it is possible for more than one point on the curve C to
have a tangent line that is parallel to the secant line joining A and B.

Proof of l’Hôpital’s Rule We first establish the limit equation for the case The
method needs almost no change to apply to and the combination of these two
cases establishes the result.

Suppose that x lies to the right of a. Then and we can apply Cauchy’s
Mean Value Theorem to the closed interval from a to x. This step produces a number c be-
tween a and x such that

But so

As x approaches a, c approaches a because it always lies between a and x. Therefore,

which establishes l’Hôpital’s Rule for the case where x approaches a from above. The case
where x approaches a from below is proved by applying Cauchy’s Mean Value Theorem to
the closed interval [x, a],  x 6 a .

lim
x:a+

 
ƒ sxd
g sxd

= lim
c:a+

 
ƒ¿scd
g¿scd

= lim
x:a+

 
ƒ¿sxd
g¿sxd

,

ƒ¿scd
g¿scd

=

ƒsxd
g sxd

.

ƒsad = g sad = 0,

ƒ¿scd
g¿scd

=

ƒsxd - ƒsad
g sxd - g sad

.

g¿sxd Z 0,

x : a-,
x : a+ .

ƒsbd - ƒsad
g sbd - g sad

,

sa, bd,
ƒ¿>g¿

B = sgsbd, ƒsbdd.A = sgsad, ƒsadd

g sxd = x.

ƒ¿scd
g¿scd

=

ƒsbd - ƒsad
g sbd - g sad

.

F¿scd = ƒ¿scd -

ƒsbd - ƒsad
g sbd - g sad

 [ g¿scd] = 0

F¿scd = 0.
Fsbd = Fsad = 0.

Fsxd = ƒsxd - ƒsad -

ƒsbd - ƒsad
g sbd - g sad

 [ g sxd - g sad] .

260 Chapter 4: Applications of Derivatives

0

y

(g(a), f (a))

(g(b), f (b))
P

B

A

slope 5
f (b) 2 f (a)
g(b) 2 g(a)

x

slope 5
f '(c)
g'(c)

FIGURE 4.34 There is at least one point
P on the curve C for which the slope of the
tangent to the curve at P is the same as the
slope of the secant line joining the points
A(g(a), ƒ(a)) and B(g(b), ƒ(b)).
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4.5 Indeterminate Forms and L’Hôpital’s Rule 261

Exercises 4.5

Finding Limits in Two Ways
In Exercises 1–6, use l’Hôpital’s Rule to evaluate the limit. Then eval-
uate the limit using a method studied in Chapter 2.

1. 2.

3. 4.

5. 6.

Applying l’Hôpital’s Rule
Use l’Hôpital’s rule to find the limits in Exercises 7–50.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42. lim
x:0+

 (csc x - cot x + cos x)lim
x:1+

 a 1
x - 1

-

1
ln x
b

lim
x:0+

 a3x + 1
x -

1
sin x

blim
x:0+

 
sln x)2

ln ssin x)

lim
x:0+

 (ln x - ln sin x)lim
x: q

 (ln 2x - ln (x + 1))

lim
y:0

 
2ay + a2

- a
y , a 7 0lim

y:0
 
25y + 25 - 5

y

lim
x:0+

 
ln (ex

- 1)

ln x
lim

x:0+

 
ln (x2

+ 2x)

ln x

lim
x: q

 
log2 x

log3 (x + 3)
lim

x: q

 
ln (x + 1)

log2 x

lim
x:0

 
3x

- 1
2x

- 1
lim
x:0

 
x2x

2x
- 1

lim
u:0

 
(1>2)u - 1

u
lim
u:0

 
3sin u

- 1
u

lim
x: (p>2)-

 ap
2

- xb  tan xlim
x: (p>2)-

ax -

p

2
b  sec x

lim
t:0

 
t sin t

1 - cos t
lim
t:0

 
t (1 - cos t)

t - sin t

lim
x:p>2 

ln (csc x)

(x - (p>2))2lim
x:0

 
x2

ln (sec x)

lim
x:1

 
x - 1

ln x - sin px
lim
u:p>2 

1 - sin u

1 + cos 2u

lim
u: -p>3 

3u + p

sin (u + (p>3))
lim
u:p>2 

2u - p

cos (2p - u)

lim
x:0

 
sin x - x

x3lim
x:0

 
8x2

cos x - 1

lim
t:0

 
sin 5t

2t
lim
t:0

 
sin t2

t

lim
x: q

 
x - 8x2

12x2
+ 5x

lim
x: q

 
5x3

- 2x

7x3
+ 3

lim
t:1

 
3t3 - 3

4t3 - t - 3
lim

t: -3
 
t3

- 4t + 15
t2

- t - 12

lim
x: - 5

 
x2

- 25
x + 5

lim
x:2

 
x - 2
x2

- 4

lim
x: q

 
2x2

+ 3x

x3
+ x + 1

lim
x:0

 
1 - cos x

x2

lim
x:1

 
x3

- 1
4x3

- x - 3
lim

x: q

 
5x2

- 3x

7x2
+ 1

lim
x:0

 
sin 5x

xlim
x: -2

 
x + 2
x2

- 4

43. 44.

45. 46.

47. 48.

49. 50.

Indeterminate Powers and Products
Find the limits in Exercise 51–66.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

Theory and Applications
L’Hôpital’s Rule does not help with the limits in Exercises 67–74. Try
it—you just keep on cycling. Find the limits some other way.

67. 68.

69. 70.

71. 72.

73. 74.

75. Which one is correct, and which one is wrong? Give reasons for
your answers.

a. b.

76. Which one is correct, and which one is wrong? Give reasons for
your answers.

a.

b.  lim
x:0

 
x2

- 2x

x2
- sin x

= lim
x:0

 
2x - 2

2x - cos x
=

-2
0 - 1

= 2

 = lim
x:0

 
2

2 + sin x
=

2
2 + 0

= 1

 lim
x:0

 
x2

- 2x

x2
- sin x

= lim
x:0

 
2x - 2

2x - cos x

lim
x:3

  
x - 3
x2

- 3
=

0
6

= 0lim
x:3

  
x - 3
x2

- 3
= lim

x:3
  

1
2x

=

1
6

 lim
x:0+

 
x

e-1>x lim
x: q

 
ex2

xex

 lim
x: -q

 
2x

+ 4x

5x
- 2x lim

x: q

 
2x

- 3x

3x
+ 4x

lim
x:0+

  
cot x
csc xlim

x: sp>2d-

  
sec x
tan x

lim
x:0+

 
2x

2sin x
lim

x: q

 
29x + 1

2x + 1

 lim
x:0+

 sin x # ln x lim
x:0+

 x tan ap
2

- xb
 lim
x:0+

 x sln xd2 lim
x:0+

 x2 ln x

 lim
x: q

 ax2
+ 1

x + 2
b1>x

lim
x: q

 ax + 2
x - 1

b x

lim
x:0+

 a1 +

1
x b

x

lim
x:0+  

xx

lim
x:0

 (ex
+ x)1>xlim

x: q

 (1 + 2x)1>(2 ln x)

lim
x: q

 x1>ln xlim
x:0+

 x-1>ln x

lim
x:e+

 (ln x)1>(x - e)lim
x: q

 (ln x)1>x
lim

x:1+

 x1>(x - 1)lim
x:1+

 x1>(1 - x)

 lim
x:0

 
sin 3x - 3x + x2

sin x sin 2x
 lim
u:0

 
u - sin u cos u

tan u - u

 lim
x:0

 
sex

- 1d2

x sin x
 lim
x:0

 
x - sin x

x tan x

lim
x: q

 x2e-xlim
t: q

 
et

+ t2

et
- t

lim
h:0

 
eh

- (1 + h)

h2lim
u:0

 
cos u - 1

eu - u - 1
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77. Only one of these calculations is correct. Which one? Why are the
others wrong? Give reasons for your answers.

a.

b.

c.

d.

78. Find all values of c that satisfy the conclusion of Cauchy’s Mean
Value Theorem for the given functions and interval.

a.

b.

c.

79. Continuous extension Find a value of c that makes the function

continuous at Explain why your value of c works.

80. For what values of a and b is 

81. Form

a. Estimate the value of

by graphing over a suitably large inter-
val of x-values.

b. Now confirm your estimate by finding the limit with 

l’Hôpital’s Rule. As the first step, multiply ƒ(x) by the frac-

tion and simplify 

the new numerator.

82. Find 

83. Form Estimate the value of

by graphing. Then confirm your estimate with l’Hôpital’s Rule.

84. This exercise explores the difference between the limit

and the limit

lim
x: q

 a1 +

1
x b

x

= e.

lim
x: q

 a1 +

1
x2 b

x

lim
x:1

 
2x2

- s3x + 1d2x + 2
x - 1

0/0

 lim
x: q

 A2x2
+ 1 - 2x B .

sx + 2x2
+ xd>sx + 2x2

+ xd

ƒsxd = x - 2x2
+ x

lim
x: q

 Ax - 2x2
+ x B

ˆ  � ˆ

 lim
x:0

 atan 2x

x3 +

a

x2 +

sin bx
x b = 0?

x = 0.

ƒsxd = •
9x - 3 sin 3x

5x3 , x Z 0

c, x = 0

ƒsxd = x3>3 - 4x, g sxd = x2, sa, bd = s0, 3d
ƒsxd = x, g sxd = x2, sa, bd arbitrary

ƒsxd = x, g sxd = x2, sa, bd = s -2, 0d

 = lim
x:0+

 
(1>x)

(-1>x2)
= lim

x:0+

 (-x) = 0

 lim
x:0+

 x ln x = lim
x:0+

 
ln x

(1>x)

lim
x:0+

 x ln x = lim
x:0+

 
ln x

(1>x)
=

- q

q
= -1

lim
x:0+

 x ln x = 0 # (- q ) = - q

lim
x:0+

 x ln x = 0 # (- q ) = 0
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a. Use l’Hôpital’s Rule to show that

b. Graph

together for How does the behavior of ƒ compare with
that of g? Estimate the value of .

c. Confirm your estimate of by calculating it with
l’Hôpital’s Rule.

85. Show that

86. Given that find the maximum value, if any, of

a.

b.

c. (n a positive integer)

d. Show that for every positive integer n.

87. Use limits to find horizontal asymptotes for each function.

a. b.

88. Find for 

89. The continuous extension of to

a. Graph on the interval . What value
would you assign to ƒ to make it continuous at ?

b. Verify your conclusion in part (a) by finding 
with l’Hôpital’s Rule.

c. Returning to the graph, estimate the maximum value of ƒ on
. About where is max ƒ taken on?

d. Sharpen your estimate in part (c) by graphing in the same
window to see where its graph crosses the x-axis. To simplify
your work, you might want to delete the exponential factor
from the expression for and graph just the factor that has a
zero.

90. The function (Continuation of Exercise 89.)

a. Graph on the interval . How
do you account for the gaps in the graph? How wide are the
gaps?

b. Now graph ƒ on the interval . The function is not
defined at , but the graph has no break at this point.
What is going on? What value does the graph appear to give
for ƒ at (Hint: Use l’Hôpital’s Rule to find lim ƒ as

and 

c. Continuing with the graphs in part (b), find max ƒ and min ƒ
as accurately as you can and estimate the values of x at which
they are taken on.

x : (p>2)+.)x : (p>2)-

x = p>2?

x = p>2 0 … x … p

-7 … x … 7ƒ(x) = (sin x)tan x

(sin x)tan x

ƒ¿

ƒ¿

[0, p]

limx:0+ ƒ(x)

x = 0
0 … x … pƒ(x) = (sin x)x

[0, p](sin x)x

ƒsxd = e e-1/x2

, x Z 0

0, x = 0.
ƒ¿s0d

y =

3x + e2x

2x + e3x
y = x tan a1x b

limx:q x1>x n

= 1

x1>xn

x1>x2

x1>x
x 7 0,

lim
k: q

 a1 +

r
k
b k

= er.

limx:q ƒ(x)

limx:q ƒ(x)
x Ú 0.

ƒ(x) = a1 +

1
x2 b

x

 and g(x) = a1 +

1
x b

x

lim
x: q

 a1 +

1
x b

x

= e.

T

T

T

T

T
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4.6 Applied Optimization

What are the dimensions of a rectangle with fixed perimeter having maximum area?
What are the dimensions for the least expensive cylindrical can of a given volume? How
many items should be produced for the most profitable production run? Each of these
questions asks for the best, or optimal, value of a given function. In this section we use
derivatives to solve a variety of optimization problems in business, mathematics, physics,
and economics.

EXAMPLE 1 An open-top box is to be made by cutting small congruent squares from
the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should
the squares cut from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.35). In the figure, the corner squares are x in.
on a side. The volume of the box is a function of this variable:

Since the sides of the sheet of tin are only 12 in. long, and the domain of V is the in-
terval 

A graph of V (Figure 4.36) suggests a minimum value of 0 at and and
a maximum near To learn more, we examine the first derivative of V with respect
to x:

Of the two zeros, and only lies in the interior of the function’s domain
and makes the critical-point list. The values of V at this one critical point and two end-
points are

The maximum volume is The cutout squares should be 2 in. on a side.128 in3 .

Endpoint values:  Vs0d = 0, Vs6d = 0.

 Critical-point value: Vs2d = 128

x = 2x = 6,x = 2

dV
dx

= 144 - 96x + 12x2
= 12s12 - 8x + x2d = 12s2 - xds6 - xd.

x = 2.
x = 6x = 0

0 … x … 6.
x … 6

V = hlwVsxd = xs12 - 2xd2
= 144x - 48x2

+ 4x3.

Solving Applied Optimization Problems
1. Read the problem. Read the problem until you understand it. What is given?

What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as an
equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown quantity. If you can, express the unknown
as a function of a single variable or in two equations in two unknowns. This
may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use what
you know about the shape of the function’s graph. Use the first and second de-
rivatives to identify and classify the function’s critical points.

12

12

12

x

x
x

x

x

xx

(a)

(b)

12 � 2x

12 � 2x

FIGURE 4.35 An open box made by
cutting the corners from a square sheet of
tin. What size corners maximize the box’s
volume (Example 1)?

x

y

0

min

2 6

min

V
ol

um
e

 

Maximum

y � x(12 – 2x)2,
0 � x � 6

NOT TO SCALE

FIGURE 4.36 The volume of the box in
Figure 4.35 graphed as a function of x.
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EXAMPLE 2 You have been asked to design a one-liter can shaped like a right circular
cylinder (Figure 4.37). What dimensions will use the least material?

Solution Volume of can: If r and h are measured in centimeters, then the volume of the
can in cubic centimeters is

Surface area of can:

How can we interpret the phrase “least material”? For a first approximation we can ignore
the thickness of the material and the waste in manufacturing. Then we ask for dimensions r
and h that make the total surface area as small as possible while satisfying the constraint

To express the surface area as a function of one variable, we solve for one of the vari-
ables in and substitute that expression into the surface area formula. Solving
for h is easier:

Thus,

Our goal is to find a value of that minimizes the value of A. Figure 4.38 suggests
that such a value exists.

r 7 0

 = 2pr2
+

2000
r .

 = 2pr2
+ 2pr a1000

pr2 b
 A = 2pr2

+ 2prh

h =
1000
pr2 .

pr2h = 1000

pr2h = 1000.

A = 2pr2
+ 2prh

1 liter = 1000 cm3pr2h = 1000.
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h

2r

FIGURE 4.37 This one-liter
can uses the least material
when (Example 2). h = 2r

r

A

0

min

Tall and 
thin can

Short and
wide can

2000——r

3

A 5 2pr2 1           ,  r . 0

500
p

Tall and thin

Short and wide

FIGURE 4.38 The graph of is concave up.A = 2pr2
+ 2000>r

Notice from the graph that for small r (a tall, thin cylindrical container), the term
dominates (see Section 2.6) and A is large. For large r (a short, wide cylindrical

container), the term dominates and A again is large.2pr2
2000>r

()*

circular
ends

()*

cylindrical
wall
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Since A is differentiable on an interval with no endpoints, it can have a mini-
mum value only where its first derivative is zero.

Set 

Multiply by 

Solve for r.

What happens at 
The second derivative

is positive throughout the domain of A. The graph is therefore everywhere concave up and
the value of A at is an absolute minimum.

The corresponding value of h (after a little algebra) is

The one-liter can that uses the least material has height equal to twice the radius, here with
and 

Examples from Mathematics and Physics

EXAMPLE 3 A rectangle is to be inscribed in a semicircle of radius 2. What is the
largest area the rectangle can have, and what are its dimensions?

Solution Let be the coordinates of the corner of the rectangle obtained by
placing the circle and rectangle in the coordinate plane (Figure 4.39). The length, height,
and area of the rectangle can then be expressed in terms of the position x of the lower
right-hand corner:

Notice that the values of x are to be found in the interval where the selected
corner of the rectangle lies.

Our goal is to find the absolute maximum value of the function

on the domain [0, 2].
The derivative

is not defined when and is equal to zero when

 x2
= 2 or x = ;22.

 8 - 4x2
= 0

 -2x2
+ 2s4 - x2d = 0

 
-2x2

24 - x2
+ 224 - x2

= 0

x = 2

dA
dx

=
-2x2

24 - x2
+ 224 - x2

Asxd = 2x24 - x2

0 … x … 2,

Length: 2x,  Height: 24 - x2, Area: 2x24 - x2 .

sx, 24 - x2d

h L 10.84 cm.r L 5.42 cm

h =
1000
pr2 = 2 A3

500
p = 2r .

r = 23 500>p

d2A
dr2 = 4p +

4000
r3

r = 23 500>p?

 r =
3 A

500
p L 5.42

r2. 4pr3
= 2000

dA>dr = 0 . 0 = 4pr -
2000

r2

 
dA
dr

= 4pr -
2000

r2

r 7 0,

x

y

0 2x–2 –x

2

x2 1 y2 5 4

⎛⎝⎛⎝x, �4 2 x2

FIGURE 4.39 The rectangle inscribed in
the semicircle in Example 3.
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Of the two zeros, and only lies in the interior of A’s
domain and makes the critical-point list. The values of A at the endpoints and at this one
critical point are

The area has a maximum value of 4 when the rectangle is high and
long.

EXAMPLE 4 The speed of light depends on the medium through which it travels, and
is generally slower in denser media.

Fermat’s principle in optics states that light travels from one point to another along a
path for which the time of travel is a minimum. Describe the path that a ray of light will
follow in going from a point A in a medium where the speed of light is to a point B in a
second medium where its speed is 

Solution Since light traveling from A to B follows the quickest route, we look for a path
that will minimize the travel time. We assume that A and B lie in the xy-plane and that the
line separating the two media is the x-axis (Figure 4.40).

In a uniform medium, where the speed of light remains constant, “shortest time”
means “shortest path,” and the ray of light will follow a straight line. Thus the path from A
to B will consist of a line segment from A to a boundary point P, followed by another line
segment from P to B. Distance traveled equals rate times time, so

From Figure 4.40, the time required for light to travel from A to P is

From P to B, the time is

The time from A to B is the sum of these:

This equation expresses t as a differentiable function of x whose domain is [0, d ]. We want
to find the absolute minimum value of t on this closed interval. We find the derivative

and observe that it is continuous. In terms of the and in Figure 4.40,

The function t has a negative derivative at and a positive derivative at Since
is continuous over the interval [0, d ], by the Intermediate Value Theorem for contin-

uous functions (Section 2.5), there is a point where (Figure 4.41).dt>dx = 0x0 H [0, d ]
dt>dx

x = d .x = 0

dt
dx

=

sin u1
c1

-

sin u2
c2

.

u2angles  u1

dt
dx

=
x

c12a2
+ x2

-
d - x

c22b2
+ sd - xd2

t = t1 + t2 =

2a2
+ x2

c1
+

2b2
+ sd - xd2

c2
.

t2 =
PB
c2

=

2b2
+ sd - xd2

c2
.

t1 =
AP
c1

=

2a2
+ x2

c1
.

Time =
distance

rate .

c2 .
c1

2x = 222 units
24 - x2

= 22 units

Endpoint values:  As0d = 0, As2d = 0.

 Critical-point value: A A22 B = 22224 - 2 = 4

x = 22x = -22,x = 22
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HISTORICAL BIOGRAPHY

Willebrord Snell van Royen
(1580–1626)

Angle of
incidence

Medium 1

Angle of
refractionMedium 2

x

y

0 x d
P

B

b

a

A

u1

u1

u2

d 2 x

FIGURE 4.40 A light ray refracted
(deflected from its path) as it passes from
one medium to a denser medium
(Example 4).

x

0

� � � � � � � � � � � � � �

d

x

0

� � � � � � � � � � � � � �

d
x0

dt/dx
positive

dt/dx
zero

dt/dx
negative

FIGURE 4.41 The sign pattern of 
in Example 4.

dt>dx

7001_AWLThomas_ch04p222-296.qxd  10/12/09  2:28 PM  Page 266



4.6 Applied Optimization 267

There is only one such point because is an increasing function of x (Exercise 62). At
this unique point we then have

This equation is Snell’s Law or the Law of Refraction, and is an important principle in
the theory of optics. It describes the path the ray of light follows.

Examples from Economics

Suppose that

Although x is usually an integer in many applications, we can learn about the behavior of
these functions by defining them for all nonzero real numbers and by assuming they are
differentiable functions. Economists use the terms marginal revenue, marginal cost, and
marginal profit to name the derivatives and of the revenue, cost, and
profit functions. Let’s consider the relationship of the profit p to these derivatives. 

If r(x) and c(x) are differentiable for x in some interval of production possibilities,
and if has a maximum value there, it occurs at a critical point of p (x)
or at an endpoint of the interval. If it occurs at a critical point, then 

and we see that In economic terms, this last equation means that r¿(x) = c¿(x).c¿sxd = 0
p¿sxd = r¿sxd -

p sxd = r sxd - c sxd

p¿(x)r¿(x), c¿(x),

 p sxd = r sxd - c sxd = the profit from producing and selling x items.

 c sxd = the cost of producing the x items

 r sxd = the revenue from selling x items

sin u1
c1

=

sin u2
c2

.

dt>dx

At a production level yielding maximum profit, marginal revenue equals marginal
cost (Figure 4.42).

x

y

0

D
ol

la
rs

Items produced

Break-even point

B

Cost c(x)

Local maximum for loss (minimum profit), c'(x) � r'(x)

Revenue r(x)

Maximum profit, c'(x) � r'(x)

FIGURE 4.42 The graph of a typical cost function starts concave down and later turns concave up.
It crosses the revenue curve at the break-even point B. To the left of B, the company operates at a
loss. To the right, the company operates at a profit, with the maximum profit occurring where

Farther to the right, cost exceeds revenue (perhaps because of a combination of rising
labor and material costs and market saturation) and production levels become unprofitable again.
c¿sxd = r¿sxd .
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EXAMPLE 5 Suppose that and where x represents
millions of MP3 players produced. Is there a production level that maximizes profit? If so,
what is it?

Solution Notice that and 

Set

The two solutions of the quadratic equation are

The possible production levels for maximum profit are million MP3 players or
million. The second derivative of is 

since is everywhere zero. Thus, which is negative at 
and positive at By the Second Derivative Test, a maximum profit occurs at
about (where revenue exceeds costs) and maximum loss occurs at about

The graphs of r(x) and c(x) are shown in Figure 4.43.x = 0.586.
x = 3.414

x = 2 - 22.
x = 2 + 22p–(x) = 6(2 - x),r–sxd

p–sxd = -c–sxdp sxd = r sxd - c sxdx L 3.414
x L 0.586

x2 =

12 + 272
6

= 2 + 22 L 3.414.

 x1 =

12 - 272
6

= 2 - 22 L 0.586 and

 3x2
- 12x + 6 = 0

c¿sxd = r¿sxd . 3x2
- 12x + 15 = 9

c¿sxd = 3x2
- 12x + 15.r¿sxd = 9

c sxd = x3
- 6x2

+ 15x ,r sxd = 9x

Exercises 4.6

Mathematical Applications
Whenever you are maximizing or minimizing a function of a single vari-
able, we urge you to graph it over the domain that is appropriate to the
problem you are solving. The graph will provide insight before you cal-
culate and will furnish a visual context for understanding your answer.

1. Minimizing perimeter What is the smallest perimeter possible
for a rectangle whose area is and what are its dimensions?

2. Show that among all rectangles with an 8-m perimeter, the one
with largest area is a square.

3. The figure shows a rectangle inscribed in an isosceles right trian-
gle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (Hint: Write an
equation for the line AB.)

b. Express the area of the rectangle in terms of x.

c. What is the largest area the rectangle can have, and what are
its dimensions?

x

y

0 1

B

A
x–1

P(x, ?)

16 in2 ,

4. A rectangle has its base on the x-axis and its upper two vertices on
the parabola What is the largest area the rectangle
can have, and what are its dimensions?

5. You are planning to make an open rectangular box from an 8-in.-
by-15-in. piece of cardboard by cutting congruent squares from
the corners and folding up the sides. What are the dimensions of
the box of largest volume you can make this way, and what is its
volume?

6. You are planning to close off a corner of the first quadrant with a
line segment 20 units long running from (a, 0) to (0, b). Show that
the area of the triangle enclosed by the segment is largest when

7. The best fencing plan A rectangular plot of farmland will be
bounded on one side by a river and on the other three sides by a
single-strand electric fence. With 800 m of wire at your dis-
posal, what is the largest area you can enclose, and what are its
dimensions?

8. The shortest fence A rectangular pea patch is to be en-
closed by a fence and divided into two equal parts by another
fence parallel to one of the sides. What dimensions for the outer
rectangle will require the smallest total length of fence? How
much fence will be needed?

9. Designing a tank Your iron works has contracted to design and
build a square-based, open-top, rectangular steel holding
tank for a paper company. The tank is to be made by welding thin
stainless steel plates together along their edges. As the production
engineer, your job is to find dimensions for the base and height
that will make the tank weigh as little as possible.

500 ft3 ,

216 m2

a = b .

y = 12 - x2 .

x

y

0 2

Maximum
for profit

Local maximum for loss

c(x) � x3 � 6x2 � 15x

NOT TO SCALE

r(x) � 9x

2 � �2 2 � �2

FIGURE 4.43 The cost and revenue
curves for Example 5.
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4.6 Applied Optimization 269

a. What dimensions do you tell the shop to use?

b. Briefly describe how you took weight into account.

10. Catching rainwater A open-top rectangular tank
with a square base x ft on a side and y ft deep is to be built with
its top flush with the ground to catch runoff water. The costs 
associated with the tank involve not only the material from
which the tank is made but also an excavation charge propor-
tional to the product xy.

a. If the total cost is

what values of x and y will minimize it?

b. Give a possible scenario for the cost function in part (a).

11. Designing a poster You are designing a rectangular poster to
contain of printing with a 4-in. margin at the top and bot-
tom and a 2-in. margin at each side. What overall dimensions will
minimize the amount of paper used?

12. Find the volume of the largest right circular cone that can be in-
scribed in a sphere of radius 3.

13. Two sides of a triangle have lengths a and b, and the angle be-
tween them is What value of will maximize the triangle’s
area? (Hint: )

14. Designing a can What are the dimensions of the lightest
open-top right circular cylindrical can that will hold a volume
of Compare the result here with the result in
Example 2.

15. Designing a can You are designing a right circular
cylindrical can whose manufacture will take waste into account.
There is no waste in cutting the aluminum for the side, but the top
and bottom of radius r will be cut from squares that measure 2r
units on a side. The total amount of aluminum used up by the can
will therefore be

rather than the in Example 2. In Example 2,
the ratio of h to r for the most economical can was 2 to 1. What is
the ratio now?

16. Designing a box with a lid A piece of cardboard measures 10
in. by 15 in. Two equal squares are removed from the corners of a
10-in. side as shown in the figure. Two equal rectangles are re-
moved from the other corners so that the tabs can be folded to
form a rectangular box with lid.

A = 2pr2
+ 2prh

A = 8r2
+ 2prh

1000 cm3

1000 cm3 ?

A = s1>2dab sin u .
uu .

y

x

3

3

50 in2

c = 5sx2
+ 4xyd + 10xy,

1125 ft3

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

c. Use a graphical method to find the maximum volume and the
value of x that gives it.

d. Confirm your result in part (c) analytically.

17. Designing a suitcase A 24-in.-by-36-in. sheet of cardboard is
folded in half to form a 24-in.-by-18-in. rectangle as shown in the
accompanying figure. Then four congruent squares of side length
x are cut from the corners of the folded rectangle. The sheet is
unfolded, and the six tabs are folded up to form a box with sides
and a lid.

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

c. Use a graphical method to find the maximum volume and the
value of x that gives it.

d. Confirm your result in part (c) analytically.

e. Find a value of x that yields a volume of 

f. Write a paragraph describing the issues that arise in part (b).

18. A rectangle is to be inscribed under the arch of the curve
from to What are the dimen-

sions of the rectangle with largest area, and what is the largest
area?

x = p .x = -py = 4 cos s0.5xd

24"

36"

x

24"

x

x x

x x

x x

18"

24"

36"

Base

The sheet is then unfolded.

1120 in3 .

10"

xx

x

x x

x

15"

Base Lid

x x

N
O

T
  T

O
  S

C
A

L
E

T

T
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19. Find the dimensions of a right circular cylinder of maximum vol-
ume that can be inscribed in a sphere of radius 10 cm. What is the
maximum volume?

20. a. The U.S. Postal Service will accept a box for domestic ship-
ment only if the sum of its length and girth (distance around)
does not exceed 108 in. What dimensions will give a box with
a square end the largest possible volume?

b. Graph the volume of a 108-in. box (length plus girth equals
108 in.) as a function of its length and compare what you see
with your answer in part (a).

21. (Continuation of Exercise 20.)

a. Suppose that instead of having a box with square ends you
have a box with square sides so that its dimensions are h by h
by w and the girth is What dimensions will give the
box its largest volume now?

b. Graph the volume as a function of h and compare what you
see with your answer in part (a).

22. A window is in the form of a rectangle surmounted by a semicircle.
The rectangle is of clear glass, whereas the semicircle is of tinted
glass that transmits only half as much light per unit area as clear glass
does. The total perimeter is fixed. Find the proportions of the window
that will admit the most light. Neglect the thickness of the frame.

23. A silo (base not included) is to be constructed in the form of a cylin-
der surmounted by a hemisphere. The cost of construction per square
unit of surface area is twice as great for the hemisphere as it is for the

w

Girth

h

h

2h + 2w .

Square end

Girth � distance
around here

Length

270 Chapter 4: Applications of Derivatives

cylindrical sidewall. Determine the dimensions to be used if the vol-
ume is fixed and the cost of construction is to be kept to a minimum.
Neglect the thickness of the silo and waste in construction.

24. The trough in the figure is to be made to the dimensions shown.
Only the angle can be varied. What value of will maximize the
trough’s volume?

25. Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is
placed on a flat surface. One of the corners is placed on the oppo-
site longer edge, as shown in the figure, and held there as the pa-
per is smoothed flat. The problem is to make the length of the
crease as small as possible. Call the length L. Try it with paper.

a. Show that 

b. What value of x minimizes 

c. What is the minimum value of L?

26. Constructing cylinders Compare the answers to the following
two construction problems.

a. A rectangular sheet of perimeter 36 cm and dimensions
x cm by y cm is to be rolled into a cylinder as shown in
part (a) of the figure. What values of x and y give the
largest volume?

b. The same sheet is to be revolved about one of the sides of
length y to sweep out the cylinder as shown in part (b) of
the figure. What values of x and y give the largest volume?

x

y

y

(a)

Circumference 5 x
y

x

(b)

Crease

D C

BPA
x

x

L

R

Q (originally at A)
�L2 � x2

L2 ?

L2
= 2x3>s2x - 8.5d .

��

20'

1'

1'

1'

uu

T

T

7001_AWLThomas_ch04p222-296.qxd  10/12/09  2:28 PM  Page 270



4.6 Applied Optimization 271

27. Constructing cones A right triangle whose hypotenuse is
long is revolved about one of its legs to generate a right

circular cone. Find the radius, height, and volume of the cone of
greatest volume that can be made this way.

28. Find the point on the line that is closest to the origin. 

29. Find a positive number for which the sum of it and its reciprocal
is the smallest (least) possible. 

30. Find a postitive number for which the sum of its reciprocal and
four times its square is the smallest possible. 

31. A wire b m long is cut into two pieces. One piece is bent into an
equilateral triangle and the other is bent into a circle. If the sum of
the areas enclosed by each part is a minimum, what is the length
of each part? 

32. Answer Exercise 31 if one piece is bent into a square and the
other into a circle. 

33. Determine the dimensions of the rectangle of
largest area that can be inscribed in the right
triangle shown in the accompanying figure. 

34. Determine the dimensions of the 
rectangle of largest area that can be
inscribed in a semicircle of radius 3.
(See accompanying figure.) 

35. What value of a makes have

a. a local minimum at 

b. a point of inflection at 

36. What values of a and b make have

a. a local maximum at and a local minimum at 

b. a local minimum at and a point of inflection at 

Physical Applications
37. Vertical motion The height above ground of an object moving

vertically is given by

with s in feet and t in seconds. Find

a. the object’s velocity when ;

b. its maximum height and when it occurs;

c. its velocity when 

38. Quickest route Jane is 2 mi offshore in a boat and wishes to
reach a coastal village 6 mi down a straight shoreline from the
point nearest the boat. She can row 2 mph and can walk 5 mph.
Where should she land her boat to reach the village in the least
amount of time?

s = 0.

t = 0

s = -16t2
+ 96t + 112,

x = 1?x = 4

x = 3?x = -1

ƒsxd = x3
+ ax2

+ bx

x = 1?

x = 2?

ƒsxd = x2
+ sa>xd

x
a +

y

b
= 1

h

r

�3

23 m
39. Shortest beam The 8-ft wall shown here stands 27 ft from the

building. Find the length of the shortest straight beam that will
reach to the side of the building from the ground outside the wall.

40. Motion on a line The positions of two particles on the s-axis
are with and in meters
and t in seconds.

a. At what time(s) in the interval do the particles
meet?

b. What is the farthest apart that the particles ever get?

c. When in the interval is the distance between the
particles changing the fastest?

41. The intensity of illumination at any point from a light source is
proportional to the square of the reciprocal of the distance be-
tween the point and the light source. Two lights, one having an in-
tensity eight times that of the other, are 6 m apart. How far from
the stronger light is the total illumination least?

42. Projectile motion The range R of a projectile fired from the
origin over horizontal ground is the distance from the origin to the
point of impact. If the projectile is fired with an initial velocity 
at an angle with the horizontal, then in Chapter 13 we find that

where g is the downward acceleration due to gravity. Find the an-
gle for which the range R is the largest possible.

43. Strength of a beam The strength S of a rectangular wooden
beam is proportional to its width times the square of its depth.
(See the accompanying figure.)

a. Find the dimensions of the strongest beam that can be cut
from a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the
proportionality constant to be Reconcile what you see
with your answer in part (a).

c. On the same screen, graph S as a function of the beam’s depth
d, again taking Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

12"
d

w

k = 1.

k = 1.

a

R =

y0
2

g  sin 2a,

a

y0

0 … t … 2p

0 … t … 2p

s2s1s1 = sin t and s2 = sin st + p>3d ,

Building

27'

Beam

8' wall

T

4

3

5
w

h

r 5 3

w

h
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44. Stiffness of a beam The stiffness S of a rectangular beam is
proportional to its width times the cube of its depth.

a. Find the dimensions of the stiffest beam that can be cut from
a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the
proportionality constant to be Reconcile what you see
with your answer in part (a).

c. On the same screen, graph S as a function of the beam’s depth
d, again taking Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

45. Frictionless cart A small frictionless cart, attached to the wall
by a spring, is pulled 10 cm from its rest position and released at
time to roll back and forth for 4 sec. Its position at time t is

a. What is the cart’s maximum speed? When is the cart moving
that fast? Where is it then? What is the magnitude of the 
acceleration then?

b. Where is the cart when the magnitude of the acceleration is
greatest? What is the cart’s speed then?

46. Two masses hanging side by side from springs have positions
respectively.

a. At what times in the interval do the masses pass each
other? (Hint: )

b. When in the interval is the vertical distance be-
tween the masses the greatest? What is this distance? (Hint:

)

47. Distance between two ships At noon, ship A was 12 nautical
miles due north of ship B. Ship A was sailing south at 12 knots
(nautical miles per hour; a nautical mile is 2000 yd) and contin-
ued to do so all day. Ship B was sailing east at 8 knots and contin-
ued to do so all day.

a. Start counting time with at noon and express the
distance s between the ships as a function of t.

b. How rapidly was the distance between the ships changing at
noon? One hour later?

t = 0

s

0

m2

s1

s2

m1

cos 2t = 2 cos2 t - 1.

0 … t … 2p

sin 2t = 2 sin t cos t .
0 6 t

s1 = 2 sin t and s2 = sin 2t ,

0 10
s

s = 10 cos pt .
t = 0

k = 1.

k = 1.

272 Chapter 4: Applications of Derivatives

c. The visibility that day was 5 nautical miles. Did the ships ever
sight each other?

d. Graph s and together as functions of 
using different colors if possible. Compare the graphs and
reconcile what you see with your answers in parts (b) and (c).

e. The graph of looks as if it might have a horizontal
asymptote in the first quadrant. This in turn suggests that

approaches a limiting value as What is this
value? What is its relation to the ships’ individual speeds?

48. Fermat’s principle in optics Light from a source A is reflected
by a plane mirror to a receiver at point B, as shown in the accom-
panying figure. Show that for the light to obey Fermat’s principle,
the angle of incidence must equal the angle of reflection, both
measured from the line normal to the reflecting surface. (This re-
sult can also be derived without calculus. There is a purely geo-
metric argument, which you may prefer.)

49. Tin pest When metallic tin is kept below 13.2°C, it slowly be-
comes brittle and crumbles to a gray powder. Tin objects eventu-
ally crumble to this gray powder spontaneously if kept in a cold
climate for years. The Europeans who saw tin organ pipes in their
churches crumble away years ago called the change tin pest be-
cause it seemed to be contagious, and indeed it was, for the gray
powder is a catalyst for its own formation.

A catalyst for a chemical reaction is a substance that controls
the rate of reaction without undergoing any permanent change in
itself. An autocatalytic reaction is one whose product is a catalyst
for its own formation. Such a reaction may proceed slowly at first
if the amount of catalyst present is small and slowly again at the
end, when most of the original substance is used up. But in be-
tween, when both the substance and its catalyst product are abun-
dant, the reaction proceeds at a faster pace.

In some cases, it is reasonable to assume that the rate
of the reaction is proportional both to the amount of

the original substance present and to the amount of product. That
is, may be considered to be a function of x alone, and

where

At what value of x does the rate have a maximum? What is the
maximum value of ?

50. Airplane landing path An airplane is flying at altitude H when it
begins its descent to an airport runway that is at horizontal ground
distance L from the airplane, as shown in the figure. Assume that the

y

y

 k = a positive constant .

 a = the amount of substance at the beginning

 x = the amount of product

y = kxsa - xd = kax - kx2,

y

y = dx>dt

B

Plane mirror

Light
source

Angle of
incidence

Light
receiver

Normal

Angle of
reflection

A
�1

�2

t : q .ds>dt

ds>dt

t for -1 … t … 3,ds>dt

T

T
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4.6 Applied Optimization 273

landing path of the airplane is the graph of a cubic polyno-
mial function and

a. What is 

b. What is 

c. Use the values for and together with
to show that

Business and Economics
51. It costs you c dollars each to manufacture and distribute backpacks.

If the backpacks sell at x dollars each, the number sold is given by

where a and b are positive constants. What selling price will bring
a maximum profit?

52. You operate a tour service that offers the following rates:

$200 per person if 50 people (the minimum number to book the
tour) go on the tour.

For each additional person, up to a maximum of 80 people 
total, the rate per person is reduced by $2.

It costs $6000 (a fixed cost) plus $32 per person to conduct the
tour. How many people does it take to maximize your profit?

53. Wilson lot size formula One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

where q is the quantity you order when things run low (shoes, 
radios, brooms, or whatever the item might be), k is the cost of
placing an order (the same, no matter how often you order), c is
the cost of one item (a constant), m is the number of items sold
each week (a constant), and h is the weekly holding cost per item
(a constant that takes into account things such as space, utilities,
insurance, and security).

a. Your job, as the inventory manager for your store, is to find
the quantity that will minimize A(q). What is it? (The formula
you get for the answer is called the Wilson lot size formula.)

b. Shipping costs sometimes depend on order size. When they
do, it is more realistic to replace the sum of k
and a constant multiple of q. What is the most economical
quantity to order now?

k by k + bq ,

Asqd =

km
q + cm +

hq

2
,

n =

a
x - c + bs100 - xd ,

Landing path y

x

H = Cruising altitude
Airport

L

y sxd = H c2 ax
L
b3

+ 3 ax
L
b2 d .

y s0d = 0 and y s -Ld = H
x = -Ldy>dx at x = 0

dy>dx at x = -L?

dy>dx at x = 0?

y s0d = 0.
y = ax3

+ bx2
+ cx + d,  where y s -Ld = H

54. Production level Prove that the production level (if any) at
which average cost is smallest is a level at which the average cost
equals marginal cost.

55. Show that if are your rev-
enue and cost functions, then the best you can do is break even
(have revenue equal cost).

56. Production level Suppose that is
the cost of manufacturing x items. Find a production level that
will minimize the average cost of making x items.

57. You are to construct an open rectangular box with a square base
and a volume of 48 If material for the bottom costs and
material for the sides costs what dimensions will result in
the least expensive box? What is the minimum cost?

58. The 800-room Mega Motel chain is filled to capacity when the
room charge is $50 per night. For each $10 increase in room
charge, 40 fewer rooms are filled each night. What charge per
room will result in the maximum revenue per night?

Biology
59. Sensitivity to medicine (Continuation of Exercise 72, Section

3.3.) Find the amount of medicine to which the body is most sen-
sitive by finding the value of M that maximizes the derivative

, where

and C is a constant.

60. How we cough

a. When we cough, the trachea (windpipe) contracts to
increase the velocity of the air going out. This raises the
questions of how much it should contract to maximize the
velocity and whether it really contracts that much when
we cough.

Under reasonable assumptions about the elasticity of the
tracheal wall and about how the air near the wall is slowed by
friction, the average flow velocity can be modeled by the
equation

where is the rest radius of the trachea in centimeters and
c is a positive constant whose value depends in part on the
length of the trachea.

Show that is greatest when that is, when
the trachea is about 33% contracted. The remarkable fact is
that X-ray photographs confirm that the trachea contracts
about this much during a cough.

b. Take to be 0.5 and c to be 1 and graph over the interval
Compare what you see with the claim that is

at a maximum when 

Theory and Examples
61. An inequality for positive integers Show that if a, b, c, and d

are positive integers, then

sa2
+ 1dsb2

+ 1dsc2
+ 1dsd2

+ 1d
abcd

Ú 16.

r = s2>3dr0 .
y0 … r … 0.5 .

yr0

r = s2>3dr0;y

r0

y = csr0 - rdr2 cm>sec, r0

2
… r … r0 ,

y

R = M2 aC
2

-

M
3
b

dR>dM

$4>ft2, $6>ft2ft3.

csxd = x3
- 20x2

+ 20,000x

rsxd = 6x and csxd = x3
- 6x2

+ 15x

T
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274 Chapter 4: Applications of Derivatives

62. The derivative in Example 4

a. Show that

is an increasing function of x.

b. Show that

is a decreasing function of x.

c. Show that

is an increasing function of x.

63. Let ƒ(x) and g(x) be the differentiable functions graphed here.
Point c is the point where the vertical distance between the curves
is the greatest. Is there anything special about the tangents to the
two curves at c? Give reasons for your answer.

64. You have been asked to determine whether the function 
is ever negative.3 + 4 cos x + cos 2x

ƒsxd =

x
a c b

y � f (x)

y � g(x)

dt
dx

=

x

c12a2
+ x2

-

d - x

c22b2
+ sd - xd2

g sxd =

d - x

2b2
+ sd - xd2

ƒsxd =

x

2a2
+ x2

dt>dx a. Explain why you need to consider values of x only in the in-
terval 

b. Is ƒ ever negative? Explain.

65. a. The function has an absolute maxi-
mum value on the interval Find it.

b. Graph the function and compare what you see with your an-
swer in part (a).

66. a. The function has an absolute minimum
value on the interval Find it.

b. Graph the function and compare what you see with your
answer in part (a).

67. a. How close does the curve come to the point ( , 0)?
(Hint: If you minimize the square of the distance, you can
avoid square roots.)

b. Graph the distance function and together and
reconcile what you see with your answer in part (a).

68. a. How close does the semicircle come to the
point 

b. Graph the distance function and together and
reconcile what you see with your answer in part (a).

y = 216 - x2

A1, 23 B ? y = 216 - x2

(x, �x)

0 3
2, 0

y

x

y � �x

⎛
⎝

⎛
⎝

y = 2xD(x)

3>2y = 2x

0 6 x 6 p>2.
y = tan x + 3 cot x

0 6 x 6 p .
y = cot x - 22 csc x

[0, 2p] .

4.7 Newton’s Method

In this section we study a numerical method, called Newton’s method or the
Newton–Raphson method, which is a technique to approximate the solution to an equation

Essentially it uses tangent lines in place of the graph of near the
points where ƒ is zero. (A value of x where ƒ is zero is a root of the function ƒ and a
solution of the equation )

Procedure for Newton’s Method

The goal of Newton’s method for estimating a solution of an equation is to pro-
duce a sequence of approximations that approach the solution. We pick the first number 
of the sequence. Then, under favorable circumstances, the method does the rest by moving
step by step toward a point where the graph of ƒ crosses the x-axis (Figure 4.44). At each
step the method approximates a zero of ƒ with a zero of one of its linearizations. Here is
how it works.

The initial estimate, may be found by graphing or just plain guessing. The method
then uses the tangent to the curve at to approximate the curve, callingsx0, ƒsx0ddy = ƒsxd

x0 ,

x0

ƒsxd = 0

ƒsxd = 0.

y = ƒsxdƒsxd = 0.

T

T

T

T
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4.7 Newton’s Method 275

the point where the tangent meets the x-axis (Figure 4.44). The number is usually a
better approximation to the solution than is The point where the tangent to the curve
at crosses the x-axis is the next approximation in the sequence. We continue on,
using each approximation to generate the next, until we are close enough to the root to stop.

We can derive a formula for generating the successive approximations in the follow-
ing way. Given the approximation the point-slope equation for the tangent to the curve
at is

We can find where it crosses the x-axis by setting (Figure 4.45):

If

This value of x is the next approximation Here is a summary of Newton’s method.xn + 1 .

ƒ¿sxnd Z 0 x = xn -

ƒsxnd
ƒ¿sxnd

 -
ƒsxnd
ƒ¿sxnd

= x - xn

 0 = ƒsxnd + ƒ¿sxndsx - xnd

y = 0

y = ƒsxnd + ƒ¿sxndsx - xnd.

sxn, ƒsxndd
xn ,

sx1, ƒsx1dd
x2x0 .

x1x1

Newton’s Method
1. Guess a first approximation to a solution of the equation A graph of

may help.

2. Use the first approximation to get a second, the second to get a third, and so
on, using the formula

. (1)xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

 , if ƒ¿sxnd Z 0

y = ƒsxd
ƒsxd = 0.

x

y

0

Root
sought

x0x1x2x3

Fourth FirstSecondThird
APPROXIMATIONS

(x1, f (x1))

(x2, f (x2))

(x0, f (x0))

y � f (x)

FIGURE 4.44 Newton’s method starts
with an initial guess and (under
favorable circumstances) improves the
guess one step at a time.

x0

x

y

0

Root sought

Tangent line
(graph of
linearization
of f at xn)

y � f (x)

(xn, f (xn))

xn

Point: (xn, f (xn))
Slope: f '(xn)
Tangent line equation:
 y � f (xn) � f '(xn)(x � xn)

xn�1 � xn �
f (xn)
f '(xn)

FIGURE 4.45 The geometry of the
successive steps of Newton’s method.
From we go up to the curve and follow
the tangent line down to find xn + 1 .

xn

Applying Newton’s Method

Applications of Newton’s method generally involve many numerical computations, mak-
ing them well suited for computers or calculators. Nevertheless, even when the calcula-
tions are done by hand (which may be very tedious), they give a powerful way to find
solutions of equations.

In our first example, we find decimal approximations to by estimating the posi-
tive root of the equation 

EXAMPLE 1 Find the positive root of the equation

Solution With and Equation (1) becomes

 =

xn

2
+

1
xn

.

 = xn -

xn

2
+

1
xn

 xn + 1 = xn -

xn 
2

- 2
2xn

ƒ¿sxd = 2x ,ƒsxd = x2
- 2

ƒsxd = x2
- 2 = 0.

ƒsxd = x2
- 2 = 0.

22
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The equation

enables us to go from each approximation to the next with just a few keystrokes. With the
starting value we get the results in the first column of the following table. (To five
decimal places, )

Number of
Error correct digits

1

0.08579 1

0.00246 3

0.00001 5

Newton’s method is the method used by most calculators to calculate roots because it
converges so fast (more about this later). If the arithmetic in the table in Example 1 had
been carried to 13 decimal places instead of 5, then going one step further would have
given correctly to more than 10 decimal places.

EXAMPLE 2 Find the x-coordinate of the point where the curve crosses
the horizontal line 

Solution The curve crosses the line when or When does
equal zero? Since and we know by the Inter-

mediate Value Theorem there is a root in the interval (1, 2) (Figure 4.46).
We apply Newton’s method to ƒ with the starting value The results are dis-

played in Table 4.1 and Figure 4.47.
At we come to the result When Equa-

tion (1) shows that We have found a solution of  to nine decimals.ƒsxd = 0ƒsxnd = 0.
xn + 1 = xn ,x6 = x5 = 1.3247 17957.n = 5,

x0 = 1.

ƒs2d = 5,ƒs1d = -1ƒsxd = x3
- x - 1

x3
- x - 1 = 0.x3

- x = 1

y = 1.
y = x3

- x

22

x3 = 1.41422

x2 = 1.41667

x1 = 1.5

-0.41421x0 = 1

22 = 1.41421.
x0 = 1,

xn + 1 =

xn

2
+

1
xn

276 Chapter 4: Applications of Derivatives

In Figure 4.48 we have indicated that the process in Example 2 might have started at
the point on the curve, with Point is quite far from the x-axis, but the
tangent at crosses the x-axis at about (2.12, 0), so is still an improvement over If
we use Equation (1) repeatedly as before, with and 
we obtain the nine-place solution in seven steps.x7 = x6 = 1.3247 17957

ƒ¿sxd = 3x2
- 1,ƒsxd = x3

- x - 1
x0 .x1B0

B0x0 = 3.B0s3, 23d

x

y

0

5

1

10

–1 2 3

15

20
y � x3 � x � 1

FIGURE 4.46 The graph of 
crosses the x-axis once; this is

the root we want to find (Example 2).
x3

- x - 1
ƒsxd =

TABLE 4.1 The result of applying Newton’s method to 
with

n xn ƒ(xn) ƒ�(xn)

0 1 2 1.5

1 1.5 0.875 5.75 1.3478 26087

2 1.3478 26087 0.1006 82173 4.4499 05482 1.3252 00399

3 1.3252 00399 0.0020 58362 4.2684 68292 1.3247 18174

4 1.3247 18174 0.0000 00924 4.2646 34722 1.3247 17957

5 1.3247 17957 4.2646 32999 1.3247 17957-1.8672E-13

-1

xn�1 � xn �
ƒsxnd
ƒ¿sxnd

x0 = 1
ƒsxd = x3

- x - 1

x
1 1.5

1.3478

Root sought

(1.5, 0.875)

x1x2x0

y � x3 � x � 1

(1, –1)

FIGURE 4.47 The first three x-values in
Table 4.1 (four decimal places).

x

y

0

5

1

10

–1 2.12 3

15

20

25

Root sought

1.6

y � x3 � x � 1

B0(3, 23)

B1(2.12, 6.35)

x1x2 x0
–1��3 1��3

FIGURE 4.48 Any starting value to the
right of will lead to the root.x = 1>23

x0
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4.7 Newton’s Method 277

Convergence of the Approximations

In Chapter 10 we define precisely the idea of convergence for the approximations in
Newton’s method. Intuitively, we mean that as the number n of approximations increases
without bound, the values get arbitrarily close to the desired root r. (This notion is similar to
the idea of the limit of a function g(t) as t approaches infinity, as defined in Section 2.6.)

In practice, Newton’s method usually gives convergence with impressive speed, but
this is not guaranteed. One way to test convergence is to begin by graphing the function to
estimate a good starting value for You can test that you are getting closer to a zero of
the function by evaluating , and check that the approximations are converging by
evaluating 

Newton’s method does not always converge. For instance, if

the graph will be like the one in Figure 4.49. If we begin with we get
and successive approximations go back and forth between these two values.

No amount of iteration brings us closer to the root than our first guess.
If Newton’s method does converge, it converges to a root. Be careful, however. There

are situations in which the method appears to converge but there is no root there. Fortu-
nately, such situations are rare.

When Newton’s method converges to a root, it may not be the root you have in mind.
Figure 4.50 shows two ways this can happen.

x1 = r + h ,
x0 = r - h ,

ƒsxd = e -2r - x, x 6 r

2x - r, x Ú r,

ƒ xn - xn + 1 ƒ .
ƒ ƒsxnd ƒ

x0 .

xn

xn

x

y

0
r

y � f (x)

x1x0

FIGURE 4.49 Newton’s method fails to
converge. You go from to and back to

never getting any closer to r.x0 ,
x1x0

x2

Root found

x1

Starting
point

Root
sought

x
x0

Root sought
x0

Starting
point

Root
found

x
x1

y � f (x)

y � f (x)

FIGURE 4.50 If you start too far away, Newton’s method may miss the root you want.

Exercises 4.7

Root Finding
1. Use Newton’s method to estimate the solutions of the equation

Start with for the left-hand solution
and with for the solution on the right. Then, in each case,
find 

2. Use Newton’s method to estimate the one real solution of
Start with and then find 

3. Use Newton’s method to estimate the two zeros of the function
Start with for the left-hand zero

and with for the zero on the right. Then, in each case,
find 

4. Use Newton’s method to estimate the two zeros of the function
Start with for the left-hand zero and

with for the zero on the right. Then, in each case, find 

5. Use Newton’s method to find the positive fourth root of 2 by solv-
ing the equation Start with and find x2 .x0 = 1x4

- 2 = 0.

x2 .x0 = 2
x0 = 0ƒsxd = 2x - x2

+ 1.

x2 .
x0 = 1

x0 = -1ƒsxd = x4
+ x - 3.

x2 .x0 = 0x3
+ 3x + 1 = 0.

x2 .
x0 = 1

x0 = -1x2
+ x - 1 = 0.

6. Use Newton’s method to find the negative fourth root of 2 by solv-
ing the equation Start with and find 

7. Guessing a root Suppose that your first guess is lucky, in the
sense that is a root of Assuming that is de-
fined and not 0, what happens to and later approximations?

8. Estimating pi You plan to estimate to five decimal places
by using Newton’s method to solve the equation Does
it matter what your starting value is? Give reasons for your answer.

Theory and Examples
9. Oscillation Show that if applying Newton’s method to

leads to and to Draw a
picture that shows what is going on.

x1 = h if x0 = -h .x1 = -h if x0 = h

ƒsxd = • 2x, x Ú 0

2-x, x 6 0

h 7 0,

cos x = 0.
p>2

x1

ƒ¿sx0dƒsxd = 0.x0

x2 .x0 = -1x4
- 2 = 0.
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278 Chapter 4: Applications of Derivatives

10. Approximations that get worse and worse Apply Newton’s
method to and calculate 
Find a formula for What happens to Draw a
picture that shows what is going on.

11. Explain why the following four statements ask for the same infor-
mation:

iii) Find the roots of 

iii) Find the x-coordinates of the intersections of the curve
with the line 

iii) Find the x-coordinates of the points where the curve
crosses the horizontal line 

iv) Find the values of x where the derivative of 
equals zero.

12. Locating a planet To calculate a planet’s space coordinates, we
have to solve equations like Graphing the
function suggests that the function has
a root near Use one application of Newton’s method to
improve this estimate. That is, start with and find 
(The value of the root is 1.49870 to five decimal places.) Remem-
ber to use radians.

13. Intersecting curves The curve crosses the line
between and Use Newton’s method to

find where.

14. Real solutions of a quartic Use Newton’s method to find the
two real solutions of the equation 

15. a. How many solutions does the equation 
have?

b. Use Newton’s method to find them.

16. Intersection of curves

a. Does cos 3x ever equal x? Give reasons for your answer.

b. Use Newton’s method to find where.

17. Find the four real zeros of the function 

18. Estimating pi Estimate to as many decimal places as your
calculator will display by using Newton’s method to solve the
equation 

19. Intersection of curves At what value(s) of x does 

20. Intersection of curves At what value(s) of x does 

21. The graphs of and intersect at
one point Use Newton’s method to estimate the value of r
to four decimal places. 

22. The graphs of and intersect at one point
Use Newton’s method to estimate the value of r to four

decimal places. 
x = r.

y = 3 - x2y = 2x

1

21–1 0

3

2

x

y

y 5 x
1

y 5 x2(x 1 1)

rr, 1⎛
⎝

⎛
⎝

x = r.
(x 7 0)y = 1>xy = x2(x + 1)

cos x = -x?

cos x = 2x?

tan x = 0 with x0 = 3.

p

ƒsxd = 2x4
- 4x2

+ 1.

sin 3x = 0.99 - x2

x4
- 2x3

- x2
- 2x + 2 = 0.

x = p>2.x = 0y = 2x
y = tan x

x1 .x0 = 1.5
x = 1.5 .

ƒsxd = x - 1 - 0.5 sin x
x = 1 + 0.5 sin x .

s1>4dx4
- s3>2dx2

- x + 5
g sxd =

y = 1.y = x3
- 3x

y = 3x + 1.y = x3

ƒsxd = x3
- 3x - 1.

ƒ xn ƒ  as n : q ?ƒ xn ƒ .
x1 , x2 , x3 , and x4 .ƒsxd = x1>3 with x0 = 1

23. Intersection of curves At what value(s) of x does
?

24. Intersection of curves At what value(s) of x does

25. Use the Intermediate Value Theorem from Section 2.5 to show
that has a root between and 
Then find the root to five decimal places.

26. Factoring a quartic Find the approximate values of through 
in the factorization

27. Converging to different zeros Use Newton’s method to find
the zeros of using the given starting values.

a. and lying in 

b. and lying in 

c. and lying in 

d. and 

28. The sonobuoy problem In submarine location problems, it is
often necessary to find a submarine’s closest point of approach
(CPA) to a sonobuoy (sound detector) in the water. Suppose that
the submarine travels on the parabolic path and that the
buoy is located at the point 

a. Show that the value of x that minimizes the distance between
the submarine and the buoy is a solution of the equation

b. Solve the equation with Newton’s method.

29. Curves that are nearly flat at the root Some curves are so flat
that, in practice, Newton’s method stops too far from the root to
give a useful estimate. Try Newton’s method on 
with a starting value of to see how close your machine
comes to the root See the accompanying graph.x = 1.

x0 = 2
ƒsxd = sx - 1d40

x

y

0

2, –

1

1 2

Sonobuoy

CPA

Submarine track
in two dimensions

1
2

⎛
⎝

⎛
⎝

y � x2

x = 1>sx2
+ 1d

x = 1>sx2
+ 1d .

s2, -1>2d .
y = x2

x0 = 221>7x0 = -221>7
A22>2, q Bx0 = 2,x0 = 0.8

A -221>7, 221>7 Bx0 = 0.25 ,x0 = -0.5

A - q , -22>2 Bx0 = -0.8 ,x0 = -2

ƒsxd = 4x4
- 4x2

x

y

2

1–1 2

–4

–6

–2

–8

–10

–12

y � 8x4 � 14x3 � 9x2 � 11x � 1

8x4
- 14x3

- 9x2
+ 11x - 1 = 8sx - r1dsx - r2dsx - r3dsx - r4d.

r4r1

x = 2.x = 1ƒsxd = x3
+ 2x - 4

ln (1 - x2) = x - 1?

e-x2

= x2
- x + 1

T

T

T

T

T

T
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x

y

0

(2, 1)

1

1

2

Nearly flat

Slope � 40Slope � –40

y � (x � 1)40

30. The accompanying figure shows a circle of radius r with a chord
of length 2 and an arc s of length 3. Use Newton’s method to solve
for r and (radians) to four decimal places. Assume 

u 2

r

r

s 5 3

0 6 u 6 p.u

4.8 Antiderivatives

We have studied how to find the derivative of a function. However, many problems require
that we recover a function from its known derivative (from its known rate of change). For in-
stance, we may know the velocity function of an object falling from an initial height and
need to know its height at any time. More generally, we want to find a function F from its
derivative ƒ. If such a function F exists, it is called an antiderivative of ƒ. We will see in the
next chapter that antiderivatives are the link connecting the two major elements of calculus:
derivatives and definite integrals.

Finding Antiderivatives

DEFINITION A function F is an antiderivative of ƒ on an interval I if
for all x in I.F¿sxd = ƒsxd

The process of recovering a function F(x) from its derivative ƒ(x) is called
antidifferentiation. We use capital letters such as F to represent an antiderivative of a func-
tion ƒ, G to represent an antiderivative of g, and so forth.

EXAMPLE 1 Find an antiderivative for each of the following functions.

(a) (b) (c)

Solution We need to think backward here: What function do we know has a derivative
equal to the given function?

(a) (b) (c)

Each answer can be checked by differentiating. The derivative of is 2x. 
The derivative of is and the derivative of is 
(1>x) + 2e2x.

H(x) = ln ƒ x ƒ + e2xcos xGsxd = sin x
Fsxd = x2

H(x) = ln ƒ x ƒ + e2xGsxd = sin xFsxd = x2

h(x) =
1
x + 2e2xg sxd = cos xƒsxd = 2x
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The function is not the only function whose derivative is 2x. The function
has the same derivative. So does for any constant C. Are there others?

Corollary 2 of the Mean Value Theorem in Section 4.2 gives the answer: Any two
antiderivatives of a function differ by a constant. So the functions where C is an 
arbitrary constant, form all the antiderivatives of More generally, we have
the following result.

ƒsxd = 2x .
x2

+ C ,

x2
+ Cx2

+ 1
Fsxd = x2

280 Chapter 4: Applications of Derivatives

THEOREM 8 If F is an antiderivative of ƒ on an interval I, then the most general
antiderivative of ƒ on I is

where C is an arbitrary constant.

Fsxd + C

2

1

0

–1

–2

x

y

y � x3 � C C � 1

C � 2

C � 0

C � –1

C � –2

(1, –1)

FIGURE 4.51 The curves 
fill the coordinate plane without
overlapping. In Example 2, we identify the
curve as the one that passes
through the given point s1, -1d .

y = x3
- 2

y = x3
+ C

Thus the most general antiderivative of ƒ on I is a family of functions 
whose graphs are vertical translations of one another. We can select a particular antideriv-
ative from this family by assigning a specific value to C. Here is an example showing how
such an assignment might be made.

EXAMPLE 2 Find an antiderivative of that satisfies 

Solution Since the derivative of is , the general antiderivative

gives all the antiderivatives of ƒ(x). The condition determines a specific value
for C. Substituting into gives

Since , solving for C gives So

is the antiderivative satisfying Notice that this assignment for C selects the
particular curve from the family of curves that passes through the point

in the plane (Figure 4.51).

By working backward from assorted differentiation rules, we can derive formulas and
rules for antiderivatives. In each case there is an arbitrary constant C in the general expres-
sion representing all antiderivatives of a given function. Table 4.2 gives antiderivative for-
mulas for a number of important functions.

The rules in Table 4.2 are easily verified by differentiating the general antiderivative
formula to obtain the function to its left. For example, the derivative of is

, whatever the value of the constants C or , and this establishes Formula 4 for
the most general antiderivative of .

EXAMPLE 3 Find the general antiderivative of each of the following functions.

(a) (b) (c)

(d) (e) (f ) k(x) = 2xj(x) = e-3xisxd = cos  
x
2

hsxd = sin 2xg sxd =
1

2x
ƒsxd = x5

sec2 kx
k Z 0sec2 kx

+ C(tan kx)>k

(1, -1)
y = x3

+ C
Fs1d = -1.

Fsxd = x3
- 2

C = -2.1 + C = -1Fs1d = -1

Fs1d = (1)3
+ C = 1 + C.

Fsxd = x3
+ Cx = 1

Fs1d = -1

Fsxd = x3
+ C

3x2x3

Fs1d = -1.ƒsxd = 3 x2

Fsxd + C
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4.8 Antiderivatives 281

Solution In each case, we can use one of the formulas listed in Table 4.2. 

(a)

(b) so

(c)

(d)

(e)

(f)

Other derivative rules also lead to corresponding antiderivative rules. We can add and
subtract antiderivatives and multiply them by constants.

K(x) = a 1
ln 2
b  2x

+ C

J(x) = -
1
3

 e-3x
+ C

Isxd =

sin sx>2d
1>2 + C = 2 sin  

x
2

+ C

Hsxd =
-cos 2x

2
+ C

Gsxd =
x1>2
1>2 + C = 22x + C

g sxd = x-1>2 ,

Fsxd =
x6

6
+ C

TABLE 4.2 Antiderivative formulas, k a nonzero constant

Function General antiderivative Function General antiderivative

1.

2. sin kx

3. cos kx

4.

5.

6. sec kx tan kx

7. csc kx cot kx -
1
k

 csc kx + C

1
k

 sec kx + C

-
1
k

 cot kx + Ccsc2 kx

1
k

 tan kx + Csec2 kx

1
k

 sin kx + C

-
1
k

 cos  kx + C 

1
n + 1

 xn + 1
+ C, n Z -1xn 8.

9.

10.

11.

12.

13. a 7 0,  a Z 1a 1
k ln a

b  akx
+ C,   akx

sec-1 kx + C,   kx 7 1
1

x2k2x2
- 1

1
k

 tan-1 kx + C
1

1 + k2x2

1
k

 sin-1 kx + C
1

21 - k2x2

ln ƒ x ƒ + C, x Z 0
1
x

1
k

 ekx
+ Cekx

TABLE 4.3 Antiderivative linearity rules

Function General antiderivative

1. Constant Multiple Rule: kƒ(x)

2. Negative Rule:

3. Sum or Difference Rule: Fsxd ; Gsxd + Cƒsxd ; g sxd
-Fsxd + C-ƒsxd
kFsxd + C, k a constant

Formula 1
with n = 5

Formula 1
with n = -1>2

Formula 3
with k = 1>2

Formula 2
with k = 2

Formula 8
with k = -3

Formula 13
with a = 2, k = 1

The formulas in Table 4.3 are easily proved by differentiating the antiderivatives and
verifying that the result agrees with the original function. Formula 2 is the special case

in Formula 1.k = -1
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EXAMPLE 4 Find the general antiderivative of

Solution We have that for the functions g and h in Example 3.
Since is an antiderivative of g (x) from Example 3b, it follows from the
Constant Multiple Rule for antiderivatives that is an antideriv-
ative of Likewise, from Example 3c we know that 
is an antiderivative of From the Sum Rule for antiderivatives, we then
get that

is the general antiderivative formula for ƒ(x), where C is an arbitrary constant.

Initial Value Problems and Differential Equations

Antiderivatives play several important roles in mathematics and its applications. Methods
and techniques for finding them are a major part of calculus, and we take up that study in
Chapter 8. Finding an antiderivative for a function ƒ(x) is the same problem as finding a
function y(x) that satisfies the equation

This is called a differential equation, since it is an equation involving an unknown func-
tion y that is being differentiated. To solve it, we need a function y(x) that satisfies the
equation. This function is found by taking the antiderivative of ƒ(x). We fix the arbitrary
constant arising in the antidifferentiation process by specifying an initial condition

This condition means the function y(x) has the value when The combination of
a differential equation and an initial condition is called an initial value problem. Such
problems play important roles in all branches of science.

The most general antiderivative (such as in Example 2) of the
function ƒ(x) gives the general solution of the differential equation

The general solution gives all the solutions of the equation (there are infinitely
many, one for each value of C). We solve the differential equation by finding its general solu-
tion. We then solve the initial value problem by finding the particular solution that satisfies
the initial condition In Example 2, the function is the particular so-
lution of the differential equation satisfying the initial condition .

Antiderivatives and Motion

We have seen that the derivative of the position function of an object gives its velocity, and
the derivative of its velocity function gives its acceleration. If we know an object’s acceler-
ation, then by finding an antiderivative we can recover the velocity, and from an antideriv-
ative of the velocity we can recover its position function. This procedure was used as an
application of Corollary 2 in Section 4.2. Now that we have a terminology and conceptual
framework in terms of antiderivatives, we revisit the problem from the point of view of dif-
ferential equations.

EXAMPLE 5 A hot-air balloon ascending at the rate of 12 is at a height 80 ft
above the ground when a package is dropped. How long does it take the package to reach
the ground?

ft>sec

y(1) = -1dy>dx = 3x2
y = x3

- 2ysx0d = y0 .

dy>dx = ƒsxd .
y = Fsxd + C

x3
+ CFsxd + C

x = x0 .y0

y sx0d = y0 .

dy
dx

= ƒsxd.

 = 62x -
1
2

 cos 2x + C

 Fsxd = 3Gsxd + Hsxd + C

hsxd = sin 2x .
Hsxd = s -1>2d cos 2x3g sxd = 3>2x .

3Gsxd = 3 # 22x = 62x
Gsxd = 22x

ƒsxd = 3g sxd + hsxd

ƒsxd =
3

2x
+ sin 2x.

282 Chapter 4: Applications of Derivatives
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4.8 Antiderivatives 283

Solution Let denote the velocity of the package at time t, and let s(t) denote its
height above the ground. The acceleration of gravity near the surface of the earth is

Assuming no other forces act on the dropped package, we have

This leads to the following initial value problem (Figure 4.52):

This is our mathematical model for the package’s motion. We solve the initial value prob-
lem to obtain the velocity of the package.

1. Solve the differential equation: The general formula for an antiderivative of is

Having found the general solution of the differential equation, we use the initial con-
dition to find the particular solution that solves our problem.

2. Evaluate C:

Initial condition 

The solution of the initial value problem is

Since velocity is the derivative of height, and the height of the package is 80 ft at time
when it is dropped, we now have a second initial value problem.

We solve this initial value problem to find the height as a function of t.

1. Solve the differential equation: Finding the general antiderivative of gives

2. Evaluate C:

Initial condition 

The package’s height above ground at time t is

Use the solution: To find how long it takes the package to reach the ground, we set s
equal to 0 and solve for t:

Quadratic formula

The package hits the ground about 2.64 sec after it is dropped from the balloon. (The neg-
ative root has no physical meaning.)

 t L -1.89, t L 2.64.

 t =

-3 ; 2329
-8

 -4t2
+ 3t + 20 = 0

 -16t2
+ 12t + 80 = 0

s = -16t2
+ 12t + 80.

 C = 80.

ss0d = 80 80 = -16s0d2
+ 12s0d + C

s = -16t2
+ 12t + C.

-32t + 12

 Initial condition:          ss0d = 80

 Differential equation:   
ds
dt

= -32t + 12

t = 0

y = -32t + 12.

 C = 12.

ys0d = 12 12 = -32s0d + C

y = -32t + C.

-32

Initial condition:   ys0d = 12.

Differential equation:     dy
dt

= -32

dy
dt

= -32.

32 ft>sec2.

y(t)

Negative because gravity acts in the
direction of decreasing s

s

0 ground

s(t)

v(0) 5 12

dv
dt

 5 –32

FIGURE 4.52 A package dropped
from a rising hot-air balloon
(Example 5).

Balloon initially rising

Set in the
previous equation.
y = ds>dt
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Indefinite Integrals

A special symbol is used to denote the collection of all antiderivatives of a function ƒ.

284 Chapter 4: Applications of Derivatives

DEFINITION The collection of all antiderivatives of ƒ is called the indefinite
integral of ƒ with respect to x, and is denoted by

The symbol is an integral sign. The function ƒ is the integrand of the inte-
gral, and x is the variable of integration.

1

L
ƒsxd dx.

antiderivative
$++%++&

arbitrary constant

#

After the integral sign in the notation we just defined, the integrand function is always
followed by a differential to indicate the variable of integration. We will have more to say
about why this is important in Chapter 5. Using this notation, we restate the solutions of
Example 1, as follows:

This notation is related to the main application of antiderivatives, which will be explored
in Chapter 5. Antiderivatives play a key role in computing limits of certain infinite
sums, an unexpected and wonderfully useful role that is described in a central result of
Chapter 5, called the Fundamental Theorem of Calculus.

EXAMPLE 6 Evaluate

Solution If we recognize that is an antiderivative of 
we can evaluate the integral as

If we do not recognize the antiderivative right away, we can generate it term-by-term
with the Sum, Difference, and Constant Multiple Rules:

 =
x3

3
+ C1 - x2

- 2C2 + 5x + 5C3 .

 = ax3

3
+ C1b - 2 ax2

2
+ C2b + 5sx + C3d

 =

L
x2 dx - 2

L
x dx + 5

L
1 dx

 
L

sx2
- 2x + 5d dx =

L
x2 dx -

L
2x dx +

L
5 dx

L
(x2

- 2x + 5) dx =
x3

3
- x2

+ 5x + C.

x2
- 2x + 5,sx3>3d - x2

+ 5x

L
 sx2

- 2x + 5d dx .

L

 

 a1x + 2e2xb  dx = ln ƒ x ƒ + e2x
+ C.

L
 cos x dx = sin x + C ,

L
 2x dx = x2

+ C ,
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This formula is more complicated than it needs to be. If we combine and 
into a single arbitrary constant the formula simplifies to

and still gives all the possible antiderivatives there are. For this reason, we recommend that
you go right to the final form even if you elect to integrate term-by-term. Write

Find the simplest antiderivative you can for each part and add the arbitrary constant of
integration at the end.

 =
x3

3
- x2

+ 5x + C .

 
L

sx2
- 2x + 5d dx =

L
x2 dx -

L
2x dx +

L
5 dx

x3

3
- x2

+ 5x + C

C = C1 - 2C2 + 5C3 ,
5C3C1, -2C2 ,

4.8 Antiderivatives 285

Exercises 4.8

Finding Antiderivatives
In Exercises 1–24, find an antiderivative for each function. Do as
many as you can mentally. Check your answers by differentiation.

1. a. 2x b. c.

2. a. 6x b. c.

3. a. b. c.

4. a. b. c.

5. a. b. c.

6. a. b. c.

7. a. b. c.

8. a. b. c.

9. a. b. c.

10. a. b. c.

11. a. b. c.

12. a. b. c.

13. a. b. 3 sin x c.

14. a. b. c.

15. a. b. c.

16. a. b. c.

17. a. csc x cot x b. c. -p csc 
px
2

 cot 
px
2

-csc 5x cot 5x

1 - 8 csc2 2x-

3
2

 csc2  
3x
2

csc2 x

-sec2  
3x
2

2
3

 sec2  
x
3

sec2 x

cos 
px
2

+ p cos x
p

2
 cos  

px
2

p cos px

sin px - 3 sin 3x-p sin px

1 +

4
3x

-

1
x2

2
5x

1
3x

1 -

5
x

7
x

1
x

-

3
2

 x-5>2
-

1
2

 x-3>21
2

 x-1>2

-

1
3

 x-4>31
3

 x-2>32
3

 x-1>3

23 x +

1

23 x

1

323 x

4
3
23 x

2x +

1

2x

1

22x

3
2

 2x

x3
-

1
x3

1
2x3-

2
x3

2 -

5
x2

5
x2

1
x2

-x-3
+ x - 1

x-3

2
+ x22x-3

x-4
+ 2x + 3x-4

-3x-4

x7
- 6x + 8x7

x2
- 2x + 1x2

18. a. sec x tan x b. 4 sec 3x tan 3x c.

19. a. b. c.

20. a. b. c.

21. a. b. c.

22. a. b. c.

23. a. b. c.

24. a. b. c.

Finding Indefinite Integrals
In Exercises 25–70, find the most general antiderivative or indefinite
integral. Check your answers by differentiation.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.
L

 
4 + 2t

t3  dt
L

 
t2t + 2t

t2  dt

L
x-3sx + 1d dx

L
2xs1 - x-3d dx

L
a1

7
-

1

y5>4 b  dy
L
a8y -

2

y1>4 b  dy

L
a2x

2
+

2

2x
b  dx

L
A2x + 23 x B  dx

L
x-5>4 dx

L
x-1>3 dx

L
a1

5
-

2
x3 + 2xb  dx

L
a 1

x2 - x2
-

1
3
b  dx

L
s1 - x2

- 3x5d dx
L

s2x3
- 5x + 7d dx

L
at2

2
+ 4t3b  dt

L
a3t2

+

t
2
b  dt

L
s5 - 6xd dx

L
sx + 1d dx

p x
- x-1x2

+ 2xx - a1
2
b x

1
1 + 4x2

1
2(x2

+ 1)
2

21 - x2

x22 - 1xpx23

a5
3
b x

2-x3x

e-x>5e4x>3e-2x

ex>2e-xe3x

sec 
px
2

 tan 
px
2
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43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

(Hint: )

67. 68.

(Hint: )

69. 70.

Checking Antiderivative Formulas
Verify the formulas in Exercises 71–82 by differentiation.

71.

72.

73.

74.

75.

76.

77.
L

 
1

x + 1
 dx = ln (x + 1) + C, x 7 -1

L
 

1
sx + 1d2 dx =

x
x + 1

+ C

L
 

1
sx + 1d2 dx = -

1
x + 1

+ C

L
csc2 ax - 1

3
b  dx = -3 cot ax - 1

3
b + C

L
sec2 s5x - 1d dx =

1
5

 tan s5x - 1d + C

L
s3x + 5d-2 dx = -

s3x + 5d-1

3
+ C

L
s7x - 2d3 dx =

s7x - 2d4

28
+ C

L
 

csc u

csc u - sin u
 du

L
 cos u stan u + sec ud du

1 + cot2 x = csc2 x

L
s1 - cot2 xd dx

L
cot2 x dx

1 + tan2 u = sec2 u

L
s2 + tan2 ud du

L
s1 + tan2 ud du

L
x22 - 1 dx

L
 3x23 dx

L
 a 2

21 - y2
-

1

y1>4 b  dy
L

 a1x -

5
x2

+ 1
b  dx

L
 
1 - cos 6t

2
 dt

L
 
1 + cos 4t

2
 dt

L
s2 cos 2x - 3 sin 3xd dx

L
ssin 2x - csc2 xd dx

L
 
1
2

 scsc2 x - csc x cot xd dx

L
s4 sec x tan x - 2 sec2 xd dx

L
s1.3dx dx

L
 (e-x

+ 4x) dx

L
s2ex

- 3e-2xd dx
L

se3x
+ 5e-xd dx

L
 
2
5

 sec u tan u du
L

 
csc u cot u

2
 du

L
a- sec2 x

3
b  dx

L
s -3 csc2 xd dx

L
3 cos 5u du

L
7 sin 

u

3
  du

L
s -5 sin td dt

L
s -2 cos td dt 78.

79.

80.

81.

82.

83. Right, or wrong? Say which for each formula and give a brief rea-
son for each answer.

a.

b.

c.

84. Right, or wrong? Say which for each formula and give a brief rea-
son for each answer.

a.

b.

c.

85. Right, or wrong? Say which for each formula and give a brief rea-
son for each answer.

a.

b.

c.

86. Right, or wrong? Say which for each formula and give a brief
reason for each answer.

a.

b.

c.

87. Right, or wrong? Give a brief reason why.

88. Right, or wrong? Give a brief reason why.

L
 
x cos (x2) - sin (x2)

x2  dx =

sin (x2)
x + C

L
 
-15(x + 3)2

(x - 2)4  dx = ax + 3
x - 2

b3

+ C

L
22x + 1 dx =

1
3

 A22x + 1 B3 + C

L
22x + 1 dx = 2x2

+ x + C

L
22x + 1 dx = 2x2

+ x + C

L
6s2x + 1d2 dx = s2x + 1d3

+ C

L
3s2x + 1d2 dx = s2x + 1d3

+ C

L
s2x + 1d2 dx =

s2x + 1d3

3
+ C

L
 tan u sec2 u du =

1
2

 sec2 u + C

L
 tan u sec2 u du =

1
2

 tan2 u + C

L
 tan u sec2 u du =

sec3 u

3
+ C

L
x sin x dx = -x cos x + sin x + C

L
x sin x dx = -x cos x + C

L
x sin x dx =

x2

2
 sin x + C

L
ssin-1 xd2 dx = xssin-1 xd2

- 2x + 221 - x2 sin-1 x + C

L
 
tan-1 x

x2  dx = ln x -

1
2

 ln s1 + x2d -

tan-1 x
x + C

L
 

dx

2a2
- x2

= sin-1 ax
a b + C

L
 

dx

a2
+ x2 =

1
a tan-1 ax

a b + C

L
 xex dx = xex

- ex
+ C
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Initial Value Problems

89. Which of the following graphs shows the solution of the initial
value problem

Give reasons for your answer.

90. Which of the following graphs shows the solution of the initial
value problem

Give reasons for your answer.

Solve the initial value problems in Exercises 91–112.

91.

92.

93.

94.

95.

96.

97.

98.

99.
dr
du

= -p sin pu, r s0d = 0

ds
dt

= cos t + sin t, s spd = 1

ds
dt

= 1 + cos t, s s0d = 4

dy

dx
=

1

22x
 , y s4d = 0

dy

dx
= 3x-2>3, y s -1d = -5

dy

dx
= 9x2

- 4x + 5, y s -1d = 0

dy

dx
=

1
x2 + x, x 7 0; y s2d = 1

dy

dx
= 10 - x, y s0d = -1

dy

dx
= 2x - 7, y s2d = 0

x

y

0

(–1, 1)
(–1, 1) (–1, 1)

(a)

x

y

0

(b)

x

y

0

(c)

dy

dx
= -x, y = 1 when x = -1?

x

y

0 1–1

(a)

(1, 4)

x

y

0 1–1

(b)

(1, 4)

x

y

0 1–1

(c)

(1, 4)

1

2

3

4

1

2

3

4

1

2

3

4

dy

dx
= 2x, y = 4 when x = 1?
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100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113. Find the curve in the xy-plane that passes through the
point (9, 4) and whose slope at each point is 

114. a. Find a curve with the following properties:

i)

ii) Its graph passes through the point (0, 1), and has a hori-
zontal tangent there.

b. How many curves like this are there? How do you know?

Solution (Integral) Curves
Exercises 115–118 show solution curves of differential equations. In
each exercise, find an equation for the curve through the labeled point.

115. 116.

d2y

dx2 = 6x

y = ƒsxd
32x .

y = ƒsxd
y‡s0d = 0, y–s0d = y¿s0d = 1, y s0d = 3

y s4d
= -cos x + 8 sin 2x ;

y‡s0d = 7, y–s0d = y¿s0d = -1, y s0d = 0

y s4d
= -sin t + cos t ;

d3 u

dt3 = 0; u–s0d = -2, u¿s0d = -

1
2

, us0d = 22

d3y

dx3 = 6; y–s0d = -8, y¿s0d = 0, y s0d = 5

d2s

dt2 =

3t
8

 ; ds
dt
`
t=4

= 3, s s4d = 4

d2r

dt2 =

2
t3 ; dr

dt
`
t=1

= 1, r s1d = 1

d2y

dx2 = 0; y¿s0d = 2, y s0d = 0

d2y

dx2 = 2 - 6x; y¿s0d = 4, y s0d = 1

dy
dt

=

8
1 + t2 + sec2 t, y(0) = 1

dy
dt

=

3

t2t2
- 1

, t 7 1, y(2) = 0

dy
dt

= 8t + csc2 t, y ap
2
b = -7

dy
dt

=

1
2

 sec t tan t, y s0d = 1

dr
du

= cos pu, r s0d = 1

x
0

(1, 0.5)

1

1

2

–1

y � 1 �     x1/3dy
dx

4
3

x
1

1

y

2–1

2

–1

0

 

(–1, 1)

� x � 1
dy
dx
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117. 118.

Applications
119. Finding displacement from an antiderivative of velocity

a. Suppose that the velocity of a body moving along the s-axis is

iii) Find the body’s displacement over the time interval from
to given that when 

iii) Find the body’s displacement from to given
that when 

iii) Now find the body’s displacement from to 
given that when 

b. Suppose that the position s of a body moving along a coordi-
nate line is a differentiable function of time t. Is it true that
once you know an antiderivative of the velocity function

you can find the body’s displacement from to
even if you do not know the body’s exact position at

either of those times? Give reasons for your answer.

120. Liftoff from Earth A rocket lifts off the surface of Earth with
a constant acceleration of How fast will the rocket be
going 1 min later?

121. Stopping a car in time You are driving along a highway at a
steady 60 mph ( ) when you see an accident ahead and
slam on the brakes. What constant deceleration is required to stop
your car in 242 ft? To find out, carry out the following steps.

1. Solve the initial value problem

Measuring time and distance from
when the brakes are applied

2. Find the value of t that makes (The answer will
involve k.)

3. Find the value of k that makes for the value of t you
found in Step 2.

122. Stopping a motorcycle The State of Illinois Cycle Rider Safety
Program requires motorcycle riders to be able to brake from 30 mph

to 0 in 45 ft. What constant deceleration does it take to
do that?
(44 ft>sec)

s = 242

ds>dt = 0.

Initial conditions:  
ds
dt

= 88 and s = 0 when t = 0.

Differential equation: d2s

dt2 = -k sk constantd

88 ft>sec

20 m>sec2 .

t = b
t = ads>dt

t = 0.s = s0

t = 3t = 1

t = 0.s = -2
t = 3t = 1

t = 0.s = 5t = 3t = 1

ds
dt

= y = 9.8t - 3.
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x
0 2

1

y
� sin x � cos xdy

dx

(–�, –1)

x
0

(1, 2)

1

2

y

2

–2

4

6

�           � �sin �xdy
dx

1
2�x

3

123. Motion along a coordinate line A particle moves on a coordi-
nate line with acceleration 
subject to the conditions that and when 
Find

a. the velocity in terms of t

b. the position s in terms of t.

124. The hammer and the feather When Apollo 15 astronaut
David Scott dropped a hammer and a feather on the moon to
demonstrate that in a vacuum all bodies fall with the same (con-
stant) acceleration, he dropped them from about 4 ft above the
ground. The television footage of the event shows the hammer
and the feather falling more slowly than on Earth, where, in a
vacuum, they would have taken only half a second to fall the 4 ft.
How long did it take the hammer and feather to fall 4 ft on the
moon? To find out, solve the following initial value problem for s
as a function of t. Then find the value of t that makes s equal to 0.

125. Motion with constant acceleration The standard equation for
the position s of a body moving with a constant acceleration a
along a coordinate line is

(1)

where and are the body’s velocity and position at time
Derive this equation by solving the initial value problem

126. Free fall near the surface of a planet For free fall near the sur-
face of a planet where the acceleration due to gravity has a con-
stant magnitude of g Equation (1) in Exercise
125 takes the form

(2)

where s is the body’s height above the surface. The equation has
a minus sign because the acceleration acts downward, in the di-
rection of decreasing s. The velocity is positive if the object is
rising at time and negative if the object is falling.

Instead of using the result of Exercise 125, you can derive
Equation (2) directly by solving an appropriate initial value
problem. What initial value problem? Solve it to be sure you
have the right one, explaining the solution steps as you go along.

127. Suppose that

Find:

a. b.
L

g sxd dx
L

ƒsxd dx

ƒsxd =

d
dx

 A1 - 2x B and g sxd =

d
dx

 sx + 2d .

t = 0
y0

s = -

1
2

 gt2
+ y0 t + s0 , 

length-units>sec2 ,

Initial conditions:   
ds
dt

= y0 and s = s0 when t = 0.

Differential equation:  d2s

dt2 = a

t = 0.
s0y0

s =

a
2

 t2
+ y0 t + s0 , 

Initial conditions:  
ds
dt

= 0 and s = 4 when t = 0

Differential equation: d2s

dt2 = -5.2 ft>sec2

y = ds>dt

t = 1.s = 0ds>dt = 4
a = d2s>dt2

= 152t - A3>2t B ,

T
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c. d.

e. f.

128. Uniqueness of solutions If differentiable functions 
and both solve the initial value problem

on an interval I, must for every x in I? Give rea-
sons for your answer.

Fsxd = Gsxd

dy

dx
= ƒsxd, y sx0d = y0 ,

y = Gsxd
y = Fsxd

L
[ƒsxd - g sxd] dx

L
[ƒsxd + g sxd] dx

L
[-g sxd] dx

L
[-ƒsxd] dx

Chapter 4 Practice Exercises 289

COMPUTER EXPLORATIONS
Use a CAS to solve the initial value problems in Exercises 129–132.
Plot the solution curves.

129.

130.

131.

132. y– =

2
x + 2x, y s1d = 0, y¿s1d = 0

y¿ =

1

24 - x2
 , y s0d = 2

y¿ =

1
x + x, y s1d = -1

y¿ = cos2 x + sin x, y spd = 1

Chapter 4 Questions to Guide Your Review

1. What can be said about the extreme values of a function that is
continuous on a closed interval?

2. What does it mean for a function to have a local extreme value on
its domain? An absolute extreme value? How are local and ab-
solute extreme values related, if at all? Give examples.

3. How do you find the absolute extrema of a continuous function
on a closed interval? Give examples.

4. What are the hypotheses and conclusion of Rolle’s Theorem? Are
the hypotheses really necessary? Explain.

5. What are the hypotheses and conclusion of the Mean Value Theo-
rem? What physical interpretations might the theorem have?

6. State the Mean Value Theorem’s three corollaries.

7. How can you sometimes identify a function ƒ(x) by knowing 
and knowing the value of ƒ at a point Give an example.

8. What is the First Derivative Test for Local Extreme Values? Give
examples of how it is applied.

9. How do you test a twice-differentiable function to determine
where its graph is concave up or concave down? Give examples.

10. What is an inflection point? Give an example. What physical sig-
nificance do inflection points sometimes have?

11. What is the Second Derivative Test for Local Extreme Values?
Give examples of how it is applied.

12. What do the derivatives of a function tell you about the shape of
its graph?

13. List the steps you would take to graph a polynomial function.
Illustrate with an example.

x = x0 ?
ƒ¿

14. What is a cusp? Give examples.

15. List the steps you would take to graph a rational function. Illus-
trate with an example.

16. Outline a general strategy for solving max-min problems. Give
examples.

17. Describe l’Hôpital’s Rule. How do you know when to use the rule
and when to stop? Give an example.

18. How can you sometimes handle limits that lead to indeterminate
forms and ? Give examples.

19. How can you sometimes handle limits that lead to indeterminate
forms and ? Give examples.

20. Describe Newton’s method for solving equations. Give an exam-
ple. What is the theory behind the method? What are some of the
things to watch out for when you use the method?

21. Can a function have more than one antiderivative? If so, how are
the antiderivatives related? Explain.

22. What is an indefinite integral? How do you evaluate one?
What general formulas do you know for finding indefinite 
integrals?

23. How can you sometimes solve a differential equation of the form

24. What is an initial value problem? How do you solve one? Give an
example.

25. If you know the acceleration of a body moving along a coordinate
line as a function of time, what more do you need to know to find
the body’s position function? Give an example.

dy>dx = ƒsxd?

q
q1q , 00,

q - qq>q , q # 0,

Chapter 4 Practice Exercises

Extreme Values
1. Does have any local maximum or mini-

mum values? Give reasons for your answer.

2. Does have any local maximum values?
Give reasons for your answer.

g sxd = csc x + 2 cot x

ƒsxd = x3
+ 2x + tan x

3. Does have an absolute minimum
value? An absolute maximum? If so, find them or give reasons
why they fail to exist. List all critical points of ƒ.

ƒsxd = s7 + xds11 - 3xd1>3
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4. Find values of a and b such that the function

has a local extreme value of 1 at Is this extreme value a lo-
cal maximum, or a local minimum? Give reasons for your answer.

5. Does have an absolute minimum value? An ab-
solute maximum? If so, find them or give reasons why they fail to
exist. List all critical points of g.

6. Does have an absolute minimum value? An
absolute maximum? If so, find them or give reasons why they fail
to exist. List all critical points of ƒ.

In Exercises 7 and 8, find the absolute maximum and absolute mini-
mum values of ƒ over the interval.

7.

8.

9. The greatest integer function defined for all values
of x, assumes a local maximum value of 0 at each point of [0, 1).
Could any of these local maximum values also be local minimum
values of ƒ? Give reasons for your answer.

10. a. Give an example of a differentiable function ƒ whose first de-
rivative is zero at some point c even though ƒ has neither a lo-
cal maximum nor a local minimum at c.

b. How is this consistent with Theorem 2 in Section 4.1? Give
reasons for your answer.

11. The function does not take on either a maximum or a
minimum on the interval even though the function is
continuous on this interval. Does this contradict the Extreme
Value Theorem for continuous functions? Why?

12. What are the maximum and minimum values of the function
on the interval Notice that the interval is

not closed. Is this consistent with the Extreme Value Theorem for
continuous functions? Why?

13. A graph that is large enough to show a function’s global behavior
may fail to reveal important local features. The graph of 

is a case in point.

a. Graph ƒ over the interval Where does the
graph appear to have local extreme values or points of in-
flection?

b. Now factor and show that ƒ has a local maximum at 

and local minima at 

c. Zoom in on the graph to find a viewing window that shows
the presence of the extreme values at and 

The moral here is that without calculus the existence of two
of the three extreme values would probably have gone unnoticed.
On any normal graph of the function, the values would lie close
enough together to fall within the dimensions of a single pixel on
the screen.

(Source: Uses of Technology in the Mathematics Curriculum,
by Benny Evans and Jerry Johnson, Oklahoma State University,
published in 1990 under National Science Foundation Grant
USE-8950044.)

14. (Continuation of Exercise 13.)

a. Graph over
the interval Where does the graph appear to
have local extreme values or points of inflection?

-2 … x … 2.
ƒsxd = sx8>8d - s2>5dx5

- 5x - s5>x2d + 11

x = 23.x = 23 5

;1.73205.x = ;23 L23 5 L 1.70998

x =ƒ¿sxd

-2.5 … x … 2.5 .

sx8>8d - sx6>2d - x5
+ 5x3

ƒsxd =

-1 … x 6 1?y = ƒ x ƒ

0 6 x 6 1
y = 1>x

ƒsxd = :x; ,

ƒ(x) = (4>x) + ln x2, 1 … x … 4

ƒ(x) = x - 2 ln x, 1 … x … 3

ƒ(x) = 2e x>(1 + x 2)

g(x) = e x
- x

x = 3.

ƒsxd =

ax + b

x2
- 1

290 Chapter 4: Applications of Derivatives

b. Show that ƒ has a local maximum value at 
and a local minimum value at 

c. Zoom in to find a viewing window that shows the presence of
the extreme values at and 

The Mean Value Theorem
15. a. Show that decreases on every interval in its

domain.

b. How many solutions does the equation have?
Give reasons for your answer.

16. a. Show that increases on every interval in its domain.

b. If the conclusion in part (a) is really correct, how do you ex-
plain the fact that is less than 

17. a. Show that the equation has exactly one so-
lution on [0, 1].

b. Find the solution to as many decimal places as you can.

18. a. Show that increases on every interval in its
domain.

b. Show that has no local maximum or mini-
mum values.

19. Water in a reservoir As a result of a heavy rain, the volume of
water in a reservoir increased by 1400 acre-ft in 24 hours. Show
that at some instant during that period the reservoir’s volume was
increasing at a rate in excess of 225,000 . (An acre-foot is

the volume that would cover 1 acre to the depth of 1 ft.
A cubic foot holds 7.48 gal.)

20. The formula gives a different function for each
value of C. All of these functions, however, have the same deriva-
tive with respect to x, namely Are these the only dif-
ferentiable functions whose derivative is 3? Could there be any
others? Give reasons for your answers.

21. Show that

even though

Doesn’t this contradict Corollary 2 of the Mean Value Theorem?
Give reasons for your answer.

22. Calculate the first derivatives of and 
What can you conclude about the graphs of these

functions?

Analyzing Graphs
In Exercises 23 and 24, use the graph to answer the questions.

23. Identify any global extreme values of ƒ and the values of x at
which they occur.

y

x

(1, 1)
2,    1

2

0

y � f (x)

⎛
⎝

⎛
⎝

-1>sx2
+ 1d .

g sxd =ƒsxd = x2>sx2
+ 1d

x
x + 1

Z -

1
x + 1

.

d
dx

 a x
x + 1

b =

d
dx

 a- 1
x + 1

b

F¿sxd = 3.

Fsxd = 3x + C

43,560 ft3 ,
gal>min

ƒsxd = x3
+ 2x

ƒsxd = x>sx + 1d

x4
+ 2x2

- 2 = 0

tan sp>4d = 1?tan p = 0

y = tan u

sin2 t - 3t = 5

g std = sin2 t - 3t

x = 23 2 .x =
725

x = 23 2 L 1.2599.
x =

725 L 1.2585

T

T

T
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24. Estimate the intervals on which the function is

a. increasing.

b. decreasing.

c. Use the given graph of to indicate where any local extreme
values of the function occur, and whether each extreme is a
relative maximum or minimum.

Each of the graphs in Exercises 25 and 26 is the graph of the position
function of an object moving on a coordinate line (t represents
time). At approximately what times (if any) is each object’s  (a) velocity
equal to zero? (b) acceleration equal to zero? During approximately
what time intervals does the object move (c) forward? (d) backward?

25.

26.

Graphs and Graphing
Graph the curves in Exercises 27–42.

27. 28.

29.

30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

Each of Exercises 43–48 gives the first derivative of a function
(a) At what points, if any, does the graph of ƒ have a local

maximum, local minimum, or inflection point? (b) Sketch the general
shape of the graph.

43. 44.

45. 46.

47. 48. y¿ = 4x2
- x4y¿ = x4

- 2x2

y¿ = x2s6 - 4xdy¿ = 6xsx + 1dsx - 2d
y¿ = x2

- x - 6y¿ = 16 - x2

y = ƒsxd .

y = tan-1 a1x by = sin-1 a1x b
y = ln (sin x)y = ln (x2

- 4x + 3)

y = xe-x2

y = (x - 3)2 ex

y = x24 - x2y = x23 - x

y = x1>3sx - 4dy = x - 3x2>3
y = x2s2x2

- 9dy = x3s8 - xd

y = s1>8dsx3
+ 3x2

- 9x - 27d

y = -x3
+ 6x2

- 9x + 3

y = x3
- 3x2

+ 3y = x2
- sx3>6d

t

s

0 2 4 6 8

s � f (t)

t

s

0 3 6 9 12 14

s � f (t)

s = ƒstd

y

x

(–3, 1)

(2, 3)

–1

–2

y � f ' (x)

ƒ¿

y = ƒsxd
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In Exercises 49–52, graph each function. Then use the function’s first
derivative to explain what you see.

49. 50.

51. 52.

Sketch the graphs of the rational functions in Exercises 53–60.

53. 54.

55. 56.

57. 58.

59. 60.

Using L’Hôpital’s Rule
Use l’Hôpital’s Rule to find the limits in Exercises 61–72.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71.

72.

Find the limits in Exercises 73–84.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

Optimization
85. The sum of two nonnegative numbers is 36. Find the numbers if

a. the difference of their square roots is to be as large as possible.

b. the sum of their square roots is to be as large as possible.

86. The sum of two nonnegative numbers is 20. Find the numbers

a. if the product of one number and the square root of the other
is to be as large as possible.

b. if one number plus the square root of the other is to be as
large as possible.

lim
x: q

 a1 +

2
x +

7
x2 blim

x: q

 a1 +

b
x b

kx

lim
y:0+

 e-1>y ln ylim
t:0+

 aet

t -

1
t b

lim
x:4

 
sin2 spxd

ex - 4
+ 3 - x

lim
t:0+

 
t - ln s1 + 2td

t 2

lim
x:0

 
4 - 4e x

xe xlim
x:0

 
5 - 5 cos x
e x

- x - 1

lim
x:0

 
2-sin x

- 1
ex

- 1
lim
x:0

 
2sin x

- 1
e x

- 1

lim
u:0

 
3u - 1
u

lim
x:0

 
10x

- 1
x

lim
x: q

a x3

x2
- 1

-

x3

x2
+ 1
b

lim
x: q

A2x2
+ x + 1 - 2x2

- x B
lim
x:0
a 1

x4 -

1
x2 blim

x:0
 scsc x - cot xd

lim
x:0+

2x sec xlim
x:p>2-

 sec 7x cos 3x

lim
x:0

  
sin mx
sin nx

lim
x:0

  
sin2 x

tan sx2d

lim
x:0

  
tan x

x + sin x
lim

x:p
 
tan x

x

lim
x:1

  
xa

- 1

xb
- 1

lim
x:1

 
x2

+ 3x - 4
x - 1

y =

x2

x2
- 4

y =

x2
- 4

x2
- 3

y =

x4
- 1
x2y =

x3
+ 2

2x

y =

x2
- x + 1

xy =

x2
+ 1
x

y =

2x
x + 5

y =

x + 1
x - 3

y = x2>3
- sx - 1d1>3y = x1>3

+ sx - 1d1>3
y = x2>3

+ sx - 1d2>3y = x2>3
+ sx - 1d1>3
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87. An isosceles triangle has its vertex at the origin and its base paral-
lel to the x-axis with the vertices above the axis on the curve

Find the largest area the triangle can have.

88. A customer has asked you to design an open-top rectangular
stainless steel vat. It is to have a square base and a volume of

to be welded from quarter-inch plate, and to weigh no
more than necessary. What dimensions do you recommend?

89. Find the height and radius of the largest right circular cylinder

that can be put in a sphere of radius 

90. The figure here shows two right circular cones, one upside down
inside the other. The two bases are parallel, and the vertex of the
smaller cone lies at the center of the larger cone’s base. What val-
ues of r and h will give the smaller cone the largest possible
volume?

91. Manufacturing tires Your company can manufacture x hun-
dred grade A tires and y hundred grade B tires a day, where

and

Your profit on a grade A tire is twice your profit on a grade B tire.
What is the most profitable number of each kind to make?

92. Particle motion The positions of two particles on the s-axis are
and 

a. What is the farthest apart the particles ever get?

b. When do the particles collide?

93. Open-top box An open-top rectangular box is constructed from
a 10-in.-by-16-in. piece of cardboard by cutting squares of equal
side length from the corners and folding up the sides. Find analyt-
ically the dimensions of the box of largest volume and the maxi-
mum volume. Support your answers graphically.

94. The ladder problem What is the approximate length (in feet)
of the longest ladder you can carry horizontally around the corner
of the corridor shown here? Round your answer down to the near-
est foot.

x

y

0

6

8

(8, 6)

s2 = cos st + p>4d .s1 = cos t

y =

40 - 10x
5 - x

.

0 … x … 4

h

r
12'

6'

23.

32 ft3 ,

y = 27 - x2 .
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Newton’s Method
95. Let Show that the equation has a

solution in the interval [2, 3] and use Newton’s method to find it.

96. Let Show that the equation has a so-
lution in the interval [3, 4] and use Newton’s method to find it.

Finding Indefinite Integrals
Find the indefinite integrals (most general antiderivatives) in Exer-
cises 97–120. Check your answers by differentiation.

97. 98.

99. 100.

101. 102.

103. 104.

105. 106.

107. 108.

109. 110.

111. Hint: 

112.

113. 114.

115. 116.

117. 118.

119. 120.

Initial Value Problems
Solve the initial value problems in Exercises 121–124.

121.

122.

123.

124.

Applications and Examples
125. Can the integrations in (a) and (b) both be correct? Explain.

a.

b.
L

 
dx

21 - x2
= -

L
-

dx

21 - x2
= -cos-1 x + C

L
 

dx

21 - x2
= sin-1 x + C

d3r

dt3
= -cos t; r–s0d = r¿s0d = 0, r s0d = -1

d2r

dt2 = 152t +

3

2t
; r¿s1d = 8, r s1d = 0

dy

dx
= ax +

1
x b

2

, y s1d = 1

dy

dx
=

x2
+ 1
x2 , y s1d = -1

L
 

du

216 - u2L
 

3

2x2x2
- 1

 dx

L
 2p+ r dr

L
 u1 -p du

L
 (5s

+ s5) ds
L

 a1
2

 et
- e-tb  dt

L
 a 5

x2 +

2
x2

+ 1
b  dx

L
 a3x - xb  dx

L
cos2  

x
2

  dx

bsin2 u =

1 - cos 2u
2Q

L
sin2  

x
4

  dx

L
 sec 
u

3
 tan 
u

3
 du

L
 csc 22u cot 22u du

L
csc2 ps ds

L
sec2 

s
10

 ds

L
s2 - xd3>5 dx

L
x3s1 + x4d-1>4 dx

L
 

u

27 + u2
 du

L
3u2u2

+ 1 du

L
 

6 dr

Ar - 22 B3L
 

dr

sr + 5d2

L
a 1

22t
-

3
t4 b  dt

L
a32t +

4
t2
b  dt

L
a8t3 -

t2

2
+ tb  dt

L
sx3

+ 5x - 7d dx

ƒsxd = 75ƒsxd = x4
- x3 .

ƒsxd = -4ƒsxd = 3x - x3 .

T
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126. Can the integrations in (a) and (b) both be correct? Explain.

a.

b.

127. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve What dimensions give the rectangle its
largest area, and what is that area?

128. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve What dimensions give the rectangle
its largest area, and what is that area?

x

y

0

0.2 y � 

1

0.1
x2

ln x

y = sln xd>x2 .

x

y

0

1 y � e–x2

y = e-x2

.

u = -x = cos-1 s -xd + C

 = cos-1 u + C

 =

L
 

-du

21 - u2

 
L

 
dx

21 - x2
=

L
 

-du

21 - s -ud2

L
 

dx

21 - x2
= -

L
-

dx

21 - x2
= -cos-1 x + C
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In Exercises 129 and 130, find the absolute maximum and minimum
values of each function on the given interval.

129.

130.

In Exercises 131 and 132, find the absolute maxima and minima of
the functions and say where they are assumed.

131.

132.

133. Graph the following functions and use what you see to locate
and estimate the extreme values, identify the coordinates of the
inflection points, and identify the intervals on which the graphs
are concave up and concave down. Then confirm your estimates
by working with the functions’ derivatives.

a. b. c.

134. Graph Does the function appear to have an ab-
solute minimum value? Confirm your answer with calculus.

135. Graph over Explain what you see.

136. A round underwater transmission cable consists of a core of cop-
per wires surrounded by nonconducting insulation. If x denotes
the ratio of the radius of the core to the thickness of the insulation,
it is known that the speed of the transmission signal is given by the
equation If the radius of the core is 1 cm, what
insulation thickness h will allow the greatest transmission speed?

Insulation

x � r
h

h
r

Core

y = x2 ln s1>xd .

[0, 3p] .ƒsxd = ssin xdsin x

ƒsxd = x ln x .

y = s1 + x) e-xy = e-x2

y = sln xd>1x

g(x) = e23 - 2x - x2

ƒ(x) = ex>2x4
+ 1

y = 10xs2 - ln xd, s0, e2]

y = x ln 2x - x, c 1
2e

, 
e
2
d

T

T

T
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Functions and Derivatives
1. What can you say about a function whose maximum and mini-

mum values on an interval are equal? Give reasons for your an-
swer.

2. Is it true that a discontinuous function cannot have both an ab-
solute maximum and an absolute minimum value on a closed in-
terval? Give reasons for your answer.

3. Can you conclude anything about the extreme values of a continu-
ous function on an open interval? On a half-open interval? Give
reasons for your answer.

4. Local extrema Use the sign pattern for the derivative

to identify the points where ƒ has local maximum and minimum
values.

dƒ

dx
= 6sx - 1dsx - 2d2sx - 3d3sx - 4d4

5. Local extrema

a. Suppose that the first derivative of is

At what points, if any, does the graph of ƒ have a local maxi-
mum, local minimum, or point of inflection?

b. Suppose that the first derivative of is

At what points, if any, does the graph of ƒ have a local maxi-
mum, local minimum, or point of inflection?

6. If for all x, what is the most the values of ƒ can in-
crease on [0, 6]? Give reasons for your answer.

7. Bounding a function Suppose that ƒ is continuous on [a, b]
and that c is an interior point of the interval. Show that if

on [a, c) and on (c, b], then ƒ(x) is never
less than ƒ(c) on [a, b].

ƒ¿sxd Ú 0ƒ¿sxd … 0

ƒ¿sxd … 2

y¿ = 6x sx + 1dsx - 2d .

y = ƒsxd

y¿ = 6sx + 1dsx - 2d2 .

y = ƒsxd

dx = -du
x = -u

7001_AWLThomas_ch04p222-296.qxd  10/12/09  2:29 PM  Page 293



8. An inequality

a. Show that for every value of x.

b. Suppose that ƒ is a function whose derivative is 
Use the result in part (a) to show that

for any a and b.

9. The derivative of is zero at but ƒ is not a con-
stant function. Doesn’t this contradict the corollary of the Mean
Value Theorem that says that functions with zero derivatives are
constant? Give reasons for your answer.

10. Extrema and inflection points Let be the product of
two differentiable functions of x.

a. If ƒ and g are positive, with local maxima at and if 
and change sign at a, does h have a local maximum at a?

b. If the graphs of ƒ and g have inflection points at does
the graph of h have an inflection point at a?

In either case, if the answer is yes, give a proof. If the answer is no,
give a counterexample.

11. Finding a function Use the following information to find the
values of a, b, and c in the formula 

i) The values of a, b, and c are either 0 or 1.

ii) The graph of ƒ passes through the point 

iii) The line is an asymptote of the graph of ƒ.

12. Horizontal tangent For what value or values of the constant k
will the curve have exactly one horizon-
tal tangent?

Optimization
13. Largest inscribed triangle Points A and B lie at the ends of a

diameter of a unit circle and point C lies on the circumference. Is
it true that the area of triangle ABC is largest when the triangle is
isosceles? How do you know?

14. Proving the second derivative test The Second Derivative Test
for Local Maxima and Minima (Section 4.4) says:

a. ƒ has a local maximum value at if and

b. ƒ has a local minimum value at if and

To prove statement (a), let Then use the fact that

to conclude that for some 

Thus, is positive for and negative for
Prove statement (b) in a similar way.

15. Hole in a water tank You want to bore a hole in the side of the
tank shown here at a height that will make the stream of water
coming out hit the ground as far from the tank as possible. If you
drill the hole near the top, where the pressure is low, the water
will exit slowly but spend a relatively long time in the air. If you

0 6 h 6 d .
-d 6 h 6 0ƒ¿sc + hd

0 6 ƒ h ƒ 6 d Q ƒ¿sc + hd
h

6 ƒ–scd + P 6 0.

d 7 0,

ƒ–scd = lim
h:0

 
ƒ¿sc + hd - ƒ¿scd

h
= lim

h:0
 
ƒ¿sc + hd

h

P = s1>2d ƒ ƒ–scd ƒ .

ƒ–scd 7 0.
ƒ¿scd = 0x = c

ƒ–scd 6 0
ƒ¿scd = 0x = c

y = x3
+ kx2

+ 3x - 4

y = 1

s -1, 0d .

sbx2
+ cx + 2d .

ƒsxd = sx + ad>

x = a ,

g¿

ƒ¿x = a ,

h = ƒg

x = 0,ƒsxd = x2

ƒƒsbd - ƒsad ƒ …

1
2

 ƒb - a ƒ

x>s1 + x2d .
ƒ¿sxd =

-1>2 … x>s1 + x2d … 1>2
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drill the hole near the bottom, the water will exit at a higher veloc-
ity but have only a short time to fall. Where is the best place, if
any, for the hole? (Hint: How long will it take an exiting particle
of water to fall from height y to the ground?)

16. Kicking a field goal An American football player wants to kick
a field goal with the ball being on a right hash mark. Assume that
the goal posts are b feet apart and that the hash mark line is a dis-
tance feet from the right goal post. (See the accompanying
figure.) Find the distance h from the goal post line that gives the
kicker his largest angle Assume that the football field is flat.

17. A max-min problem with a variable answer Sometimes the
solution of a max-min problem depends on the proportions of the
shapes involved. As a case in point, suppose that a right circular
cylinder of radius r and height h is inscribed in a right circular
cone of radius R and height H, as shown here. Find the value of r
(in terms of R and H) that maximizes the total surface area of the
cylinder (including top and bottom). As you will see, the solution
depends on whether or 

H

R

r

h

H 7 2R .H … 2R

Goal post line

Football

� �
h

b a

Goal posts

b .

a 7 0

       

x

y

Range

Ground

h

y

0

Tank kept full,
top open

Exit velocity � �64(h � y)
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18. Minimizing a parameter Find the smallest value of the posi-
tive constant m that will make greater than or
equal to zero for all positive values of x.

Limits
19. Evaluate the following limits.

a. b.

c. d.

e. f.

g. h.

20. L’Hôpital’s Rule does not help with the following limits. Find
them some other way.

a. b.

Theory and Examples
21. Suppose that it costs a company to produce x

units per week. It can sell x units per week at a price of
per unit. Each of a, b, c, and e represents a

positive constant. (a) What production level maximizes the
profit? (b) What is the corresponding price? (c) What is the
weekly profit at this level of production? (d) At what price should
each item be sold to maximize profits if the government imposes
a tax of t dollars per item sold? Comment on the difference be-
tween this price and the price before the tax.

22. Estimating reciprocals without division You can estimate the
value of the reciprocal of a number a without ever dividing by a if
you apply Newton’s method to the function For
example, if the function involved is 

a. Graph Where does the graph cross the 
x-axis?

b. Show that the recursion formula in this case is

so there is no need for division.

23. To find we apply Newton’s method to 
Here we assume that a is a positive real number and q is a positive
integer. Show that is a “weighted average” of and 
and find the coefficients such that

What conclusion would you reach if and were equal?
What would be the value of in that case?

24. The family of straight lines (a, b arbitrary constants)
can be characterized by the relation Find a similar rela-
tion satisfied by the family of all circles

where h and r are arbitrary constants. (Hint: Eliminate h and r
from the set of three equations including the given one and two
obtained by successive differentiation.)

sx - hd2
+ sy - hd2

= r2 ,

y– = 0.
y = ax + b

x1

a>x0
q - 1x0

x1 = m0 x0 + m1 a a

x0
q - 1 b , 

     m0 7 0, m1 7 0,

m0 + m1 = 1.

m0, m1

a>x0
q - 1 ,x0x1

ƒsxd = xq
- a .x = 2q a ,

xn + 1 = xns2 - 3xnd ,

y = s1>xd - 3.

ƒsxd = s1>xd - 3.a = 3,
ƒsxd = s1>xd - a .

P = c - ex dollars

y = a + bx dollars

lim
x: q

 
2x

x + 72x
lim

x: q

 
2x + 5

2x + 5

lim
x:2

  
x3

- 8
x2

- 4
lim
x:0

 
sec x - 1

x2

lim
x:0

  
sin x2

x sin x
lim
x:0

  
x - sin x
x -  tan x

lim
x:p>2ssec x - tan xdlim

x:0
 x csc2 22x

lim
x:0

 sin 5x cot 3xlim
x:0

 
2 sin 5x

3x

mx - 1 + s1>xd
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25. Free fall in the fourteenth century In the middle of the four-
teenth century, Albert of Saxony (1316–1390) proposed a model
of free fall that assumed that the velocity of a falling body was
proportional to the distance fallen. It seemed reasonable to think
that a body that had fallen 20 ft might be moving twice as fast as
a body that had fallen 10 ft. And besides, none of the instru-
ments in use at the time were accurate enough to prove other-
wise. Today we can see just how far off Albert of Saxony’s
model was by solving the initial value problem implicit in his
model. Solve the problem and compare your solution graphi-
cally with the equation You will see that it describes a
motion that starts too slowly at first and then becomes too fast
too soon to be realistic.

26. Group blood testing During World War II it was necessary to ad-
minister blood tests to large numbers of recruits. There are two stan-
dard ways to administer a blood test to N people. In method 1, each
person is tested separately. In method 2, the blood samples of x peo-
ple are pooled and tested as one large sample. If the test is negative,
this one test is enough for all x people. If the test is positive, then
each of the x people is tested separately, requiring a total of 
tests. Using the second method and some probability theory it can
be shown that, on the average, the total number of tests y will be

With and find the integer value of x that
minimizes y. Also find the integer value of x that maximizes y.
(This second result is not important to the real-life situation.) The
group testing method was used in World War II with a savings of
80% over the individual testing method, but not with the given
value of q.

27. Assume that the brakes of an automobile produce a constant de-
celeration of (a) Determine what k must be to bring an
automobile traveling 60 ( ) to rest in a distance of
100 ft from the point where the brakes are applied. (b) With the
same k, how far would a car traveling 30 travel before being
brought to a stop?

28. Let ƒ(x), g(x) be two continuously differentiable functions satisfy-
ing the relationships and Let

If find h(10).

29. Can there be a curve satisfying the following conditions? 
is everywhere equal to zero and, when and

Give a reason for your answer.

30. Find the equation for the curve in the xy-plane that passes through
the point if its slope at x is always 

31. A particle moves along the x-axis. Its acceleration is At
the particle is at the origin. In the course of its motion, it

reaches the point where but no point beyond b.
Determine its velocity at 

32. A particle moves with acceleration Assum-
ing that the velocity and the position when

find

a. the velocity y in terms of t.

b. the position s in terms of t.

33. Given with By considering the
minimum, prove that for all real x if and only if
b2

- ac … 0.
ƒsxd Ú 0

a 7 0.ƒsxd = ax2
+ 2bx + c

t = 0,
s = -4>15y = 4>3 a = 2t - (1>2t) .

t = 0.
b 7 0,x = b ,

t = 0,
a = - t2 .

3x2
+ 2.s1, -1d

dy>dx = 1.
x = 0,  y = 0

d2y>dx2

hs0d = 5,hsxd = ƒ2sxd + g2sxd .
ƒ–sxd = -ƒsxd .ƒ¿sxd = g sxd

mi>hr

88 ft>secmi>hr
k ft>sec2 .

N = 1000,q = 0.99

y = N a1 - qx
+

1
x b .

x + 1

s = 16t2 .

T
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34. Schwarz’s inequality

a. In Exercise 33, let

and deduce Schwarz’s inequality:

b. Show that equality holds in Schwarz’s inequality only if there
exists a real number x that makes equal for every
value of i from 1 to n.

35. The best branching angles for blood vessels and pipes When
a smaller pipe branches off from a larger one in a flow system, we
may want it to run off at an angle that is best from some energy-
saving point of view. We might require, for instance, that energy
loss due to friction be minimized along the section AOB shown in
the accompanying figure. In this diagram, B is a given point to be
reached by the smaller pipe, A is a point in the larger pipe up-
stream from B, and O is the point where the branching occurs. A
law due to Poiseuille states that the loss of energy due to friction
in nonturbulent flow is proportional to the length of the path and
inversely proportional to the fourth power of the radius. Thus, the
loss along AO is and along OB is where k is a
constant, is the length of AO, is the length of OB, R is the ra-
dius of the larger pipe, and r is the radius of the smaller pipe. The
angle is to be chosen to minimize the sum of these two losses:

L = k 
d1

R4 + k 
d2

r4 .

u

d2d1

skd2d>r4 ,skd1d>R4

-biai x

… Aa1
2

+ a2
2

+
Á

+ an
2 B Ab1

2
+ b2

2
+

Á
+ bn

2 B .
sa1 b1 + a2 b2 +

Á
+ an bnd2

ƒsxd = sa1 x + b1d2
+ sa2 x + b2d2

+
Á

+ san x + bnd2,
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In our model, we assume that and are fixed.
Thus we have the relations

so that

We can express the total loss L as a function of 

a. Show that the critical value of for which equals 
zero is

b. If the ratio of the pipe radii is estimate to the
nearest degree the optimal branching angle given in part (a).

r>R = 5>6,

uc = cos-1 
r4

R4 .

dL>duu

L = k aa - b cot u

R4 +

b csc u

r4 b .

u :

d1 = a - d2 cos u = a - b cot u .

d2 = b csc u ,

d1 + d2 cos u = a d2 sin u = b ,

BC = bAC = a

a

C

B

O

A

d1

d2

d2 cos �

b � d2 sin �

�

Chapter 4 Technology Application Projects

Mathematica/Maple Modules:
Motion Along a Straight Line:
You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among the position, velocity, and
acceleration. Figures in the text can be animated.

Newton’s Method: Estimate to How Many Places?
Plot a function, observe a root, pick a starting point near the root, and use Newton’s Iteration Procedure to approximate the root to a desired
accuracy. The numbers and are approximated.22p, e ,

p

Position : Velocity : Acceleration
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5
INTEGRATION

OVERVIEW A great achievement of classical geometry was obtaining formulas for the
areas and volumes of triangles, spheres, and cones. In this chapter we develop a method to
calculate the areas and volumes of very general shapes. This method, called integration, is
a tool for calculating much more than areas and volumes. The integral is of fundamental
importance in statistics, the sciences, and engineering. We use it to calculate quantities
ranging from probabilities and averages to energy consumption and the forces against a
dam’s floodgates. We study a variety of these applications in the next chapter, but in this
chapter we focus on the integral concept and its use in computing areas of various regions
with curved boundaries.

5.1 Area and Estimating with Finite Sums

The definite integral is the key tool in calculus for defining and calculating quantities im-
portant to mathematics and science, such as areas, volumes, lengths of curved paths, prob-
abilities, and the weights of various objects, just to mention a few. The idea behind the in-
tegral is that we can effectively compute such quantities by breaking them into small
pieces and then summing the contributions from each piece. We then consider what hap-
pens when more and more, smaller and smaller pieces are taken in the summation process.
Finally, if the number of terms contributing to the sum approaches infinity and we take the
limit of these sums in the way described in Section 5.3, the result is a definite integral. We
prove in Section 5.4 that integrals are connected to antiderivatives, a connection that is one
of the most important relationships in calculus.

The basis for formulating definite integrals is the construction of appropriate finite
sums. Although we need to define precisely what we mean by the area of a general region
in the plane, or the average value of a function over a closed interval, we do have intuitive
ideas of what these notions mean. So in this section we begin our approach to integration
by approximating these quantities with finite sums. We also consider what happens when
we take more and more terms in the summation process. In subsequent sections we look at
taking the limit of these sums as the number of terms goes to infinity, which then leads to
precise definitions of the quantities being approximated here.

Area

Suppose we want to find the area of the shaded region R that lies above the x-axis, below
the graph of and between the vertical lines and (Figure 5.1).
Unfortunately, there is no simple geometric formula for calculating the areas of general
shapes having curved boundaries like the region R. How, then, can we find the area of R?

While we do not yet have a method for determining the exact area of R, we can ap-
proximate it in a simple way. Figure 5.2a shows two rectangles that together contain the
region R. Each rectangle has width and they have heights 1 and moving from
left to right. The height of each rectangle is the maximum value of the function ƒ,

3>4,1>2

x = 1x = 0y = 1 - x2 ,FIGURE 5.1 The area of the region
R cannot be found by a simple
formula.

0.5 1

0.5

0

1

x

y

R

y � 1 � x2
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298 Chapter 5: Integration

obtained by evaluating ƒ at the left endpoint of the subinterval of [0, 1] forming the
base of the rectangle. The total area of the two rectangles approximates the area A of
the region R,

This estimate is larger than the true area A since the two rectangles contain R. We say that
0.875 is an upper sum because it is obtained by taking the height of each rectangle as the
maximum (uppermost) value of ƒ(x) for a point x in the base interval of the rectangle. In
Figure 5.2b, we improve our estimate by using four thinner rectangles, each of width 
which taken together contain the region R. These four rectangles give the approximation

which is still greater than A since the four rectangles contain R.
Suppose instead we use four rectangles contained inside the region R to estimate the

area, as in Figure 5.3a. Each rectangle has width as before, but the rectangles are1>4

A L 1 #  
1
4

+
15
16

 #  
1
4

+
3
4

 #  
1
4

+
7

16
 #  

1
4

=
25
32

= 0.78125,

1>4,

A L 1 #  
1
2

+
3
4

 #  
1
2

=
7
8

= 0.875.

FIGURE 5.2 (a) We get an upper estimate of the area of R by using two rectangles
containing R. (b) Four rectangles give a better upper estimate. Both estimates overshoot
the true value for the area by the amount shaded in light red.
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⎝
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⎝
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y � 1 � x2⎛
⎝
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1
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16
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⎛
⎝

⎛
⎝

3
4

7
16

,

⎛
⎝

⎛
⎝

1
2

3
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0.125
0.25

0.375
0.5

(b)

0.625
0.75

0.875
1

0.5

0

1

x

y

y � 1 � x2⎛
⎝

⎛
⎝

3
8

55
64

,

⎛
⎝

⎛
⎝

5
8

39
64

,

⎛
⎝

⎛
⎝

1
8

63
64

,

⎛
⎝

⎛
⎝

7
8

15
64

,

FIGURE 5.3 (a) Rectangles contained in R give an estimate for the area that undershoots
the true value by the amount shaded in light blue. (b) The midpoint rule uses rectangles
whose height is the value of at the midpoints of their bases. The estimate
appears closer to the true value of the area because the light red overshoot areas roughly
balance the light blue undershoot areas.

y = ƒsxd
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5.1 Area and Estimating with Finite Sums 299

shorter and lie entirely beneath the graph of ƒ. The function is decreasing
on [0, 1], so the height of each of these rectangles is given by the value of ƒ at the right
endpoint of the subinterval forming its base. The fourth rectangle has zero height and
therefore contributes no area. Summing these rectangles with heights equal to the mini-
mum value of ƒ(x) for a point x in each base subinterval gives a lower sum approximation
to the area,

This estimate is smaller than the area A since the rectangles all lie inside of the region R.
The true value of A lies somewhere between these lower and upper sums:

By considering both lower and upper sum approximations we get not only estimates
for the area, but also a bound on the size of the possible error in these estimates since the
true value of the area lies somewhere between them. Here the error cannot be greater than
the difference 

Yet another estimate can be obtained by using rectangles whose heights are the values
of ƒ at the midpoints of their bases (Figure 5.3b). This method of estimation is called the
midpoint rule for approximating the area. The midpoint rule gives an estimate that is
between a lower sum and an upper sum, but it is not quite so clear whether it overestimates
or underestimates the true area. With four rectangles of width as before, the midpoint
rule estimates the area of R to be

In each of our computed sums, the interval [a, b] over which the function ƒ is defined
was subdivided into n subintervals of equal width (also called length) 
and ƒ was evaluated at a point in each subinterval: in the first subinterval, in the sec-
ond subinterval, and so on. The finite sums then all take the form

By taking more and more rectangles, with each rectangle thinner than before, it appears
that these finite sums give better and better approximations to the true area of the region R.

Figure 5.4a shows a lower sum approximation for the area of R using 16 rectangles of
equal width. The sum of their areas is 0.634765625, which appears close to the true area,
but is still smaller since the rectangles lie inside R.

Figure 5.4b shows an upper sum approximation using 16 rectangles of equal width.
The sum of their areas is 0.697265625, which is somewhat larger than the true area be-
cause the rectangles taken together contain R. The midpoint rule for 16 rectangles gives a
total area approximation of 0.6669921875, but it is not immediately clear whether this es-
timate is larger or smaller than the true area.

EXAMPLE 1 Table 5.1 shows the values of upper and lower sum approximations to the
area of R using up to 1000 rectangles. In Section 5.2 we will see how to get an exact value
of the areas of regions such as R by taking a limit as the base width of each rectangle goes
to zero and the number of rectangles goes to infinity. With the techniques developed there,
we will be able to show that the area of R is exactly  .

Distance Traveled

Suppose we know the velocity function (t) of a car moving down a highway, without chang-
ing direction, and want to know how far it traveled between times and If we al-
ready know an antiderivative F(t) of (t) we can find the car’s position function s(t) by settingy

t = b .t = a
y

2>3

ƒsc1d ¢x + ƒsc2d ¢x + ƒsc3d ¢x +
Á

+ ƒscnd ¢x .

c2c1

¢x = sb - ad>n ,

A L
63
64

 #  
1
4

+
55
64

 #  
1
4

+
39
64

 #  
1
4

+
15
64

 #  
1
4

=
172
64

 #  
1
4

= 0.671875.

1>4

0.78125 - 0.53125 = 0.25.

0.53125 6 A 6 0.78125.

A L
15
16

 #  
1
4

+
3
4

 #  
1
4

+
7

16
 #  

1
4

+ 0 #  
1
4

=
17
32

= 0.53125.

ƒsxd = 1 - x2

FIGURE 5.4 (a) A lower sum using 16
rectangles of equal width 
(b) An upper sum using 16 rectangles.

¢x = 1>16.
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300 Chapter 5: Integration

The distance traveled can then be found by calculating the change in posi-
tion, If the velocity function is known only by the readings at
various times of a speedometer on the car, then we have no formula from which to obtain an
antiderivative function for velocity. So what do we do in this situation?

When we don’t know an antiderivative for the velocity function (t), we can apply the
same principle of approximating the distance traveled with finite sums in a way similar to
our estimates for area discussed before. We subdivide the interval [a, b] into short time in-
tervals on each of which the velocity is considered to be fairly constant. Then we approxi-
mate the distance traveled on each time subinterval with the usual distance formula

and add the results across [a, b].
Suppose the subdivided interval looks like

with the subintervals all of equal length Pick a number in the first interval. If is
so small that the velocity barely changes over a short time interval of duration then the
distance traveled in the first time interval is about If is a number in the second
interval, the distance traveled in the second time interval is about The sum of the
distances traveled over all the time intervals is

where n is the total number of subintervals.

EXAMPLE 2 The velocity function of a projectile fired straight into the air is
Use the summation technique just described to estimate how

far the projectile rises during the first 3 sec. How close do the sums come to the exact
value of 435.9 m?

Solution We explore the results for different numbers of intervals and different choices
of evaluation points. Notice that ƒ(t) is decreasing, so choosing left endpoints gives an up-
per sum estimate; choosing right endpoints gives a lower sum estimate.

(a) Three subintervals of length 1, with ƒ evaluated at left endpoints giving an upper sum:

t 
0 1 2 3

�t

t1 t2 t3

ƒstd = 160 - 9.8t m>sec.

D L yst1d ¢t + yst2d ¢t +
Á

+ ystnd ¢t ,

yst2d ¢t .
t2yst1d ¢t .

¢t,
¢tt1¢t .

t (sec) ba

�t �t �t

t1 t2 t3

distance = velocity * time

y

ssbd - ssad = F(b) - F(a).
sstd = Fstd + C .

TABLE 5.1 Finite approximations for the area of R

Number of
subintervals Lower sum Midpoint rule Upper sum

2 .375 .6875 .875

4 .53125 .671875 .78125

16 .634765625 .6669921875 .697265625

50 .6566 .6667 .6766

100 .66165 .666675 .67165

1000 .6661665 .66666675 .6671665
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With ƒ evaluated at and 2, we have

(b) Three subintervals of length 1, with ƒ evaluated at right endpoints giving a lower sum:

With ƒ evaluated at and 3, we have

(c) With six subintervals of length , we get

These estimates give an upper sum using left endpoints: and a lower
sum using right endpoints: These six-interval estimates are somewhat
closer than the three-interval estimates. The results improve as the subintervals get
shorter.

As we can see in Table 5.2, the left-endpoint upper sums approach the true value
435.9 from above, whereas the right-endpoint lower sums approach it from below. The true
value lies between these upper and lower sums. The magnitude of the error in the closest
entries is 0.23, a small percentage of the true value.

It would be reasonable to conclude from the table’s last entries that the projectile rose
about 436 m during its first 3 sec of flight.

 Error percentage =
0.23

435.9
L 0.05%.

 = ƒ 435.9 - 435.67 ƒ = 0.23.

 Error magnitude = ƒ true value - calculated value ƒ

D L 428.55.
D L 443.25;

t 
0 1 2 3

t 
0 1 2 3

�t �t

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

1>2
 = 421.2.

 = [160 - 9.8s1d]s1d + [160 - 9.8s2d]s1d + [160 - 9.8s3d]s1d

 D L ƒst1d ¢t + ƒst2d ¢t + ƒst3d ¢t

t = 1, 2 ,

t 
0 1 2 3

�t

t1 t2 t3

 = 450.6.

 = [160 - 9.8s0d]s1d + [160 - 9.8s1d]s1d + [160 - 9.8s2d]s1d

 D L ƒst1d ¢t + ƒst2d ¢t + ƒst3d ¢t

t = 0, 1 ,

5.1 Area and Estimating with Finite Sums 301

TABLE 5.2 Travel-distance estimates

Number of Length of each Upper Lower
subintervals subinterval sum sum

3 1 450.6 421.2

6 443.25 428.55

12 439.58 432.23

24 437.74 434.06

48 436.82 434.98

96 436.36 435.44

192 436.13 435.671>64

1>32

1>16

1>8
1>4
1>2
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302 Chapter 5: Integration

Displacement Versus Distance Traveled

If an object with position function s(t) moves along a coordinate line without changing
direction, we can calculate the total distance it travels from to by summing
the distance traveled over small intervals, as in Example 2. If the object reverses direction
one or more times during the trip, then we need to use the object’s speed which is
the absolute value of its velocity function, (t), to find the total distance traveled. Using
the velocity itself, as in Example 2, gives instead an estimate to the object’s displacement,

the difference between its initial and final positions.
To see why using the velocity function in the summation process gives an estimate to

the displacement, partition the time interval [a, b] into small enough equal subintervals 
so that the object’s velocity does not change very much from time to Then 
gives a good approximation of the velocity throughout the interval. Accordingly, the
change in the object’s position coordinate during the time interval is about

The change is positive if is positive and negative if is negative.
In either case, the distance traveled by the object during the subinterval is about

The total distance traveled is approximately the sum

We revisit these ideas in Section 5.4.

EXAMPLE 3 In Example 4 in Section 3.4, we analyzed the motion of a heavy rock
blown straight up by a dynamite blast. In that example, we found the velocity of the rock at
any time during its motion to be The rock was 256 ft above the
ground 2 sec after the explosion, continued upwards to reach a maximum height of 400 ft
at 5 sec after the explosion, and then fell back down to reach the height of 256 ft again at

after the explosion. (See Figure 5.5.)
If we follow a procedure like that presented in Example 2, and use the velocity func-

tion in the summation process over the time interval [0, 8], we will obtain an estimate
to 256 ft, the rock’s height above the ground at The positive upward motion (which
yields a positive distance change of 144 ft from the height of 256 ft to the maximum
height) is cancelled by the negative downward motion (giving a negative change of 144 ft
from the maximum height down to 256 ft again), so the displacement or height above the
ground is being estimated from the velocity function.

On the other hand, if the absolute value is used in the summation process, we
will obtain an estimate to the total distance the rock has traveled: the maximum height
reached of 400 ft plus the additional distance of 144 ft it has fallen back down from that
maximum when it again reaches the height of 256 ft at That is, using the ab-
solute value of the velocity function in the summation process over the time interval [0, 8],
we obtain an estimate to 544 ft, the total distance up and down that the rock has traveled in
8 sec. There is no cancellation of distance changes due to sign changes in the velocity
function, so we estimate distance traveled rather than displacement when we use the ab-
solute value of the velocity function (that is, the speed of the rock).

As an illustration of our discussion, we subdivide the interval [0, 8] into sixteen subin-
tervals of length and take the right endpoint of each subinterval in our calcula-
tions. Table 5.3 shows the values of the velocity function at these endpoints.

Using in the summation process, we estimate the displacement at 

Error magnitude = 256 - 192 = 64

+ 0 - 16 - 32 - 48 - 64 - 80 - 96d # 1
2

= 192

s144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16

t = 8:ystd

¢t = 1>2

t = 8 sec.

ƒ ystd ƒ

t = 8.
ystd

t = 8 sec

ystd = 160 - 32t ft>sec.

ƒ yst1d ƒ  ¢t + ƒ yst2d ƒ ¢t +
Á

+ ƒ ystnd ƒ  ¢t .

ƒ ystkd ƒ  ¢t .

ystkdystkd

ystkd ¢t .

ystkdtk .tk - 1

¢t

ssbd - ssad,

y
ƒ ystd ƒ ,

t = bt = a

TABLE 5.3 Velocity Function

t t

0 160 4.5 16

0.5 144 5.0 0

1.0 128 5.5

1.5 112 6.0

2.0 96 6.5

2.5 80 7.0

3.0 64 7.5

3.5 48 8.0

4.0 32

-96

-80

-64

-48

-32

-16

Y(t)Y(t)

FIGURE 5.5 The rock 
in Example 3. The height 
256 ft is reached at 

and 
The rock falls 144 ft 
from its maximum 
height when t = 8.

t = 8 sec.t = 2

s

256

H
ei

gh
t (

ft
)

400

s 5 0

144
(1) (2)
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Using in the summation process, we estimate the total distance traveled over
the time interval 

If we take more and more subintervals of [0, 8] in our calculations, the estimates to
256 ft and 544 ft improve, approaching their true values. 

Average Value of a Nonnegative Continuous Function

The average value of a collection of n numbers is obtained by adding them
together and dividing by n. But what is the average value of a continuous function ƒ on an
interval [a, b]? Such a function can assume infinitely many values. For example, the tem-
perature at a certain location in a town is a continuous function that goes up and down
each day. What does it mean to say that the average temperature in the town over the
course of a day is 73 degrees?

When a function is constant, this question is easy to answer. A function with constant
value c on an interval [a, b] has average value c. When c is positive, its graph over [a, b]
gives a rectangle of height c. The average value of the function can then be interpreted
geometrically as the area of this rectangle divided by its width (Figure 5.6a).b - a

x1, x2 , Á , xn

Error magnitude = 544 - 528 = 16

+ 0 + 16 + 32 + 48 + 64 + 80 + 96d # 1
2

= 528

s144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16

[0, 8]:
ƒ ystd ƒ
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x

y

x

y

0 a b

c

0 a b

c
y � c

y � g(x)

(a) (b)

FIGURE 5.6 (a) The average value of on [a, b] is the area of the
rectangle divided by (b) The average value of g(x) on [a, b] is the
area beneath its graph divided by b - a .

b - a .
ƒsxd = c

What if we want to find the average value of a nonconstant function, such as the func-
tion g in Figure 5.6b? We can think of this graph as a snapshot of the height of some water
that is sloshing around in a tank between enclosing walls at and As the
water moves, its height over each point changes, but its average height remains the same.
To get the average height of the water, we let it settle down until it is level and its height is
constant. The resulting height c equals the area under the graph of g divided by We
are led to define the average value of a nonnegative function on an interval [a, b] to be the
area under its graph divided by For this definition to be valid, we need a precise 
understanding of what is meant by the area under a graph. This will be obtained in Section
5.3, but for now we look at an example.

EXAMPLE 4 Estimate the average value of the function on the interval

Solution Looking at the graph of sin x between 0 and in Figure 5.7, we can see that its
average height is somewhere between 0 and 1. To find the average we need to calculate the
area A under the graph and then divide this area by the length of the interval, 

We do not have a simple way to determine the area, so we approximate it with finite
sums. To get an upper sum approximation, we add the areas of eight rectangles of equal

p - 0 = p .

p

[0, p].
ƒsxd = sin x

b - a .

b - a .

x = b .x = a

FIGURE 5.7 Approximating the
area under between
0 and to compute the average
value of sin x over using
eight rectangles (Example 4).

[0, p] ,
p

ƒsxd = sin x

1

0 �
x

y

�
2

f (x) � sin x
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304 Chapter 5: Integration

width that together contain the region beneath the graph of and above the
x-axis on We choose the heights of the rectangles to be the largest value of sin x on
each subinterval. Over a particular subinterval, this largest value may occur at the left end-
point, the right endpoint, or somewhere between them. We evaluate sin x at this point to
get the height of the rectangle for an upper sum. The sum of the rectangle areas then esti-
mates the total area (Figure 5.7):

To estimate the average value of sin x we divide the estimated area by and obtain the ap-
proximation 

Since we used an upper sum to approximate the area, this estimate is greater than the ac-
tual average value of sin x over If we use more and more rectangles, with each rectan-
gle getting thinner and thinner, we get closer and closer to the true average value. Using the
techniques covered in Section 5.3, we will show that the true average value is 

As before, we could just as well have used rectangles lying under the graph of
and calculated a lower sum approximation, or we could have used the midpoint

rule. In Section 5.3 we will see that in each case, the approximations are close to the true
area if all the rectangles are sufficiently thin.

Summary

The area under the graph of a positive function, the distance traveled by a moving object that
doesn’t change direction, and the average value of a nonnegative function over an interval
can all be approximated by finite sums. First we subdivide the interval into subintervals,
treating the appropriate function ƒ as if it were constant over each particular subinterval.
Then we multiply the width of each subinterval by the value of ƒ at some point within it,
and add these products together. If the interval [a, b] is subdivided into n subintervals of
equal widths and if is the value of ƒ at the chosen point in the
kth subinterval, this process gives a finite sum of the form

The choices for the could maximize or minimize the value of ƒ in the kth subinterval, or
give some value in between. The true value lies somewhere between the approximations
given by upper sums and lower sums. The finite sum approximations we looked at im-
proved as we took more subintervals of thinner width.

ck

ƒsc1d ¢x + ƒsc2d ¢x + ƒsc3d ¢x +
Á

+ ƒscnd ¢x .

ckƒsckd¢x = sb - ad>n ,

y = sin x

2>p L 0.64.

[0, p] .

2.365>p L 0.753.
p

 L s.38 + .71 + .92 + 1 + 1 + .92 + .71 + .38d #  
p
8

= s6.02d #  
p
8

L 2.365.

 A L asin 
p
8

+ sin 
p
4

+ sin 
3p
8

+ sin 
p
2

+ sin 
p
2

+ sin 
5p
8

+ sin 
3p
4

+ sin 
7p
8
b # p

8

[0, p] .
y = sin xp>8

Exercises 5.1

Area
In Exercises 1–4, use finite approximations to estimate the area under
the graph of the function using

a. a lower sum with two rectangles of equal width.

b. a lower sum with four rectangles of equal width.

c. an upper sum with two rectangles of equal width.

d. an upper sum with four rectangles of equal width.

1. between and 

2. between and x = 1.x = 0ƒsxd = x3

x = 1.x = 0ƒsxd = x2

3. between and 

4. between and 

Using rectangles whose height is given by the value of the func-
tion at the midpoint of the rectangle’s base (the midpoint rule), esti-
mate the area under the graphs of the following functions, using first
two and then four rectangles.

5. between and 

6. between and 

7. between and 

8. between and x = 2.x = -2ƒsxd = 4 - x2

x = 5.x = 1ƒsxd = 1>x
x = 1.x = 0ƒsxd = x3

x = 1.x = 0ƒsxd = x2

x = 2.x = -2ƒsxd = 4 - x2

x = 5.x = 1ƒsxd = 1>x
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Distance
9. Distance traveled The accompanying table shows the velocity

of a model train engine moving along a track for 10 sec. Estimate
the distance traveled by the engine using 10 subintervals of length
1 with

a. left-endpoint values.

b. right-endpoint values.

5.1 Area and Estimating with Finite Sums 305

12. Distance from velocity data The accompanying table gives
data for the velocity of a vintage sports car accelerating from 0 to
142 mi h in 36 sec (10 thousandths of an hour).>

Time Velocity Time Velocity
(sec) (in. sec) (sec) (in. sec)

0 0 6 11
1 12 7 6
2 22 8 2
3 10 9 6
4 5 10 0
5 13

//

Time Velocity Time Velocity
(min) (m sec) (min) (m sec)

0 1 35 1.2
5 1.2 40 1.0

10 1.7 45 1.8
15 2.0 50 1.5
20 1.8 55 1.2
25 1.6 60 0
30 1.4

//

Velocity Velocity
Time (converted to ft sec) Time (converted to ft sec)
(sec) (30 mi h � 44 ft sec) (sec) (30 mi h � 44 ft sec)

0 0 70 15
10 44 80 22
20 15 90 35
30 35 100 44
40 30 110 30
50 44 120 35
60 35

////
//

Time Velocity Time Velocity
(h) (mi h) (h) (mi h)

0.0 0 0.006 116
0.001 40 0.007 125
0.002 62 0.008 132
0.003 82 0.009 137
0.004 96 0.010 142
0.005 108

//

t 0 1 2 3 4 5

a 32.00 19.41 11.77 7.14 4.33 2.63

10. Distance traveled upstream You are sitting on the bank of a
tidal river watching the incoming tide carry a bottle upstream.
You record the velocity of the flow every 5 minutes for an hour,
with the results shown in the accompanying table. About how far
upstream did the bottle travel during that hour? Find an estimate
using 12 subintervals of length 5 with

a. left-endpoint values.

b. right-endpoint values.

11. Length of a road You and a companion are about to drive a
twisty stretch of dirt road in a car whose speedometer works but
whose odometer (mileage counter) is broken. To find out how
long this particular stretch of road is, you record the car’s velocity
at 10-sec intervals, with the results shown in the accompanying
table. Estimate the length of the road using

a. left-endpoint values.

b. right-endpoint values.

hours
0

20

0.01

40

60

80

100

120

140

160

0.0080.0060.0040.002

mi/hr

a. Use rectangles to estimate how far the car traveled during the
36 sec it took to reach 142 mi h.

b. Roughly how many seconds did it take the car to reach the
halfway point? About how fast was the car going then?

13. Free fall with air resistance An object is dropped straight
down from a helicopter. The object falls faster and faster but its
acceleration (rate of change of its velocity) decreases over time
because of air resistance. The acceleration is measured in 
and recorded every second after the drop for 5 sec, as shown:

ft>sec2

>

a. Find an upper estimate for the speed when 

b. Find a lower estimate for the speed when 

c. Find an upper estimate for the distance fallen when 

14. Distance traveled by a projectile An object is shot straight up-
ward from sea level with an initial velocity of 400 ft sec.

a. Assuming that gravity is the only force acting on the object,
give an upper estimate for its velocity after 5 sec have
elapsed. Use for the gravitational acceleration.

b. Find a lower estimate for the height attained after 5 sec.

g = 32 ft>sec2

>
t = 3.

t = 5.

t = 5.
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Average Value of a Function
In Exercises 15–18, use a finite sum to estimate the average value of ƒ
on the given interval by partitioning the interval into four subintervals
of equal length and evaluating ƒ at the subinterval midpoints.

15. on [0, 2] 16. on [1, 9]

17. on [0, 2]

18. on [0, 4]

Examples of Estimations
19. Water pollution Oil is leaking out of a tanker damaged at sea.

The damage to the tanker is worsening as evidenced by the in-
creased leakage each hour, recorded in the following table.

t

y

0 2 4

1

1 3

 cos⎛
⎝

⎛
⎝
4

y � 1 � �t
4

ƒstd = 1 - acos 
pt
4
b4

1 2

0.5

0

1

1.5

t

y

y � � sin2 �t1
2

ƒstd = s1>2d + sin2 pt

ƒsxd = 1>xƒsxd = x3

Measurements are taken at the end of each month determining
the rate at which pollutants are released into the atmosphere,
recorded as follows.

Time (h) 0 1 2 3 4

Leakage (gal h) 50 70 97 136 190/

Time (h) 5 6 7 8

Leakage (gal h) 265 369 516 720/

a. Give an upper and a lower estimate of the total quantity of oil
that has escaped after 5 hours.

b. Repeat part (a) for the quantity of oil that has escaped after
8 hours.

c. The tanker continues to leak 720 gal h after the first 8 hours.
If the tanker originally contained 25,000 gal of oil, approxi-
mately how many more hours will elapse in the worst case
before all the oil has spilled? In the best case?

20. Air pollution A power plant generates electricity by burning
oil. Pollutants produced as a result of the burning process are re-
moved by scrubbers in the smokestacks. Over time, the scrubbers
become less efficient and eventually they must be replaced when
the amount of pollution released exceeds government standards.

>

Month Jan Feb Mar Apr May Jun

Pollutant
release rate 0.20 0.25 0.27 0.34 0.45 0.52
(tons day) >

Month Jul Aug Sep Oct Nov Dec

Pollutant
release rate 0.63 0.70 0.81 0.85 0.89 0.95
(tons day)>

a. Assuming a 30-day month and that new scrubbers allow only
0.05 ton day to be released, give an upper estimate of the to-
tal tonnage of pollutants released by the end of June. What is
a lower estimate?

b. In the best case, approximately when will a total of 125 tons
of pollutants have been released into the atmosphere?

21. Inscribe a regular n-sided polygon inside a circle of radius 1 and
compute the area of the polygon for the following values of n:

a. 4 (square) b. 8 (octagon) c. 16

d. Compare the areas in parts (a), (b), and (c) with the area of
the circle.

22. (Continuation of Exercise 21. )

a. Inscribe a regular n-sided polygon inside a circle of radius 1
and compute the area of one of the n congruent triangles
formed by drawing radii to the vertices of the polygon.

b. Compute the limit of the area of the inscribed polygon as

c. Repeat the computations in parts (a) and (b) for a circle of
radius r.

COMPUTER EXPLORATIONS
In Exercises 23–26, use a CAS to perform the following steps.

a. Plot the functions over the given interval.

b. Subdivide the interval into 200, and 1000 subinter-
vals of equal length and evaluate the function at the midpoint
of each subinterval.

c. Compute the average value of the function values generated
in part (b).

d. Solve the equation for x using the av-
erage value calculated in part (c) for the partitioning.

23. on 24. on

25. on 26. on cp
4

, p dƒsxd = x sin2 
1
xcp

4
, p dƒsxd = x sin 

1
x

[0, p]ƒsxd = sin2 x[0, p]ƒsxd = sin x

n = 1000
ƒsxd = saverage valued

n = 100,

n : q .

>
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5.2 Sigma Notation and Limits of Finite Sums

In estimating with finite sums in Section 5.1, we encountered sums with many terms (up
to 1000 in Table 5.1, for instance). In this section we introduce a more convenient notation
for sums with a large number of terms. After describing the notation and stating several of
its properties, we look at what happens to a finite sum approximation as the number of
terms approaches infinity.

Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

The Greek letter (capital sigma, corresponding to our letter S), stands for “sum.” The
index of summation k tells us where the sum begins (at the number below the symbol)
and where it ends (at the number above ). Any letter can be used to denote the index, but
the letters i, j, and k are customary.

Thus we can write

and

The lower limit of summation does not have to be 1; it can be any integer.

EXAMPLE 1

ƒs1d + ƒs2d + ƒs3d +
Á

+ ƒs100d = a

100

i = 1
ƒsid .

12
+ 22

+ 32
+ 42

+ 52
+ 62

+ 72
+ 82

+ 92
+ 102

+ 112
= a

11

k = 1
k2,

k 5 1

ak

n

The index k ends at k 5 n.

The index k starts at k 5 1.

ak is a formula for the kth term.

The summation symbol
(Greek letter sigma)

©

©

©

a

n

k = 1
ak = a1 + a2 + a3 +

Á
+ an - 1 + an .

5.2 Sigma Notation and Limits of Finite Sums 307

A sum in The sum written out, one The value
sigma notation term for each value of k of the sum

15

16
3

+
25
4

=
139
12

42

4 - 1
+

52

5 - 1a

5

k = 4
 

k2

k - 1

1
2

+
2
3

=
7
6

1
1 + 1

+
2

2 + 1a

2

k = 1
 

k
k + 1

-1 + 2 - 3 = -2s -1d1s1d + s -1d2s2d + s -1d3s3da

3

k = 1
s -1dk k

1 + 2 + 3 + 4 + 5a

5

k = 1
k
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308 Chapter 5: Integration

EXAMPLE 2 Express the sum in sigma notation.

Solution The formula generating the terms changes with the lower limit of summa-
tion, but the terms generated remain the same. It is often simplest to start with or

, but we can start with any integer.

When we have a sum such as

we can rearrange its terms,

Regroup terms.

This illustrates a general rule for finite sums:

Four such rules are given below. A proof that they are valid can be obtained using mathe-
matical induction (see Appendix 2).

a

n

k = 1
sak + bkd = a

n

k = 1
ak + a

n

k = 1
bk

 = a

3

k = 1
 k + a

3

k = 1
 k

2.

 = s1 + 2 + 3d + s12
+ 22

+ 32d

 a

3

k = 1
sk + k 2d = s1 + 12d + s2 + 22d + s3 + 32d

a

3

k = 1
sk + k 2d

 Starting with k = -3:  1 + 3 + 5 + 7 + 9 = a

1

k = -3
s2k + 7d

 Starting with k = 2:   1 + 3 + 5 + 7 + 9 = a

6

k = 2
s2k - 3d

 Starting with k = 1:   1 + 3 + 5 + 7 + 9 = a

5

k = 1
s2k - 1d

 Starting with k = 0:   1 + 3 + 5 + 7 + 9 = a

4

k = 0
s2k + 1d

k = 1
k = 0

1 + 3 + 5 + 7 + 9

Algebra Rules for Finite Sums

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule: (Any number c)

4. Constant Value Rule: (c is any constant value.)a

n

k = 1
c = n # c

a

n

k = 1
cak = c #

a

n

k = 1
ak

a

n

k = 1
(ak - bk) = a

n

k = 1
ak - a

n

k = 1
bk

a

n

k = 1
(ak + bk) = a

n

k = 1
ak + a

n

k = 1
bk

EXAMPLE 3 We demonstrate the use of the algebra rules.

(a)

(b) Constant Multiple Rulea

n

k = 1
s -akd = a

n

k = 1
s -1d # ak = -1 #

a

n

k = 1
ak = -a

n

k = 1
ak

a

n

k = 1
s3k - k 2d = 3a

n

k = 1
k - a

n

k = 1
k 2 Difference Rule and

Constant Multiple Rule
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5.2 Sigma Notation and Limits of Finite Sums 309

(c) Sum Rule

(d)

Over the years people have discovered a variety of formulas for the values of finite sums.
The most famous of these are the formula for the sum of the first n integers (Gauss is said
to have discovered it at age 8) and the formulas for the sums of the squares and cubes of
the first n integers.

EXAMPLE 4 Show that the sum of the first n integers is

Solution The formula tells us that the sum of the first 4 integers is

Addition verifies this prediction:

To prove the formula in general, we write out the terms in the sum twice, once forward and
once backward.

If we add the two terms in the first column we get Similarly, if we add
the two terms in the second column we get The two terms in any
column sum to When we add the n columns together we get n terms, each equal to

for a total of Since this is twice the desired quantity, the sum of the first
n integers is 

Formulas for the sums of the squares and cubes of the first n integers are proved using
mathematical induction (see Appendix 2). We state them here.

sndsn + 1d>2.
nsn + 1d .n + 1,

n + 1.
2 + sn - 1d = n + 1.

1 + n = n + 1.

1 + 2 + 3 +
Á

+ n

n + sn - 1d + sn - 2d +
Á

+ 1

1 + 2 + 3 + 4 = 10.

s4ds5d
2

= 10.

a

n

k = 1
k =

nsn + 1d
2

.

a

n

k = 1
 
1
n = n # 1

n = 1

 = 6 + 12 = 18

 = s1 + 2 + 3d + s3 # 4d

 a

3

k = 1
sk + 4d = a

3

k = 1
k + a

3

k = 1
4

Constant Value Rule

Constant Value Rule
( is constant)1>n

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)

 The first n cubes: a

n

k = 1
k 3

= ansn + 1d
2

b2

The first n squares:   a
n

k = 1
k 2

=

nsn + 1ds2n + 1d
6

Limits of Finite Sums

The finite sum approximations we considered in Section 5.1 became more accurate as the
number of terms increased and the subinterval widths (lengths) narrowed. The next exam-
ple shows how to calculate a limiting value as the widths of the subintervals go to zero and
their number grows to infinity.

EXAMPLE 5 Find the limiting value of lower sum approximations to the area of the re-
gion R below the graph of and above the interval [0, 1] on the x-axis using
equal-width rectangles whose widths approach zero and whose number approaches infin-
ity. (See Figure 5.4a.)

y = 1 - x2
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310 Chapter 5: Integration

Solution We compute a lower sum approximation using n rectangles of equal width
and then we see what happens as We start by subdividing [0, 1]

into n equal width subintervals

Each subinterval has width . The function is decreasing on [0, 1], and its small-
est value in a subinterval occurs at the subinterval’s right endpoint. So a lower sum is con-
structed with rectangles whose height over the subinterval is 

giving the sum

We write this in sigma notation and simplify,

Difference Rule

Sum of the First n Squares

Numerator expanded

We have obtained an expression for the lower sum that holds for any n. Taking the
limit of this expression as we see that the lower sums converge as the number of
subintervals increases and the subinterval widths approach zero:

The lower sum approximations converge to . A similar calculation shows that the upper
sum approximations also converge to . Any finite sum approximation
also converges to the same value, . This is because it is possible to show that any finite
sum approximation is trapped between the lower and upper sum approximations. For this
reason we are led to define the area of the region R as this limiting value. In Section 5.3 we
study the limits of such finite approximations in a general setting.

Riemann Sums

The theory of limits of finite approximations was made precise by the German mathemati-
cian Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies
the theory of the definite integral studied in the next section.

We begin with an arbitrary bounded function ƒ defined on a closed interval [a, b].
Like the function pictured in Figure 5.8, ƒ may have negative as well as positive values. We
subdivide the interval [a, b] into subintervals, not necessarily of equal widths (or lengths),
and form sums in the same way as for the finite approximations in Section 5.1. To do so,
we choose points between a and b and satisfying

a 6 x1 6 x2 6
Á

6 xn - 1 6 b .

5x1, x2 , x3 , Á , xn - 16n - 1

2>3 gn
k = 1 ƒsckds1>nd2>3 2>3

lim
n: q

a1 -
2n3

+ 3n2
+ n

6n3 b = 1 -
2
6

=
2
3

.

n : q ,

 = 1 -
2n3

+ 3n2
+ n

6n3 .

 = 1 - a 1
n3 b  

sndsn + 1ds2n + 1d
6

 = n # 1
n -

1
n3a

n

k = 1
k 2

 = a

n

k = 1
 
1
n - a

n

k = 1
 
k 2

n3

 = a

n

k = 1
 a1n -

k 2

n3 b
 a

n

k = 1
ƒ ak

n b a1n b = a

n

k = 1
a1 - ak

n b
2b a1n b

cƒ a1n b d a1n b + cƒ a2n b d a1n b +
Á

+ cƒ ak
n b d a1n b +

Á
+ cƒ ann b d a1n b .

1 - sk>nd2 ,
ƒsk>nd =[sk - 1d>n, k>n]

1 - x21>n
c0, 

1
n d , c1n , 

2
n d , Á , cn - 1

n , 
n
n d .

n : q .¢x = s1 - 0d>n,

Constant Value and
Constant Multiple Rules

HISTORICAL BIOGRAPHY

Georg Friedrich Bernhard Riemann
(1826–1866)

7001_AWLThomas_ch05p297-362.qxd  10/28/09  5:02 PM  Page 310



5.2 Sigma Notation and Limits of Finite Sums 311

y

x
0 ba

y 5 f (x)

FIGURE 5.8 A typical continuous
function over a closed interval
[a, b].

y = ƒsxd

To make the notation consistent, we denote a by and b by so that

The set

is called a partition of [a, b].
The partition P divides [a, b] into n closed subintervals

The first of these subintervals is the second is and the kth subinterval of
P is for k an integer between 1 and n.

The width of the first subinterval is denoted the width of the second
is denoted and the width of the kth subinterval is If all n

subintervals have equal width, then the common width is equal to 

In each subinterval we select some point. The point chosen in the kth subinterval
is called Then on each subinterval we stand a vertical rectangle that

stretches from the x-axis to touch the curve at These rectangles can be above
or below the x-axis, depending on whether is positive or negative, or on the x-axis
if (Figure 5.9).

On each subinterval we form the product This product is positive, nega-
tive, or zero, depending on the sign of When the product is
the area of a rectangle with height and width When the product

is a negative number, the negative of the area of a rectangle of width that
drops from the x-axis to the negative number ƒsckd .

¢xkƒsckd #
¢xk

ƒsckd 6 0,¢xk .ƒsckd
ƒsckd #

¢xkƒsckd 7 0,ƒsckd .
ƒsckd #

¢xk .
ƒsckd = 0

ƒsckd
sck , ƒsckdd .

ck .[xk - 1, xk]

x
{ { { { { {x0 5 a x1 x2 xk21 xk xn21 xn 5 b

DxnDxkDx1 Dx2

sb - ad>n .¢x
¢xk = xk - xk - 1 .¢x2 ,[x1, x2]

¢x1 ,[x0 , x1]

x

• • • • • •

kth subinterval

x0 � a xn � bx1 x2 xk�1 xn�1xk

[xk - 1, xk] ,
[x1, x2] ,[x0 , x1] ,

[x0 , x1], [x1, x2], Á , [xn - 1, xn] .

P = 5x0 , x1, x2 , Á , xn - 1, xn6
a = x0 6 x1 6 x2 6

Á
6 xn - 1 6 xn = b .

xn ,x0

x

y

0

(c2,  f (c2))

(c1,  f (c1))

x0 � a x1 x2 xk�1 xk xn�1 xn � b

ck cn
c2c1

kth rectangle

(ck,  f (ck))

y � f (x)
(cn,  f (cn))

FIGURE 5.9 The rectangles approximate the region between the graph of the function
and the x-axis. Figure 5.8 has been enlarged to enhance the partition of 

and selection of points that produce the rectangles.ck

[a, b]y = ƒsxd
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312 Chapter 5: Integration

Finally we sum all these products to get

The sum is called a Riemann sum for ƒ on the interval [a, b]. There are many such
sums, depending on the partition P we choose, and the choices of the points in 
the subintervals. For instance, we could choose n subintervals all having equal width

to partition and then choose the point to be the right-hand end-
point of each subinterval when forming the Riemann sum (as we did in Example 5). This
choice leads to the Riemann sum formula

Similar formulas can be obtained if instead we choose to be the left-hand endpoint, or
the midpoint, of each subinterval.

In the cases in which the subintervals all have equal width we can
make them thinner by simply increasing their number n. When a partition has subintervals
of varying widths, we can ensure they are all thin by controlling the width of a widest
(longest) subinterval. We define the norm of a partition P, written to be the largest of
all the subinterval widths. If is a small number, then all of the subintervals in the parti-
tion P have a small width. Let’s look at an example of these ideas.

EXAMPLE 6 The set is a partition of [0, 2]. There are five
subintervals of P: [0, 0.2], [0.2, 0.6], [0.6, 1], [1, 1.5], and [1.5, 2]:

The lengths of the subintervals are and
The longest subinterval length is 0.5, so the norm of the partition is 

In this example, there are two subintervals of this length.

Any Riemann sum associated with a partition of a closed interval [a, b] defines rec-
tangles that approximate the region between the graph of a continuous function ƒ and the
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.10. We will see in the
next section that if the function ƒ is continuous over the closed interval [a, b], then no mat-
ter how we choose the partition P and the points in its subintervals to construct a
Riemann sum, a single limiting value is approached as the subinterval widths, controlled
by the norm of the partition, approach zero.

ck

7P 7 = 0.5.¢x5 = 0.5.
¢x1 = 0.2, ¢x2 = 0.4, ¢x3 = 0.4, ¢x4 = 0.5,

x 

�x1 �x2 �x3

0 0.2 0.6 1 1.5 2

�x4 �x5

P = {0, 0.2, 0.6, 1, 1.5, 2}

7P 7 7P 7 ,

¢x = sb - ad>n,

ck

Sn = a

n

k = 1
ƒ aa + k 

b - a
n b # ab - a

n b .

ck[a, b],¢x = sb - ad>n
ck

SP

SP = a

n

k = 1
ƒsckd ¢xk .

(a)

(b)

x
0 ba

y

y

x
0 ba

y � f (x)

y � f (x)

FIGURE 5.10 The curve of Figure 5.9
with rectangles from finer partitions of 
[a, b]. Finer partitions create collections of
rectangles with thinner bases that
approximate the region between the graph
of ƒ and the x-axis with increasing
accuracy.

Exercises 5.2

Sigma Notation
Write the sums in Exercises 1–6 without sigma notation. Then evalu-
ate them.

1. 2.

3. 4.

5. 6. a

4

k = 1
s -1dk cos kpa

3

k = 1
s -1dk + 1 sin 

p

k

a

5

k = 1
 sin kpa

4

k = 1
 cos kp

a

3

k = 1
 
k - 1

ka

2

k = 1
 

6k
k + 1

7. Which of the following express in
sigma notation?

a. b. c.

8. Which of the following express in
sigma notation?

a. b. c. a

3

k = -2
s -1dk + 1 2k + 2

a

5

k = 0
s -1dk 2k

a

6

k = 1
s -2dk - 1

1 - 2 + 4 - 8 + 16 - 32

a

4

k = -1
2k + 1

a

5

k = 0
2k

a

6

k = 1
2k - 1

1 + 2 + 4 + 8 + 16 + 32
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9. Which formula is not equivalent to the other two?

a. b. c.

10. Which formula is not equivalent to the other two?

a. b. c.

Express the sums in Exercises 11–16 in sigma notation. The form of your
answer will depend on your choice of the lower limit of summation.

11. 12.

13. 14.

15. 16.

Values of Finite Sums

17. Suppose that and Find the values of

a. b. c.

d. e.

18. Suppose that and Find the values of

a. b.

c. d.

Evaluate the sums in Exercises 19–32.

19. a. b. c.

20. a. b. c.

21. 22.

23. 24. a

6

k = 1
sk 2

- 5da

6

k = 1
s3 - k 2d

a

5

k = 1
 
pk
15a

7

k = 1
s -2kd

a

13

k = 1
k 3

a

13

k = 1
k 2

a

13

k = 1
k

a

10

k = 1
k 3

a

10

k = 1
k 2

a

10

k = 1
k

a

n

k = 1
sbk - 1da

n

k = 1
sak + 1d

a

n

k = 1
250bka

n

k = 1
8ak

a

n

k = 1
bk = 1.a

n

k = 1
ak = 0

a

n

k = 1
sbk - 2akda

n

k = 1
sak - bkd

a

n

k = 1
sak + bkda

n

k = 1
 
bk

6a

n

k = 1
3ak

a

n

k = 1
bk = 6.a

n

k = 1
ak = -5

-

1
5

+

2
5

-

3
5

+

4
5

-

5
5

1 -

1
2

+

1
3

-

1
4

+

1
5

2 + 4 + 6 + 8 + 10
1
2

+

1
4

+

1
8

+

1
16

1 + 4 + 9 + 161 + 2 + 3 + 4 + 5 + 6

a

-1

k = -3
k2

a

3

k = -1
sk + 1d2

a

4

k = 1
sk - 1d2

a

1

k = -1
 
s -1dk

k + 2a

2

k = 0
 
s -1dk

k + 1a

4

k = 2
 
s -1dk - 1

k - 1
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25. 26.

27. 28.

29. a. b. c.

30. a. b. c.

31. a. b. c.

32. a. b. c.

Riemann Sums
In Exercises 33–36, graph each function ƒ(x) over the given interval.
Partition the interval into four subintervals of equal length. Then add
to your sketch the rectangles associated with the Riemann sum

given that is the (a) left-hand endpoint, (b) right-
hand endpoint, (c) midpoint of the kth subinterval. (Make a separate
sketch for each set of rectangles.)

33. 34.

35. 36.

37. Find the norm of the partition 

38. Find the norm of the partition 

Limits of Riemann Sums
For the functions in Exercises 39–46, find a formula for the Riemann
sum obtained by dividing the interval [a, b] into n equal subintervals
and using the right-hand endpoint for each Then take a limit of
these sums as to calculate the area under the curve over [a, b].

39. over the interval [0, 1].

40. over the interval [0, 3].

41. over the interval [0, 3].

42. over the interval [0, 1].

43. over the interval [0, 1].

44. over the interval [0, 1].

45. over the interval [0, 1].

46. over the interval [�1, 0].ƒsxd = x2
- x3

ƒsxd = 2x3

ƒsxd = 3x + 2x 2

ƒsxd = x + x 2

ƒsxd = 3x 2

ƒsxd = x 2
+ 1

ƒsxd = 2x

ƒsxd = 1 - x 2

n : q

ck.

P = 5-2, -1.6, -0.5, 0, 0.8, 16.
P = 50, 1.2, 1.5, 2.3, 2.6, 36.

ƒsxd = sin x + 1, [-p, p]ƒsxd = sin x, [-p, p]

ƒsxd = -x2, [0, 1]ƒsxd = x2
- 1, [0, 2]

ck©
4
k = 1ƒsckd ¢xk ,

a

n

k = 1
 
k

n2a

n

k = 1

c
na

n

k = 1
a1n + 2nb

a

n

k = 1
sk - 1da

n

k = 1
ca

n

k = 1
4

a

71

k = 18
ksk - 1da

17

k = 3
k2

a

36

k = 9
k

a

264

k = 3
10a

500

k = 1
7a

7

k = 1
3

aa
7

k = 1
kb2

- a

7

k = 1
 
k 3

4a

5

k = 1
 

k 3

225
+ aa

5

k = 1
kb3

a

7

k = 1
ks2k + 1da

5

k = 1
ks3k + 5d

5.3 The Definite Integral

In Section 5.2 we investigated the limit of a finite sum for a function defined over a closed
interval [a, b] using n subintervals of equal width (or length), In this section
we consider the limit of more general Riemann sums as the norm of the partitions of [a, b]
approaches zero. For general Riemann sums the subintervals of the partitions need not
have equal widths. The limiting process then leads to the definition of the definite integral
of a function over a closed interval [a, b].

Definition of the Definite Integral

The definition of the definite integral is based on the idea that for certain functions, as the
norm of the partitions of [a, b] approaches zero, the values of the corresponding Riemann

sb - ad>n .
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314 Chapter 5: Integration

DEFINITION Let ƒ(x) be a function defined on a closed interval [a, b]. We
say that a number J is the definite integral of ƒ over [a, b] and that J is the limit
of the Riemann sums if the following condition is satisfied:

Given any number there is a corresponding number such that
for every partition of [a, b] with and any choice of

in we have

` a
n

k = 1
ƒsckd ¢xk - J ` 6 P .

[xk - 1, xk] ,ck

7P 7 6 dP = 5x0 , x1, Á , xn6
d 7 0P 7 0

gn
k = 1ƒsckd ¢xk

The definition involves a limiting process in which the norm of the partition goes to zero.
In the cases where the subintervals all have equal width we can form
each Riemann sum as

where is chosen in the subinterval If the limit of these Riemann sums as 
exists and is equal to J, then J is the definite integral of ƒ over so

Leibniz introduced a notation for the definite integral that captures its construction as a
limit of Riemann sums. He envisioned the finite sums becoming an infinite
sum of function values ƒ(x) multiplied by “infinitesimal” subinterval widths dx. The sum
symbol is replaced in the limit by the integral symbol whose origin is in the letter “S.”
The function values are replaced by a continuous selection of function values ƒ(x). The
subinterval widths become the differential dx. It is as if we are summing all products of
the form as x goes from a to b. While this notation captures the process of construct-
ing an integral, it is Riemann’s definition that gives a precise meaning to the definite integral.

The symbol for the number J in the definition of the definite integral is

,

which is read as “the integral from a to b of ƒ of x dee x” or sometimes as “the integral from a
to b of ƒ of x with respect to x.” The component parts in the integral symbol also have names:

⌠
⎮⎮
⌡

⎧ ⎪ ⎪ ⎨ ⎪ ⎩

The function is the integrand.

x is the variable of integration.

When you find the value
of the integral, you have
evaluated the integral.

Upper limit of integration

Integral sign

Lower limit of integration
Integral of f from a to b

a

b

f (x) dx

L

b

a
ƒsxd dx

ƒsxd # dx
¢xk

ƒsckd
1,a

gn
k = 1 ƒsckd ¢xk

¢x = sb - ad>nJ = lim
n: q

 a

n

k = 1
ƒsckd ab - a

n b = lim
n: q

 a

n

k = 1
ƒsckd ¢x.

[a, b],
n : q¢xk.ck

¢xk = ¢x = sb - ad>n for all kSn = a

n

k = 1
 ƒsckd ¢xk = a

n

k = 1
 ƒsckd ab - a

n b ,

¢x = sb - ad>n,

sums approach a limiting value J. What we mean by this limit is that a Riemann sum will
be close to the number J provided that the norm of its partition is sufficiently small (so that
all of its subintervals have thin enough widths). We introduce the symbol as a small 
positive number that specifies how close to J the Riemann sum must be, and the symbol 
as a second small positive number that specifies how small the norm of a partition must be
in order for convergence to happen. We now define this limit precisely.

d

P
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When the condition in the definition is satisfied, we say the Riemann sums of ƒ on [a, b]
converge to the definite integral and that ƒ is integrable over [a, b].

We have many choices for a partition P with norm going to zero, and many choices of
points for each partition. The definite integral exists when we always get the same limit
J, no matter what choices are made. When the limit exists we write it as the definite integral

When each partition has n equal subintervals, each of width we will
also write

The limit of any Riemann sum is always taken as the norm of the partitions approaches
zero and the number of subintervals goes to infinity.

The value of the definite integral of a function over any particular interval depends on
the function, not on the letter we choose to represent its independent variable. If we decide
to use t or u instead of x, we simply write the integral as

No matter how we write the integral, it is still the same number that is defined as a limit of
Riemann sums. Since it does not matter what letter we use, the variable of integration is
called a dummy variable representing the real numbers in the closed interval [a, b].

Integrable and Nonintegrable Functions

Not every function defined over the closed interval [a, b] is integrable there, even if the func-
tion is bounded. That is, the Riemann sums for some functions may not converge to the same
limiting value, or to any value at all. A full development of exactly which functions defined
over [a, b] are integrable requires advanced mathematical analysis, but fortunately most func-
tions that commonly occur in applications are integrable. In particular, every continuous func-
tion over [a, b] is integrable over this interval, and so is every function having no more than a
finite number of jump discontinuities on [a, b]. (The latter are called piecewise-continuous
functions, and they are defined in Additional Exercises 11–18 at the end of this chapter.) The
following theorem, which is proved in more advanced courses, establishes these results. 

L

b

a
ƒstd dt or 

L

b

a
ƒsud du instead of 

L

b

a
ƒsxd dx.

lim
n: q

 a

n

k = 1
ƒsckd ¢x = J =

L

b

a
ƒsxd dx.

¢x = sb - ad>n ,

lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
ƒsckd ¢xk = J =

L

b

a
ƒsxd dx.

ck

J = 1
b

a ƒsxd dx

5.3 The Definite Integral 315

THEOREM 1—Integrability of Continuous Functions If a function ƒ is continu-
ous over the interval [a, b], or if ƒ has at most finitely many jump discontinuities
there, then the definite integral exists and ƒ is integrable over [a, b].1

b
a  ƒsxd dx

The idea behind Theorem 1 for continuous functions is given in Exercises 86 and 87.
Briefly, when ƒ is continuous we can choose each so that gives the maximum
value of ƒ on the subinterval resulting in an upper sum. Likewise, we can
choose to give the minimum value of ƒ on to obtain a lower sum. The upper
and lower sums can be shown to converge to the same limiting value as the norm of the
partition P tends to zero. Moreover, every Riemann sum is trapped between the values of
the upper and lower sums, so every Riemann sum converges to the same limit as well.
Therefore, the number J in the definition of the definite integral exists, and the continuous
function ƒ is integrable over [a, b].

For integrability to fail, a function needs to be sufficiently discontinuous that the 
region between its graph and the x-axis cannot be approximated well by increasingly thin
rectangles. The next example shows a function that is not integrable over a closed interval.

[xk - 1, xk]ck

[xk - 1, xk] ,
ƒsckdck
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316 Chapter 5: Integration

EXAMPLE 1 The function

has no Riemann integral over [0, 1]. Underlying this is the fact that between any two numbers
there is both a rational number and an irrational number. Thus the function jumps up and
down too erratically over [0, 1] to allow the region beneath its graph and above the x-axis to
be approximated by rectangles, no matter how thin they are. We show, in fact, that upper sum
approximations and lower sum approximations converge to different limiting values.

If we pick a partition P of [0, 1] and choose to be the point giving the maximum
value for ƒ on then the corresponding Riemann sum is

since each subinterval contains a rational number where Note that the
lengths of the intervals in the partition sum to 1, So each such Riemann
sum equals 1, and a limit of Riemann sums using these choices equals 1.

On the other hand, if we pick to be the point giving the minimum value for ƒ on
then the Riemann sum is

since each subinterval contains an irrational number where The
limit of Riemann sums using these choices equals zero. Since the limit depends on the
choices of the function ƒ is not integrable.

Theorem 1 says nothing about how to calculate definite integrals. A method of calculation
will be developed in Section 5.4, through a connection to the process of taking antiderivatives.

Properties of Definite Integrals

In defining as a limit of sums we moved from left to right across
the interval [a, b]. What would happen if we instead move right to left, starting with 
and ending at ? Each in the Riemann sum would change its sign, with 
now negative instead of positive. With the same choices of in each subinterval, the sign of
any Riemann sum would change, as would the sign of the limit, the integral 
Since we have not previously given a meaning to integrating backward, we are led to define

Although we have only defined the integral over an interval [a, b] when it is
convenient to have a definition for the integral over when that is, for the integral
over an interval of zero width. Since gives whenever ƒ(a) exists we define

Theorem 2 states basic properties of integrals, given as rules that they satisfy, includ-
ing the two just discussed. These rules become very useful in the process of computing 
integrals. We will refer to them repeatedly to simplify our calculations.

Rules 2 through 7 have geometric interpretations, shown in Figure 5.11. The graphs in
these figures are of positive functions, but the rules apply to general integrable functions.

L

a

a
ƒsxd dx = 0.

¢x = 0,a = b
a = b,[a, b]

a 6 b,

L

a

b
ƒsxd dx = -

L

b

a
ƒsxd dx.

1
a

b ƒsxd dx .
ck

xk - xk - 1¢xkxn = a
x0 = b

gn
k = 1ƒsckd ¢xk ,1

b
a ƒsxd dx

ck ,

ƒsckd = 0.ck[xk - 1, xk]

L = a

n

k = 1
 ƒsckd ¢xk = a

n

k = 1
s0d ¢xk = 0,

[xk - 1, xk],
ck

gn
k = 1¢xk = 1.

ƒsckd = 1.[xk - 1, xk]

U = a

n

k = 1
ƒsckd ¢xk = a

n

k = 1
s1d ¢xk = 1,

[xk - 1, xk]
ck

ƒsxd = e1, if x is rational

0, if x is irrational

THEOREM 2 When ƒ and g are integrable over the interval [a, b], the definite
integral satisfies the rules in Table 5.4.
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x

y

0 a

y � f (x)

x

y

0 a b

y � f (x)

y � 2 f (x)

x

y

0 a b

y � f (x)

y � f (x) � g(x)

y � g(x)

x

y

0 a cb

y � f (x)

b

a

f (x) dx
f (x) dx

L

c

bL

x

y

0 a b

y � f (x)

max f

min f

x

y

0 a b

y � f (x)

y � g(x)

(a) Zero Width Interval:

L

a

a
ƒsxd dx = 0

(b) Constant Multiple:

L

b

a
 kƒsxd dx = k

L

b

a
 ƒsxd dx

(k = 2) (c) Sum: (areas add)

L

b

a
sƒsxd + gsxdd dx =

L

b

a
ƒsxd dx +

L

b

a
gsxd dx

(d) Additivity for definite integrals:

L

b

a
ƒsxd dx +

L

c

b
ƒsxd dx =

L

c

a
ƒsxd dx

(e) Max-Min Inequality:

… max ƒ # sb - ad

min ƒ # sb - ad …

L

b

a
 ƒsxd dx

(f ) Domination:

Q
L

b

a
 ƒsxd dx Ú

L

b

a
 gsxd dx

ƒsxd Ú gsxd on [a, b]

FIGURE 5.11 Geometric interpretations of Rules 2–7 in Table 5.4.

TABLE 5.4 Rules satisfied by definite integrals

1. Order of Integration: A Definition

2. Zero Width Interval:

3. Constant Multiple: Any constant k

4. Sum and Difference:

5. Additivity:

6. Max-Min Inequality: If ƒ has maximum value max ƒ and minimum value 
min ƒ on [a, b], then

7. Domination:

(Special Case)ƒsxd Ú 0 on [a, b] Q  
L

b

a
ƒsxd dx Ú 0

ƒsxd Ú gsxd on [a, b] Q  
L

b

a
ƒsxd dx Ú

L

b

a
gsxd dx

min ƒ # sb - ad …

L

b

a
ƒsxd dx …  max ƒ # sb - ad.

L

b

a
ƒsxd dx +

L

c

b
ƒsxd dx =

L

c

a
ƒsxd dx

L

b

a
sƒsxd ; gsxdd dx =

L

b

a
ƒsxd dx ;

L

b

a
gsxd dx

L

b

a
kƒsxd dx = k

L

b

a
ƒsxd dx

L

a

a
ƒsxd dx = 0

L

a

b
ƒsxd dx = -

L

b

a
ƒsxd dx

A Definition
when ƒ(a) exists
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318 Chapter 5: Integration

While Rules 1 and 2 are definitions, Rules 3 to 7 of Table 5.4 must be proved. The fol-
lowing is a proof of Rule 6. Similar proofs can be given to verify the other properties in
Table 5.4.

Proof of Rule 6 Rule 6 says that the integral of ƒ over [a, b] is never smaller than the
minimum value of ƒ times the length of the interval and never larger than the maximum
value of ƒ times the length of the interval. The reason is that for every partition of [a, b]
and for every choice of the points 

Constant Multiple Rule

Constant Multiple Rule

In short, all Riemann sums for ƒ on [a, b] satisfy the inequality

Hence their limit, the integral, does too.

EXAMPLE 2 To illustrate some of the rules, we suppose that

Then

1. Rule 1

2. Rules 3 and 4

3. Rule 5

EXAMPLE 3 Show that the value of is less than or equal to .

Solution The Max-Min Inequality for definite integrals (Rule 6) says that 

is a lower bound for the value of and that is an upper bound.

The maximum value of on [0, 1] is so

L

1

0
21 + cos x dx … 22 # s1 - 0d = 22.

21 + 1 = 22,21 + cos x

max ƒ # sb - ad1
b

a ƒsxd dx

min ƒ # sb - ad

221
1

0 21 + cos x dx

L

4

-1
ƒsxd dx =

L

1

-1
ƒsxd dx +

L

4

1
ƒsxd dx = 5 + s -2d = 3

 = 2s5d + 3s7d = 31

 
L

1

-1
[2ƒsxd + 3hsxd] dx = 2

L

1

-1
ƒsxd dx + 3

L

1

-1
hsxd dx

L

1

4
ƒsxd dx = -

L

4

1
ƒsxd dx = - s -2d = 2

L

1

-1
ƒsxd dx = 5, 

L

4

1
ƒsxd dx = -2, and 

L

1

-1
hsxd dx = 7.

min ƒ # sb - ad … a

n

k = 1
ƒsckd ¢xk …  max ƒ # sb - ad.

 = max ƒ # sb - ad.

 = max ƒ #
a

n

k = 1
 ¢xk

ƒsckd …  max ƒ … a

n

k = 1
 max ƒ #

¢xk

min ƒ … ƒsckd … a

n

k = 1
ƒsckd ¢xk

 = a

n

k = 1
 min ƒ #

¢xk

a

n

k = 1
¢xk = b - a min ƒ # sb - ad = min ƒ #

a

n

k = 1
 ¢xk

ck ,
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Area Under the Graph of a Nonnegative Function

We now return to the problem that started this chapter, that of defining what we mean by
the area of a region having a curved boundary. In Section 5.1 we approximated the area
under the graph of a nonnegative continuous function using several types of finite sums of
areas of rectangles capturing the region—upper sums, lower sums, and sums using the
midpoints of each subinterval—all being cases of Riemann sums constructed in special
ways. Theorem 1 guarantees that all of these Riemann sums converge to a single definite
integral as the norm of the partitions approaches zero and the number of subintervals goes
to infinity. As a result, we can now define the area under the graph of a nonnegative 
integrable function to be the value of that definite integral.

5.3 The Definite Integral 319

DEFINITION If is nonnegative and integrable over a closed
interval [a, b], then the area under the curve (x) over [a, b] is the
integral of ƒ from a to b,

A =

L

b

a
ƒsxd dx.

y � ƒ
y = ƒsxd

For the first time we have a rigorous definition for the area of a region whose bound-
ary is the graph of any continuous function. We now apply this to a simple example, the
area under a straight line, where we can verify that our new definition agrees with our pre-
vious notion of area.

EXAMPLE 4 Compute and find the area A under over the interval 

[0, b], 

Solution The region of interest is a triangle (Figure 5.12). We compute the area in two ways.

(a) To compute the definite integral as the limit of Riemann sums, we calculate
for partitions whose norms go to zero. Theorem 1 tells us that

it does not matter how we choose the partitions or the points as long as the norms ap-
proach zero. All choices give the exact same limit. So we consider the partition P that
subdivides the interval [0, b] into n subintervals of equal width 

and we choose to be the right endpoint in each subinterval. The partition is

and So

Constant Multiple Rule

Sum of First n Integers

 =
b2

2
 a1 +

1
n b

 =
b2

n2 #  
nsn + 1d

2

 =
b2

n2 a

n

k = 1
k

 = a

n

k = 1
 
kb2

n2

ƒsckd = ck a

n

k = 1
ƒsckd ¢x = a

n

k = 1
 
kb
n

# b
n

ck =
kb
n .P = e0, 

b
n , 

2b
n , 

3b
n , Á ,

nb
n f

ckb>n ,
¢x = sb - 0d>n =

ck

lim
ƒ ƒ P ƒ ƒ :0 gn

k = 1 ƒsckd ¢xk

b 7 0.

y = x1
b

0 x dx

x

y

0

b

b

b

y � x

FIGURE 5.12 The region in
Example 4 is a triangle.
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320 Chapter 5: Integration

As and this last expression on the right has the limit Therefore,

(b) Since the area equals the definite integral for a nonnegative function, we can quickly
derive the definite integral by using the formula for the area of a triangle having base
length b and height The area is Again we conclude

that 

Example 4 can be generalized to integrate over any closed interval

Rule 5

Rule 1

Example 4

In conclusion, we have the following rule for integrating f (x) = x:

 = -
a2

2
+

b2

2
.

 = -

L

a

0
x dx +

L

b

0
x dx

 
L

b

a
x dx =

L

0

a
x dx +

L

b

0
x dx

[a, b], 0 6 a 6 b .
ƒsxd = x

1
b

0  x dx = b2>2.

A = s1>2d b # b = b2>2.y = b .

L

b

0
x dx =

b2

2
.

b2>2.7P 7 : 0,n : q

(1)
L

b

a
x dx =

b2

2
-

a2

2
, a 6 b

This computation gives the area of a trapezoid (Figure 5.13a). Equation (1) remains valid
when a and b are negative. When the definite integral value is a
negative number, the negative of the area of a trapezoid dropping down to the line 
below the x-axis (Figure 5.13b). When and Equation (1) is still valid and the
definite integral gives the difference between two areas, the area under the graph and
above [0, b] minus the area below [a, 0] and over the graph (Figure 5.13c).

The following results can also be established using a Riemann sum calculation similar
to that in Example 4 (Exercises 63 and 65).

b 7 0,a 6 0
y = x

sb2
- a2d>2a 6 b 6 0,

x

y

0

a

a

b

b

a

b

b � a

y � x

(a)

x

y

0

a b

y 5 x

(b)

x

y

0

a

b

y 5 x

(c)

FIGURE 5.13 (a) The area of this
trapezoidal region is 
(b) The definite integral in Equation (1)
gives the negative of the area of this
trapezoidal region. (c) The definite
integral in Equation (1) gives the area
of the blue triangular region added to
the negative of the area of the gold
triangular region. 

A = (b2
- a2)>2.

(2)

(3)
L

b

a
x2 dx =

b3

3
-

a3

3
, a 6 b

L

b

a
c dx = csb - ad, c any constant

Average Value of a Continuous Function Revisited

In Section 5.1 we introduced informally the average value of a nonnegative continuous
function ƒ over an interval [a, b], leading us to define this average as the area under the
graph of divided by In integral notation we write this as

We can use this formula to give a precise definition of the average value of any continuous
(or integrable) function, whether positive, negative, or both.

Alternatively, we can use the following reasoning. We start with the idea from arith-
metic that the average of n numbers is their sum divided by n. A continuous function ƒ on
[a, b] may have infinitely many values, but we can still sample them in an orderly way. 

Average =
1

b - a
 
L

b

a
ƒsxd dx.

b - a.y = ƒsxd
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We divide [a, b] into n subintervals of equal width and evaluate ƒ at a
point in each (Figure 5.14). The average of the n sampled values is

Constant Multiple Rule

The average is obtained by dividing a Riemann sum for ƒ on [a, b] by As
we increase the size of the sample and let the norm of the partition approach zero, the

average approaches Both points of view lead us to the following
definition.

(1>(b - a))1
b

a ƒsxd dx .

sb - ad .

 =
1

b - a
 a

n

k = 1
ƒsckd ¢x

¢x =

b - a
n , so 

1
n =

¢x
b - a

 =
¢x

b - a
 a

n

k = 1
 ƒsckd

 
ƒsc1d + ƒsc2d +

Á
+ ƒscnd

n =
1
n a

n

k = 1
 ƒsckd

ck

¢x = sb - ad>n

DEFINITION If ƒ is integrable on [a, b], then its average value on [a, b], also
called its mean, is

avsƒd =
1

b - a
 
L

b

a
ƒsxd dx.

EXAMPLE 5 Find the average value of on 

Solution We recognize as a function whose graph is the upper semi-
circle of radius 2 centered at the origin (Figure 5.15).

The area between the semicircle and the x-axis from to 2 can be computed using
the geometry formula

Because ƒ is nonnegative, the area is also the value of the integral of ƒ from to 2,

Therefore, the average value of ƒ is

Theorem 3 in the next section asserts that the area of the upper semicircle over is
the same as the area of the rectangle whose height is the average value of ƒ over 
(see Figure 5.15).

[-2, 2]
[-2, 2]

avsƒd =
1

2 - s -2d
 
L

2

-2
24 - x2 dx =

1
4

 s2pd =
p
2

.

L

2

-2
24 - x2 dx = 2p.

-2

Area =
1
2

 #  pr 2
=

1
2

 #  ps2d2
= 2p.

-2

ƒsxd = 24 - x2

[-2, 2].ƒsxd = 24 - x2

x

y

0

(ck, f (ck))

y � f (x)

xn � b
ckx0 � a

x1

FIGURE 5.14 A sample of values of a
function on an interval [a, b].

–2 –1 1 2

1

2

x

y

f (x) � �4 � x2

y � �
2

FIGURE 5.15 The average value of
on is 

(Example 5).
p>2[-2, 2]ƒsxd = 24 - x2

Exercises 5.3

Interpreting Limits as Integrals
Express the limits in Exercises 1–8 as definite integrals.

1. where P is a partition of [0, 2]

2. where P is a partition of [-1, 0]lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
2ck

3 ¢xk,

lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
ck

2 ¢xk,

3. where P is a partition of 

4. where P is a partition of [1, 4]

5. where P is a partition of [2, 3]lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
 

1
1 - ck

 ¢xk,

lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
a 1

ck
b  ¢xk,

[-7, 5]lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
sck

2
- 3ckd ¢xk,
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6. where P is a partition of [0, 1]

7. where P is a partition of 

8. where P is a partition of 

Using the Definite Integral Rules
9. Suppose that ƒ and g are integrable and that

Use the rules in Table 5.4 to find

a. b.

c. d.

e. f.

10. Suppose that ƒ and h are integrable and that

Use the rules in Table 5.4 to find

a. b.

c. d.

e. f.

11. Suppose that Find

a. b.

c. d.

12. Suppose that Find

a. b.

c. d.

13. Suppose that ƒ is integrable and that and

Find

a. b.

14. Suppose that h is integrable and that and

Find

a. b. -

L

1

3
hsud du

L

3

1
hsrd dr

1
3

-1 hsrd dr = 6.
1

1
-1 hsrd dr = 0

L

3

4
ƒstd dt

L

4

3
ƒszd dz

1
4

0  ƒszd dz = 7.
1

3
0  ƒszd dz = 3

L

0

-3
 
g srd

22
 dr

L

0

-3
[-g sxd] dx

L

0

-3
g sud du

L

-3

0
g std dt

1
0

-3 g std dt = 22.

L

2

1
[-ƒsxd] dx

L

1

2
ƒstd dt

L

2

1
23ƒszd dz

L

2

1
ƒsud du

1
2

1 ƒsxd dx = 5.

L

7

9
[hsxd - ƒsxd] dx

L

7

1
ƒsxd dx

L

1

9
ƒsxd dx

L

9

7
[2ƒsxd - 3hsxd] dx

L

9

7
[ƒsxd + hsxd] dx

L

9

1
 -2ƒsxd dx

L

9

1
ƒsxd dx = -1, 

L

9

7
ƒsxd dx = 5, 

L

9

7
hsxd dx = 4.

L

5

1
[4ƒsxd - g sxd] dx

L

5

1
[ƒsxd - g sxd] dx

L

5

2
ƒsxd dx

L

2

1
3ƒsxd dx

L

1

5
g sxd dx

L

2

2
g sxd dx

L

2

1
ƒsxd dx = -4,  

L

5

1
ƒsxd dx = 6,  

L

5

1
g sxd dx = 8.

[0, p>4]lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
stan ckd ¢xk,

[-p>4, 0]lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
ssec ckd ¢xk,

lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
24 - ck

2 ¢xk,
Using Known Areas to Find Integrals
In Exercises 15–22, graph the integrands and use areas to evaluate the
integrals.

15. 16.

17. 18.

19. 20.

21. 22.

Use areas to evaluate the integrals in Exercises 23–28.

23. 24.

25. 26.

27. on a. , b.

28. on a. , b.

Evaluating Definite Integrals
Use the results of Equations (1) and (3) to evaluate the integrals in
Exercises 29–40.

29. 30. 31.

32. 33. 34.

35. 36. 37.

38. 39. 40.

Use the rules in Table 5.4 and Equations (1)–(3) to evaluate the inte-
grals in Exercises 41–50.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Finding Area by Definite Integrals
In Exercises 51–54, use a definite integral to find the area of the 
region between the given curve and the x-axis on the interval [0, b].

51. 52.

53. 54. y =

x
2

+ 1y = 2x

y = px 2y = 3x 2

L

0

1
s3x2

+ x - 5d dx
L

2

0
s3x 2

+ x - 5d dx

L

1

1>2 24u2 du
L

2

1
3u 2 du

L

0

3
s2z - 3d dz

L

1

2
a1 +

z
2
b  dz

L

22

0
A t - 22 B  dt

L

2

0
s2t - 3d dt

L

2

0
5x dx

L

1

3
7 dx

L

3b

0
x 2 dx

L

23 b

0
x 2 dx

L

23a

a
x dx

L

2a

a
x dx

L

p>2
0
u2 du

L

1>2
0

t 2 dt

L

0.3

0
s2 ds

L

23 7

0
x 2 dx

L

522

22
r dr

L

2p

p

u du
L

2.5

0.5
x dx

L

22

1
 x dx

[-1, 1][-1, 0]ƒsxd = 3x + 21 - x2

[0, 2][-2, 2]ƒsxd = 24 - x2

L

b

a
3t dt, 0 6 a 6 b

L

b

a
2s ds, 0 6 a 6 b

L

b

0
4x dx, b 7 0

L

b

0
 
x
2

 dx, b 7 0

L

1

-1
A1 + 21 - x2 B  dx

L

1

-1
s2 - ƒ x ƒ d dx

L

1

-1
s1 - ƒ x ƒ d dx

L

1

-2
ƒ x ƒ  dx

L

0

-4
216 - x2 dx

L

3

-3
29 - x2 dx

L

3>2
1>2 s -2x + 4d dx

L

4

-2
ax

2
+ 3b  dx
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5.3 The Definite Integral 323

Finding Average Value
In Exercises 55–62, graph the function and find its average value over
the given interval.

55.

56. on [0, 3] 57. on [0, 1]

58. on [0, 1]

59. on [0, 3]

60. on

61. on a. b. [1, 3], and c.

62. on a. b. [0, 1], and c.

Definite Integrals as Limits
Use the method of Example 4a to evaluate the definite integrals in 
Exercises 63–70.

63. 64.

65. 66.

67. 68.

69. 70.

Theory and Examples
71. What values of a and b maximize the value of

(Hint: Where is the integrand positive?)

72. What values of a and b minimize the value of

73. Use the Max-Min Inequality to find upper and lower bounds for
the value of

74. (Continuation of Exercise 73. ) Use the Max-Min Inequality to
find upper and lower bounds for

Add these to arrive at an improved estimate of

L

1

0
 

1
1 + x 2 dx.

L

0.5

0
 

1
1 + x 2 dx and 

L

1

0.5
 

1
1 + x 2 dx.

L

1

0
 

1
1 + x 2 dx.

L

b

a
sx4

- 2x 2d dx?

L

b

a
sx - x 2d dx?

L

1

0
 s3x - x3d dx

L

b

a
 x3 dx, a 6 b

L

1

-1
 x3 dx

L

2

-1
 s3x2

- 2x + 1d dx

L

0

-1
 sx - x2d dx

L

b

a
 x2 dx, a 6 b

L

2

0
 s2x + 1d dx

L

b

a
 c dx

[-1, 1][-1, 0] ,hsxd = - ƒ x ƒ

[-1, 3][-1, 1] ,g sxd = ƒ x ƒ - 1

[-2, 1]ƒstd = t 2
- t

ƒstd = st - 1d2

ƒsxd = 3x 2
- 3

ƒsxd = -3x2
- 1ƒsxd = -

x 2

2

ƒsxd = x 2
- 1 on C0, 23 D

75. Show that the value of cannot possibly be 2.

76. Show that the value of lies between 
and 3.

77. Integrals of nonnegative functions Use the Max-Min Inequal-
ity to show that if ƒ is integrable then

78. Integrals of nonpositive functions Show that if ƒ is integrable
then

79. Use the inequality sin which holds for to find an
upper bound for the value of 

80. The inequality sec holds on Use it
to find a lower bound for the value of 

81. If av(ƒ) really is a typical value of the integrable function ƒ(x) on
[a, b], then the constant function av(ƒ) should have the same inte-
gral over [a, b] as ƒ. Does it? That is, does

Give reasons for your answer.

82. It would be nice if average values of integrable functions obeyed
the following rules on an interval [a, b].

a.

b.

c.

Do these rules ever hold? Give reasons for your answers.

83. Upper and lower sums for increasing functions

a. Suppose the graph of a continuous function ƒ(x) rises steadily
as x moves from left to right across an interval [a, b]. Let P be
a partition of [a, b] into n subintervals of length 

Show by referring to the accompanying figure
that the difference between the upper and lower sums for ƒ on
this partition can be represented graphically as the area of a
rectangle R whose dimensions are by 
(Hint: The difference is the sum of areas of rectangles
whose diagonals lie along the
curve. There is no overlapping when these rectangles are
shifted horizontally onto R.)

b. Suppose that instead of being equal, the lengths of the
subintervals of the partition of [a, b] vary in size. Show that

where is the norm of P, and hence that 
sU - Ld = 0.

lim
ƒ ƒP ƒ ƒ :0¢xmax

U - L … ƒ ƒsbd - ƒsad ƒ ¢xmax,

¢xk

Q0 Q1, Q1 Q2 , Á , Qn - 1Qn

U - L
¢x.[ƒsbd - ƒsad]

sb - ad>n.
¢x =

avsƒd … avsgd if ƒsxd … g sxd on [a, b].

avskƒd = k avsƒd sany number kd

avsƒ + gd = avsƒd + avsgd

L

b

a
 avsƒd dx =

L

b

a
ƒsxd dx?

1
1

0  sec x dx.
s -p>2, p>2d .x Ú 1 + sx2>2d

1
1

0  sin x dx.
x Ú 0,x … x,

ƒsxd … 0 on [a, b] Q  
L

b

a
ƒsxd dx … 0.

ƒsxd Ú 0 on [a, b] Q  
L

b

a
ƒsxd dx Ú 0.

222 L 2.81
1

0  2x + 8 dx
1

1
0  sin sx2d dx
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84. Upper and lower sums for decreasing functions (Continuation
of Exercise 83.)

a. Draw a figure like the one in Exercise 83 for a continuous func-
tion ƒ(x) whose values decrease steadily as x moves from left to
right across the interval [a, b]. Let P be a partition of [a, b] into
subintervals of equal length. Find an expression for that
is analogous to the one you found for in Exercise 83a.

b. Suppose that instead of being equal, the lengths of the
subintervals of P vary in size. Show that the inequality

of Exercise 83b still holds and hence that 

85. Use the formula

to find the area under the curve from to 
in two steps:

a. Partition the interval into n subintervals of equal
length and calculate the corresponding upper sum U; then

b. Find the limit of U as and 

86. Suppose that ƒ is continuous and nonnegative over [a, b], as in the
accompanying figure. By inserting points

as shown, divide [a, b] into n subintervals of lengths 
which need not be equal.

a. If explain the
connection between the lower sum

and the shaded regions in the first part of the figure.

b. If explain the
connection between the upper sum

and the shaded regions in the second part of the figure.

c. Explain the connection between and the shaded 
regions along the curve in the third part of the figure.

U - L

U = M1 ¢x1 + M2 ¢x2 +
Á

+ Mn ¢xn

Mk = max 5ƒsxd for x in the k th subinterval6,

L = m1 ¢x1 + m2 ¢x2 +
Á

+ mn ¢xn

mk = min 5ƒsxd for x in the k th subinterval6,
¢x2 = x2 - x1, Á , ¢xn = b - xn - 1,

¢x1 = x1 - a,

x1, x2 , Á , xk - 1, xk , Á , xn - 1

¢x = sb - ad>n : 0.n : q

[0, p>2]

x = p>2x = 0y = sin x

 =

cos sh>2d - cos ssm + s1>2ddhd
2 sin sh>2d

 sin h + sin 2h + sin 3h +
Á

+ sin mh

sU - Ld = 0.
lim

ƒ ƒP ƒ ƒ :0

U - L … ƒ ƒsbd - ƒsad ƒ  ¢xmax

¢xk

U - L
U - L

x

y

0 x0 � a xn � bx1

Q1

Q2

Q3

x2

y � f (x)

f (b) � f (a)

R

Δx

87. We say ƒ is uniformly continuous on [a, b] if given any 
there is a such that if are in [a, b] and 
then It can be shown that a continuous
function on [a, b] is uniformly continuous. Use this and the figure
for Exercise 86 to show that if ƒ is continuous and is given,
it is possible to make by making the largest
of the sufficiently small.

88. If you average 30 mi h on a 150-mi trip and then return over the
same 150 mi at the rate of 50 mi h, what is your average speed for
the trip? Give reasons for your answer.

COMPUTER EXPLORATIONS
If your CAS can draw rectangles associated with Riemann sums, use it
to draw rectangles associated with Riemann sums that converge to the
integrals in Exercises 89–94. Use 10, 20, and 50 subintervals
of equal length in each case.

89.
L

1

0
s1 - xd dx =

1
2

n = 4,

>>
¢xk’s

U - L … P
# sb - ad

P 7 0

ƒ ƒsx1d - ƒsx2d ƒ 6 P .
ƒ x1 - x2 ƒ 6 d,x1, x2d 7 0

P 7 0,

x

y

0 a bx1 x2 x3 xk�1 xn�1xk

y � f (x)

x

y

0 a bxk�1xk

x

y

0 a bxk�1xk

b � a

�
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90. 91.

92. 93.

94. (The integral’s value is about 0.693.)

In Exercises 95–102, use a CAS to perform the following steps:

a. Plot the functions over the given interval.

b. Partition the interval into 200, and 1000 subinter-
vals of equal length, and evaluate the function at the midpoint
of each subinterval.

c. Compute the average value of the function values generated
in part (b).

n = 100,

L

2

1
 
1
x  dx

L

1

-1
ƒ x ƒ  dx = 1

L

p>4
0

 sec2 x dx = 1

L

p

-p

 cos x dx = 0
L

1

0
sx2

+ 1d dx =

4
3

5.4 The Fundamental Theorem of Calculus 325

d. Solve the equation for x using the av-
erage value calculated in part (c) for the partitioning.

95.

96.

97.

98.

99. on [0, 1]

100. on [0, 1]

101. on [2, 5]

102. on c0, 
1
2
dƒ(x) =

1

21 - x2

ƒ(x) =

ln x
x

ƒ(x) = e-x2

ƒ(x) = xe-x

ƒsxd = x sin2 
1
x on cp

4
, p d

ƒsxd = x sin 
1
x on cp

4
, p d

ƒsxd = sin2 x on [0, p]

ƒsxd = sin x on [0, p]

n = 1000
ƒsxd = saverage valued

5.4 The Fundamental Theorem of Calculus

In this section we present the Fundamental Theorem of Calculus, which is the central theorem
of integral calculus. It connects integration and differentiation, enabling us to compute inte-
grals using an antiderivative of the integrand function rather than by taking limits of Riemann
sums as we did in Section 5.3. Leibniz and Newton exploited this relationship and started
mathematical developments that fueled the scientific revolution for the next 200 years.

Along the way, we present an integral version of the Mean Value Theorem, which
is another important theorem of integral calculus and is used to prove the Fundamental
Theorem.

Mean Value Theorem for Definite Integrals

In the previous section we defined the average value of a continuous function over a
closed interval [a, b] as the definite integral divided by the length or width

of the interval. The Mean Value Theorem for Definite Integrals asserts that this
average value is always taken on at least once by the function ƒ in the interval.

The graph in Figure 5.16 shows a positive continuous function defined over the
interval [a, b]. Geometrically, the Mean Value Theorem says that there is a number c in [a, b]
such that the rectangle with height equal to the average value ƒ(c) of the function and base
width has exactly the same area as the region beneath the graph of ƒ from a to b.b - a

y = ƒsxd

b - a
1

b
a ƒsxd dx

HISTORICAL BIOGRAPHY

Sir Isaac Newton
(1642–1727)

FIGURE 5.16 The value ƒ(c) in the
Mean Value Theorem is, in a sense, the
average (or mean) height of ƒ on [a, b].
When the area of the rectangle
is the area under the graph of ƒ from a
to b,

ƒscdsb - ad =

L

b

a
 ƒsxd dx.

ƒ Ú 0,

y

x
a b0 c

y � f (x)

f (c), 

b � a

average
height

THEOREM 3—The Mean Value Theorem for Definite Integrals If ƒ is continu-
ous on [a, b], then at some point c in [a, b],

ƒscd =
1

b - a
 
L

b

a
ƒsxd dx.

Proof If we divide both sides of the Max-Min Inequality (Table 5.4, Rule 6) by 
we obtain

min ƒ …
1

b - a
 
L

b

a
ƒsxd dx … max ƒ.

sb - ad,
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326 Chapter 5: Integration

Since ƒ is continuous, the Intermediate Value Theorem for Continuous Functions (Section
2.5) says that ƒ must assume every value between min ƒ and max ƒ. It must therefore

assume the value at some point c in [a, b].

The continuity of ƒ is important here. It is possible that a discontinuous function never
equals its average value (Figure 5.17).

EXAMPLE 1 Show that if ƒ is continuous on and if

then at least once in [a, b].

Solution The average value of ƒ on [a, b] is

By the Mean Value Theorem, ƒ assumes this value at some point   

Fundamental Theorem, Part 1

If ƒ(t) is an integrable function over a finite interval I, then the integral from any fixed
number to another number defines a new function F whose value at x is

(1)

For example, if ƒ is nonnegative and x lies to the right of a, then F(x) is the area under the
graph from a to x (Figure 5.18). The variable x is the upper limit of integration of an integral,
but F is just like any other real-valued function of a real variable. For each value of the input x,
there is a well-defined numerical output, in this case the definite integral of ƒ from a to x.

Equation (1) gives a way to define new functions (as we will see in Section 7.2), but
its importance now is the connection it makes between integrals and derivatives. If ƒ is any
continuous function, then the Fundamental Theorem asserts that F is a differentiable func-
tion of x whose derivative is ƒ itself. At every value of x, it asserts that

To gain some insight into why this result holds, we look at the geometry behind it.
If on [a, b], then the computation of from the definition of the derivative

means taking the limit as of the difference quotient

For the numerator is obtained by subtracting two areas, so it is the area under the
graph of ƒ from x to (Figure 5.19). If h is small, this area is approximately equal to the
area of the rectangle of height ƒ(x) and width h, which can be seen from Figure 5.19. That is,

Dividing both sides of this approximation by h and letting it is reasonable to expect
that

This result is true even if the function ƒ is not positive, and it forms the first part of the
Fundamental Theorem of Calculus.

F¿sxd = lim
h:0

 
Fsx + hd - Fsxd

h
= ƒsxd.

h : 0,

Fsx + hd - Fsxd L hƒsxd.

x + h
h 7 0,

Fsx + hd - Fsxd
h

.

h : 0
F¿sxdƒ Ú 0

d
dx

 Fsxd =  ƒsxd.

Fsxd =

L

x

a
ƒstd dt.

x H  Ia H  I

c H  [a, b].

avsƒd =
1

b - a
 
L

b

a
ƒsxd dx =

1
b - a

 #  0 = 0.

ƒsxd = 0

L

b

a
ƒsxd dx = 0,

a Z b,[a, b],

s1>sb - add1
b

a ƒsxd dx

FIGURE 5.17 A discontinuous function
need not assume its average value.

x

y

0

1

1 2

Average value 1/2
not assumed

y � f (x)

1
2

t

y

0 a x b

area � F(x)

y � f (t)

FIGURE 5.19 In Equation (1), F(x)
is the area to the left of x. Also,

is the area to the left of
The difference quotient

is then
approximately equal to ƒ(x), the
height of the rectangle shown here.

[Fsx + hd - Fsxd]>h
x + h .
Fsx + hd

FIGURE 5.18 The function F(x)
defined by Equation (1) gives the area
under the graph of ƒ from a to x when
ƒ is nonnegative and x 7 a.

y � f (t)

t

y

0 a x x � h b

f (x)
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Before proving Theorem 4, we look at several examples to gain a better understanding
of what it says. In each example, notice that the independent variable appears in a limit of
integration, possibly in a formula.

EXAMPLE 2 Use the Fundamental Theorem to find if

(a) (b)

(c) (d)

Solution We calculate the derivatives with respect to the independent variable x.

(a) Eq. (2) with 

(b) Table 5.4, Rule 1

Eq. (2) with ƒ(t) � 3t sin t

(c) The upper limit of integration is not x but This makes y a composite of the two
functions,

We must therefore apply the Chain Rule when finding .

(d) Rule 1

Eq. (2) and the
Chain Rule

 = -
6x

2 + e (1 + 3x2)

 = -
1

2 + e (1 + 3x2)
 

d
dx

 (1 + 3x2)

 = -
d
dxL

1 + 3x2

4

1
2 + et dt

d
dxL

4

1 + 3x2
 

1
2 + et dt =

d
dx
a-

L

1 + 3x2

4

1
2 + et dtb

 = 2x cos x2

 = cossx2d # 2x

 = cos u #  
du
dx

 = a d
duL

u

1
 cos t dtb #  

du
dx

 
dy
dx

=

dy
du

 #  
du
dx

dy>dx

y =

L

u

1
 cos t dt and u = x2.

x2.

 = -3x sin x

 = -
d
dxL

x

5
3t sin t dt

 
dy
dx

=
d
dx

 
L

5

x
3t sin t dt =

d
dx

 a-

L

x

5
3t sin t dtb

ƒ(t) = t3
+ 1

dy
dx

=
d
dx

 
L

x

a
 st3

+ 1d dt = x3
+ 1

y =

L

4

1 + 3x2
 

1
2 + et dty =

L

x2

1
 cos t dt

y =

L

5

x
3t sin t dty =

L

x

a
 st3

+ 1d dt

dy>dx
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THEOREM 4—The Fundamental Theorem of Calculus, Part 1 If ƒ is continuous
on [a, b], then is continuous on [a, b] and differentiable on 

and its derivative is 

(2)F ¿sxd =
d
dxL

x

a
ƒstd dt = ƒsxd.

ƒsxd:
(a, b)Fsxd = 1

x
a  ƒstd dt
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328 Chapter 5: Integration

Proof of Theorem 4 We prove the Fundamental Theorem, Part 1, by applying the defini-
tion of the derivative directly to the function F(x), when x and are in This
means writing out the difference quotient

(3)

and showing that its limit as is the number ƒ(x) for each x in . Thus,

Table 5.4, Rule 5

According to the Mean Value Theorem for Definite Integrals, the value before taking
the limit in the last expression is one of the values taken on by ƒ in the interval between x
and That is, for some number c in this interval,

(4)

As approaches x, forcing c to approach x also (because c is trapped between
x and ). Since ƒ is continuous at x, ƒ(c) approaches ƒ(x):

(5)

In conclusion, we have

Eq. (4)

Eq. (5)

If then the limit of Equation (3) is interpreted as a one-sided limit with 
or , respectively. Then Theorem 1 in Section 3.2 shows that F is continuous for
every point in [a, b]. This concludes the proof.

Fundamental Theorem, Part 2 (The Evaluation Theorem)

We now come to the second part of the Fundamental Theorem of Calculus. This part de-
scribes how to evaluate definite integrals without having to calculate limits of Riemann
sums. Instead we find and evaluate an antiderivative at the upper and lower limits of
integration.

h : 0-

h : 0+x = a or b,

 = ƒsxd.

 = lim
h:0

 ƒscd

F¿(x) = lim
h:0

 
1
hL

x + h

x
ƒstd dt

lim
h:0

 ƒscd = ƒsxd.

x + h
h : 0, x + h

1
hL

x + h

x
ƒstd dt = ƒscd.

x + h.

 = lim
h:0

 
1
hL

x + h

x
ƒstd dt

 = lim
h:0

 
1
h
c
L

x + h

a
ƒstd dt -

L

x

a
ƒstd dt d

 F ¿(x) = lim
h:0

 

F(x + h) - F(x)
h

(a, b)h : 0

Fsx + hd - Fsxd
h

(a, b).x + h

THEOREM 4 (Continued)—The Fundamental Theorem of Calculus, Part 2 If ƒ is
continuous at every point in [a, b] and F is any antiderivative of ƒ on [a, b], then

L

b

a
ƒsxd dx = Fsbd - Fsad.

Proof Part 1 of the Fundamental Theorem tells us that an antiderivative of ƒ exists, namely

Thus, if F is any antiderivative of ƒ, then for some constant C for
(by Corollary 2 of the Mean Value Theorem for Derivatives, Section 4.2).a 6 x 6 b

Fsxd = Gsxd + C

Gsxd =

L

x

a
ƒstd dt.
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Since both F and G are continuous on [a, b], we see that also holds
when and by taking one-sided limits (as and 

Evaluating we have

The Evaluation Theorem is important because it says that to calculate the definite in-
tegral of ƒ over an interval [a, b] we need do only two things:

1. Find an antiderivative F of ƒ, and

2. Calculate the number , which is equal to 

This process is much easier than using a Riemann sum computation. The power of the 
theorem follows from the realization that the definite integral, which is defined by a com-
plicated process involving all of the values of the function ƒ over [a, b], can be found by
knowing the values of any antiderivative F at only the two endpoints a and b. The usual
notation for the difference is

depending on whether F has one or more terms.

EXAMPLE 3 We calculate several definite integrals using the Evaluation Theorem,
rather than by taking limits of Riemann sums.

(a)

(b)

(c)

(d)

(e)

=  tan-1 1 - tan-1 0 =
p
4

- 0 =
p
4

.

d
dx

 tan-1 x = =

1

x2
+ 1L

1

0
 

dx
x2

+ 1
= tan-1 x d1

0

=  ln 2 - ln 1 = ln 2

d
dx

 ln ƒ x + 1 ƒ =

1
x + 1L

1

0
 

dx
x + 1

= ln ƒ x + 1 ƒ d1
0

= [8 + 1] - [5] = 4

= cs4d3>2
+

4
4
d - cs1d3>2

+
4
1
d

d
dx

 ax3>2
+

4
x b =

3
2

 x1>2
-

4

x2
 
L

4

1
a3

2
 1x -

4
x2 b  dx = cx3>2

+
4
x d

1

4

= sec 0 - sec a- p
4
b = 1 - 22

d
dx

 sec x = sec x tan x
L

0

-p>4 sec x tan x dx = sec x d
-p>4
0

= sin p - sin 0 = 0 - 0 = 0

d
dx

 sin x = cos x
L

p

0
 cos x dx = sin x d

0

p

Fsxd d
a

b or cFsxd d
a

b

,

Fsbd - Fsad

1
b

a  ƒsxd dx.Fsbd - Fsad

 =

L

b

a
ƒstd dt.

 =

L

b

a
ƒstd dt - 0

 =

L

b

a
ƒstd dt -

L

a

a
ƒstd dt

 = Gsbd - Gsad
 Fsbd - Fsad = [Gsbd + C ] - [Gsad + C ]

Fsbd - Fsad,
x : b -d.x : a+x = bx = a

F(x) = G(x) + C
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330 Chapter 5: Integration

Exercise 82 offers another proof of the Evaluation Theorem, bringing together the ideas
of Riemann sums, the Mean Value Theorem, and the definition of the definite integral.

The Integral of a Rate

We can interpret Part 2 of the Fundamental Theorem in another way. If F is any antideriv-
ative of ƒ, then The equation in the theorem can then be rewritten as

Now represents the rate of change of the function with respect to x, so the inte-
gral of is just the net change in F as x changes from a to b. Formally, we have the fol-
lowing result.

F¿

FsxdF¿sxd

L

b

a
F¿sxd dx = Fsbd - Fsad.

F¿ = ƒ.

THEOREM 5—The Net Change Theorem The net change in a function over
an interval is the integral of its rate of change:

(6)Fsbd - Fsad =

L

b

a
F¿sxd dx.

a … x … b
Fsxd

EXAMPLE 4 Here are several interpretations of the Net Change Theorem.

(a) If is the cost of producing x units of a certain commodity, then is the mar-
ginal cost (Section 3.4). From Theorem 5,

which is the cost of increasing production from units to units.

(b) If an object with position function moves along a coordinate line, its velocity is
Theorem 5 says that

so the integral of velocity is the displacement over the time interval On
the other hand, the integral of the speed is the total distance traveled over the
time interval. This is consistent with our discussion in Section 5.1.

If we rearrange Equation (6) as

we see that the Net Change Theorem also says that the final value of a function over
an interval equals its initial value plus its net change over the interval. So if 
represents the velocity function of an object moving along a coordinate line, this means
that the object’s final position over a time interval is its initial position

plus its net change in position along the line (see Example 4b).

EXAMPLE 5 Consider again our analysis of a heavy rock blown straight up from the
ground by a dynamite blast (Example 3, Section 5.1). The velocity of the rock at any time t
during its motion was given as 

(a) Find the displacement of the rock during the time period 

(b) Find the total distance traveled during this time period.

0 … t … 8.

ystd = 160 - 32t ft>sec.

sst1d
t1 … t … t2sst2d

ystdFsad[a, b]
Fsxd

Fsbd = Fsad +

L

b

a
F¿sxd dx,

ƒ ystd ƒ

t1 … t … t2.

L

t2

t1

ystd dt = sst2d - sst1d,

ystd = s¿std.
sstd

x2x1

L

x2

x1

c¿sxd dx = csx2d - csx1d,

c¿sxdcsxd
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Solution

(a) From Example 4b, the displacement is the integral

This means that the height of the rock is 256 ft above the ground 8 sec after the explo-
sion, which agrees with our conclusion in Example 3, Section 5.1.

(b) As we noted in Table 5.3, the velocity function is positive over the time interval
[0, 5] and negative over the interval [5, 8]. Therefore, from Example 4b, the total dis-
tance traveled is the integral

Again, this calculation agrees with our conclusion in Example 3, Section 5.1. That is,
the total distance of 544 ft traveled by the rock during the time period is (i)
the maximum height of 400 ft it reached over the time interval [0, 5] plus (ii) the addi-
tional distance of 144 ft the rock fell over the time interval [5, 8].

The Relationship between Integration and Differentiation

The conclusions of the Fundamental Theorem tell us several things. Equation (2) can be
rewritten as

which says that if you first integrate the function ƒ and then differentiate the result, you get
the function ƒ back again. Likewise, replacing b by x and x by t in Equation (6) gives

so that if you first differentiate the function F and then integrate the result, you get the
function F back (adjusted by an integration constant). In a sense, the processes of integra-
tion and differentiation are “inverses” of each other. The Fundamental Theorem also says
that every continuous function ƒ has an antiderivative F. It shows the importance of find-
ing antiderivatives in order to evaluate definite integrals easily. Furthermore, it says that
the differential equation has a solution (namely, any of the functions

) for every continuous function ƒ.

Total Area

The Riemann sum contains terms such as that give the area of a rectangle when
is positive. When is negative, then the product is the negative of the

rectangle’s area. When we add up such terms for a negative function we get the negative of
the area between the curve and the x-axis. If we then take the absolute value, we obtain the
correct positive area.

EXAMPLE 6 Figure 5.20 shows the graph of and its mirror image
reflected across the x-axis. For each function, computegsxd = 4 - x2

ƒsxd = x2
- 4

ƒsckd ¢xkƒsckdƒsckd
ƒsckd ¢xk

y = F(x) + C
dy>dx = ƒsxd

L

x

a
 F¿std dt = Fsxd - Fsad,

d
dxL

x

a
ƒstd dt = ƒsxd,

0 … t … 8

= 400 - s -144d = 544.

= [s160ds5d - s16ds25d] - [s160ds8d - s16ds64d - ss160ds5d - s16ds25dd]

= C160t - 16t2 D5
0

- C160t - 16t2 D8
5

=

L

5

0
s160 - 32td dt -

L

8

5
s160 - 32td dt

L

8

0
ƒ ystd ƒ dt =

L

5

0
ƒ ystd ƒ dt +

L

8

5
ƒ ystd ƒ dt

ystd

 = s160ds8d - s16ds64d = 256.

 
L

8

0
ystd dt =

L

8

0
s160 - 32td dt = C160t - 16t2 D8

0
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FIGURE 5.20 These graphs enclose
the same amount of area with the 
x-axis, but the definite integrals of
the two functions over differ
in sign (Example 6).

[-2, 2]

x

y

0 1 2–1

4

3

2

1

–2

g(x) 5 4 2 x2

x

y

0 1 2–1

–1

–2

–3

–4

–2

f (x) 5 x2 2 4
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332 Chapter 5: Integration

(a) the definite integral over the interval and

(b) the area between the graph and the x-axis over 

Solution

(a)

and

(b) In both cases, the area between the curve and the x-axis over is units. 
Although the definite integral of is negative, the area is still positive.

To compute the area of the region bounded by the graph of a function and
the x-axis when the function takes on both positive and negative values, we must be careful
to break up the interval [a, b] into subintervals on which the function doesn’t change sign.
Otherwise we might get cancellation between positive and negative signed areas, leading
to an incorrect total. The correct total area is obtained by adding the absolute value of the
definite integral over each subinterval where ƒ(x) does not change sign. The term “area”
will be taken to mean this total area.

EXAMPLE 7 Figure 5.21 shows the graph of the function between 
and Compute

(a) the definite integral of ƒ(x) over 

(b) the area between the graph of ƒ(x) and the x-axis over 

Solution The definite integral for is given by

The definite integral is zero because the portions of the graph above and below the x-axis
make canceling contributions.

The area between the graph of ƒ(x) and the x-axis over is calculated by break-
ing up the domain of sin x into two pieces: the interval over which it is nonnegative
and the interval over which it is nonpositive.

The second integral gives a negative value. The area between the graph and the axis is 
obtained by adding the absolute values

Area = ƒ 2 ƒ + ƒ -2 ƒ = 4.

L

2p

p

 sin x dx = -cos x d
p

2p

= - [cos 2p - cos p] = - [1 - s -1d] = -2

L

p

0
 sin x dx = -cos x d

0

p

= - [cos p - cos 0] = - [-1 - 1] = 2

[p, 2p]
[0, p]

[0, 2p]

L

2p

0
 sin x dx = -cos x d

0

2p

= - [cos 2p - cos 0] = - [1 - 1] = 0.

ƒsxd = sin x

[0, 2p].

[0, 2p].

x = 2p.
x = 0ƒsxd = sin x

y = ƒsxd

ƒsxd
32>3[-2, 2]

L

2

-2
 gsxd dx = c4x -

x3

3
d2

-2
=

32
3

.

L

2

-2
 ƒsxd dx = cx3

3
- 4x d2

-2
= a8

3
- 8b - a-

8
3

+ 8b = -
32
3

,

[-2, 2].

[-2, 2],

FIGURE 5.21 The total area between
and the x-axis for

is the sum of the absolute
values of two integrals (Example 7).
0 … x … 2p
y = sin x

–1

0

1

x

y

� 2�

y � sin x

Area � 2

Area �
�–2� � 2

Summary:
To find the area between the graph of and the x-axis over the interval
[a, b]:

1. Subdivide [a, b] at the zeros of ƒ.

2. Integrate ƒ over each subinterval.

3. Add the absolute values of the integrals.

y = ƒsxd
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EXAMPLE 8 Find the area of the region between the x-axis and the graph of

Solution First find the zeros of ƒ. Since

the zeros are and 2 (Figure 5.22). The zeros subdivide into two subin-
tervals: on which and [0, 2], on which We integrate ƒ over each
subinterval and add the absolute values of the calculated integrals.

The total enclosed area is obtained by adding the absolute values of the calculated 
integrals.

Total enclosed area =
5

12
+ ` - 8

3
` =

37
12

L

2

0
sx3

- x2
- 2xd dx = cx4

4
-

x3

3
- x2 d

0

2

= c4 -
8
3

- 4 d - 0 = -
8
3

L

0

-1
sx3

- x2
- 2xd dx = cx4

4
-

x3

3
- x2 d

-1

0

= 0 - c1
4

+
1
3

- 1 d =
5

12

ƒ … 0.ƒ Ú 0,[-1, 0] ,
[-1, 2]x = 0, -1,

ƒsxd = x3
- x2

- 2x = xsx2
- x - 2d = xsx + 1dsx - 2d,

-1 … x … 2.ƒ(x) = x3
- x2

- 2x,
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x

y

0 2–1

y � x3 � x2 � 2x

Area �

�

8
3

–⎢
⎢

⎢
⎢

8
3

Area � 5
12

FIGURE 5.22 The region between the
curve and the x-axis
(Example 8).

y = x3
- x2

- 2x

Exercises 5.4

Evaluating Integrals
Evaluate the integrals in Exercises 1–34.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.
L

-1

-3
  

y5
- 2y

y3  dy
L

1

22
 au7

2
-

1
u5 b  du

L

23

-23
 st + 1dst 2

+ 4d dt
L

-1

1
sr + 1d2 dr

L

-p>4
-p>3 a4 sec2 t +

p

t 2 b  dt
L

p>8
0

sin 2x dx

L

p>6
0

 ssec x + tan xd2 dx
L

p>4
0

 tan2 x dx

L

p>3
-p>3  

1 - cos 2t
2

 dt
L

0

p>2 
1 + cos 2t

2
 dt

L

p>3
0

4 sec u tan u du
L

3p>4
p>4  csc u cot u du

L

p

0
s1 + cos xd dx

L

p>3
0

2 sec2 x dx

L

32

1
x-6>5 dx

L

1

0
Ax2

+ 1x B  dx

L

2

-2
sx3

- 2x + 3d dx
L

4

0
a3x -

x3

4
b  dx

L

1

-1
 sx2

- 2x + 3d dx
L

2

0
 xsx - 3d dx

L

4

-3
a5 -

x
2
b  dx

L

0

-2
s2x + 5d dx

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35–38, guess an antiderivative for the integrand function.
Validate your guess by differentiation and then evaluate the given def-
inite integral. (Hint: Keep in mind the Chain Rule in guessing an anti-
derivative. You will learn how to find such antiderivatives in the next
section.)

35. 36.

37. 38.

Derivatives of Integrals
Find the derivatives in Exercises 39–44.

a. by evaluating the integral and differentiating the result.

b. by differentiating the integral directly.

L

p>3
0

sin2 x cos x dx
L

5

2

x dx

21 + x2

L

2

1
 
ln x

x  dx
L

1

0
xex2

 dx

L

0

-1
 px - 1 dx

L

4

2
xp- 1 dx

L

1>13

0

dx

1 + 4x2
L

1>2
0

4

21 - x2
 dx

L

2

1
a1x - e - xb dx

L

ln 2

0
 e3x dx

L

p

0
 
1
2

 scos x + ƒ cos x ƒ d dx
L

4

-4
ƒ x ƒ  dx

L

p>3
0

 scos x + sec xd2 dx
L

p

p>2  
sin 2x
2 sin x

 dx

L

8

1
  

sx1>3
+ 1ds2 - x2>3d

x1>3  dx
L

22

1
  

s2
+ 2s

s2  ds
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334 Chapter 5: Integration

39. 40.

41. 42.

43. 44.

Find in Exercises 45–56.

45. 46.

47. 48.

49.

50.

51.

52. 53.

54. 55.

56.

Area
In Exercises 57–60, find the total area between the region and the
x-axis.

57.

58.

59.

60.

Find the areas of the shaded regions in Exercises 61–64.

61.

62. y

x

1

�
6

5�
6

y � sin x

x

y

0

2

�

y � 2

x � �

y � 1 � cos x

y = x1>3
- x, -1 … x … 8

y = x3
- 3x2

+ 2x, 0 … x … 2

y = 3x2
- 3, -2 … x … 2

y = -x2
- 2x, -3 … x … 2

y =

L

x1>p

-1
 sin-1 t dt

y =

L

sin-1 x

0
 cos t dty =

L

1

2x
 23 t dt

y =

L

ex 2

0
 

1

2t
 dty =

L

0

 tan x
  

dt

1 + t2

y =

L

 sin x

0
 

dt

21 - t2
, ƒ x ƒ 6

p

2

y = a
L

x

0
 st3

+ 1d10 dtb3

y =

L

x

-1
 

t2

t2
+ 4

 dt -

L

x

3
 

t2

t2
+ 4

 dt

y = x 
L

x2

2
 sin st3d dty =

L

0

1x
 sin st2d dt

y =

L

x

1
 
1
t  dt, x 7 0y =

L

x

0
21 + t2 dt

dy>dx

d
dt

 
L

2t

0
 ax4

+

3

21 - x2
b  dx

d
dx

 
L

x3

0
 e - t dt

d
duL

 tan u

0
 sec2 y dy

d
dtL

t 4

0
1u du

d
dxL

 sin x

1
3t2 dt

d
dxL

1x

0
 cos t dt

63. 64.

Initial Value Problems
Each of the following functions solves one of the initial value prob-
lems in Exercises 65–68. Which function solves which problem? Give
brief reasons for your answers.

a. b.

c. d.

65. 66.

67. 68.

Express the solutions of the initial value problems in Exercises 69 and
70 in terms of integrals.

69.

70.

Theory and Examples
71. Archimedes’ area formula for parabolic arches Archimedes

(287–212 B.C.), inventor, military engineer, physicist, and the
greatest mathematician of classical times in the Western world, dis-
covered that the area under a parabolic arch is two-thirds the base
times the height. Sketch the parabolic arch 

assuming that h and b are positive. Then use
calculus to find the area of the region enclosed between the arch
and the x-axis.

72. Show that if k is a positive constant, then the area between the
x-axis and one arch of the curve is .

73. Cost from marginal cost The marginal cost of printing a poster
when x posters have been printed is

dollars. Find the cost of printing posters 2–100.

74. Revenue from marginal revenue Suppose that a company’s
marginal revenue from the manufacture and sale of eggbeaters is

where r is measured in thousands of dollars and x in thousands of
units. How much money should the company expect from a pro-
duction run of thousand eggbeaters? To find out, integrate
the marginal revenue from to x = 3.x = 0

x = 3

dr
dx

= 2 - 2>sx + 1d2 ,

cs100d - cs1d ,

dc
dx

=

1
21x

2>ky = sin kx

-b>2 … x … b>2,
y = h - s4h>b2dx2,

dy

dx
= 21 + x2, ys1d = -2

dy

dx
= sec x, ys2d = 3

y¿ =

1
x , ys1d = -3y¿ = sec x, ys0d = 4

y¿ = sec x, ys -1d = 4
dy

dx
=

1
x , yspd = -3

y =

L

x

p

 
1
t  dt - 3y =

L

x

-1
 sec t dt + 4

y =

L

x

0
 sec t dt + 4y =

L

x

1
 
1
t  dt - 3

t

y

�
4

– 0 1

1

2

y � sec2 t

y � 1 � t2

�

y

–�2

�2

�
4

�
4

– 0

y � sec � tan �
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75. The temperature of a room at time t minutes is given by

a. Find the room’s temperature when and

b. Find the room’s average temperature for 

76. The height of a palm tree after growing for t years is given
by

a. Find the tree’s height when and 

b. Find the tree’s average height for 

77. Suppose that Find ƒ(x).

78. Find ƒ(4) if 

79. Find the linearization of

at 

80. Find the linearization of

at 

81. Suppose that ƒ has a positive derivative for all values of x and that
Which of the following statements must be true of the

function

Give reasons for your answers.

a. g is a differentiable function of x.

b. g is a continuous function of x.

c. The graph of g has a horizontal tangent at 

d. g has a local maximum at 

e. g has a local minimum at 

f. The graph of g has an inflection point at 

g. The graph of crosses the x-axis at 

82. Another proof of the Evaluation Theorem

a. Let be any partition of 
[a, b], and let F be any antiderivative of ƒ. Show that

b. Apply the Mean Value Theorem to each term to show that
for some in the interval

. Then show that is a Riemann sum for ƒ
on [a, b].

c. From part and the definition of the definite integral, show
that

F sbd - F sad =

L

b

a
 ƒsxd dx.

sbd

F(b) - F(a)(xi-1, xi)
ciF(xi) - F(xi-1) = ƒ(ci)(xi - xi-1)

F(b) - F(a) = a

n

i = 1
 [F(xid - F(xi-1d] .

a = x0 6 x1 6 x2
Á

6 xn = b

x = 1.dg>dx

x = 1.

x = 1.

x = 1.

x = 1.

g sxd =

L

x

0
 ƒstd dt?

ƒs1d = 0.

x = -1.

g sxd = 3 +

L

x2

1
 sec st - 1d dt

x = 1.

ƒsxd = 2 -

L

x + 1

2
 

9
1 + t

 dt

1
x

0  ƒstd dt = x cos px.
1

x
1  ƒstd dt = x2

- 2x + 1.

0 … t … 8.

t = 8.t = 0, t = 4,

H = 2t + 1 + 5t1>3 for 0 … t … 8.

H sftd
0 … t … 25.

t = 25.
t = 0, t = 16,

T = 85 - 3225 - t for 0 … t … 25.

T s°Fd

5.4 The Fundamental Theorem of Calculus 335

83. Suppose that ƒ is the differentiable function shown in the accom-
panying graph and that the position at time t (sec) of a particle
moving along a coordinate axis is

meters. Use the graph to answer the following questions. Give
reasons for your answers.

a. What is the particle’s velocity at time 

b. Is the acceleration of the particle at time positive, or
negative?

c. What is the particle’s position at time 

d. At what time during the first 9 sec does s have its largest value?

e. Approximately when is the acceleration zero?

f. When is the particle moving toward the origin? Away from
the origin?

g. On which side of the origin does the particle lie at time

84. Find 

COMPUTER EXPLORATIONS
In Exercises 85–88, let for the specified function ƒ
and interval [a, b]. Use a CAS to perform the following steps and
answer the questions posed.

a. Plot the functions ƒ and F together over [a, b].

b. Solve the equation What can you see to be true about
the graphs of ƒ and F at points where Is your obser-
vation borne out by Part 1 of the Fundamental Theorem coupled
with information provided by the first derivative? Explain your
answer.

c. Over what intervals (approximately) is the function F increasing
and decreasing? What is true about ƒ over those intervals?

d. Calculate the derivative and plot it together with F. What can
you see to be true about the graph of F at points where

Is your observation borne out by Part 1 of the
Fundamental Theorem? Explain your answer.

85.

86.

87.

88. ƒsxd = x cos px, [0, 2p]

ƒsxd = sin 2x cos 
x
3

, [0, 2p]

ƒsxd = 2x4
- 17x3

+ 46x2
- 43x + 12,  c0, 

9
2
d

ƒsxd = x3
- 4x2

+ 3x, [0, 4]

ƒ¿sxd = 0?

ƒ¿

F¿sxd = 0?
F¿sxd = 0.

Fsxd = 1
x

a  ƒstd dt

lim
x: q

  
1

2x
 
L

x

1

 
dt

2t
.

t = 9?

t = 3?

t = 5

t = 5?

y

x
0 1 2 3 4 5 6 7 8 9

1

2

3

4

–1
–2

(1, 1)

(2, 2) (5, 2)

(3, 3)
y � f (x)

s =

L

t

0
ƒsxd dx
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336 Chapter 5: Integration

5.5 Indefinite Integrals and the Substitution Method

The Fundamental Theorem of Calculus says that a definite integral of a continuous func-
tion can be computed directly if we can find an antiderivative of the function. In Section
4.8 we defined the indefinite integral of the function ƒ with respect to x as the set of all
antiderivatives of ƒ, symbolized by

Since any two antiderivatives of ƒ differ by a constant, the indefinite integral notation
means that for any antiderivative F of ƒ,

where C is any arbitrary constant.
The connection between antiderivatives and the definite integral stated in the Funda-

mental Theorem now explains this notation. When finding the indefinite integral of a
function ƒ, remember that it always includes an arbitrary constant C.

We must distinguish carefully between definite and indefinite integrals. A definite 

integral is a number. An indefinite integral is a function plus an arbi-
trary constant C.

So far, we have only been able to find antiderivatives of functions that are clearly rec-
ognizable as derivatives. In this section we begin to develop more general techniques for
finding antiderivatives.

Substitution: Running the Chain Rule Backwards

If u is a differentiable function of x and n is any number different from the Chain Rule
tells us that

From another point of view, this same equation says that is one of the anti-
derivatives of the function Therefore,

(1)
L

un 
du
dx

 dx =
un + 1

n + 1
+ C.

unsdu>dxd.
un + 1>sn + 1d

d
dx

 a un + 1

n + 1
b = un 

du
dx

.

-1,

1ƒsxd dx1
b

a ƒsxd dx

L
ƒsxd dx = Fsxd + C,

1

L
ƒsxd dx.

In Exercises 89–92, let for the specified a, u, and ƒ.
Use a CAS to perform the following steps and answer the questions
posed.

a. Find the domain of F.

b. Calculate and determine its zeros. For what points in its
domain is F increasing? Decreasing?

c. Calculate and determine its zero. Identify the local ex-
trema and the points of inflection of F.

d. Using the information from parts (a)–(c), draw a rough hand-
sketch of over its domain. Then graph F(x) on your
CAS to support your sketch.

y = Fsxd

F–sxd

F¿sxd

Fsxd = 1
u(x)

a  ƒstd dt 89.

90.

91.

92.

In Exercises 93 and 94, assume that ƒ is continuous and u(x) is twice-
differentiable.

93. Calculate and check your answer using a CAS.

94. Calculate and check your answer using a CAS.
d 2

dx 2
L

usxd

a
ƒstd dt

d
dxL

usxd

a
ƒstd dt

a = 0, usxd = 1 - x2, ƒsxd = x2
- 2x - 3

a = 0, usxd = 1 - x, ƒsxd = x2
- 2x - 3

a = 0, usxd = x2, ƒsxd = 21 - x2

a = 1, usxd = x2, ƒsxd = 21 - x2
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The integral in Equation (1) is equal to the simpler integral

which suggests that the simpler expression du can be substituted for when
computing an integral. Leibniz, one of the founders of calculus, had the insight that indeed
this substitution could be done, leading to the substitution method for computing integrals.
As with differentials, when computing integrals we have

EXAMPLE 1 Find the integral 

Solution We set Then

so that by substitution we have

Let 

Integrate with respect to u.

Substitute for u.

EXAMPLE 2 Find

Solution The integral does not fit the formula

with and , because

is not precisely . The constant factor 2 is missing from the integral. However, we can in-
troduce this factor after the integral sign if we compensate for it by a factor of in front
of the integral sign. So we write

Integrate with respect to u.

Substitute for u.

The substitutions in Examples 1 and 2 are instances of the following general rule.

2x + 1 =
1
3

 s2x + 1d3>2
+ C

 =
1
2

 
u3>2
3>2 + C

Let u = 2x + 1, du = 2 dx. =
1
2L

u1>2 du

 
L
22x + 1 dx =

1
2L
22x + 1 # 2 dx

1>2dx

du =
du
dx

 dx = 2 dx

n = 1>2u = 2x + 1

L
un du,

L
 22x + 1 dx.

x3
+ x=

sx3
+ xd6

6
+ C

=
u6

6
+ C

u = x3
+ x, du = s3x2

+ 1d dx.
L

 sx3
+ xd5s3x2

+ 1d dx =

L
 u5 du

du =
du
dx

 dx = s3x2
+ 1d dx,

u = x3
+ x.

L
sx3

+ xd5s3x2
+ 1d dx.

du =
du
dx

 dx.

sdu>dxd dx

L
un du =

un + 1

n + 1
+ C,

5.5 Indefinite Integrals and the Substitution Method 337

(1)1*

u
()*

du
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338 Chapter 5: Integration

Proof By the Chain Rule, F(g(x)) is an antiderivative of whenever F is an
antiderivative of ƒ:

Chain Rule

If we make the substitution then

Fundamental Theorem

Fundamental Theorem

The Substitution Rule provides the following substitution method to evaluate the integral

when ƒ and are continuous functions:

1. Substitute and to obtain the integral

2. Integrate with respect to u.

3. Replace u by g(x) in the result.

EXAMPLE 3 Find 

Solution We substitute and Then,

Let 

Substitute for u.

EXAMPLE 4 Find 
L

cos s7u + 3d du.

5t + 1= tan s5t + 1d + C

d
du

 tan u = sec2 u= tan u + C

u = 5t + 1, du = 5 dt.
L

 sec2 s5t + 1d # 5 dt =

L
 sec2 u du

du = 5 dt.u = 5t + 1

L
 sec2 s5t + 1d # 5 dt.

L
ƒsud du.

du = sdu>dxd dx = g¿sxd dxu = gsxd

g¿

L
ƒsg sxddg¿sxd dx,

F ¿ = ƒ =

L
ƒsud du

 =

L
F¿sud du

u = gsxd = Fsud + C

 = Fsg sxdd + C

 
L

ƒsg sxddg¿sxd dx =

L
 
d
dx

 Fsg sxdd dx

u = g sxd,

F ¿ = ƒ = ƒsg sxdd # g¿sxd.

 
d
dx

 Fsg sxdd = F¿sg sxdd # g¿sxd

ƒsg sxdd # g¿sxd

THEOREM 6—The Substitution Rule If is a differentiable function
whose range is an interval I, and ƒ is continuous on I, then

L
ƒsg sxddg¿sxd dx =

L
ƒsud du.

u = g sxd
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Solution We let so that The constant factor 7 is missing from
the term in the integral. We can compensate for it by multiplying and dividing by 7, 
using the same procedure as in Example 2. Then,

Place factor in front of integral.

Let 

Integrate.

Substitute for u.

There is another approach to this problem. With and as be-
fore, we solve for to obtain Then the integral becomes

Let and 

Integrate.

Substitute for u.

We can verify this solution by differentiating and checking that we obtain the original
function 

EXAMPLE 5 Sometimes we observe that a power of x appears in the integrand that is
one less than the power of x appearing in the argument of a function we want to integrate.
This observation immediately suggests we try a substitution for the higher power of x. This
situation occurs in the following integration.

Integrate with respect to u.

Replace u by 

EXAMPLE 6 An integrand may require some algebraic manipulation before the substi-
tution method can be applied. This example gives two integrals obtained by multiplying the
integrand by an algebraic form equal to 1, leading to an appropriate substitution.

(a) Multiply by 

Integrate with respect to u.

Replace u by ex. = tan-1 sexd + C

 = tan-1u + C

 =

L

du
u2

+ 1

sex>exd = 1.
L

dx
ex

+ e-x =

L

ex dx
e2x

+ 1

x3 . =
1
3

 ex3

+ C

 =
1
3

 eu +  C

 =
1
3L

eu du

 =

L
 eu #  

1
3

 du

L
x2ex3

 dx =  
L

 ex3

 #  x2 dx

cos s7u + 3d.

7u + 3=
1
7 sin s7u + 3d + C

=
1
7 sin u + C

du = s1>7d duu = 7u + 3, du = 7 du,
L

 cos s7u + 3d du =

L
 cos u # 1

7 du

du = s1>7d du.du
du = 7 duu = 7u + 3

7u + 3=
1
7 sin s7u + 3d + C

=
1
7 sin u + C

u = 7u + 3, du = 7 du.=
1
7 
L

 cos u du

1>7
L

 cos s7u + 3d du =
1
7 
L

 cos s7u + 3d # 7 du

du
du = 7 du.u = 7u + 3

5.5 Indefinite Integrals and the Substitution Method 339

Let 
(1>3) du = x2 dx.

du = 3x2 dx,u = x3,

Let 

du = ex dx.

u =  ex, u2 =  e2x,

HISTORICAL BIOGRAPHY

George David Birkhoff
(1884–1944)
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340 Chapter 5: Integration

(b)

It may happen that an extra factor of x appears in the integrand when we try a substitu-
tion In that case, it may be possible to solve the equation for x in terms
of u. Replacing the extra factor of x with that expression may then allow for an integral we
can evaluate. Here’s an example of this situation.

EXAMPLE 7 Evaluate 

Solution Our previous integration in Example 2 suggests the substitution 
with Then,

However in this case the integrand contains an extra factor of x multiplying the term
To adjust for this, we solve the substitution equation to obtain

and find that

The integration now becomes

Substitute.

Multiply terms.

Integrate.

Replace u by 

The success of the substitution method depends on finding a substitution that changes
an integral we cannot evaluate directly into one that we can. If the first substitution fails, try
to simplify the integrand further with additional substitutions (see Exercises 67 and 68).

EXAMPLE 8 Evaluate

Solution We can use the substitution method of integration as an exploratory tool: Sub-
stitute for the most troublesome part of the integrand and see how things work out. For the
integral here, we might try or we might even press our luck and take u to be
the entire cube root. Here is what happens in each case.

u = z 2
+ 1

L
 

2z dz

23 z 2
+ 1

 .

2x + 1.=
1

10
 s2x + 1d5>2

-
1
6

 s2x + 1d3>2
+ C

=
1
4
a25 u5>2

-
2
3

 u3>2b + C

=
1
4

 
L

 su3>2
- u1>2d du

L
 x22x + 1 dx =

1
4

 
L

 su - 1d2u du =
1
4

 
L

 su - 1du1>2 du

x22x + 1 dx =
1
2

 su - 1d # 1
2

 2u du.

x = (u - 1)>2,
u = 2x + 112x + 1.

22x + 1 dx =
1
2

 2u du.

du = 2 dx.
u = 2x + 1

L
 x22x + 1 dx.

u = gsxdu = gsxd.

 = ln ƒ u ƒ + C = ln ƒ sec x + tan x ƒ + C.

 =

L

du
u

 =

L

sec2 x + sec x tan x
sec x + tan x  dx

 
L

 sec x dx =

L
 (sec x)(1) dx =

L
 sec x # sec x + tan x

sec x + tan x dx

du = (sec2 x + sec x tan x) dx
u = tan x + sec x,

is a form of 1
sec x + tan x
sec x + tan x
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Solution 1: Substitute 

In the form 

Integrate.

Replace u by 

Solution 2: Substitute instead.

Integrate.

Replace u by 

The Integrals of sin2 x and cos2 x

Sometimes we can use trigonometric identities to transform integrals we do not know how
to evaluate into ones we can evaluate using the substitution rule.

EXAMPLE 9

(a)

(b)

EXAMPLE 10 We can model the voltage in the electrical wiring of a typical home with
the sine function

which expresses the voltage V in volts as a function of time t in seconds. The function runs
through 60 cycles each second (its frequency is 60 hertz, or 60 Hz). The positive constant

(“vee max”) is the peak voltage.Vmax

V = Vmax sin 120pt ,

cos2 x =

1 + cos 2x
2

=
x
2

+
sin 2x

4
+ C 

L
cos2 x dx =

L
 
1 + cos 2x

2
 dx

=
1
2

 x -
1
2

 
sin 2x

2
+ C =

x
2

-
sin 2x

4
+ C

 =
1
2L

s1 - cos 2xd dx

sin2 x =

1 - cos 2x
2

 
L

sin2 x dx =

L
 
1 - cos 2x

2
 dx

sz 2
+ 1d1>3 . =

3
2

 sz 2
+ 1d2>3

+ C

 = 3 # u2

2
+ C

 = 3
L

u du

 
L

 
2z dz

23 z 2
+ 1

=

L
 
3u2 du

u

u = 23 z 2
+ 1

z2
+ 1 . =

3
2

 sz 2
+ 1d2>3

+ C

 =
3
2

 u 2>3
+ C

 =
u2>3
2>3 + C

1u n du =

L
u-1>3 du

 
L

 
2z dz

23 z2
+ 1

=

L
 

du

u1>3

u = z 2
+ 1.

5.5 Indefinite Integrals and the Substitution Method 341

Let 
, 3u 2 du = 2z dz.u3

= z 2
+ 1

u = 23 z 2
+ 1,

Let 
du = 2z dz .

u = z2
+ 1,
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342 Chapter 5: Integration

The average value of V over the half-cycle from 0 to sec (see Figure 5.23) is

The average value of the voltage over a full cycle is zero, as we can see from Figure 5.23.
(Also see Exercise 80.) If we measured the voltage with a standard moving-coil gal-
vanometer, the meter would read zero.

To measure the voltage effectively, we use an instrument that measures the square root
of the average value of the square of the voltage, namely

The subscript “rms” (read the letters separately) stands for “root mean square.” Since the
average value of over a cycle is

(Exercise 80, part c), the rms voltage is

The values given for household currents and voltages are always rms values.Thus, “115 volts
ac” means that the rms voltage is 115. The peak voltage, obtained from the last equation, is

which is considerably higher.

Vmax = 22 Vrms = 22 # 115 L 163 volts ,

Vrms = B
sVmaxd2

2
=

Vmax

22
.

sV 2dav =
1

s1>60d - 0
 
L

1>60

0
sVmaxd2 sin2 120pt dt =

sVmaxd2

2

V 2
= sVmaxd2 sin2 120pt

Vrms = 2sV 2dav .

 =

2Vmax
p .

 =

Vmax
p  [-cos p + cos 0]

 = 120Vmax c- 1
120p

 cos 120pt d
0

1>120

 Vav =
1

s1>120d - 0
 
L

1>120

0
 Vmax sin 120pt dt

1>120

Exercises 5.5

Evaluating Indefinite Integrals
Evaluate the indefinite integrals in Exercises 1–16 by using the given
substitutions to reduce the integrals to standard form.

1.

2.

3.

4.

5.

6.
L

 
A1 + 2x B1>3
2x

 dx, u = 1 + 2x

L
 s3x + 2ds3x2

+ 4xd4 dx, u = 3x2
+ 4x

L
 

4x3

sx4
+ 1d2 dx, u = x4

+ 1

L
 2xsx2

+ 5d-4 dx, u = x2
+ 5

L
 727x - 1 dx, u = 7x - 1

L
 2s2x + 4d5 dx, u = 2x + 4

7.

8.

9.

10.

11.

12.

13.

14.
L

 
1
x2 cos2 a1x b  dx, u = -

1
x

L
1x sin2 sx3>2

- 1d dx, u = x3>2
- 1

L
12s y4

+ 4y2
+ 1d2s y3

+ 2yd dy, u = y4
+ 4y2

+ 1

L
 

9r 2 dr

21 - r 3
, u = 1 - r 3

L
a1 - cos 

t
2
b2

 sin 
t
2

 dt, u = 1 - cos 
t
2

L
 sec 2t tan 2t dt, u = 2t

L
x sin s2x2d dx, u = 2x2

L
 sin 3x dx, u = 3x

t

V

0

V � Vmax sin 120�tVmax

Vav �
2Vmax

�

1
120

1
60

FIGURE 5.23 The graph of the voltage 
over a full cycle. Its average value over a
half-cycle is Its average value
over a full cycle is zero (Example 10).

2Vmax>p .

V
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15.

a. Using b. Using 

16.

a. Using b. Using 

Evaluate the integrals in Exercises 17–66.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53.

54.
L

1
x2 e1>x sec (1 + e1>x) tan (1 + e1>x) dx

L
 

1

2xe -2x
 sec2 (e2x

+ 1) dx

L
 (sin 2u) esin2 u du

L
(cos x) esin x dx

L
 

x

sx - 4d3 dx
L

 
x

sx2
- 4d3 dx

L
3x52x3

+ 1 dx
L

x32x2
+ 1 dx

L
 sx + 5dsx - 5d1>3 dx

L
 sx + 1d2s1 - xd5 dx

L
 x24 - x dx

L
 xsx - 1d10 dx

L
 A

x4

x3
- 1

 dx
L

 A
x3

- 3
x11  dx

L
 
1
x3 A

x2
- 1

x2  dx
L

 
1
x2 A2 -

1
x  dx

LA
x - 1

x5  dx
L

t3s1 + t4d3 dt

L
 

cos 2u
2u sin2 2u du

L
 
1
u2 sin 

1
u

 cos 
1
u

 du

L
 

1
1t

 cos s1t + 3d dt
L

 
1
t2 cos a1t - 1b  dt

L
 
sec z tan z

2sec z
 dz

L
 

sin s2t + 1d
cos2 s2t + 1d

 dt

L
csc ay - p

2
b  cot ay - p

2
b  dy

L
x1>2 sin sx3>2

+ 1d dx

L
r4 a7 -

r5

10
b3

 dr
L

r2 a r3

18
- 1b5

 dr

L
tan7 

x
2

 sec2 
x
2

 dx
L

sin5 
x
3

 cos 
x
3

 dx

L
tan2 x sec2 x dx

L
sec2 s3x + 2d dx

L
cos s3z + 4d dz

L
 

1
1x s1 + 1xd2 dx

L
3y27 - 3y2 dy

L
u

421 - u2 du

L
 

1

25s + 4
 ds

L
23 - 2s ds

u = 25x + 8u = 5x + 8
L

 
dx

25x + 8

u = csc 2uu = cot 2u
L

csc2 2u cot 2u du

5.5 Indefinite Integrals and the Substitution Method 343

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

If you do not know what substitution to make, try reducing the integral
step by step, using a trial substitution to simplify the integral a bit and
then another to simplify it some more. You will see what we mean if
you try the sequences of substitutions in Exercises 67 and 68.

67.

a. followed by then by 

b. followed by 

c.

68.

a. followed by then by 

b. followed by 

c.

Evaluate the integrals in Exercises 69 and 70.

69.

70.

Initial Value Problems
Solve the initial value problems in Exercises 71–76.

71.

72.

73.

74.

75.

76.

Theory and Examples
77. The velocity of a particle moving back and forth on a line is

for all t. If when find
the value of s when t = p>2 sec .

t = 0,s = 0y = ds>dt = 6 sin 2t m>sec

d2y

dx2 = 4 sec2 2x tan 2x, y¿s0d = 4, y s0d = -1

d2s

dt2 = -4 sin a2t -

p

2
b , s¿s0d = 100, s s0d = 0

dr
du

= 3 cos2 ap
4

- ub , r s0d =

p

8

ds
dt

= 8 sin2 at +

p

12
b , s s0d = 8

dy

dx
= 4x sx2

+ 8d-1>3, y s0d = 0

ds
dt

= 12t s3t2
- 1d3, s s1d = 3

L
 

sin 2u
2u cos3 1u du

L
 
s2r - 1d cos 23s2r - 1d2

+ 6

23s2r - 1d2
+ 6

 dr

u = 1 + sin2 sx - 1d
y = 1 + u2u = sin sx - 1d ,

w = 1 + y2y = sin u ,u = x - 1,
L
21 + sin2 sx - 1d sin sx - 1d cos sx - 1d dx

u = 2 + tan3 x

y = 2 + uu = tan3 x ,

w = 2 + yy = u3 ,u = tan x ,
L

 
18 tan2 x sec2 x

s2 + tan3 xd2  dx

L
 

dy

ssin-1 yd21 - y2L
 

dy

stan-1 yds1 + y2d

L
 
2tan-1 x dx

1 + x2
L

 
ssin-1 xd2 dx

21 - x2

L
 
ecos-1 x dx

21 - x2L
 
esin-1 x dx

21 - x2

L
 

1

2e2u
- 1

 du
L

5
9 + 4r2 dr

L

dx

x2x4
- 1L

dz
1 + ez

L

ln 2t
t  dt

L

dx
x ln x
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344 Chapter 5: Integration

78. The acceleration of a particle moving back and forth on a line is
for all t. If and 

when find s when 

79. It looks as if we can integrate 2 sin x cos x with respect to x in
three different ways:

a.

b.

c.

Can all three integrations be correct? Give reasons for your answer.

 = -

cos 2x
2

+ C3 .

2 sin x cos x = sin 2x 
L

2 sin x cos x dx =

L
 sin 2x dx

 = -u2
+ C2 = -cos2 x + C2

u = cos x 
L

2 sin x cos x dx =

L
-2u du

 = u2
+ C1 = sin2 x + C1

u = sin x 
L

2 sin x cos x dx =

L
2u du

t = 1 sec .t = 0,8 m/sec
y =s = 0a = d2s>dt2

= p2 cos pt m>sec2

5.6 Substitution and Area Between Curves

There are two methods for evaluating a definite integral by substitution. One method is to
find an antiderivative using substitution and then to evaluate the definite integral by apply-
ing the Evaluation Theorem. The other method extends the process of substitution directly
to definite integrals by changing the limits of integration. We apply the new formula intro-
duced here to the problem of computing the area between two curves.

The Substitution Formula

The following formula shows how the limits of integration change when the variable of in-
tegration is changed by substitution.

80. (Continuation of Example 10.)

a. Show by evaluating the integral in the expression

that the average value of over a full cycle
is zero.

b. The circuit that runs your electric stove is rated 240 volts rms.
What is the peak value of the allowable voltage?

c. Show that

L

1>60

0
sVmaxd2 sin2 120 pt dt =

sVmaxd2

120
.

V = Vmax sin 120 pt

1
s1>60d - 0

 
L

1>60

0
Vmax sin 120 pt dt

THEOREM 7—Substitution in Definite Integrals If is continuous on the
interval [a, b] and ƒ is continuous on the range of then

L

b

a
ƒsg sxdd # g¿sxd dx =

L

gsbd

gsad
ƒsud du.

gsxd = u,
g¿

=  ƒsgsxddg¿sxd
=  F¿sgsxddg¿sxd

d
dx

 Fsgsxdd

Fundamental
Theorem, Part 2

Proof Let F denote any antiderivative of ƒ. Then,

To use the formula, make the same u-substitution and you
would use to evaluate the corresponding indefinite integral. Then integrate the trans-
formed integral with respect to u from the value g(a) (the value of u at ) to the value
g(b) (the value of u at ).x = b

x = a

du = g¿sxd dxu = g sxd

 =

L

gsbd

gsad
ƒsud du .

 = Fsud d
u = gsad

u = gsbd

 = Fsg sbdd - Fsg sadd

 
L

b

a
ƒsg sxdd # g¿sxd dx = Fsg sxdd d

x = a

x = b

7001_AWLThomas_ch05p297-362.qxd  10/28/09  5:03 PM  Page 344



EXAMPLE 1 Evaluate 

Solution We have two choices.

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 7.

Evaluate the new definite integral.

Method 2: Transform the integral as an indefinite integral, integrate, change back to x, and
use the original x-limits.

Let 

Integrate with respect to u.

Replace u by 

Which method is better—evaluating the transformed definite integral with trans-
formed limits using Theorem 7, or transforming the integral, integrating, and transforming
back to use the original limits of integration? In Example 1, the first method seems easier,
but that is not always the case. Generally, it is best to know both methods and to use
whichever one seems better at the time.

EXAMPLE 2 We use the method of transforming the limits of integration.

(a)

 = - cs0d2

2
-

s1d2

2
d =

1
2

 = - cu2

2
d

1

0

 = -

L

0

1
u du

 
L

p>2
p>4  cot u csc2 u du =

L

0

1
u # s -dud

 =
2
3

 C23>2
- 03>2 D =

2
3

 C222 D =

422
3

 =
2
3

 C ss1d3
+ 1d3>2

- ss -1d3
+ 1d3>2 D

 
L

1

-1
3x22x3

+ 1 dx =
2
3

 sx3
+ 1d3>2 d

-1

1

x3
+ 1 . =

2
3

 sx3
+ 1d3>2

+ C

 =
2
3

 u3>2
+ C

u = x3
+ 1, du = 3x2 dx . 

L
3x22x3

+ 1 dx =

L
1u du

 =
2
3

 C23>2
- 03>2 D =

2
3

 C222 D =

422
3

 =
2
3

 u3>2 d
0

2

 =

L

2

0
1u du

L

1

-1
 3x22x3

+ 1 dx

L

1

-1
 3x22x3

+ 1 dx.

5.6 Substitution and Area Between Curves 345

Let 
When 
When x = 1, u = s1d3

+ 1 = 2 .
x = -1, u = s -1d3

+ 1 = 0 .
u = x3

+ 1, du = 3x2 dx .

Use the integral just found, with
limits of integration for x.

Let

When 

When u = p>2, u = cot (p>2) = 0.

u = p>4, u = cot (p>4) = 1.
-du = csc2 u du.

u = cot u, du = -csc2 u du,
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346 Chapter 5: Integration

(b)

Integrate, zero-width interval

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 7 simplifies the calculation of definite integrals of
even and odd functions (Section 1.1) over a symmetric interval (Figure 5.24).[-a, a]

 = - ln ƒ u ƒ d22>2
22>2 = 0

 = -

L

22>2
22>2  

du
u

L

p>4
-p>4  tan x dx =

L

p>4
-p>4  

sin x
cos x dx

.

When 

When .x = p>4, u =  22>2
x = -p>4, u =  22>2.

Let u = cos x, du = -sin x dx

THEOREM 8 Let ƒ be continuous on the symmetric interval 

(a) If ƒ is even, then 

(b) If ƒ is odd, then 
L

a

-a
 ƒ(x) dx = 0.

L

a

-a
 ƒsxd dx = 2

L

a

0
ƒsxd dx .

[-a, a] .

x

y

0
a–a

(b)

x

y

0 a–a

(a)

FIGURE 5.24 (a) ƒ even, 

(b) ƒ odd, 1
a

-a ƒsxd dx = 0

= 21
a

0  ƒsxd dx

1
a

-a ƒsxd dx

Proof of Part (a)

Order of Integration Rule

The proof of part (b) is entirely similar and you are asked to give it in Exercise 114.

The assertions of Theorem 8 remain true when ƒ is an integrable function (rather than
having the stronger property of being continuous).

EXAMPLE 3 Evaluate 
L

2

-2
sx4

- 4x2
+ 6d dx.

 = 2
L

a

0
ƒsxd dx

 =

L

a

0
ƒsud du +

L

a

0
ƒsxd dx

 =

L

a

0
ƒs -ud du +

L

a

0
ƒsxd dx

 = -

L

a

0
ƒs -uds -dud +

L

a

0
ƒsxd dx

 = -

L

-a

0
ƒsxd dx +

L

a

0
ƒsxd dx

 
L

a

-a
 ƒsxd dx =

L

0

-a
 ƒsxd dx +

L

a

0
ƒsxd dx

Additivity Rule for
Definite Integrals

Let 
When 
When x = -a, u = a .

x = 0, u = 0 .
u = -x, du = -dx .

ƒ is even, so
ƒs -ud = ƒsud .
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Solution Since satisfies it is even on the symmet-
ric interval so

Areas Between Curves

Suppose we want to find the area of a region that is bounded above by the curve 
below by the curve and on the left and right by the lines and 
(Figure 5.25). The region might accidentally have a shape whose area we could find with
geometry, but if ƒ and g are arbitrary continuous functions, we usually have to find the
area with an integral.

To see what the integral should be, we first approximate the region with n vertical rec-
tangles based on a partition of [a, b] (Figure 5.26). The area of the
kth rectangle (Figure 5.27) is

We then approximate the area of the region by adding the areas of the n rectangles:

Riemann sum

As the sums on the right approach the limit because 
ƒ and g are continuous. We take the area of the region to be the value of this integral.
That is,

A = lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
[ƒsckd - gsckd] ¢xk =

L

b

a
[ƒsxd - gsxd] dx.

1
b

a  [ƒsxd - gsxd] dx7P 7 : 0,

A L a

n

k = 1
¢Ak = a

n

k = 1
[ƒsckd - gsckd] ¢xk .

¢Ak = height * width = [ƒsckd - g sckd] ¢xk .

P = 5x0 , x1, Á , xn6

x = bx = ay = g sxd ,
y = ƒsxd ,

 = 2 a32
5 -

32
3

+ 12b =
232
15

.

 = 2 cx5

5 -
4
3

 x3
+ 6x d

0

2

 
L

2

-2
sx4

- 4x2
+ 6d dx = 2

L

2

0
sx4

- 4x2
+ 6d dx

[-2, 2] ,
ƒs -xd = ƒsxd ,ƒsxd = x4

- 4x2
+ 6

5.6 Substitution and Area Between Curves 347

DEFINITION If ƒ and g are continuous with throughout [a, b],
then the area of the region between the curves (x) and (x) from a
to b is the integral of from a to b:

A =

L

b

a
[ƒsxd - g sxd] dx.

( f - g)
y � gy � f

ƒsxd Ú g sxd

x

y

a

b

Lower curve
y � g(x)

Upper curve
y � f (x)

FIGURE 5.25 The region between
the curves and 
and the lines and x = b .x = a

y = gsxdy = ƒsxd

x

y

y � f (x)

y � g(x)

b � xn

xn�1a � x0
x1

x2

FIGURE 5.26 We approximate the
region with rectangles perpendicular
to the x-axis.

x

y

a

b

(ck, f (ck))

f (ck) � g(ck)

�Ak
ck

(ck, g(ck))
�xk

FIGURE 5.27 The area of the kth
rectangle is the product of its height,

and its width, ¢xk .ƒsckd - g sckd ,

¢Ak

When applying this definition it is helpful to graph the curves. The graph reveals which
curve is the upper curve ƒ and which is the lower curve g. It also helps you find the limits
of integration if they are not given. You may need to find where the curves intersect to 
determine the limits of integration, and this may involve solving the equation 
for values of x. Then you can integrate the function for the area between the inter-
sections.

EXAMPLE 4 Find the area of the region bounded above by the curve ,
below by the curve , on the left by , and on the right by .x = 1x = 0y = ex>2 

y = 2e-x
+ x

ƒ - g
ƒsxd = gsxd
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348 Chapter 5: Integration

Solution Figure 5.28 displays the graphs of the curves and the region whose area we
want to find. The area between the curves over the interval is given by

EXAMPLE 5 Find the area of the region enclosed by the parabola and the
line 

Solution First we sketch the two curves (Figure 5.29). The limits of integration are
found by solving and simultaneously for x.

Equate ƒ(x) and g(x).

Rewrite.

Factor.

Solve.

The region runs from to The limits of integration are 
The area between the curves is

If the formula for a bounding curve changes at one or more points, we subdivide the re-
gion into subregions that correspond to the formula changes and apply the formula for the
area between curves to each subregion.

EXAMPLE 6 Find the area of the region in the first quadrant that is bounded above by
and below by the x-axis and the line 

Solution The sketch (Figure 5.30) shows that the region’s upper boundary is the graph of
The lower boundary changes from for to 

for (both formulas agree at ). We subdivide the region at into sub-
regions A and B, shown in Figure 5.30.

The limits of integration for region A are and The left-hand limit for
region B is To find the right-hand limit, we solve the equations and

simultaneously for x:

Equate ƒ(x) and g(x).

Square both sides.

Rewrite.

Factor.

Solve. x = 1, x = 4.

 sx - 1dsx - 4d = 0

 x2
- 5x + 4 = 0

 x = sx - 2d2
= x2

- 4x + 4

 1x = x - 2

y = x - 2
y = 1xa = 2.

b = 2.a = 0

x = 2x = 22 … x … 4
gsxd = x - 20 … x … 2gsxd = 0ƒsxd = 1x .

y = x - 2.y = 1x

 = a4 +
4
2

-
8
3
b - a-2 +

1
2

+
1
3
b =

9
2

 =

L

2

-1
s2 + x - x2d dx = c2x +

x2

2
-

x3

3
d

-1

2

 A =

L

b

a
[ƒsxd - gsxd] dx =

L

2

-1
[s2 - x2d - s -xd] dx

a = -1, b = 2.x = 2.x = -1

 x = -1, x = 2.

 sx + 1dsx - 2d = 0

 x2
- x - 2 = 0

 2 - x2
= -x

y = -xy = 2 - x2

y = -x.
y = 2 - x2

 = 3 -
2
e -

e
2

L 0.9051.

 = a-2e-1
+

1
2

-
1
2

 eb - a-2 + 0 -
1
2
b

A =  
L

1

0
c(2e-x

+ x) -
1
2

 ex ddx = c-2e-x
+

1
2

 x2
-

1
2

 ex d1
0

0 … x … 1

x

y

0

0.5

2

1

(x, f (x))

(x, g(x))

y � 2e–x � x

y �    ex
2
1

FIGURE 5.28 The region in Example 4
with a typical approximating rectangle.

x

y

0

1

2

42

y � �x

y � 0

y � x � 2

(x, f (x))

(x, f (x))

(x, g(x))

(x, g(x))

A

B
(4, 2)Area �

2

0
�x dx

Area �

4

2
(�x � x � 2) dx
L

L

FIGURE 5.30 When the formula for a
bounding curve changes, the area integral
changes to become the sum of integrals to
match, one integral for each of the shaded
regions shown here for Example 6.

x

y

0–1 1 2

(–1, 1)

(x, f (x))

y � 2 � x2

(x, g(x))

�x

y � –x (2, –2)

FIGURE 5.29 The region in
Example 5 with a typical
approximating rectangle.

HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)
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Only the value satisfies the equation The value is an extrane-
ous root introduced by squaring. The right-hand limit is 

We add the areas of subregions A and B to find the total area:

Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectangles
are horizontal instead of vertical and the basic formula has y in place of x.

For regions like these:

use the formula

In this equation ƒ always denotes the right-hand curve and g the left-hand curve, so
is nonnegative.

EXAMPLE 7 Find the area of the region in Example 6 by integrating with respect to y.

Solution We first sketch the region and a typical horizontal rectangle based on a parti-
tion of an interval of y-values (Figure 5.31). The region’s right-hand boundary is the line

so The left-hand boundary is the curve so 
The lower limit of integration is We find the upper limit by solving and

simultaneously for y:

Rewrite.

Factor.

Solve.

The upper limit of integration is (The value gives a point of intersection
below the x-axis.)

y = -1b = 2.

 y = -1, y = 2

 s y + 1ds y - 2d = 0

 y2
- y - 2 = 0

 y + 2 = y2

x = y2
x = y + 2y = 0.

gs yd = y2 .x = y2 ,ƒs yd = y + 2.x = y + 2,

ƒs yd - gs yd

A =

L

d

c
[ƒs yd - gs yd] dy .

x � f (y)

Δ(y)

y y

x

x

x

y

x � g(y)

0

c

d

x � g(y)

x � f (y)

0

c

d

0

c

d

x � f (y)

x � g(y)

Δ(y)

Δ(y)

 =
2
3

 s8d - 2 =
10
3

.

 =
2
3

 s2d3>2
- 0 + a2

3
 s4d3>2

- 8 + 8b - a2
3

 s2d3>2
- 2 + 4b

 = c2
3

 x3>2 d
0

2

+ c2
3

 x3>2
-

x2

2
+ 2x d

2

4

 
Total area =

 
L

2

0
1x dx

(')'*

area of A

+

 
L

4

2
s1x - x + 2d dx

('''')''''*

area of B

 For 2 … x … 4: ƒsxd - gsxd = 1x - sx - 2d = 1x - x + 2

 For 0 … x … 2: ƒsxd - gsxd = 1x - 0 = 1x

b = 4.
x = 11x = x - 2.x = 4

5.6 Substitution and Area Between Curves 349

x

y

y � 0 2 40

1

2
(g(y), y)

( f (y), y)
f (y) � g(y)

(4, 2)

x � y � 2

x � y2

�y

FIGURE 5.31 It takes two
integrations to find the area of this
region if we integrate with respect to x.
It takes only one if we integrate 
with respect to y (Example 7).

Equate and  gsyd = y2.ƒsyd = y + 2
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350 Chapter 5: Integration

The area of the region is

This is the result of Example 6, found with less work.

 = 4 +
4
2

-
8
3

=
10
3

.

 = c2y +

y2

2
-

y3

3
d

0

2

 =

L

2

0
[2 + y - y2] dy

 A =

L

d

c
[ƒs yd - gs yd] dy =

L

2

0
[y + 2 - y2] dy

Exercises 5.6

Evaluating Definite Integrals
Use the Substitution Formula in Theorem 7 to evaluate the integrals in
Exercises 1–46.

1. a. b.

2. a. b.

3. a. b.

4. a. b.

5. a. b.

6. a. b.

7. a. b.

8. a. b.

9. a. b.

10. a. b.

11. a. b.

12. a. b.

13. a. b.

14. a. b.

15. 16.
L

4

1
 

dy

21y s1 + 1yd2
L

1

0
2t5

+ 2t s5t4
+ 2d dt

L

p>2
0

 
sin w

s3 + 2 cos wd2 dw
L

0

-p>2 
sin w

s3 + 2 cos wd2 dw

L

p

-p

 
cos z

24 + 3 sin z
 dz

L

2p

0
 

cos z

24 + 3 sin z
 dz

L

p>2
-p>2 a2 + tan 

t
2
b  sec2 

t
2

 dt
L

0

-p>2 a2 + tan 
t
2
b  sec2 

t
2

 dt

L

p>3
p>6 s1 - cos 3td sin 3t dt

L

p>6
0

s1 - cos 3td sin 3t dt

L

0

-1
 

x3

2x4
+ 9

 dx
L

1

0
 

x3

2x4
+ 9

 dx

L

23

-23
 

4x

2x2
+ 1

 dx
L

23

0
 

4x

2x2
+ 1

 dx

L

4

1
 

101y
s1 + y3>2d2

 dy
L

1

0
 

101y
s1 + y 3>2d2

 dy

L

1

0
 

5r

s4 + r2d2 dr
L

1

-1
 

5r

s4 + r2d2 dr

L

0

-27
 t st2

+ 1d1>3 dt
L

27

0
t st2

+ 1d1>3 dt

L

1

-1
t3s1 + t4d3 dt

L

1

0
t3s1 + t4d3 dt

L

3p

2p
3 cos2 x sin x dx

L

p

0
3 cos2 x sin x dx

L

0

-p>4tan x sec2 x dx
L

p>4
0

 tan x sec2 x dx

L

1

-1
r21 - r2 dr

L

1

0
r21 - r2 dr

L

0

-1
2y + 1 dy

L

3

0
2y + 1 dy

17. 18.

19. 20.

21.

22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.
L

-22>3
-2>3  

dy

y29y2
- 1L

-22>2
-1

 
dy

y24y2
- 1

L

2

2>23
 
cos ssec-1 xd dx

x2x2
- 1L

2

22
 
sec2 ssec-1 xd dx

x2x2
- 1

L

322>4
0

 
ds

29 - 4s2L

1

0
 

4 ds

24 - s2

L

ep>4

1
 

4 dt

ts1 + ln2 tdL

ln 23

0
 

ex dx

1 + e2x

L

p>4
p>6  

csc2 x dx

1 + scot xd2
L

p>2
-p>2  

2 cos u du

1 + ssin ud2

L

p>12

0
 6 tan 3x dx

L

p

p>2 2 cot 
u

3
 du

L

p>2
p>4  cot t dt

L

p>2
0

 tan 
x
2

 dx

L

16

2
 

dx

2x2ln xL

4

2
 

dx

xsln xd2

L

4

2
 

dx
x ln xL

2

1
 
2 ln x

x  dx

L

p>3
0

 
4 sin u

1 - 4 cos u
 du

L

p

0
 

sin t
2 - cos t

 dt

L

p>2
p>4 s1 + ecot ud csc2 u du

L

p>4
0

s1 + e tan ud sec2 u du

L

-1>2
-1

t -2 sin2 a1 +

1
t b  dt

L

2 
3
p2

0
2u cos2 su3>2d du

L

1

0
s y3

+ 6y2
- 12y + 9d-1>2 s y2

+ 4y - 4d dy

L

1

0
s4y - y2

+ 4y3
+ 1d-2>3 s12y2

- 2y + 4d dy

L

p>4
0

s1 - sin 2td3>2 cos 2t dt
L

p

0
5s5 - 4 cos td1>4 sin t dt

L

3p>2
p

cot5 au
6
b  sec2 au

6
b  du

L

p>6
0

cos-3 2u sin 2u du
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5.6 Substitution and Area Between Curves 351

Area
Find the total areas of the shaded regions in Exercises 47–62.

47. 48.

49. 50.

51. 52.

53.

x

y

–2 –1 1 2
–1

8
(–2, 8) (2, 8)

y � 2x2

y � x 4 � 2x2

NOT TO SCALE

t

y

y � sec2 t1
2

�
3

�
3

– 0

1

2

–4

y � –4 sin2 t

x

y

��
2

y � cos2 x

0

1 y � 1

x

y

0–1–�

–1

1

�
2

–

y � (cos x)(sin(� � �sin x))�
2

x

y

0–1

–1

–2

–3

–2–�

y � 3(sin x)�1 � cos x

x

y

0 �

y � (1 � cos x) sin x

0 2–2
x

y

y � x�4 � x2

54.

55.

56. 57.

58.

59. 60.

x

y

–10

2

1–1–2 2

(–2, –10)

y � 2x3 � x2 � 5x

y � –x2 � 3x

(2, 2)

x

y

5

–4

(–3, 5)

(1, –3)
(–3, –3)

10–3

y � x2 � 4

y � –x2 � 2x

0 1 2

1

x

y

y � x2
x � y � 2

x

y

0 1 2

1

y � x
y � 1

y � x2

4
x

y

–1 0

–2

1

1

y � x2

y � –2x4

x

y

0

1

1

x � 12y2 � 12y3

x � 2y2 � 2y

0 1

1

x

y

(1, 1)

x � y2

x � y3
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352 Chapter 5: Integration

61. 62.

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 63–72.

63. 64.

65. 66.

67.

68.

69.

70.

71. (How many intersection points
are there?)

72.

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 73–80.

73.

74.

75.

76.

77.

78.

79.

80.

Find the areas of the regions enclosed by the curves in Exercises 81–84.

81.

82.

83.

84.

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 85–92.

85.

86.

87.

88.

89.

90.

91.

92. y = sec2 spx>3d and y = x1>3, -1 … x … 1

x = 3 sin y 2cos y and x = 0, 0 … y … p>2
x = tan2 y and x = - tan2 y, -p>4 … y … p>4
y = sec2 x, y = tan2 x, x = -p>4, and x = p>4
y = sin spx>2d and y = x

y = cos spx>2d and y = 1 - x2

y = 8 cos x and y = sec2 x, -p>3 … x … p>3
y = 2 sin x and y = sin 2x, 0 … x … p

x + y2
= 3 and 4x + y2

= 0

x + 4y2
= 4 and x + y4

= 1, for x Ú 0

x3
- y = 0 and 3x2

- y = 4

4x2
+ y = 4 and x4

- y = 1

x = y3
- y2 and x = 2y

x = y2
- 1 and x = ƒ y ƒ21 - y2

x - y2>3
= 0 and x + y4

= 2

x + y2
= 0 and x + 3y2

= 2

x - y2
= 0 and x + 2y2

= 3

y2
- 4x = 4 and 4x - y = 16

x = y2 and x = y + 2

x = 2y2, x = 0, and y = 3

y = ƒ x2
- 4 ƒ  and y = sx2>2d + 4

y = 2 ƒ x ƒ  and 5y = x + 6

y = x2a2
- x2, a 7 0, and y = 0

y = x4
- 4x2

+ 4 and y = x2

y = 7 - 2x2 and y = x2
+ 4

y = x2 and y = -x2
+ 4x

y = x2
- 2x and y = xy = x4 and y = 8x

y = 2x - x2 and y = -3y = x2
- 2 and y = 2

x

y

30

6

–2

y �
3
x

y � � x
3
x3

(3, 6)

(3, 1)

⎛
⎝

⎛
⎝–2, –

3
2

x

y

–1 1 2 3–2

2

–5

4

(3, –5)

(–2, 4) y � 4 � x2

y � –x � 2

Area Between Curves
93. Find the area of the propeller-shaped region enclosed by the

curve and the line 

94. Find the area of the propeller-shaped region enclosed by the
curves and 

95. Find the area of the region in the first quadrant bounded by the
line the line the curve and the x-axis.

96. Find the area of the “triangular” region in the first quadrant
bounded on the left by the y-axis and on the right by the curves

and 

97. Find the area between the curves and from
to 

98. Find the area between the curve and the x-axis from
to 

99. Find the area of the “triangular” region in the first quadrant that
is bounded above by the curve below by the curve

and on the right by the line 

100. Find the area of the “triangular” region in the first quadrant that
is bounded above by the curve below by the curve

and on the right by the line 

101. Find the area of the region between the curve 
and the interval of the x-axis.

102. Find the area of the region between the curve and the
interval of the x-axis.

103. The region bounded below by the parabola and above by
the line is to be partitioned into two subsections of equal
area by cutting across it with the horizontal line 

a. Sketch the region and draw a line across it that looks
about right. In terms of c, what are the coordinates of the
points where the line and parabola intersect? Add them to
your figure.

b. Find c by integrating with respect to y. (This puts c in the
limits of integration.)

c. Find c by integrating with respect to x. (This puts c into the
integrand as well.)

104. Find the area of the region between the curve and
the line by integrating with respect to a. x, b. y.

105. Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the line above left by the
curve and above right by the curve 

106. Find the area of the region in the first quadrant bounded on
the left by the y-axis, below by the curve above left
by the curve and above right by the line

x

y

0

1

2

1 2

x � 2�y

x � 3 � y

x � (y � 1)2 

x = 3 - y .
x = sy - 1d2,

x = 21y ,

y = 2>1x .y = 1 + 1x ,
y = x>4,

y = -1
y = 3 - x2

y = c

y = c.
y = 4

y = x2

-1 … x … 1
y = 21- x

-2 … x … 2
y = 2x>s1 + x2d

x = 2 ln 2.y = e-x>2,
y = ex>2,

x = ln 3.y = ex,
y = e2x,

x = p>3.x = -p>4 y = tan x

x = 5.x = 1
y = ln 2xy = ln x

y = cos x .y = sin x

y = 1>x2 ,x = 2,y = x ,

x - y1>5
= 0.x - y1>3

= 0

x - y = 0.x - y3
= 0
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107. The figure here shows triangle AOC inscribed in the region cut
from the parabola by the line Find the limit of
the ratio of the area of the triangle to the area of the parabolic re-
gion as a approaches zero.

108. Suppose the area of the region between the graph of a positive
continuous function ƒ and the x-axis from to is 4
square units. Find the area between the curves and

from to 

109. Which of the following integrals, if either, calculates the area of
the shaded region shown here? Give reasons for your answer.

a.

b.

110. True, sometimes true, or never true? The area of the region be-
tween the graphs of the continuous functions and

and the vertical lines and is

Give reasons for your answer.

Theory and Examples
111. Suppose that F(x) is an antiderivative of 

Express

in terms of F.

112. Show that if ƒ is continuous, then

113. Suppose that

L

1

0
ƒsxd dx = 3.

L

1

0
ƒsxd dx =

L

1

0
ƒs1 - xd dx .

L

3

1
 
sin 2x

x  dx

x 7 0.
ssin xd>x,ƒsxd =

L

b

a
[ƒsxd - g sxd] dx .

x = b sa 6 bdx = ay = g sxd
y = ƒsxd

x

y

–1

–1

1

1

y � –x y � x

L

1

-1
s -x - sxdd dx =

L

1

-1
 -2x dx

L

1

-1
sx - s -xdd dx =

L

1

-1
2x dx

x = b .x = ay = 2ƒsxd
y = ƒsxd

x = bx = a

x

y

CA

O–a a

y � x2

y � a2

(a, a2)(–a, a2)

y = a2 .y = x2

5.6 Substitution and Area Between Curves 353

Find

if a. ƒ is odd, b. ƒ is even.

114. a. Show that if ƒ is odd on then

b. Test the result in part (a) with and 

115. If ƒ is a continuous function, find the value of the integral

by making the substitution and adding the resulting
integral to I.

116. By using a substitution, prove that for all positive numbers x and y,

The Shift Property for Definite Integrals A basic property of def-
inite integrals is their invariance under translation, as expressed by the
equation.

(1)

The equation holds whenever ƒ is integrable and defined for the nec-
essary values of x. For example in the accompanying figure, show that

because the areas of the shaded regions are congruent.

117. Use a substitution to verify Equation (1).

118. For each of the following functions, graph ƒ(x) over [a, b] and
over to convince yourself that Equation

(1) is reasonable.

a.

b.

c. ƒsxd = 2x - 4, a = 4, b = 8, c = 5

ƒsxd = sin x, a = 0, b = p, c = p>2
ƒsxd = x2, a = 0, b = 1, c = 1

[a - c, b - c]ƒsx + cd

x

y

0 1–1–2

y � (x � 2)3 y � x3 

L

-1

-2
sx + 2d3 dx =

L

1

0
x3 dx

L

b

a
ƒsxd dx =

L

b - c

a - c
ƒsx + cd dx .

L

xy

x
 
1
t  dt =

L

y

1
 
1
t  dt .

u = a - x

I =

L

a

0
 

ƒsxd dx

ƒsxd + ƒsa - xd

a = p>2.ƒsxd = sin x

L

a

-a
 ƒsxd dx = 0.

[-a, a] ,

L

0

-1
ƒsxd dx
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354 Chapter 5: Integration

COMPUTER EXPLORATIONS
In Exercises 119–122, you will find the area between curves in the
plane when you cannot find their points of intersection using simple
algebra. Use a CAS to perform the following steps:

a. Plot the curves together to see what they look like and how
many points of intersection they have.

b. Use the numerical equation solver in your CAS to find all the
points of intersection.

c. Integrate over consecutive pairs of intersec-
tion values.

ƒ ƒsxd - g sxd ƒ

d. Sum together the integrals found in part (c).

119.

120.

121.

122. ƒsxd = x2 cos x, g sxd = x3
- x

ƒsxd = x + sin s2xd, g sxd = x3

ƒsxd =

x4

2
- 3x3

+ 10, g sxd = 8 - 12x

ƒsxd =

x3

3
-

x2

2
- 2x +

1
3

, g sxd = x - 1

Chapter 5 Questions to Guide Your Review

1. How can you sometimes estimate quantities like distance traveled,
area, and average value with finite sums? Why might you want to
do so?

2. What is sigma notation? What advantage does it offer? Give 
examples.

3. What is a Riemann sum? Why might you want to consider such a
sum?

4. What is the norm of a partition of a closed interval?

5. What is the definite integral of a function ƒ over a closed interval
[a, b]? When can you be sure it exists?

6. What is the relation between definite integrals and area? Describe
some other interpretations of definite integrals.

7. What is the average value of an integrable function over a closed
interval? Must the function assume its average value? Explain.

8. Describe the rules for working with definite integrals (Table 5.4).
Give examples.

9. What is the Fundamental Theorem of Calculus? Why is it so 
important? Illustrate each part of the theorem with an example.

10. What is the Net Change Theorem? What does it say about the 
integral of velocity? The integral of marginal cost?

11. Discuss how the processes of integration and differentiation can
be considered as “inverses” of each other.

12. How does the Fundamental Theorem provide a solution to the
initial value problem when ƒ is
continuous?

13. How is integration by substitution related to the Chain Rule?

14. How can you sometimes evaluate indefinite integrals by substitu-
tion? Give examples.

15. How does the method of substitution work for definite integrals?
Give examples.

16. How do you define and calculate the area of the region between
the graphs of two continuous functions? Give an example.

ysx0d = y0 ,dy>dx = ƒsxd,

Chapter 5 Practice Exercises

Finite Sums and Estimates
1. The accompanying figure shows the graph of the velocity (ft sec)

of a model rocket for the first 8 sec after launch. The rocket accel-
erated straight up for the first 2 sec and then coasted to reach its
maximum height at 

a. Assuming that the rocket was launched from ground level,
about how high did it go? (This is the rocket in Section 3.3,
Exercise 17, but you do not need to do Exercise 17 to do the
exercise here.)

2 4 6 80

50

100

150

200

Time after launch (sec)

V
el

oc
ity

 (
ft

/s
ec

)

t = 8 sec .

> b. Sketch a graph of the rocket’s height aboveground as a func-
tion of time for 

2. a. The accompanying figure shows the velocity (m sec) of a
body moving along the s-axis during the time interval from

to About how far did the body travel during
those 10 sec?

b. Sketch a graph of s as a function of t for assum-
ing 

0

1

2 4 6 8 10

2

3

4

5

Time (sec)

V
el

oc
ity

 (
m

/s
ec

)

ss0d = 0.
0 … t … 10

t = 10 sec.t = 0

>0 … t … 8.
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Chapter 5 Practice Exercises 355

3. Suppose that and Find the value of

a. b.

c. d.

4. Suppose that and Find the values of

a. b.

c. d.

Definite Integrals
In Exercises 5–8, express each limit as a definite integral. Then evalu-
ate the integral to find the value of the limit. In each case, P is a parti-
tion of the given interval and the numbers are chosen from the
subintervals of P.

5. where P is a partition of [1, 5]

6. where P is a partition of [1, 3]

7. where P is a partition of 

8. where P is a partition of 

9. If and 
find the values of the following.

a. b.

c. d.

e.

10. If and find
the values of the following.

a. b.

c. d.

e.

Area
In Exercises 11–14, find the total area of the region between the graph
of ƒ and the x-axis.

11.

12.

13.

14. ƒsxd = 1 - 1x, 0 … x … 4

ƒsxd = 5 - 5x2>3, -1 … x … 8

ƒsxd = 1 - sx2>4d, -2 … x … 3

ƒsxd = x2
- 4x + 3, 0 … x … 3

L

2

0
sg sxd - 3ƒsxdd dx

L

2

0
22 ƒsxd dx

L

0

2
ƒsxd dx

L

2

1
g sxd dx

L

2

0
g sxd dx

1
1

0  g sxd dx = 2,1
2

0 ƒsxd dx = p, 1
2

0  7g sxd dx = 7,

L

5

-2
aƒsxd + g sxd

5
b  dx

L

5

-2
s -pg sxdd dx

L

-2

5
g sxd dx

L

5

2
ƒsxd dx

L

2

-2
 ƒsxd dx

1
5

-2 g sxd dx = 2,1
2

-2 3ƒsxd dx = 12, 1
5

-2 ƒsxd dx = 6,

[0, p>2]lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
ssin ckdscos ckd ¢xk ,

[-p, 0]lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
acos ack

2
bb  ¢xk ,

lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
cksck 

2
- 1d1>3 ¢xk ,

lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
s2ck - 1d-1>2 ¢xk ,

ck

a

20

k = 1
sak - 2da

20

k = 1
a1

2
-

2bk

7
b

a

20

k = 1
sak + bkda

20

k = 1
3ak

a

20

k = 1
bk = 7.a

20

k = 1
ak = 0

a

10

k = 1
a5

2
- bkba

10

k = 1
sak + bk - 1d

a

10

k = 1
sbk - 3akda

10

k = 1
 
ak

4

a

10

k = 1
bk = 25.a

10

k = 1
ak = -2

Find the areas of the regions enclosed by the curves and lines in Exer-
cises 15–26.

15.

16.

17.

18.

19. 20.

21.

22.

23.

24.

25.

26.

27. Find the area of the “triangular” region bounded on the left by
on the right by and above by 

28. Find the area of the “triangular” region bounded on the left by
on the right by and below by 

29. Find the extreme values of and find the area of
the region enclosed by the graph of ƒ and the x-axis.

30. Find the area of the region cut from the first quadrant by the curve

31. Find the total area of the region enclosed by the curve 
and the lines and 

32. Find the total area of the region between the curves and
for 

33. Area Find the area between the curve and the
x-axis from to 

34. a. Show that the area between the curve and the x-axis
from to is the same as the area between the
curve and the x-axis from to 

b. Show that the area between the curve and the x-axis
from ka to kb is the same as the area between the curve and
the x-axis from to x = b s0 6 a 6 b, k 7 0d .x = a

y = 1>x
x = 2.x = 1

x = 20x = 10
y = 1>x

x = e .x = 1
y = 2sln xd>x

0 … x … 3p>2.y = cos x
y = sin x

y = -1.x = y
x = y2>3

x1>2
+ y1>2

= a1>2.

ƒsxd = x3
- 3x2

y = 1.y = 6 - x ,y = 1x ,

y = 2.y = x2 ,x + y = 2,

y = 8 cos x, y = sec2 x, -p>3 … x … p>3
y = 2 sin x, y = sin 2x, 0 … x … p

y = ƒ sin x ƒ , y = 1, -p>2 … x … p>2
y = sin x, y = x, 0 … x … p>4
y2

= 4x + 4, y = 4x - 16

y2
= 4x, y = 4x - 2

x = 4 - y2, x = 0x = 2y2, x = 0, y = 3

x

y

0 1

1
x3 � �y � 1,  0 � x � 1

x3
+ 1y = 1, x = 0, y = 0, for 0 … x … 1

x

y

1

0 1

�x � �y � 1

1x + 1y = 1, x = 0, y = 0

y = x, y = 1>1x, x = 2

y = x, y = 1>x2, x = 2
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356 Chapter 5: Integration

Initial Value Problems

35. Show that solves the initial value problem

36. Show that solves the initial value
problem

Express the solutions of the initial value problems in Exercises 37 and 38
in terms of integrals.

37.

38.

Solve the initial value problems in Exercises 39–42.

39.

40.

41.

42.

Evaluating Indefinite Integrals
Evaluate the integrals in Exercises 43–72.

43. 44.

45.

46.

47. 48.

49. 50.

51.

52.

53. 54.

55. 56.

57. 58.

59. 60.
L

 
1
r  csc2 s1 + ln rd dr

L
 
sln xd-3

x  dx

L
 
tan sln yd
y  dy

L

4

0
 

2t

t2
- 25

 dt

L

e

1
 
2ln x

x  dx
L

1

-1
 

dx
3x - 4

L
 (csc2 x) ecot x dx

L
ssec2 xd e tan x dx

L
ey csc sey

+ 1d cot sey
+ 1d dy

L
ex sec2 sex

- 7d dx

L
 (sec u tan u) 21 + sec u du

L
 1t sin s2t3>2d dt

L
 
st + 1d2

- 1

t4  dt
L
at -

2
t b at +

2
t b  dt

L
a 1

22u - p
+ 2 sec2 s2u - pdb  du

L
s2u + 1 + 2 cos s2u + 1dd du

L
stan xd-3>2 sec2 x dx

L
2scos xd-1>2 sin x dx

dy

dx
=

1
1 + x2 -

2

21 - x2
, y s0d = 2

dy

dx
=

1

x2x2
- 1

, x 7 1; y s2d = p

dy

dx
=

1
x2

+ 1
- 1, y s0d = 1

dy

dx
=

1

21 - x2
, y s0d = 0

dy

dx
= 22 - sin2 x ,  y s -1d = 2

dy

dx
=

sin x
x , y s5d = -3

d2y

dx2 = 2sec x tan x ; y¿s0d = 3, y s0d = 0.

y = 1
x

0 A1 + 22sec t B  dt

d2 y

dx2 = 2 -

1
x2 ; y¿s1d = 3, y s1d = 1.

y = x2
+

L

x

1
 
1
t  dt

61. 62.

63. 64.

65. 66.

67.

68.

69. 70.

71. 72.

Evaluating Definite Integrals
Evaluate the integrals in Exercises 73–112.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

97. 98.

99. 100.

101. 102.

103. 104.
L

e

1
 
8 ln 3 log3 u

u
 du

L

8

1
 
log4 u

u
 du

L

3

1
 
sln sy + 1dd2

y + 1
 dy

L

e

1
 
1
x  s1 + 7 ln xd-1>3 dx

L

ln 9

0
 euseu - 1d1>2 du

L

ln 5

0
 ers3er

+ 1d-3>2 dr

L

0

-ln 2
 e2w dw

L

-1

-2
 e-sx + 1d dx

L

8

1
 a 2

3x
-

8
x2 b  dx

L

4

1
 ax

8
+

1
2x
b  dx

L

p>4
0

 
sec2 x

s1 + 7 tan xd2>3 dx
L

p>2
0

 
3 sin x cos x

21 + 3 sin2 x
 dx

L

p>2
-p>2  15 sin4 3x cos 3x dx

L

p>2
0

5ssin xd3>2 cos x dx

L

3p>4
p>4  csc z cot z dz

L

0

-p>3 sec x tan x dx

L

p

0
 tan2 

u

3
 du

L

3p

p

 cot2 
x
6

 dx

L

3p>4
p>4  csc2 x dx

L

p>3
0

 sec2 u du

L

p>4
0

 cos2 a4t -

p

4
b  dt

L

p

0
 sin2 5r dr

L

1>2
0

x3s1 + 9x4d-3>2 dx
L

1

1>8 x-1>3s1 - x2>3d3>2 dx

L

1

0
 

dr

23 (7 - 5r)2L

1

0
 

36 dx

s2x + 1d3

L

4

1
 
A1 + 1u B1>2
1u

 du
L

4

1
 

dt
t1t

L

27

1
x-4>3 dx

L

2

1
 
4
y2 dy

L

1

0
s8s3

- 12s2
+ 5d ds

L

1

-1
s3x2

- 4x + 7d dx

L
 
stan-1 xd2 dx

1 + x2
L

 
dy

2tan- 1 y s1 + y2d

L
 
2sin-1 x dx

21 - x2L
 
esin-12x dx

22x - x2

L
 

dx

sx + 3d2sx + 3d2
- 25

L
 

dx

s2x - 1d2s2x - 1d2
- 4

L
 

dx

1 + s3x + 1d2
L

 
dx

2 + sx - 1d2

L
 

6 dr

24 - sr + 1d2L
 

3 dr

21 - 4sr - 1d2

L
 2tan x sec2 x dx

L
x3x2

 dx
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105. 106.

107. 108.

109. 110.

111. 112.

Average Values

113. Find the average value of 

a. over 

b. over 

114. Find the average value of

a. over [0, 3]

b. over [0, a]

115. Let ƒ be a function that is differentiable on [a, b]. In Chapter 2
we defined the average rate of change of ƒ over [a, b] to be

and the instantaneous rate of change of ƒ at x to be In this
chapter we defined the average value of a function. For the new def-
inition of average to be consistent with the old one, we should have

Is this the case? Give reasons for your answer.

116. Is it true that the average value of an integrable function over an
interval of length 2 is half the function’s integral over the inter-
val? Give reasons for your answer.

117. a. Verify that 

b. Find the average value of ln x over [1, e].

118. Find the average value of on [1, 2].

119. Compute the average value of the temperature function

for a 365-day year. (See Exercise 98, Section 3.6.) This is one way
to estimate the annual mean air temperature in Fairbanks, Alaska.
The National Weather Service’s official figure, a numerical aver-
age of the daily normal mean air temperatures for the year, is
25.7ºF, which is slightly higher than the average value of ƒ(x).

120. Specific heat of a gas Specific heat is the amount of heat
required to raise the temperature of a given mass of gas with
constant volume by 1ºC, measured in units of cal deg-mole
(calories per degree gram molecule). The specific heat of oxy-
gen depends on its temperature T and satisfies the formula

Find the average value of for and the tem-
perature at which it is attained.

20° … T … 675°CCy

Cy = 8.27 + 10-5 s26T - 1.87T 2d .

>
Cy

ƒsxd = 37 sin a 2p
365

 sx - 101db + 25

ƒsxd = 1>x
1  ln x dx = x ln x - x + C.

ƒsbd - ƒsad
b - a

= average value of ƒ¿ on [a, b] .

ƒ¿sxd .

ƒsbd - ƒsad
b - a

y = 2ax

y = 23x

[-k, k]

[-1, 1]

ƒsxd = mx + b

L

-26>25

-2>25
 

dy

ƒ y ƒ25y2
- 3L

2>3
22>3 

dy

ƒ y ƒ29y2
- 1

L
 

24 dy

y2y2
- 16L

 
dy

y24y2
- 1

L

3

23
 

dt

3 + t2
L

2

-2
 

3 dt

4 + 3t2

L

1>5
-1>5  

6 dx

24 - 25x2L

3>4
-3>4  

6 dx

29 - 4x2

Differentiating Integrals
In Exercises 121–128, find .

121. 122.

123. 124.

125. 126.

127. 128.

Theory and Examples
129. Is it true that every function that is differentiable on 

[a, b] is itself the derivative of some function on [a, b]? Give rea-
sons for your answer.

130. Suppose that F(x) is an antiderivative of Ex-

press in terms of F and give a reason for your
answer.

131. Find if Explain the main steps in
your calculation.

132. Find if Explain the main steps
in your calculation.

133. A new parking lot To meet the demand for parking, your town
has allocated the area shown here. As the town engineer, you
have been asked by the town council to find out if the lot can be
built for $10,000. The cost to clear the land will be $0.10 a
square foot, and the lot will cost $2.00 a square foot to pave. Can
the job be done for $10,000? Use a lower sum estimate to see.
(Answers may vary slightly, depending on the estimate used.)

134. Skydivers A and B are in a helicopter hovering at 6400 ft. Skydiver
A jumps and descends for 4 sec before opening her parachute. The
helicopter then climbs to 7000 ft and hovers there. Forty-five sec-
onds after A leaves the aircraft, B jumps and descends for 13 sec
before opening his parachute. Both skydivers descend at 16 ft sec
with parachutes open. Assume that the skydivers fall freely (no ef-
fective air resistance) before their parachutes open.

a. At what altitude does A’s parachute open?

b. At what altitude does B’s parachute open?

c. Which skydiver lands first?

>

0 ft

36 ft

54 ft

51 ft

49.5 ft

54 ft

64.4 ft

67.5 ft

42 ft

Ignored

Vertical spacing � 15 ft

y = 1
0

 cos x s1>s1 - t2dd dt .dy>dx

y = 1
1

x  21 + t2 dt .dy>dx

1
1

0  21 + x4 dx

ƒsxd = 21 + x4 .

y = ƒsxd

y =

L

p>4
tan-1 x

 e2t dty =

L

sin-1 x

0
 

dt

21 - 2t2

y =

L

e2x

1
 ln (t2

+ 1) dty =

L

0

ln x2
ecos t dt

y =

L

2

sec x
  

1
t2

+ 1
 dty =

L

1

x
 

6
3 + t4 dt

y =

L

7x2

2
 22 + cos3 t dty =

L

x

2
22 + cos3 t dt

dy>dx

T

T
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Chapter 5 Additional and Advanced Exercises

Theory and Examples

1. a. If 

b. If 

Give reasons for your answers.

2. Suppose 

Which, if any, of the following statements are true?

a. b.

c. on the interval 

3. Initial value problem Show that

solves the initial value problem

(Hint: )

4. Proportionality Suppose that x and y are related by the equation

Show that is proportional to y and find the constant of
proportionality.

5. Find ƒ(4) if

a. b.

6. Find from the following information.

i) ƒ is positive and continuous.

ii) The area under the curve from to is

7. The area of the region in the xy-plane enclosed by the x-axis, the
curve and the lines and is equal

to for all Find ƒ(x).

8. Prove that

(Hint: Express the integral on the right-hand side as the difference
of two integrals. Then show that both sides of the equation have
the same derivative with respect to x.)

L

x

0
a
L

u

0
ƒstd dtb  du =

L

x

0
ƒsudsx - ud du .

b 7 1.2b2
+ 1 - 22

x = bx = 1y = ƒsxd, ƒsxd Ú 0,

a2

2
+

a
2

 sin a +

p

2
 cos a .

x = ax = 0y = ƒsxd

ƒsp/2d
L

ƒsxd

0
t2 dt = x cos px .

L

x2

0
ƒstd dt = x cos px

d2y/dx2

x =

L

y

0
 

1

21 + 4t2
 dt.

sin sax - atd = sin ax cos at - cos ax sin at .

d2y

dx2 + a2y = ƒsxd, dy

dx
= 0  and  y = 0 when x = 0.

y =

1
a
L

x

0
ƒstd sin asx - td dt

-2 … x … 5ƒsxd … g sxd
L

5

-2
sƒsxd + g sxdd = 9

L

2

5
ƒsxd dx = -3

L

2

-2
ƒsxd dx = 4, 

L

5

2
ƒsxd dx = 3, 

L

5

-2
g sxd dx = 2.

 
L

1

0
2ƒsxd dx = 24 = 2?

L

1

0
ƒsxd dx = 4 and ƒsxd Ú 0, does

L

1

0
7ƒsxd dx = 7,  does 

L

1

0
ƒsxd dx = 1?

9. Finding a curve Find the equation for the curve in the xy-plane
that passes through the point if its slope at x is always

10. Shoveling dirt You sling a shovelful of dirt up from the bottom
of a hole with an initial velocity of 32 ft sec. The dirt must rise
17 ft above the release point to clear the edge of the hole. Is that
enough speed to get the dirt out, or had you better duck?

Piecewise Continuous Functions
Although we are mainly interested in continuous functions, many func-
tions in applications are piecewise continuous. A function ƒ(x) is
piecewise continuous on a closed interval I if ƒ has only finitely
many discontinuities in I, the limits

exist and are finite at every interior point of I, and the appropriate one-
sided limits exist and are finite at the endpoints of I. All piecewise
continuous functions are integrable. The points of discontinuity subdi-
vide I into open and half-open subintervals on which ƒ is continuous,
and the limit criteria above guarantee that ƒ has a continuous exten-
sion to the closure of each subinterval. To integrate a piecewise con-
tinuous function, we integrate the individual extensions and add the
results. The integral of

(Figure 5.32) over is

 =

3
2

+

8
3

- 1 =

19
6

.

 = cx -

x2

2
d

-1

0

+ cx3

3
d

0

2

+ c-x d
2

3

 
L

3

-1
ƒsxd dx =

L

0

-1
s1 - xd dx +

L

2

0
x2 dx +

L

3

2
s -1d dx

[-1, 3]

ƒsxd = •
1 - x, -1 … x 6 0

x2,    0 … x 6 2

-1,    2 … x … 3

lim
x:c-

 ƒsxd    and    lim
x:c +

ƒsxd

>
3x2

+ 2.
s1, -1d

x

y

2

20 31–1

1

3

4

–1

y � x2

y � 1 � x

y � –1

FIGURE 5.32 Piecewise continuous
functions like this are integrated piece by
piece.
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The Fundamental Theorem applies to piecewise continuous func-
tions with the restriction that is expected to equal
ƒ(x) only at values of x at which ƒ is continuous. There is a similar re-
striction on Leibniz’s Rule (see Exercises 31–38).

Graph the functions in Exercises 11–16 and integrate them over
their domains.

11.

12.

13.

14.

15.

16.

17. Find the average value of the function graphed in the accompany-
ing figure.

18. Find the average value of the function graphed in the accompany-
ing figure.

Limits
Find the limits in Exercises 19–22.

19. 20.

21.

22.

Approximating Finite Sums with Integrals
In many applications of calculus, integrals are used to approximate
finite sums—the reverse of the usual procedure of using finite sums
to approximate integrals.

lim
n: q

 
1
n Ae1>n

+ e2>n
+

Á
+ e sn - 1d>n

+ en>n B
lim

n: q

 a 1
n + 1

+

1
n + 2

+
Á

+

1
2n
b

lim
x: q

 
1
x
L

x

0
 tan-1 t dtlim

b:1-

L

b

0
 

dx

21 - x2

x

y

1

1 2 30

x

y

0 1 2

1

hsrd = •
r, -1 … r 6 0

1 - r2, 0 … r 6 1

1, 1 … r … 2

ƒsxd = •
1, -2 … x 6 -1

1 - x2, -1 … x 6 1

2, 1 … x … 2

hszd = e21 - z, 0 … z 6 1

s7z - 6d-1>3, 1 … z … 2

g std = e t, 0 … t 6 1

 sin pt, 1 … t … 2

ƒsxd = e2-x, -4 … x 6 0

x2
- 4, 0 … x … 3

ƒsxd = e x2>3, -8 … x 6 0

-4, 0 … x … 3

sd>dxd1
x

a  ƒstd dt
For example, let’s estimate the sum of the square roots of the first

n positive integers, The integral

is the limit of the upper sums

Therefore, when n is large, will be close to and we will have

The following table shows how good the approximation can be.

n Root sum Relative error

10 22.468 21.082
50 239.04 235.70 1.4%

100 671.46 666.67 0.7%
1000 21,097 21,082 0.07%

23. Evaluate

by showing that the limit is

and evaluating the integral.

24. See Exercise 23. Evaluate

25. Let ƒ(x) be a continuous function. Express

as a definite integral.

lim
n: q

 
1
n cƒ a1n b + ƒ a2n b +

Á
+ ƒ ann b d

lim
n: q

 
1
n4 s13

+ 23
+ 33

+
Á

+ n3d .

L

1

0
x5 dx

lim
n: q

 
15

+ 25
+ 35

+
Á

+ n5

n6

1.386>22.468 L 6%

s2>3dn3>2

Root sum = 21 + 22 +
Á

+ 2n = Sn
# n3>2

L

2
3

 n3>2 .

2>3Sn

x

y

0

y � �x

1 1
n

2
n

n � 1
n

 =

21 + 22 +
Á

+ 2n

n3>2 .

 Sn = A
1
n #  

1
n + A

2
n #  

1
n +

Á
+ A

n
n #  

1
n

L

1

0
1x dx =

2
3

 x3>2 d
0

1

=

2
3

21 + 22 +
Á

+ 2n .
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360 Chapter 5: Integration

26. Use the result of Exercise 25 to evaluate

a.

b.

c.

What can be said about the following limits?

d.

e.

27. a. Show that the area of an n-sided regular polygon in a circle
of radius r is

b. Find the limit of as Is this answer consistent with
what you know about the area of a circle?

28. Let

To calculate show that

and interpret as an approximating sum of the integral

(Hint: Partition [0, 1] into n intervals of equal length and write
out the approximating sum for inscribed rectangles.)

Defining Functions Using the Fundamental Theorem
29. A function defined by an integral The graph of a function ƒ

consists of a semicircle and two line segments as shown. Let

a. Find g(1).

b. Find g(3).

c. Find 

d. Find all values of x on the open interval at which g
has a relative maximum.

e. Write an equation for the line tangent to the graph of g at
x = -1.

s -3, 4d
g s -1d .

y

1 3–3

y � f(x)

–1
–1

1

3

x

g sxd = 1
x

1  ƒstd dt .

L

1

0
 x2 dx.

Sn

Sn =

1
n c a1n b

2

+ a2n b
2

+
Á

+ an - 1
n b2 d

limn:q Sn,

Sn =

12

n3 +

22

n3 +
Á

+

(n - 1)2

n3 .

n : q .An

An =

nr2

2
 sin 

2p
n .

An

lim
n: q

 
1

n15 s115
+ 215

+ 315
+

Á
+ n15d

lim
n: q

 
1

n17 s115
+ 215

+ 315
+

Á
+ n15d

lim
n: q

 
1
n asin 

p
n + sin 

2p
n + sin 

3p
n +

Á
+ sin 

np
n b .

lim
n: q

 
1

n16 s115
+ 215

+ 315
+

Á
+ n15d ,

lim
n: q

 
1
n2 s2 + 4 + 6 +

Á
+ 2nd ,

f. Find the x-coordinate of each point of inflection of the graph
of g on the open interval 

g. Find the range of g.

30. A differential equation Show that both of the following condi-
tions are satisfied by : 

i)

ii) and when 

Leibniz’s Rule In applications, we sometimes encounter functions
like

defined by integrals that have variable upper limits of integration and
variable lower limits of integration at the same time. The first integral
can be evaluated directly, but the second cannot. We may find the de-
rivative of either integral, however, by a formula called Leibniz’s
Rule.

ƒsxd =

L

x2

 sin x
s1 + td dt and g sxd =

L

21x

1x
 sin t2 dt ,

x = p .y¿ = -2y = 1

y– = -sin x + 2 sin 2x

+  11
p

x  cos 2t dty = sin x +

s -3, 4d .

t

y

0

Uncovering

Covering
f (u(x))

y � f (t)
f (y(x))

u(x)

y(x)
A(x) � f (t) dt

y(x)

u(x)L

FIGURE 5.33 Rolling and unrolling a carpet: a geometric
interpretation of Leibniz’s Rule:

dA
dx

= ƒsysxdd 
dy
dx

- ƒsusxdd 
du
dx

.

Figure 5.33 gives a geometric interpretation of Leibniz’s Rule. It
shows a carpet of variable width ƒ(t) that is being rolled up at the left
at the same time x as it is being unrolled at the right. (In this interpre-
tation, time is x, not t.) At time x, the floor is covered from u(x) to (x).
The rate at which the carpet is being rolled up need not be the
same as the rate at which the carpet is being laid down. At any
given time x, the area covered by carpet is

Asxd =

L

ysxd

usxd
ƒstd dt .

dy>dx
du>dx

y

Leibniz’s Rule
If ƒ is continuous on [a, b] and if u(x) and (x) are differen-
tiable functions of x whose values lie in [a, b], then

d
dx

 
L

ysxd

usxd
ƒstd dt = ƒsysxdd 

dy
dx

- ƒsusxdd 
du
dx

.

y

7001_AWLThomas_ch05p297-362.qxd  10/28/09  5:03 PM  Page 360



Chapter 5 Additional and Advanced Exercises 361

At what rate is the covered area changing? At the instant x, A(x) is in-
creasing by the width ƒ( (x)) of the unrolling carpet times the rate

at which the carpet is being unrolled. That is, A(x) is being in-
creased at the rate

At the same time, A is being decreased at the rate

the width at the end that is being rolled up times the rate . The
net rate of change in A is

which is precisely Leibniz’s Rule.
To prove the rule, let F be an antiderivative of ƒ on [a, b]. Then

Differentiating both sides of this equation with respect to x gives the
equation we want:

Chain Rule

Use Leibniz’s Rule to find the derivatives of the functions in 
Exercises 31–38.

31.

32.

33.

34. 35.

36. 37.

38.

Theory and Examples

39. Use Leibniz’s Rule to find the value of x that maximizes the value
of the integral

L

x + 3

x
 t s5 - td dt .

y =

L

e2x

e41x
 ln t dt

y =

L

ln x

0
 sin et dty =

L

23 x

2x
 ln t dt

y =

L

x2

x2>2 ln 2t dtg(y) =

L

y2

2y
 
et

t  dt

g s yd =

L

21y

1y
 sin t2 dt

ƒsxd =

L

 sin x

 cos x
 

1
1 - t2 dt

ƒsxd =

L

x

1>x 
1
t  dt

 = ƒsysxdd 
dy
dx

- ƒsusxdd 
du
dx

.

 = F¿sysxdd 
dy
dx

- F¿susxdd 
du
dx

 
d
dxL

ysxd

usxd
ƒstd dt =

d
dx

 cFsysxdd - Fsusxdd d

L

ysxd

usxd
ƒstd dt = Fsysxdd - Fsusxdd .

dA
dx

= ƒsysxdd 
dy
dx

- ƒsusxdd 
du
dx

,

du>dx

ƒsusxdd 
du
dx

,

ƒsysxdd 
dy
dx

.

dy>dx
y

40. For what does Give reasons for your
answer.

41. Find the areas between the curves and 
and the x-axis from to What is the ratio

of the larger area to the smaller?

42. a. Find df dx if

b. Find ƒ(0).

c. What can you conclude about the graph of ƒ? Give reasons
for your answer.

43. Find if and 

44. Use the accompanying figure to show that

45. Napier’s inequality Here are two pictorial proofs that

Explain what is going on in each case.

a.

b.

(Source: Roger B. Nelson, College Mathematics Journal, Vol. 24,
No. 2, March 1993, p. 165.)

x

y

0 a b

y � 1
x

x

y

0 a b

L1

L2

L3

y � ln x

b 7 a 7 0 Q  1
b

6

ln b - ln a
b - a

6

1
a .

0 1

1

�
2

�
2

y � sin x

y � sin–1 x

x

y

L

p>2
0

 sin x dx =

p

2
-

L

1

0
 sin-1 x dx .

g sxd =

L

x

2
 

t

1 + t4 dt .ƒsxd = egsxdƒ¿s2d

ƒsxd =

L

e x

1
 
2 ln t

t  dt .

>
x = e .x = 12slog4 xd>x y =y = 2slog2 xd>x

x s x xd
= sxxdx ?x 7 0
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Chapter 5 Technology Application Projects

Mathematica/Maple Modules:
Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves
Visualize and approximate areas and volumes in Part I.

Riemann Sums, Definite Integrals, and the Fundamental Theorem of Calculus
Parts I, II, and III develop Riemann sums and definite integrals. Part IV continues the development of the Riemann sum and definite integral
using the Fundamental Theorem to solve problems previously investigated.

Rain Catchers, Elevators, and Rockets
Part I illustrates that the area under a curve is the same as the area of an appropriate rectangle for examples taken from the chapter. You will
compute the amount of water accumulating in basins of different shapes as the basin is filled and drained.

Motion Along a Straight Line, Part II
You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among position, velocity, and
acceleration. Figures in the text can be animated using this software.

Bending of Beams
Study bent shapes of beams, determine their maximum deflections, concavity, and inflection points, and interpret the results in terms of a beam’s
compression and tension.
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6
APPLICATIONS OF

DEFINITE INTEGRALS

OVERVIEW In Chapter 5 we saw that a continuous function over a closed interval has a
definite integral, which is the limit of any Riemann sum for the function. We proved that
we could evaluate definite integrals using the Fundamental Theorem of Calculus. We also
found that the area under a curve and the area between two curves could be computed as
definite integrals.

In this chapter we extend the applications of definite integrals to finding volumes,
lengths of plane curves, and areas of surfaces of revolution. We also use integrals to
solve physical problems involving the work done by a force, the fluid force against a 
planar wall, and the location of an object’s center of mass.

6.1 Volumes Using Cross-Sections

In this section we define volumes of solids using the areas of their cross-sections. A cross-
section of a solid S is the plane region formed by intersecting S with a plane (Figure 6.1).
We present three different methods for obtaining the cross-sections appropriate to finding
the volume of a particular solid: the method of slicing, the disk method, and the washer
method.

Suppose we want to find the volume of a solid S like the one in Figure 6.1. We begin
by extending the definition of a cylinder from classical geometry to cylindrical solids with
arbitrary bases (Figure 6.2). If the cylindrical solid has a known base area A and height h,
then the volume of the cylindrical solid is

This equation forms the basis for defining the volumes of many solids that are not cylin-
ders, like the one in Figure 6.1. If the cross-section of the solid S at each point in the in-
terval [a, b] is a region S(x) of area A(x), and A is a continuous function of x, we can define
and calculate the volume of the solid S as the definite integral of A(x). We now show how
this integral is obtained by the method of slicing.

x

Volume = area * height = A # h.

Cross-section S(x)
with area A(x)

a

b

x

S

0

Px

x

y

FIGURE 6.1 A cross-section S(x) of the
solid S formed by intersecting S with a plane

perpendicular to the x-axis through the
point x in the interval [a, b].
Px

FIGURE 6.2 The volume of a cylindrical solid is always defined to
be its base area times its height.

A � base area

Plane region whose
area we know

Cylindrical solid based on region
Volume � base area ×  height � Ah

h � height
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364 Chapter 6: Applications of Definite Integrals

Slicing by Parallel Planes

We partition [a, b] into subintervals of width (length) and slice the solid, as we
would a loaf of bread, by planes perpendicular to the x-axis at the partition points

The planes perpendicular to the x-axis at the parti-
tion points, slice S into thin “slabs” (like thin slices of a loaf of bread). A typical slab is
shown in Figure 6.3. We approximate the slab between the plane at and the plane at

by a cylindrical solid with base area and height (Figure 6.4).
The volume of this cylindrical solid is which is approximately the same
volume as that of the slab:

The volume V of the entire solid S is therefore approximated by the sum of these cylindri-
cal volumes,

This is a Riemann sum for the function A(x) on [a, b]. We expect the approximations from
these sums to improve as the norm of the partition of [a, b] goes to zero. Taking a partition
of [a, b] into n subintervals with gives

So we define the limiting definite integral of the Riemann sum to be the volume of the
solid S.

Asxkd ¢xk =

L

b

a
Asxddx.lim

n: q

 a

n

k = 1

7P 7 : 0

V L a

n

k = 1
Vk = a

n

k = 1
Asxkd ¢xk .

Volume of the k th slab L Vk = Asxkd ¢xk .

Asxkd #
¢xk ,Vk

¢xk = xk - xk - 1Asxkdxk

xk - 1

Pxk ,a = x0 6 x1 6
Á

6 xn = b .

¢xk

EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side. The cross-
section of the pyramid perpendicular to the altitude x m down from the vertex is a square
x m on a side. Find the volume of the pyramid.

Solution

1. A sketch. We draw the pyramid with its altitude along the x-axis and its vertex at the
origin and include a typical cross-section (Figure 6.5).

a
xk21 xk

b

0

y

x

S

FIGURE 6.3 A typical thin slab in the
solid S.

0

Approximating
cylinder based
on S(xk) has height
Δxk 5 xk 2 xk21

Plane at xk21

Plane at xk

xk

xk21

The cylinder’s base
is the region S(xk)
with area A(xk)

NOT TO SCALE

y

x

FIGURE 6.4 The solid thin slab in
Figure 6.3 is shown enlarged here. It is
approximated by the cylindrical solid with
base having area and height
¢xk = xk - xk - 1 .

AsxkdSsxkd

This definition applies whenever A(x) is integrable, and in particular when it is
continuous. To apply the definition to calculate the volume of a solid, take the follow-
ing steps:

Calculating the Volume of a Solid
1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.

3. Find the limits of integration.

4. Integrate A(x) to find the volume.

DEFINITION The volume of a solid of integrable cross-sectional area A(x) 
from to is the integral of A from a to b,

V =

L

b

a
Asxd dx.

x = bx = a
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2. A formula for A(x). The cross-section at x is a square x meters on a side, so its area is

3. The limits of integration. The squares lie on the planes from to 

4. Integrate to find the volume:

EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two planes.
One plane is perpendicular to the axis of the cylinder. The second plane crosses the first
plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

Solution We draw the wedge and sketch a typical cross-section perpendicular to the
x-axis (Figure 6.6). The base of the wedge in the figure is the semicircle with that
is cut from the circle by the 45 plane when it intersects the y-axis. 
For any x in the interval [0, 3], the y-values in this semicircular base vary from 

When we slice through the wedge by a plane perpen-
dicular to the x-axis, we obtain a cross-section at x which is a rectangle of height x whose
width extends across the semicircular base. The area of this cross-section is

The rectangles run from to so we have

 = 18.

 = 0 +
2
3

 s9d3>2
 = -

2
3

 s9 - x2d3>2 d
0

3

 V =

L

b

a
Asxd dx =

L

3

0
2x29 - x2 dx

x = 3,x = 0

 = 2x29 - x2 .

 Asxd = sheightdswidthd = sxd A229 - x2 B

y = -29 - x2 to y = 29 - x2.

°x2
+ y2

= 9
x Ú 0

V =

L

3

0
Asxd dx =

L

3

0
x2 dx =

x3

3
d

0

3

= 9 m3.

x = 3.x = 0

Asxd = x2.
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HISTORICAL BIOGRAPHY

Bonaventura Cavalieri
(1598–1647)

FIGURE 6.5 The cross-sections of the
pyramid in Example 1 are squares.

x

y

0

–3

3

x

x
45°

2�9 2 x2

⎛
⎝

⎛
⎝ x,  –�9 2 x2

FIGURE 6.6 The wedge of Example 2,
sliced perpendicular to the x-axis. The
cross-sections are rectangles.

0

y

x (m)

Typical cross-section

3

3

3
x

x

x

EXAMPLE 3 Cavalieri’s principle says that solids with equal altitudes and identical
cross-sectional areas at each height have the same volume (Figure 6.7). This follows im-
mediately from the definition of volume, because the cross-sectional area function A(x)
and the interval [a, b] are the same for both solids.

a

b Same volume

Same cross-section
area at every level

FIGURE 6.7 Cavalieri’s principle: These solids have the 
same volume, which can be illustrated with stacks of coins.

Let 
integrate,

and substitute back.
 du = -2x dx ,

u = 9 - x2, 
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366 Chapter 6: Applications of Definite Integrals

Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a plane region about an axis in its plane is
called a solid of revolution. To find the volume of a solid like the one shown in Figure 6.8,
we need only observe that the cross-sectional area A(x) is the area of a disk of radius
R(x), the distance of the planar region’s boundary from the axis of revolution. The area is
then

So the definition of volume in this case gives

Asxd = psradiusd2
= p[Rsxd]2.

0

x

y

R(x) � �x

x

y

y � �x

y � �x

0 4x

(a)

(b)

4

R(x) � �x

x

Disk

FIGURE 6.8 The region (a) and solid of
revolution (b) in Example 4.

This method for calculating the volume of a solid of revolution is often called the disk
method because a cross-section is a circular disk of radius R(x).

EXAMPLE 4 The region between the curve and the x-axis is
revolved about the x-axis to generate a solid. Find its volume.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.8). The volume is

EXAMPLE 5 The circle

is rotated about the x-axis to generate a sphere. Find its volume.

Solution We imagine the sphere cut into thin slices by planes perpendicular to the x-axis
(Figure 6.9). The cross-sectional area at a typical point x between and a is

Therefore, the volume is

The axis of revolution in the next example is not the x-axis, but the rule for calculating
the volume is the same: Integrate between appropriate limits.

EXAMPLE 6 Find the volume of the solid generated by revolving the region bounded

by and the lines about the line y = 1.y = 1, x = 4y = 2x

psradiusd2

V =

L

a

-a
Asxd dx =

L

a

-a
psa2

- x2d dx = p ca2x -
x3

3
d

-a

a

=
4
3

 pa3.

Asxd = py2
= psa2

- x2d.

-a

x2
+ y2

= a2

 = p
L

4

0
 x dx = p 

x2

2
d

0

4

= p 
s4d2

2
= 8p.

 =

L

4

0
 p C2x D2 dx

 V =

L

b

a
 p[Rsxd]2 dx

y = 2x, 0 … x … 4,

Volume by Disks for Rotation About the x-axis

V =

L

b

a
Asxd dx =

L

b

a
p[Rsxd]2 dx.

Radius for
rotation around x-axis

 Rsxd = 2x

for
rotation around x-axis
R(x) = 2a2

- x2
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Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.10). The volume is

 = p cx2

2
- 2 # 2

3
 x3>2

+ x d
1

4

=
7p
6

.

 = p
L

4

1
 Cx - 22x + 1 D  dx

 =

L

4

1
 p C2x - 1 D2 dx

 V =

L

4

1
 p[Rsxd]2 dx
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To find the volume of a solid generated by revolving a region between the y-axis and a
curve about the y-axis, we use the same method with x replaced by y.
In this case, the circular cross-section is

and the definition of volume gives

As yd = p[radius]2
= p[Rs yd]2,

x = Rs yd, c … y … d,

x

y

–a

(x, y)

a

Δx

x

A(x) 5 p(a2 2 x2)

x2 1 y2 5 a2

x2 1 y2 5 a2

x

FIGURE 6.9 The sphere generated by rotating the circle
about the x-axis. The radius is

(Example 5).Rsxd = y = 2a2
- x2

x2
+ y2

= a2

(b)

(x, 1)

x

y

y � �x

y � 1

(x, �x )

x

1
0

1

4

R(x) � �x � 1

(a)

y
y � �x

y � 1

x1 40

1

R(x) � �x � 1

x

FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6.

Radius 
for rotation around 

Expand integrand.

Integrate.

y = 1
R(x) = 2x - 1
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368 Chapter 6: Applications of Definite Integrals

EXAMPLE 7 Find the volume of the solid generated by revolving the region between
the y-axis and the curve about the y-axis.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.11). The volume is

EXAMPLE 8 Find the volume of the solid generated by revolving the region between
the parabola and the line about the line 

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.12). Note that the cross-sections are perpendicular to the line and
have y-coordinates from to The volume is

 =

64p22
15

.

 = p c4y -
4
3

 y3
+

y5

5 d
-22

22

 = p
L

22

-22
 [4 - 4y2

+ y4] dy

 =

L

22

-22
 p[2 - y2]2 dy

y = ;22 when x = 3 V =

L

22

-22
 p[Rs yd]2 dy

y = 22.y = -22
x = 3

x = 3.x = 3x = y2
+ 1

 = p
L

4

1
 
4
y2 dy = 4p c- 1

y d
1

4

= 4p c3
4
d = 3p.

 =

L

4

1
 p a2y b

2

 dy

 V =

L

4

1
 p[Rs yd]2 dy

x = 2>y, 1 … y … 4,

Volume by Disks for Rotation About the y-axis

 V =

L

d

c
 A( y) dy =

L

d

c
 p[Rs yd]2 dy.

4

1

0

2

y

y

x

x

⎛
⎝

⎛
⎝

2
y , y

2
yx �

2
yx �

2
yR(y) �

2
yR(y) �

0

1

4

y

2

(a)

(b)

y

FIGURE 6.11 The region (a) and part of
the solid of revolution (b) in Example 7.

Radius for 

rotation around y-axis

R( y) =

2
y

Radius 
for rotation around axis 

Expand integrand.

Integrate.

x = 3
R( y) = 3 - (y2

+ 1)

x

y

y

0 1 3 5

�2

–�2
x � y2 � 1

x � 3

(3, –�2)

(3, �2)

R(y) � 3 � (y2 � 1)

� 2 � y2
R(y) � 2 � y2

(b)(a)

x

y

y

0 1 5

�2

–�2
x � y2 � 1

3

FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8.
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Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-
tion, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of
revolution are washers (the purplish circular surface in Figure 6.13) instead of disks. The
dimensions of a typical washer are

The washer’s area is

Consequently, the definition of volume in this case gives

Asxd = p[Rsxd]2
- p[rsxd]2

= ps[Rsxd]2
- [rsxd]2d.

rsxd Inner radius:

RsxdOuter radius:

6.1 Volumes Using Cross-Sections 369

y

x

0
a

x
b

y � R(x)

y � r(x)

0

x

y y

0

x

(x, R(x))

(x, r(x))

Washer

xx

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral
leads to a slightly different formula.1

b
a  Asxd dx

x

y

 

 
y � –x � 3

y � x2 � 1

(–2, 5)

(1, 2)

–2 x 0 1Interval of
integration

Washer cross-section
Outer radius: R(x) � –x � 3 
Inner radius: r (x) � x2 � 1

 

R(x) � –x � 3

(1, 2)

(–2, 5)

(a)

(b)

x

y

r (x) � x2 � 1

x

R(x) � –x � 3

r (x) � x2 � 1

FIGURE 6.14 (a) The region in Example 9
spanned by a line segment perpendicular to
the axis of revolution. (b) When the region
is revolved about the x-axis, the line
segment generates a washer.

Volume by Washers for Rotation About the x-axis

 V =

L

b

a
 A(x) dx =

L

b

a
 p([Rsxd]2

- [r(x)]2) dx.

This method for calculating the volume of a solid of revolution is called the washer
method because a thin slab of the solid resembles a circular washer of outer radius R(x)
and inner radius r(x).

EXAMPLE 9 The region bounded by the curve and the line 
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution We use the four steps for calculating the volume of a solid as discussed early in
this section.

1. Draw the region and sketch a line segment across it perpendicular to the axis of revo-
lution (the red segment in Figure 6.14a).

2. Find the outer and inner radii of the washer that would be swept out by the line seg-
ment if it were revolved about the x-axis along with the region.

These radii are the distances of the ends of the line segment from the axis of revolu-
tion (Figure 6.14).

r sxd = x2
+ 1Inner radius:

Rsxd = -x + 3Outer radius:

y = -x + 3y = x2
+ 1
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370 Chapter 6: Applications of Definite Integrals

3. Find the limits of integration by finding the x-coordinates of the intersection points of
the curve and line in Figure 6.14a.

Limits of integration

4. Evaluate the volume integral.

To find the volume of a solid formed by revolving a region about the y-axis, we
use the same procedure as in Example 9, but integrate with respect to y instead of x. 
In this situation the line segment sweeping out a typical washer is perpendicular to the
y-axis (the axis of revolution), and the outer and inner radii of the washer are func-
tions of y.

EXAMPLE 10 The region bounded by the parabola and the line in the
first quadrant is revolved about the y-axis to generate a solid. Find the volume of the
solid.

Solution First we sketch the region and draw a line segment across it perpendicular to
the axis of revolution (the y-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are 
(Figure 6.15).

The line and parabola intersect at and so the limits of integration are
and We integrate to find the volume:

 = p
L

4

0
 ay -

y2

4
b  dy = p cy2

2
-

y3

12
d

0

4

=
8
3

 p.

 =

L

4

0
 p a c2y d2 - cy

2
d2b  dy

 V =

L

d

c
 ps[Rs yd]2

- [rs yd]2d dy

d = 4.c = 0
y = 4,y = 0

Rs yd = 2y, r s yd = y>2

y = 2xy = x2

 = p c8x - 3x2
-

x3

3
-

x5

5 d
-2

1

=
117p

5

 = p
L

1

-2
s8 - 6x - x2

- x4d dx

 =

L

1

-2
pss -x + 3d2

- sx2
+ 1d2d dx

 V =

L

b

a
 ps[Rsxd]2

- [rsxd]2d dx

 x = -2, x = 1

 sx + 2dsx - 1d = 0

 x2
+ x - 2 = 0

 x2
+ 1 = -x + 3

x

y

0 2

4

In
te
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f 
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at
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n

(2, 4)

y

y

0

2
x

(a)

(b)

4

y

y
2

r (y) �

R(y) � �y 

y
2

r (y) �

y
2

x �

R(y) � �y 

x � �y 

y
2

y � 2x or

x �

y � x2 or

x � �y 

FIGURE 6.15 (a) The region being rotated
about the y-axis, the washer radii, and
limits of integration in Example 10.
(b) The washer swept out by the line
segment in part (a).

Values from Steps 2
and 3

Rotation around x-axis

Simplify algebraically.

Substitute for radii and
limits of integration.

Rotation around y-axis
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6.1 Volumes Using Cross-Sections 371

Exercises 6.1

Volumes by Slicing
Find the volumes of the solids in Exercises 1–10.

1. The solid lies between planes perpendicular to the x-axis at 
and The cross-sections perpendicular to the axis on the 
interval are squares whose diagonals run from the
parabola to the parabola 

2. The solid lies between planes perpendicular to the x-axis at
and The cross-sections perpendicular to the

x-axis are circular disks whose diameters run from the parabola
to the parabola 

3. The solid lies between planes perpendicular to the x-axis at
and The cross-sections perpendicular to the x-axis

between these planes are squares whose bases run from the semi-
circle to the semicircle 

4. The solid lies between planes perpendicular to the x-axis at 
and The cross-sections perpendicular to the x-axis be-
tween these planes are squares whose diagonals run from the
semicircle to the semicircle 

5. The base of a solid is the region between the curve 
and the interval on the x-axis. The cross-sections perpen-
dicular to the x-axis are

a. equilateral triangles with bases running from the x-axis to the
curve as shown in the accompanying figure.

b. squares with bases running from the x-axis to the curve.

6. The solid lies between planes perpendicular to the x-axis at
and The cross-sections perpendicular to the

x-axis are

a. circular disks with diameters running from the curve
to the curve 

b. squares whose bases run from the curve to the
curve 

7. The base of a solid is the region bounded by the graphs of
and The cross-sections perpendicular to

the x-axis are

a. rectangles of height 10.

b. rectangles of perimeter 20.

x = 0.y = 6,y = 3x,

y = sec x.
y = tan x

y = sec x.y = tan x

x = p>3.x = -p>3

0

p

y 5 2�sin x

x

y

[0, p]
y = 22sin x

y = 21 - x2.y = -21 - x2

x = 1.
x = -1

y = 21 - x2.y = -21 - x2

x = 1.x = -1

y � x2

y � 2 � x2

2

0

x

y

y = 2 - x2.y = x2

x = 1.x = -1

y = 2x.y = -2x
0 … x … 4

x = 4.
x = 0

8. The base of a solid is the region bounded by the graphs of 
and The cross-sections perpendicular to the x-axis are

a. isosceles triangles of height 6.

b. semi-circles with diameters running across the base of the solid.

9. The solid lies between planes perpendicular to the y-axis at 
and The cross-sections perpendicular to the y-axis are cir-
cular disks with diameters running from the y-axis to the parabola

10. The base of the solid is the disk The cross-sections
by planes perpendicular to the y-axis between and 
are isosceles right triangles with one leg in the disk.

11. Find the volume of the given tetrahedron. (Hint: Consider slices
perpendicular to one of the labeled edges.)

12. Find the volume of the given pyramid, which has a square base of
area 9 and height 5.

13. A twisted solid A square of side length s lies in a plane perpen-
dicular to a line L. One vertex of the square lies on L. As this square
moves a distance h along L, the square turns one revolution about L
to generate a corkscrew-like column with square cross-sections.

a. Find the volume of the column.

b. What will the volume be if the square turns twice instead of
once? Give reasons for your answer.

3

5

3

3

4

5

1
x2 1 y2 5 1

0

y

x

y = 1y = -1
x2

+ y2
… 1.

x = 25y2.

y = 2.
y = 0

y = x>2.
y = 2x
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372 Chapter 6: Applications of Definite Integrals

14. Cavalieri’s principle A solid lies between planes perpendicular
to the x-axis at and The cross-sections by planes
perpendicular to the x-axis are circular disks whose diameters run
from the line to the line as shown in the accompa-
nying figure. Explain why the solid has the same volume as a
right circular cone with base radius 3 and height 12.

Volumes by the Disk Method
In Exercises 15–18, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.

15. About the x-axis 16. About the y-axis

17. About the y-axis 18. About the x-axis

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 19–28 about the x-axis.

19. 20.

21. 22.

23.

24.

25.

26. The region between the curve and the x-axis from
to 

27. The region between the curve and the x-axis from
to .

28.

In Exercises 29 and 30, find the volume of the solid generated by re-
volving the region about the given line.

29. The region in the first quadrant bounded above by the line
below by the curve and on the left by

the y-axis, about the line y = 22
y = sec x tan x,y = 22,

y = ex - 1,  y = 0,  x = 1,  x = 3

x = 4x = 1>4 y = 1>(22x)

x = p>2.x = p>6 y = 2cot x

y = e-x, y = 0, x = 0,  x = 1

y = sec x, y = 0, x = -p>4, x = p>4
y = 2cos x, 0 … x … p>2, y = 0, x = 0

y = x - x2, y = 0y = 29 - x2, y = 0

y = x3, y = 0, x = 2y = x2, y = 0, x = 2

x

y

0

y � sin x cos x

�
2

1
2

x

y

0

1
�
4

⎛
⎝

⎛
⎝x � tan      y

x

y

0

2

3

x �
3y
2

x

y

0 2

1

x � 2y � 2

x12

y

0

y 5 x

y 5
2
x

y = xy = x>2
x = 12.x = 0

30. The region in the first quadrant bounded above by the line 
below by the curve and on the left by
the y-axis, about the line 

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 31–36 about the y-axis.

31. The region enclosed by 

32. The region enclosed by 

33. The region enclosed by 

34. The region enclosed by 

35.

36.

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded re-
gions in Exercises 37 and 38 about the indicated axes.

37. The x-axis 38. The y-axis

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 39–44 about the x-axis.

39.

40.

41.

42.

43.

44.

In Exercises 45–48, find the volume of the solid generated by revolv-
ing each region about the y-axis.

45. The region enclosed by the triangle with vertices (1, 0), (2, 1), and
(1, 1)

46. The region enclosed by the triangle with vertices (0, 1), (1, 0), and
(1, 1)

47. The region in the first quadrant bounded above by the parabola
below by the x-axis, and on the right by the line 

48. The region in the first quadrant bounded on the left by the circle
on the right by the line and above by the

line 

In Exercises 49 and 50, find the volume of the solid generated by re-
volving each region about the given axis.

49. The region in the first quadrant bounded above by the curve
below by the x-axis, and on the right by the line 

about the line x = -1
x = 1,y = x2,

y = 23

x = 23,x2
+ y2

= 3,

x = 2y = x2,

y = sec x, y = tan x, x = 0, x = 1

y = sec x, y = 22, -p>4 … x … p>4
y = 4 - x2, y = 2 - x

y = x2
+ 1, y = x + 3

y = 22x, y = 2, x = 0

y = x, y = 1, x = 0

x

y

0 1

x � tan y

�
4

x

y

0–

y � 1
y � �cos x

�
2

�
2

x = 22y>s y2
+ 1d, x = 0, y = 1

x = 2>2y + 1, x = 0, y = 0, y = 3
x = 0

x = 2cos spy>4d, -2 … y … 0,

x = 22 sin 2y, 0 … y … p>2, x = 0

x = y3>2, x = 0, y = 2

x = 25 y2, x = 0, y = -1, y = 1

y = 2
y = 2 sin x, 0 … x … p>2,

y = 2,
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50. The region in the second quadrant bounded above by the curve
below by the x-axis, and on the left by the line 

about the line 

Volumes of Solids of Revolution
51. Find the volume of the solid generated by revolving the region

bounded by and the lines and about

a. the x-axis. b. the y-axis.

c. the line d. the line 

52. Find the volume of the solid generated by revolving the triangular
region bounded by the lines and about

a. the line b. the line 

53. Find the volume of the solid generated by revolving the region
bounded by the parabola and the line about

a. the line b. the line 

c. the line 

54. By integration, find the volume of the solid generated by revolv-
ing the triangular region with vertices (0, 0), (b, 0), (0, h) about

a. the x-axis. b. the y-axis.

Theory and Applications
55. The volume of a torus The disk is revolved about

the line to generate a solid shaped like a doughnut 

and called a torus. Find its volume. (Hint:

since it is the area of a semicircle of radius a.)

56. Volume of a bowl A bowl has a shape that can be generated by
revolving the graph of between and about
the y-axis.

a. Find the volume of the bowl.

b. Related rates If we fill the bowl with water at a constant
rate of 3 cubic units per second, how fast will the water level
in the bowl be rising when the water is 4 units deep?

57. Volume of a bowl

a. A hemispherical bowl of radius a contains water to a depth h.
Find the volume of water in the bowl.

b. Related rates Water runs into a sunken concrete hemi-
spherical bowl of radius 5 m at the rate of How
fast is the water level in the bowl rising when the water is
4 m deep?

58. Explain how you could estimate the volume of a solid of revolu-
tion by measuring the shadow cast on a table parallel to its axis of
revolution by a light shining directly above it.

59. Volume of a hemisphere Derive the formula 
for the volume of a hemisphere of radius R by comparing its
cross-sections with the cross-sections of a solid right circular
cylinder of radius R and height R from which a solid right circular
cone of base radius R and height R has been removed, as sug-
gested by the accompanying figure.

h

RR
h h

�R2 2 h2

V = s2>3dpR3

0.2 m3>sec .

y = 5y = 0y = x2>2
pa2>2,

1
a

-a2a2
- y2 dy =

x = b sb 7 ad
x2

+ y2
… a2

y = -1.

y = 2.y = 1.

y = 1y = x2

x = 2.x = 1.

x = 1y = 2x, y = 0,

x = 4.y = 2.

x = 0y = 2y = 2x

x = -2
x = -1,y = -x3,

6.1 Volumes Using Cross-Sections 373

60. Designing a plumb bob Having been asked to design a brass
plumb bob that will weigh in the neighborhood of 190 g, you de-
cide to shape it like the solid of revolution shown here. Find the
plumb bob’s volume. If you specify a brass that weighs 
how much will the plumb bob weigh (to the nearest gram)?

61. Designing a wok You are designing a wok frying pan that will
be shaped like a spherical bowl with handles. A bit of experimen-
tation at home persuades you that you can get one that holds
about 3 L if you make it 9 cm deep and give the sphere a radius of
16 cm. To be sure, you picture the wok as a solid of revolution, as
shown here, and calculate its volume with an integral. To the
nearest cubic centimeter, what volume do you really get?

62. Max-min The arch is revolved about
the line to generate the solid in the accompa-
nying figure.

a. Find the value of c that minimizes the volume of the solid.
What is the minimum volume?

b. What value of c in [0, 1] maximizes the volume of the solid?

c. Graph the solid’s volume as a function of c, first for
and then on a larger domain. What happens to the

volume of the solid as c moves away from [0, 1]? Does this
make sense physically? Give reasons for your answers.

y

c

0

x

y 5 c

p

y 5 sin x

0 … c … 1

y = c, 0 … c … 1,
y = sin x, 0 … x … p ,

9 cm deep

0

–7

x2 � y2 � 162 � 256

x (cm)

–16

y (cm)

s1 L = 1000 cm3.d

0
6

x (cm)

y (cm)
y 5 �36 2 x2x

12

8.5 g>cm3 ,

T
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374 Chapter 6: Applications of Definite Integrals

63. Consider the region R bounded by the graphs of 
and (see accomanying figure). If

the volume of the solid formed by revolving R about the x-axis is
and the volume of the solid formed by revolving R about the

line is find the area of R.

x

y

0 b

R

a

y 5 f (x)

8p,y = -1
4p,

y = 0x = b 7 a,x = a 7 0,
y = ƒ(x) 7 0, 64. Consider the region R given in Exercise 63. If the volume of the

solid formed by revolving R around the x-axis is and the vol-
ume of the solid formed by revolving R around the line is

find the area of R.10p,
y = -2

6p,

6.2 Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid as the definite integral 
where A(x) is an integrable cross-sectional area of the solid from to . The area
A(x) was obtained by slicing through the solid with a plane perpendicular to the x-axis.
However, this method of slicing is sometimes awkward to apply, as we will illustrate in our
first example. To overcome this difficulty, we use the same integral definition for volume,
but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie
cutters. We slice straight down through the solid so that the axis of each cylinder is paral-
lel to the y-axis. The vertical axis of each cylinder is the same line, but the radii of the
cylinders increase with each slice. In this way the solid is sliced up into thin cylindrical
shells of constant thickness that grow outward from their common axis, like circular tree
rings. Unrolling a cylindrical shell shows that its volume is approximately that of a rectan-
gular slab with area A(x) and thickness . This slab interpretation allows us to apply the
same integral definition for volume as before. The following example provides some in-
sight before we derive the general method.

EXAMPLE 1 The region enclosed by the x-axis and the parabola 
is revolved about the vertical line to generate a solid (Figure 6.16). Find the volume
of the solid.

Solution Using the washer method from Section 6.1 would be awkward here because
we would need to express the x-values of the left and right sides of the parabola in Fig-
ure 6.16a in terms of y. (These x-values are the inner and outer radii for a typical washer,
requiring us to solve for x, which leads to complicated formulas.) Instead
of rotating a horizontal strip of thickness we rotate a vertical strip of thickness 
This rotation produces a cylindrical shell of height above a point within the base of
the vertical strip and of thickness An example of a cylindrical shell is shown as the
orange-shaded region in Figure 6.17. We can think of the cylindrical shell shown in the
figure as approximating a slice of the solid obtained by cutting straight down through
it, parallel to the axis of revolution, all the way around close to the inside hole. We
then cut another cylindrical slice around the enlarged hole, then another, and so on,
obtaining n cylinders. The radii of the cylinders gradually increase, and the heights of

¢x .
xkyk

¢x .¢y ,
y = 3x - x2

x = -1
y = ƒsxd = 3x - x2

¢x

x = bx = a
V = 1

b
a  Asxd dx,
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the cylinders follow the contour of the parabola: shorter to taller, then back to shorter
(Figure 6.16a).

Each slice is sitting over a subinterval of the x-axis of length (width) Its radius is
approximately and its height is approximately If we unroll the cylin-
der at and flatten it out, it becomes (approximately) a rectangular slab with thickness 
(Figure 6.18). The outer circumference of the kth cylinder is 
and this is the length of the rolled-out rectangular slab. Its volume is approximated by that
of a rectangular solid,

Summing together the volumes of the individual cylindrical shells over the interval
[0, 3] gives the Riemann sum

a

n

k = 1
¢Vk = a

n

k = 1
2psxk + 1d A3xk - xk 

2B ¢xk.

¢Vk

 = 2ps1 + xkd # A3xk - xk 
2B #

¢xk.

 ¢Vk = circumference * height * thickness

2p # radius = 2ps1 + xkd,
¢xkxk

3xk - xk 
2.s1 + xkd,

¢xk .

6.2 Volumes Using Cylindrical Shells 375

y

x
3

Axis of
revolution

 x � –1

(b)

x

y � 3x � x2

y

1 2 3–2 –1 0

–1

–2

1

2

Axis of
revolution

x � –1

(a)

0

FIGURE 6.16 (a) The graph of the region in Example 1, before revolution.
(b) The solid formed when the region in part (a) is revolved about the
axis of revolution x = -1.

323

y

x
0 xk

yk

x 5 –1

FIGURE 6.17 A cylindrical shell of
height obtained by rotating a vertical
strip of thickness about the line

The outer radius of the cylinder
occurs at where the height of the
parabola is (Example 1).yk = 3xk - xk

2
xk ,

x = -1.
¢xk

yk

Radius 5 1 1 xk

Outer circumference 5 2p ⋅ radius 5 2p(1 1 xk)
Δxk

 Δxk 5 thickness

l 5 2p (1 1 xk)

h 5 (3xk 2 xk
2)

(3xk 2 xk
2)

FIGURE 6.18 Cutting and unrolling a cylindrical shell gives a
nearly rectangular solid (Example 1).
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376 Chapter 6: Applications of Definite Integrals

Taking the limit as the thickness gives the volume integral

We now generalize the procedure used in Example 1.

The Shell Method

Suppose the region bounded by the graph of a nonnegative continuous function
and the x-axis over the finite closed interval [a, b] lies to the right of the vertical

line (Figure 6.19a). We assume so the vertical line may touch the region,
but not pass through it. We generate a solid S by rotating this region about the vertical
line L.

Let P be a partition of the interval [a, b] by the points 
and let be the midpoint of the kth subinterval We approximate the region in
Figure 6.19a with rectangles based on this partition of [a, b]. A typical approximating rec-
tangle has height and width If this rectangle is rotated about the
vertical line then a shell is swept out, as in Figure 6.19b. A formula from geometry
tells us that the volume of the shell swept out by the rectangle is

 = 2p # sck - Ld # ƒsckd #
¢xk .

 ¢Vk = 2p * average shell radius * shell height * thickness

x = L,
¢xk = xk - xk - 1 .ƒsckd

[xk - 1, xk] .ck

a = x0 6 x1 6
Á

6  xn = b,

a Ú L,x = L
y = ƒsxd

 = 2p c2
3

 x3
+

3
2

 x2
-

1
4

 x4 d
0

3

 =
45p

2
.

 = 2p
L

3

0
 s2x2

+ 3x - x3d dx

 =

L

3

0
 2ps3x2

+ 3x - x3
- x2d dx

 =

L

3

0
 2psx + 1ds3x - x2d dx

V = lim
n: q

 a

n

k = 1
 2psxk + 1d A3xk - xk

2 B  ¢xk

¢xk : 0 and n : q

y 5 f (x)

x 5 L

a ck
xkxk21

b

(a)

Vertical axis
of revolution

x

x

b

Rectangle
height 5 f (ck)

ck

xk

y 5 f (x)

xk21

Δxk

a

(b)

Vertical axis
of revolution

Δxk

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line
a solid is produced which can be sliced into cylindrical shells. A typical

shell is shown in (b).
x = L,

The volume of a cylindrical shell of 
height h with inner radius r and outer
radius R is

pR2h - pr2h = 2p aR + r
2
b (h)(R - r)
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We approximate the volume of the solid S by summing the volumes of the shells swept out
by the n rectangles based on P:

The limit of this Riemann sum as each gives the volume of the
solid as a definite integral:

We refer to the variable of integration, here x, as the thickness variable. We use the
first integral, rather than the second containing a formula for the integrand, to empha-
size the process of the shell method. This will allow for rotations about a horizontal
line L as well.

 =

L

b

a
 2psx - Ldƒsxd dx.

 
L

b

a
 2psshell radiusdsshell heightd dx.V = lim

n:q 
a

n

k = 1
¢Vk =

¢xk : 0 and n : q

V L a

n

k = 1
¢Vk.

6.2 Volumes Using Cylindrical Shells 377

EXAMPLE 2 The region bounded by the curve the x-axis, and the line 
is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution Sketch the region and draw a line segment across it parallel to the axis of
revolution (Figure 6.20a). Label the segment’s height (shell height) and distance from
the axis of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need
not do that.)

x = 4y = 2x,

Shell Formula for Revolution About a Vertical Line
The volume of the solid generated by revolving the region between the x-axis and
the graph of a continuous function about a ver-
tical line is

V =

L

b

a
 2p a shell

radius
b a shell

height
b  dx.

x = L
y = ƒsxd Ú 0, L … a … x … b,

Interval of
integration

y

x

(4, 2)

4

x

Shell radius

0
x

(b)

x

y

0 4

2

Shell radius

Interval of integration

x

Shell
height

y � �x

(a)

2

y � �x

f (x) � �x

x

–4

�x = Shell height

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell
swept out by the vertical segment in part (a) with a width ¢x.
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378 Chapter 6: Applications of Definite Integrals

The shell thickness variable is x, so the limits of integration for the shell formula are
and (Figure 6.20). The volume is then

So far, we have used vertical axes of revolution. For horizontal axes, we replace the x’s
with y’s.

EXAMPLE 3 The region bounded by the curve the x-axis, and the line 
is revolved about the x-axis to generate a solid. Find the volume of the solid by the shell
method.

Solution This is the solid whose volume was found by the disk method in Example 4 of
Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw a
line segment across it parallel to the axis of revolution (Figure 6.21a). Label the segment’s
length (shell height) and distance from the axis of revolution (shell radius). (We drew the
shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is y, so the limits of integration for the shell
formula method are and (along the y-axis in Figure 6.21). The volume of
the solid is

 = 2p c2y2
-

y4

4
d

0

2

= 8p.

 = 2p
L

2

0
s4y - y3d dy

 =

L

2

0
 2ps yds4 - y2d dy

 V =

L

b

a
 2p a shell

radius
b a shell

height
b  dy

b = 2a = 0

x = 4y = 2x,

 = 2p
L

4

0
 x3>2 dx = 2p c25 x5>2 d

0

4

=
128p

5 .

 =

L

4

0
 2psxd A2x B  dx

 V =

L

b

a
 2p a shell

radius
b a shell

height
b  dx

b = 4a = 0

Shell height
y

y  (4, 2)

2

0

4

Shell
radius

y � �x

(b)

x

y

0 4

2

y

(4, 2)

Shell radiusIn
te

rv
al

 o
f

in
te

gr
at

io
n

4 � y2

Shell height

x � y2

(a)

x

4 � y2

y

y

FIGURE 6.21 (a) The region, shell dimensions, and interval of integration in Example 3.
(b) The shell swept out by the horizontal segment in part (a) with a width ¢y.
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The shell method gives the same answer as the washer method when both are used to
calculate the volume of a region. We do not prove that result here, but it is illustrated in
Exercises 37 and 38. (Exercise 45 outlines a proof.) Both volume formulas are actually
special cases of a general volume formula we will look at when studying double and triple
integrals in Chapter 15. That general formula also allows for computing volumes of solids
other than those swept out by regions of revolution.

6.2 Volumes Using Cylindrical Shells 379

Exercises 6.2

Revolution About the Axes
In Exercises 1–6, use the shell method to find the volumes of the
solids generated by revolving the shaded region about the indicated
axis.

1. 2.

3. 4.

x

y

0 3

x � 3 � y2

y � �3
�3

x

y

0 2

x � y2

y � �2
�2

x

y

0 2

2
y � 2 � x2

4

x

y

0 2

1

y � 1 � x2

4

5. The y-axis 6. The y-axis

Revolution About the y-Axis
Use the shell method to find the volumes of the solids generated by re-
volving the regions bounded by the curves and lines in Exercises 7–12
about the y-axis.

7.

8.

9.

10.

11.

12. y = 3> A22x B , y = 0, x = 1, x = 4

y = 2x - 1, y = 2x, x = 0

y = 2 - x2, y = x2, x = 0

y = x2, y = 2 - x, x = 0,  for x Ú 0

y = 2x, y = x>2, x = 1

y = x, y = -x>2, x = 2

x

y

0

 

3

5 �x3 � 9

9xy � 

x

y

0

1

2

x � �3

�3

y � �x2 � 1

Summary of the Shell Method
Regardless of the position of the axis of revolution (horizontal or vertical), the
steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of rev-
olution. Label the segment’s height or length (shell height) and distance from
the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product (shell radius) (shell height) with respect to the thick-
ness variable (x or y) to find the volume.

2p
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380 Chapter 6: Applications of Definite Integrals

13. Let 

a. Show that 

b. Find the volume of the solid generated by revolving the shaded
region about the y-axis in the accompanying figure.

14. Let 

a. Show that 

b. Find the volume of the solid generated by revolving the
shaded region about the y-axis in the accompanying figure.

Revolution About the x-Axis
Use the shell method to find the volumes of the solids generated by re-
volving the regions bounded by the curves and lines in Exercises
15–22 about the x-axis.

15.

16.

17. 18.

19. 20.

21.

22.

Revolution About Horizontal and Vertical Lines
In Exercises 23–26, use the shell method to find the volumes of the
solids generated by revolving the regions bounded by the given curves
about the given lines.

23.

a. The y-axis b. The line 

c. The line d. The 

e. The line f. The line 

24.

a. The y-axis b. The line 

c. The line d. The 

e. The line f. The line 

25.

a. The line b. The line 

c. The d. The line y = 4x-axis

x = -1x = 2

y = x + 2,  y = x2

y = -1y = 8

x-axisx = -2

x = 3

y = x3,  y = 8,  x = 0

y = -2y = 7

x-axisx = -1

x = 4

y = 3x,  y = 0,  x = 2

y = 2x, y = 0, y = 2 - x

y = 2x, y = 0, y = x - 2

y = x, y = 2x, y = 2y = ƒ x ƒ , y = 1

x = 2y - y2, x = yx = 2y - y2, x = 0

x = y2, x = -y, y = 2, y Ú 0

x = 2y, x = -y, y = 2

x

y

0

y �
⎧
⎨
⎩ 0, x � 0

,  0 � x  � 
tan2 x

x
�
4

�
4

�
4

x g sxd = stan xd2, 0 … x … p>4.

g sxd = e stan xd2>x, 0 6 x … p>4
0, x = 0

x

y

0 �

1

y �
⎧
⎨
⎩ 1, x � 0

,  0 � x  � �sin x
x

x ƒsxd = sin x, 0 … x … p.

ƒsxd = e ssin xd>x, 0 6 x … p

1, x = 0

26.

a. The line c. The 

In Exercises 27 and 28, use the shell method to find the volumes of the
solids generated by revolving the shaded regions about the indicated axes.

27. a. The x-axis b. The line 

c. The line d. The line 

28. a. The x-axis b. The line 

c. The line d. The line 

Choosing the Washer Method or Shell Method
For some regions, both the washer and shell methods work well for the
solid generated by revolving the region about the coordinate axes, but
this is not always the case. When a region is revolved about the y-axis,
for example, and washers are used, we must integrate with respect to y.
It may not be possible, however, to express the integrand in terms of y.
In such a case, the shell method allows us to integrate with respect to x
instead. Exercises 29 and 30 provide some insight.

29. Compute the volume of the solid generated by revolving the region
bounded by and about each coordinate axis using

a. the shell method. b. the washer method.

30. Compute the volume of the solid generated by revolving the trian-
gular region bounded by the lines and 
about

a. the x-axis using the washer method.

b. the y-axis using the shell method.

c. the line using the shell method.

d. the line using the washer method.

In Exercises 31–36, find the volumes of the solids generated by re-
volving the regions about the given axes. If you think it would be bet-
ter to use washers in any given instance, feel free to do so.

y = 8

x = 4

x = 02y = x + 4, y = x,

y = x2y = x

x

y

 

2

(2, 2)

10

2
x

x �
y2

2

x �      �
y4

4
y2

2

y = -5>8y = 5

y = 2

x

y

0

1

1

x � 12(y2 � y3)

y = -2>5y = 8>5
y = 1

x-axisx = 1

y = x4,  y = 4 - 3x2
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6.2 Volumes Using Cylindrical Shells 381

31. The triangle with vertices (1, 1), (1, 2), and (2, 2) about

a. the x-axis b. the y-axis

c. the line d. the line 

32. The region bounded by about

a. the x-axis b. the y-axis

c. the line d. the line 

33. The region in the first quadrant bounded by the curve 
and the y-axis about

a. the x-axis b. the line 

34. The region in the first quadrant bounded by 
and about

a. the x-axis b. the y-axis

c. the line d. the line 

35. The region bounded by and about

a. the x-axis b. the y-axis

36. The region bounded by and about

a. the y-axis b. the line 

37. The region in the first quadrant that is bounded above by the
curve on the left by the line and below by
the line is revolved about the x-axis to generate a solid.
Find the volume of the solid by

a. the washer method. b. the shell method.

38. The region in the first quadrant that is bounded above by the
curve on the left by the line and below by
the line is revolved about the y-axis to generate a solid.
Find the volume of the solid by

a. the washer method. b. the shell method.

Theory and Examples
39. The region shown here is to be revolved about the x-axis to gener-

ate a solid. Which of the methods (disk, washer, shell) could you
use to find the volume of the solid? How many integrals would be
required in each case? Explain.

40. The region shown here is to be revolved about the y-axis to gener-
ate a solid. Which of the methods (disk, washer, shell) could you
use to find the volume of the solid? How many integrals would be
required in each case? Give reasons for your answers.

x

y

1

1

–1

0

y � x2

y � –x4

x

y

0 1

1
(1, 1)

–2

x � y2
x � 3y2 � 2

y = 1
x = 1>4,y = 1>2x,

y = 1
x = 1>16,y = 1>x1>4 ,

x = 1

y = xy = 2x - x2

y = x2>8y = 2x

y = 1x = 1

y = 1
x = y - y3, x = 1,

y = 1

x = y - y3

y = 2x = 4

y = 2x, y = 2, x = 0

y = 1x = 10>3
41. A bead is formed from a sphere of radius 5 by drilling through a

diameter of the sphere with a drill bit of radius 3.

a. Find the volume of the bead.

b. Find the volume of the removed portion of the sphere.

42. A Bundt cake, well known for having a ringed shape, is 
formed by revolving around the y-axis the region bounded by 
the graph of and the x-axis over the interval

Find the volume of the cake.

43. Derive the formula for the volume of a right circular cone of
height h and radius r using an appropriate solid of revolution.

44. Derive the equation for the volume of a sphere of radius r using
the shell method.

45. Equivalence of the washer and shell methods for finding vol-
ume Let ƒ be differentiable and increasing on the interval

with and suppose that ƒ has a differentiable
inverse, Revolve about the y-axis the region bounded by the
graph of ƒ and the lines and to generate a solid.
Then the values of the integrals given by the washer and shell
methods for the volume have identical values:

To prove this equality, define

Then show that the functions W and S agree at a point of [a, b]
and have identical derivatives on [a, b]. As you saw in Section 4.8,
Exercise 128, this will guarantee for all t in [a, b]. In
particular, (Source: “Disks and Shells Revisited,”
by Walter Carlip, American Mathematical Monthly, Vol. 98, No. 2,
Feb. 1991, pp. 154–156.)

46. The region between the curve and the x-axis from
to (shown here) is revolved about the y-axis to gen-

erate a solid. Find the volume of the solid.

47. Find the volume of the solid generated by revolving the region en-
closed by the graphs of , and about
the y-axis.

48. Find the volume of the solid generated by revolving the region en-
closed by the graphs of , and about the
x-axis.

x = ln 3y = ex>2, y = 1

x = 1y = e - x 2

, y = 0, x = 0

y � sec–1 x

x

y

210

�
3

x = 2x = 1
y = sec-1 x

Wsbd = Ssbd.
Wstd = Sstd

 Sstd =

L

t

a
 2pxsƒstd - ƒsxdd dx.

 Wstd =

L

ƒstd

ƒsad
pssƒ -1sydd2

- a2d dy

L

ƒsbd

ƒsad
p ssƒ -1sydd2

- a2d dy =

L

b

a
 2pxsƒsbd - ƒsxdd dx.

y = ƒsbdx = a
ƒ -1 .

a 7 0,a … x … b,

11 + p.1 … x …

y = sin (x2
- 1)
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382 Chapter 6: Applications of Definite Integrals

6.3 Arc Length

We know what is meant by the length of a straight line segment, but without calculus, we
have no precise definition of the length of a general winding curve. If the curve is the graph
of a continuous function defined over an interval, then we can find the length of the curve
using a procedure similar to that we used for defining the area between the curve and the 
x-axis. This procedure results in a division of the curve from point A to point B into many
pieces and joining successive points of division by straight line segments. We then sum the
lengths of all these line segments and define the length of the curve to be the limiting value
of this sum as the number of segments goes to infinity.

Length of a Curve 

Suppose the curve whose length we want to find is the graph of the function from
In order to derive an integral formula for the length of the curve, we assume

that ƒ has a continuous derivative at every point of [a, b]. Such a function is called smooth,
and its graph is a smooth curve because it does not have any breaks, corners, or cusps.

We partition the interval [a, b] into n subintervals with 
, then the corresponding point lies on the curve. Next we

connect successive points and with straight line segments that, taken together,
form a polygonal path whose length approximates the length of the curve (Figure 6.22). If

and , then a representative line segment in the path has
length (see Figure 6.23)

so the length of the curve is approximated by the sum

. (1)

We expect the approximation to improve as the partition of [a, b] becomes finer. Now, by
the Mean Value Theorem, there is a point with , such that

¢yk = ƒ¿(ck) ¢xk.

xk - 1 6 ck 6 xkck,

a

n

k = 1
 Lk = a

n

k = 1
 2(¢xk)

2
+ (¢yk)

2

Lk = 2(¢xk)
2

+ (¢yk)
2,

¢yk = yk - yk - 1¢xk = xk - xk - 1

PkPk - 1

Pk (xk, yk)If yk = ƒ(xk)xn = b.
a = x0 6 x1 6 x2 6

Á
6

x

y

y 5 f (x)

x0 5 a b 5 xn

B 5 Pn

x1 x2 xk21 xk

P0 5 A

P1
P2

Pk21

Pk

x = a to x = b.
y = ƒ(x)

y = ƒ(x)

x

y

0 xk21

Pk21

xk

Lk

Δxk

Δyk
Pk

y 5 f (x)

FIGURE 6.23 The arc of the
curve is approximated by the
straight line segment shown here, which
has length Lk = 2(¢xk)

2
+ (¢yk)

2.

y = ƒ(x)
Pk - 1Pk

FIGURE 6.22 The length of the polygonal path approximates the length
of the curve from point A to point B. y = ƒ(x)

P0P1P2
Á Pn
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With this substitution for , the sums in Equation (1) take the form

(2)

Because is continuous on [a, b], the limit of the Riemann sum on the right-
hand side of Equation (2) exists as the norm of the partition goes to zero, giving

We define the value of this limiting integral to be the length of the curve.

lim
n: q

 a

n

k = 1
 Lk = lim

n: q

 a

n

k = 1
 21 + [ƒ¿(ck)]

2 ¢xk =

L

b

a
 21 + [ƒ¿(x)]2 dx.

21 + [ƒ¿(x)]2

a

n

k = 1
 Lk = a

n

k = 1
 2(¢xk)

2
+ ( ƒ¿(ck)¢xk)

2
= a

n

k = 1
21 + [ƒ¿(ck)]

2 ¢xk.

¢yk
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x

y

0

A

B

1

(1, 0.89)

–1

y 5 x3/2 2 14�2
3

FIGURE 6.24 The length of the
curve is slightly larger than the
length of the line segment joining
points A and B (Example 1).

x

y

0

A

B

41

y 5 1
x3

12
1
x

FIGURE 6.25 The curve in
Example 2, where 
and B = (4, 67>12).

A = (1, 13>12)

DEFINITION If is continuous on [a, b], then the length (arc length) of the
curve from the point to the point is the value
of the integral

(3)L =

L

b

a
 21 + [ƒ¿(x)]2 dx =

L

b

a
 B1 + ady

dx
b2

 dx.

B = (b, ƒ(b))A = (a, ƒ(a))y = ƒ(x)
ƒ¿

EXAMPLE 1 Find the length of the curve (Figure 6.24)

Solution We use Equation (3) with and

The length of the curve over to is

Notice that the length of the curve is slightly larger than the length of the straight-line segment

joining the points on the curve (see Figure 6.24):

EXAMPLE 2 Find the length of the graph of

Solution A graph of the function is shown in Figure 6.25. To use Equation (3), we find

 ƒ¿(x) =
x2

4
 -

1
x2

ƒ(x) =
x3

12
+

1
x , 1 … x … 4.

2.17 7 212
+ (1.89)2

L 2.14

A = (0, -1) and B = A1, 422>3 - 1 B

 =
2
3

 #  
1
8

 s1 + 8xd3>2 d
0

1

=
13
6

L 2.17.

 L =

L

1

0
 B1 + ady

dx
b2

 dx =

L

1

0
 21 + 8x dx

x = 1x = 0

 ady
dx
b2

= A222x1>2 B2 = 8x .

 
dy
dx

=

422
3

 #  
3
2

 x1>2
= 222x1>2

 y =

422
3

 x3>2
- 1

a = 0, b = 1,

y =

422
3

 x3>2
- 1, 0 … x … 1.

Eq. (3) with
a = 0, b = 1

Let
integrate, and
replace u by
1 + 8x .

u = 1 + 8x ,

Decimal approximations

x = 1, y L 0.89
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384 Chapter 6: Applications of Definite Integrals

so

The length of the graph over [1, 4] is

EXAMPLE 3 Find the length of the curve

Solution We use Equation (3) with and

The length of the curve from to is

Dealing with Discontinuities in dy/dx

At a point on a curve where dy dx fails to exist, dx dy may exist. In this case, we may be
able to find the curve’s length by expressing x as a function of y and applying the follow-
ing analogue of Equation (3):

>>

 =
1
2

  cex
- e-x d

0

2

=
1
2

 (e2
- e-2) L 3.63.

 L =

L

2

0
 B1 + ady

dx
b2

 dx =

L

2

0
 
1
2

 (ex
+ e-x ) dx

x = 2x = 0

1 + ady
dx
b2

=
1
4

 (e2x
+ 2 + e-2x ) = c1

2
 (ex

+ e-x) d2.

ady
dx
b2

=
1
4

 (e2x
- 2 + e-2x )

dy
dx

=
1
2

 (ex
- e-x )

y =
1
2

 (ex
+ e-x )

a = 0, b = 2,

y =
1
2

 (ex
+ e-x ), 0 … x … 2.

L =

L

4

1

 21 + [ƒ¿(x)]2 dx =

L

4

1

 ax2

4
+

1
x2 bdx

= cx3

12
-

1
x d

4

1

= a64
12

-
1
4
b - a 1

12
- 1b =

72
12

= 6.

1 + [ƒ¿(x)]2
= 1 + ax2

4
-

1
x2 b

2

= 1 + ax4

16
-

1
2

+
1
x4 b

=
x4

16
+

1
2

+
1
x4 = ax2

4
+

1
x2 b

2

.

Eq. (3) with
a = 0, b = 2

Formula for the Length of 
If g is continuous on [c, d ], the length of the curve from 
to is

(4)L =

L

d

c
 B1 + adx

dy
b2

 dy =

L

d

c
 21 + [g¿s yd]2 dy.

B = (g(d ), d )
A = (g(c), c)x = g s yd¿

x = gs yd, c … y … d
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EXAMPLE 4 Find the length of the curve from to 

Solution The derivative

is not defined at so we cannot find the curve’s length with Equation (3).
We therefore rewrite the equation to express x in terms of y:

Solve for x.

From this we see that the curve whose length we want is also the graph of from
to (Figure 6.26).

The derivative

is continuous on [0, 1]. We may therefore use Equation (4) to find the curve’s length:

The Differential Formula for Arc Length

If and if is continuous on [a, b], then by the Fundamental Theorem of Calculus
we can define a new function

(5)

From Equation (3) and Figure 6.22, we see that this function s(x) is continuous and meas-
ures the length along the curve from the initial point to the point

for each The function s is called the arc length function for 
From the Fundamental Theorem, the function s is differentiable on (a, b) and

Then the differential of arc length is

(6)

A useful way to remember Equation (6) is to write

(7)

which can be integrated between appropriate limits to give the total length of a curve. From
this point of view, all the arc length formulas are simply different expressions for the equation

ds = 2dx2
+ dy2,

ds = B1 + ady
dx
b2

 dx.

ds
dx

= 21 + [ ƒ¿(x)]2
= B1 + ady

dx
b2

.

y = ƒ(x).x H [a, b].Q(x, ƒ(x))
P0(a, ƒ(a))y = ƒ(x)

s(x) =

L

x

a
 21 + [ ƒ¿(t)]2 dt.

ƒ¿y = ƒ(x)

 =
2

27
 A10210 - 1 B L 2.27.

 =
1
9

# 2
3

 s1 + 9yd3>2 d
0

1

 L =

L

d

c
 B1 + adx

dy
b2

 dy =

L

1

0
 21 + 9y dy

dx
dy

= 2 a3
2
b y1>2

= 3y1>2

y = 1y = 0
x = 2y3>2

 x = 2y3>2.

 y3>2
=

x
2

 y = ax
2
b2>3

x = 0,

dy
dx

=
2
3

 ax
2
b-1>3

 a1
2
b =

1
3

 a2x b
1>3

x = 2.x = 0y = sx>2d2>3

6.3 Arc Length 385

Raise both sides
to the power 3/2.

Eq. (4) with
c = 0, d = 1.
Let

integrate, and
substitute back.

du>9 = dy ,
u = 1 + 9y, 

x

y

0

1

2

(2, 1)

1

⎛
⎝

⎛
⎝y 5
2/3x

2

FIGURE 6.26 The graph of
from to 

is also the graph of from
(Example 4).y = 0 to y = 1

x = 2y3>2
x = 2x = 0y = (x>2)2>3
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386 Chapter 6: Applications of Definite Integrals

Figure 6.27a gives the exact interpretation of ds corresponding to Equation (7).
Figure 6.27b is not strictly accurate, but is to be thought of as a simplified approximation of
Figure 6.27a. That is, 

EXAMPLE 5 Find the arc length function for the curve in Example 2 taking
as the starting point (see Figure 6.25).

Solution In the solution to Example 2, we found that

Therefore the arc length function is given by

To compute the arc length along the curve from for 
instance, we simply calculate

This is the same result we obtained in Example 2.

s(4) =
43

12
-

1
4

+
11
12

= 6.

A = (1, 13>12) to B = (4, 67>12),

 = c t3

12
-

1
t d

x

1
=

x3

12
-

1
x +

11
12

.

 s(x) =

L

x

1
21 + [ƒ¿(t)]2 dt =

L

x

1
 at2

4
+

1
t2 b  dt

1 + [ƒ¿(x)]2
= ax2

4
+

1
x2 b

2

.

A = (1, 13>12)

ds L ¢s.

L = 1 ds.y

x
0

dx

ds
dy

�

(a)

y

x
0

dx

ds
dy

�

(b)

FIGURE 6.27 Diagrams for remembering
the equation ds = 2dx2

+ dy2 .

Exercises 6.3

Finding Lengths of Curves
Find the lengths of the curves in Exercises 1–10. If you have a grapher,
you may want to graph these curves to see what they look like.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Finding Integrals for Lengths of Curves
In Exercises 11–18, do the following.

a. Set up an integral for the length of the curve.

b. Graph the curve to see what it looks like.

c. Use your grapher’s or computer’s integral evaluator to find
the curve’s length numerically.

y =

L

x

-2
23t4

- 1 dt, -2 … x … -1

x =

L

y

0
 2sec4 t - 1 dt, -p>4 … y … p>4

y = sx3>3d + x2
+ x + 1>s4x + 4d, 0 … x … 2

y = s3>4dx4>3
- s3>8dx2>3

+ 5, 1 … x … 8

x = sy3>6d + 1>s2yd from y = 2 to y = 3

x = sy4>4d + 1>s8y2d from y = 1 to y = 2

x = sy3>2>3d - y1>2 from y = 1 to y = 9

x = sy3>3d + 1>s4yd from y = 1 to y = 3

y = x3>2 from x = 0 to x = 4

y = s1>3dsx2
+ 2d3>2 from x = 0 to x = 3

11.

12.

13.

14.

15.

16.

17.

18.

Theory and Examples
19. a. Find a curve through the point (1, 1) whose length integral

(Equation 3) is

b. How many such curves are there? Give reasons for your
answer.

20. a. Find a curve through the point (0, 1) whose length integral
(Equation 4) is

L =

L

2

1
 A1 +

1
y4 dy .

L =

L

4

1
 A1 +

1
4x

 dx .

x =

L

y

0
 2sec2 t - 1 dt, -p>3 … y … p>4

y =

L

x

0
 tan t dt, 0 … x … p>6

y = sin x - x cos x, 0 … x … p

y2
+ 2y = 2x + 1 from s -1, -1d to s7, 3d

x = 21 - y2, -1>2 … y … 1>2
x = sin y, 0 … y … p

y = tan x, -p>3 … x … 0

y = x2, -1 … x … 2

T
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b. How many such curves are there? Give reasons for your
answer.

21. Find the length of the curve

from 

22. The length of an astroid The graph of the equation 
is one of a family of curves called astroids (not “aster-

oids”) because of their starlike appearance (see the accompanying
figure). Find the length of this particular astroid by finding the
length of half the first-quadrant portion, 

and multiplying by 8.

23. Length of a line segment Use the arc length formula (Equation 3)
to find the length of the line segment 
Check your answer by finding the length of the segment as the 
hypotenuse of a right triangle.

24. Circumference of a circle Set up an integral to find the circum-
ference of a circle of radius r centered at the origin. You will learn
how to evaluate the integral in Section 8.3.

25. If show that

26. If show that

27. Is there a smooth (continuously differentiable) curve 

whose length over the interval is always Give
reasons for your answer.

28. Using tangent fins to derive the length formula for curves
Assume that ƒ is smooth on [a, b] and partition the interval [a, b]
in the usual way. In each subinterval construct the
tangent fin at the point as shown in the accom-
panying figure.

a. Show that the length of the k th tangent fin over the interval

equals 

b. Show that

which is the length L of the curve from a to b.y = ƒsxd

lim
n: q

 a

n

k = 1
slength of k th tangent find =

L

b

a
 21 + sƒ¿sxdd2 dx ,

2s¢xkd2
+ sƒ¿sxk - 1d ¢xkd2 .[xk - 1, xk]

sxk - 1, ƒsxk - 1dd ,
[xk - 1, xk] ,

22a?0 … x … a

y = ƒsxd

ds2
=

4
y2 A5x2

- 16 B  dx2.

4x2
- y2

= 64,

ds2
=

( y + 1)2

4y
 dy2.

9x2
= y( y - 3)2,

y = 3 - 2x, 0 … x … 2.

x

y

0

1

1–1

–1

x2/3 1 y2/3 5 1

12>4 … x … 1, 
y = (1 - x2>3)3>2, 

y2>3
= 1

x2>3
+

x = 0 to x = p>4.

y =

L

x

0
 2cos 2t dt

6.3 Arc Length 387

29. Approximate the arc length of one-quarter of the unit circle
(which is by computing the length of the polygonal approxima-
tion with segments (see accompanying figure).

30. Distance between two points Assume that the two points 
and lie on the graph of the straight line Use
the arc length formula (Equation 3) to find the distance between
the two points.

31. Find the arc length function for the graph of using (0, 0)
as the starting point. What is the length of the curve from (0, 0) to (1, 2)?

32. Find the arc length function for the curve in Exercise 8, using 
as the starting point. What is the length of the curve from to

COMPUTER EXPLORATIONS
In Exercises 33–38, use a CAS to perform the following steps for the
given graph of the function over the closed interval.

a. Plot the curve together with the polygonal path approxima-
tions for partition points over the interval. (See
Figure 6.22.)

b. Find the corresponding approximation to the length of the
curve by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare
your approximations for with the actual length
given by the integral. How does the actual length compare
with the approximations as n increases? Explain your answer.

33.

34.

35.

36.

37.

38. ƒsxd = x3
- x2, -1 … x … 1

ƒsxd =

x - 1
4x2

+ 1
, -

1
2

… x … 1

ƒsxd = x2 cos x, 0 … x … p

ƒsxd = sin spx2d, 0 … x … 22

ƒsxd = x1>3
+ x2>3, 0 … x … 2

ƒsxd = 21 - x2, -1 … x … 1

n = 2, 4, 8

n = 2, 4, 8

(1, 59>24)?
(0, 1>4)

(0, 1>4)

ƒ(x) = 2x3>2

y = mx + b.(x2, y2)
(x1, y1)

x

y

0 10.750.50.25

n = 4 

p
2)

x

�xk

Tangent fin
with slope 
f '(xk–1)

xk–1 xk

(xk–1, f (xk–1))

y � f (x)
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388 Chapter 6: Applications of Definite Integrals

6.4 Areas of Surfaces of Revolution

When you jump rope, the rope sweeps out a surface in the space around you similar to what
is called a surface of revolution. The surface surrounds a volume of revolution, and many
applications require that we know the area of the surface rather than the volume it en-
closes. In this section we define areas of surfaces of revolution. More general surfaces are
treated in Chapter 16.

Defining Surface Area

If you revolve a region in the plane that is bounded by the graph of a function over an in-
terval, it sweeps out a solid of revolution, as we saw earlier in the chapter. However, if
you revolve only the bounding curve itself, it does not sweep out any interior volume but
rather a surface that surrounds the solid and forms part of its boundary. Just as we were
interested in defining and finding the length of a curve in the last section, we are now
interested in defining and finding the area of a surface generated by revolving a curve
about an axis.

Before considering general curves, we begin by rotating horizontal and slanted line
segments about the x-axis. If we rotate the horizontal line segment AB having length 
about the x-axis (Figure 6.28a), we generate a cylinder with surface area This area
is the same as that of a rectangle with side lengths and (Figure 6.28b). The length

is the circumference of the circle of radius y generated by rotating the point (x, y) on
the line AB about the x-axis.

Suppose the line segment AB has length L and is slanted rather than horizontal. Now
when AB is rotated about the x-axis, it generates a frustum of a cone (Figure 6.29a). From
classical geometry, the surface area of this frustum is where is
the average height of the slanted segment AB above the x-axis. This surface area is the
same as that of a rectangle with side lengths L and (Figure 6.29b).

Let’s build on these geometric principles to define the area of a surface swept out by
revolving more general curves about the x-axis. Suppose we want to find the area of the
surface swept out by revolving the graph of a nonnegative continuous function

about the x-axis. We partition the closed interval [a, b] in the usual
way and use the points in the partition to subdivide the graph into short arcs. Figure 6.30
shows a typical arc PQ and the band it sweeps out as part of the graph of ƒ.

y = ƒsxd, a … x … b ,

2py*

y*
= s y1 + y2d>22py* L,

2py
2py¢x

2py¢x .
¢x

y

y2y1

A

BL

(a)

L

2py*

NOT TO SCALE

(b)

x

y*

0

FIGURE 6.29 (a) The frustum of a cone generated by rotating the
slanted line segment AB of length about the x-axis has area 

(b) The area of the rectangle for the average
height of AB above the x-axis.

y*
=

y1 + y2

2
,2py* L .

L

y

0

A B

y

x

(a)

x

�x

FIGURE 6.28 (a) A cylindrical surface
generated by rotating the horizontal line
segment AB of length about the x-axis
has area (b) The cut and rolled-out
cylindrical surface as a rectangle.

2py¢x .
¢x

�x

2�y

NOT TO SCALE

(b)

7001_AWLThomas_ch06p363-416.qxd  10/12/09  9:02 AM  Page 388



The square root in Equation (3) is the same one that appears in the formula for the arc
length differential of the generating curve in Equation (6) of Section 6.3.

EXAMPLE 1 Find the area of the surface generated by revolving the curve 
about the x-axis (Figure 6.34).1 … x … 2,

y = 22x,

6.4 Areas of Surfaces of Revolution 389

DEFINITION If the function is continuously differentiable on
[a, b], the area of the surface generated by revolving the graph of 
about the x-axis is

(3)S =

L

b

a
 2py B1 + ady

dx
b2

 dx =

L

b

a
 2pƒsxd21 + sƒ¿sxdd2 dx .

y = ƒsxd
ƒsxd Ú 0

As the arc PQ revolves about the x-axis, the line segment joining P and Q sweeps
out a frustum of a cone whose axis lies along the x-axis (Figure 6.31). The surface area
of this frustum approximates the surface area of the band swept out by the arc PQ. The
surface area of the frustum of the cone shown in Figure 6.31 is where is the
average height of the line segment joining P and Q, and L is its length ( just as before).
Since from Figure 6.32 we see that the average height of the line segment is

and the slant length is Therefore,

The area of the original surface, being the sum of the areas of the bands swept out by
arcs like arc PQ, is approximated by the frustum area sum

(1)

We expect the approximation to improve as the partition of [a, b] becomes finer. More-
over, if the function ƒ is differentiable, then by the Mean Value Theorem, there is a point

on the curve between P and Q where the tangent is parallel to the segment PQ
(Figure 6.33). At this point,

With this substitution for the sums in Equation (1) take the form

(2)

These sums are not the Riemann sums of any function because the points and 
are not the same. However, it can be proved that as the norm of the partition of [a, b] goes
to zero, the sums in Equation (2) converge to the integral

We therefore define this integral to be the area of the surface swept out by the graph of ƒ
from a to b.

L

b

a
 2pƒsxd21 + sƒ¿sxdd2 dx.

ckxk - 1, xk ,

 = a

n

k = 1
psƒsxk - 1d + ƒsxkdd21 + sƒ¿sckdd2 ¢xk .

 a

n

k = 1
psƒsxk - 1d + ƒsxkdd2s¢xkd2

+ sƒ¿sckd ¢xkd2

¢yk ,

 ¢yk = ƒ¿sckd ¢xk .

 ƒ¿sckd =

¢yk

¢xk
,

sck , ƒsckdd

a

n

k = 1
psƒsxk - 1d + ƒsxkdd2s¢xkd2

+ s¢ykd2.

 = psƒsxk - 1d + ƒsxkdd2s¢xkd2
+ s¢ykd2.

 Frustum surface area = 2p #  
ƒsxk - 1d + ƒsxkd

2
 # 2s¢xkd2

+ s¢ykd2

L = 2s¢xkd2
+ s¢ykd2.y*

= sƒsxk - 1d + ƒsxkdd>2,

ƒ Ú 0,

y*2py*L ,

xk

xk�1

P
Q

x

FIGURE 6.31 The line segment joining P
and Q sweeps out a frustum of a cone.

y � f (x)

Segment length:
L � �(�xk)2 � (�yk)2 

Q

P

r2 � f (xk)
r1 � f (xk – 1)

�yk

�xk

xk – 1 xk

FIGURE 6.32 Dimensions associated
with the arc and line segment PQ.

y y 5 f (x)
P Q

0

xk21 xk

a

xb

FIGURE 6.30 The surface generated by
revolving the graph of a nonnegative
function about the
x-axis. The surface is a union of bands like
the one swept out by the arc PQ.

y = ƒsxd, a … x … b,
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390 Chapter 6: Applications of Definite Integrals

Solution We evaluate the formula

Eq. (3)

with

First, we perform some algebraic manipulation on the radical in the integrand to transform
it into an expression that is easier to integrate.

With these substitutions, we have

Revolution About the y-Axis

For revolution about the y-axis, we interchange x and y in Equation (3).

 = 4p #  
2
3

 sx + 1d3>2 d
1

2

=
8p
3

 A323 - 222 B .
 S =

L

2

1
 2p # 22x 

2x + 1

2x
 dx = 4p

L

2

1
 2x + 1 dx

 = A1 +
1
x = A

x + 1
x =

2x + 1

2x
.

 B1 + ady
dx
b2

= B1 + a 1

2x
b2

a = 1, b = 2, y = 22x, dy
dx

=
1

2x
.

S =

L

b

a
 2py B1 + ady

dx
b2

 dx

y � f (x)

Q

P
�yk

�xk

xk – 1 xkck

Tangent parallel
to chord

(ck , f (ck))

FIGURE 6.33 If ƒ is smooth, the Mean
Value Theorem guarantees the existence of
a point where the tangent is parallel to
segment PQ.

ck

0
1

2
x

y

(1, 2)

y 5 2�x

(2, 2�2)

FIGURE 6.34 In Example 1 we calculate
the area of this surface.

Surface Area for Revolution About the y-Axis
If is continuously differentiable on [c, d ], the area of the surface
generated by revolving the graph of about the y-axis is

(4)S =

L

d

c
 2px B1 + adx

dy
b2

 dy =

L

d

c
 2pgsyd21 + sg¿s ydd2 dy.

x = gsyd
x = gsyd Ú 0

EXAMPLE 2 The line segment is revolved about the y-axis to
generate the cone in Figure 6.35. Find its lateral surface area (which excludes the base area).

Solution Here we have a calculation we can check with a formula from geometry:

To see how Equation (4) gives the same result, we take

B1 + adx
dy
b2

= 21 + s -1d2
= 22

c = 0, d = 1, x = 1 - y, dx
dy

= -1,

Lateral surface area =
base circumference

2
* slant height = p22.

x = 1 - y, 0 … y … 1,A (0, 1)

B (1, 0)

x � y � 1

0

x

y

FIGURE 6.35 Revolving line segment AB
about the y-axis generates a cone whose
lateral surface area we can now calculate in
two different ways (Example 2).
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and calculate

The results agree, as they should.

 = p22.

 = 2p22 c y -

y2

2
d

0

1

= 2p22 a1 -
1
2
b

 S =

L

d

c
 2px B1 + adx

dy
b2

 dy =

L

1

0
 2ps1 - yd22 dy

6.4 Areas of Surfaces of Revolution 391

Exercises 6.4

Finding Integrals for Surface Area
In Exercises 1–8:

a. Set up an integral for the area of the surface generated by
revolving the given curve about the indicated axis.

b. Graph the curve to see what it looks like. If you can, graph
the surface too.

c. Use your grapher’s or computer’s integral evaluator to find
the surface’s area numerically.

1.

2.

3.

4.

5. from (4, 1) to (1, 4); x-axis

6.

7.

8.

Finding Surface Area
9. Find the lateral (side) surface area of the cone generated by re-

volving the line segment about the x-axis.
Check your answer with the geometry formula

10. Find the lateral surface area of the cone generated by revolving
the line segment , about the y-axis. Check
your answer with the geometry formula

11. Find the surface area of the cone frustum generated by revolv-
ing the line segment about the
x-axis. Check your result with the geometry formula

12. Find the surface area of the cone frustum generated by revolv-
ing the line segment about the
y-axis. Check your result with the geometry formula

Frustum surface area = psr1 + r2d * slant height.

y = sx>2d + s1>2d, 1 … x … 3,

Frustum surface area = psr1 + r2d * slant height.

y = sx>2d + s1>2d, 1 … x … 3,

Lateral surface area =

1
2

* base circumference * slant height.

y = x>2, 0 … x … 4

Lateral surface area =

1
2

* base circumference * slant height .

y = x>2, 0 … x … 4,

y =

L

x

1
 2t2

- 1 dt, 1 … x … 25; x-axis

x =

L

y

0
 tan t dt, 0 … y … p>3; y-axis

y + 22y = x, 1 … y … 2; y-axis

x1>2
+ y1>2

= 3

x = sin y, 0 … y … p; y-axis

xy = 1, 1 … y … 2; y-axis

y = x2, 0 … x … 2; x-axis

y = tan x, 0 … x … p>4; x-axis

Find the areas of the surfaces generated by revolving the curves in
Exercises 13–23 about the indicated axes. If you have a grapher, you
may want to graph these curves to see what they look like.

13.

14.

15.

16.

17.

18.

19.

20.

21. y-axis

0

ln 2

1

x �
ey � e–y

2

x

y

x = sey
+ e-yd>2,  0 … y …  ln 2;

x

y

x � �2y � 1⎛
⎝

⎛
⎝

1
2

5
8

,5
8 0

1
2 1

1 (1, 1)

x = 22y - 1, 5>8 … y … 1; y-axis

x � 2�4 � y

4

0
x

y

15
4

1,
15
4

⎛
⎝

⎛
⎝

x = 224 - y, 0 … y … 15>4; y-axis

x = s1>3dy3>2
- y1>2, 1 … y … 3; y-axis

x = y3>3, 0 … y … 1; y-axis

y = 2x + 1, 1 … x … 5; x-axis

y = 22x - x2, 0.5 … x … 1.5; x-axis

y = 2x, 3>4 … x … 15>4; x-axis

y = x3>9, 0 … x … 2; x-axis

T

T
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392 Chapter 6: Applications of Definite Integrals

22. (Hint: Express

in terms of dx, and evaluate the integral

with appropriate limits.)

23. (Hint: Express

in terms of dy, and evaluate the integral

with appropriate limits.)

24. Write an integral for the area of the surface generated by revolv-
ing the curve about the x-axis. In
Section 8.4 we will see how to evaluate such integrals.

25. Testing the new definition Show that the surface area of a
sphere of radius a is still by using Equation (3) to find the
area of the surface generated by revolving the curve

about the x-axis.

26. Testing the new definition The lateral (side) surface area of a
cone of height h and base radius r should be the
semiperimeter of the base times the slant height. Show that
this is still the case by finding the area of the surface generated
by revolving the line segment about
the x-axis.

27. Enameling woks Your company decided to put out a deluxe
version of a wok you designed. The plan is to coat it inside with
white enamel and outside with blue enamel. Each enamel will be
sprayed on 0.5 mm thick before baking. (See accompanying fig-
ure.) Your manufacturing department wants to know how much
enamel to have on hand for a production run of 5000 woks.
What do you tell them? (Neglect waste and unused material and
give your answer in liters. Remember that so

)

28. Slicing bread Did you know that if you cut a spherical loaf of
bread into slices of equal width, each slice will have the same
amount of crust? To see why, suppose the semicircle

shown here is revolved about the x-axis to generate
a sphere. Let AB be an arc of the semicircle that lies above an in-
terval of length h on the x-axis. Show that the area swept out by
AB does not depend on the location of the interval. (It does de-
pend on the length of the interval.)

h

x

y

r

A
B

a0 a � h–r

y � �r2 � x2

y = 2r2
- x2

9 cm deep

0
–7

x2 � y2 � 162 � 256

x (cm)

–16

y (cm)

1 L = 1000 cm3 .
1 cm3

= 1 mL,

y = sr>hdx, 0 … x … h,

pr2r2
+ h2,

-a … x … a,y = 2a2
- x2, 

4pa2

y = cos x, -p>2 … x … p>2,

S = 1  2py ds

ds = 2dx2
+ dy2

x = sy4>4d + 1>s8y2d, 1 … y … 2; x-axis

S = 1  2px ds

ds = 2dx2
+ dy2

y = s1>3dsx2
+ 2d3>2, 0 … x … 22; y-axis 29. The shaded band shown here is cut from a sphere of radius R by

parallel planes h units apart. Show that the surface area of the
band is 

30. Here is a schematic drawing of the 90-ft dome used by the U.S.
National Weather Service to house radar in Bozeman, Montana.

a. How much outside surface is there to paint (not counting the
bottom)?

b. Express the answer to the nearest square foot.

31. An alternative derivation of the surface area formula Assume
ƒ is smooth on [a, b] and partition [a, b] in the usual way. In the kth
subinterval , construct the tangent line to the curve at the
midpoint as in the accompanying figure.

a. Show  that

and

b. Show that the length of the tangent line segment in the kth

subinterval is 

xk – 1

r1

r2

mk xk

y � f (x)

�xk

x

Lk = 2s¢xkd2
+ sƒ¿smkd ¢xkd2.

Lk

ƒ¿smkd 
¢xk

2
.r2 = ƒsmkd +r1 = ƒsmkd - ƒ¿smkd 

¢xk

2

mk = sxk - 1 + xkd>2,
[xk - 1, xk]

A
xi

s

45 ft

22.5 ft

Center
Radius
45 ft

h

R

2pRh .

T

T
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6.5 Work and Fluid Forces 393

c. Show that the lateral surface area of the frustum of the cone
swept out by the tangent line segment as it revolves about the

x-axis is 

d. Show that the area of the surface generated by revolving
about the x-axis over [a, b] is

32. The surface of an astroid Find the area of the surface generated
by revolving about the x-axis the portion of the astroid

shown in the accompanying figure.x2>3
+ y2>3

= 1

lim
n: q

 a

n

k = 1
 alateral surface area

of k th frustum
b =

L

b

a
 2pƒsxd21 + sƒ¿sxdd2 dx.

y = ƒsxd

2pƒsmkd21 + sƒ¿smkdd2 ¢xk.

6.5 Work and Fluid Forces

In everyday life, work means an activity that requires muscular or mental effort. In
science, the term refers specifically to a force acting on a body (or object) and the body’s
subsequent displacement. This section shows how to calculate work. The applications 
run from compressing railroad car springs and emptying subterranean tanks to forcing
electrons together and lifting satellites into orbit.

Work Done by a Constant Force

When a body moves a distance d along a straight line as a result of being acted on by a
force of constant magnitude F in the direction of motion, we define the work W done by
the force on the body with the formula

(1)

From Equation (1) we see that the unit of work in any system is the unit of force mul-
tiplied by the unit of distance. In SI units (SI stands for Système International, or Interna-
tional System), the unit of force is a newton, the unit of distance is a meter, and the unit of
work is a newton-meter This combination appears so often it has a special name,
the joule. In the British system, the unit of work is the foot-pound, a unit frequently used
by engineers.

EXAMPLE 1 Suppose you jack up the side of a 2000-lb car 1.25 ft to change a tire.
The jack applies a constant vertical force of about 1000 lb in lifting the side of the car
(but because of the mechanical advantage of the jack, the force you apply to the jack 
itself is only about 30 lb). The total work performed by the jack on the car is

ft-lb. In SI units, the jack has applied a force of 4448 N through a
distance of 0.381 m to do  of work.

Work Done by a Variable Force Along a Line

If the force you apply varies along the way, as it will if you are compressing a spring, the
formula has to be replaced by an integral formula that takes the variation in F
into account.

Suppose that the force performing the work acts on an object moving along a straight
line, which we take to be the x-axis. We assume that the magnitude of the force is a contin-
uous function F of the object’s position x. We want to find the work done over the interval
from to We partition [a, b] in the usual way and choose an arbitrary point 
in each subinterval If the subinterval is short enough, the continuous function F[xk - 1, xk] .

ckx = b .x = a

W = Fd

4448 * 0.381 L 1695 J
1000 * 1.25 = 1250

sN # md .

W = Fd sConstant-force formula for workd.

(Hint: Revolve the first-quadrant portion 
about the x-axis and double your result.)

x2/3 � y2/3 � 1

x

y

–1 0

1

1

0 … x … 1,
y = s1 - x2>3d3>2,

Joules
The joule, abbreviated J and pronounced
“jewel,” is named after the English
physicist James Prescott Joule
(1818–1889). The defining equation is

In symbols, 1 J = 1 N # m.

1 joule = s1 newtonds1 meterd .
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394 Chapter 6: Applications of Definite Integrals

will not vary much from to The amount of work done across the interval will be
about times the distance the same as it would be if F were constant and we
could apply Equation (1). The total work done from a to b is therefore approximated by the
Riemann sum

We expect the approximation to improve as the norm of the partition goes to zero, so we
define the work done by the force from a to b to be the integral of F from a to b:

Fsckd ¢xk =

L

b

a
Fsxd dx.lim

n: q

 a

n

k = 1

Work L a

n

k = 1
 Fsckd ¢xk.

¢xk ,Fsckd
xk .xk - 1

DEFINITION The work done by a variable force F(x) in the direction of
motion along the x-axis from to is

(2)W =

L

b

a
 Fsxd dx.

x = bx = a

FIGURE 6.36 The force F needed to hold
a spring under compression increases
linearly as the spring is compressed
(Example 2).

x

F

0 Uncompressed

x (ft)

F

0 0.25

4

Fo
rc

e 
(l

b)

1

Compressed

x

(a)

Amount compressed

(b)

Work done by F
from x � 0  to x � 0.25

F � 16x

The units of the integral are joules if F is in newtons and x is in meters, and foot-pounds if
F is in pounds and x is in feet. So the work done by a force of newtons in
moving an object along the x-axis from to is

Hooke’s Law for Springs: 

Hooke’s Law says that the force required to hold a stretched or compressed spring x units
from its natural (unstressed) length is proportional to x. In symbols,

(3)

The constant k, measured in force units per unit length, is a characteristic of the spring,
called the force constant (or spring constant) of the spring. Hooke’s Law, Equation (3),
gives good results as long as the force doesn’t distort the metal in the spring. We assume
that the forces in this section are too small to do that.

EXAMPLE 2 Find the work required to compress a spring from its natural length of 1 ft
to a length of 0.75 ft if the force constant is 

Solution We picture the uncompressed spring laid out along the x-axis with its movable
end at the origin and its fixed end at (Figure 6.36). This enables us to describe the
force required to compress the spring from 0 to x with the formula To compress
the spring from 0 to 0.25 ft, the force must increase from

The work done by F over this interval is

W =

L

0.25

0
16x dx = 8x2 d

0

0.25

= 0.5 ft-lb.

Fs0d = 16 # 0 = 0 lb to Fs0.25d = 16 # 0.25 = 4 lb.

F = 16x .
x = 1 ft

k = 16 lb>ft .

F = kx.

F = kx

W =

L

10

1
 
1
x2 dx = -

1
x d

1

10

= -
1

10
+ 1 = 0.9 J.

x = 10 mx = 1 m
Fsxd = 1>x2

Eq. (2) with

Fsxd = 16x
a = 0, b = 0.25, 
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EXAMPLE 3 A spring has a natural length of 1 m. A force of 24 N holds the spring
stretched to a total length of 1.8 m.

(a) Find the force constant k.

(b) How much work will it take to stretch the spring 2 m beyond its natural length?

(c) How far will a 45-N force stretch the spring?

Solution

(a) The force constant. We find the force constant from Equation (3). A force of 24 N
maintains the spring at a position where it is stretched 0.8 m from its natural length, so

(b) The work to stretch the spring 2 m. We imagine the unstressed spring hanging along
the x-axis with its free end at (Figure 6.37). The force required to stretch the
spring x m beyond its natural length is the force required to hold the free end of the
spring x units from the origin. Hooke’s Law with says that this force is

The work done by F on the spring from to is

(c) How far will a 45-N force stretch the spring? We substitute in the equation
to find

A 45-N force will keep the spring stretched 1.5 m beyond its natural length.

The work integral is useful to calculate the work done in lifting objects whose weights
vary with their elevation.

EXAMPLE 4 A 5-lb bucket is lifted from the ground into the air by pulling in 20 ft of
rope at a constant speed (Figure 6.38). The rope weighs 0.08 lb ft. How much work was
spent lifting the bucket and rope?

Solution The bucket has constant weight, so the work done lifting it alone is 
.

The weight of the rope varies with the bucket’s elevation, because less of it is freely
hanging. When the bucket is x ft off the ground, the remaining proportion of the rope still
being lifted weighs So the work in lifting the rope is

The total work for the bucket and rope combined is

Pumping Liquids from Containers

How much work does it take to pump all or part of the liquid from a container? Engineers
often need to know the answer in order to design or choose the right pump to transport wa-
ter or some other liquid from one place to another. To find out how much work is required 
to pump the liquid, we imagine lifting the liquid out one thin horizontal slab at a time and
applying the equation to each slab. We then evaluate the integral this leads to as
the slabs become thinner and more numerous. The integral we get each time depends on
the weight of the liquid and the dimensions of the container, but the way we find the inte-
gral is always the same. The next example shows what to do.

W = Fd

100 + 16 = 116 ft-lb.

 = C1.6x - 0.04x2 D020
= 32 - 16 = 16 ft-lb .

 Work on rope =

L

20

0
s0.08ds20 - xd dx =

L

20

0
s1.6 - 0.08xd dx

s0.08d # s20 - xd lb .

distance = 5 # 20 = 100 ft-lb
weight *

>

45 = 30x, or x = 1.5 m.
F = 30x

F = 45

W =

L

2

0
 30x dx = 15x2 d

0

2

= 60 J.

x = 2 mx = 0 m

Fsxd = 30x.

k = 30

x = 0

 k = 24>0.8 = 30 N>m.

 24 = ks0.8d
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24 N

x (m)

x � 0

0.8

1

FIGURE 6.37 A 24-N weight 
stretches this spring 0.8 m beyond 
its unstressed length (Example 3).

Eq. (3) with
F = 24, x = 0.8

20

x

0

FIGURE 6.38 Lifting the bucket 
in Example 4.
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396 Chapter 6: Applications of Definite Integrals

EXAMPLE 5 The conical tank in Figure 6.39 is filled to within 2 ft of the top with olive
oil weighing How much work does it take to pump the oil to the rim of the tank?

Solution We imagine the oil divided into thin slabs by planes perpendicular to the y-axis
at the points of a partition of the interval [0, 8].

The typical slab between the planes at y and has a volume of about

The force F( y) required to lift this slab is equal to its weight,

The distance through which F( y) must act to lift this slab to the level of the rim of the
cone is about so the work done lifting the slab is about

Assuming there are n slabs associated with the partition of [0, 8], and that denotes
the plane associated with the kth slab of thickness we can approximate the work done
lifting all of the slabs with the Riemann sum

The work of pumping the oil to the rim is the limit of these sums as the norm of the parti-
tion goes to zero and the number of slabs tends to infinity:

Fluid Pressures and Forces

Dams are built thicker at the bottom than at the top (Figure 6.40) because the pressure
against them increases with depth. The pressure at any point on a dam depends only on
how far below the surface the point is and not on how much the surface of the dam happens
to be tilted at that point. The pressure, in pounds per square foot at a point h feet below the
surface, is always 62.4h. The number 62.4 is the weight-density of freshwater in pounds
per cubic foot. The pressure h feet below the surface of any fluid is the fluid’s weight-
density times h.

 =
57p

4
 c10y3

3
-

y4

4
d

0

8

L 30,561 ft-lb .

 =
57p

4
 
L

8

0
 s10y2

- y3d dy

W = lim
n: q

 a

n

k = 1
 
57p

4
 (10 - yk)yk

2 ¢yk =

L

8

0
 
57p

4
 (10 - y)y2 dy

W L a

n

k = 1
 
57p

4
 s10 - ykdyk 

2 ¢yk ft-lb.

¢yk ,
y = yk

¢W =
57p

4
 s10 - ydy2 ¢y ft-lb.

s10 - yd ft ,

Fs yd = 57 ¢V =
57p

4
 y2 ¢y lb.

¢V = psradiusd2sthicknessd = p a1
2

 yb2

 ¢y =
p
4

 y2 ¢y ft3.

y + ¢y

57 lb>ft3 .

x

y

10

8
10 � y

0

5

y1
2

y � 2x or x �    y1
2

(5, 10)

Δy

y

FIGURE 6.39 The olive oil and tank in
Example 5.

FIGURE 6.40 To withstand the 
increasing pressure, dams are built 
thicker as they go down.

volume) * volume
Weight = (weight per unit

The Pressure-Depth Equation
In a fluid that is standing still, the pressure p at depth h is the fluid’s weight-
density w times h:

(4)p = wh .

Weight-density
A fluid’s weight-density w is its weight
per unit volume. Typical values 
are listed below.

Gasoline 42
Mercury 849
Milk 64.5
Molasses 100
Olive oil 57
Seawater 64
Freshwater 62.4

slb>ft3d
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In a container of fluid with a flat horizontal base, the total force exerted by the fluid
against the base can be calculated by multiplying the area of the base by the pressure at the
base. We can do this because total force equals force per unit area (pressure) times area.
(See Figure 6.41.) If F, p, and A are the total force, pressure, and area, then

 = whA .

 = pressure * area = pA

 F = total force = force per unit area * area

6.5 Work and Fluid Forces 397

from Eq. (4)p = wh

Fluid Force on a Constant-Depth Surface

(5)F = pA = whA

For example, the weight-density of freshwater is so the fluid force at the bot-
tom of a rectangular swimming pool 3 ft deep is

For a flat plate submerged horizontally, like the bottom of the swimming pool just
discussed, the downward force acting on its upper face due to liquid pressure is given by
Equation (5). If the plate is submerged vertically, however, then the pressure against it will
be different at different depths and Equation (5) no longer is usable in that form (because
h varies).

Suppose we want to know the force exerted by a fluid against one side of a vertical
plate submerged in a fluid of weight-density w. To find it, we model the plate as a region
extending from to in the xy-plane (Figure 6.42). We partition [a, b] in the
usual way and imagine the region to be cut into thin horizontal strips by planes perpen-
dicular to the y-axis at the partition points. The typical strip from y to is units
wide by L(y) units long. We assume L(y) to be a continuous function of y.

The pressure varies across the strip from top to bottom. If the strip is narrow enough,
however, the pressure will remain close to its bottom-edge value of The
force exerted by the fluid against one side of the strip will be about

Assume there are n strips associated with the partition of and that is the bot-
tom edge of the kth strip having length and width The force against the entire
plate is approximated by summing the forces against each strip, giving the Riemann sum

(6)

The sum in Equation (6) is a Riemann sum for a continuous function on [a, b], and we ex-
pect the approximations to improve as the norm of the partition goes to zero. The force
against the plate is the limit of these sums:

lim
n: q

 a

n

k = 1
sw # sstrip depthdk

# Ls ykdd ¢yk =

L

b

a
 w # sstrip depthd # Ls yd dy.

F L a

n

k = 1
sw # sstrip depthdk

# Ls ykdd ¢yk .

¢yk .Lsykd
yka … y … b

 = w # sstrip depthd # Ls yd ¢y .

 ¢F = spressure along bottom edged * saread

w * sstrip depthd .

¢yy + ¢y

y = by = a

 = 37,440 lb .

F = whA = s62.4 lb>ft3ds3 ftds10 # 20 ft2d

10 ft * 20 ft
62.4 lb>ft3 ,

h

FIGURE 6.41 These containers are filled
with water to the same depth and have the
same base area. The total force is therefore
the same on the bottom of each container.
The containers’ shapes do not matter here.

y

Surface of fluid

Strip length at level y 

Submerged vertical
plate

b

y

a

�y

Strip
depth

L(y)

FIGURE 6.42 The force exerted by a fluid
against one side of a thin, flat horizontal
strip is about 
w * sstrip depthd * Lsyd ¢y .

¢F = pressure * area =
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398 Chapter 6: Applications of Definite Integrals

EXAMPLE 6 A flat isosceles right-triangular plate with base 6 ft and height 3 ft is sub-
merged vertically, base up, 2 ft below the surface of a swimming pool. Find the force ex-
erted by the water against one side of the plate.

Solution We establish a coordinate system to work in by placing the origin at the plate’s
bottom vertex and running the y-axis upward along the plate’s axis of symmetry (Figure 6.43).
The surface of the pool lies along the line and the plate’s top edge along the line

The plate’s right-hand edge lies along the line with the upper-right vertex at
(3, 3). The length of a thin strip at level y is

The depth of the strip beneath the surface is The force exerted by the water
against one side of the plate is therefore

Eq. (7)

 = 124.8 c5
2

 y2
-

y3

3
d

0

3

= 1684.8 lb .

 = 124.8
L

3

0
 s5y - y2d dy

 =

L

3

0
 62.4s5 - yd2y dy

 F =

L

b

a
 w # a strip

depth
b # Ls yd dy

s5 - yd .

Ls yd = 2x = 2y .

y = x ,y = 3.
y = 5

x (ft) 
0

Pool surface at

Depth:
5 � y y (3, 3)

�y

y � 5

y � 3

y � x or x � y

y (ft)

(x, x) � (y, y)

x � y

FIGURE 6.43 To find the force on one
side of the submerged plate in Example 6,
we can use a coordinate system like the
one here.

The Integral for Fluid Force Against a Vertical Flat Plate
Suppose that a plate submerged vertically in fluid of weight-density w runs from

to on the y-axis. Let L(y) be the length of the horizontal strip meas-
ured from left to right along the surface of the plate at level y. Then the force ex-
erted by the fluid against one side of the plate is

(7)F =

L

b

a
 w # sstrip depthd # Ls yd dy .

y = by = a

Exercises 6.5

Springs
1. Spring constant It took 1800 J of work to stretch a spring from

its natural length of 2 m to a length of 5 m. Find the spring’s force
constant.

2. Stretching a spring A spring has a natural length of 10 in. An
800-lb force stretches the spring to 14 in.

a. Find the force constant.

b. How much work is done in stretching the spring from 10 in.
to 12 in.?

c. How far beyond its natural length will a 1600-lb force stretch
the spring?

3. Stretching a rubber band A force of 2 N will stretch a rubber
band 2 cm (0.02 m). Assuming that Hooke’s Law applies, how far
will a 4-N force stretch the rubber band? How much work does it
take to stretch the rubber band this far?

4. Stretching a spring If a force of 90 N stretches a spring 1 m
beyond its natural length, how much work does it take to stretch
the spring 5 m beyond its natural length?

5. Subway car springs It takes a force of 21,714 lb to compress a
coil spring assembly on a New York City Transit Authority subway
car from its free height of 8 in. to its fully compressed height of 5 in.

a. What is the assembly’s force constant?

b. How much work does it take to compress the assembly the
first half inch? the second half inch? Answer to the nearest
in.-lb.

6. Bathroom scale A bathroom scale is compressed 1 16 in. when
a 150-lb person stands on it. Assuming that the scale behaves like
a spring that obeys Hooke’s Law, how much does someone who
compresses the scale 1 8 in. weigh? How much work is done
compressing the scale 1 8 in.?>>

>
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Work Done by a Variable Force
7. Lifting a rope A mountain climber is about to haul up a 50 m

length of hanging rope. How much work will it take if the rope
weighs 0.624 N m?

8. Leaky sandbag A bag of sand originally weighing 144 lb was
lifted at a constant rate. As it rose, sand also leaked out at a con-
stant rate. The sand was half gone by the time the bag had been
lifted to 18 ft. How much work was done lifting the sand this far?
(Neglect the weight of the bag and lifting equipment.)

9. Lifting an elevator cable An electric elevator with a motor at the
top has a multistrand cable weighing 4.5 lb ft. When the car is at the
first floor, 180 ft of cable are paid out, and effectively 0 ft are out when
the car is at the top floor. How much work does the motor do just
lifting the cable when it takes the car from the first floor to the top?

10. Force of attraction When a particle of mass m is at (x, 0), it is
attracted toward the origin with a force whose magnitude is 
If the particle starts from rest at and is acted on by no other
forces, find the work done on it by the time it reaches 

11. Leaky bucket Assume the bucket in Example 4 is leaking. It
starts with 2 gal of water (16 lb) and leaks at a constant rate. It
finishes draining just as it reaches the top. How much work was
spent lifting the water alone? (Hint: Do not include the rope and
bucket, and find the proportion of water left at elevation x ft.)

12. (Continuation of Exercise 11.) The workers in Example 4 and 
Exercise 11 changed to a larger bucket that held 5 gal (40 lb) of
water, but the new bucket had an even larger leak so that it, too,
was empty by the time it reached the top. Assuming that the water
leaked out at a steady rate, how much work was done lifting the
water alone? (Do not include the rope and bucket.)

Pumping Liquids from Containers
13. Pumping water The rectangular tank shown here, with its top

at ground level, is used to catch runoff water. Assume that the
water weighs 

a. How much work does it take to empty the tank by pumping
the water back to ground level once the tank is full?

b. If the water is pumped to ground level with a (5 11)-
horsepower (hp) motor (work output 250 ft-lb sec), how long
will it take to empty the full tank (to the nearest minute)?

c. Show that the pump in part (b) will lower the water level 10 ft
(halfway) during the first 25 min of pumping.

d. The weight of water What are the answers to parts (a) and
(b) in a location where water weighs 

14. Emptying a cistern The rectangular cistern (storage tank for
rainwater) shown has its top 10 ft below ground level. The cistern,

y

0

10 ft
12 ft

Δy

20

y

Ground
level

62.59 lb>ft3 ?62.26 lb>ft3 ?

> >

62.4 lb>ft3 .

0 6 a 6 b.
x = a, 

x = b
k>x2.

>

>

6.5 Work and Fluid Forces 399

currently full, is to be emptied for inspection by pumping its con-
tents to ground level.

a. How much work will it take to empty the cistern?

b. How long will it take a 1 2-hp pump, rated at 275 ft-lb sec, to
pump the tank dry?

c. How long will it take the pump in part (b) to empty the tank
halfway? (It will be less than half the time required to empty
the tank completely.)

d. The weight of water What are the answers to parts (a)
through (c) in a location where water weighs 

15. Pumping oil How much work would it take to pump oil from
the tank in Example 5 to the level of the top of the tank if the tank
were completely full?

16. Pumping a half-full tank Suppose that, instead of being full,
the tank in Example 5 is only half full. How much work does it take
to pump the remaining oil to a level 4 ft above the top of the tank?

17. Emptying a tank A vertical right-circular cylindrical tank
measures 30 ft high and 20 ft in diameter. It is full of kerosene
weighing How much work does it take to pump the
kerosene to the level of the top of the tank?

18. a. Pumping milk Suppose that the conical container in Example 5
contains milk (weighing ) instead of olive oil. How
much work will it take to pump the contents to the rim?

b. Pumping oil How much work will it take to pump the oil in
Example 5 to a level 3 ft above the cone’s rim?

19. The graph of on is revolved about the y-axis to
form a tank that is then filled with salt water from the Dead Sea
(weighing approximately 73 lbs/ft ). How much work does it take
to pump all of the water to the top of the tank?

20. A right-circular cylindrical tank of height 10 ft and radius 5 ft is
lying horizontally and is full of diesel fuel weighing 53 lbs/ft .
How much work is required to pump all of the fuel to a point 15 ft
above the top of the tank?

21. Emptying a water reservoir We model pumping from spheri-
cal containers the way we do from other containers, with the axis
of integration along the vertical axis of the sphere. Use the figure
here to find how much work it takes to empty a full hemispherical
water reservoir of radius 5 m by pumping the water to a height of
4 m above the top of the reservoir. Water weighs 

x

y

0 5

y

�25 � y2

Δy

4 m

�y� � –y

9800 N>m3.

3

3

0 … x … 2y = x2

64.5 lb>ft3

51.2 lb>ft3 .

Ground level

10 ft

20 ft 12 ft

0

10

20

y

62.59 lb>ft3 ?
62.26 lb>ft3 ?

>>
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400 Chapter 6: Applications of Definite Integrals

22. You are in charge of the evacuation and repair of the storage tank
shown here. The tank is a hemisphere of radius 10 ft and is full of
benzene weighing A firm you contacted says it can
empty the tank for 1 2¢ per foot-pound of work. Find the work
required to empty the tank by pumping the benzene to an outlet 2 ft
above the top of the tank. If you have $5000 budgeted for the job,
can you afford to hire the firm?

Work and Kinetic Energy
23. Kinetic energy If a variable force of magnitude F(x) moves a

body of mass m along the x-axis from to the body’s velocity
can be written as dx dt (where t represents time). Use Newton’s

second law of motion and the Chain Rule

to show that the net work done by the force in moving the body
from to is

where and are the body’s velocities at and In physics,
the expression is called the kinetic energy of a body of
mass m moving with velocity . Therefore, the work done by the
force equals the change in the body’s kinetic energy, and we can
find the work by calculating this change.

In Exercises 24–28, use the result of Exercise 23.

24. Tennis A 2-oz tennis ball was served at 160 ft sec (about 109
mph). How much work was done on the ball to make it go this
fast? (To find the ball’s mass from its weight, express the weight
in pounds and divide by the acceleration of gravity.)

25. Baseball How many foot-pounds of work does it take to throw a
baseball 90 mph? A baseball weighs 5 oz, or 0.3125 lb.

26. Golf A 1.6-oz golf ball is driven off the tee at a speed of 280 ft
sec (about 191 mph). How many foot-pounds of work are done on
the ball getting it into the air?

27. On June 11, 2004, in a tennis match between Andy Roddick and
Paradorn Srichaphan at the Stella Artois tournament in London,
England, Roddick hit a serve measured at 153 mi h. How much
work was required by Andy to serve a 2-oz tennis ball at that speed?

28. Softball How much work has to be performed on a 6.5-oz soft-
ball to pitch it 132 ft sec (90 mph)?

29. Drinking a milkshake The truncated conical container shown
here is full of strawberry milkshake that weighs As
you can see, the container is 7 in. deep, 2.5 in. across at the base,
and 3.5 in. across at the top (a standard size at Brigham’s in
Boston). The straw sticks up an inch above the top. About how
much work does it take to suck up the milkshake through the
straw (neglecting friction)? Answer in inch-ounces.

4>9 oz>in3.

>

>

>

32 ft>sec2 ,

>

y

s1>2dmy2
x2 .x1y2y1

W =

L

x2

x1

 Fsxd dx =

1
2

 my2 
2

-

1
2

 my1 
2,

x2x1

dy
dt

=

dy
dx

 
dx
dt

= y 
dy
dx

F = msdy>dtd
>y

x2 ,x1

x

z

10

y

10 2 ft

Outlet pipe
x2 � y2 � z2 � 100

0

>56 lb>ft3 .

30. Water tower Your town has decided to drill a well to increase
its water supply. As the town engineer, you have determined that a
water tower will be necessary to provide the pressure needed for
distribution, and you have designed the system shown here. The
water is to be pumped from a 300 ft well through a vertical 4 in.
pipe into the base of a cylindrical tank 20 ft in diameter and 25 ft
high. The base of the tank will be 60 ft above ground. The pump
is a 3 hp pump, rated at To the nearest hour, how
long will it take to fill the tank the first time? (Include the time it
takes to fill the pipe.) Assume that water weighs 

31. Putting a satellite in orbit The strength of Earth’s gravita-
tional field varies with the distance r from Earth’s center, and the
magnitude of the gravitational force experienced by a satellite of
mass m during and after launch is

Here, is Earth’s mass, 
is the universal gravitational constant, and r is

measured in meters. The work it takes to lift a 1000-kg satellite
from Earth’s surface to a circular orbit 35,780 km above Earth’s
center is therefore given by the integral

Evaluate the integral. The lower limit of integration is Earth’s ra-
dius in meters at the launch site. (This calculation does not take
into account energy spent lifting the launch vehicle or energy
spent bringing the satellite to orbit velocity.)

Work =

L

35,780,000

6,370,000
 
1000MG

r2  dr joules.

10-11 N # m2 kg-2
G = 6.6720 *M = 5.975 * 1024 kg

Fsrd =

mMG

r2 .

Submersible pump

Water surface

Ground

NOT  TO SCALE

4 in.

300 ft

60 ft

25 ft

10 ft

62.4 lb>ft3 .

1650 ft # lb>sec .

x

y

1.25

0

7

y

8

8 � y

y � 17.5
14

Δy

(1.75, 7)

y � 14x � 17.5

Dimensions in inches
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32. Forcing electrons together Two electrons r meters apart repel
each other with a force of

a. Suppose one electron is held fixed at the point (1, 0) on the x-axis
(units in meters). How much work does it take to move a second
electron along the x-axis from the point to the origin?

b. Suppose an electron is held fixed at each of the points 
and (1, 0). How much work does it take to move a third
electron along the x-axis from (5, 0) to (3, 0)?

Finding Fluid Forces
33. Triangular plate Calculate the fluid force on one side of the

plate in Example 6 using the coordinate system shown here.

34. Triangular plate Calculate the fluid force on one side of the
plate in Example 6 using the coordinate system shown here.

35. Rectangular plate In a pool filled with water to a depth of 10 ft,
calculate the fluid force on one side of a 3 ft by 4 ft rectangular
plate if the plate rests vertically at the bottom of the pool

a. on its 4-ft edge. b. on its 3-ft edge.

36. Semicircular plate Calculate the fluid force on one side of a
semicircular plate of radius 5 ft that rests vertically on its diame-
ter at the bottom of a pool filled with water to a depth of 6 ft.

37. Triangular plate The isosceles triangular plate shown here is
submerged vertically 1 ft below the surface of a freshwater lake.

a. Find the fluid force against one face of the plate.

b. What would be the fluid force on one side of the plate if the
water were seawater instead of freshwater?

x

y

5
6Surface of water

x (ft)
0 3

1

–3

–3

y (ft)

Pool surface  at y � 2

x (ft) 
0 5

–5

Surface of pool

y x

y (ft)

(x, y)

y � �2Depth �y�

s -1, 0d
s -1, 0d

F =

23 * 10-29

r2   newtons.
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38. Rotated triangular plate The plate in Exercise 37 is revolved
180° about line AB so that part of the plate sticks out of the lake,
as shown here. What force does the water exert on one face of the
plate now?

39. New England Aquarium The viewing portion of the rectangular
glass window in a typical fish tank at the New England Aquarium in
Boston is 63 in. wide and runs from 0.5 in. below the water’s surface
to 33.5 in. below the surface. Find the fluid force against this portion
of the window. The weight-density of seawater is (In case
you were wondering, the glass is 3 4 in. thick and the tank walls ex-
tend 4 in. above the water to keep the fish from jumping out.)

40. Semicircular plate A semicircular plate 2 ft in diameter sticks
straight down into freshwater with the diameter along the surface.
Find the force exerted by the water on one side of the plate.

41. Tilted plate Calculate the fluid force on one side of a 5 ft by 5 ft
square plate if the plate is at the bottom of a pool filled with water
to a depth of 8 ft and

a. lying flat on its 5 ft by 5 ft face.

b. resting vertically on a 5-ft edge.

c. resting on a 5-ft edge and tilted at 45 to the bottom of the pool.

42. Tilted plate Calculate the fluid force on one side of a right-
triangular plate with edges 3 ft, 4 ft, and 5 ft if the plate sits at the
bottom of a pool filled with water to a depth of 6 ft on its 3-ft
edge and tilted at 60 to the bottom of the pool.

43. The cubical metal tank shown here has a parabolic gate held in
place by bolts and designed to withstand a fluid force of 160 lb
without rupturing. The liquid you plan to store has a weight-
density of 

a. What is the fluid force on the gate when the liquid is 2 ft deep?

b. What is the maximum height to which the container can be
filled without exceeding the gate’s design limitation?

x (ft)
10

Enlarged view of
parabolic gate

–1

Parabolic gate

(–1, 1) (1, 1)

y (ft)

y � x2

4 ft

4 ft

4 ft

50 lb>ft3 .

°

°

> 64 lb>ft3 .

A

Surface
level

B
4 ft

3 ft

1 ft

A

Surface level

B
4 ft

4 ft

1 ft
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402 Chapter 6: Applications of Definite Integrals

44. The end plates of the trough shown here were designed to with-
stand a fluid force of 6667 lb. How many cubic feet of water can
the tank hold without exceeding this limitation? Round down to
the nearest cubic foot. What is the value of h?

45. A vertical rectangular plate a units long by b units wide is sub-
merged in a fluid of weight-density w with its long edges parallel
to the fluid’s surface. Find the average value of the pressure along
the vertical dimension of the plate. Explain your answer.

46. (Continuation of Exercise 45.) Show that the force exerted by the
fluid on one side of the plate is the average value of the pressure
(found in Exercise 45) times the area of the plate.

47. Water pours into the tank shown here at the rate of The
tank’s cross-sections are 4-ft-diameter semicircles. One end of the
tank is movable, but moving it to increase the volume compresses a

4 ft3>min.

End view of trough

x (ft)

y (ft) 

0

(4, 10)(–4, 10)

Dimensional
view of trough

10 ft

30 ft

(0, h)
y �   x5

2

8 ft

spring. The spring constant is If the end of the tank
moves 5 ft against the spring, the water will drain out of a safety
hole in the bottom at the rate of Will the movable end
reach the hole before the tank overflows?

48. Watering trough The vertical ends of a watering trough are
squares 3 ft on a side.

a. Find the fluid force against the ends when the trough is full.

b. How many inches do you have to lower the water level in the
trough to reduce the fluid force by 25%?

2 ft

Movable end Water in

5 ft

Side view

Movable
end

Water
in

Drain
hole

Drain
hole

y

x

4 ft

x2 � y2 � 4

5 ft3>min.

k = 100 lb>ft .

6.6 Moments and Centers of Mass

Many structures and mechanical systems behave as if their masses were concentrated at a
single point, called the center of mass (Figure 6.44). It is important to know how to locate
this point, and doing so is basically a mathematical enterprise. For the moment, we deal
with one- and two-dimensional objects. Three-dimensional objects are best done with the
multiple integrals of Chapter 15.

Masses Along a Line

We develop our mathematical model in stages. The first stage is to imagine masses 
and on a rigid x-axis supported by a fulcrum at the origin.

The resulting system might balance, or it might not, depending on how large the masses
are and how they are arranged along the x-axis.

Each mass exerts a downward force (the weight of ) equal to the magnitude
of the mass times the acceleration due to gravity. Each of these forces has a tendency to
turn the axis about the origin, the way a child turns a seesaw. This turning effect, called a
torque, is measured by multiplying the force by the signed distance from the point
of application to the origin. Masses to the left of the origin exert negative (counterclock-
wise) torque. Masses to the right of the origin exert positive (clockwise) torque.

The sum of the torques measures the tendency of a system to rotate about the origin.
This sum is called the system torque.

(1)System torque = m1 gx1 + m2 gx2 + m3 gx3

xkmk g

mkmk gmk

x
m1

Fulcrum
at origin

m2 m3

x1 x2 x30

m3

m1, m2 ,
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6.6 Moments and Centers of Mass 403

The system will balance if and only if its torque is zero.
If we factor out the g in Equation (1), we see that the system torque is

Thus, the torque is the product of the gravitational acceleration g, which is a feature of
the environment in which the system happens to reside, and the number 

which is a feature of the system itself, a constant that stays the same no
matter where the system is placed.

The number is called the moment of the system about the
origin. It is the sum of the moments of the individual masses.

(We shift to sigma notation here to allow for sums with more terms.)
We usually want to know where to place the fulcrum to make the system balance, that

is, at what point to place it to make the torques add to zero.

The torque of each mass about the fulcrum in this special location is

When we write the equation that says that the sum of these torques is zero, we get an equa-
tion we can solve for 

Sum of the torques equals zero.

Solved for 

This last equation tells us to find by dividing the system’s moment about the origin by
the system’s total mass:

(2)

The point is called the system’s center of mass.

Masses Distributed over a Plane Region

Suppose that we have a finite collection of masses located in the plane, with mass at the
point (see Figure 6.45). The mass of the system is

Each mass has a moment about each axis. Its moment about the x-axis is and its
moment about the y-axis is The moments of the entire system about the two axes are

 Moment about y-axis:   My = a  mk xk.

 Moment about x-axis:   Mx = a  mk yk,

mk xk .
mk yk ,mk

System mass:    M = a  mk .

sxk , ykd
mk

x

x =
a  mk xk

a  mk
=

system moment about origin
system mass .

x

x x =
a  mk xk

a  mk
.

 a  sxk - xdmk g = 0

x :

 = sxk - xdmk g .

 Torque of mk about x = asigned distance
of mk from x

b adownward
force

b

x
m1

Special location
for balance

m2 m3

x1 x2 x30 x

x

M0 = Moment of system about origin = a  mk xk

m1 x1, m2 x2, m3 x3

sm1 x1 + m2 x2 + m3 x3d

m2 x2 + m3 x3d,
sm1 x1 +

g  #  sm1 x1 + m2 x2 + m3 x3d.

FIGURE 6.44 A wrench gliding on
ice turning about its center of mass as
the center glides in a vertical line.

x

y

0

xk

xk

yk

yk

mk

(xk, yk)

FIGURE 6.45 Each mass has a
moment about each axis.

mk

(++++)++++*

a feature of
the system

"

a feature of the
environment
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404 Chapter 6: Applications of Definite Integrals

The x-coordinate of the system’s center of mass is defined to be

(3)

With this choice of as in the one-dimensional case, the system balances about the line
(Figure 6.46).

The y-coordinate of the system’s center of mass is defined to be

(4)

With this choice of the system balances about the line as well. The torques ex-
erted by the masses about the line cancel out. Thus, as far as balance is concerned,
the system behaves as if all its mass were at the single point We call this point the
system’s center of mass.

Thin, Flat Plates

In many applications, we need to find the center of mass of a thin, flat plate: a disk of alu-
minum, say, or a triangular sheet of steel. In such cases, we assume the distribution of
mass to be continuous, and the formulas we use to calculate and contain integrals in-
stead of finite sums. The integrals arise in the following way.

Imagine that the plate occupying a region in the xy-plane is cut into thin strips parallel
to one of the axes (in Figure 6.47, the y-axis). The center of mass of a typical strip is

We treat the strip’s mass as if it were concentrated at The moment of the
strip about the y-axis is then The moment of the strip about the x-axis is 
Equations (3) and (4) then become

The sums are Riemann sums for integrals and approach these integrals as limiting values
as the strips into which the plate is cut become narrower and narrower. We write these inte-
grals symbolically as

x =
1  x

'
 dm

1  dm
 and y =

1  y
'

 dm

1  dm
.

x =

My

M
=
a  x

'
 ¢m

a  ¢m
, y =

Mx

M
=
a  y

'
 ¢m

a  ¢m
.

y
'

 ¢m.x
'

 ¢m.
s x
'

, y
'd.¢ms x

'
, y
'd.

yx

sx, yd.
y = y

y = yy,

y =

Mx

M
=
a  mk yk

a  mk
.

x = x
x,

x =

My

M
=
a  mk xk

a  mk
.

x

y

0

Bala
nc

e l
ine

Balanceline

y � y

x �
 x

c.m.
y

x

FIGURE 6.46 A two-dimensional array
of masses balances on its center of mass.

x

y

~x0

Strip
c.m.

~y
~x

~y

Strip of mass �m

~ ~(x, y)

FIGURE 6.47 A plate cut into thin strips
parallel to the y-axis. The moment exerted
by a typical strip about each axis is the
moment its mass would exert if
concentrated at the strip’s center of mass
s x
'

, y
'd.

¢m

Moments, Mass, and Center of Mass of a Thin Plate Covering a Region in
the xy-Plane

(5)

 Center of mass:    x =

My

M
, y =

Mx

M

 Mass:    M =

L
  dm

 Moment about the y-axis:   My =

L
 x
'

 dm

 Moment about the x-axis:   Mx =

L
 y
'

 dm

Density
A material’s density is its mass per unit
area. For wires, rods, and narrow strips, we
use mass per unit length.
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The differential dm is the mass of the strip. Assuming the density of the plate to be a con-
tinuous function, the mass differential dm equals the product dA (mass per unit area times
area). Here dA represents the area of the strip.

To evaluate the integrals in Equations (5), we picture the plate in the coordinate plane
and sketch a strip of mass parallel to one of the coordinate axes. We then express the strip’s
mass dm and the coordinates of the strip’s center of mass in terms of x or y. Finally,
we integrate and dm between limits of integration determined by the plate’s
location in the plane.

EXAMPLE 1 The triangular plate shown in Figure 6.48 has a constant density of
Find

(a) the plate’s moment about the y-axis. (b) the plate’s mass M.

(c) the x-coordinate of the plate’s center of mass (c.m.).

Solution Method 1: Vertical Strips (Figure 6.49)

(a) The moment The typical vertical strip has the following relevant data.

center of mass (c.m.):
length:
width:

area:
mass:

distance of c.m. from y-axis:

The moment of the strip about the y-axis is

The moment of the plate about the y-axis is therefore

(b) The plate’s mass:

(c) The x-coordinate of the plate’s center of mass:

By a similar computation, we could find and 

Method 2: Horizontal Strips (Figure 6.50)

(a) The moment The y-coordinate of the center of mass of a typical horizontal strip is
y (see the figure), so

The x-coordinate is the x-coordinate of the point halfway across the triangle. This
makes it the average of y 2 (the strip’s left-hand x-value) and 1 (the strip’s right-hand
x-value):

x
'

=

s y>2d + 1
2

=

y
4

+
1
2

=

y + 2
4

.

>
y
'

= y.

My:

y = Mx>M.Mx

x =

My

M
=

2 g # cm
3 g

=
2
3

 cm.

M =

L
  dm =

L

1

0
 6x dx = 3x2 d

0

1

= 3 g.

My =

L
 x
'

 dm =

L

1

0
 6x2 dx = 2x3 d

0

1

= 2 g # cm.

x
'

 dm = x # 6x dx = 6x2 dx.

x
'

= x
dm = d dA = 3 # 2x dx = 6x dx
dA = 2x dx
dx
2x
s x
'

, y
'd = sx, xd

My :

My

d = 3 g>cm2.

 x
'

 dm,y
'

 dm, 
s x
'

, y
'd

d

d
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x (cm)

y (cm) 

0

2

1

(1, 2)

y � 2x

x � 1

y � 0

FIGURE 6.48 The plate in Example 1.

x

y

0

2

1

(1, 2)

Units in centimeters

Strip c.m.
is halfway.

x 2x

dx

y � 2x

(x, 2x)

~ ~(x, y) � (x, x)

FIGURE 6.49 Modeling the plate in
Example 1 with vertical strips.

x (cm)

y (cm)

0

2

1

(1, 2)

Strip c.m.
is halfway.

y dy

⎛
⎝

⎛
⎝

~ ~(x, y) � 4
y � 2

, y

⎛
⎝

⎛
⎝2

y
, y

2
2
y

1 �

2
y

x � 

(1, y)

2
y

1 �

FIGURE 6.50 Modeling the plate in
Example 1 with horizontal strips.
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406 Chapter 6: Applications of Definite Integrals

We also have

length:

width:

area:

mass:

distance of c.m. to y-axis:

The moment of the strip about the y-axis is

The moment of the plate about the y-axis is

(b) The plate’s mass:

(c) The x-coordinate of the plate’s center of mass:

By a similar computation, we could find and 

If the distribution of mass in a thin, flat plate has an axis of symmetry, the center of
mass will lie on this axis. If there are two axes of symmetry, the center of mass will lie at
their intersection. These facts often help to simplify our work.

EXAMPLE 2 Find the center of mass of a thin plate covering the region bounded above
by the parabola and below by the x-axis (Figure 6.51). Assume the density of
the plate at the point (x, y) is which is twice the square of the distance from the
point to the y-axis.

Solution The mass distribution is symmetric about the y-axis, so We model the
distribution of mass with vertical strips since the density is given as a function of the vari-
ble x. The typical vertical strip (see Figure 6.51) has the following relevant data.

center of mass (c.m.):

length:

width:

area:

mass:

distance from c.m. to x-axis:

The moment of the strip about the x-axis is

y
'

 dm =
4 - x2

2
 #  ds4 - x2d dx =

d
2

 s4 - x2d2 dx.

y
'

=
4 - x2

2

dm = d dA = ds4 - x2d dx

dA = s4 - x2d dx

dx

4 - x2

s x
'

, y
'd = ax, 

4 - x2

2
b

x = 0.

d = 2x2,
y = 4 - x2

y.Mx

x =

My

M
=

2 g # cm
3 g

=
2
3

  cm.

M =

L
  dm =

L

2

0
 
3
2

 (2 - y) dy =
3
2

 c2y -

y2

2
d

0

2

=
3
2

 (4 - 2) = 3 g.

My =

L
 x
'

 dm =

L

2

0
 
3
8

 s4 - y2d dy =
3
8

 c4y -

y3

3
d

0

2

=
3
8

 a16
3
b = 2 g # cm.

x
'

 dm =

y + 2
4

 #  3 #  
2 - y

2
 dy =

3
8

 s4 - y2d dy.

 x
'

=

y + 2
4

.

dm = d dA = 3 #
2 - y

2
 dy

dA =

2 - y
2

 dy

dy

1 -

y
2

=

2 - y
2

x

y

0

4

–2 2
dx
x

Center of mass
y � 4 � x2

⎛
⎝

⎛
⎝

~ ~(x, y) � 2
4 � x2

x, 

2
y

4 � x2

FIGURE 6.51 Modeling the plate in
Example 2 with vertical strips.
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The moment of the plate about the x-axis is

Therefore,

The plate’s center of mass is

Plates Bounded by Two Curves

Suppose a plate covers a region that lies between two curves and 
where The typical vertical strip (see Figure 6.52) has

center of mass (c.m.):

length:

width:

area:

mass: .

The moment of the plate about the y-axis is

and the moment about the x-axis is

These moments give the formulas

Mx =

L
y dm =

L

b

a
 
1
2

 [ƒ(x) + g(x)] # d[ƒ(x) - g(x)] dx

=

L

b

a
 
d
2

 [ƒ2(x) - g2(x)] dx.

 xd[ƒ(x) - g(x)] dx,My =

L
x dm =

L

b

a

dm = d dA = d[ƒ(x) - g(x)] dx

dA = [ƒ(x) - g(x)] dx

dx

ƒ(x) - g(x)

(x
'

, y
'

 ) = (x, 12 [ƒ(x) + g(x)])

ƒ(x) Ú g(x) and a … x … b.
y = ƒ(x),y = g(x)

sx, yd = a0, 
8
7 b .

y =

Mx

M
=

2048
105

 #  
15
256

=
8
7 .

 =

L

2

-2
 s8x2

- 2x4d dx =
256
15

.

 M =

L
  dm =

L

2

-2
 ds4 - x2d dx =

L

2

-2
 2x2s4 - x2d dx

 =

L

2

-2
s16x2

- 8x4
+ x6d dx =

2048
105

 Mx =

L
 y
'

 dm =

L

2

-2
 
d
2

 s4 - x2d2 dx =

L

2

-2
 x2s4 - x2d2 dx
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x

y

0 bdxa

y � f (x)

y � g(x)

~ ~(x, y)

FIGURE 6.52 Modeling the plate bounded
by two curves with vertical strips. The strip 

c.m. is halfway, so y
'

=

1
2

 [ƒ(x) + g(x)].

(6)

(7)y =
1
M

 
L

b

a
 
d
2

 [ƒ2(x) - g2(x)] dx

x =
1
M

 
L

b

a
 dx [ƒ(x) - g(x)] dx
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408 Chapter 6: Applications of Definite Integrals

EXAMPLE 3 Find the center of mass for the thin plate bounded by the curves 

(Figure 6.53) using Equations (6) and (7) with the density

function 

Solution We first compute the mass of the plate, where 

Then from Equations (6) and (7) we get

and

The center of mass is shown in Figure 6.53.

Centroids

When the density function is constant, it cancels out of the numerator and denominator of
the formulas for and . Thus, when the density is constant, the location of the center of
mass is a feature of the geometry of the object and not of the material from which it is
made. In such cases, engineers may call the center of mass the centroid of the shape, as in
“Find the centroid of a triangle or a solid cone.” To do so, just set equal to 1 and proceed
to find and as before, by dividing moments by masses.

EXAMPLE 4 Find the center of mass (centroid) of a thin wire of constant density 
shaped like a semicircle of radius a.

Solution We model the wire with the semicircle (Figure 6.54). The
distribution of mass is symmetric about the y-axis, so To find we imagine
the wire divided into short subarc segments. If is the center of mass of a subarc
and is the angle between the x-axis and the radial line joining the origin to ,
then is a function of the angle measured in radians (see Figure 6.54a).
The length ds of the subarc containing subtends an angle of radians, so

Thus a typical subarc segment has these relevant data for calculating 

length:

mass:

distance of c.m. to x-axis: .y
'

= a sin u

dm = d ds = da du

ds = a du

y:ds = a du.
du( x

'
, y
'

 )
uy

'
= a sin u

( x
'

, y
'

 )u

( x
'

, y
'

 )
y,x = 0.

y = 2a2
- x2

d

yx
d

yx

y =
56
9

 
L

1

0
 
x2

2
ax -

x2

4
b  dx

   =
28
9

 
L

1

0
 ax3

-
x4

4
b  dx

   =
28
9
c1
4

 x4
-

1
20

 x5 d1
0

=
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405

.

x =
56
9

 
L

1

0
 x2 # x a2x -

x
2
b  dx

   =
56
9

 
L

1

0
 ax7>2

-
x4

2
b  dx

   =
56
9
c2
9

 x9>2
-

1
10

 x5 d1
0

=
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405

,

5>2
-

x3

2
b  dx = c2

7 x7>2
-

1
8

 x4 d1
0

=
9

56
.M =

L

1

0
 x2 a2x -

x
2
b  dx =

L

1

0
 ax

dm = d[ƒ(x) - g(x)] dx:

d(x) = x2.

and ƒ(x) = 2x, 0 … x … 1,

g(x) = x>2

x

y

0 1

1

f (x) 5 �x

g(x) 5
2
x

c.m.

FIGURE 6.53 The region in Example 3.

x

y

0–a a

(a)

x

y

0–a a

a

c.m.

A typical small 
segment of wire has 
dm � � ds � �a du.

(a cosu, a sinu)
du

u

y � �a2 � x2

(b)

0,     a2
�

⎞
⎠

⎛
⎝

~ ~(x, y) � 

FIGURE 6.54 The semicircular wire in
Example 4. (a) The dimensions and
variables used in finding the center of
mass. (b) The center of mass does not lie
on the wire.

Mass per unit length
times length
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6.6 Moments and Centers of Mass 409

Hence,

The center of mass lies on the axis of symmetry at the point about two-thirds of
the way up from the origin (Figure 6.54b). Notice how cancels in the equation for , so
we could have set everywhere and obtained the same value for  

In Example 4 we found the center of mass of a thin wire lying along the graph of a
differentiable function in the xy-plane. In Chapter 16 we will learn how to find the center
of mass of wires lying along more general smooth curves in the plane (or in space).

Fluid Forces and Centroids

If we know the location of the centroid of a submerged flat vertical plate (Figure 6.55), we
can take a shortcut to find the force against one side of the plate. From Equation (7) in
Section 6.5,

 = w * sdepth of plate’s centroidd * sarea of plated .

 = w * smoment about surface level line of region occupied by plated

 = w
L

b

a
 sstrip depthd * Ls yd dy

 F =

L

b

a
 w * sstrip depthd * Ls yd dy

y.d = 1
yd

s0, 2a>pd,

y =
1  y

'
 dm

1dm
=

1
p

0 a sin u # da du

1
p

0  da du
=

da2 C -cos u D0p
dap

=
2
p a.

Fluid Forces and Centroids
The force of a fluid of weight-density w against one side of a submerged flat ver-
tical plate is the product of w, the distance from the plate’s centroid to the fluid
surface, and the plate’s area:

(8)F = whA .

h

Surface level of fluid

h 5 centroid depth

Plate centroid

FIGURE 6.55 The force against one side
of the plate is area.w # h # plate

EXAMPLE 5 A flat isosceles triangular plate with base 6 ft and height 3 ft is sub-
merged vertically, base up with its vertex at the origin, so that the base is 2 ft below the
surface of a swimming pool. (This is Example 6, Section 6.5.) Use Equation (8) to find the
force exerted by the water against one side of the plate.

Solution The centroid of the triangle (Figure 6.43) lies on the y-axis, one-third of the
way from the base to the vertex, so (where ) since the pool’s surface is 
The triangle’s area is

Hence,

The Theorems of Pappus

In the fourth century, an Alexandrian Greek named Pappus discovered two formulas that
relate centroids to surfaces and solids of revolution. The formulas provide shortcuts to a
number of otherwise lengthy calculations.

= 1684.8 lb . F = whA = s62.4ds3ds9d

=
1
2

 s6ds3d = 9. A =
1
2

 sbasedsheightd

y = 5.y = 2h = 3
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410 Chapter 6: Applications of Definite Integrals

Proof We draw the axis of revolution as the x-axis with the region R in the first quadrant
(Figure 6.56). We let L(y) denote the length of the cross-section of R perpendicular to the
y-axis at y. We assume L(y) to be continuous.

By the method of cylindrical shells, the volume of the solid generated by revolving
the region about the x-axis is

(10)

The y-coordinate of R’s centroid is

so that

Substituting for the last integral in Equation (10) gives With equal to 
we have 

EXAMPLE 6 Find the volume of the torus (doughnut) generated by revolving a circular
disk of radius a about an axis in its plane at a distance from its center (Figure 6.57).

Solution We apply Pappus’s Theorem for volumes. The centroid of a disk is located at
its center, the area is is the distance from the centroid to the axis of
revolution (see Figure 6.57). Substituting these values into Equation (9), we find the 
volume of the torus to be

The next example shows how we can use Equation (9) in Pappus’s Theorem to find one
of the coordinates of the centroid of a plane region of known area A when we also know the
volume V of the solid generated by revolving the region about the other coordinate axis. That
is, if is the coordinate we want to find, we revolve the region around the x-axis so that

is the distance from the centroid to the axis of revolution. The idea is that the rotation
generates a solid of revolution whose volume V is an already known quantity. Then we can
solve Equation (9) for which is the value of the centroid’s coordinate 

EXAMPLE 7 Locate the centroid of a semicircular region of radius a.

Solution We consider the region between the semicircle (Figure 6.58) and
the x-axis and imagine revolving the region about the x-axis to generate a solid sphere. By
symmetry, the x-coordinate of the centroid is With in Equation (9), we have

y =
V

2pA
=

s4>3dpa3

2ps1>2dpa2 =
4

3p
 a .

y = rx = 0.

y = 2a2
- x2

y.r,

y = r

y

V = 2psbdspa2d = 2p2ba2 .

A = pa2, and r = b

b Ú a

V = 2prA .
y ,rV = 2pyA .Ay

L

d

c
 y Ls yd dy = Ay .

y
'

= y,  dA = L(y) dyy =
L

d

c
 y
'

 dA

A
=
L

d

c
 y Ls yd dy

A
,

V =

L

d

c
 2psshell radiusdsshell heightd dy = 2p

L

d

c
 y Ls yd dy .

THEOREM 1 Pappus’s Theorem for Volumes
If a plane region is revolved once about a line in the plane that does not cut
through the region’s interior, then the volume of the solid it generates is equal to
the region’s area times the distance traveled by the region’s centroid during the
revolution. If is the distance from the axis of revolution to the centroid, then

(9)V = 2prA .

r

x

y

d

y

c

0

L(y)

R

Centroid

� �

FIGURE 6.56 The region R is to be
revolved (once) about the x-axis to
generate a solid. A 1700-year-old theorem
says that the solid’s volume can be
calculated by multiplying the region’s area
by the distance traveled by its centroid
during the revolution.

Area: pa2

Circumference: 2pa

Distance from axis of
revolution to centroid

a
b

y

z

x

FIGURE 6.57 With Pappus’s first
theorem, we can find the volume of a torus
without having to integrate (Example 6).

Centroid

a

–a a0

a

x

y

3�
4

FIGURE 6.58 With Pappus’s first
theorem, we can locate the centroid of a
semicircular region without having to
integrate (Example 7).
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6.6 Moments and Centers of Mass 411

THEOREM 2 Pappus’s Theorem for Surface Areas
If an arc of a smooth plane curve is revolved once about a line in the plane that does
not cut through the arc’s interior, then the area of the surface generated by the arc
equals the length L of the arc times the distance traveled by the arc’s centroid during
the revolution. If is the distance from the axis of revolution to the centroid, then

(11)S = 2prL .

r

The proof we give assumes that we can model the axis of revolution as the x-axis and the
arc as the graph of a continuously differentiable function of x.

Proof We draw the axis of revolution as the x-axis with the arc extending from to
in the first quadrant (Figure 6.59). The area of the surface generated by the arc is

(12)

The y-coordinate of the arc’s centroid is

Hence

Substituting for the last integral in Equation (12) gives With equal to 
we have 

EXAMPLE 8 Use Pappus’s area theorem to find the surface area of the torus in Example 6.

Solution From Figure 6.57, the surface of the torus is generated by revolving a circle of
radius a about the z-axis, and is the distance from the centroid to the axis of revolu-
tion. The arc length of the smooth curve generating this surface of revolution is the cir-
cumference of the circle, so Substituting these values into Equation (11), we
find the surface area of the torus to be

S = 2psbds2pad = 4p2ba .

L = 2pa.

b Ú a

S = 2prL .
y ,rS = 2pyL .yL

L

x = b

x = a
y ds = yL .

y =
L

x = b

x = a
y
'

 ds

L

x = b

x = a
 ds

=
L

x = b

x = a
y ds

L
.

S =

L

x = b

x = a
2py ds = 2p

L

x = b

x = a
y ds .

x = b
x = a

is the arc’s
length and y

'
= y .

L = 1  ds

0

x

y

ds

y

a

b

~

Arc

FIGURE 6.59 Figure for proving
Pappus’s Theorem for surface area. The arc
length differential ds is given by Equation
(6) in Section 6.3.

Exercises 6.6

Thin Plates with Constant Density
In Exercises 1–14, find the center of mass of a thin plate of constant
density covering the given region.

1. The region bounded by the parabola and the line 

2. The region bounded by the parabola and the x-axis

3. The region bounded by the parabola and the line

4. The region enclosed by the parabolas and y = -2x2y = x2
- 3

y = -x
y = x - x2

y = 25 - x2

y = 4y = x2

d

5. The region bounded by the y-axis and the curve 

6. The region bounded by the parabola and the line 

7. The region bounded by the x-axis and the curve 

8. The region between the curve and
the x-axis

x … p>4-p>4 …y = sec2 x,

-p>2 … x … p>2 y = cos x,

y = xx = y2
- y

 0 … y … 1
x = y - y3,
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412 Chapter 6: Applications of Definite Integrals

9. The region between the curve and the x-axis from 
to Give the coordinates to two decimal places.

10. a. The region cut from the first quadrant by the circle 

b. The region bounded by the x-axis and the semicircle

Compare your answer in part (b) with the answer in part (a).

11. The region in the first and fourth quadrants enclosed by the
curves and and by the lines

and 

12. The region bounded by the parabolas and

13. The region between the curve and the x-axis from
to 

14. The region bounded above by the curve below by the
curve and on the left and right by the lines and

Also, find 

Thin Plates with Varying Density
15. Find the center of mass of a thin plate covering the region

between the x-axis and the curve if the
plate’s density at the point (x, y) is 

16. Find the center of mass of a thin plate covering the region
bounded below by the parabola and above by the line

if the plate’s density at the point (x, y) is 

17. The region bounded by the curves and the lines
and is revolved about the y-axis to generate a

solid.

a. Find the volume of the solid.

b. Find the center of mass of a thin plate covering the region if
the plate’s density at the point (x, y) is 

c. Sketch the plate and show the center of mass in your
sketch.

18. The region between the curve and the x-axis from 
to is revolved about the x-axis to generate a solid.

a. Find the volume of the solid.

b. Find the center of mass of a thin plate covering the region if
the plate’s density at the point (x, y) is 

c. Sketch the plate and show the center of mass in your sketch.

Centroids of Triangles
19. The centroid of a triangle lies at the intersection of the trian-

gle’s medians You may recall that the point inside a triangle that
lies one-third of the way from each side toward the opposite vertex
is the point where the triangle’s three medians intersect. Show that
the centroid lies at the intersection of the medians by showing that
it too lies one-third of the way from each side toward the opposite
vertex. To do so, take the following steps.

i) Stand one side of the triangle on the x-axis as in part (b) of
the accompanying figure. Express dm in terms of L and dy.

ii) Use similar triangles to show that Substi-
tute this expression for L in your formula for dm.

iii) Show that 

iv) Extend the argument to the other sides.

y = h>3.

L = sb>hdsh - yd .

dsxd = 2x .

x = 4
x = 1y = 2>x

dsxd = 1>x.

x = 4x = 1
y = ;4>2x

dsxd = 12x.y = x
y = x2

dsxd = x2.
y = 2>x2, 1 … x … 2,

lima:q  x .x = a 7 1.
x = 1y = -1>x3,

y = 1>x3 ,

x = 16x = 1
y = 1>1x

y = 2x - x2
y = 2x2

- 4x

x = 1x = 0
y = -1>(1 + x2)y = 1>(1 + x2)

y = 29 - x2

x2
+ y2

= 9

x = 2.
x = 1y = 1>x

Use the result in Exercise 19 to find the centroids of the triangles
whose vertices appear in Exercises 20–24. Assume 

20. (1, 0), (0, 3) 21. (0, 0), (1, 0), (0, 1)

22. (0, 0), (a, 0), (0, a) 23. (0, 0), (a, 0), (0, b)

24. (0, 0), (a, 0), (a 2, b)

Thin Wires
25. Constant density Find the moment about the x-axis of a wire

of constant density that lies along the curve from 
to 

26. Constant density Find the moment about the x-axis of a wire of
constant density that lies along the curve from 
to 

27. Variable density Suppose that the density of the wire in Exam-
ple 4 is (k constant). Find the center of mass.

28. Variable density Suppose that the density of the wire in Exam-
ple 4 is (k constant). Find the center of mass.

Plates Bounded by Two Curves
In Exercises 29–32, find the centroid of the thin plate bounded by the
graphs of the given functions. Use Equations (6) and (7) with 
and area of the region covered by the plate.

29.

30.

31.

32.

(Hint:

Theory and Examples
Verify the statements and formulas in Exercises 33 and 34.

33. The coordinates of the centroid of a differentiable plane curve are

x

y

0

ds
x

y

x =

1  x ds

length
,  y =

1  y ds

length
.

L
 x sin x dx = sin x - x cos x + C.)

g(x) = 0, ƒ(x) = 2 + sin x, x = 0,  and  x = 2p

g(x) = x2(x - 1)  and  ƒ(x) = x2

g(x) = x2 (x + 1), ƒ(x) = 2,  and  x = 0

g(x) = x2  and  ƒ(x) = x + 6

M =

d = 1

d = 1 + k ƒ cos u ƒ

d = k sin u

x = 1.
x = 0y = x3

x = 2.
x = 0y = 2x

>
s -1, 0d ,

a, b 7 0.

y

0

h

b

dy

L
y

(a) (b)

Centroid

h 2 y

x

T
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34. Whatever the value of in the equation the
y-coordinate of the centroid of the parabolic segment shown here
is 

The Theorems of Pappus
35. The square region with vertices (0, 2), (2, 0), (4, 2), and (2, 4) is

revolved about the x-axis to generate a solid. Find the volume and
surface area of the solid.

36. Use a theorem of Pappus to find the volume generated by revolv-
ing about the line the triangular region bounded by the co-
ordinate axes and the line (see Exercise 19). 

37. Find the volume of the torus generated by revolving the circle
about the y-axis.

38. Use the theorems of Pappus to find the lateral surface area and
the volume of a right-circular cone.

39. Use Pappus’s Theorem for surface area and the fact that the sur-
face area of a sphere of radius a is to find the centroid of the
semicircle y = 2a2

- x2 .
4pa2

sx - 2d2
+ y2

= 1

2x + y = 6
x = 5

x

y

0

a

y 5    a3
5

y 5    x2

4p

y = s3>5da.

y = x2>s4pd,p 7 0 40. As found in Exercise 39, the centroid of the semicircle
lies at the point Find the area of the

surface swept out by revolving the semicircle about the line 

41. The area of the region R enclosed by the semiellipse
and the x-axis is , and the volume

of the ellipsoid generated by revolving R about the x-axis is
Find the centroid of R. Notice that the location is in-

dependent of a.

42. As found in Example 7, the centroid of the region enclosed by the

x-axis and the semicircle lies at the point
Find the volume of the solid generated by revolving

this region about the line 

43. The region of Exercise 42 is revolved about the line to
generate a solid. Find the volume of the solid.

44. As found in Exercise 39, the centroid of the semicircle
lies at the point Find the area of the

surface generated by revolving the semicircle about the line

In Exercises 45 and 46, use a theorem of Pappus to find the centroid
of the given triangle. Use the fact that the volume of a cone of radius r
and height h is 

45. 46.

x

y

(0, 0)

(a, b)

(a, c)

x

y

(0, 0)

(0, b)

(a, 0)

V =
1
3 pr2h.

y = x - a .

s0, 2a>pd .y = 2a2
- x2

y = x - a

y = -a .
s0, 4a>3pd .

y = 2a2
- x2

s4>3dpab2 .

s1>2dpaby = sb>ad2a2
- x2

y = a .
s0, 2a>pd .y = 2a2

- x2

Chapter 6 Questions to Guide Your Review

1. How do you define and calculate the volumes of solids by the
method of slicing? Give an example.

2. How are the disk and washer methods for calculating volumes de-
rived from the method of slicing? Give examples of volume cal-
culations by these methods.

3. Describe the method of cylindrical shells. Give an example.

4. How do you find the length of the graph of a smooth function
over a closed interval? Give an example. What about functions
that do not have continuous first derivatives?

5. How do you define and calculate the area of the surface swept out
by revolving the graph of a smooth function 
about the x-axis? Give an example.

a … x … b ,y = ƒsxd,

6. How do you define and calculate the work done by a variable
force directed along a portion of the x-axis? How do you calculate
the work it takes to pump a liquid from a tank? Give examples.

7. How do you calculate the force exerted by a liquid against a por-
tion of a flat vertical wall? Give an example.

8. What is a center of mass? a centroid?

9. How do you locate the center of mass of a thin flat plate of mate-
rial? Give an example.

10. How do you locate the center of mass of a thin plate bounded by
two curves y = ƒ(x) and y = g(x) over a … x … b?

Chapter 6 Practice Exercises

Volumes
Find the volumes of the solids in Exercises 1–16.

1. The solid lies between planes perpendicular to the x-axis at 
and The cross-sections perpendicular to the x-axis be-
tween these planes are circular disks whose diameters run from
the parabola to the parabola y = 2x.y = x2

x = 1.
x = 0

2. The base of the solid is the region in the first quadrant between
the line and the parabola The cross-sections of
the solid perpendicular to the x-axis are equilateral triangles
whose bases stretch from the line to the curve.

3. The solid lies between planes perpendicular to the x-axis at 
and The cross-sections between these planes are circularx = 5p>4.

x = p>4

y = 22x .y = x
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414 Chapter 6: Applications of Definite Integrals

disks whose diameters run from the curve to the curve

4. The solid lies between planes perpendicular to the x-axis at 
and The cross-sections between these planes 

are squares whose bases run from the x-axis up to the curve 

5. The solid lies between planes perpendicular to the x-axis at 
and The cross-sections of the solid perpendicular to the
x-axis between these planes are circular disks whose diameters
run from the curve to the curve 

6. The base of the solid is the region bounded by the parabola
and the line in the xy-plane. Each cross-section

perpendicular to the x-axis is an equilateral triangle with one
edge in the plane. (The triangles all lie on the same side of the
plane.)

7. Find the volume of the solid generated by revolving the region
bounded by the x-axis, the curve and the lines 
and about (a) the x-axis; (b) the y-axis; (c) the line

(d) the line 

8. Find the volume of the solid generated by revolving the “triangu-
lar” region bounded by the curve and the lines 
and about (a) the x-axis; (b) the y-axis; (c) the line

(d) the line 

9. Find the volume of the solid generated by revolving the region
bounded on the left by the parabola and on the right
by the line about (a) the x-axis; (b) the y-axis; (c) the line

10. Find the volume of the solid generated by revolving the region
bounded by the parabola and the line about (a) the
x-axis; (b) the y-axis; (c) the line (d) the line 

11. Find the volume of the solid generated by revolving the “triangu-
lar” region bounded by the x-axis, the line and the
curve in the first quadrant about the x-axis.

12. Find the volume of the solid generated by revolving the region
bounded by the curve and the lines and

about the line 

13. Find the volume of the solid generated by revolving the region 

bounded by the curve and the lines and
about the x-axis.

14. Find the volume of the solid generated by revolving about the
x-axis the region bounded by and

(The region lies in the first and third quadrants and re-
sembles a skewed bowtie.)
x = p>4.

y = 2 tan x, y = 0, x = -p>4,

y = 1
y = 0, x = 0,x = ey2

y = 2.y = 2
x = 0, x = p ,y = sin x

y = tan x
x = p>3,

y = 4.x = 4;
y = xy2

= 4x

x = 5.
x = 5

x = y2
+ 1

y = 4.x = 2;
y = 1>2 x = 1y = 4>x3

y = 3.x = 1;
x = -1

x = 1y = 3x4,

x = 1y2
= 4x

y2
= 4x.x2

= 4y

x = 4.
x = 0

x

y

6

6

x1/2 � y1/2 � �6

y1>2
= 26.x1>2

+

x = 6.x = 0

y = 2 sin x.
y = 2 cos x 15. Volume of a solid sphere hole A round hole of radius is

bored through the center of a solid sphere of a radius 2 ft. Find the
volume of material removed from the sphere.

16. Volume of a football The profile of a football resembles the ellipse
shown here. Find the football’s volume to the nearest cubic inch.

Lengths of Curves
Find the lengths of the curves in Exercises 17–20.

17.

18.

19.

20.

Areas of Surfaces of Revolution
In Exercises 21–24, find the areas of the surfaces generated by revolv-
ing the curves about the given axes.

21.

22.

23.

24.

Work
25. Lifting equipment A rock climber is about to haul up 100 N

(about 22.5 lb) of equipment that has been hanging beneath her
on 40 m of rope that weighs 0.8 newton per meter. How much
work will it take? (Hint: Solve for the rope and equipment sepa-
rately, then add.)

26. Leaky tank truck You drove an 800-gal tank truck of water
from the base of Mt. Washington to the summit and discovered on
arrival that the tank was only half full. You started with a full tank,
climbed at a steady rate, and accomplished the 4750-ft elevation
change in 50 min. Assuming that the water leaked out at a steady
rate, how much work was spent in carrying water to the top? Do
not count the work done in getting yourself and the truck there.
Water weighs 8 lb U.S. gal.

27. Stretching a spring If a force of 20 lb is required to hold a spring
1 ft beyond its unstressed length, how much work does it take to
stretch the spring this far? An additional foot?

28. Garage door spring A force of 200 N will stretch a garage
door spring 0.8 m beyond its unstressed length. How far will
a 300-N force stretch the spring? How much work does it
take to stretch the spring this far from its unstressed length?

29. Pumping a reservoir A reservoir shaped like a right-circular
cone, point down, 20 ft across the top and 8 ft deep, is full of
water. How much work does it take to pump the water to a level
6 ft above the top?

>

x = 2y, 2 … y … 6; y-axis

x = 24y - y2, 1 … y … 2; y-axis

y = x3>3, 0 … x … 1; x-axis

y = 22x + 1, 0 … x … 3; x-axis

x = sy3>12d + s1>yd, 1 … y … 2

y = x2
- (ln x)>8,  1 … x … 2

x = y2>3, 1 … y … 8

y = x1>2
- s1>3dx3>2, 1 … x … 4

x

y

0–

 �       � 14x2

121
y2

12

2
11

2
11

23 ft
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Chapter 6 Additional and Advanced Exercises 415

30. Pumping a reservoir (Continuation of Exercise 29.) The
reservoir is filled to a depth of 5 ft, and the water is to be pumped
to the same level as the top. How much work does it take?

31. Pumping a conical tank A right-circular conical tank, point
down, with top radius 5 ft and height 10 ft is filled with a liquid
whose weight-density is How much work does it take to
pump the liquid to a point 2 ft above the tank? If the pump is
driven by a motor rated at 275 ft-lb sec (1 2 hp), how long will it
take to empty the tank?

32. Pumping a cylindrical tank A storage tank is a right-circular
cylinder 20 ft long and 8 ft in diameter with its axis horizontal.
If the tank is half full of olive oil weighing find the
work done in emptying it through a pipe that runs from the bot-
tom of the tank to an outlet that is 6 ft above the top of the tank.

Centers of Mass and Centroids
33. Find the centroid of a thin, flat plate covering the region enclosed

by the parabolas and 

34. Find the centroid of a thin, flat plate covering the region enclosed by
the x-axis, the lines and and the parabola 

35. Find the centroid of a thin, flat plate covering the “triangular” re-
gion in the first quadrant bounded by the y-axis, the parabola

and the line 

36. Find the centroid of a thin, flat plate covering the region enclosed
by the parabola and the line 

37. Find the center of mass of a thin, flat plate covering the region
enclosed by the parabola and the line if the
density function is (Use horizontal strips.)

38. a. Find the center of mass of a thin plate of constant density cov-
ering the region between the curve and the x-axis
from to 

b. Find the plate’s center of mass if, instead of being constant, the
density is (Use vertical strips.)dsxd = x .

x = 9.x = 1
y = 3>x3>2

dsyd = 1 + y .
x = 2yy2

= x

x = 2y.y2
= x

y = 4.y = x2>4,

y = x2.x = -2,x = 2

y = 3 - x2.y = 2x2

57 lb>ft3 ,

>>
60 lb>ft3 .

Fluid Force
39. Trough of water The vertical triangular plate shown here is the

end plate of a trough full of water What is the fluid
force against the plate?

40. Trough of maple syrup The vertical trapezoidal plate shown
here is the end plate of a trough full of maple syrup weighing

What is the force exerted by the syrup against the end
plate of the trough when the syrup is 10 in. deep?

41. Force on a parabolic gate A flat vertical gate in the face of a
dam is shaped like the parabolic region between the curve

and the line with measurements in feet. The top
of the gate lies 5 ft below the surface of the water. Find the force
exerted by the water against the gate 

42. You plan to store mercury in a vertical rectan-
gular tank with a 1 ft square base side whose interior side wall can
withstand a total fluid force of 40,000 lb. About how many cubic
feet of mercury can you store in the tank at any one time?

sw = 849 lb>ft3d
sw = 62.4d .

y = 4,y = 4x2

x

y

20

1

–2

UNITS IN FEET

y � x � 2

75 lb>ft3 .

x

y

40

2

–4

UNITS IN FEET

y � x
2

sw = 62.4d .

Chapter 6 Additional and Advanced Exercises

Volume and Length
1. A solid is generated by revolving about the x-axis the region

bounded by the graph of the positive continuous function
the x-axis, and the fixed line and the variable

line Its volume, for all b, is Find ƒ(x).

2. A solid is generated by revolving about the x-axis the region
bounded by the graph of the positive continuous function

the x-axis, and the lines and Its volume,
for all is Find ƒ(x).

3. Suppose that the increasing function ƒ(x) is smooth for and
that Let s(x) denote the length of the graph of ƒ from
(0, a) to Find ƒ(x) if for some con-
stant C. What are the allowable values for C?

4. a. Show that for 

b. Generalize the result in part (a).
L

a

0
21 + cos2 u du 7 2a2

+ sin2 a .

0 6 a … p>2,

ssxd = Cxsx, ƒsxdd, x 7 0.
ƒs0d = a .

x Ú 0

a2
+ a .a 7 0,

x = a .x = 0y = ƒsxd ,

b2
- ab .x = b, b 7 a .

x = ay = ƒsxd ,

T

5. Find the volume of the solid formed by revolving the region
bounded by the graphs of about the line 

6. Consider a right-circular cylinder of diameter 1. Form a wedge
by making one slice parallel to the base of the cylinder com-
pletely through the cylinder, and another slice at an angle of 45
to the first slice and intersecting the first slice at the opposite
edge of the cylinder (see accompanying diagram). Find the vol-
ume of the wedge.

45° wedge

r 5 1
2

°

y = x.y = x and y = x2
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Surface Area
7. At points on the curve line segments of length 

are drawn perpendicular to the xy-plane. (See accompanying
figure.) Find the area of the surface formed by these perpendicu-
lars from (0, 0) to 

8. At points on a circle of radius a, line segments are drawn perpen-
dicular to the plane of the circle, the perpendicular at each point P
being of length ks, where s is the length of the arc of the circle
measured counterclockwise from (a, 0) to P and k is a positive
constant, as shown here. Find the area of the surface formed by
the perpendiculars along the arc beginning at (a, 0) and extending
once around the circle.

Work
9. A particle of mass m starts from rest at time and is moved

along the x-axis with constant acceleration a from to 
against a variable force of magnitude Find the work
done.

Fstd = t2.
x = hx = 0

t = 0

0

a
a

x

y

x

0

3
x

y � 2�x

2�x

2�3

(3, 2�3)

y

s3, 223d .

h = yy = 22x ,

416 Chapter 6: Applications of Definite Integrals

10. Work and kinetic energy Suppose a 1.6-oz golf ball is placed
on a vertical spring with force constant The spring is
compressed 6 in. and released. About how high does the ball go
(measured from the spring’s rest position)?

Centers of Mass
11. Find the centroid of the region bounded below by the x-axis and

above by the curve n an even positive integer. What
is the limiting position of the centroid as 

12. If you haul a telephone pole on a two-wheeled carriage behind a
truck, you want the wheels to be 3 ft or so behind the pole’s center
of mass to provide an adequate “tongue” weight. The 40-ft
wooden telephone poles used by Verizon have a 27-in. circumfer-
ence at the top and a 43.5-in. circumference at the base. About
how far from the top is the center of mass?

13. Suppose that a thin metal plate of area A and constant density 
occupies a region R in the xy-plane, and let be the plate’s mo-
ment about the y-axis. Show that the plate’s moment about the
line is

a. if the plate lies to the right of the line, and

b. if the plate lies to the left of the line.

14. Find the center of mass of a thin plate covering the region bounded
by the curve and the line positive 
if the density at (x, y) is directly proportional to (a) x, (b)

15. a. Find the centroid of the region in the first quadrant bounded by
two concentric circles and the coordinate axes, if the circles have
radii a and b, and their centers are at the origin.

b. Find the limits of the coordinates of the centroid as a ap-
proaches b and discuss the meaning of the result.

16. A triangular corner is cut from a square 1 ft on a side. The area of
the triangle removed is If the centroid of the remaining re-
gion is 7 in. from one side of the original square, how far is it
from the remaining sides?

Fluid Force
17. A triangular plate ABC is submerged in water with its plane verti-

cal. The side AB, 4 ft long, is 6 ft below the surface of the water,
while the vertex C is 2 ft below the surface. Find the force exerted
by the water on one side of the plate.

18. A vertical rectangular plate is submerged in a fluid with its top
edge parallel to the fluid’s surface. Show that the force exerted by
the fluid on one side of the plate equals the average value of the
pressure up and down the plate times the area of the plate.

36 in2 .

0 6 a 6 b ,

ƒ y ƒ .
constant ,x = a, a =y2

= 4ax

bdA - My

My - bdA

x = b

My

d

n : q ?
y = 1 - xn ,

k = 2 lb>in.

Chapter 6 Technology Application Projects

Mathematica/Maple Modules:
Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves
Visualize and approximate areas and volumes in Part I and Part II: Volumes of Revolution; and Part III: Lengths of Curves.

Modeling a Bungee Cord Jump
Collect data (or use data previously collected) to build and refine a model for the force exerted by a jumper’s bungee cord. Use the work-energy
theorem to compute the distance fallen for a given jumper and a given length of bungee cord.
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7
INTEGRALS AND

TRANSCENDENTAL

FUNCTIONS

OVERVIEW Our treatment of the logarithmic and exponential functions has been rather
informal until now, appealing to intuition and graphs to describe what they mean and to
explain some of their characteristics. In this chapter, we give a rigorous approach to the
definitions and properties of these functions, and we study a wide range of applied prob-
lems in which they play a role. We also introduce the hyperbolic functions and their in-
verses, with their applications to integration and hanging cables.

7.1 The Logarithm Defined as an Integral

In Chapter 1, we introduced the natural logarithm function as the inverse of the expo-
nential function . The function was chosen as that function in the family of general
exponential functions , whose graph has slope 1 as it crosses the y-axis. The
function was presented intuitively, however, based on its graph at rational values of x.

In this section we recreate the theory of logarithmic and exponential functions from
an entirely different point of view. Here we define these functions analytically and recover
their behaviors. To begin, we use the Fundamental Theorem of Calculus to define the nat-
ural logarithm function as an integral. We quickly develop its properties, including the
algebraic, geometric, and analytic properties as seen before. Next we introduce the func-
tion as the inverse function of , and establish its previously seen properties. Defin-
ing as an integral and as its inverse is an indirect approach. While it may at first
seem strange, it gives an elegant and powerful way to obtain the key properties of logarith-
mic and exponential functions.

Definition of the Natural Logarithm Function

The natural logarithm of a positive number x, written as ln x, is the value of an integral.

exln x
ln xex

ln x

ax
ax, a 7 0

exex
ln x

DEFINITION The natural logarithm is the function given by

ln x =

L

x

1
 
1
t  dt, x 7 0

From the Fundamental Theorem of Calculus, ln x is a continuous function. Geometri-
cally, if then ln x is the area under the curve from to 
(Figure 7.1). For ln x gives the negative of the area under the curve from x to 1.0 6 x 6 1,

t = xt = 1y = 1>tx 7 1,
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418 Chapter 7: Integrals and Transcendental Functions

The function is not defined for From the Zero Width Interval Rule for definite
integrals, we also have

ln 1 =

L

1

1
 
1
t  dt = 0.

x … 0.

Interpreted geometrically, the number e corresponds to the point on the x-axis for
which the area under the graph of and above the interval [1, e] equals the area of
the unit square. That is, the area of the region shaded blue in Figure 7.1 is 1 sq unit when

We will see further on that this is the same number we have en-
countered before.

e L 2.718281828x = e .

y = 1>t

Notice that we show the graph of in Figure 7.1 but use in the inte-
gral. Using x for everything would have us writing

with x meaning two different things. So we change the variable of integration to t.
By using rectangles to obtain finite approximations of the area under the graph of

and over the interval between and as in Section 5.1, we can
approximate the values of the function ln x. Several values are given in Table 7.1. There is
an important number between and whose natural logarithm equals 1. This
number, which we now define, exists because ln x is a continuous function and therefore
satisfies the Intermediate Value Theorem on [2, 3].

x = 3x = 2

t = x ,t = 1y = 1>t

ln x =

L

x

1
 
1
x dx ,

y = 1>ty = 1>x

x

y

0 x x1

1

1

1

y � ln x

y �
1
x

If x � 1, then ln x � dt � 0.1
t

gives the negative of this area.

x

1

1

x
If 0 � x � 1, then ln x � dt � �

1
t dt1

t

gives this area.

x

1

dtIf x � 1, then ln x �
1
t

y � ln x

L L

L

L

FIGURE 7.1 The graph of and its
relation to the function The
graph of the logarithm rises above the x-axis as x
moves from 1 to the right, and it falls below the 
axis as x moves from 1 to the left.

y = 1>x, x 7 0.
y = ln x

TABLE 7.1 Typical 2-place
values of ln x

x ln x

0 undefined

0.05

0.5

1 0

2 0.69

3 1.10

4 1.39

10 2.30

-0.69

-3.00

DEFINITION The number e is that number in the domain of the natural 
logarithm satisfying

ln (e) =

L

e

1
 
1
t  dt = 1
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The Derivative of 

By the first part of the Fundamental Theorem of Calculus (Section 5.4),

For every positive value of x, we have

(1)

Therefore, the function is a solution to the initial value problem 
with Notice that the derivative is always positive.

If u is a differentiable function of x whose values are positive, so that ln u is defined,
then applying the Chain Rule we obtain

y s1d = 0.x 7 0,
dy>dx = 1>x,y = ln x

d
dx

 ln x =
1
x .

d
dx

 ln x =
d
dx

 
L

x

1
 
1
t  dt =

1
x .

y � ln x

7.1 The Logarithm Defined as an Integral 419

The Graph and Range of ln x

The derivative is positive for so ln x is an increasing function of x.
The second derivative, is negative, so the graph of ln x is concave down.

The function has the following familiar algebraic properties, which we stated in
Section 1.6. In Section 4.2 we showed these properties are a consequence of Corollary 2 of
the Mean Value Theorem.

ln x
-1>x2 ,

x 7 0,dsln xd>dx = 1>x

(2)
d
dx

 ln u =
1
u

 
du
dx

 , u 7 0.

(3)
d
dx

 ln ƒ x ƒ =
1
x ,    x Z 0.

1. 2.

3. 4. ln xr
= r ln xln  

1
x = - ln x

ln  
b
x = ln b - ln xln bx = ln b + ln x

As we saw in Section 3.8, if Equation (2) is applied to the function , where b is any
constant with , we obtain

In particular, if and ,

Since when and when , the above equation combined
with Equation (1) gives the important result

x 6 0ƒ x ƒ = -xx 7 0ƒ x ƒ = x

d
dx

 ln (-x) =
1
x .

x 6 0b = -1

d
dx

 ln bx =
1
bx

# d
dx

 sbxd =
1
bx

 sbd =
1
x .

bx 7 0
u = bx

We can estimate the value of ln 2 by considering the area under the graph of 
and above the interval [1, 2]. In Figure 7.2(a) a rectangle of height 1 2 over the interval [1, 2]> y = 1>x

1 2

1

x

y

1
2

0

y 5 1
x

(a)

(1, 0)
x

y

0

y 5 ln x

(b)

FIGURE 7.2 (a) The rectangle of height
fits beneath the graph of 
for the interval 

(b) The graph of the natural logarithm. 
1 … x … 2.y = 1>x

y = 1>2
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fits under the graph. Therefore the area under the graph, which is ln 2, is greater than the
area, 1 2, of the rectangle. So Knowing this we have

This result shows that as Since is an increasing function, we get
that

We also have

We defined ln x for so the domain of ln x is the set of positive real numbers. The
above discussion and the Intermediate Value Theorem show that its range is the entire real
line, giving the graph of shown in Figure 7.2(b).

The Integral 

Equation (3) leads to the following integral formula.

1s1/ud du

y = ln x

x 7 0,

x = 1>t = t -1lim
x:0 +

 ln x = lim
t: q

 ln t -1
=  lim

t: q

(- ln t) = - q .

lim
x: q

ln x = q .

ln xn : q .ln (2n) : q

ln 2n
= n ln 2 7 n a1

2
b =

n
2

.

ln 2 7 1>2.>

420 Chapter 7: Integrals and Transcendental Functions

If u is a differentiable function that is never zero,

(4)
L

 
1
u du = ln ƒ u ƒ + C .

Equation (4) applies anywhere on the domain of the points where It says that
integrals of a certain form lead to logarithms. If then and

whenever ƒ(x) is a differentiable function that is never zero.

EXAMPLE 1 Here we recognize an integral of the form 

Note that is always positive on so Equation (4) applies.

The Integrals of tan x, cot x, sec x, and csc x

Equation (4) tells us how to integrate these trigonometric functions.

Reciprocal Rule= ln 
1

ƒ cos x ƒ

+ C = ln ƒ sec x ƒ + C

= - ln ƒ u ƒ + C = - ln ƒ cos x ƒ + C

 
L

 tan x dx =

L
 
sin x
cos x dx =

L
 
-du

u

[-p>2, p>2] ,u = 3 + 2 sin u

 = 2 ln ƒ 5 ƒ - 2 ln ƒ 1 ƒ = 2 ln 5

 = 2 ln ƒ u ƒ d
1

5

 
L

p>2
-p>2  

4 cos u
3 + 2 sin u

 du =

L

5

1
 
2
u du

L
 
du
u .

L
 
ƒ¿sxd
ƒsxd

 dx = ln ƒ ƒsxd ƒ + C

du = ƒ¿sxd dxu = ƒsxd,
u Z 0.1>u,

us -p>2d = 1, usp>2d = 5

du = 2 cos u du,u = 3 + 2 sin u,

du = -sin x dx

u = cos x 7 0 on s -p>2, p>2d,
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For the cotangent,

To integrate sec x, we multiply and divide by 

For csc x, we multiply and divide by 

=

L
 
-du

u = - ln ƒ u ƒ + C = - ln ƒ csc x + cot x ƒ + C

L
 csc x dx =

L
 csc x 

(csc x + cot x)
(csc x + cot x)

 dx =

L
 
csc2 x + csc x cot x

csc x + cot x  dx

(csc x + cot x).

du = (sec x tan x + sec2 x) dx
u = sec x + tan x,

=

L
 
du
u = ln ƒ u ƒ + C = ln ƒ sec x + tan x ƒ + C

L
 sec x dx =

L
 sec x 

(sec x + tan x)
(sec x + tan x)

 dx =

L
 
sec2 x + sec x tan x

sec x + tan x  dx

(sec x + tan x).

 = ln ƒ u ƒ + C = ln ƒ sin x ƒ + C = - ln ƒ csc x ƒ + C.

L
 cot x dx =

L
 
cos x dx

sin x
=

L
 
du
u

7.1 The Logarithm Defined as an Integral 421

Integrals of the tangent, cotangent, secant, and cosecant functions

L
 csc u du = - ln ƒ csc u + cot u ƒ + C

L
 cot u du = ln ƒ sin u ƒ + C

L
 sec u du = ln ƒ sec u + tan u ƒ + C

L
 tan u du = ln ƒ sec u ƒ + C

The Inverse of ln x and the Number e

The function ln x, being an increasing function of x with domain and range
has an inverse with domain and range The graph of

is the graph of ln x reflected across the line As you can see in Figure 7.3,

The function is also denoted by exp x. We now show that is an expo-
nential function with base e.

The number e was defined to satisfy the equation , so . We can
raise the number e to a rational power r using algebra:

,

and so on. Since e is positive, is positive too. Thus, has a logarithm. When we take the
logarithm, we find that for r rational

Then applying the function to both sides of the equation we find that

exp is . (5)

We have not yet found a way to give an exact meaning to for x irrational. But has
meaning for any x, rational or irrational. So Equation (5) provides a way to extend the def-
inition of to irrational values of x. The function is defined for all x, so we use it to
assign a value to at every point.ex

exp xex

ln-1 xex

ln-1er
= exp r for r rational. ln er

= r,ln-1

ln er
= r ln e = r # 1 = r .

erer

e2
= e # e, e-2

=
1
e2, e1>2

= 2e, e2>3
= 23 e2

e = exp (1)ln (e) = 1

ln-1 x = exp xln-1 x

lim
x: q

 ln-1 x = q and lim
x: - q

 ln-1 x = 0.

y = x.ln-1 x
s0, q d.s - q , q dln-1 xs - q , q d,

s0, q d

x

y

1

10 2 e 4

2

e

4

–1–2

5

6

7

8

(1, e)

y � ln x

y � ln–1x
or

x � ln y

FIGURE 7.3 The graphs of and
The number e is

ln-1 1 = exp s1d .
y = ln-1 x = exp x .

y = ln x

du = (-csc x cot x - csc2 x) dx

u = csc x + cot x,

du = cos x dx
u = sin x,
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For the first time we have a precise meaning for a number raised to an irrational power.
Usually the exponential function is denoted by rather than exp x. Since ln x and are
inverses of one another, we have

exex

422 Chapter 7: Integrals and Transcendental Functions

DEFINITION For every real number x, we define the natural exponential func-
tion to be ex

= exp x .

Typical values of 

x (rounded)

0.37

0 1

1 2.72

2 7.39

10 22026

100 2.6881 * 1043

-1

ex

ex

Inverse Equations for and ln x

 ln sexd = x sall xd

 e ln x
= x sall x 7 0d

ex

Transcendental Numbers and
Transcendental Functions
Numbers that are solutions of
polynomial equations with rational
coefficients are called algebraic: is
algebraic because it satisfies the
equation and 

is algebraic because it satisfies the
equation Numbers that are
not algebraic are called transcendental,
like e and In 1873, Charles Hermite
proved the transcendence of e in the
sense that we describe. In 1882, C.L.F.
Lindemann proved the transcendence 
of 

Today, we call a function 
algebraic if it satisfies an equation of
the form 

in which the P’s are polynomials in x
with rational coefficients. The function

is algebraic because 
it satisfies the equation

Here the
polynomials are 
and Functions that are not
algebraic are called transcendental.

P0 = -1.
P2 = x + 1, P1 = 0,

sx + 1dy2
- 1 = 0.

y = 1>2x + 1

Pn yn
+

Á
+ P1 y + P0 = 0

y = ƒsxd
p.

p.

x2
- 3 = 0.

23
x + 2 = 0,

-2

The Derivative and Integral of 

The exponential function is differentiable because it is the inverse of a differentiable func-
tion whose derivative is never zero. We calculate its derivative using Theorem 3 of Section 3.8
and our knowledge of the derivative of ln x. Let

Then,

Theorem 3, Section 3.8

That is, for we find that so the natural exponential function is its
own derivative, just as we claimed in Section 3.3. We will see in the next section that the
only functions that behave this way are constant multiples of The Chain Rule extends
the derivative result in the usual way to a more general form.

ex.

exdy>dx = exy = ex,

 = ex .

ƒ¿szd =

1
z  with z = ex =

1

a 1
ex b

ƒ -1sxd = ex =
1

ƒ¿sexd

 =
1

ƒ¿sƒ -1sxdd

 =
d
dx

 ƒ -1sxd

 
dy
dx

=
d
dx

 sexd =
d
dx

 ln-1 x

ƒsxd = ln x and y = ex
= ln-1 x = ƒ -1sxd.

ex

If u is any differentiable function of x, then

(6)
d
dx

 eu
= eu 

du
dx

.

Since , its derivative is also everywhere positive, so it is an increasing and con-
tinuous function for all x, having limits

and lim
x: q

ex
= q .lim

x: - q

ex
= 0

ex
7 0
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It follows that the x-axis is a horizontal asymptote of the graph (see 
Figure 7.3).

The integral equivalent to Equation (6) is

y = ex(y = 0)

7.1 The Logarithm Defined as an Integral 423

L
 eu du = eu

+ C.

If , then from Equation (6), . That is, the exponential func-
tion has slope 1 as it crosses the y-axis at This agrees with our assertion for the
natural exponential in Section 3.3.

x = 0.ex
ƒ¿(0) = e0

= 1ƒ(x) = ex

THEOREM 1—Laws of Exponents for 
For all numbers and the natural exponential obeys the following laws:

1. 2.

3. 4. sex1dx2
= ex1x2

= (ex2)x1ex1

ex2
= ex1 - x2

e-x
=

1
exex1 # ex2

= ex1 + x2

exx2,x, x1,

ex

The General Exponential Function 

Since for any positive number a, we can think of as We therefore
make the following definition, consistent with what we stated in Section 1.6.

se ln adx
= ex ln a.axa = eln a

ax

DEFINITION For any numbers and x, the exponential function with base
a is given by

ax
= ex ln a.

a 7 0

When the definition gives 
Theorem 1 is also valid for the exponential function with base a. For example,

Definition of

Law 1

Factor ln a

Definition of

Starting with the definition , we get the derivative

so
d
dx

 ax
= ax ln a.

d
dx

 ax
=

d
dx

 ex ln a
= (ln a) ex ln a

= (ln a) ax,

ax
= ex ln a, a 7 0

ax = ax1 + x2 .

 = e sx1 + x2dln a

 = ex1 ln a + x2 ln a

ax ax1 # ax2
= ex1 ln a # ex2 ln a

ax,
ax

= ex ln a
= ex ln e

= ex # 1
= ex.a = e ,

Laws of Exponents

Even though is defined in a seemingly roundabout way as it obeys the familiar
laws of exponents from algebra. Theorem 1 shows us that these laws are consequences of
the definitions of ln x and We proved the laws in Section 4.2 and they are still valid be-
cause of the inverse relationship between ln x and ex .

ex .

ln-1 x ,ex
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Alternatively, we get the same derivative rule by applying logarithmic differentiation:

Taking logarithms

Differentiating with respect to x

With the Chain Rule, we get a more general form, as in Section 3.8.

dy
dx

 = y ln a = ax ln a.

1
y  

dy
dx

 = ln a

 ln y = x ln a

y = ax

424 Chapter 7: Integrals and Transcendental Functions

The integral equivalent of this last result is

If and u is a differentiable function of x, then is a differentiable function
of x and

d
dx

 au
= au ln a  

du
dx

.

aua 7 0

L
au du =

au

ln a
+ C .

Logarithms with Base a

If a is any positive number other than 1, the function is one-to-one and has a nonzero
derivative at every point. It therefore has a differentiable inverse.

ax

x

y

1
2

0 1 2

y � log2x

y � 2x

y � x

FIGURE 7.4 The graph of and its 
inverse, log 2 x .

2x

DEFINITION For any positive number the logarithm of x with base a,
denoted by , is the inverse function of ax.loga x

a Z 1,

Inverse Equations for and 

loga saxd = x sall xd
a loga x

= x sx 7 0d

loga xax

The graph of can be obtained by reflecting the graph of across the 45°
line (Figure 7.4). When we have of Since 
and are inverses of one another, composing them in either order gives the identity function.ax

loga xex
= ln x .loge x = inversea = e ,y = x

y = axy = loga x

As stated in Section 1.6, the function is just a numerical multiple of . We see
this from the following derivation:

Defining equation for y

Equivalent equation

Natural log of both sides

Algebra Rule 4 for natural log

Solve for y.

Substitute for y.loga x =
ln x
ln a

y =
ln x
ln a

y ln a = ln x

ln ay
= ln x

ay
= x

y = loga x

ln xloga x
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It then follows easily that the arithmetic rules satisfied by are the same as the
ones for ln x. These rules, given in Table 7.2, can be proved by dividing the corresponding
rules for the natural logarithm function by ln a. For example,

Rule 1 for natural logarithms

divided by ln a

gives Rule 1 for base a logarithms.

Derivatives and Integrals Involving 

To find derivatives or integrals involving base a logarithms, we convert them to natural
logarithms. If u is a positive differentiable function of x, then

d
dx

 sloga ud =
d
dx

 aln u
ln a
b =

1
ln a

 
d
dx

 sln ud =
1

ln a
# 1
u

 
du
dx

.

loga x

Á loga xy = loga x + loga y .

ÁÁ 
ln xy
ln a

=
ln x
ln a

+

ln y
ln a

Á ln xy = ln x + ln y

loga x

7.1 The Logarithm Defined as an Integral 425

TABLE 7.2 Rules for base a
logarithms

For any numbers and

1. Product Rule:

2. Quotient Rule:

3. Reciprocal Rule:

4. Power Rule:

loga xy
= y loga x

loga 
1
y = - loga y

loga 
x
y = loga x - loga y

loga xy = loga x + loga y

y 7 0,

x 7 0

d
dx

 sloga ud =
1

ln a
# 1
u

 
du
dx

EXAMPLE 2 We illustrate the derivative and integral results.

(a)

(b)

Summary

In this section we used the calculus to give precise definitions of the logarithmic and expo-
nential functions. This approach is somewhat different from our earlier treatments of the
polynomial, rational, and trigonometric functions. There we first defined the function and
then we studied its derivatives and integrals. Here we started with an integral from which
the functions of interest were obtained. The motivation behind this approach was to avoid
mathematical difficulties that arise when we attempt to define functions such as for any
real number x, rational or irrational. By defining as the integral of the function 
from to , we could go on to define all of the exponential and logarithmic func-
tions, and then derive their key algebraic and analytic properties.

t = xt = 1
1>tln x

ax

=
1

ln 2
 
u2

2
+ C =

1
ln 2

 
sln xd2

2
+ C =

sln xd2

2 ln 2
+ C

u = ln x, du =

1
x  dx=

1
ln 2

 
L

u du

log2 x =

ln x
ln 2L

 
log2 x

x  dx =
1

ln 2
 
L

 
ln x
x  dx

d
dx

 log10 s3x + 1d =
1

ln 10
 #  

1
3x + 1

 
d
dx

 s3x + 1d =
3

sln 10ds3x + 1d

Exercises 7.1

Integration
Evaluate the integrals in Exercises 1–46.

1. 2.
L

0

-1
 

3 dx
3x - 2L

-2

-3
 
dx
x

3. 4.

5. 6.
L

 
sec y tan y

2 + sec y
 dy

L
 

3 sec2 t
6 + 3 tan t

 dt

L
 

8r dr

4r2
- 5L

 
2y dy

y2
- 25
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7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21.

22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

Initial Value Problems
Solve the initial value problems in Exercises 47–52.

47.

48.
dy

dt
= e-t sec2 spe-td, y sln 4d = 2>p

dy

dt
= et sin set

- 2d, y sln 2d = 0

L
 

dx

xslog8 xd2
L

 
dx

x log10 x

L

3

2
 
2 log2 sx - 1d

x - 1
 dx

L

9

0
 
2 log10 sx + 1d

x + 1
 dx

L

10

1>10
 
log10 s10xd

x  dx
L

2

0
 
log2 sx + 2d

x + 2
 dx

L

e

1
 
2 ln 10 log10 x

x  dx
L

4

1
 
ln 2 log2 x

x  dx

L

4

1
 
log2 x

x  dx
L

 
log10 x

x  dx

L

e

1
 xsln 2d - 1 dx

L

3

0
s12 + 1dx12 dx

L

2

1
 
2ln x

x  dx
L

4

2
 x2xs1 + ln xd dx

L

p>4
0

 a1
3
b tan t

 sec2 t dt
L

p>2
0

 7cos t sin t dt

L

4

1
 
21x

1x
 dx

L

22

1
 x2sx2d dx

L

0

-2
 5-u du

L

1

0
 2-u du

L
 

dx
1 + ex

L
 

er

1 + er dr

L

2ln p

0
 2xex2

 cos sex2

d dx
L

ln sp>2d

ln sp>6d
 2ey cos ey dy

L
ecsc sp+ td csc sp + td cot sp + td dt

L
esec pt sec pt tan pt dt

L
 
e-1>x2

x3  dx
L

 
e1>x
x2  dx

L
 

ln x dx

x2ln2 x + 1L
 2t e-t 2

 dt

L
 
e-2r

2r
 dr

L
 
e2r

2r
 dr

L
 tan x ln (cos x) dx

L

ln 9

ln 4
 ex>2 dx

L
 
ln (ln x)

x ln x
 dx

L

4

1
 
(ln x)3

2x
 dx

L
 8esx+ 1d dx

L

ln 3

ln 2
 ex dx

L
 

sec x dx

2ln ssec x + tan xdL
 

dx
21x + 2x
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49.

50.

51.

52.

Theory and Applications

53. The region between the curve and the x-axis from
to is revolved about the y-axis to generate a solid.

Find the volume of the solid.

54. In Section 6.2, Exercise 6, we revolved about the y-axis the region
between the curve and the x-axis from 
to to generate a solid of volume What volume do you
get if you revolve the region about the x-axis instead? (See 
Section 6.2, Exercise 6, for a graph.)

Find the lengths of the curves in Exercises 55 and 56.

55.

56.

57. Instead of approxi-
mating ln x near we approximate near 
We get a simpler formula this way.

a. Derive the linearization at 

b. Estimate to five decimal places the error involved in replacing
by x on the interval [0, 0.1].

c. Graph and x together for Use differ-
ent colors, if available. At what points does the approximation
of seem best? Least good? By reading coordinates
from the graphs, find as good an upper bound for the error as
your grapher will allow.

58. The linearization of 

a. Derive the linear approximation at 

b. Estimate to five decimal places the magnitude of the error in-
volved in replacing by on the interval [0, 0.2].

c. Graph and together for Use different
colors, if available. On what intervals does the approximation
appear to overestimate Underestimate 

59. Show that for any number 

(See accompanying figure.)

x

y

10 a

ln a

y � ln x

L

a

1
 ln x dx +

L

ln a

0
 e y dy = a ln a.

a 7 1

ex?ex?

-2 … x … 2.1 + xex

1 + xex

x = 0.ex
L 1 + x

e x at x = 0

ln s1 + xd

0 … x … 0.5.ln s1 + xd
ln s1 + xd

x = 0.ln s1 + xd L x

x = 0.ln s1 + xdx = 1,
The linearization of ln s1 + xd at x = 0

x = sy>4d2
- 2 ln sy>4d, 4 … y … 12

y = sx2>8d - ln x, 4 … x … 8

36p.x = 3
x = 0y = 9xN2x3

+ 9

x = 2x = 1>2 y = 1>x2

d2y

dx2 = sec2 x, y s0d = 0 and y¿s0d = 1

dy

dx
= 1 +

1
x , y s1d = 3

d2y

dt2 = 1 - e2t, y s1d = -1 and y¿s1d = 0

d2y

dx2 = 2e-x, y s0d = 1 and y¿s0d = 0

T

T

T
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60. The geometric, logarithmic, and arithmetic mean inequality

a. Show that the graph of is concave up over every interval of
x-values.

b. Show, by reference to the accompanying figure, that if
then

c. Use the inequality in part (b) to conclude that

This inequality says that the geometric mean of two positive
numbers is less than their logarithmic mean, which in turn is
less than their arithmetic mean.

(For more about this inequality, see “The Geometric,
Logarithmic, and Arithmetic Mean Inequality” by Frank
Burk, American Mathematical Monthly, Vol. 94, No. 6,
June–July 1987, pp. 527–528.)

Grapher Explorations
61. Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) to-

gether for What is going on? Explain.

62. Graph in the window 
Explain what you see. How could you change the formula to turn
the arches upside down?

63. a. Graph and the curves for 
4, 8, 20, and 50 together for 

b. Why do the curves flatten as a increases? (Hint: Find an 
a-dependent upper bound for )

64. Does the graph of have an inflection point?
Try to answer the question (a) by graphing, (b) by using calculus.

65. The equation has three solutions: and one
other. Estimate the third solution as accurately as you can by
graphing.

x = 2, x = 4,x2
= 2x

y = 1x - ln x,  x 7 0,

ƒ y¿ ƒ .

0 … x … 23.
a = 2,y = ln sa + sin xdy = sin x

0 … x … 22, -2 … y … 0.y = ln ƒ sin x ƒ

0 6 x … 10.

2ab 6

b - a
ln b - ln a

6

a + b
2

.

x

2

F

C

B

E

DA

M

NOT TO SCALE

y � ex

ln a � ln b ln bln a

e sln a + ln bd>2 # sln b - ln ad 6

L

ln b

ln a
 ex dx 6

e ln a
+ e ln b

2
# sln b - ln ad.

0 6 a 6 b

ex
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66. Could possibly be the same as for Graph the two
functions and explain what you see.

67. Which is bigger, or Calculators have taken some of the
mystery out of this once-challenging question. (Go ahead and
check; you will see that it is a surprisingly close call.) You can an-
swer the question without a calculator, though.

a. Find an equation for the line through the origin tangent to the
graph of 

b. Give an argument based on the graphs of and the
tangent line to explain why for all positive 

c. Show that for all positive 

d. Conclude that for all positive 

e. So which is bigger, or 

68. A decimal representation of e Find e to as many decimal
places as your calculator allows by solving the equation 
using Newton’s method in Section 4.7.

Calculations with Other Bases
69. Most scientific calculators have keys for and ln x. To find

logarithms to other bases, we use the equation 

Find the following logarithms to five decimal places.

a. b. c. d.

e. ln x, given that 

f. ln x, given that 

g. ln x, given that 

h. ln x, given that 

70. Conversion factors

a. Show that the equation for converting base 10 logarithms to
base 2 logarithms is

b. Show that the equation for converting base a logarithms to
base b logarithms is

logb x =

ln a
ln b

 loga x.

log2 x =

ln 10
ln 2

 log10 x.

log10 x = -0.7

log2 x = -1.5

log2 x = 1.4

log10 x = 2.3

log0.5 7log20 17log7 0.5log3 8

sln xd>sln ad.
log a x =

log10 x

ln x = 1

ep?pe

x Z e.xe
6 ex

x Z e.ln sxed 6 x

x Z e.ln x 6 x>e y = ln x

[–3, 6] by [–3, 3]

y = ln x.

eP?pe

x 7 0?2ln xxln 2T

T

T

7.2 Exponential Change and Separable Differential Equations

Exponential functions increase or decrease very rapidly with changes in the independent
variable. They describe growth or decay in many natural and industrial situations. The
variety of models based on these functions partly accounts for their importance. We now
investigate the basic proportionality assumption that leads to such exponential change.

T

T
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Exponential Change

In modeling many real-world situations, a quantity y increases or decreases at a rate pro-
portional to its size at a given time t. Examples of such quantities include the amount of a
decaying radioactive material, the size of a population, and the temperature difference be-
tween a hot object and its surrounding medium. Such quantities are said to undergo
exponential change.

If the amount present at time is called then we can find y as a function of t
by solving the following initial value problem:

(1a)

(1b)

If y is positive and increasing, then k is positive, and we use Equation (1a) to say that the
rate of growth is proportional to what has already been accumulated. If y is positive and
decreasing, then k is negative, and we use Equation (1a) to say that the rate of decay is pro-
portional to the amount still left.

We see right away that the constant function is a solution of Equation (1a) if
To find the nonzero solutions, we divide Equation (1a) by y:

Integrate with respect to t;

Exponentiate.

If then 

A is a shorter name for .

By allowing A to take on the value 0 in addition to all possible values we can include
the solution in the formula.

We find the value of A for the initial value problem by solving for A when and

The solution of the initial value problem is therefore

(2)

Quantities changing in this way are said to undergo exponential growth if ,
and exponential decay if . The number k is called the rate constant of the change.

The derivation of Equation (2) shows also that the only functions that are their own
derivatives are constant multiples of the exponential function.

Before presenting several examples of exponential change, let’s consider the process
we used to derive it.

Separable Differential Equations

Exponential change is modeled by a differential equation of the form for some
nonzero constant k. More generally, suppose we have a differential equation of the form

, (3)
dy
dx

= ƒ(x, y)

dy>dx = ky

k 6 0
k 7 0

y = y0 ekt .

y0 = Aek # 0
= A .

t = 0:
y = y0

y = 0
;eC ,

;eC y = Aekt .

y = ;r .ƒ y ƒ = r , y = ;eCekt

ea + b
= ea # eb ƒ y ƒ = eC # ekt

 ƒ y ƒ = ekt + C
1s1>ud du = ln ƒ u ƒ + C . ln ƒ y ƒ = kt + C

 
L

 
1
y  

dy
dt

 dt =

L
k dt

y Z  0 
1
y  #  

dy
dt

= k

y0 = 0.
y = 0

 Initial condition:  y = y0 when t = 0.

 Differential equation: dy
dt

= ky

y0 ,t = 0
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where ƒ is a function of both the independent and dependent variables. A solution of the
equation is a differentiable function defined on an interval of x-values (perhaps
infinite) such that

on that interval. That is, when y(x) and its derivative are substituted into the differential
equation, the resulting equation is true for all x in the solution interval. The general solution is
a solution y(x) that contains all possible solutions and it always contains an arbitrary constant.

Equation (3) is separable if ƒ can be expressed as a product of a function of x and a
function of y. The differential equation then has the form

When we rewrite this equation in the form

its differential form allows us to collect all y terms with dy and all x terms with dx:

Now we simply integrate both sides of this equation:

(4)

After completing the integrations we obtain the solution y defined implicitly as a function
of x.

The justification that we can simply integrate both sides in Equation (4) is based on
the Substitution Rule (Section 5.5):

EXAMPLE 1 Solve the differential equation

Solution Since is never zero for we can solve the equation by separating
the variables.

The last equation gives y as an implicit function of x.

 ln s1 + yd = e x
+ C

 
L

 
dy

1 + y
=

L
 e x dx

 
dy

1 + y
= e x dx

 dy = s1 + yde x dx

 
dy
dx

= s1 + yde x

y 7 -1,1 + y

dy
dx

= s1 + ydex, y 7 -1.

 =

L
 gsxd dx .

 =

L
 hs ysxdd 

gsxd
hs ysxdd

 dx

 
L

hs yd dy =

L
hs ysxdd 

dy
dx

 dx

L
hs yd dy =

L
gsxd dx .

hs yd dy = gsxd dx .

H( y) =

1
h( y)

dy
dx

=

gsxd
hs yd

,

dy
dx

= gsxdHs yd .

y¿(x)

d
dx

y(x) = ƒ(x, y (x))

y = y(x)
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g is a function of x;
H is a function of y.

Divide by .

Integrate both sides.

C represents the combined
constants of integration.

(1 + y)

Treat as a quotient of
differentials and multiply
both sides by .dx

dy/dx

dy

dx
=

g(x)

h( y)
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EXAMPLE 2 Solve the equation

Solution We change to differential form, separate the variables, and integrate:

Divide x by 

The last equation gives the solution y as an implicit function of x.

The initial value problem

involves a separable differential equation, and the solution expresses exponen-
tial change. We now present several examples of such change.

Unlimited Population Growth

Strictly speaking, the number of individuals in a population (of people, plants, animals, or
bacteria, for example) is a discontinuous function of time because it takes on discrete val-
ues. However, when the number of individuals becomes large enough, the population can
be approximated by a continuous function. Differentiability of the approximating function
is another reasonable hypothesis in many settings, allowing for the use of calculus to
model and predict population sizes.

If we assume that the proportion of reproducing individuals remains constant and as-
sume a constant fertility, then at any instant t the birth rate is proportional to the number
y(t) of individuals present. Let’s assume, too, that the death rate of the population is stable
and proportional to y(t). If, further, we neglect departures and arrivals, the growth rate
dy dt is the birth rate minus the death rate, which is the difference of the two proportional-
ities under our assumptions. In other words, so that where is the
size of the population at time As with all kinds of growth, there may be limitations
imposed by the surrounding environment, but we will not go into these here. The propor-
tionality models unlimited population growth.

In the following example we assume this population model to look at how the number
of individuals infected by a disease within a given population decreases as the disease is
appropriately treated.

EXAMPLE 3 One model for the way diseases die out when properly treated assumes
that the rate dy dt at which the number of infected people changes is proportional to the
number y. The number of people cured is proportional to the number y that are infected
with the disease. Suppose that in the course of any given year the number of cases of a
disease is reduced by 20%. If there are 10,000 cases today, how many years will it take to
reduce the number to 1000?

Solution We use the equation There are three things to find: the value of 
the value of k, and the time t when 

The value of We are free to count time beginning anywhere we want. If we count
from today, then when so Our equation is now

(5)y = 10,000ekt .

y0 = 10,000.t = 0,y = 10,000
y0 .

y = 1000.
y0 ,y = y0 ekt .

>

dy>dt = ky

t = 0.
y0y = y0 ekt ,dy>dt = ky

>

y = y0 e kt

dy
dt

= ky, ys0d = y0

 
1
2

 ln s1 + y2d = x - ln ƒ x + 1 ƒ + C .

x + 1.
L

 
y dy

1 + y2 =

L
 a1 -

1
x + 1

b  dx

x Z  -1
y dy

y2
+ 1

=
x dx

x + 1

ysx + 1d dy = xs y2
+ 1d dx

ysx + 1d 
dy
dx

= xs y2
+ 1d .
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The value of k. When the number of cases will be 80% of its present
value, or 8000. Hence,

At any given time t,

(6)

The value of t that makes We set y equal to 1000 in Equation (6) and solve
for t:

Logs of both sides

It will take a little more than 10 years to reduce the number of cases to 1000.

Radioactivity

Some atoms are unstable and can spontaneously emit mass or radiation. This process is
called radioactive decay, and an element whose atoms go spontaneously through this
process is called radioactive. Sometimes when an atom emits some of its mass through
this process of radioactivity, the remainder of the atom re-forms to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium, through a
number of intermediate radioactive steps, decays into lead.

Experiments have shown that at any given time the rate at which a radioactive element
decays (as measured by the number of nuclei that change per unit time) is approximately
proportional to the number of radioactive nuclei present. Thus, the decay of a radioactive
element is described by the equation It is conventional to use

, to emphasize that y is decreasing. If is the number of radioactive nuclei
present at time zero, the number still present at any later time t will be

In Section 1.6, we defined the half-life of a radioactive element to be the time re-
quired for half of the radioactive nuclei present in a sample to decay. It is an interesting
fact that the half-life is a constant that does not depend on the number of radioactive nuclei
initially present in the sample, but only on the radioactive substance.We found the half-life
is given by

y = y0 e-kt, k 7 0.

y0-k, with k 7 0
dy>dt = -ky, k 7 0.

 t =
ln 0.1
ln 0.8

L 10.32 years .

 sln 0.8dt = ln 0.1

 e sln 0.8dt
= 0.1

 1000 = 10,000e sln 0.8dt

y = 1000.

y = 10,000e sln 0.8dt .

 k = ln 0.8 6 0.

 ln sekd = ln 0.8

 ek
= 0.8

 8000 = 10,000eks1d

t = 1 year ,
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Eq. (5) with and

Logs of both sides

y = 8000
t = 1

For radon-222 gas, t is measured in days
and For radium-226, which
used to be painted on watch dials to
make them glow at night (a dangerous
practice), t is measured in years and
k = 4.3 * 10-4 .

k = 0.18 .

(7)Half-life =
ln 2
k

For example, the half-life for radon-222 is

.half- life =
ln 2
0.18

L 3.9 days
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EXAMPLE 4 The decay of radioactive elements can sometimes be used to date events
from the Earth’s past. In a living organism, the ratio of radioactive carbon, carbon-14, to
ordinary carbon stays fairly constant during the lifetime of the organism, being approxi-
mately equal to the ratio in the organism’s atmosphere at the time. After the organism’s
death, however, no new carbon is ingested, and the proportion of carbon-14 in the organ-
ism’s remains decreases as the carbon-14 decays.

Scientists who do carbon-14 dating use a figure of 5700 years for its half-life. 
Find the age of a sample in which 10% of the radioactive nuclei originally present have 
decayed.

Solution We use the decay equation There are two things to find: the value
of k and the value of t when y is (90% of the radioactive nuclei are still present). That
is, find t when or 

The value of k. We use the half-life Equation (7):

The value of t that makes

Logs of both sides

The sample is about 866 years old.

Heat Transfer: Newton’s Law of Cooling

Hot soup left in a tin cup cools to the temperature of the surrounding air. A hot silver bar
immersed in a large tub of water cools to the temperature of the surrounding water. In sit-
uations like these, the rate at which an object’s temperature is changing at any given time is
roughly proportional to the difference between its temperature and the temperature of the
surrounding medium. This observation is called Newton’s Law of Cooling, although it ap-
plies to warming as well.

If H is the temperature of the object at time t and is the constant surrounding tem-
perature, then the differential equation is

(8)

If we substitute y for then

Eq. (8)

H - HS = y = -ky .

 = -k sH - HSd

 =
dH
dt

HS is a constant . =
dH
dt

- 0

 
dy
dt

=
d
dt

 sH - HSd =
dH
dt

-
d
dt

 sHSd

sH - HSd ,

dH
dt

= -k sH - HSd .

HS

 t = -
5700 ln 0.9

ln 2
L 866 years

 -
ln 2

5700
 t = ln 0.9

 e-sln 2>5700dt
= 0.9

 e-kt
= 0.9

e-kt
= 0.9.

k =
ln 2

half-life
=

ln 2
5700
 sabout 1.2 * 10-4d

e-kt
= 0.9.y0 e-kt

= 0.9y0 ,
0.9y0

y = y0 e-kt .
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Now we know that the solution of is where Substi-
tuting for y, this says that

(9)

where is the temperature at This equation is the solution to Newton’s Law of
Cooling.

EXAMPLE 5 A hard-boiled egg at 98°C is put in a sink of 18°C water. After 5 min, the
egg’s temperature is 38°C. Assuming that the water has not warmed appreciably, how
much longer will it take the egg to reach 20°C?

Solution We find how long it would take the egg to cool from 98°C to 20°C and subtract
the 5 min that have already elapsed. Using Equation (9) with and the
egg’s temperature t min after it is put in the sink is

To find k, we use the information that when 

The egg’s temperature at time t is Now find the time t when

The egg’s temperature will reach 20°C about 13 min after it is put in the water to cool.
Since it took 5 min to reach 38°C, it will take about 8 min more to reach 20°C.

 t =
ln 40

0.2 ln 4
L 13 min.

 - s0.2 ln 4dt = ln 
1
40

= - ln 40

 e-s0.2 ln 4dt
=

1
40

 80e-s0.2 ln 4dt
= 2

 20 = 18 + 80e-s0.2 ln 4dt

H = 20:
H = 18 + 80e-s0.2 ln 4dt .

k =
1
5 ln 4 = 0.2 ln 4 sabout 0.28d .

 -5k = ln 
1
4

= - ln 4

 e-5k
=

1
4

 38 = 18 + 80e-5k

t = 5:H = 38

H = 18 + s98 - 18de-kt
= 18 + 80e-kt .

H0 = 98,HS = 18

t = 0.H0

H - HS = sH0 - HSde-kt ,

sH - HSd
ys0d = y0 .y = y0 e-kt ,dy>dt = -ky
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Exercises 7.2

Verifying Solutions
In Exercises 1–4, show that each function is a solution of the
accompanying differential equation.

1.

a. b.

c. y = e-x
+ Ce-s3>2dx

y = e-x
+ e-s3>2dxy = e-x

2y¿ + 3y = e-x

y = ƒsxd
2.

a. b. c.

3.

4. y =

1

21 + x4
 
L

x

1
21 + t4 dt, y¿ +

2x3

1 + x4 y = 1

y =

1
x
L

x

1
 
et

t  dt, x2y¿ + xy = ex

y = -

1
x + C

y = -

1
x + 3

y = -

1
x

y¿ = y2
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Initial Value Problems
In Exercises 5–8, show that each function is a solution of the given
initial value problem.

Differential Initial Solution
equation condition candidate

5.

6.

7.

8.

Separable Differential Equations
Solve the differential equation in Exercises 9–22.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19. 20.

21. 22.

Applications and Examples
The answers to most of the following exercises are in terms of loga-
rithms and exponentials. A calculator can be helpful, enabling you to
express the answers in decimal form.

23. Human evolution continues The analysis of tooth shrinkage by
C. Loring Brace and colleagues at the University of Michigan’s
Museum of Anthropology indicates that human tooth size is con-
tinuing to decrease and that the evolutionary process did not come
to a halt some 30,000 years ago as many scientists contend. In
northern Europeans, for example, tooth size reduction now has a
rate of 1% per 1000 years.

a. If t represents time in years and y represents tooth size, use
the condition that when to find the
value of k in the equation Then use this value of k
to answer the following questions.

b. In about how many years will human teeth be 90% of their
present size?

c. What will be our descendants’ tooth size 20,000 years from
now (as a percentage of our present tooth size)?

24. Atmospheric pressure The earth’s atmospheric pressure p is often
modeled by assuming that the rate dp dh at which p changes with the>

y = y0 e kt .
t = 1000y = 0.99y0

dy

dx
= ex - y

+ ex
+ e-y

+ 1
1
x  

dy

dx
= yex2

+ 22y ex2

dy

dx
= xy + 3x - 2y - 6y2 

dy

dx
= 3x2y3

- 6x2

dy

dx
=

e2x - y

ex + y

dy

dx
= 2x21 - y2, -1 6 y 6 1

ssec xd 
dy

dx
= ey + sin x2x  

dy

dx
= ey +2x, x 7 0

22xy  
dy

dx
= 1

dy

dx
= 2y cos2 2y

dy

dx
= 3x2 e-y

dy

dx
= ex - y

dy

dx
= x22y, y 7 022xy  

dy

dx
= 1, x, y 7 0

x 7 1

y =

x
ln x

ysed = ex2y¿ = xy - y2,

x 7 0

y =

cos x
xy ap

2
b = 0xy¿ + y = -sin x,

y = sx - 2de-x2

ys2d = 0y¿ = e-x2

- 2xy

y = e-x tan-1 s2exdys - ln 2d =

p

2
y¿ + y =

2
1 + 4e2x
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altitude h above sea level is proportional to p. Suppose that the pres-
sure at sea level is 1013 millibars (about 14.7 pounds per square
inch) and that the pressure at an altitude of 20 km is 90 millibars.

a. Solve the initial value problem

to express p in terms of h. Determine the values of and k
from the given altitude-pressure data.

b. What is the atmospheric pressure at 

c. At what altitude does the pressure equal 900 millibars?

25. First-order chemical reactions In some chemical reactions,
the rate at which the amount of a substance changes with time is
proportional to the amount present. For the change of 
lactone into gluconic acid, for example,

when t is measured in hours. If there are 100 grams of 
lactone present when how many grams will be left after
the first hour?

26. The inversion of sugar The processing of raw sugar has a step
called “inversion” that changes the sugar’s molecular structure.
Once the process has begun, the rate of change of the amount of
raw sugar is proportional to the amount of raw sugar remaining. If
1000 kg of raw sugar reduces to 800 kg of raw sugar during the first
10 hours, how much raw sugar will remain after another 14 hours?

27. Working underwater The intensity L(x) of light x feet beneath
the surface of the ocean satisfies the differential equation

As a diver, you know from experience that diving to 18 ft in the
Caribbean Sea cuts the intensity in half. You cannot work without
artificial light when the intensity falls below one-tenth of the sur-
face value. About how deep can you expect to work without artifi-
cial light?

28. Voltage in a discharging capacitor Suppose that electricity is
draining from a capacitor at a rate that is proportional to the volt-
age V across its terminals and that, if t is measured in seconds,

Solve this equation for V, using to denote the value of V when
How long will it take the voltage to drop to 10% of its

original value?

29. Cholera bacteria Suppose that the bacteria in a colony can
grow unchecked, by the law of exponential change. The colony
starts with 1 bacterium and doubles every half-hour. How many
bacteria will the colony contain at the end of 24 hours? (Under fa-
vorable laboratory conditions, the number of cholera bacteria can
double every 30 min. In an infected person, many bacteria are
destroyed, but this example helps explain why a person who feels
well in the morning may be dangerously ill by evening.)

30. Growth of bacteria A colony of bacteria is grown under ideal
conditions in a laboratory so that the population increases expo-
nentially with time. At the end of 3 hours there are 10,000 bacte-
ria. At the end of 5 hours there are 40,000. How many bacteria
were present initially?

t = 0.
V0

dV
dt

= -

1
40

 V .

dL
dx

= -kL .

t = 0,
d-glucono

dy

dt
= -0.6y

d-glucono

h = 50 km?

p0

Differential equation: dp>dh = kp sk a constantd
Initial condition: p = p0  when  h = 0
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31. The incidence of a disease (Continuation of Example 3.) Sup-
pose that in any given year the number of cases can be reduced by
25% instead of 20%.

a. How long will it take to reduce the number of cases to 1000?

b. How long will it take to eradicate the disease, that is, reduce
the number of cases to less than 1?

32. The U.S. population The U.S. Census Bureau keeps a running
clock totaling the U.S. population. On March 26, 2008, the total
was increasing at the rate of 1 person every 13 sec. The popula-
tion figure for 2:31 P.M. EST on that day was 303,714,725.

a. Assuming exponential growth at a constant rate, find the rate
constant for the population’s growth (people per 365-day year).

b. At this rate, what will the U.S. population be at 2:31 P.M. EST
on March 26, 2015?

33. Oil depletion Suppose the amount of oil pumped from one of the
canyon wells in Whittier, California, decreases at the continuous
rate of 10% per year. When will the well’s output fall to one-fifth
of its present value?

34. Continuous price discounting To encourage buyers to place
100-unit orders, your firm’s sales department applies a continu-
ous discount that makes the unit price a function p(x) of the num-
ber of units x ordered. The discount decreases the price at the rate
of $0.01 per unit ordered. The price per unit for a 100-unit order
is 

a. Find p(x) by solving the following initial value problem:

b. Find the unit price p(10) for a 10-unit order and the unit price
p(90) for a 90-unit order.

c. The sales department has asked you to find out if it is dis-
counting so much that the firm’s revenue, 
will actually be less for a 100-unit order than, say, for a 
90-unit order. Reassure them by showing that r has its maxi-
mum value at 

d. Graph the revenue function for 

35. Plutonium-239 The half-life of the plutonium isotope is 24,360
years. If 10 g of plutonium is released into the atmosphere by a
nuclear accident, how many years will it take for 80% of the iso-
tope to decay?

36. Polonium-210 The half-life of polonium is 139 days, but your
sample will not be useful to you after 95% of the radioactive
nuclei present on the day the sample arrives has disintegrated. For
about how many days after the sample arrives will you be able to
use the polonium?

37. The mean life of a radioactive nucleus Physicists using the ra-
dioactivity equation call the number 1 k the mean life
of a radioactive nucleus. The mean life of a radon nucleus is about

The mean life of a carbon-14 nucleus is more
than 8000 years. Show that 95% of the radioactive nuclei originally
present in a sample will disintegrate within three mean lifetimes,
i.e., by time Thus, the mean life of a nucleus gives a quick
way to estimate how long the radioactivity of a sample will last.

38. Californium-252 What costs $27 million per gram and can be used
to treat brain cancer, analyze coal for its sulfur content, and detect 

t = 3>k .

1>0.18 = 5.6 days .

>y = y0 e-kt

0 … x … 200.rsxd = xpsxd
x = 100.

rsxd = x # psxd ,

Differential equation:
dp

dx
 = -

1
100

 p

Initial condition: ps100d = 20.09.

ps100d = $20.09 .
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explosives in luggage? The answer is californium-252, a radioactive
isotope so rare that only 8 g of it have been made in the western
world since its discovery by Glenn Seaborg in 1950. The half-life of
the isotope is 2.645 years—long enough for a useful service life and
short enough to have a high radioactivity per unit mass. One micro-
gram of the isotope releases 170 million neutrons per minute.

a. What is the value of k in the decay equation for this isotope?

b. What is the isotope’s mean life? (See Exercise 37.)

c. How long will it take 95% of a sample’s radioactive nuclei to
disintegrate?

39. Cooling soup Suppose that a cup of soup cooled from 90°C to
60°C after 10 min in a room whose temperature was 20°C. Use
Newton’s law of cooling to answer the following questions.

a. How much longer would it take the soup to cool to 35°C?

b. Instead of being left to stand in the room, the cup of 90°C
soup is put in a freezer whose temperature is How
long will it take the soup to cool from 90°C to 35°C?

40. A beam of unknown temperature An aluminum beam was
brought from the outside cold into a machine shop where the tem-
perature was held at 65°F. After 10 min, the beam warmed to 35°F
and after another 10 min it was 50°F. Use Newton’s law of cooling
to estimate the beam’s initial temperature.

41. Surrounding medium of unknown temperature A pan of
warm water (46°C) was put in a refrigerator. Ten minutes later, the
water’s temperature was 39°C; 10 min after that, it was 33°C. Use
Newton’s law of cooling to estimate how cold the refrigerator was.

42. Silver cooling in air The temperature of an ingot of silver is
60°C above room temperature right now. Twenty minutes ago, it
was 70°C above room temperature. How far above room tempera-
ture will the silver be

a. 15 min from now? b. 2 hours from now?

c. When will the silver be 10°C above room temperature?

43. The age of Crater Lake The charcoal from a tree killed in the
volcanic eruption that formed Crater Lake in Oregon contained
44.5% of the carbon-14 found in living matter. About how old is
Crater Lake?

44. The sensitivity of carbon-14 dating to measurement To see
the effect of a relatively small error in the estimate of the amount of
carbon-14 in a sample being dated, consider this hypothetical
situation:

a. A fossilized bone found in central Illinois in the year A.D.
2000 contains 17% of its original carbon-14 content. Estimate
the year the animal died.

b. Repeat part (a) assuming 18% instead of 17%.

c. Repeat part (a) assuming 16% instead of 17%.

45. Carbon-14 The oldest known frozen human mummy, discov-
ered in the Schnalstal glacier of the Italian Alps in 1991 and
called Otzi, was found wearing straw shoes and a leather coat
with goat fur, and holding a copper ax and stone dagger. It was es-
timated that Otzi died 5000 years before he was discovered in the
melting glacier. How much of the original carbon-14 remained in
Otzi at the time of his discovery?

46. Art forgery A painting attributed to Vermeer (1632–1675),
which should contain no more than 96.2% of its original carbon-
14, contains 99.5% instead. About how old is the forgery?

-15°C.
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7.3 Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions and . The hyperbolic functions simplify many mathematical expressions and
occur frequently in mathematical applications. In this section we give a brief introduction
to these functions, their graphs, and their derivatives.

Definitions and Identities

The hyperbolic sine and hyperbolic cosine functions are defined by the equations

We pronounce as “ ,” rhyming with “ ,” and as “ ,”
rhyming with “ .” From this basic pair, we define the hyperbolic tangent, cotangent,
secant, and cosecant functions. The defining equations and graphs of these functions are
shown in Table 7.3. We will see that the hyperbolic functions bear many similarities to the
trigonometric functions after which they are named.

gosh x
kosh xcosh xpinch xcinch xsinh x

sinh x =
ex

- e-x

2
    and    cosh x =

ex
+ e-x

2
.

e - xex
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TABLE 7.3 The six basic hyperbolic functions

x

y

1

–1
1

2
3

–2
–3

2 3–2 –1–3

(a)

y � sinh xy �
ex

2

y � – e–x

2

Hyperbolic sine:

sinh x =

ex
- e-x

2

Hyperbolic secant:

sech x =

1
cosh x

=

2
ex

+ e-x

Hyperbolic cosecant:

csch x =

1
sinh x

=

2
ex

- e-x

Hyperbolic cosine:

cosh x =

ex
+ e-x

2

Hyperbolic tangent:

Hyperbolic cotangent:

coth x =

cosh x
sinh x

=

ex
+ e-x

ex
- e-x

tanh x =

sinh x
cosh x

=

ex
- e-x

ex
+ e-x

x

y

1–1 2 3–2–3

(b)

y � cosh x

y � e–x

2
1
2
3

ex

2
y �

x

y

2

1–1 2–2

–2

(c)

y � coth x

y � tanh x

y � coth x

y � 1

y � –1

x

y

1–1 0 2–2

2

(d)

y � sech x

y � 1

x

y

1–1 2–2

2

1

–1

(e)

y � csch x
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Hyperbolic functions satisfy the identities in Table 7.4. Except for differences in sign,
these resemble identities we know for the trigonometric functions. The identities are
proved directly from the definitions, as we show here for the second one:

The other identities are obtained similarly, by substituting in the definitions of the hy-
perbolic functions and using algebra. Like many standard functions, hyperbolic functions
and their inverses are easily evaluated with calculators, which often have special keys for
that purpose.

For any real number u, we know the point with coordinates (cos u, sin u) lies on the
unit circle . So the trigonometric functions are sometimes called the circular
functions. Because of the first identity

with u substituted for x in Table 7.4, the point having coordinates (cosh u, sinh u) lies on the
right-hand branch of the hyperbola . This is where the hyperbolic functions
get their names (see Exercise 86).

Derivatives and Integrals of Hyperbolic Functions

The six hyperbolic functions, being rational combinations of the differentiable functions
and have derivatives at every point at which they are defined (Table 7.5). Again,

there are similarities with trigonometric functions.
The derivative formulas are derived from the derivative of 

Definition of sinh u

Derivative of 

Definition of cosh u

This gives the first derivative formula. From the definition, we can calculate the derivative
of the hyperbolic cosecant function, as follows:

Definition of csch u

Quotient Rule

Rearrange terms.

Definitions of csch u and coth u

The other formulas in Table 7.5 are obtained similarly.
The derivative formulas lead to the integral formulas in Table 7.6.

 = -csch u coth u 
du
dx

 = -
1

sinh u
 
cosh u
sinh u

 
du
dx

 = -
cosh u
sinh2 u

 
du
dx

 
d
dx

 scsch ud =
d
dx

 a 1
sinh u

b

 = cosh u 
du
dx

.

eu =

eu du>dx + e-u du>dx

2

 
d
dx

 ssinh ud =
d
dx

 aeu
- e-u

2
b

eu :

e-x ,ex

x2
- y2

= 1

cosh2 u - sinh2 u = 1,

x2
+ y2

= 1

 = sinh 2x.

 =
e2x

- e-2x

2

 2 sinh x cosh x = 2 aex
- e-x

2
b aex

+ e-x

2
b
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TABLE 7.4 Identities for
hyperbolic functions

coth2 x = 1 + csch2 x

tanh2 x = 1 - sech2 x

sinh2 x =
cosh 2x - 1

2

cosh2 x =
cosh 2x + 1

2

cosh 2x = cosh2 x + sinh2 x

sinh 2x = 2 sinh x cosh x

cosh2 x - sinh2 x = 1

TABLE 7.5 Derivatives of
hyperbolic functions

d
dx

 scsch ud = -csch u coth u 
du
dx

d
dx

 ssech ud = -sech u tanh u 
du
dx

d
dx

 scoth ud = -csch2 u 
du
dx

d
dx

 stanh ud = sech2 u 
du
dx

d
dx

 scosh ud = sinh u 
du
dx

d
dx

 ssinh ud = cosh u 
du
dx

TABLE 7.6 Integral formulas for
hyperbolic functions

L
 csch u coth u du = -csch u + C

L
 sech u tanh u du = -sech u + C

L
 csch2 u du = -coth u + C

L
 sech2 u du = tanh u + C

L
 cosh u du = sinh u + C

L
 sinh u du = cosh u + C
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EXAMPLE 1

(a)

(b)

(c) Table 7.4 

(d)

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration (see
Chapter 8). Since the hyperbolic sine is an increasing func-
tion of x. We denote its inverse by

For every value of x in the interval the value of is the num-
ber whose hyperbolic sine is x. The graphs of and are shown in
Figure 7.5a.

The function is not one-to-one because its graph in Table 7.3 does not
pass the horizontal line test. The restricted function however, is one-
to-one and therefore has an inverse, denoted by

For every value of is the number in the interval whose
hyperbolic cosine is x. The graphs of and are shown in
Figure 7.5b.

Like the function fails to be one-to-one, but its
restriction to nonnegative values of x does have an inverse, denoted by

For every value of x in the interval is the nonnegative number whose
hyperbolic secant is x. The graphs of and are shown in
Figure 7.5c.

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and
therefore have inverses, denoted by

These functions are graphed in Figure 7.6.

y = tanh-1 x, y = coth-1 x, y = csch-1 x .

y = sech-1 xy = sech x, x Ú 0,
s0, 1], y = sech-1 x

y = sech-1 x .

y = sech x = 1>cosh xy = cosh x ,

y = cosh-1 xy = cosh x, x Ú 0,
0 … y 6 qx Ú 1, y = cosh-1 x

y = cosh-1 x.

y = cosh x, x Ú 0,
y = cosh x

y = sinh-1 xy = sinh x
y = sinh-1 x- q 6 x 6 q ,

y = sinh-1 x .

dssinh xd>dx = cosh x 7 0,

L 1.6137 = 4 - 2 ln 2 - 1

 = Ce2x
- 2x D0ln 2

= se2 ln 2
- 2 ln 2d - s1 - 0d

 
L

ln 2

0
 4ex sinh x dx =

L

ln 2

0
 4ex  

ex
- e-x

2
 dx =

L

ln 2

0
 s2e2x

- 2d dx

 =
sinh 2

4
-

1
2

L 0.40672

 =
1
2L

1

0
 scosh 2x - 1d dx =

1
2

 csinh 2x
2

- x d
0

1

 
L

1

0
 sinh2 x dx =

L

1

0
 
cosh 2x - 1

2
 dx

 =
1
5 ln ƒ u ƒ + C =

1
5 ln ƒ sinh 5x ƒ + C

 
L

 coth 5x dx =

L
 
cosh 5x
sinh 5x

 dx =
1
5L

 
du
u

 =
t

21 + t2
 sech2 21 + t2

 
d
dt

 A tanh 21 + t2 B = sech2 21 + t2 # d
dt

 A21 + t2 B

438 Chapter 7: Integrals and Transcendental Functions

du = 5 cosh 5x dx
u = sinh 5x ,

Evaluate with
a calculator.
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Useful Identities

We use the identities in Table 7.7 to calculate the values of and 
on calculators that give only and These identities are direct
consequences of the definitions. For example, if then

We also know that so because the hyperbolic secant is one-to-one on
we have

Derivatives of Inverse Hyperbolic Functions

An important use of inverse hyperbolic functions lies in antiderivatives that reverse the
derivative formulas in Table 7.8.

The restrictions and on the derivative formulas for and
come from the natural restrictions on the values of these functions. (See Figure

7.6a and b.) The distinction between and becomes important when we
convert the derivative formulas into integral formulas.

We illustrate how the derivatives of the inverse hyperbolic functions are found in
Example 2, where we calculate The other derivatives are obtained by sim-
ilar calculations.

dscosh-1 ud>dx.

ƒ u ƒ 7 1ƒ u ƒ 6 1
coth-1 u

tanh-1 uƒ u ƒ 7 1ƒ u ƒ 6 1

cosh-1 a1x b = sech-1 x.

s0, 1],
sech ssech-1 xd = x,

sech acosh-1 a1x b b =
1

cosh acosh-1 a1x b b
=

1

a1x b
= x.

0 6 x … 1,
tanh-1 x .cosh-1 x, sinh-1 x ,

coth-1 xsech-1 x, csch-1 x ,
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x

y

1
2

2 4 6–6 –4 –2

x

y

1

0

2

1 2 3 4 5 6 7 8

3
4
5
6
7
8

x

y

1 2 3

1

0

2

3

(a)

(b) (c)

y � sinh x y � x

y � sinh–1 x
(x � sinh y)

y � cosh x,
x � 0

y � sech x
x � 0

y � x y � x

y � cosh–1 x
(x � cosh y, y � 0)

y � sech–1 x
(x � sech y,
  y � 0)

FIGURE 7.5 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about the
line .y = x

x

y

0–1 1

(a)

x

y

0–1 1

(b)

x

y

0

(c)

x � tanh y
y � tanh–1 x

 x � coth y
y � coth–1 x

 x � csch y
y � csch–1 x

FIGURE 7.6 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.

TABLE 7.7 Identities for inverse
hyperbolic functions

coth-1 x = tanh-1 
1
x

csch-1 x = sinh-1 
1
x

sech-1 x = cosh-1 
1
x
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EXAMPLE 2 Show that if u is a differentiable function of x whose values are greater
than 1, then

Solution First we find the derivative of for by applying Theorem 3
of Section 3.8 with and Theorem 3 can be applied be-
cause the derivative of cosh x is positive for 

Theorem 3, Section 3.8

The Chain Rule gives the final result:

With appropriate substitutions, the derivative formulas in Table 7.8 lead to the inte-
gration formulas in Table 7.9. Each of the formulas in Table 7.9 can be verified by differ-
entiating the expression on the right-hand side.

EXAMPLE 3 Evaluate

L

1

0
 

2 dx

23 + 4x2
.

d
dx

 scosh-1 ud =
1

2u2
- 1

 
du
dx

.

cosh scosh-1 xd = x =
1

2x2
- 1

 =
1

2cosh2 scosh-1 xd - 1

ƒ¿sud = sinh u =
1

sinh scosh-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1 sxdd

0 6 x.
ƒ -1sxd = cosh-1 x.ƒsxd = cosh x

x 7 1y = cosh-1 x

d
dx

 scosh-1 ud =
1

2u2
- 1

 
du
dx

.
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TABLE 7.8 Derivatives of inverse hyperbolic functions

dscsch-1 ud
dx

= -
1

ƒ u ƒ21 + u2
 
du
dx

 , u Z 0

dssech-1 ud
dx

= -
1

u21 - u2
 
du
dx

 ,   0 6 u 6 1

dscoth-1 ud
dx

=
1

1 - u2 
du
dx

 ,       ƒ u ƒ 7 1

dstanh-1 ud
dx

=
1

1 - u2 
du
dx

 ,       ƒ u ƒ 6 1

dscosh-1 ud
dx

=
1

2u2
- 1

 
du
dx

 ,          u 7 1

dssinh-1 ud
dx

=
1

21 + u2
 
du
dx

2cosh2 u - 1sinh u =

cosh2 u - sinh2 u = 1,

HISTORICAL BIOGRAPHY

Sonya Kovalevsky
(1850–1891)
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Solution The indefinite integral is

Formula from Table 7.9

Therefore,

 = sinh-1 a 2

23
b - 0 L 0.98665.

 
L

1

0
 

2 dx

23 + 4x2
= sinh-1 a 2x

23
b d

0

1

= sinh-1 a 2

23
b - sinh-1 s0d

 = sinh-1 a 2x

23
b + C .

 = sinh-1 aua b + C

u = 2x, du = 2 dx, a = 23 
L

 
2 dx

23 + 4x2
=

L
 

du

2a2
+ u2
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TABLE 7.9 Integrals leading to inverse hyperbolic functions

1.

2.

3.

4.

5. and a 7 0
L

 
du

u2a2
+ u2

= -
1
a csch-1 

ƒ  
u
a ƒ + C,   u Z 0

L
 

du

u2a2
- u2

= -
1
a sech-1 aua b + C,  0 6 u 6 a

L
 

du
a2

- u2 = d 1
a tanh-1 aua b + C,     u2

6 a2

1
a coth-1 aua b + C,    u2

7 a2

L
 

du

2u2
- a2

= cosh-1 aua b + C,      u 7 a 7 0

L
 

du

2a2
+ u2

= sinh-1 aua b + C,      a 7 0

Exercises 7.3

Values and Identities
Each of Exercises 1–4 gives a value of sinh x or cosh x. Use the defi-
nitions and the identity to find the values of the
remaining five hyperbolic functions.

1. 2.

3. 4.

Rewrite the expressions in Exercises 5–10 in terms of exponentials
and simplify the results as much as you can.

5. 2 cosh (ln x) 6. sinh (2 ln x)
7. 8.
9.

10. ln scosh x + sinh xd + ln scosh x - sinh xd
ssinh x + cosh xd4

cosh 3x - sinh 3xcosh 5x + sinh 5x

cosh x =

13
5

, x 7 0cosh x =

17
15

, x 7 0

sinh x =

4
3

sinh x = -

3
4

cosh2 x - sinh2 x = 1

11. Prove the identities

,

.

Then use them to show that

a.

b.

12. Use the definitions of cosh x and sinh x to show that

Finding Derivatives
In Exercises 13–24, find the derivative of y with respect to the appro-
priate variable.

13. 14. y =

1
2

 sinh s2x + 1dy = 6 sinh 
x
3

cosh2 x - sinh2 x = 1.

cosh 2x = cosh2 x + sinh2 x .

sinh 2x = 2 sinh x cosh x.

 cosh sx + yd = cosh x cosh y + sinh x sinh y

 sinh sx + yd = sinh x cosh y + cosh x sinh y
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15. 16.

17. 18.

19. 20.

21. 22.

23.

(Hint: Before differentiating, express in terms of exponentials
and simplify.)

24.

In Exercises 25–36, find the derivative of y with respect to the appro-
priate variable.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

Integration Formulas
Verify the integration formulas in Exercises 37–40.

37. a.

b.

38.

39.

40.

Evaluating Integrals
Evaluate the integrals in Exercises 41–60.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.
L

ln 2

0
 4e-u sinh u du

L

-ln 2

-ln 4
 2eu cosh u du

L

ln 2

0
 tanh 2x dx

L

ln 4

ln 2
 coth x dx

L
 
csch sln td coth sln td dt

t
L

 
sech 2t tanh 2t dt

2t

L
 csch2 s5 - xd dx

L
 sech2 ax -

1
2
b  dx

L
 coth 

u

23
 du

L
 tanh 

x
7

 dx

L
 4 cosh s3x - ln 2d dx

L
 6 cosh ax

2
- ln 3b  dx

L
 sinh 

x
5

 dx
L

 sinh 2x dx

L
 tanh-1 x dx = x tanh-1 x +

1
2

 ln s1 - x2d + C

L
 x coth-1 x dx =

x2
- 1
2

 coth-1 x +

x
2

+ C

L
 x sech-1 x dx =

x2

2
 sech-1 x -

1
2
21 - x2

+ C

L
 sech x dx = sin-1 stanh xd + C

L
 sech x dx = tan-1 ssinh xd + C

y = cosh-1 ssec xd, 0 6 x 6 p>2
y = sinh-1 stan xd

y = csch-1 2uy = csch-1 a1
2
bu

y = ln x + 21 - x2 sech-1 xy = cos-1 x - x sech-1 x

y = s1 - t2d coth-1 ty = s1 - td coth-1 2t

y = su2
+ 2ud tanh-1 su + 1dy = s1 - ud tanh-1 u

y = cosh-1 22x + 1y = sinh-1 1x

y = s4x2
- 1d csch sln 2xd

y = sx2
+ 1d sech sln xd

y = ln sinh y -

1
2

 coth2 yy = ln cosh y -

1
2

 tanh2 y

y = csch us1 - ln csch udy = sech us1 - ln sech ud
y = ln scosh zdy = ln ssinh zd
y = t2 tanh 

1
ty = 22t tanh 2t
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55. 56.

57. 58.

59. 60.

Inverse Hyperbolic Functions and Integrals
When hyperbolic function keys are not available on a calculator, it is
still possible to evaluate the inverse hyperbolic functions by express-
ing them as logarithms, as shown here.

L

ln 10

0
 4 sinh2 ax

2
b  dx

L

0

-ln 2
 cosh2 ax

2
b  dx

L

4

1
 
8 cosh 1x

1x
 dx

L

2

1
 
cosh sln td

t  dt

L

p>2
0

 2 sinh ssin ud cos u du
L

p>4
-p>4  cosh stan ud sec2 u du

 coth-1 x =

1
2

 ln 
x + 1
x - 1

 ,          ƒ x ƒ 7 1

 csch-1 x = ln a1x +

21 + x2

ƒ x ƒ

b , x Z 0

 sech-1 x = ln a1 + 21 - x2

x b , 0 6 x … 1

 tanh-1 x =

1
2

 ln 
1 + x
1 - x

 ,          ƒ x ƒ 6 1

 cosh-1 x = ln Ax + 2x2
- 1 B ,     x Ú 1

 sinh-1 x = ln Ax + 2x2
+ 1 B , - q 6 x 6 q

Use the formulas in the box here to express the numbers in Exercises
61–66 in terms of natural logarithms.

61. 62.

63. 64.

65. 66.

Evaluate the integrals in Exercises 67–74 in terms of

a. inverse hyperbolic functions.

b. natural logarithms.

67. 68.

69. 70.

71. 72.

73. 74.

Applications and Examples
75. Show that if a function ƒ is defined on an interval symmetric

about the origin (so that ƒ is defined at whenever it is defined
at x), then

(1)

Then show that is even and that
is odd.sƒsxd - ƒs -xdd>2sƒsxd + ƒs -xdd>2

ƒsxd =

ƒsxd + ƒs -xd
2

+

ƒsxd - ƒs -xd
2

.

-x

L

e

1
 

dx

x21 + sln xd2L

p

0
 

cos x dx

21 + sin2 x

L

2

1
 

dx

x24 + x2L

3>13

1>5  
dx

x21 - 16x2

L

1>2
0

 
dx

1 - x2
L

2

5>4 
dx

1 - x2

L

1>3
0

 
6 dx

21 + 9x2L

223

0
 

dx

24 + x2

csch-1 s -1>13dsech-1 s3>5d

coth-1 s5>4dtanh-1 s -1>2d

cosh-1 s5>3dsinh-1 s -5>12d
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76. Derive the formula for all real x.
Explain in your derivation why the plus sign is used with the
square root instead of the minus sign.

77. Skydiving If a body of mass m falling from rest under the
action of gravity encounters an air resistance proportional to the
square of the velocity, then the body’s velocity t sec into the fall
satisfies the differential equation

where k is a constant that depends on the body’s aerodynamic
properties and the density of the air. (We assume that the fall is
short enough so that the variation in the air’s density will not
affect the outcome significantly.)

a. Show that

satisfies the differential equation and the initial condition that
when 

b. Find the body’s limiting velocity, 

c. For a 160-lb skydiver with time in seconds and
distance in feet, a typical value for k is 0.005. What is the
diver’s limiting velocity?

78. Accelerations whose magnitudes are proportional to displace-
ment Suppose that the position of a body moving along a coor-
dinate line at time t is

a.

b.

Show in both cases that the acceleration is proportional to
s but that in the first case it is directed toward the origin, whereas
in the second case it is directed away from the origin.

79. Volume A region in the first quadrant is bounded above by the
curve below by the curve and on the left
and right by the y-axis and the line respectively. Find the vol-
ume of the solid generated by revolving the region about the x-axis.

80. Volume The region enclosed by the curve the

x-axis, and the lines is revolved about the x-axis to
generate a solid. Find the volume of the solid.

81. Arc length Find the length of the graph of 

from to 

82. Use the definitions of the hyperbolic functions to find each of the
following limits.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i)

83. Hanging cables Imagine a cable, like a telephone line or TV 
cable, strung from one support to another and hanging freely.
The cable’s weight per unit length is a constant w and the hori-
zontal tension at its lowest point is a vector of length H. If we

lim
x: - q

csch x

lim
x:0-

coth xlim
x:0+

coth x

lim
x: q

coth xlim
x: q

sech x

lim
x: - q

sinh xlim
x: q

sinh x

lim
x: - q

tanh xlim
x: q

tanh x

x = ln 25.x = 0

cosh 2xy = s1>2d

x = ;  ln 23

y = sech x ,

x = 2,
y = sinh x ,y = cosh x ,

d2s>dt2

s = a cosh kt + b sinh kt .

s = a cos kt + b sin kt.

smg = 160d ,

limt:q y .

t = 0.y = 0

y = A
mg

k
 tanh aA

gk
m  tb

m 
dy
dt

= mg - ky2 ,

sinh-1 x = ln Ax + 2x2
+ 1 B
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choose a coordinate system for the plane of the cable in which
the x-axis is horizontal, the force of gravity is straight down,
the positive y-axis points straight up, and the lowest point of the
cable lies at the point on the y-axis (see accompany-
ing figure), then it can be shown that the cable lies along the
graph of the hyperbolic cosine

Such a curve is sometimes called a chain curve or a catenary,
the latter deriving from the Latin catena, meaning “chain.”

a. Let P(x, y) denote an arbitrary point on the cable. The next ac-
companying figure displays the tension at P as a vector of
length (magnitude) T, as well as the tension H at the lowest
point A. Show that the cable’s slope at P is

b. Using the result from part (a) and the fact that the horizontal
tension at P must equal H (the cable is not moving), show that

Hence, the magnitude of the tension at P(x, y) is ex-
actly equal to the weight of y units of cable.

84. (Continuation of Exercise 83.) The length of arc AP in the Exer-
cise 83 figure is where Show that
the coordinates of P may be expressed in terms of s as

85. Area Show that the area of the region in the first quadrant en-
closed by the curve the coordinate axes, and
the line is the same as the area of a rectangle of height 1 a
and length s, where s is the length of the curve from to

Draw a figure illustrating this result.

86. The hyperbolic in hyperbolic functions Just as and
are identified with points (x, y) on the unit circle, 

the functions and are identified withy = sinh ux = cosh u
y = sin u

x = cos u

x = b .
x = 0

>x = b
y = s1>ad cosh ax ,

x =

1
a sinh-1 as, y = As2

+

1
a2 .

a = w>H .s = s1>ad sinh ax ,

T = wy .

x

y

0

H

T

T cos �

�
P(x, y)

y �      cosh     xH
w

w
H

⎛
⎝

⎛
⎝

H
wA  0, 

tan f =

dy

dx
= sinh 

w
H

 x .

x

y

0

H

Hanging
cable

H
w

y �      cosh     xH
w

w
H

y =

H
w  cosh 

w
H

 x .

y = H>w

7001_AWLThomas_ch07p417-452.qxd  10/28/09  5:29 PM  Page 443



points on the right-hand branch of the unit hyperbola, 
x2

- y2
= 1 .

sx, yd

444 Chapter 7: Integrals and Transcendental Functions

b. Differentiate both sides of the equation in part (a) with 
respect to u to show that

c. Solve this last equation for A(u). What is the value of A(0)?
What is the value of the constant of integration C in your 
solution? With C determined, what does your solution say
about the relationship of u to A(u)?

A¿sud =

1
2

.

Since the point
(cosh u, sinh u) lies on the right-hand
branch of the hyperbola 
for every value of u (Exercise 86).

x2
- y2

= 1

cosh2 u - sinh2 u = 1,

x

y

1

10

u→
−∞

–1

u→
∞

P(cosh u, sinh u)
u � 0

x2 � y2 � 1

One of the analogies between hyperbolic and circular func-
tions is revealed by these two diagrams (Exercise 86).

x

y

O

Asymptote

Asy
mpto

te

A
x

y

O A

x2 � y2 � 1
x2 � y2 � 1 P(cos u, sin u)

u is twice the area
of sector AOP.

u � 0
u � 0

u is twice the area
of sector AOP.

P(cosh u, sinh u)

Another analogy between hyperbolic and circular functions
is that the variable u in the coordinates (cosh u, sinh u) for the
points of the right-hand branch of the hyperbola is
twice the area of the sector AOP pictured in the accompanying
figure. To see why this is so, carry out the following steps.

a. Show that the area A(u) of sector AOP is

Asud =

1
2

 cosh u sinh u -

L

cosh u

1
2x2

- 1 dx .

x2
- y2

= 1

7.4 Relative Rates of Growth

It is often important in mathematics, computer science, and engineering to compare the
rates at which functions of x grow as x becomes large. Exponential functions are important
in these comparisons because of their very fast growth, and logarithmic functions because
of their very slow growth. In this section we introduce the little-oh and big-oh notation
used to describe the results of these comparisons. We restrict our attention to functions
whose values eventually become and remain positive as 

Growth Rates of Functions

You may have noticed that exponential functions like and seem to grow more rapidly
as x gets large than do polynomials and rational functions. These exponentials certainly
grow more rapidly than x itself, and you can see outgrowing as x increases in Figure 7.7.
In fact, as the functions and grow faster than any power of x, even 
(Exercise 19). In contrast, logarithmic functions like and grow more
slowly as than any positive power of x (Exercise 21). 

To get a feeling for how rapidly the values of grow with increasing x, think of
graphing the function on a large blackboard, with the axes scaled in centimeters. At 
the graph is above the x-axis. At the graph is 
high (it is about to go through the ceiling if it hasn’t done so already). At the graph
is high, higher than most buildings. At the graph is
more than halfway to the moon, and at from the origin, the graph is high
enough to reach past the sun’s closest stellar neighbor, the red dwarf star Proxima Centauri.

x = 43 cm
x = 24 cm,e10

L 22,026 cm L 220 m
x = 10 cm,
e6

L 403 cm L 4 mx = 6 cm,e1
L 3 cm

x = 1 cm,
y = ex

x : q

y = ln xy = log2 x
x1,000,000ex2xx : q ,

x22x

ex2x

x : q .

x

y

0 1 2 3 4 5 6 7

20

40

60

80

100

120

140

160
y � ex

y � 2x

y � x2

FIGURE 7.7 The graphs of 
and x2 .

ex, 2x ,
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By contrast, with axes scaled in centimeters, you have to go nearly 5 light-years out 
on the x-axis to find a point where the graph of is even high. See
Figure 7.8.

These important comparisons of exponential, polynomial, and logarithmic functions
can be made precise by defining what it means for a function ƒ(x) to grow faster than an-
other function g(x) as x : q .

y = 43 cmy = ln x

7.4 Relative Rates of Growth 445

DEFINITION Rates of Growth as 
Let ƒ(x) and g(x) be positive for x sufficiently large.

1. ƒ grows faster than g as if

or, equivalently, if

We also say that g grows slower than ƒ as 

2. ƒ and g grow at the same rate as if

where L is finite and positive.

lim
x: q

  
ƒsxd
gsxd

= L

x : q

x : q .

lim
x: q

  
gsxd
ƒsxd

= 0.

lim
x: q

  
ƒsxd
gsxd

= q

x : q

x : ˆ

0 10 20 30 40 50 60

10

20

30

40

50

60

70

x

y

y � ex

y � ln x

FIGURE 7.8 Scale drawings of the graphs
of and ln x.ex

According to these definitions, does not grow faster than The two
functions grow at the same rate because

which is a finite, positive limit. The reason for this departure from more common usage is
that we want “ƒ grows faster than g” to mean that for large x-values g is negligible when
compared with ƒ.

EXAMPLE 1 Let’s compare the growth rates of several common functions.

(a) grows faster than as because

Using l’Hôpital’s Rule twice

(b) grows faster than as because

(c) grows faster than ln x as because

l’Hôpital’s Rulelim
x: q

 
x2

ln x
= lim

x: q

 
2x
1>x = lim

x: q

 2x2
= q .

x : qx2

lim
x: q

 
3x

2x = lim
x: q

 a3
2
b x

= q .

x : q2x3x

lim
x: q

 ex

x2 = lim
x: q

 ex

2x
= lim

x: q

 ex

2
= q .

(')'* (')'*

x : qx2ex

lim
x: q

 
2x
x = lim

x: q

 2 = 2,

y = x .y = 2x

q > qq > q
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(d) ln x grows slower than as for any positive integer n because

l’Hôpital’s Rule

n is constant.

(e) As Part (b) suggests, exponential functions with different bases never grow at the
same rate as If then grows faster than Since 

(f ) In contrast to exponential functions, logarithmic functions with different bases 
and always grow at the same rate as 

The limiting ratio is always finite and never zero. 

If ƒ grows at the same rate as g as and g grows at the same rate as h as
then ƒ grows at the same rate as h as The reason is that

together imply

If and are finite and nonzero, then so is 

EXAMPLE 2 Show that and grow at the same rate as 

Solution We show that the functions grow at the same rate by showing that they both
grow at the same rate as the function 

Order and Oh-Notation

The “little-oh” and “big-oh” notation was invented by number theorists a hundred years
ago and is now commonplace in mathematical analysis and computer science.

 lim
x: q

 
(21x - 1)2

x = lim
x: q

 a21x - 1
1x

b2

= lim
x: q

 a2 -
1
1x
b2

= 4.

 lim
x: q

 
2x2

+ 5
x = lim

x: qA1 +
5
x2 = 1, 

g sxd = x :

x : q .s21x - 1d22x2
+ 5

L1 L2 .L2L1

lim
x: q

 
ƒ
h

= lim
x: q

 
ƒ
g #  

g
h

= L1 L2 .

lim
x: q

 
ƒ
g = L1 and lim

x: q

 
g
h

= L2

x : q .x : q ,
x : q ,

lim
x: q

 
loga x
logb x

= lim
x: q

 
ln x>ln a

ln x>ln b
=

ln b
ln a

.

x : q :b 7 1
a 7 1

lim
x: q

 
ax

bx = lim
x: q

 aa
b
b x

= q .

sa>bd 7 1,bx .axa 7 b 7 0,x : q .

= lim
x: q

 
n

x1>n = 0.

lim
x: q

 
ln x

x1>n = lim
x: q

 
1>x

s1>nd x s1>nd - 1

x : qx1>n
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DEFINITION A function ƒ is of smaller order than g as if

We indicate this by writing (“ƒ is little-oh of g”).ƒ � osgdlim
x: q

 
ƒsxd
gsxd

= 0.

x : q
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Notice that saying as is another way to say that ƒ grows slower than g as

EXAMPLE 3 Here we use little-oh notation.

(a)

(b) x2
= osx3

+ 1d as x : q because lim
x: q

 
x2

x3
+ 1

= 0

ln x = osxd as x : q because lim
x: q

 
ln x
x = 0

x : q .
x : qf = osgd
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DEFINITION Let ƒ(x) and g (x) be positive for x sufficiently large. Then ƒ is
of at most the order of g as if there is a positive integer M for which

for x sufficiently large. We indicate this by writing (“ƒ is big-oh of g”).ƒ � Osgd

ƒsxd
gsxd

… M ,

x : q

EXAMPLE 4 Here we use big-oh notation.

(a)

(b)

(c)

If you look at the definitions again, you will see that implies for func-
tions that are positive for x sufficiently large. Also, if ƒ and g grow at the same rate, then

and (Exercise 11).

Sequential vs. Binary Search

Computer scientists often measure the efficiency of an algorithm by counting the number
of steps a computer must take to execute the algorithm. There can be significant differences
in how efficiently algorithms perform, even if they are designed to accomplish the same
task. These differences are often described in big-oh notation. Here is an example.

Webster’s International Dictionary lists about 26,000 words that begin with the letter a.
One way to look up a word, or to learn if it is not there, is to read through the list one word
at a time until you either find the word or determine that it is not there. This method, called
sequential search, makes no particular use of the words’ alphabetical arrangement. You
are sure to get an answer, but it might take 26,000 steps.

Another way to find the word or to learn it is not there is to go straight to the middle
of the list (give or take a few words). If you do not find the word, then go to the middle of
the half that contains it and forget about the half that does not. (You know which half con-
tains it because you know the list is ordered alphabetically.) This method, called a binary
search, eliminates roughly 13,000 words in a single step. If you do not find the word on
the second try, then jump to the middle of the half that contains it. Continue this way until
you have either found the word or divided the list in half so many times there are no words
left. How many times do you have to divide the list to find the word or learn that it is not
there? At most 15, because

That certainly beats a possible 26,000 steps.

s26,000>215d 6 1.

g = Osƒdƒ = Osgd

ƒ = Osgdƒ = osgd

x = Osexd as x : q because x
ex : 0 as x : q .

ex
+ x2

= Osexd as x : q because ex
+ x2

ex : 1 as x : q .

x + sin x = Osxd as x : q because x + sin x
x … 2 for x sufficiently large.
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For a list of length n, a sequential search algorithm takes on the order of n steps to
find a word or determine that it is not in the list. A binary search, as the second algorithm
is called, takes on the order of steps. The reason is that if then

and the number of bisections required to narrow the list to one
word will be at most the integer ceiling for 

Big-oh notation provides a compact way to say all this. The number of steps in a se-
quential search of an ordered list is O(n); the number of steps in a binary search is

In our example, there is a big difference between the two (26,000 vs. 15), and
the difference can only increase with n because n grows faster than as n : q .log2 n
Oslog2 nd .

log2 n .m = < log2 n= ,
m - 1 6 log2 n … m ,

2m - 1
6 n … 2m ,log2 n
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Exercises 7.4

Comparisons with the Exponential 
1. Which of the following functions grow faster than 

Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. f.

g. h.

2. Which of the following functions grow faster than 
Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. f.

g. h. ex - 1ecos x

xexe-x

s5>2dx21 + x4

x ln x - x10x4
+ 30x + 1

ex ?
ex as x : q ?

log10 xex>2
ex>2s3>2dx

4x1x

x3
+ sin2 xx - 3

ex ?
ex as x : q ?

ex Comparisons with the Power 
3. Which of the following functions grow faster than 

Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. x ln x f.

g. h.

4. Which of the following functions grow faster than 
Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. f.

g. h. x2
+ 100xs1.1dx

s1>10dxx3
- x2

log10 sx2dx2e-x

10x2x2
+ 1x

x2 ?
x2 as x : q ?

8x2x3e-x

2x

sx + 3d22x4
+ x3

x5
- x2x2

+ 4x

x2 ?
x2 as x : q ?

x2

and

(claimed in Section 3.3) as the slopes of those functions where they cross the y-axis. These
limits were foundational to defining informally the natural exponential function in Sec-
tion 3.3, which then gave rise to as its inverse in Section 3.8.

In this chapter we have seen the important roles the exponential and logarithmic func-
tions play in analyzing problems associated with growth and decay, in comparing the
growth rates of various functions, and in measuring the efficiency of a computer algo-
rithm. In Chapters 9 and 17 we will see that exponential functions play a major role in the
solutions to differential equations.

ln x
ex

ah
- 1
h

= ln a lim
h:0

 
eh

- 1
h

= 1 lim
h:0

 

Summary

The integral definition of the natural logarithm function in Section 7.1 is the key to
obtaining precisely the exponential and logarithmic functions and for any base

. The differentiability and increasing behavior of allows us to define its differ-
entiable inverse, the natural exponential function , through Theorem 3 in Chapter 3.
Then provides for the definition of the differentiable function , giving a
simple and precise meaning of irrational exponents, and from which we see that every ex-
ponential function is just raised to an appropriate power, . The increasing (or de-
creasing) behavior of gives its differentiable inverse , using Theorem 3 again.
Moreover, we saw that is just a multiple of the natural logarithm
function. So and give the entire array of exponential and logarithmic functions
using the algebraic operations of taking constant powers and constant multiples. Further-
more, the differentiability of and establish the existence of the limitsaxex

ln xex
(ln x)>(ln a)loga x =

loga xax
ln aex

ax
= ex ln aex

ex
ln xa 7 0

loga xax
ln x
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Comparisons with the Logarithm ln x
5. Which of the following functions grow faster than as 

Which grow at the same rate as ln x? Which grow slower?

a. b. ln 2x

c. d.

e. x f. 5 ln x

g. 1 x h.

6. Which of the following functions grow faster than as 
Which grow at the same rate as ln x? Which grow slower?

a. b.

c. d.

e. f.

g. ln (ln x) h.

Ordering Functions by Growth Rates

7. Order the following functions from slowest growing to fastest
growing as 

a. b.

c. d.

8. Order the following functions from slowest growing to fastest
growing as 

a. b.

c. d.

Big-oh and Little-oh; Order
9. True, or false? As 

a. b.

c. d.

e. f.

g. h.

10. True, or false? As 

a. b.

c. d.

e. f.

g. h.

11. Show that if positive functions ƒ(x) and g(x) grow at the same rate
as then and 

12. When is a polynomial ƒ(x) of smaller order than a polynomial
g (x) as Give reasons for your answer.

13. When is a polynomial ƒ(x) of at most the order of a polynomial
g (x) as Give reasons for your answer.

14. What do the conclusions we drew in Section 2.6 about the limits
of rational functions tell us about the relative growth of polynomi-
als as 

Other Comparisons
15. Investigate

Then use l’Hôpital’s Rule to explain what you find.

lim
x: q

 
ln sx + 1d

ln x
 and lim

x: q

 
ln sx + 999d

ln x
.

x : q ?

x : q ?

x : q ?

g = Osƒd .f = Osgdx : q ,

ln sxd = osln sx2
+ 1ddln sln xd = Osln xd

x ln x = osx2dex
+ x = Osexd

2 + cos x = Os2d1
x -

1
x2 = o a1x b

1
x +

1
x2 = O a1x b1

x + 3
= O a1x b

x : q ,

2x2
+ 5 = Osxdln x = osln 2xd

x + ln x = Osxdex
= ose2xd

x = Os2xdx = Osx + 5d
x = osx + 5dx = osxd

x : q ,

exsln 2dx

x22x

x : q .

ex>2sln xdx

xxex

x : q .

ln s2x + 5d
e-xx - 2 ln x

1>x21>1x

log10 10xlog2 sx2d

x : q ?ln x

ex>
1xln 1x

log3 x

x : q ?ln x

7.4 Relative Rates of Growth 449

16. (Continuation of Exercise 15.) Show that the value of

is the same no matter what value you assign to the constant a.
What does this say about the relative rates at which the functions

and grow?

17. Show that grow at the same rate as
by showing that they both grow at the same rate as as

18. Show that grow at the same rate as
by showing that they both grow at the same rate as as

19. Show that grows faster as than for any positive inte-
ger n, even (Hint: What is the nth derivative of )

20. The function outgrows any polynomial Show that grows
faster as than any polynomial

21. a. Show that ln x grows slower as than for any posi-
tive integer n, even 

b. Although the values of eventually overtake the val-
ues of ln x, you have to go way out on the x-axis before this
happens. Find a value of x greater than 1 for which

You might start by observing that when
the equation is equivalent to the

equation 

c. Even takes a long time to overtake ln x. Experiment with
a calculator to find the value of x at which the graphs of 
and ln x cross, or, equivalently, at which 
Bracket the crossing point between powers of 10 and then
close in by successive halving.

d. (Continuation of part (c).) The value of x at which
is too far out for some graphers and root

finders to identify. Try it on the equipment available to you
and see what happens.

22. The function ln x grows slower than any polynomial Show that
ln x grows slower as than any nonconstant polynomial.

Algorithms and Searches
23. a. Suppose you have three different algorithms for solving the

same problem and each algorithm takes a number of steps that
is of the order of one of the functions listed here:

Which of the algorithms is the most efficient in the long run?
Give reasons for your answer.

b. Graph the functions in part (a) together to get a sense of how
rapidly each one grows.

24. Repeat Exercise 23 for the functions

25. Suppose you are looking for an item in an ordered list one million
items long. How many steps might it take to find that item with a
sequential search? A binary search?

26. You are looking for an item in an ordered list 450,000 items long
(the length of Webster’s Third New International Dictionary).
How many steps might it take to find the item with a sequential
search? A binary search?

n, 2n log2 n, slog2 nd2 .

n log2 n, n3>2, nslog2 nd2 .

x : q

ln x = 10 ln sln xd

ln x = 10 ln sln xd .
x1>10

x1>10

ln sln xd = sln xd>1,000,000 .
ln x = x1>1,000,000x 7 1

x1>1,000,000
7 ln x .

x1>1,000,000

x1>1,000,000 .
x1>nx : q

an xn
+ an - 1 x

n - 1
+

Á
+ a1 x + a0 .

x : q

exe x

xn ?x1,000,000 .
xnx : qex

x : q .
x2x : q

2x4
+ x and 2x4

- x3

x : q .
1xx : q

210x + 1 and 2x + 1

g sxd = ln xƒsxd = ln sx + ad

lim
x: q

 
ln sx + ad

ln x

T

T

T

T

T

T

T
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450 Chapter 7: Integrals and Transcendental Functions

Chapter 7 Practice Exercises

Integration
Evaluate the integrals in Exercises 1–12.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

Solving Equations with Logarithmic
or Exponential Terms
In Exercises 13–18, solve for y.

13. 14.

15. 16.

17. 18. ln (10 ln y) = ln 5xln ( y - 1) = x + ln y

3y
= 3 ln x9e2y

= x2

4-y
= 3y + 23y

= 2y + 1

L

4

2
s1 + ln tdt ln t dt

L

e2

e
 

1

x2ln x
 dx

L

32

1
 
1
5x

 dx
L

7

1
 
3
x  dx

L
 
cos s1 - ln yd

y  dy
L

 
ln sx - 5d

x - 5
 dx

L
ex sec ex dx

L

p>6
-p>2  

cos t
1 - sin t

 dt

L

1>4
1>6  2 cot px dx

L

p

0
 tan 

x
3

 dx

L
et cos s3et

- 2d dt
L

ex sin sexd dx

Comparing Growth Rates of Functions
19. Does ƒ grow faster, slower, or at the same rate as g as 

Give reasons for your answers.

a.

b.

c.

d.

e.

f.

20. Does ƒ grow faster, slower, or at the same rate as g as 
Give reasons for your answers.

a.

b.

c.

d.

e.

f.

21. True, or false? Give reasons for your answers.

a. b.

c. d.

e. f. cosh x = Osexdtan-1 x = Os1d

ln sln xd = osln xdx = osx + ln xd

1
x2 +

1
x4 = O a 1

x4b1
x2 +

1
x4 = O a 1

x2b

gsxd = e-xƒsxd = sech x,

gsxd = 1>x2ƒsxd = sin-1s1>xd,
gsxd = 1>xƒsxd = tan-1s1>xd,
gsxd = exƒsxd = 10x3

+ 2x2,

gsxd = ln x2ƒsxd = ln 2x,

gsxd = 2-xƒsxd = 3-x,

x : q ?

gsxd = exƒsxd = sinh x,

gsxd = 1>xƒsxd = csc-1 x,

gsxd = tan-1 xƒsxd = x,

gsxd = xe-xƒsxd = x>100,

gsxd = x +

1
xƒsxd = x,

gsxd = log3 xƒsxd = log2 x,

x : q ?

Chapter 7 Questions to Guide Your Review

1. How is the natural logarithm funciton defined as an integral?
What are its domain, range, and derivative? What arithmetic
properties does it have? Comment on its graph.

2. What integrals lead to logarithms? Give examples.

3. What are the integrals of tan x and cot x? sec x and csc x?

4. How is the exponential function defined? What are its domain,
range, and derivative? What laws of exponents does it obey?
Comment on its graph.

5. How are the functions and defined? Are there any re-
strictions on a? How is the graph of related to the graph of
ln x? What truth is there in the statement that there is really only
one exponential function and one logarithmic function?

6. How do you solve separable first-order differential equations?

7. What is the law of exponential change? How can it be derived
from an initial value problem? What are some of the applications
of the law?

8. What are the six basic hyperbolic functions? Comment on their
domains, ranges, and graphs. What are some of the identities
relating them?

loga x
loga xax

ex

9. What are the derivatives of the six basic hyperbolic functions?
What are the corresponding integral formulas? What similarities
do you see here with the six basic trigonometric functions?

10. How are the inverse hyperbolic functions defined? Comment on
their domains, ranges, and graphs. How can you find values of

and using a calculator’s keys for
and 

11. What integrals lead naturally to inverse hyperbolic functions?

12. How do you compare the growth rates of positive functions as

13. What roles do the functions and play in growth comparisons?

14. Describe big-oh and little-oh notation. Give examples.

15. Which is more efficient—a sequential search or a binary search?
Explain.

ln xex

x : q?

tanh-1 x?cosh-1 x, sinh-1 x ,
coth-1 xsech-1 x, csch-1 x ,
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Chapter 7 Additional and Advanced Exercises

1. Let A(t) be the area of the region in the first quadrant enclosed by
the coordinate axes, the curve and the vertical line

Let V(t) be the volume of the solid generated by re-
volving the region about the x-axis. Find the following limits.

a. b. c.

2. Varying a logarithm’s base

a. Find as and 

b. Graph as a function of a over the interval

3. Graph for Then use
calculus to explain what you see. How would you expect ƒ to be-
have beyond the interval Give reasons for your answer.

4. Graph over Explain what you see.

5. Even-odd decompositions

a. Suppose that g is an even function of x and h is an odd func-
tion of x. Show that if for all x then

for all x and for all x.

b. Use the result in part (a) to show that if 
is the sum of an even function and an

odd function thenƒO sxd ,
ƒE sxdƒE sxd + ƒO sxd

ƒsxd =

hsxd = 0g sxd = 0
g sxd + h sxd = 0

[0, 3p] .ƒsxd = ssin xdsin x

[-5, 5]?

-5 … x … 5.ƒsxd = tan-1 x + tan-1s1>xd
0 6 a … 4.

y = loga 2

q .a : 0+, 1-, 1+ ,lim loga 2

lim
t:0+

 Vstd>Astdlim
t: q

 Vstd>Astdlim
t: q

 Astd

x = t, t 7 0.
y = e-x ,

c. What is the significance of the result in part (b)?

6. Let g be a function that is differentiable throughout an open inter-
val containing the origin. Suppose g has the following properties:

i. for all real numbers x, y, and

in the domain of g.

ii.

iii.

a. Show that 

b. Show that 

c. Find g (x) by solving the differential equation in part (b).

7. Center of mass Find the center of mass of a thin plate of con-
stant density covering the region in the first and fourth quadrants
enclosed by the curves and 
and by the lines and x = 1.x = 0

y = -1>s1 + x2dy = 1>s1 + x2d

g¿sxd = 1 + [g sxd]2 .

gs0d = 0.

lim
h:0

 
g shd

h
= 1

lim
h:0

 g shd = 0

x + y

g sx + yd =

g sxd + g s yd
1 - g sxdg s yd

ƒE sxd = sƒsxd + ƒs -xdd>2 and ƒO sxd = sƒsxd - ƒs -xdd>2.

22. True, or false? Give reasons for your answers.

a. b.

c. d.

e. f.

Theory and Applications

23. The function being differentiable and one-to-one,
has a differentiable inverse Find the value of at
the point ƒ(ln 2).

24. Find the inverse of the function Then
show that and that

25. A particle is traveling upward and to the right along the curve
Its x-coordinate is increasing at the rate 
At what rate is the y-coordinate changing at the point

26. A girl is sliding down a slide shaped like the curve 
Her y-coordinate is changing at the rate 

At approximately what rate is her x-coordinate changing
when she reaches the bottom of the slide at (Take to
be 20 and round your answer to the nearest ft sec.)

27. The functions and differ by a constant.
What constant? Give reasons for your answer.

28. a. If must 

b. If must 

Give reasons for your answers.

x = 1>2?sln xd>x = -2 ln 2 ,

x = 2?sln xd>x = sln 2d>2,

gsxd = ln 3xƒsxd = ln 5x

> e3x = 9 ft?
ft>sec .

s -1>4d29 - ydy>dt =

y = 9e-x>3 .

se2, 2d?
1x m>sec .

sdx>dtd =y = ln x .

dƒ -1

dx
 `

ƒsxd
=

1
ƒ¿sxd

.

ƒ -1sƒsxdd = ƒsƒ -1sxdd = x
ƒsxd = 1 + s1>xd, x Z 0.

dƒ -1>dxƒ -1sxd .
ƒsxd = ex

+ x ,

sinh x = Osexdsec-1 x = Os1d
ln 2x = Osln xdln x = osx + 1d

1
x4 = o a 1

x2 +

1
x4b1

x4 = O a 1
x2 +

1
x4b

29. The quotient has a constant value. What value?
Give reasons for your answer.

30. vs. How does compare with
Here is one way to find out.

a. Use the equation to express ƒ(x) and
g(x) in terms of natural logarithms.

b. Graph ƒ and g together. Comment on the behavior of ƒ in re-
lation to the signs and values of g.

In Exercises 31–34, solve the differential equation.

31. 32.

33. 34.

In Exercises 35–38, solve the initial value problem.

35.

36.

37.

38.

39. What is the age of a sample of charcoal in which 90% of the car-
bon-14 originally present has decayed?

40. Cooling a pie A deep-dish apple pie, whose internal tempera-
ture was 220°F when removed from the oven, was set out on a
breezy 40°F porch to cool. Fifteen minutes later, the pie’s internal
temperature was 180°F. How long did it take the pie to cool from
there to 70°F?

y -2 
dx
dy

=

ex

e2x
+ 1

, ys0d = 1

x dy - Ay + 2y B  dx = 0, ys1d = 1

dy

dx
=

y ln y

1 + x2 , ys0d = e2

dy

dx
= e-x - y - 2, ys0d = -2

y cos2 x dy + sin x dx = 0yy¿ = sec y2 sec2 x

y¿ =

3ysx + 1d2

y - 1

dy

dx
= 2y cos2 2y

loga b = sln bd>sln ad
gsxd = log2 sxd?

ƒsxd = logx s2dlog2 sxdlogx s2d

slog4 xd>slog2 xd

T

T

T

T
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8. Solid of revolution The region between the curve 
and the x-axis from to is revolved about the x-axis
to generate a solid.

a. Find the volume of the solid.

b. Find the centroid of the region.

9. The Rule of 70 If you use the approximation (in
place of ), you can derive a rule of thumb that says,
“To estimate how many years it will take an amount of money to
double when invested at r percent compounded continuously, di-
vide r into 70.” For instance, an amount of money invested at 5%
will double in about If you want it to double in
10 years instead, you have to invest it at Show how
the Rule of 70 is derived. (A similar “Rule of 72” uses 72 instead
of 70, because 72 has more integer factors.)

70>10 = 7%.
70>5 = 14 years .

0.69314 Á

ln 2 L 0.70

x = 4x = 1>4 y = 1>s21xd 10. Urban gardening A vegetable garden 50 ft wide is to be grown
between two buildings, which are 500 ft apart along an east-west
line. If the buildings are 200 ft and 350 ft tall, where should the gar-
den be placed in order to receive the maximum number of hours of
sunlight exposure? (Hint: Determine the value of x in the accompa-
nying figure that maximizes sunlight exposure for the garden.)

50 450 2 x

200 ft tall

West

350 ft tall

East
x

u2 u1

452 Chapter 7: Integrals and Transcendental Functions
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453

8
TECHNIQUES OF

INTEGRATION

OVERVIEW The Fundamental Theorem tells us how to evaluate a definite integral once we
have an antiderivative for the integrand function. Table 8.1 summarizes the forms of anti-
derivatives for many of the functions we have studied so far, and the substitution method
helps us use the table to evaluate more complicated functions involving these basic ones.
In this chapter we study a number of other important techniques for finding antiderivatives
(or indefinite integrals) for many combinations of functions whose antiderivatives cannot
be found using the methods presented before.

TABLE 8.1 Basic integration formulas

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
L

 csc x cot x dx = -csc x + C

L
 sec x tan x dx = sec x + C

L
 csc2 x dx = -cot x + C

L
 sec2 x dx = tan x + C

L
 cos x dx = sin x + C

L
 sin x dx = -cos x + C

L
ax dx =

ax

ln a
+ C sa 7 0, a Z 1d

L
ex dx = ex

+ C

L
 
dx
x = ln ƒ x ƒ + C

L
 xn dx =

xn + 1

n + 1
+ C sn Z -1d

L
k dx = kx + C sany number kd 12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
L

 
dx

2x2
- a2

= cosh-1 ax
a b + C sx 7 a 7 0d

L
 

dx

2a2
+ x2

= sinh-1 ax
a b + C sa 7 0d

L
 

dx

x2x2
- a2

=
1
a sec-1 `  xa ` + C

L
 

dx
a2

+ x2 =
1
a tan-1 ax

a b + C

L
 

dx

2a2
- x2

= sin-1 ax
a b + C

L
 cosh x dx = sinh x + C

L
 sinh x dx = cosh x + C

 
L

 csc x dx = - ln ƒ csc x + cot x ƒ + C

 
L

 sec x dx = ln ƒ sec x + tan x ƒ + C

 
L

 cot x dx = ln ƒ sin x ƒ + C

 
L

 tan x dx = ln ƒ sec x ƒ + C
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454 Chapter 8: Techniques of Integration

8.1 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

It is useful when ƒ can be differentiated repeatedly and g can be integrated repeatedly
without difficulty. The integrals

are such integrals because can be differentiated repeatedly to be-
come zero, and can be integrated repeatedly without difficulty.
Integration by parts also applies to integrals like

In the first case, is easy to differentiate and easily integrates to x. In the
second case, each part of the integrand appears again after repeated differentiation or inte-
gration.

Product Rule in Integral Form

If ƒ and g are differentiable functions of x, the Product Rule says that

In terms of indefinite integrals, this equation becomes

or

Rearranging the terms of this last equation, we get

leading to the integration by parts formula

L
ƒsxdg¿sxd dx =

L
 
d
dx

 [ƒsxdgsxd] dx -

L
ƒ¿(x)g(x) dx,

L
 
d
dx

 [ f sxdgsxd] dx =

L
 ƒ¿sxdgsxd dx +

L
ƒ(x)g¿(x) dx .

L
 
d
dx

 [ƒsxdgsxd] dx =

L
 [ƒ¿sxdgsxd + ƒsxdg¿sxd] dx

d
dx

 [ƒsxdgsxd] = ƒ¿sxdgsxd + ƒsxdg¿sxd .

g(x) = 1ƒ(x) = ln x

L
ln x dx    and    

L
 ex cos x dx.

g(x) = cos x or gsxd = ex
ƒsxd = x or ƒ(x) = x2

L
x cos x dx    and    

L
 x2ex dx

L
 ƒsxdgsxd dx .

(1)
L

 ƒsxdg¿sxd dx = ƒsxdgsxd -

L
 ƒ¿sxdgsxd dx

Sometimes it is easier to remember the formula if we write it in differential form. Let
and Then and Using the Substitution

Rule, the integration by parts formula becomes
dy = g¿sxd dx .du = ƒ¿sxd dxy = gsxd .u = ƒsxd
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This formula expresses one integral, in terms of a second integral, 
With a proper choice of u and , the second integral may be easier to evaluate than the
first. In using the formula, various choices may be available for u and d . The next exam-
ples illustrate the technique. To avoid mistakes, we always list our choices for u and d ,
then we add to the list our calculated new terms du and , and finally we apply the formula
in Equation (2).

EXAMPLE 1 Find

Solution We use the formula with

Simplest antiderivative of cos x

Then

There are four choices available for u and in Example 1:

1. Let and 2. Let and 
3. Let and 4. Let and 

Choice 2 was used in Example 1. The other three choices lead to integrals we don’t know
how to integrate. For instance, Choice 3 leads to the integral

The goal of integration by parts is to go from an integral that we don’t see how
to evaluate to an integral that we can evaluate. Generally, you choose first to be
as much of the integrand, including dx, as you can readily integrate; u is the leftover part.
When finding from d , any antiderivative will work and we usually pick the simplest
one; no arbitrary constant of integration is needed in because it would simply cancel out
of the right-hand side of Equation (2).

EXAMPLE 2 Find

Solution Since can be written as we use the formula

with

Simplifies when differentiated Easy to integrate

Simplest antiderivative y = x . du =
1
x  dx, 

 dy = dx u = ln x

1  u dy = uy - 1  y du
1  ln x # 1 dx ,1  ln x dx

L
 ln x dx .

y

yy

dy1  y du
1  u dy

L
sx cos x - x2 sin xd dx .

dy = x dx .u = cos xdy = dx .u = x cos x
dy = cos x dx .u = xdy = x cos x dx .u = 1

dy

L
 x cos x dx = x sin x -

L
 sin x dx = x sin x + cos x + C .

 u = x, dy = cos x dx,

du = dx,  y = sin x.

L
 u dy = uy -

L
 y du

L
 x cos x dx .

y

y

y

y
1  y du .1  u dy ,

8.1 Integration by Parts 455

Integration by Parts Formula

(2)
L

 u dy = uy -

L
 y du
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456 Chapter 8: Techniques of Integration

Then from Equation (2),

Sometimes we have to use integration by parts more than once.

EXAMPLE 3 Evaluate

Solution With and we have

The new integral is less complicated than the original because the exponent on x is re-
duced by one. To evaluate the integral on the right, we integrate by parts again with

Then and

Using this last evaluation, we then obtain

The technique of Example 3 works for any integral in which n is a positive
integer, because differentiating will eventually lead to zero and integrating is easy.

Integrals like the one in the next example occur in electrical engineering. Their evalu-
ation requires two integrations by parts, followed by solving for the unknown integral.

EXAMPLE 4 Evaluate

Solution Let and Then and

The second integral is like the first except that it has sin x in place of cos x. To evaluate it,
we use integration by parts with

Then

 = e x sin x + e x cos x -

L
 e x cos x dx .

 
L

 e x cos x dx = e x sin x - a-e x cos x -

L
 s -cos xdse x dxdb

u = e x,  dy = sin x dx,  y = -cos x,  du = e x dx .

L
 e x cos x dx = e x sin x -

L
 e x sin x dx .

du = e x dx, y = sin x ,dy = cos x dx .u = e x

L
 e x cos x dx .

e xxn
1  xne x dx

 = x2e x
- 2xe x

+ 2e x
+ C .

 
L

 x2e x dx = x2e x
- 2
L

 xe x dx

L
 xe x dx = xe x

-

L
 e x dx = xe x

- e x
+ C .

du = dx, y = e x ,u = x, dy = e x dx .

L
 x2e x dx = x2e x

- 2
L

 xe x dx .

y = e x ,u = x2, dy = e x dx, du = 2x dx ,

L
 x2e x dx .

L
 ln x dx = x ln x -

L
 x # 1

x  dx = x ln x -

L
 dx = x ln x - x + C .
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The unknown integral now appears on both sides of the equation. Adding the integral to
both sides and adding the constant of integration give

Dividing by 2 and renaming the constant of integration give

EXAMPLE 5 Obtain a formula that expresses the integral

in terms of an integral of a lower power of cos x.

Solution We may think of as Then we let

so that

Integration by parts then gives

If we add

to both sides of this equation, we obtain

We then divide through by n, and the final result is

The formula found in Example 5 is called a reduction formula because it replaces an in-
tegral containing some power of a function with an integral of the same form having the
power reduced. When n is a positive integer, we may apply the formula repeatedly until the
remaining integral is easy to evaluate. For example, the result in Example 5 tells us that

 =
1
3

 cos2 x sin x +
2
3

 sin x + C.

L
 cos3 x dx =

cos2 x sin x
3

+
2
3L

cos x dx

L
 cosn x dx =

cosn - 1 x sin x
n +

n - 1
n
L

 cosn - 2 x dx .

n
L

 cosn x dx = cosn - 1 x sin x + sn - 1d
L

 cosn - 2 x dx .

sn - 1d
L

 cosn x dx

 = cosn - 1 x sin x + sn - 1d
L

 cosn - 2 x dx - sn - 1d
L

 cosn x dx .

 = cosn - 1 x sin x + sn - 1d
L

 s1 - cos2 xd cosn - 2 x dx

 
L

 cosn x dx = cosn - 1 x sin x + sn - 1d
L

 sin2 x cosn - 2 x dx

du = sn - 1d cosn - 2 x s -sin x dxd and y = sin x .

u = cosn - 1 x and dy = cos x dx ,

cosn - 1 x #  cos x .cosn x

L
 cosn x dx

L
 e x cos x dx =

e x sin x + e x cos x
2

+ C .

2
L

 e x cos x dx = e x sin x + e x cos x + C1 .

8.1 Integration by Parts 457
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458 Chapter 8: Techniques of Integration

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the Fun-
damental Theorem in order to evaluate definite integrals by parts. Assuming that both 
and are continuous over the interval [a, b], Part 2 of the Fundamental Theorem givesg¿

ƒ¿

Integration by Parts Formula for Definite Integrals

(3)
L

b

a
ƒsxdg¿sxd dx = ƒsxdgsxd Dab -

L

b

a
ƒ¿sxdgsxd dx

In applying Equation (3), we normally use the u and y notation from Equation (2)
because it is easier to remember. Here is an example.

EXAMPLE 6 Find the area of the region bounded by the curve and the x-axis
from to 

Solution The region is shaded in Figure 8.1. Its area is

Let and Then,

Tabular Integration

We have seen that integrals of the form in which ƒ can be differentiated
repeatedly to become zero and g can be integrated repeatedly without difficulty, are
natural candidates for integration by parts. However, if many repetitions are required,
the calculations can be cumbersome; or, you choose substitutions for a repeated inte-
gration by parts that just ends up giving back the original integral you were trying to
find. In situations like these, there is a way to organize the calculations that prevents
these pitfalls and makes the work much easier. It is called tabular integration and is
illustrated in the following examples.

EXAMPLE 7 Evaluate

Solution With and we list:gsxd = ex ,ƒsxd = x2

L
 x2ex dx .

1  ƒsxdgsxd dx ,

 = -4e-4
- e-4

- s -e0d = 1 - 5e-4
L 0.91.

 = -4e-4
- e-x D04

 = [-4e-4
- s0d] +

L

4

0
 e-x dx

 
L

4

0
 xe-x dx = -xe-x D04 -

L

4

0
 s -e-xd dx

du = dx .u = x, dy = e-x dx, y = -e-x ,

L

4

0
 xe-x dx .

x = 4.x = 0
y = xe-x

x

y

1 2 3 4–1 0

–0.5

–1

0.5

1

y � xe–x

FIGURE 8.1 The region in Example 6.

ƒ(x) and its derivatives g(x) and its integrals

2x

2

0 ex

exs + d

exs - d

exs + dx2
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8.1 Integration by Parts 459

We combine the products of the functions connected by the arrows according to the opera-
tion signs above the arrows to obtain

Compare this with the result in Example 3.

EXAMPLE 8 Evaluate

Solution With and we list:gsxd = sin x ,ƒsxd = x3

L
 x3 sin x dx .

L
 x2ex dx = x2ex

- 2xex
+ 2ex

+ C .

Again we combine the products of the functions connected by the arrows according to the
operation signs above the arrows to obtain

The Additional Exercises at the end of this chapter show how tabular integration can
be used when neither function ƒ nor g can be differentiated repeatedly to become zero.

L
 x3 sin x dx = -x3 cos x + 3x2 sin x + 6x cos x - 6 sin x + C .

ƒ(x) and its derivatives g(x) and its integrals

sin x

6x

6 cos x

0 sin x

s - d

-sin xs + d

-cos xs - d3x2

s + dx3

Exercises 8.1

Integration by Parts
Evaluate the integrals in Exercises 1–24 using integration by parts.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.
L

 4x sec2 2x dx
L

 x sec2 x dx

L
 sin-1 y dy

L
 tan-1 y dy

L
(x2

- 2x + 1) e2x dx
L

x2 e- x dx

L
xe3x dx

L
xex dx

L

e

1
 x3 ln x dx

L

2

1
 x ln x dx

L
 x2 sin x dx

L
 t2 cos t dt

L
 u cos pu du

L
 x sin 

x
2

 dx

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

Using Substitution
Evaluate the integrals in Exercises 25–30 by using a substitution prior
to integration by parts.

25. 26.
L

1

0
 x21 - x dx

L
 e23s + 9 ds

L
 e-2x sin 2x dx

L
 e2x cos 3x dx

L
 e-y cos y dy

L
 eu sin u du

L
 t2e4t dt

L
 x5ex dx

L
 sr2

+ r + 1der dr
L

 sx2
- 5xdex dx

L
 p4e-p dp

L
 x3ex dx
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460 Chapter 8: Techniques of Integration

27. 28.

29. 30.

Evaluating Integrals
Evaluate the integrals in Exercises 31–50. Some integrals do not re-
quire integration by parts.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Theory and Examples

51. Finding area Find the area of the region enclosed by the curve
and the x-axis (see the accompanying figure) for

a. .

b. .

c.

d. What pattern do you see here? What is the area between the
curve and the x-axis for an arbitrary
nonnegative integer? Give reasons for your answer.

52. Finding area Find the area of the region enclosed by the curve
and the x-axis (see the accompanying figure) for

a. .

b. .

c. .5p>2 … x … 7p>2
3p>2 … x … 5p>2
p>2 … x … 3p>2

y = x cos x

x

y

0 2��

5

y � x sin x10

–5

3�

np … x … sn + 1dp, n

2p … x … 3p .

p … x … 2p

0 … x … p

y = x sin x

L

1>22

0
 2x sin-1 sx2d dx

L

2

2>23
  t sec-1 t dt

L

p>2
0

 x3 cos 2x dx
L

p>2
0

 u2 sin 2u du

L
 2x e1x dx

L
cos 2x dx

L
 
e1x

1x
 dx

L
ex sin ex dx

L
 sin 2x cos 4x dx

L
sin 3x cos 2x dx

L
 x2 sin x3 dx

L
x3 2x2

+ 1 dx

L
 x5 ex3

 dx
L

x3 ex4

 dx

L
 
(ln x)3

x  dx
L

 
ln x
x2  dx

L
 

1
x (ln x)2 dx

L
x (ln x)2 dx

L
 
cos 1x

1x
 dx

L
x sec x2 dx

L
 zsln zd2 dz

L
 sin sln xd dx

L
 ln sx + x2d dx

L

p>3
0

 x tan2 x dx
d. What pattern do you see? What is the area between the curve

and the x-axis for

n an arbitrary positive integer? Give reasons for your answer.

53. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes, the curve and the line about the line

54. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes, the curve and the line 

a. about the y-axis.

b. about the line 

55. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes and the curve about

a. the y-axis.

b. the line 

56. Finding volume Find the volume of the solid generated by re-
volving the region bounded by the x-axis and the curve

about

a. the y-axis.

b. the line 

(See Exercise 51 for a graph.)

57. Consider the region bounded by the graphs of 
and 

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region
about the x-axis.

c. Find the volume of the solid formed by revolving this region
about the line 

d. Find the centroid of the region.

58. Consider the region bounded by the graphs of 
and 

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region
about the y-axis.

59. Average value A retarding force, symbolized by the dashpot in
the accompanying figure, slows the motion of the weighted
spring so that the mass’s position at time t is

y = 2e-t cos t, t Ú 0.

x = 1.
y = tan-1 x, y = 0,

x = -2.

x = e.
y = ln x, y = 0,

x = p .

y = x sin x, 0 … x … p ,

x = p>2.

y = cos x, 0 … x … p>2,

x = 1.

x = 1y = e-x ,

x = ln 2 .
x = ln 2y = ex ,

0

10

–10

y � x cos x

x

y

�
2

7�
2

5�
2

3�
2

a2n - 1
2
bp … x … a2n + 1

2
bp ,
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8.1 Integration by Parts 461

Find the average value of y over the interval 

60. Average value In a mass-spring-dashpot system like the one in
Exercise 59, the mass’s position at time t is

Find the average value of y over the interval 

Reduction Formulas
In Exercises 61–64, use integration by parts to establish the reduction
formula.

61.

62.

63.

64.

65. Show that

66. Use integration by parts to obtain the formula

.

Integrating Inverses of Functions
Integration by parts leads to a rule for integrating inverses that usually
gives good results:

 = xƒ-1sxd -

L
 ƒsyd dy

 = yƒsyd -

L
 ƒsyd dy

 
L

 ƒ-1sxd dx =

L
 yƒ¿syd dy

L
 21 - x2 dx =

1
2

 x 21 - x2
+

1
2

 
L

 
1

21 - x2
 dx

L

b

a
 a 

L

b

x
 ƒ(t) dtb  dx =

L

b

a
 sx - adƒ(x) dx.

L
 sln xdn dx = xsln xdn

- n
L

 sln xdn - 1 dx

L
 xneax dx =

xneax

a -

n
a
L

 xn - 1eax dx, a Z 0

L
 xn sin x dx = -xn cos x + n

L
 xn - 1 cos x dx

L
 xn cos x dx = xn sin x - n

L
 xn - 1 sin x dx

0 … t … 2p .

y = 4e-t ssin t - cos td, t Ú 0.

0

Massy

Dashpot

y

0 … t … 2p . The idea is to take the most complicated part of the integral, in this
case and simplify it first. For the integral of ln x, we get

For the integral of we get

Use the formula

(4)

to evaluate the integrals in Exercises 67–70. Express your answers in
terms of x.

67. 68.

69. 70.

Another way to integrate (when is integrable, of
course) is to use integration by parts with and to
rewrite the integral of as

(5)

Exercises 71 and 72 compare the results of using Equations (4) and (5).

71. Equations (4) and (5) give different formulas for the integral of

a. Eq. (4)

b. Eq. (5)

Can both integrations be correct? Explain.

72. Equations (4) and (5) lead to different formulas for the integral of

a. Eq. (4)

b. Eq. (5)

Can both integrations be correct? Explain.

Evaluate the integrals in Exercises 73 and 74 with (a) Eq. (4) and (b)
Eq. (5). In each case, check your work by differentiating your answer
with respect to x.

73. 74.
L

 tanh-1 x dx
L

 sinh-1 x dx

L
 tan-1 x dx = x tan-1 x - ln 21 + x2

+ C

L
 tan-1 x dx = x tan-1 x - ln sec stan-1 xd + C

tan-1 x :

L
 cos-1 x dx = x cos-1 x - 21 - x2

+ C

L
 cos-1 x dx = x cos-1 x - sin scos-1 xd + C

cos-1 x :

L
 ƒ-1sxd dx = xƒ-1sxd -

L
 x a d

dx
 ƒ-1sxdb  dx .

ƒ-1
dy = dxu = ƒ-1sxd

ƒ-1ƒ-1sxd

L
 log2 x dx

L
 sec-1 x dx

L
 tan-1 x dx

L
 sin-1 x dx

y = ƒ-1sxd
L

 ƒ-1sxd dx = xƒ-1sxd -

L
 ƒs yd dy

 = x cos-1 x - sin scos-1 xd + C .

 = x cos-1 x - sin y + C

y = cos-1 x 
L

 cos-1 x dx = x cos-1 x -

L
 cos y dy

cos-1 x

 = x ln x - x + C .

 = ye y
- e y

+ C

 
L

 ln x dx =

L
 ye y dy

ƒ-1sxd ,

Integration by parts with
u = y, dy = ƒ¿s yd dy

dx = ƒ¿s yd dy
y = ƒ-1sxd, x = ƒs yd

dx = e y dy
y = ln x, x = e y
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462 Chapter 8: Techniques of Integration

8.2 Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric
functions. In principle, we can always express such integrals in terms of sines and cosines,
but it is often simpler to work with other functions, as in the integral

The general idea is to use identities to transform the integrals we have to find into integrals
that are easier to work with.

Products of Powers of Sines and Cosines

We begin with integrals of the form:

where m and n are nonnegative integers (positive or zero). We can divide the appropriate
substitution into three cases according to m and n being odd or even.

L
 sinm x cosn x dx ,

L
 sec2 x dx = tan x + C .

Case 1 If m is odd, we write m as and use the identity 
to obtain

(1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to

Case 2 If m is even and n is odd in we write n as 

and use the identity to obtain

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 If both m and n are even in we substitute

(2)

to reduce the integrand to one in lower powers of cos 2x.

sin2 x =
1 - cos 2x

2
, cos2 x =

1 + cos 2x
2

1  sinm x cosn x dx ,

cosn x = cos2k + 1 x = scos2 xdk cos x = s1 - sin2 xdk cos x .

cos2 x = 1 - sin2 x

2k + 11  sinm x cosn x dx ,

-dscos xd .

sinm x = sin2k + 1 x = ssin2 xdk sin x = s1 - cos2 xdk sin x .

sin2 x = 1 - cos2 x2k + 1

Here are some examples illustrating each case.

EXAMPLE 1 Evaluate

L
 sin3 x cos2 x dx .
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Solution This is an example of Case 1.

m is odd.

Multiply terms.

EXAMPLE 2 Evaluate

Solution This is an example of Case 2, where is even and is odd.

Square 

EXAMPLE 3 Evaluate

Solution This is an example of Case 3. 

m and n both even

For the term involving we use

Omitting the constant of
integration until the final result

 =
1
2

 ax +
1
4

 sin 4xb .

 
L

 cos2 2x dx =
1
2L

 s1 + cos 4xd dx

cos2 2x,

 =
1
8

 cx +
1
2

 sin 2x -

L
(cos2 2x +  cos3 2x) dx d .

 =
1
8L

 s1 + cos 2x - cos2 2x - cos3 2xd dx

=
1
8L

 s1 - cos 2xds1 + 2 cos 2x + cos2 2xd dx

 
L

 sin2 x cos4 x dx =

L
 a1 - cos 2x

2
b a1 + cos 2x

2
b2

 dx

L
 sin2 x cos4 x dx .

 = u -
2
3

 u3
+

1
5 u5

+ C = sin x -
2
3

 sin3 x +
1
5 sin5 x + C .

1 - u2. =

L
 s1 - 2u2

+ u4d du

u = sin x =

L
 s1 - u2d2 du

cos x dx = d(sin x) 
L

 cos5 x dx =

L
 cos4 x cos x dx =

L
 s1 - sin2 xd2 dssin xd

n = 5m = 0

L
 cos5 x dx .

 =
u5

5 -
u3

3
+ C =

cos5 x
5 -

cos3 x
3

+ C.

=

L
 su4

- u2d du

u = cos x=

L
 s1 - u2dsu2ds -dud

sin x dx = -d(cos x)=

L
 s1 - cos2 xd cos2 x s -d scos xdd

 
L

 sin3 x cos2 x dx =

L
 sin2 x cos2 x sin x dx

8.2 Trigonometric Integrals 463
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464 Chapter 8: Techniques of Integration

For the term, we have

Combining everything and simplifying, we get

Eliminating Square Roots

In the next example, we use the identity to eliminate a square root.

EXAMPLE 4 Evaluate

Solution To eliminate the square root, we use the identity

With this becomes

Therefore,

Integrals of Powers of tan x and sec x

We know how to integrate the tangent and secant and their squares. To integrate higher
powers, we use the identities and and integrate
by parts when necessary to reduce the higher powers to lower powers.

EXAMPLE 5 Evaluate

Solution

 =

L
 tan2 x sec2 x dx -

L
 sec2 x dx +

L
 dx .

 =

L
 tan2 x sec2 x dx -

L
 ssec2 x - 1d dx

 =

L
 tan2 x sec2 x dx -

L
 tan2 x dx

 
L

 tan4 x dx =

L
 tan2 x # tan2 x dx =

L
 tan2 x # ssec2 x - 1d dx

L
 tan4 x dx .

sec2 x = tan2 x + 1,tan2 x = sec2 x - 1

 = 22 csin 2x
2
d

0

p>4
=

22
2

 [1 - 0] =

22
2

.

 = 22
L

p>4
0

 ƒ cos 2x ƒ  dx = 22
L

p>4
0

 cos 2x dx

 
L

p>4
0

 21 + cos 4x dx =

L

p>4
0

 22 cos2 2x dx =

L

p>4
0

 222cos2 2x dx

1 + cos 4x = 2 cos2 2x .

u = 2x ,

cos2 u =

1 + cos 2u
2
 or 1 + cos 2u = 2 cos2 u .

L

p>4
0

 21 + cos 4x dx .

cos2 u = s1 + cos 2ud>2

L
 sin2 x cos4 x dx =

1
16

 ax -
1
4

 sin 4x +
1
3

 sin3 2xb + C .

Again
omitting C =

1
2L

 s1 - u2d du =
1
2

 asin 2x -
1
3

 sin3 2xb .

 
L

 cos3 2x dx =

L
 s1 - sin2 2xd cos 2x dx

cos3 2x

 du = 2 cos 2x dx
u = sin 2x,

on [0, p>4]
cos 2x Ú 0
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In the first integral, we let

and have

The remaining integrals are standard forms, so

EXAMPLE 6 Evaluate

Solution We integrate by parts using

Then

Combining the two secant-cubed integrals gives

and

Products of Sines and Cosines

The integrals

arise in many applications involving periodic functions. We can evaluate these integrals
through integration by parts, but two such integrations are required in each case. It is sim-
pler to use the identities

(3)

(4)

(5)

These identities come from the angle sum formulas for the sine and cosine functions
(Section 1.3). They give functions whose antiderivatives are easily found.

 cos mx cos nx =
1
2

 [cos sm - ndx + cos sm + ndx] .

 sin mx cos nx =
1
2

 [sin sm - ndx + sin sm + ndx] ,

 sin mx sin nx =
1
2

 [cos sm - ndx - cos sm + ndx], 

L
 sin mx sin nx dx, 

L
 sin mx cos nx dx, and 

L
 cos mx cos nx dx

L
 sec3 x dx =

1
2

 sec x tan x +
1
2

 ln ƒ sec x + tan x ƒ + C .

2
L

 sec3 x dx = sec x tan x +

L
 sec x dx

 = sec x tan x +

L
 sec x dx -

L
 sec3 x dx .

tan2 x = sec2 x - 1 = sec x tan x -

L
 ssec2 x - 1d sec x dx

 
L

 sec3 x dx = sec x tan x -

L
 stan xdssec x tan x dxd

u = sec x, dy = sec2 x dx, y = tan x, du = sec x tan x dx .

L
 sec3 x dx .

L
 tan4 x dx =

1
3

 tan3 x - tan x + x + C .

L
 u2 du =

1
3

 u3
+ C1 .

u = tan x, du = sec2 x dx

8.2 Trigonometric Integrals 465
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466 Chapter 8: Techniques of Integration

EXAMPLE 7 Evaluate

Solution From Equation (4) with and , we get

 = -
cos 8x

16
+

cos 2x
4

+ C .

 =
1
2L

 ssin 8x - sin 2xd dx

 
L

 sin 3x cos 5x dx =
1
2L

 [sin s -2xd + sin 8x] dx

n = 5m = 3

L
 sin 3x cos 5x dx .

Exercises 8.2

Powers of Sines and Cosines
Evaluate the integrals in Exercises 1–22.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Integrating Square Roots
Evaluate the integrals in Exercises 23–32.

23. 24.

25. 26.
L

p

0
 21 - cos2 u du

L

p

0
 21 - sin2 t dt

L

p

0
 21 - cos 2x dx

L

2p

0
 A

1 - cos x
2

 dx

L

p>2
0

 sin2 2u cos3 2u du
L

 8 cos3 2u sin 2u du

L

p

0
 8 sin4 y cos2 y dy

L
 16 sin2 x cos2 x dx

L
 8 cos4 2px dx

L

p

0
 8 sin4 x dx

L
 7 cos7 t dt

L

p>2
0

 sin7 y dy

L

p>2
0

 sin2 x dx
L

 cos2 x dx

L
 cos3 2x sin5 2x dx

L
 sin3 x cos3 x dx

L

p>6
0

 3 cos5 3x dx
L

 cos3 x dx

L

p

0
 sin5 

x
2

 dx
L

 sin5 x dx

L
 cos3 4x dx

L
 sin3 x dx

L
 sin4 2x cos 2x dx

L
 cos3 x sin x dx

L

p

0
 3 sin 

x
3

 dx
L

 cos 2x dx

27. 28.

29. 30.

31. 32.

Powers of Tangents and Secants
Evaluate the integrals in Exercises 33–50.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.
L

 8 cot4 t dt
L

p>3
p>6  cot3 x dx

L
 cot6 2x dx

L
 tan5 x dx

L

p>4
-p>4  6 tan4 x dx

L
 4 tan3 x dx

L
 sec6 x dx

L

p>2
p>4  csc4 u du

L
 3 sec4 3x dx

L
 sec4 u du

L
 ex sec3 ex dx

L

0

-p>3 2 sec3 x dx

L
 sec4 x tan2 x  dx

L
 sec2 x tan2 x  dx

L
 sec3 x tan3 x  dx

L
 sec3 x tan x  dx

L
 sec x tan2 x  dx

L
 sec2 x tan x  dx

L

p

-p

 s1 - cos2 td3>2 dt
L

p>2
0

 u21 - cos 2u du

L

3p>4
p>2  21 - sin 2x dx

L

p

5p>6 
cos4 x

21 - sin x
 dx

aHint: Multiply by B
1 - sin x
1 - sin x

 .b
L

p/6

0
 21 + sin x dx

L

p>2
p>3  

sin2 x

21 - cos x
 dx
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Products of Sines and Cosines
Evaluate the integrals in Exercises 51–56.

51. 52.

53. 54.

55. 56.

Exercises 57–62 require the use of various trigonometric identities be-
fore you evaluate the integrals.

57. 58.

59. 60.

61. 62.

Assorted Integrations
Use any method to evaluate the integrals in Exercises 63–68.

63. 64.
L

 
sin3 x
cos4 x

 dx
L

 
sec3 x
tan x  dx

L
 sin u sin 2u sin 3u  du

L
 sin u cos u cos 3u  du

L
 sin3 u cos 2u  du

L
 cos3 u sin 2u du

L
 cos2 2u sin u  du

L
 sin2 u cos 3u du

L

p>2
-p>2  cos x cos 7x dx

L
 cos 3x cos 4x dx

L

p>2
0

 sin x cos x dx
L

p

-p

 sin 3x sin 3x dx

L
 sin 2x cos 3x dx

L
 sin 3x cos 2x dx

8.3 Trigonometric Substitutions 467

65. 66.

67. 68.

Applications

69. Arc length Find the length of the curve

70. Center of gravity Find the center of gravity of the region
bounded by the x-axis, the curve and the lines 

71. Volume Find the volume generated by revolving one arch of the
curve about the x-axis.

72. Area Find the area between the x-axis and the curve 

73. Centroid Find the centroid of the region bounded by the graphs
of 

74. Volume Find the volume of the solid formed by revolving the re-
gion bounded by the graphs of 
and x = p>3 about the x-axis.

y = sin x + sec x, y = 0, x = 0,

y = x + cos x and y = 0 for 0 … x … 2p.

21 + cos 4x, 0 … x … p .
y =

y = sin x

-p>4, x = p>4.
x =y = sec x ,

y = ln ssec xd, 0 … x … p>4.

L
 x cos3 x dx

L
 x sin2 x dx

L
 

cot x
cos2 x

 dx
L

 
tan2 x
csc  x  dx

8.3 Trigonometric Substitutions

Trigonometric substitutions occur when we replace the variable of integration by a
trigonometric function. The most common substitutions are and

These substitutions are effective in transforming integrals involving 
and into integrals we can evaluate directly since they come from the

reference right triangles in Figure 8.2.

a2
- x2

= a2
- a2 sin2 u = a2s1 - sin2 ud = a2 cos2 u .

With x = a sin u ,

a2
+ x2

= a2
+ a2 tan2 u = a2s1 + tan2 ud = a2 sec2 u .

With x = a tan u ,

2x2
- a22a2

- x2, 
2a2

+ x2 ,x = a sec u.
x = a tan u, x = a sin u,

� � �

a

a

a

x
xx

�a2 � x2

x � a tan � x � a sin � x � a sec �

�x2 � a2�a2 � x2

�a2 � x2 � a�sec �� �a2 � x2 � a�cos �� �x2 � a2 � a�tan ��

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and a for each substitution.
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468 Chapter 8: Techniques of Integration

We want any substitution we use in an integration to be reversible so that we can change
back to the original variable afterward. For example, if we want to be able to set

after the integration takes place. If we want to be able to set
when we’re done, and similarly for 

As we know from Section 1.6, the functions in these substitutions have inverses only
for selected values of (Figure 8.3). For reversibility,

To simplify calculations with the substitution we will restrict its use to inte-
grals in which This will place in and make We will then have

free of absolute values, provided a 7 0.2x2
- a2

= 2a2 tan2 u = ƒ a tan u ƒ = a tan u ,
tan u Ú 0.[0, p>2dux>a Ú 1.

x = a sec u ,

x = a sec u requires u = sec-1 ax
a b with d   0 … u 6

p
2
 if x

a Ú 1,

p
2

6 u … p if x
a … -1.

 x = a sin u requires u = sin-1 ax
a b with -

p
2

… u …
p
2

, 

 x = a tan u requires u = tan-1 ax
a b with -

p
2

6 u 6
p
2

, 

u

x = a sec u .u = sin-1 sx>ad
x = a sin u ,u = tan-1 sx>ad

x = a tan u ,

x2
- a2

= a2 sec2 u - a2
= a2ssec2 u - 1d = a2 tan2 u .

With x = a sec u ,

�

�

�

x
a

x
a

x
a

x
a

�
2

�
2

�
2

�
2

–

�
2

–

�
� � sec–1

x
a� � sin–1

x
a� � tan–1

0

0 1–1

0 1–1

FIGURE 8.3 The arctangent, arcsine, and
arcsecant of x a, graphed as functions of
x a.>

>
Procedure For a Trigonometric Substitution
1. Write down the substitution for x, calculate the differential dx, and specify the

selected values of for the substitution.

2. Substitute the trigonometric expression and the calculated differential into the
integrand, and then simplify the results algebraically.

3. Integrate the trigonometric integral, keeping in mind the restrictions on the
angle for reversibility.

4. Draw an appropriate reference triangle to reverse the substitution in the inte-
gration result and convert it back to the original variable x.

u 

u 

EXAMPLE 1 Evaluate

Solution We set

4 + x2
= 4 + 4 tan2 u = 4s1 + tan2 ud = 4 sec2 u .

x = 2 tan u,  dx = 2 sec2 u du,  -
p
2

6 u 6
p
2

,

L
 

dx

24 + x2
.
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Then

Notice how we expressed in terms of x: We drew a reference triangle for
the original substitution (Figure 8.4) and read the ratios from the triangle.

EXAMPLE 2 Evaluate

Solution We set

Then

EXAMPLE 3 Evaluate

Solution We first rewrite the radical as

 = 5Cx2
- a25 b

2

 225x2
- 4 = B25 ax2

-
4

25
b

L
 

dx

225x2
- 4

, x 7
2
5 .

 =
9
2

 sin-1 
x
3

-
x
2
29 - x2

+ C .

 =
9
2

 asin-1 
x
3

-
x
3

#
29 - x2

3
b + C

 =
9
2

 su - sin u cos ud + C

 =
9
2

 au -

sin 2u
2
b + C

 = 9
L

 
1 - cos 2u

2
 du

 = 9
L

 sin2 u du

 
L

 
x2 dx

29 - x2
=

L
 
9 sin2 u # 3 cos u du

ƒ 3 cos u ƒ

9 - x2
= 9 - 9 sin2 u = 9s1 - sin2 ud = 9 cos2 u .

x = 3 sin u, dx = 3 cos u du, -
p
2

6 u 6
p
2

L
 

x2 dx

29 - x2
.

x = 2 tan u

ln ƒ sec u + tan u ƒ

 = ln ` 24 + x2

2
+

x
2
` + C.

 = ln ƒ sec u + tan u ƒ + C

 =

L
 sec u du

 
L

 
dx

24 + x2
=

L
 
2 sec2 u du

24 sec2 u
=

L
 
sec2 u du

ƒ sec u ƒ

8.3 Trigonometric Substitutions 469

cos u 7 0 for  -
p

2
6 u 6

p

2

sin 2u = 2 sin u cos u

Fig. 8.5

�

3 x

�9 � x2

FIGURE 8.5 Reference triangle for
(Example 2):

and

cos u =

29 - x2

3
.

sin u =

x
3

x = 3 sin u

�

2

x
�4 � x2

FIGURE 8.4 Reference triangle for
(Example 1):

and

sec u =

24 + x2

2
.

tan u =

x
2

x = 2 tan u

From Fig. 8.4

2sec2 u = ƒ sec u ƒ

sec u 7 0 for  -
p

2
6 u 6

p

2
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470 Chapter 8: Techniques of Integration

to put the radicand in the form We then substitute

With these substitutions, we have

 =
1
5 ln ` 5x

2
+

225x2
- 4

2
` + C .

 =
1
5L

 sec u du =
1
5 ln ƒ sec u + tan u ƒ + C

 
L

 
dx

225x2
- 4

=

L
 

dx

52x2
- s4>25d

=

L
 
s2>5d sec u tan u du

5 # s2>5d tan u

Cx2
- a25 b

2

=
2
5 ƒ tan u ƒ =

2
5 tan u .

 =
4
25

 ssec2 u - 1d =
4

25
 tan2 u

x2
- a25 b

2

=
4

25
 sec2 u -

4
25

 x =
2
5 sec u,  dx =

2
5 sec u tan u du,  0 6 u 6

p
2

x2
- a2 .

0 6 u 6 p>2tan u 7 0 for

Fig. 8.6

�

2

5x �25x2 � 4

FIGURE 8.6 If 
then 

and we can read the values of the other
trigonometric functions of from this right
triangle (Example 3).

u

u = sec-1 s5x>2d ,0 6 u 6 p>2,
x = s2>5dsec u,

EXERCISES 8.3

Using Trigonometric Substitutions
Evaluate the integrals in Exercises 1–28.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

Assorted Integrations
Use any method to evaluate the integrals in Exercises 15–34. Most
will require trigonometric substitutions, but some can be evaluated by
other methods.

15. 16.

17. 18.
L

 
dx

x22x2
+ 1L

 
x3 dx

2x2
+ 4

L
 

x2

4 + x2 dx
L

 
x

29 - x2
 dx

L
 

2 dx

x32x2
- 1

 , x 7 1
L

 
dx

x22x2
- 1

 , x 7 1

L
 
2y2

- 25

y3  dy, y 7 5
L

 
2y2

- 49
y  dy, y 7 7

L
 

5 dx

225x2
- 9

 , x 7

3
5L

 
dx

24x2
- 49

 , x 7

7
2

L
 21 - 9t2 dt

L
 225 - t2 dt

L

1>222

0
 

2 dx

21 - 4x2L

3>2
0

 
dx

29 - x2

L

2

0
 

dx

8 + 2x2
L

2

-2
 

dx

4 + x2

L
 

3 dx

21 + 9x2L
 

dx

29 + x2

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35–48, use an appropriate substitution and then a trigono-
metric substitution to evaluate the integrals.

35. 36.

37. 38.
L

e

1
 

dy

y21 + sln yd2L

1>4
1>12

 
2 dt

1t + 4t1t

L

ln s4>3d

ln s3>4d
 

e t dt

s1 + e 2td3>2
L

 ln 4

0
 

et dt

2e2t
+ 9

L
 
s1 - r 2d5>2

r8  dr
L

 
y2 dy

s1 - y2d5>2

L
 

x dx

25 + 4x2
L

 
x3 dx

x2
- 1

L
 

6 dt

s9t2
+ 1d2

L
 

8 dx

s4x2
+ 1d2

L
 
s1 - x2d1>2

x4  dx
L

 
s1 - x2d3>2

x6  dx

L
 

x2 dx

sx2
- 1d5>2 , x 7 1

L
 

dx

sx2
- 1d3>2 , x 7 1

L

1

0
 

dx

s4 - x2d3>2
L

23>2
0

 
4x2 dx

s1 - x2d3>2

L
 x 2x2

- 4 dx
L

 
100

36 + 25x2 dx

L
 
29 - w2

w2  dw
L

 
8 dw

w224 - w2

7001_ThomasET_ch08p453–513.qxd  10/30/09  8:00 AM  Page 470



8.4 Integration of Rational Functions by Partial Fractions 471

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

Initial Value Problems
Solve the initial value problems in Exercises 49–52 for y as a function
of x.

49.

50.

51.

52.

Applications and Examples
53. Area Find the area of the region in the first quadrant that is

enclosed by the coordinate axes and the curve 

54. Area Find the area enclosed by the ellipse

55. Consider the region bounded by the graphs of 
and 

a. Find the area of the region.

b. Find the centroid of the region.

x = 1>2.
y = sin-1 x, y = 0,

x2

a2 +

y2

b2 = 1.

y = 29 - x2>3.

sx2
+ 1d2 dy

dx
= 2x2

+ 1, ys0d = 1

sx2
+ 4d dy

dx
= 3, ys2d = 0

2x2
- 9 dy

dx
= 1, x 7 3, ys5d = ln 3

x dy

dx
= 2x2

- 4, x Ú 2, ys2d = 0

L
 
2x - 2

2x - 1
 dx

L
 2x 21 - x  dx

(Hint: Let u = x3>2.)(Hint: Let x = u2.)

L
 B

x

1 - x3 dx
L

 B
4 - x

x  dx

L
 
21 - (ln x)2

x ln x
 dx

L
 

x dx

21 + x4

L
 

dx

21 - x2L
 

x dx

2x2
- 1

L
 

dx

1 + x2
L

 
dx

x2x2
- 1

56. Consider the region bounded by the graphs of 
and for Find the volume of the solid formed
by revolving this region about the x-axis (see accompanying figure).

57. Evaluate using

a. integration by parts.

b. a u-substitution.

c. a trigonometric substitution.

58. Path of a water skier Suppose that a boat is positioned at the ori-
gin with a water skier tethered to the boat at the point (30, 0) on a
rope 30 ft long. As the boat travels along the positive y-axis, the
skier is pulled behind the boat along an unknown path , as
shown in the accompanying figure.

a. Show that 

(Hint: Assume that the skier is always pointed directly at the boat
and the rope is on a line tangent to the path )

b. Solve the equation in part (a) for using 

NOT  TO SCALE

x

y

0 (30, 0)x

f (x) (x, f (x)) skier

30 ft rope

y 5 f (x) path of skier

boat

ƒ(30) = 0.ƒ(x),

y = ƒ(x).

ƒ¿(x) =

-2900 - x2

x .

y = ƒ(x)

1  x3 21 - x2 dx

x

y

0 1

y 5 �x tan21 x

0 … x … 1.y = 0
y = 2x tan-1 x

8.4 Integration of Rational Functions by Partial Fractions

This section shows how to express a rational function (a quotient of polynomials) as a sum
of simpler fractions, called partial fractions, which are easily integrated. For instance, the
rational function can be rewritten as

You can verify this equation algebraically by placing the fractions on the right side 
over a common denominator The skill acquired in writing rational
functions as such a sum is useful in other settings as well (for instance, when using certain
transform methods to solve differential equations). To integrate the rational function

sx + 1dsx - 3d .

5x - 3
x2

- 2x - 3
=

2
x + 1

+
3

x - 3
 .

(5x - 3)>(x2
- 2x - 3)
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472 Chapter 8: Techniques of Integration

on the left side of our previous expression, we simply sum the 
integrals of the fractions on the right side:

The method for rewriting rational functions as a sum of simpler fractions is called the
method of partial fractions. In the case of the preceding example, it consists of finding
constants A and B such that

(1)

(Pretend for a moment that we do not know that and will work.) We call the
fractions and partial fractions because their denominators are only
part of the original denominator We call A and B undetermined coeffi-
cients until proper values for them have been found.

To find A and B, we first clear Equation (1) of fractions and regroup in powers of x,
obtaining

This will be an identity in x if and only if the coefficients of like powers of x on the two
sides are equal:

Solving these equations simultaneously gives and 

General Description of the Method

Success in writing a rational function ƒ(x) g(x) as a sum of partial fractions depends on
two things:

• The degree of ƒ(x) must be less than the degree of g(x). That is, the fraction must be
proper. If it isn’t, divide ƒ(x) by g(x) and work with the remainder term. See Example 3
of this section.

• We must know the factors of g(x). In theory, any polynomial with real coefficients can
be written as a product of real linear factors and real quadratic factors. In practice, the
factors may be hard to find.

Here is how we find the partial fractions of a proper fraction ƒ(x) g(x) when the factors of g
are known. A quadratic polynomial (or factor) is irreducible if it cannot be written as the
product of two linear factors with real coefficients. That is, the polynomial has no real roots.

>

>

B = 3.A = 2

A + B = 5, -3A + B = -3.

5x - 3 = Asx - 3d + Bsx + 1d = sA + Bdx - 3A + B .

x2
- 2x - 3.

B>sx - 3dA>sx + 1d
B = 3A = 2

5x - 3
x2

- 2x - 3
=

A
x + 1

+
B

x - 3
.

 = 2 ln ƒ x + 1 ƒ + 3 ln ƒ x - 3 ƒ + C .

 
L

 
5x - 3

sx + 1dsx - 3d
 dx =

L
 

2
x + 1

 dx +

L
 

3
x - 3

 dx

(5x - 3)>(x2
- 2x - 3)

Method of Partial Fractions (ƒ(x) g(x) Proper)

1. Let be a linear factor of g(x). Suppose that is the highest
power of that divides g(x). Then, to this factor, assign the sum of the m
partial fractions:

Do this for each distinct linear factor of g(x).

A1

(x - r)
+

A2

sx - rd2 +
Á

+

Am

sx - rdm .

x - r
sx - rdmx - r

>

continued
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EXAMPLE 1 Use partial fractions to evaluate

.

Solution The partial fraction decomposition has the form

To find the values of the undetermined coefficients A, B, and C, we clear fractions and get

The polynomials on both sides of the above equation are identical, so we equate coeffi-
cients of like powers of x, obtaining

There are several ways of solving such a system of linear equations for the unknowns A, B,
and C, including elimination of variables or the use of a calculator or computer. Whatever
method is used, the solution is and Hence we have

where K is the arbitrary constant of integration (to avoid confusion with the undetermined
coefficient we labeled as C).

EXAMPLE 2 Use partial fractions to evaluate

L
 

6x + 7
sx + 2d2 dx .

 =
3
4

 ln ƒ x - 1 ƒ +
1
2

 ln ƒ x + 1 ƒ -
1
4

 ln ƒ x + 3 ƒ + K, 

 
L

 
x2

+ 4x + 1
sx - 1dsx + 1dsx + 3d

 dx =

L
 c3

4
 

1
x - 1

+
1
2

 
1

x + 1
-

1
4

 
1

x + 3
d  dx

C = -1>4.A = 3>4, B = 1>2,

Coefficient of x2: A + B + C = 1

Coefficient of x1: 4A + 2B = 4

Coefficient of x0: 3A - 3B - C = 1

 = sA + B + Cdx2
+ s4A + 2Bdx + s3A - 3B - Cd .

 = A(x2
+ 4x + 3) + B(x2

+ 2x - 3) + C(x2
- 1)

 x2
+ 4x + 1 = Asx + 1dsx + 3d + Bsx - 1dsx + 3d + Csx - 1dsx + 1d

x2
+ 4x + 1

sx - 1dsx + 1dsx + 3d
=

A
x - 1

+
B

x + 1
+

C
x + 3

.

L
 

x2
+ 4x + 1

sx - 1dsx + 1dsx + 3d
 dx

8.4 Integration of Rational Functions by Partial Fractions 473

2. Let be an irreducible  quadratic factor of g(x) so that
has no real roots. Suppose that is the highest

power of this factor that divides g(x). Then, to this factor, assign the sum of
the n partial fractions:

Do this for each distinct quadratic factor of g(x).

3. Set the original fraction ƒ(x) g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.

>

B1 x + C1

(x2
+ px + q)

+

B2 x + C2

sx2
+ px + qd2 +

Á
+

Bn x + Cn

sx2
+ px + qdn .

sx2
+ px + qdnx2

+ px + q
x2

+ px + q
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474 Chapter 8: Techniques of Integration

Solution First we express the integrand as a sum of partial fractions with undetermined
coefficients.

Equating coefficients of corresponding powers of x gives

Therefore,

EXAMPLE 3 Use partial fractions to evaluate

Solution First we divide the denominator into the numerator to get a polynomial plus a
proper fraction.

Then we write the improper fraction as a polynomial plus a proper fraction.

We found the partial fraction decomposition of the fraction on the right in the opening
example, so

EXAMPLE 4 Use partial fractions to evaluate

.

Solution The denominator has an irreducible quadratic factor as well as a repeated linear
factor, so we write

(2)
-2x + 4

sx2
+ 1dsx - 1d2 =

Ax + B
x2

+ 1
+

C
x - 1

+
D

sx - 1d2 .

L
 

-2x + 4
sx2

+ 1dsx - 1d2 dx

 = x2
+ 2 ln ƒ x + 1 ƒ + 3 ln ƒ x - 3 ƒ + C .

 =

L
 2x dx +

L
 

2
x + 1

 dx +

L
 

3
x - 3

 dx

 
L

 
2x3

- 4x2
- x - 3

x2
- 2x - 3

 dx =

L
 2x dx +

L
 

5x - 3
x2

- 2x - 3
 dx

2x3
- 4x2

- x - 3
x2

- 2x - 3
= 2x +

5x - 3
x2

- 2x - 3

2x     
x2

- 2x - 3�2x3
- 4x2

- x - 3

 2x3
- 4x2

- 6x   
5x - 3

L
 
2x3

- 4x2
- x - 3

x2
- 2x - 3

 dx .

 = 6 ln ƒ x + 2 ƒ + 5sx + 2d-1
+ C.

 = 6 
L

 
dx

x + 2
- 5
L

 sx + 2d-2 dx

 
L

 
6x + 7

sx + 2d2 dx =

L
 a 6

x + 2
-

5
sx + 2d2 b  dx

A = 6 and 2A + B = 12 + B = 7, or A = 6 and B = -5.

 = Ax + s2A + Bd

 6x + 7 = Asx + 2d + B

 
6x + 7

sx + 2d2 =
A

x + 2
+

B
sx + 2d2

Multiply both sides by sx + 2d2 .
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Clearing the equation of fractions gives

Equating coefficients of like terms gives

Coefficients of 

Coefficients of 

Coefficients of 

Coefficients of 

We solve these equations simultaneously to find the values of A, B, C, and D:

Subtract fourth equation from second.

From the first equation

From the third equation and 

From the fourth equation

We substitute these values into Equation (2), obtaining

Finally, using the expansion above we can integrate:

EXAMPLE 5 Use partial fractions to evaluate

Solution The form of the partial fraction decomposition is

.

Multiplying by we have

If we equate coefficients, we get the system

A + B = 0, C = 0, 2A + B + D = 0, C + E = 0, A = 1.

 = sA + Bdx4
+ Cx3

+ s2A + B + Ddx2
+ sC + Edx + A

 = Asx4
+ 2x2

+ 1d + Bsx4
+ x2d + Csx3

+ xd + Dx2
+ Ex

 1 = Asx2
+ 1d2

+ sBx + Cdxsx2
+ 1d + sDx + Edx

xsx2
+ 1d2 ,

1
xsx2

+ 1d2 =
A
x +

Bx + C
x2

+ 1
+

Dx + E
sx2

+ 1d2

L
 

dx
xsx2

+ 1d2 .

 = ln sx2
+ 1d + tan-1 x - 2 ln ƒ x - 1 ƒ -

1
x - 1

+ C .

 =

L
 a 2x

x2
+ 1

+
1

x2
+ 1

-
2

x - 1
+

1
sx - 1d2 b  dx

 
L

 
-2x + 4

sx2
+ 1dsx - 1d2  dx =

L
 a2x + 1

x2
+ 1

-
2

x - 1
+

1
sx - 1d2 b  dx

-2x + 4
sx2

+ 1dsx - 1d2 =
2x + 1
x2

+ 1
-

2
x - 1

+
1

sx - 1d2 .

 D = 4 - B + C = 1.

C = -A B = (A + C + 2)>2 = 1

 C = -A = -2

 -4 = -2A, A = 2

4 = B - C + Dx0 :

-2 = A - 2B + Cx1 :

0 = - 2A + B - C + Dx2 :

0 = A + Cx3 :

 + sA - 2B + Cdx + sB - C + Dd .

 = sA + Cdx3
+ s -2A + B - C + Ddx2

 -2x + 4 = sAx + Bdsx - 1d2
+ Csx - 1dsx2

+ 1d + Dsx2
+ 1d

8.4 Integration of Rational Functions by Partial Fractions 475
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476 Chapter 8: Techniques of Integration

Solving this system gives and Thus,

The Heaviside “Cover-up” Method for Linear Factors

When the degree of the polynomial ƒ(x) is less than the degree of g(x) and

is a product of n distinct linear factors, each raised to the first power, there is a quick way
to expand ƒ(x) g(x) by partial fractions.

EXAMPLE 6 Find A, B, and C in the partial fraction expansion

(3)

Solution If we multiply both sides of Equation (3) by to get

and set the resulting equation gives the value of A:

Thus, the value of A is the number we would have obtained if we had covered the factor
in the denominator of the original fraction

(4)

and evaluated the rest at 

Cover
y

A =

s1d2
+ 1

� sx - 1d �  s1 - 2ds1 - 3d
=

2
s -1ds -2d

= 1.

x = 1:

x2
+ 1

sx - 1dsx - 2dsx - 3d

sx - 1d

 A = 1.

 
s1d2

+ 1

s1 - 2ds1 - 3d
= A + 0 + 0, 

x = 1,

x2
+ 1

sx - 2dsx - 3d
= A +

Bsx - 1d
x - 2

+

Csx - 1d
x - 3

sx - 1d

x2
+ 1

sx - 1dsx - 2dsx - 3d
=

A
x - 1

+
B

x - 2
+

C
x - 3

.

>
gsxd = sx - r1dsx - r2d Á sx - rnd

 = ln 
ƒ x ƒ

2x2
+ 1

+
1

2sx2
+ 1d

+ K .

 = ln ƒ x ƒ -
1
2

 ln sx2
+ 1d +

1
2sx2

+ 1d
+ K

 = ln ƒ x ƒ -
1
2

 ln ƒ u ƒ +
1

2u
+ K

 =

L
 
dx
x -

1
2L

 
du
u -

1
2L

 
du
u2

 =

L
 
dx
x -

L
 

x dx
x2

+ 1
-

L
 

x dx
sx2

+ 1d2

 
L

 
dx

xsx2
+ 1d2 =

L
 c1x +

-x
x2

+ 1
+

-x
sx2

+ 1d2 d  dx

E = 0.A = 1, B = -1, C = 0, D = -1,

HISTORICAL BIOGRAPHY

Oliver Heaviside
(1850–1925)

du = 2x dx
u = x2

+ 1,
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8.4 Integration of Rational Functions by Partial Fractions 477

Similarly, we find the value of B in Equation (3) by covering the factor in Expres-
sion (4) and evaluating the rest at 

Cover

Finally, C is found by covering the in Expression (4) and evaluating the rest at

Cover
y

C =

s3d2
+ 1

s3 - 1ds3 - 2d� sx - 3d �
=

10
s2ds1d

= 5.

x = 3:
sx - 3d

y

B =

s2d2
+ 1

s2 - 1d � sx - 2d �  s2 - 3d
=

5
s1ds -1d

= -5.

x = 2:
sx - 2d

Heaviside Method

1. Write the quotient with g(x) factored:

2. Cover the factors of one at a time, each time replacing all the
uncovered x’s by the number This gives a number for each root 

3. Write the partial fraction expansion of as

ƒsxd
gsxd

=

A1

sx - r1d
+

A2

sx - r2d
+

Á
+

An

sx - rnd
.

ƒsxd>gsxd

 An =

ƒsrnd
srn - r1dsrn - r2d Á srn - rn - 1d

.

 o

 A2 =

ƒsr2d
sr2 - r1dsr2 - r3d Á sr2 - rnd

 A1 =

ƒsr1d
sr1 - r2d Á sr1 - rnd

ri :Airi .
gsxdsx - rid

ƒsxd
gsxd

=

ƒsxd
sx - r1dsx - r2d Á sx - rnd

.

EXAMPLE 7 Use the Heaviside Method to evaluate

Solution The degree of is less than the degree of the cubic polynomial
and, with g(x) factored,

x + 4
x3

+ 3x2
- 10x

=
x + 4

xsx - 2dsx + 5d
.

gsxd = x3
+ 3x2

- 10x ,
ƒsxd = x + 4

L
 

x + 4
x3

+ 3x2
- 10x

 dx .
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478 Chapter 8: Techniques of Integration

The roots of g(x) are and We find

Cover

Cover

Cover

Therefore,

and

Other Ways to Determine the Coefficients

Another way to determine the constants that appear in partial fractions is to differentiate,
as in the next example. Still another is to assign selected numerical values to x.

EXAMPLE 8 Find A, B, and C in the equation

by clearing fractions, differentiating the result, and substituting 

Solution We first clear fractions:

Substituting shows We then differentiate both sides with respect to x,
obtaining

Substituting shows We differentiate again to get which shows
Hence,

In some problems, assigning small values to x, such as to get
equations in A, B, and C provides a fast alternative to other methods.

EXAMPLE 9 Find A, B, and C in the expression

by assigning numerical values to x.

x2
+ 1

sx - 1dsx - 2dsx - 3d
=

A
x - 1

+
B

x - 2
+

C
x - 3

x = 0, ;1, ;2,

x - 1
sx + 1d3 =

1
sx + 1d2 -

2
sx + 1d3 .

A = 0.
0 = 2A ,B = 1.x = -1

1 = 2Asx + 1d + B .

C = -2.x = -1

x - 1 = Asx + 1d2
+ Bsx + 1d + C .

x = -1.

x - 1
sx + 1d3 =

A
x + 1

+
B

sx + 1d2 +
C

sx + 1d3

L
 

x + 4
xsx - 2dsx + 5d

 dx = -
2
5 ln ƒ x ƒ +

3
7 ln ƒ x - 2 ƒ -

1
35

 ln ƒ x + 5 ƒ + C .

x + 4
xsx - 2dsx + 5d

= -
2
5x

+
3

7sx - 2d
-

1
35sx + 5d

,

y

 A3 =
-5 + 4

s -5ds -5 - 2d � sx + 5d �
=

-1
s -5ds -7d

= -
1

35
.

y

 A2 =
2 + 4

2 � sx - 2d �  s2 + 5d
=

6
s2ds7d

=
3
7

y

 A1 =
0 + 4

� x �  s0 - 2ds0 + 5d
=

4
s -2ds5d

= -
2
5

r3 = -5.r1 = 0, r2 = 2,
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8.4 Integration of Rational Functions by Partial Fractions 479

Exercises 8.4

Expanding Quotients into Partial Fractions
Expand the quotients in Exercises 1–8 by partial fractions.

1. 2.

3. 4.

5. 6.

7. 8.

Nonrepeated Linear Factors
In Exercises 9–16, express the integrand as a sum of partial fractions
and evaluate the integrals.

9. 10.

11. 12.

13. 14.

15. 16.

Repeated Linear Factors
In Exercises 17–20, express the integrand as a sum of partial fractions
and evaluate the integrals.

17. 18.
L

0

-1
  

x3 dx

x2
- 2x + 1L

1

0
 

x3 dx

x2
+ 2x + 1

L
 

x + 3
2x3

- 8x
 dx

L
 

dt

t3
+ t2

- 2t

L

1

1>2  
y + 4

y2
+ y

 dy
L

8

4
 

y dy

y2
- 2y - 3

L
 

2x + 1
x2

- 7x + 12
 dx

L
 

x + 4
x2

+ 5x - 6
 dx

L
 

dx

x2
+ 2xL

 
dx

1 - x2

t4
+ 9

t4
+ 9t2

t2
+ 8

t2
- 5t + 6

z
z3

- z2
- 6z

z + 1
z2sz - 1d

2x + 2
x2

- 2x + 1
x + 4

sx + 1d2

5x - 7
x2

- 3x + 2
5x - 13

sx - 3dsx - 2d

19. 20.

Irreducible Quadratic Factors
In Exercises 21–32, express the integrand as a sum of partial fractions
and evaluate the integrals.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

Improper Fractions
In Exercises 33–38, perform long division on the integrand, write the
proper fraction as a sum of partial fractions, and then evaluate the
integral.

33. 34.
L

 
x4

x2
- 1

 dx
L

 
2x3

- 2x2
+ 1

x2
- x

 dx

L
 
u4

- 4u3
+ 2u2

- 3u + 1

su2
+ 1d3  du

L
 
2u3

+ 5u2
+ 8u + 4

su2
+ 2u + 2d2  du

L
 

x2
+ x

x4
- 3x2

- 4
 dx

L
 

x2

x4
- 1

 dx

L
 

1
x4

+ x
 dx

L
 
x2

- x + 2
x3

- 1
 dx

L
 

s4
+ 81

sss2
+ 9d2 ds

L
 

2s + 2
ss2

+ 1dss - 1d3 ds

L
 
8x2

+ 8x + 2
s4x2

+ 1d2  dx
L

 
y2

+ 2y + 1

sy2
+ 1d2  dy

L

23

1
 
3t2

+ t + 4
t3

+ t
 dt

L

1

0
 

dx

sx + 1dsx2
+ 1d

L
 

x2 dx

sx - 1dsx2
+ 2x + 1dL

 
dx

sx2
- 1d2

Solution Clear fractions to get

Then let 2, 3 successively to find A, B, and C:

Conclusion:

x2
+ 1

sx - 1dsx - 2dsx - 3d
=

1
x - 1

-
5

x - 2
+

5
x - 3

.

  C = 5.

  10 = 2C

 x = 3: s3d2
+ 1 = As0d + Bs0d + Cs2ds1d

  B = -5

  5 = -B

 x = 2: s2d2
+ 1 = As0d + Bs1ds -1d + Cs0d

  A = 1

  2 = 2A

 x = 1: s1d2
+ 1 = As -1ds -2d + Bs0d + Cs0d

x = 1,

x2
+ 1 = Asx - 2dsx - 3d + Bsx - 1dsx - 3d + Csx - 1dsx - 2d .
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480 Chapter 8: Techniques of Integration

35. 36.

37. 38.

Evaluating Integrals
Evaluate the integrals in Exercises 39–50.

39. 40.

41. 42.

43.

44.

45. 46.

47. 48.

49. 50.

Initial Value Problems
Solve the initial value problems in Exercises 51–54 for x as a function
of t.

51.

52.

53.

54.

Applications and Examples
In Exercises 55 and 56, find the volume of the solid generated by re-
volving the shaded region about the indicated axis.

55. The x-axis

x

y

2

0 0.5 2.5

(0.5, 2.68) (2.5, 2.68)

y � 3

�3x � x2

st + 1d 
dx
dt

= x2
+ 1 st 7 -1d, xs0d = 0

st2
+ 2td 

dx
dt

= 2x + 2 st, x 7 0d, xs1d = 1

s3t 4
+ 4t 2

+ 1d 
dx
dt

= 223, xs1d = -p23>4
st2

- 3t + 2d 
dx
dt

= 1 st 7 2d, xs3d = 0

aHint: Multiply by 
x3

x3.b
L

 
1

x6 (x5
+ 4)

 dx
L

 
1

x(x4
+ 1)

 dx

(Hint: Let x + 1 = u2.)
L

 
1

x1x + 9
 dx

L
 
1x + 1

x  dx

(Hint: Let x = u6.)

L

1

(x1>3
- 1) 1x

 dx
L

 
1

x3>2
- 1x

 dx

L
 
sx + 1d2 tan-1 s3xd + 9x3

+ x

s9x2
+ 1dsx + 1d2  dx

L
 
sx - 2d2 tan-1 s2xd - 12x3

- 3x

s4x2
+ 1dsx - 2d2  dx

L
 

sin u du

cos2 u + cos u - 2L
 

cos y dy

sin2 y + sin y - 6

L
 
e4t

+ 2e2t
- et

e2t
+ 1

 dt
L

 
et dt

e2t
+ 3et

+ 2

L
 

2y4

y3
- y2

+ y - 1
 dy

L
 
y4

+ y2
- 1

y3
+ y

 dy

L
 

16x3

4x2
- 4x + 1

 dx
L

 
9x3

- 3x + 1
x3

- x2  dx
56. The y-axis

57. Find, to two decimal places, the x-coordinate of the centroid of
the region in the first quadrant bounded by the x-axis, the curve

and the line 

58. Find the x-coordinate of the centroid of this region to two decimal
places.

59. Social diffusion Sociologists sometimes use the phrase “social
diffusion” to describe the way information spreads through a pop-
ulation. The information might be a rumor, a cultural fad, or news
about a technical innovation. In a sufficiently large population,
the number of people x who have the information is treated as a
differentiable function of time t, and the rate of diffusion, dx dt, is
assumed to be proportional to the number of people who have the
information times the number of people who do not. This leads to
the equation

where N is the number of people in the population.
Suppose t is in days, and two people start a ru-

mor at time in a population of people.

a. Find x as a function of t.

b. When will half the population have heard the rumor? (This is
when the rumor will be spreading the fastest.)

60. Second-order chemical reactions Many chemical reactions are
the result of the interaction of two molecules that undergo a
change to produce a new product. The rate of the reaction typically
depends on the concentrations of the two kinds of molecules. If a
is the amount of substance A and b is the amount of substance B at
time and if x is the amount of product at time t, then the rate
of formation of x may be given by the differential equation

or

where k is a constant for the reaction. Integrate both sides of this
equation to obtain a relation between x and t (a) if and
(b) if Assume in each case that when t = 0.x = 0a Z b .

a = b ,

1
sa - xdsb - xd

 
dx
dt

= k ,

dx
dt

= ksa - xdsb - xd ,

t = 0,

N = 1000t = 0
k = 1>250,

dx
dt

= kxsN - xd ,

>

x

y

(3, 1.83)

(5, 0.98)

30 5

y � 4x2 � 13x � 9
x3 � 2x2 � 3x

x = 23.y = tan-1 x ,

1

1
x

y y � 2
(x � 1)(2 � x)

0

T

T

T

T
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8.5 Integral Tables and Computer Algebra Systems 481

8.5 Integral Tables and Computer Algebra Systems

In this section we discuss how to use tables and computer algebra systems to evaluate
integrals.

Integral Tables

A Brief Table of Integrals is provided at the back of the book, after the index. (More exten-
sive tables appear in compilations such as CRC Mathematical Tables, which contain thou-
sands of integrals.) The integration formulas are stated in terms of constants a, b, c, m, n,
and so on. These constants can usually assume any real value and need not be integers. 
Occasional limitations on their values are stated with the formulas. Formula 21 requires

for example, and Formula 27 requires 
The formulas also assume that the constants do not take on values that require divid-

ing by zero or taking even roots of negative numbers. For example, Formula 24 assumes
that and Formulas 29a and 29b cannot be used unless b is positive.

EXAMPLE 1 Find

Solution We use Formula 24 at the back of the book (not 22, which requires ):

With and we have

EXAMPLE 2 Find

Solution We use Formula 29b:

With and we have

EXAMPLE 3 Find

Solution We begin by using Formula 106:

L
 xn sin-1 ax dx =

xn + 1

n + 1
 sin-1 ax -

a
n + 1L

 
xn + 1 dx

21 - a2x2
, n Z -1.

L
 x sin-1 x dx .

L
 

dx

x22x - 4
=

2

24
 tan-1 A

2x - 4
4

+ C = tan-1 A
x - 2

2
+ C .

b = 4,a = 2

L
 

dx

x2ax - b
=

2
1b

 tan-1 A
ax - b

b
+ C .

L
 

dx

x22x - 4
.

L
 xs2x + 5d-1 dx =

x
2

-
5
4

 ln ƒ 2x + 5 ƒ + C .

b = 5,a = 2

L
 xsax + bd-1 dx =

x
a -

b
a2 ln ƒ ax + b ƒ + C .

n Z -1

L
 xs2x + 5d-1 dx .

a Z 0,

n Z -2.n Z -1,
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482 Chapter 8: Techniques of Integration

With and we have

Next we use Formula 49 to find the integral on the right:

With 

The combined result is

Reduction Formulas

The time required for repeated integrations by parts can sometimes be shortened by apply-
ing reduction formulas like

(1)

(2)

(3)

By applying such a formula repeatedly, we can eventually express the original integral in terms
of a power low enough to be evaluated directly. The next example illustrates this procedure.

EXAMPLE 4 Find

Solution We apply Equation (1) with to get

We then apply Equation (1) again, with to evaluate the remaining integral:

The combined result is

As their form suggests, reduction formulas are derived using integration by parts. (See Exam-
ple 5 in Section 8.1.)

L
 tan5 x dx =

1
4

 tan4 x -
1
2

 tan2 x - ln ƒ cos x ƒ + C¿ .

L
 tan3 x dx =

1
2

 tan2 x -

L
 tan x dx =

1
2

 tan2 x + ln ƒ cos x ƒ + C .

n = 3,

L
 tan5 x dx =

1
4

 tan4 x -

L
 tan3 x dx .

n = 5

L
 tan5 x dx .

L
 sinn x cosm x dx = -

sinn - 1 x cosm + 1 x
m + n +

n - 1
m + nL

 sinn - 2 x cosm x dx sn Z -md .

L
 sln xdn dx = xsln xdn

- n
L

 sln xdn - 1 dx

L
 tann x dx =

1
n - 1

 tann - 1 x -

L
 tann - 2 x dx

 = ax2

2
-

1
4
bsin-1 x +

1
4

 x21 - x2
+ C¿ .

 
L

 x sin-1 x dx =
x2

2
 sin-1 x -

1
2

 a1
2

 sin-1 x -
1
2

 x21 - x2
+ Cb

L
 

x2 dx

21 - x2
=

1
2

 sin-1 x -
1
2

 x21 - x2
+ C .

a = 1,

L
 

x2

2a2
- x2

 dx =
a2

2
 sin-1 ax

a b -
1
2

 x2a2
- x2

+ C .

L
 x sin-1 x dx =

x2

2
 sin-1 x -

1
2L

 
x2 dx

21 - x2
.

a = 1,n = 1

7001_ThomasET_ch08p453–513.qxd  10/30/09  8:00 AM  Page 482



8.5 Integral Tables and Computer Algebra Systems 483

Integration with a CAS

A powerful capability of computer algebra systems is their ability to integrate symboli-
cally. This is performed with the integrate command specified by the particular system
(for example, int in Maple, Integrate in Mathematica).

EXAMPLE 5 Suppose that you want to evaluate the indefinite integral of the function

Using Maple, you first define or name the function:

Then you use the integrate command on ƒ, identifying the variable of integration:

Maple returns the answer

If you want to see if the answer can be simplified, enter

Maple returns

If you want the definite integral for you can use the format

Maple will return the expression

You can also find the definite integral for a particular value of the constant a:

Maple returns the numerical answer

EXAMPLE 6 Use a CAS to find

Solution With Maple, we have the entry

with the immediate return

Computer algebra systems vary in how they process integrations. We used Maple in
Examples 5 and 6. Mathematica would have returned somewhat different results:

-
1
5 sin sxd cos sxd4

+
1

15
  cos sxd2 sin sxd +

2
15

  sinsxd .

7 int sssin¿2dsxd * scos¿3dsxd, xd ;

L
 sin2 x cos3 x dx .

3
8
22 +

1
8

 ln A22 - 1 B .

7 intsƒ, x = 0..1d;
7 a:= 1;

-
1
8

 a4 ln Ap + 24a2
+ p2 B +

1
16

 a4 ln sa2d .

1
64

 ps4a2
+ p2ds3>2d

-
1

32
 a2p24a2

+ p2
+

1
8

 a4 ln s2d

7 intsƒ, x = 0..Pi>2d ;

0 … x … p>2,

1
8

 a2x2a2
+ x2

+
1
4

 x32a2
+ x2

-
1
8

 a4 ln Ax + 2a2
+ x2 B .

7 simplifys%d ;

1
4

 xsa2
+ x2d3>2

-
1
8

 a2x2a2
+ x2

-
1
8

 a4 ln Ax + 2a2
+ x2 B .

7 intsƒ, xd ;

7 ƒ:= x¿2 * sqrt sa¿2 + x¿2d ;

ƒsxd = x22a2
+ x2 .

7001_ThomasET_ch08p453–513.qxd  10/30/09  8:00 AM  Page 483



484 Chapter 8: Techniques of Integration

1. In Example 5, given

Mathematica returns

without having to simplify an intermediate result. The answer is close to Formula 22
in the integral tables.

2. The Mathematica answer to the integral

in Example 6 is

differing from the Maple answer. Both answers are correct.

Although a CAS is very powerful and can aid us in solving difficult problems, each CAS
has its own limitations. There are even situations where a CAS may further complicate a
problem (in the sense of producing an answer that is extremely difficult to use or inter-
pret). Note, too, that neither Maple nor Mathematica returns an arbitrary constant On
the other hand, a little mathematical thinking on your part may reduce the problem to one
that is quite easy to handle. We provide an example in Exercise 67.

Nonelementary Integrals

The development of computers and calculators that find antiderivatives by symbolic ma-
nipulation has led to a renewed interest in determining which antiderivatives can be ex-
pressed as finite combinations of elementary functions (the functions we have been study-
ing) and which cannot. Integrals of functions that do not have elementary antiderivatives
are called nonelementary integrals. They require infinite series (Chapter 10) or numerical
methods for their evaluation, which give only an approximation. Examples of nonelemen-
tary integrals include the error function (which measures the probability of random errors)

and integrals such as

that arise in engineering and physics. These and a number of others, such as

look so easy they tempt us to try them just to see how they turn out. It can be proved, however,
that there is no way to express these integrals as finite combinations of elementary functions.
The same applies to integrals that can be changed into these by substitution. The integrands all
have antiderivatives, as a consequence of the Fundamental Theorem of Calculus, Part 1,
because they are continuous. However, none of the antiderivatives are elementary.

None of the integrals you are asked to evaluate in the present chapter fall into this cat-
egory, but you may encounter nonelementary integrals in your other work.

L
 21 - k 2 sin2 x dx, 0 6 k 6 1,

 
L

 
sin x

x  dx, 
L

 
1

ln x
 dx, 

L
 ln sln xd dx,

L
 
e x

x  dx, 
L

 e se xd dx, 
L

 sin x2 dx and 
L

 21 + x4 dx

erf sxd =
2

2p 
L

x

0
 e-t 2

 dt

+C .

Out [2]=

Sin [x]
8

-
1

48
 Sin [3 x] -

1
80

 Sin [5 x]

In [2]:= Integrate [Sin [x]¿2 * Cos [x]¿3, x]

Out [1]= 2a2
+ x2 aa2 x

8
+

x3

4
b -

1
8

 a4 Log Cx + 2a2
+ x2 D

In [1]:= Integrate [x¿2 * Sqrt [a¿2 + x¿2], x]
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8.5 Integral Tables and Computer Algebra Systems 485

Exercises 8.5

Using Integral Tables
Use the table of integrals at the back of the book to evaluate the inte-
grals in Exercises 1–26.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

Substitution and Integral Tables
In Exercises 27–40, use a substitution to change the integral into one
you can find in the table. Then evaluate the integral.

27. 28.

29. 30.

31. 32.

33.

34. 35.

36. 37.

(Hint: Complete the square.)
L

 
1

2x2
+ 2x + 5

 dx
L

 tan-1 1y dy

L
 

dy

y23 + sln yd2L
 

dt

tan t24 - sin2 t

L
 cot t21 - sin2 t dt,  0 6 t 6 p>2

L
 
22 - x

1x
 dx

L
 
1x

21 - x
 dx

L
 
cos-1 1x

1x
 dx

L
 sin-1 1x dx

L
 

x2
+ 6x

sx2
+ 3d2 dx

L
 
x3

+ x + 1
sx2

+ 1d2  dx

L
 cos 
u

2
 cos 7u du

L
 cos 
u

3
 cos 
u

4
 du

L
 sin 

t
3

 sin 
t
6

 dt
L

 8 sin 4t sin 
t
2

 dt

L
 sin 2x cos 3x dx

L
 sin 3x cos 2x dx

L
 
tan-1 x

x2  dx
L

 x2 tan-1 x dx

L
 x tan-1 x dx

L
 x cos-1 x dx

L
 e-3t sin 4t dt

L
 e2t cos 3t dt

L
 
2x2

- 4
x  dx

L
 
24 - x2

x  dx

L
 

dx

x27 - x2L
 

dx

x27 + x2

L
 
2x - x2

x  dx
L

 x24x - x2 dx

L
 

dx

x224x - 9L
 
29 - 4x

x2  dx

L
 xs7x + 5d3>2 dx

L
 x22x - 3 dx

L
 

x dx

s2x + 3d3>2
L

 
x dx

2x - 2

L
 

dx

x2x + 4L
 

dx

x2x - 3

38. 39.

40.

Using Reduction Formulas
Use reduction formulas to evaluate the integrals in Exercises 41–50.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Evaluate the integrals in Exercises 51–56 by making a substitution
(possibly trigonometric) and then applying a reduction formula.

51. 52.

53. 54.

55. 56.

Applications
57. Surface area Find the area of the surface generated by revolv-

ing the curve about the x-axis.

58. Arc length Find the length of the curve 

59. Centroid Find the centroid of the region cut from the first
quadrant by the curve and the line 

60. Moment about y-axis A thin plate of constant density 
occupies the region enclosed by the curve and
the line in the first quadrant. Find the moment of the plate
about the y-axis.

61. Use the integral table and a calculator to find to two decimal
places the area of the surface generated by revolving the curve

about the x-axis.

62. Volume The head of your firm’s accounting department has
asked you to find a formula she can use in a computer program to
calculate the year-end inventory of gasoline in the company’s tanks.
A typical tank is shaped like a right circular cylinder of radius r and
length L, mounted horizontally, as shown in the accompanying fig-
ure. The data come to the accounting office as depth measurements
taken with a vertical measuring stick marked in centimeters.

y = x2, -1 … x … 1,

x = 3
y = 36>s2x + 3d

d = 1

x = 3.y = 1>2x + 1

23>2.
 0 … x …y = x2, 

y = 2x2
+ 2, 0 … x … 22,

L

1>23

0
 

dt

st2
+ 1d7>2

L

2

1
 
sr2

- 1d3>2
r  dr

L

23>2
0

 
dy

s1 - y2d5>2
L

1

0
 22x2

+ 1 dx

L
 
csc3 2u
2u  du

L
 et sec3 set

- 1d dt

L
 16x3sln xd2 dx

L
 csc5 x dx

L
 3 sec4 3x dx

L
 2 sec3 px dx

L
 8 cot4 t dt

L
 4 tan3 2x dx

L
 2 sin2 t sec4 t dt

L
 sin2 2u cos3 2u du

L
 8 cos4 2pt dt

L
 sin5 2x dx

L
 x2 22x - x2 dx

L
 25 - 4x - x2 dx

L
 

x2

2x2
- 4x + 5

 dx

T
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486 Chapter 8: Techniques of Integration

a. Show, in the notation of the figure, that the volume of gaso-
line that fills the tank to a depth d is

b. Evaluate the integral.

63. What is the largest value

can have for any a and b? Give reasons for your answer.

64. What is the largest value

can have for any a and b? Give reasons for your answer.

COMPUTER EXPLORATIONS
In Exercises 65 and 66, use a CAS to perform the integrations.

65. Evaluate the integrals

a. b. c.
L

 x3 ln x dx .
L

 x2 ln x dx
L

 x ln x dx

L

b

a
 x22x - x2 dx

L

b

a
 2x - x2 dx

y

r

–r
L

d � Depth of
gasoline

Measuring stick

0

V = 2L
L

-r + d

-r
 2r2

- y2 dy .

d. What pattern do you see? Predict the formula for 
and then see if you are correct by evaluating it with a CAS.

e. What is the formula for Check your
answer using a CAS.

66. Evaluate the integrals

a. b. c.

d. What pattern do you see? Predict the formula for

and then see if you are correct by evaluating it with a CAS.

e. What is the formula for

Check your answer using a CAS.

67. a. Use a CAS to evaluate

where n is an arbitrary positive integer. Does your CAS find
the result?

b. In succession, find the integral when 
Comment on the complexity of the results.

c. Now substitute and add the new and old inte-
grals. What is the value of

This exercise illustrates how a little mathematical ingenuity
solves a problem not immediately amenable to solution by a
CAS.

L

p>2
0

 
sinn x

sinn x + cosn x
 dx?

x = sp>2d - u

n = 1, 2, 3, 5, and 7.

L

p>2
0

 
sinn x

sinn x + cosn x
 dx

L
 
ln x
xn  dx, n Ú 2?

L
 
ln x
x5  dx

L
 
ln x
x4  dx .

L
 
ln x
x3  dx

L
 
ln x
x2  dx

1  xn ln x dx, n Ú 1?

1  x4 ln x dx

8.6 Numerical Integration

The antiderivatives of some functions, like sin ( ), 1 ln x, and , have no elemen-
tary formulas. When we cannot find a workable antiderivative for a function ƒ that we
have to integrate, we can partition the interval of integration, replace ƒ by a closely fitting
polynomial on each subinterval, integrate the polynomials, and add the results to approxi-
mate the integral of ƒ. This procedure is an example of numerical integration. In this section
we study two such methods, the Trapezoidal Rule and Simpson’s Rule. In our presentation
we assume that ƒ is positive, but the only requirement is for it to be continuous over the in-
terval of integration [a, b].

Trapezoidal Approximations

The Trapezoidal Rule for the value of a definite integral is based on approximating 
the region between a curve and the x-axis with trapezoids instead of rectangles, as in

21 + x4>x2
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8.6 Numerical Integration 487

Figure 8.7. It is not necessary for the subdivision points in the figure to
be evenly spaced, but the resulting formula is simpler if they are. We therefore assume that
the length of each subinterval is

The length is called the step size or mesh size. The area of the trapezoid
that lies above the ith subinterval is

where and This area is the length of the trapezoid’s horizon-
tal “altitude” times the average of its two vertical “bases.” (See Figure 8.7.) The area below
the curve and above the x-axis is then approximated by adding the areas of all
the trapezoids:

where

The Trapezoidal Rule says: Use T to estimate the integral of ƒ from a to b.

y0 = ƒsad,  y1 = ƒsx1d,  . . . ,  yn - 1 = ƒsxn - 1d,  yn = ƒsbd .

 =
¢x
2

 s y0 + 2y1 + 2y2 +
Á

+ 2yn - 1 + ynd, 

 = ¢x a1
2

 y0 + y1 + y2 +
Á

+ yn - 1 +
1
2

 ynb

 +
1
2

 s yn - 2 + yn - 1d¢x +
1
2

 s yn - 1 + ynd¢x

 T =
1
2

 s y0 + y1d¢x +
1
2

 s y1 + y2d¢x +
Á

y = ƒsxd

¢xyi = ƒsxid .yi - 1 = ƒsxi - 1d

¢x ayi - 1 + yi

2
b =

¢x
2

 s yi - 1 + yid ,

¢x = sb - ad>n
¢x =

b - a
n .

x0, x1, x2, Á , xn

x

y 5 f (x)

Trapezoid area
   (y1 1 y2)Dx1
2

x0 5 a x1

y1 y2 yn21

xn21 xn 5 b

yn

x2
Dx

FIGURE 8.7 The Trapezoidal Rule approximates short
stretches of the curve with line segments. To
approximate the integral of ƒ from a to b, we add the areas
of the trapezoids made by joining the ends of the segments
to the x-axis.

y = ƒsxd
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488 Chapter 8: Techniques of Integration

EXAMPLE 1 Use the Trapezoidal Rule with to estimate Compare the
estimate with the exact value.

Solution Partition [1, 2] into four subintervals of equal length (Figure 8.8). Then evalu-
ate at each partition point (Table 8.2).

Using these y values, and in the Trapezoidal Rule,
we have

Since the parabola is concave up, the approximating segments lie above the curve, giving
each trapezoid slightly more area than the corresponding strip under the curve. The exact
value of the integral is

The T approximation overestimates the integral by about half a percent of its true value of
7 3. The percentage error is or 0.446%.

Simpson’s Rule: Approximations Using Parabolas

Another rule for approximating the definite integral of a continuous function results
from using parabolas instead of the straight line segments that produced trapezoids. As
before, we partition the interval [a, b] into n subintervals of equal length 

but this time we require that n be an even number. On each consecutive pair
of intervals we approximate the curve by a parabola, as shown in Figure 8.9.
A typical parabola passes through three consecutive points and

on the curve.
Let’s calculate the shaded area beneath a parabola passing through three consecutive

points. To simplify our calculations, we first take the case where andx0 = -h, x1 = 0,

sxi + 1, yi + 1d
sxi - 1, yi - 1d, sxi, yid ,

y = ƒsxd Ú 0
sb - ad>n ,

h = ¢x =

s2.34375 - 7>3d>s7>3d L 0.00446,>

L

2

1
 x2 dx =

x3

3
d

1

2

=
8
3

-
1
3

=
7
3

.

 =
75
32

= 2.34375.

 =
1
8

 a1 + 2 a25
16
b + 2 a36

16
b + 2 a49

16
b + 4b

 T =
¢x
2

 ay0 + 2y1 + 2y2 + 2y3 + y4b

¢x = s2 - 1d>4 = 1>4n = 4,
y = x2

1
2

1  x2 dx .n = 4

x

y

20 1

1

4

5
4

6
4

7
4

y 5 x2

25
16

36
16

49
16

FIGURE 8.8 The trapezoidal approxima-
tion of the area under the graph of 
from to is a slight over-
estimate (Example 1).

x = 2x = 1
y = x2

The Trapezoidal Rule

To approximate use

The y’s are the values of ƒ at the partition points

where ¢x = sb - ad>n .

a + sn - 1d¢x, xn = b ,xn - 1 =Á , x0 = a, x1 = a + ¢x, x2 = a + 2¢x,

T =
¢x
2

 ay0 + 2y1 + 2y2 +
Á

+ 2yn - 1 + ynb .

1
b

a  ƒsxd dx ,

TABLE 8.2

x

1 1

2 4

49
16

7
4

36
16

6
4

25
16

5
4

y = x2

x

y

Parabola

h h

y0 yn21 yn

xn21 xn5 b

y1 y2

y 5 f (x)

0 a 5 x0 x1 x2 h

FIGURE 8.9 Simpson’s Rule approxi-
mates short stretches of the curve with
parabolas.
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8.6 Numerical Integration 489

(Figure 8.10), where The area under the parabola will be
the same if we shift the y-axis to the left or right. The parabola has an equation of the form

so the area under it from to is

Since the curve passes through the three points and we also have

from which we obtain

Hence, expressing the area in terms of the ordinates and we have

Now shifting the parabola horizontally to its shaded position in Figure 8.9 does not change
the area under it. Thus the area under the parabola through and in
Figure 8.9 is still

Similarly, the area under the parabola through the points and is

Computing the areas under all the parabolas and adding the results gives the approximation

The result is known as Simpson’s Rule. The function need not be positive, as in our deriva-
tion, but the number n of subintervals must be even to apply the rule because each para-
bolic arc uses two subintervals.

=
h
3

 s y0 + 4y1 + 2y2 + 4y3 + 2y4 +
Á

+ 2yn - 2 + 4yn - 1 + ynd .

+
h
3

 s yn - 2 + 4yn - 1 + ynd

L

b

a
 ƒsxd dx L

h
3

 s y0 + 4y1 + y2d +
h
3

 s y2 + 4y3 + y4d +
Á

h
3

 s y2 + 4y3 + y4d .

sx4 , y4dsx2 , y2d, sx3 , y3d ,

h
3

 s y0 + 4y1 + y2d .

sx2 , y2dsx0 , y0d, sx1, y1d ,

Ap =
h
3

 s2Ah2
+ 6Cd =

h
3

 ss y0 + y2 - 2y1d + 6y1d =
h
3

 s y0 + 4y1 + y2d .

y2 ,y0, y1 ,Ap

 2Ah2
= y0 + y2 - 2y1 .

 Ah2
+ Bh = y2 - y1, 

 Ah2
- Bh = y0 - y1, 

 C = y1, 

y0 = Ah2
- Bh + C, y1 = C, y2 = Ah2

+ Bh + C ,

sh, y2d ,s -h, y0d, s0, y1d ,

 =
2Ah3

3
+ 2Ch =

h
3

 s2Ah2
+ 6Cd .

 =
Ax3

3
+

Bx2

2
+ Cx d

-h

h

 Ap =

L

h

-h
 sAx2

+ Bx + Cd dx

x = hx = -h

y = Ax2
+ Bx + C ,

h = ¢x = sb - ad>n .x2 = h

0 h–h

y 5 Ax2 1 Bx 1 C

y0 y1 y2

(–h, y0)
(0, y1)

(h, y2)

x

y

FIGURE 8.10 By integrating from to
h, we find the shaded area to be

h
3

 s y0 + 4y1 + y2d .

-h

HISTORICAL BIOGRAPHY

Thomas Simpson
(1720–1761)
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490 Chapter 8: Techniques of Integration

Note the pattern of the coefficients in the above rule: 

EXAMPLE 2 Use Simpson’s Rule with to approximate 

Solution Partition [0, 2] into four subintervals and evaluate at the partition
points (Table 8.3). Then apply Simpson’s Rule with and 

This estimate differs from the exact value (32) by only 1 12, a percentage error of less
than three-tenths of one percent, and this was with just four subintervals.

Error Analysis

Whenever we use an approximation technique, the issue arises as to how accurate the ap-
proximation might be. The following theorem gives formulas for estimating the errors when
using the Trapezoidal Rule and Simpson’s Rule. The error is the difference between the ap-
proximation obtained by the rule and the actual value of the definite integral .1

b
a ƒ(x) dx

>
 = 32 

1
12

.

 =
1
6

 a0 + 4 a 5
16
b + 2s5d + 4 a405

16
b + 80b

 S =
¢x
3

 ay0 + 4y1 + 2y2 + 4y3 + y4b
¢x = 1>2:n = 4

y = 5x4

1
2

0  5x4 dx .n = 4

1, 4, 2, 4, 2, 4, 2, Á , 4, 1 .

Simpson’s Rule

To approximate use

The y’s are the values of ƒ at the partition points

The number n is even, and ¢x = sb - ad>n .

xn - 1 = a + sn - 1d¢x, xn = b .x0 = a, x1 = a + ¢x, x2 = a + 2¢x, Á ,

S =
¢x
3

 s y0 + 4y1 + 2y2 + 4y3 +
Á

+ 2yn - 2 + 4yn - 1 + ynd .

1
b

a  ƒsxd dx ,

TABLE 8.3

x

0 0

1 5

2 80

405
16

3
2

5
16

1
2

y = 5x4

THEOREM 1—Error Estimates in the Trapezoidal and Simpson’s Rules If is
continuous and M is any upper bound for the values of on [a, b], then the
error in the trapezoidal approximation of the integral of ƒ from a to b for n
steps satisfies the inequality

Trapezoidal Rule

If is continuous and M is any upper bound for the values of on [a, b],
then the error in the Simpson’s Rule approximation of the integral of ƒ from a
to b for n steps satisfies the inequality

Simpson’s Ruleƒ ES ƒ …

Msb - ad5

180n4 .

ES

ƒ ƒs4d
ƒƒs4d

ƒ ET ƒ …

Msb - ad3

12n2 .

ET

ƒ ƒ– ƒ

ƒ–

To see why Theorem 1 is true in the case of the Trapezoidal Rule, we begin with a re-
sult from advanced calculus, which says that if ƒ is continuous on the interval [a, b], then

L

b

a
 ƒsxd dx = T -

b - a
12

# ƒ–scds¢xd2

–
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8.6 Numerical Integration 491

for some number c between a and b. Thus, as approaches zero, the error defined by

approaches zero as the square of 
The inequality

where max refers to the interval [a, b], gives an upper bound for the magnitude of the
error. In practice, we usually cannot find the exact value of and have to esti-
mate an upper bound or “worst case” value for it instead. If M is any upper bound for the
values of on [a, b], so that on [a, b], then

If we substitute for we get

To estimate the error in Simpson’s rule, we start with a result from advanced calculus
that says that if the fourth derivative ƒ is continuous, then

for some point c between a and b. Thus, as approaches zero, the error,

approaches zero as the fourth power of . (This helps to explain why Simpson’s Rule is
likely to give better results than the Trapezoidal Rule.)

The inequality

where max refers to the interval [a, b], gives an upper bound for the magnitude of the
error. As with in the error formula for the Trapezoidal Rule, we usually cannot
find the exact value of and have to replace it with an upper bound. If M is any
upper bound for the values of on [a, b], then

Substituting for in this last expression gives

EXAMPLE 3 Find an upper bound for the error in estimating using
Simpson’s Rule with (Example 2).

Solution To estimate the error, we first find an upper bound M for the magnitude of the
fourth derivative of on the interval Since the fourth derivative has0 … x … 2.ƒsxd = 5x4

n = 4
1

2
0  5x4 dx

ƒ ES ƒ …

Msb - ad5

180n4 .

¢xsb - ad>n
ƒ ES ƒ …

b - a
180

 Ms¢xd4 .

ƒ ƒs4d
ƒ

max ƒ ƒs4dsxd ƒ

max ƒ ƒ– ƒ

ƒ ES ƒ …
b - a
180

 max ƒ ƒs4dsxd ƒ  s¢xd4,

¢x

ES = -
b - a
180

# ƒs4dscds¢xd4 ,

¢x

L

b

a
 ƒsxd dx = S -

b - a
180

# ƒs4dscds¢xd4

(4)

ƒ ET ƒ …

Msb - ad3

12n2 .

¢x ,sb - ad>n
ƒ ET ƒ …

b - a
12

 Ms¢xd2 .

ƒ ƒ–sxd ƒ … Mƒ ƒ–sxd ƒ

max ƒ ƒ–sxd ƒ

ƒ ET ƒ …
b - a

12
 max ƒ ƒ–sxd ƒ s¢xd2

¢x .

ET = -
b - a

12
# ƒ–scds¢xd2

¢x
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492 Chapter 8: Techniques of Integration

the constant value we take With and the
error estimate for Simpson’s Rule gives

This estimate is consistent with the result of Example 2.

Theorem 1 can also be used to estimate the number of subintervals required when us-
ing the Trapezoidal or Simpson’s Rules if we specify a certain tolerance for the error.

EXAMPLE 4 Estimate the minimum number of subintervals needed to approximate the
integral in Example 3 using Simpson’s Rule with an error of magnitude less than 

Solution Using the inequality in Theorem 1, if we choose the number of subintervals n
to satisfy

then the error in Simpson’s Rule satisfies as required.
From the solution in Example 3, we have so we want n to

satisfy

or, equivalently,

It follows that

Since n must be even in Simpson’s Rule, we estimate the minimum number of subinter-
vals required for the error tolerance to be 

EXAMPLE 5 As we saw in Chapter 7, the value of ln 2 can be calculated from the
integral

Table 8.4 shows T and S values for approximations of using various val-
ues of n. Notice how Simpson’s Rule dramatically improves over the Trapezoidal Rule. 

1
2

1  s1>xd dx

ln 2 =

L

2

1
 
1
x  dx .

n = 22.

n 7 10 a64
3
b1>4

L 21.5.

n4
7

64 # 104

3
.

120(2)5

180n4 6
1

104

M = 120 and b - a = 2,
ƒ ES ƒ 6 10-4ES

Msb - ad5

180n4 6 10-4,

10-4.

ƒ ES ƒ …

Msb - ad5

180n4 =

120s2d5

180 # 44 =
1

12
.

n = 4,b - a = 2M = 120.ƒs4dsxd = 120,

TABLE 8.4 Trapezoidal Rule approximations and Simpson’s Rule
approximations of 

n

10 0.6937714032 0.0006242227 0.6931502307 0.0000030502

20 0.6933033818 0.0001562013 0.6931473747 0.0000001942

30 0.6932166154 0.0000694349 0.6931472190 0.0000000385

40 0.6931862400 0.0000390595 0.6931471927 0.0000000122

50 0.6931721793 0.0000249988 0.6931471856 0.0000000050

100 0.6931534305 0.0000062500 0.6931471809 0.0000000004

less than ÁSnless than ÁTn

ƒ Error ƒƒ Error ƒ

ln 2 = 1
2
1  s1>xd dxsSnd

sTnd
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8.6 Numerical Integration 493

In particular, notice that when we double the value of n (thereby halving the value of
), the T error is divided by 2 squared, whereas the S error is divided by 2 to the fourth.

This has a dramatic effect as gets very small. The Simpson approxi-
mation for rounds accurately to seven places and for agrees to nine deci-
mal places (billionths)!

If ƒ(x) is a polynomial of degree less than four, then its fourth derivative is zero, and

Thus, there will be no error in the Simpson approximation of any integral of ƒ. In other
words, if ƒ is a constant, a linear function, or a quadratic or cubic polynomial, Simpson’s
Rule will give the value of any integral of ƒ exactly, whatever the number of subdivisions.
Similarly, if ƒ is a constant or a linear function, then its second derivative is zero, and

The Trapezoidal Rule will therefore give the exact value of any integral of ƒ. This is no
surprise, for the trapezoids fit the graph perfectly.

Although decreasing the step size reduces the error in the Simpson and Trape-
zoidal approximations in theory, it may fail to do so in practice. When is very small,
say computer or calculator round-off errors in the arithmetic required to eval-
uate S and T may accumulate to such an extent that the error formulas no longer describe
what is going on. Shrinking below a certain size can actually make things worse. Al-
though this is not an issue in this book, you should consult a text on numerical analysis for
alternative methods if you are having problems with round-off.

EXAMPLE 6 A town wants to drain and fill a small polluted swamp (Figure 8.11). The
swamp averages 5 ft deep. About how many cubic yards of dirt will it take to fill the area
after the swamp is drained?

Solution To calculate the volume of the swamp, we estimate the surface area and multi-
ply by 5. To estimate the area, we use Simpson’s Rule with and the y’s equal to
the distances measured across the swamp, as shown in Figure 8.11.

The volume is about or 1500 yd3 .s8100ds5d = 40,500 ft3

 =
20
3

 s146 + 488 + 152 + 216 + 80 + 120 + 13d = 8100

 S =
¢x
3

 s y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6d

¢x = 20 ft

¢x

¢x = 10-5 ,
¢x

¢x

ET = -
b - a

12
 ƒ–scds¢xd2

= -
b - a

12
 s0ds¢xd2

= 0.

ES = -
b - a
180

 ƒ(4)scds¢xd4
= -

b - a
180

 s0ds¢xd4
= 0.

n = 100n = 50
¢x = s2 - 1d>nh = ¢x

Exercises 8.6

Estimating Integrals
The instructions for the integrals in Exercises 1–10 have two parts,
one for the Trapezoidal Rule and one for Simpson’s Rule.

I. Using the Trapezoidal Rule

a. Estimate the integral with steps and find an upper
bound for 

b. Evaluate the integral directly and find 

c. Use the formula to express 
as a percentage of the integral’s true value.

ƒ ET ƒs ƒ ET ƒ >strue valuedd * 100

ƒ ET ƒ .

ƒ ET ƒ .
n = 4

II. Using Simpson’s Rule

a. Estimate the integral with steps and find an upper
bound for 

b. Evaluate the integral directly and find 

c. Use the formula to express 
as a percentage of the integral’s true value.

1. 2.
L

3

1
 s2x - 1d dx

L

2

1
 x dx

ƒ ES ƒs ƒ ES ƒ >strue valuedd * 100

ƒ ES ƒ .

ƒ ES ƒ .
n = 4

Vertical spacing � 20 ft 

13 ft

122 ft

Ignored

76 ft

54 ft

40 ft

30 ft

146 ft

FIGURE 8.11 The dimensions of the
swamp in Example 6.
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494 Chapter 8: Techniques of Integration

3. 4.

5. 6.

7. 8.

9. 10.

Estimating the Number of Subintervals
In Exercises 11–22, estimate the minimum number of subintervals
needed to approximate the integrals with an error of magnitude less
than by (a) the Trapezoidal Rule and (b) Simpson’s Rule. (The
integrals in Exercises 11–18 are the integrals from Exercises 1–8.)

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Estimates with Numerical Data
23. Volume of water in a swimming pool A rectangular swimming

pool is 30 ft wide and 50 ft long. The accompanying table shows
the depth h(x) of the water at 5-ft intervals from one end of the
pool to the other. Estimate the volume of water in the pool using
the Trapezoidal Rule with applied to the integral

Position (ft) Depth (ft) Position (ft) Depth (ft)
x h(x) x h(x) 

0 6.0 30 11.5
5 8.2 35 11.9

10 9.1 40 12.3
15 9.9 45 12.7
20 10.5 50 13.0
25 11.0

24. Distance traveled The accompanying table shows time-to-
speed data for a sports car accelerating from rest to 130 mph.
How far had the car traveled by the time it reached this speed?
(Use trapezoids to estimate the area under the velocity curve, but
be careful: The time intervals vary in length.)

V =

L

50

0
 30 # hsxd dx .

n = 10

L

1

-1
 cos sx + pd dx

L

2

0
 sin sx + 1d dx

L

3

0
 

1

2x + 1
 dx

L

3

0
 2x + 1 dx

L

4

2
 

1
ss - 1d2 ds

L

2

1
 
1
s2 ds

L

1

-1
 st3

+ 1d dt
L

2

0
 st3

+ td dt

L

0

-2
 sx2

- 1d dx
L

1

-1
 sx2

+ 1d dx

L

3

1
 s2x - 1d dx

L

2

1
 x dx

10-4

L

1

0
 sin pt dt

L

p

0
 sin t dt

L

4

2
 

1
ss - 1d2 ds

L

2

1
 
1
s2 ds

L

1

-1
 st3

+ 1d dt
L

2

0
 st3

+ td dt

L

0

-2
 sx2

- 1d dx
L

1

-1
 sx2

+ 1d dx Speed change Time (sec)

Zero to 30 mph 2.2
40 mph 3.2
50 mph 4.5
60 mph 5.9
70 mph 7.8
80 mph 10.2
90 mph 12.7

100 mph 16.0
110 mph 20.6
120 mph 26.2
130 mph 37.1

25. Wing design The design of a new airplane requires a gasoline
tank of constant cross-sectional area in each wing. A scale draw-
ing of a cross-section is shown here. The tank must hold 5000 lb
of gasoline, which has a density of Estimate the length
of the tank by Simpson’s Rule.

26. Oil consumption on Pathfinder Island A diesel generator
runs continuously, consuming oil at a gradually increasing rate
until it must be temporarily shut down to have the filters replaced.
Use the Trapezoidal Rule to estimate the amount of oil consumed
by the generator during that week.

Oil consumption rate
Day (liters h)

Sun 0.019
Mon 0.020
Tue 0.021
Wed 0.023
Thu 0.025
Fri 0.028
Sat 0.031
Sun 0.035

Theory and Examples
27. Usable values of the sine-integral function The sine-integral

function,

is one of the many functions in engineering whose formulas can-
not be simplified. There is no elementary formula for the anti-
derivative of (sin t) t. The values of Si(x), however, are readily es-
timated by numerical integration.

Although the notation does not show it explicitly, the func-
tion being integrated is

ƒstd = •
sin t

t , t Z 0

  1, t = 0,

>

Si sxd =

L

x

0
 
sin t

t  dt ,

>

y1y0
y2 y3 y4 y5 y6

y0 � 1.5 ft, y1 � 1.6 ft, y2 � 1.8 ft, y3 � 1.9 ft,
y4 � 2.0 ft, y5 � y6 � 2.1 ft Horizontal spacing � 1 ft

42 lb>ft3 .

“Sine integral of x”

7001_ThomasET_ch08p453–513.qxd  10/30/09  8:00 AM  Page 494



8.6 Numerical Integration 495

the continuous extension of (sin t) t to the interval [0, x]. The
function has derivatives of all orders at every point of its do-
main. Its graph is smooth, and you can expect good results from
Simpson’s Rule.

a. Use the fact that on to give an upper
bound for the error that will occur if

is estimated by Simpson’s Rule with 

b. Estimate by Simpson’s Rule with 

c. Express the error bound you found in part (a) as a percentage
of the value you found in part (b).

28. The error function The error function,

important in probability and in the theories of heat flow and sig-
nal transmission, must be evaluated numerically because there is
no elementary expression for the antiderivative of 

a. Use Simpson’s Rule with to estimate erf (1).

b. In [0, 1],

Give an upper bound for the magnitude of the error of the 
estimate in part (a).

29. Prove that the sum T in the Trapezoidal Rule for is a
Riemann sum for ƒ continuous on [a, b]. (Hint: Use the Interme-
diate Value Theorem to show the existence of in the subinterval

satisfying )

30. Prove that the sum S in Simpson’s Rule for is a 
Riemann sum for ƒ continuous on [a, b]. (See Exercise 29.)

31. Elliptic integrals The length of the ellipse

turns out to be

where is the ellipse’s eccentricity. The integral in
this formula, called an elliptic integral, is nonelementary except
when or 1.

a. Use the Trapezoidal Rule with to estimate the length
of the ellipse when and 

b. Use the fact that the absolute value of the second derivative of
is less than 1 to find an upper bound

for the error in the estimate you obtained in part (a).
ƒstd = 21 - e2 cos2 t

e = 1>2.a = 1
n = 10

e = 0

e = 2a2
- b2>a

Length = 4a
L

p>2
0

 21 - e2 cos2 t dt ,

x2

a2 +

y2

b2 = 1

1
b

a  ƒsxd dx

ƒsckd =  sƒsxk - 1d + ƒsxkdd>2.[xk - 1, xk]
ck

1
b

a  ƒsxd dx

` d 4

dt 4 ae-t 2b ` … 12.

n = 10

e-t 2

.

erf sxd =

2

2p 
L

x

0
 e-t 2

 dt ,

n = 4.Si sp>2d
n = 4.

Si ap
2
b =

L

p>2
0

 
sin t

t  dt

[0, p>2]ƒ ƒ s4d
ƒ … 1

t

y

0 x 2�

1
dtSi (x) �

x

0L

sin t
t

y �
sin t

t

�� �

> Applications
32. The length of one arch of the curve is given by

Estimate L by Simpson’s Rule with 

33. Your metal fabrication company is bidding for a contract to make
sheets of corrugated iron roofing like the one shown here. The
cross-sections of the corrugated sheets are to conform to the curve

If the roofing is to be stamped from flat sheets by a process that
does not stretch the material, how wide should the original mate-
rial be? To find out, use numerical integration to approximate the
length of the sine curve to two decimal places.

34. Your engineering firm is bidding for the contract to construct the
tunnel shown here. The tunnel is 300 ft long and 50 ft wide at the
base. The cross-section is shaped like one arch of the curve

Upon completion, the tunnel’s inside sur-
face (excluding the roadway) will be treated with a waterproof
sealer that costs $1.75 per square foot to apply. How much will it
cost to apply the sealer? (Hint: Use numerical integration to find
the length of the cosine curve.)

Find, to two decimal places, the areas of the surfaces generated by
revolving the curves in Exercises 35 and 36 about the x-axis.

35.
36.

37. Use numerical integration to estimate the value of

For reference, to five decimal places.

38. Use numerical integration to estimate the value of

p = 4
L

1

0
 

1
1 + x2 dx .

sin-1 0.6 = 0.64350

sin-1 0.6 =

L

0.6

0
 

dx

21 - x2
.

y = x2>4, 0 … x … 2
y = sin x, 0 … x … p

x (ft)

y

0
–25

25

y � 25 cos (�x/50)

300 ft

NOT TO SCALE

y = 25 cos spx>50d .

Corrugated sheet

20
y � sin      x

20 in.

x (in.)

y

3�
20

Original sheet

0

y = sin 
3p
20

 x, 0 … x … 20 in .

n = 8.

L =

L

p

0
 21 + cos2 x dx .

y = sin x

T

T

T

T
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496 Chapter 8: Techniques of Integration

8.7 Improper Integrals

Up to now, we have required definite integrals to have two properties. First, that the do-
main of integration [a, b] be finite. Second, that the range of the integrand be finite on this
domain. In practice, we may encounter problems that fail to meet one or both of these con-
ditions. The integral for the area under the curve from to is
an example for which the domain is infinite (Figure 8.12a). The integral for the area under
the curve of between and is an example for which the range of
the integrand is infinite (Figure 8.12b). In either case, the integrals are said to be improper
and are calculated as limits. We will see in Chapter 10 that improper integrals play an im-
portant role when investigating the convergence of certain infinite series.

Infinite Limits of Integration

Consider the infinite region that lies under the curve in the first quadrant
(Figure 8.13a). You might think this region has infinite area, but we will see that the value
is finite. We assign a value to the area in the following way. First find the area A(b) of the
portion of the region that is bounded on the right by (Figure 8.13b).

Then find the limit of A(b) as 

.

The value we assign to the area under the curve from 0 to is

L

q

0
 e-x>2 dx = lim

b: qL

b

0
 e-x>2 dx = 2.

q

lim
b: q

 Asbd = lim
b: q

 s -2e-b>2
+ 2d = 2

b : q

Asbd =

L

b

0
 e-x>2 dx = -2e-x>2 d

0

b

= -2e-b>2
+ 2

x = b

y = e-x>2

x = 1x = 0y = 1>1x

x = qx = 1y = sln xd>x2

FIGURE 8.12 Are the areas under these
infinite curves finite? We will see that the
answer is yes for both curves.

x

x

y

(a)

y

(b)

b

Area � 2

Area � �2e–b/2 � 2

FIGURE 8.13 (a) The area in the first
quadrant under the curve 
(b) The area is an improper integral of the
first type.

y = e-x>2

DEFINITION Integrals with infinite limits of integration are improper
integrals of Type I.

1. If ƒ(x) is continuous on then

2. If ƒ(x) is continuous on then

3. If ƒ(x) is continuous on then

where c is any real number.

In each case, if the limit is finite we say that the improper integral converges and
that the limit is the value of the improper integral. If the limit fails to exist, the
improper integral diverges.

L

q

-q

 ƒsxd dx =

L

c

-q

 ƒsxd dx +

L

q

c
 ƒsxd dx ,

s - q , q d ,

L

b

-q

 ƒsxd dx = lim
a: - qL

b

a
 ƒsxd dx .

s - q , b] ,

L

q

a
 ƒsxd dx = lim

b: qL

b

a
 ƒsxd dx .

[a, q d ,

x

y

0

0.1

1 2 3 4 5 6

0.2

(a)

y � ln x
x2

(b)

x

y

0

1

1

�x
1y �
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8.7 Improper Integrals 497

It can be shown that the choice of c in Part 3 of the definition is unimportant. We can
evaluate or determine the convergence or divergence of with any convenient
choice.

Any of the integrals in the above definition can be interpreted as an area if on
the interval of integration. For instance, we interpreted the improper integral in Figure 8.13
as an area. In that case, the area has the finite value 2. If and the improper integral
diverges, we say the area under the curve is infinite.

EXAMPLE 1 Is the area under the curve from to finite? If
so, what is its value?

Solution We find the area under the curve from to and examine the limit as
If the limit is finite, we take it to be the area under the curve (Figure 8.14). The

area from 1 to b is

The limit of the area as is

Thus, the improper integral converges and the area has finite value 1.

EXAMPLE 2 Evaluate

Solution According to the definition (Part 3), we can choose and write

Next we evaluate each improper integral on the right side of the equation above.

 = lim
a: - q

 stan-1 0 - tan-1 ad = 0 - a- p
2
b =

p
2

 = lim
a: - q

 tan-1 x d
a

0

 
L

0

-q

 
dx

1 + x2 = lim
a: - qL

0

a
 

dx
1 + x2

L

q

-q

 
dx

1 + x2 =

L

0

-q

 
dx

1 + x2 +

L

q

0
 

dx
1 + x2 .

c = 0

L

q

-q

 
dx

1 + x2 .

 = - c lim
b: q

 
1>b
1
d + 1 = 0 + 1 = 1.

 = - c lim
b: q

 
ln b
b
d - 0 + 1

 = lim
b: q

 c- ln b
b

-
1
b

+ 1 d
 
L

q

1
 
ln x
x2  dx = lim

b: q

 
L

b

1
 
ln x
x2  dx

b : q

 = -
ln b
b

-
1
b

+ 1.

 = -
ln b
b

- c1x d
1

b

 
L

b

1
 
ln x
x2  dx = csln xd a- 1

x b d
1

b

-

L

b

1
 a- 1

x b a1x b  dx

b : q .
x = bx = 1

x = qx = 1y = sln xd>x2

ƒ Ú 0

ƒ Ú 0

1
q

-q
 ƒsxd dx

Integration by parts with

du = dx>x,  y = -1>xu = ln x,  dy = dx>x2,

x

y

0

0.1

1 b

0.2 y � ln x
x2

FIGURE 8.14 The area under this curve
is an improper integral (Example 1).

HISTORICAL BIOGRAPHY

Lejeune Dirichlet
(1805–1859)

l’Hôpital’s Rule
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498 Chapter 8: Techniques of Integration

Thus,

Since the improper integral can be interpreted as the (finite) area be-
neath the curve and above the x-axis (Figure 8.15).

The Integral 

The function is the boundary between the convergent and divergent improper in-
tegrals with integrands of the form As the next example shows, the improper
integral converges if and diverges if 

EXAMPLE 3 For what values of p does the integral converge? When the in-
tegral does converge, what is its value?

Solution If 

Thus,

because

Therefore, the integral converges to the value if and it diverges if
p 6 1.

p 7 11>s p - 1d

lim
b: q

  
1

bp - 1 = e0, p 7 1
q , p 6 1.

 = lim
b: q

 c 1
1 - p

 a 1
bp - 1 - 1b d = •

1
p - 1

, p 7 1

q , p 6 1

 
L

q

1
 
dx
xp = lim

b: qL

b

1
 
dx
xp

L

b

1
 
dx
xp =

x-p + 1

-p + 1
d

1

b

=
1

1 - p
 sb -p + 1

- 1d =
1

1 - p
 a 1

bp - 1 - 1b .

p Z 1,

1
q

1  dx>x p

p … 1.p 7 1
y = 1>x p .

y = 1>x
L

ˆ

1
 
dx
xp

1>s1 + x2d 7 0,

L

q

-q

 
dx

1 + x2 =
p
2

+
p
2

= p .

 = lim
b: q

stan-1 b - tan-1 0d =
p
2

- 0 =
p
2

 = lim
b: q

 tan-1 x d
0

b

 
L

q

0
 

dx
1 + x2 = lim

b: qL

b

0
 

dx
1 + x2

x

y

0

y � 1
1 � x2 Area � �

NOT TO SCALE

FIGURE 8.15 The area under this curve
is finite (Example 2).
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8.7 Improper Integrals 499

If the integral also diverges:

Integrands with Vertical Asymptotes

Another type of improper integral arises when the integrand has a vertical asymptote—an
infinite discontinuity—at a limit of integration or at some point between the limits of inte-
gration. If the integrand ƒ is positive over the interval of integration, we can again interpret
the improper integral as the area under the graph of ƒ and above the x-axis between the
limits of integration.

Consider the region in the first quadrant that lies under the curve from 
to (Figure 8.12b). First we find the area of the portion from a to 1 (Figure 8.16).

.

Then we find the limit of this area as 

Therefore the area under the curve from 0 to 1 is finite and is defined to be

L

1

0
 

dx
1x

= lim
a:0+

 
L

1

a
 

dx
1x

= 2.

lim
a:0+

 
L

1

a
 

dx
1x

= lim
a:0+

 A2 - 21a B = 2.

a : 0+:

L

1

a
 

dx
1x

= 21x d
a

1

= 2 - 21a

x = 1
x = 0y = 1>1x

 = lim
b: q

sln b - ln 1d = q .

 = lim
b: q

 ln x D1b
 = lim

b: qL

b

1
 
dx
x

 
L

q

1
 
dx
xp =

L

q

1
 
dx
x

p = 1,

x

y

0

1

1a

�x
1y �

Area � 2 � 2�a

FIGURE 8.16 The area under this curve
is an example of an improper integral of
the second kind.

DEFINITION Integrals of functions that become infinite at a point within the
interval of integration are improper integrals of Type II.

1. If ƒ(x) is continuous on (a, b] and discontinuous at a, then

2. If ƒ(x) is continuous on [a, b) and discontinuous at b, then

3. If ƒ(x) is discontinuous at c, where and continuous on
then

In each case, if the limit is finite we say the improper integral converges and that
the limit is the value of the improper integral. If the limit does not exist, the inte-
gral diverges.

L

b

a
 ƒsxd dx =

L

c

a
 ƒsxd dx +

L

b

c
 ƒsxd dx .

[a, cd ´ sc, b] ,
a 6 c 6 b ,

L

b

a
 ƒsxd dx = lim

c:b-

L

c

a
 ƒsxd dx .

L

b

a
 ƒsxd dx = lim

c:a+

L

b

c
 ƒsxd dx .
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500 Chapter 8: Techniques of Integration

In Part 3 of the definition, the integral on the left side of the equation converges if both in-
tegrals on the right side converge; otherwise it diverges.

EXAMPLE 4 Investigate the convergence of

Solution The integrand is continuous on [0, 1) but is discontinuous at
and becomes infinite as (Figure 8.17). We evaluate the integral as

The limit is infinite, so the integral diverges.

EXAMPLE 5 Evaluate

Solution The integrand has a vertical asymptote at and is continuous on [0, 1) and
(1, 3] (Figure 8.18). Thus, by Part 3 of the definition above,

Next, we evaluate each improper integral on the right-hand side of this equation.

We conclude that

Improper Integrals with a CAS

Computer algebra systems can evaluate many convergent improper integrals. To evaluate
the integral

L

q

2
 

x + 3
sx - 1d(x2

+ 1)
 dx

L

3

0
 

dx

sx - 1d2>3 = 3 + 323 2 .

 = lim
c:1+

 C3s3 - 1d1>3
- 3sc - 1d1>3 D = 323 2

 = lim
c:1+

 3sx - 1d1>3 D c3
 
L

3

1
 

dx

sx - 1d2>3 = lim
c:1+

L

3

c
 

dx

sx - 1d2>3

 = lim
b:1-

 [3sb - 1d1>3
+ 3] = 3

 = lim
b:1-

 3sx - 1d1>3 D0b
 
L

1

0
 

dx

sx - 1d2>3 = lim
b:1-

L

b

0
 

dx

sx - 1d2>3

L

3

0
 

dx

sx - 1d2>3 =

L

1

0
 

dx

sx - 1d2>3 +

L

3

1
 

dx

sx - 1d2>3 .

x = 1

L

3

0
 

dx

sx - 1d2>3 .

 = lim
b:1-

 [- ln s1 - bd + 0] = q .

 lim
b:1-

 
L

b

0
 

1
1 - x

 dx = lim
b:1-

 C - ln ƒ 1 - x ƒ D0b
x : 1-x = 1

ƒsxd = 1>s1 - xd

L

1

0
 

1
1 - x

 dx .

x

y

0

1

1b

y � 1
1 � x

FIGURE 8.17 The area beneath the curve
and above the x-axis for [0, 1) is not a real
number (Example 4).

x

y

0 3b

1

 

1
c

y � 1
(x � 1)2/3

FIGURE 8.18 Example 5 shows that the
area under the curve exists (so it is a real
number).
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8.7 Improper Integrals 501

(which converges) using Maple, enter

Then use the integration command

Maple returns the answer

To obtain a numerical result, use the evaluation command evalf and specify the num-
ber of digits as follows:

The symbol % instructs the computer to evaluate the last expression on the screen, in this
case Maple returns 1.14579.

Using Mathematica, entering

returns

To obtain a numerical result with six digits, use the command “N[%, 6]”; it also yields
1.14579.

Tests for Convergence and Divergence

When we cannot evaluate an improper integral directly, we try to determine whether it
converges or diverges. If the integral diverges, that’s the end of the story. If it converges,
we can use numerical methods to approximate its value. The principal tests for conver-
gence or divergence are the Direct Comparison Test and the Limit Comparison Test.

EXAMPLE 6 Does the integral converge?

Solution By definition,

We cannot evaluate this integral directly because it is nonelementary. But we can show
that its limit as is finite. We know that is an increasing function of b.
Therefore either it becomes infinite as or it has a finite limit as It does
not become infinite: For every value of , we have (Figure 8.19) so that

Hence,

converges to some definite finite value. We do not know exactly what the value is except
that it is something positive and less than 0.37. Here we are relying on the completeness
property of the real numbers, discussed in Appendix 6.

L

q

1
 e-x2

 dx = lim
b: qL

b

1
 e-x2

 dx

L

b

1
 e-x2

 dx …

L

b

1
 e-x dx = -e-b

+ e-1
6 e-1

L 0.36788.

e-x2

… e-xx Ú 1
b : q .b : q

1
b

1  e-x2

 dxb : q

L

q

1
 e-x2

 dx = lim
b: qL

b

1
 e-x2

 dx .

1
q

1  e-x2

 dx

Out [1]=
-p
2

+ ArcTan [2] + Log [5] .

In [1]:= Integrate [sx + 3d>ssx - 1dsx¿2 + 1dd, 5x, 2, Infinity6]

s -1>2dp + ln s5d + arctan s2d .

7 evalfs%, 6d ;

-
1
2

 p + ln s5d + arctan s2d .

7 intsƒ, x = 2..infinityd ;

7 ƒ:= sx + 3d>ssx - 1d * sx¿2 + 1dd ;

x

y

0 b1

1

y � e –x

y � e –x2

(1, e–1)

FIGURE 8.19 The graph of lies
below the graph of for 
(Example 6).

x 7 1e-x
e-x2
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502 Chapter 8: Techniques of Integration

Proof The reasoning behind the argument establishing Theorem 2 is similar to that in
Example 6. If for then from Rule 7 in Theorem 2 of Section 5.3
we have

From this it can be argued, as in Example 6, that

.

Turning this around says that

EXAMPLE 7 These examples illustrate how we use Theorem 2.

(a)

Example 3

(b)

Example 3
1

2x2
- 0.1

Ú
1
x on [1, q d and 

L

q

1
 
1
x  dx    diverges.

L

q

1
 

1

2x2
- 0.1

 dx diverges because

0 …
sin2 x

x2 …
1
x2 on [1, q d and 

L

q

1
 
1
x2 dx    converges.

L

q

1
 
sin2 x

x2  dx converges because

L

q

a
 gsxd dx diverges if 

L

q

a
 ƒsxd dx diverges.

L

q

a
 ƒsxd dx converges if 

L

q

a
 gsxd dx converges

L

b

a
 ƒsxd dx …

L

b

a
 gsxd dx, b 7 a .

x Ú a ,0 … ƒsxd … gsxd

HISTORICAL BIOGRAPHY

Karl Weierstrass
(1815–1897)

The comparison of and in Example 6 is a special case of the following test.e-xe-x2

THEOREM 2—Direct Comparison Test Let ƒ and g be continuous on 
with for all Then

1. .

2.
L

q

a
 gsxd dx diverges if 

L

q

a
 ƒsxd dx diverges.

L

q

a
 ƒsxd dx converges if 

L

q

a
 gsxd dx converges

x Ú a .0 … ƒsxd … gsxd
[a, q d

THEOREM 3—Limit Comparison Test If the positive functions ƒ and g are con-
tinuous on , and if

then

both converge or both diverge.
L

q

a
 ƒsxd dx and 

L

q

a
 gsxd dx

lim
x: q 

 
ƒsxd
gsxd

= L, 0 6 L 6 q ,

[a, q d
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8.7 Improper Integrals 503

We omit the more advanced proof of Theorem 3.

Although the improper integrals of two functions from a to may both converge, this
does not mean that their integrals necessarily have the same value, as the next example shows.

EXAMPLE 8 Show that

converges by comparison with Find and compare the two integral values.

Solution The functions and are positive and continu-
ous on Also,

a positive finite limit (Figure 8.20). Therefore, converges because 

converges.
The integrals converge to different values, however:

Example 3

and

EXAMPLE 9 Investigate the convergence of 

Solution The integrand suggests a comparison of with 
However, we cannot use the Direct Comparison Test because and the integral
of diverges. On the other hand, using the Limit Comparison Test we find that

which is a positive finite limit. Therefore, diverges because di-

verges. Approximations to the improper integral are given in Table 8.5. Note that the values 

do not appear to approach any fixed limiting value as b : q .

L

q

1
 
dx
x

L

q

1
 
1 - e-x

x  dx

 lim
x: q

 
ƒsxd
gsxd

=  lim
x: q

 a1 - e-x

x b ax
1
b =  lim

x: q

 s1 - e-xd = 1,

gsxd
ƒsxd … gsxd

gsxd = 1>x.ƒsxd = s1 - e-xd>x
L

q

1
 
1 - e-x

x  dx.

 = lim
b: q

 [tan-1 b - tan-1 1] =
p
2

-
p
4

=
p
4

.

 
L

q

1
 

dx
1 + x2 = lim

b: qL

b

1
 

dx
1 + x2

L

q

1
 
dx
x2 =

1
2 - 1

= 1

L

q

1
 
dx
x2

L

q

1
 

dx
1 + x2

 = lim
x: q

 a 1
x2 + 1b = 0 + 1 = 1, 

 lim
x: q 

 
ƒsxd
gsxd

= lim
x: q

 
1>x2

1>s1 + x2d
= lim

x: q

 
1 + x2

x2

[1, q d .
gsxd = 1>s1 + x2dƒsxd = 1>x2

1
q

1  s1>x2d dx .

L

q

1
 

dx
1 + x2

q

x

y

0

1

321

y � 1
1 � x2

y � 1
x2

FIGURE 8.20 The functions in
Example 8.

TABLE 8.5

b

2 0.5226637569

5 1.3912002736

10 2.0832053156

100 4.3857862516

1000 6.6883713446

10000 8.9909564376

100000 11.2935415306

L

b

1
 
1 � e�x

x  dx
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504 Chapter 8: Techniques of Integration

Types of Improper Integrals Discussed in This Section

INFINITE LIMITS OF INTEGRATION: TYPE I

1. Upper limit

2. Lower limit

3. Both limits

x

y

1
y � 1

1 � x2

0

L

q

-q

 
dx

1 + x2 = lim
b: - qL

0

b
 

dx
1 + x2 + lim

c: qL

c

0
 

dx
1 + x2

x

y

1
y � 1

1 � x2

0

L

0

-q

 
dx

1 + x2 = lim
a: - qL

0

a
 

dx
1 + x2

x

y

0 1

y � ln x
x2

L

q

1
 
ln x
x2  dx = lim

b: qL

b

1
 
ln x
x2  dx

INTEGRAND BECOMES INFINITE: TYPE II
4. Upper endpoint

5. Lower endpoint

6. Interior point

x

y

0 3

1

1

y � 1
(x � 1)2/3

L

3

0
 

dx

sx - 1d2>3 =

L

1

0
 

dx

sx - 1d2>3 +

L

3

1
 

dx

sx - 1d2>3

x

y

0 3

1

1

y � 1
(x � 1)2/3

L

3

1
 

dx

sx - 1d2>3 = lim
d:1+

L

3

d
 

dx

sx - 1d2>3

x

y

0 3

1

1

y � 1
(x � 1)2/3

L

1

0
 

dx

sx - 1d2>3 = lim
b:1-

L

b

0
 

dx

sx - 1d2>3
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8.7 Improper Integrals 505

Exercises 8.7

Evaluating Improper Integrals
Evaluate the integrals in Exercises 1–34 without using tables.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

Testing for Convergence
In Exercises 35–64, use integration, the Direct Comparison Test, or
the Limit Comparison Test to test the integrals for convergence. If
more than one method applies, use whatever method you prefer.

35. 36.

37. 38.

39. 40.
L

1

0
 
e -1x

1x
 dx

L

 ln 2

0
 x-2e-1>x dx

L

p>2
-p>2   

cos u du

sp - 2ud1>3
L

p

0
 

sin u du

2p - u

L

p>2
0

 cot u du
L

p>2
0

 tan u du

L

q

0
 

dx

sx + 1dsx2
+ 1dL

q

-1
 

du

u2
+ 5u + 6

L

2

0
 

dx

2 ƒ x - 1 ƒL

4

-1
 

dx

2 ƒ x ƒ

L

4

2
 

dt

t2t2
- 4L

2

1
 

ds

s2s2
- 1

L

1

0
 

4r dr

21 - r4L

2

0
 

ds

24 - s2

L

1

0
 s - ln xd dx

L

1

0
 x ln x dx

L

q

-q

 2xe-x2

 dx
L

0

-q

 e-ƒx ƒ dx

L

q

0
 2e-u sin u du

L

0

-q

 ueu du

L

q

0
 
16 tan-1 x

1 + x2  dx
L

q

0
 

dy

s1 + y2ds1 + tan-1 yd

L

q

1
 

1

x2x2
- 1

 dx
L

q

0
 

dx
s1 + xd1x

L

2

0
 

s + 1

24 - s2
 ds

L

1

0
 
u + 1

2u2
+ 2u

 du

L

q

-q

 
x dx

sx2
+ 4d3>2

L

q

-q

 
2x dx

sx2
+ 1d2

L

q

2
 

2 dt

t2
- 1L

q

2
 

2
y2

- y
 dy

L

2

-q

  
2 dx

x2
+ 4L

-2

-q

 
2 dx

x2
- 1

L

1

0
 

dr

r0.999
L

1

0
 

dx

21 - x2

L

1

-8
  

dx

x1>3
L

1

-1
  

dx

x2>3

L

4

0
 

dx

24 - xL

1

0
 

dx
1x

L

q

1
 

dx

x1.001
L

q

0
 

dx

x2
+ 1

41.

42. (Hint: for )

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

Theory and Examples
65. Find the values of p for which each integral converges.

a. b.

66. (x) dx may not equal (x) dx Show that

diverges and hence that

diverges. Then show that

Exercises 67–70 are about the infinite region in the first quadrant
between the curve and the x-axis.

67. Find the area of the region.

68. Find the centroid of the region.

69. Find the volume of the solid generated by revolving the region
about the y-axis.

y = e-x

lim
b: q

 
L

b

-b
  

2x dx

x2
+ 1

= 0.

L

q

-q

  
2x dx

x2
+ 1

L

q

0
 

2x dx

x2
+ 1

lim
b: ˆ

 1
b

-b ƒ1
ˆ

�ˆ
 ƒ

L

q

2
 

dx
xsln xdp

L

2

1
 

dx
xsln xdp

L

q

-q

  
dx

ex
+ e-x

L

q

-q

 
dx

2x4
+ 1

L

q

1
 

1
ex

- 2x  dx
L

q

1
 

1

2ex
- x

  dx

L

q

ee
 ln sln xd dx

L

q

1
 
ex

x  dx

L

q

2
 

1
ln x

 dx
L

q

4
 

2 dt

t3>2
- 1

L

q

p

 
1 + sin x

x2  dx
L

q

p

 
2 + cos x

x  dx

L

q

2
 

x dx

2x4
- 1L

q

1
 
2x + 1

x2  dx

L

q

2
 

dx

2x2
- 1L

q

0
 

dx

2x6
+ 1

L

q

0
 

du

1 + euL

q

2
 

dy

2y - 1

L

q

4
 

dx
1x - 1L

q

1
 

dx

x3
+ 1

L

1

-1
-x ln ƒ x ƒ dx

L

1

-1
 ln ƒ x ƒ dx

L

2

0
 

dx
1 - xL

2

0
 

dx

1 - x2

t Ú 0t Ú  sin t
L

1

0
 

dt
t - sin t

L

p

0
 

dt
1t + sin t
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506 Chapter 8: Techniques of Integration

70. Find the volume of the solid generated by revolving the region
about the x-axis.

71. Find the area of the region that lies between the curves 
and from to 

72. The region in Exercise 71 is revolved about the x-axis to generate
a solid.
a. Find the volume of the solid.

b. Show that the inner and outer surfaces of the solid have infi-
nite area.

73. Estimating the value of a convergent improper integral whose
domain is infinite
a. Show that

and hence that Explain why this

means that can be replaced by without
introducing an error of magnitude greater than 0.000042.

b. Evaluate numerically.

74. The infinite paint can or Gabriel’s horn As Example 3 shows,
the integral diverges. This means that the integral

which measures the surface area of the solid of revolution traced
out by revolving the curve about the x-axis, di-
verges also. By comparing the two integrals, we see that, for
every finite value 

However, the integral

for the volume of the solid converges.

a. Calculate it.

b. This solid of revolution is sometimes described as a can that
does not hold enough paint to cover its own interior. Think
about that for a moment. It is common sense that a finite
amount of paint cannot cover an infinite surface. But if we fill
the horn with paint (a finite amount), then we will have covered
an infinite surface. Explain the apparent contradiction.

75. Sine-integral function The integral

called the sine-integral function, has important applications in optics.

Si sxd =

L

x

0
 
sin t

t  dt ,

L

q

1
 p a1x b

2

 dx

x

y

1
0

b

y � 1
x

L

b

1
 2p 

1
x  A1 +

1
x4 dx 7 2p

L

b

1
 
1
x  dx .

b 7 1,

y = 1>x, 1 … x ,

L

q

1
 2p 

1
x  A1 +

1
x4 dx ,

1
q

1  sdx>xd

1
3

0  e-x2

 dx

1
3

0  e-x2

 dx1
q

0  e-x2

 dx
1

q

3  e-x2

 dx 6 0.000042.

L

q

3
 e-3x dx =

1
3

 e-9
6 0.000042,

x = p>2.x = 0y = tan x
y = sec x

a. Plot the integrand for Is the sine-integral
function everywhere increasing or decreasing? Do you think

for Check your answers by graphing the
function Si (x) for 

b. Explore the convergence of

If it converges, what is its value?

76. Error function The function

called the error function, has important applications in probabil-
ity and statistics.

a. Plot the error function for 

b. Explore the convergence of

If it converges, what appears to be its value? You will see how
to confirm your estimate in Section 15.4, Exercise 41.

77. Normal probability distribution The function

is called the normal probability density function with mean and
standard deviation The number tells where the distribution is
centered, and measures the “scatter” around the mean.

From the theory of probability, it is known that

In what follows, let and 

a. Draw the graph of ƒ. Find the intervals on which ƒ is increas-
ing, the intervals on which ƒ is decreasing, and any local ex-
treme values and where they occur.

b. Evaluate

for and 3.

c. Give a convincing argument that

(Hint: Show that for and for 

)

78. Show that if ƒ(x) is integrable on every interval of real numbers
and a and b are real numbers with then

a. and both converge if and only if

and both converge.

b.
when the integrals involved converge.
1

a
-q

 ƒsxd dx + 1
q

a  ƒsxd dx = 1
b

-q
 ƒsxd dx + 1

q

b  ƒsxd dx

1
q

b  ƒsxd dx1
b

-q
 ƒsxd dx

1
q

a  ƒsxd dx1
a

-q
 ƒsxd dx

a 6 b ,

L

q

b
 e-x>2 dx : 0 as b : q .

b 7 1,x 7 1,0 6 ƒsxd 6 e-x>2
L

q

-q

 ƒsxd dx = 1.

n = 1, 2,

L

n

-n
 ƒsxd dx

s = 1.m = 0

L

q

-q

 ƒsxd dx = 1.

s

ms .
m

ƒsxd =

1

s22p
 e- 12 Ax -m

s B2

L

q

0
  
2e-t2

2p  dt .

0 … x … 25.

erf sxd =

L

x

0
  
2e-t2

2p  dt ,

L

q

0
 
sin t

t  dt .

0 … x … 25.
x 7 0?Si sxd = 0

t 7 0.ssin td>t

T

T

T

T
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Chapter 8 Practice Exercises 507

COMPUTER EXPLORATIONS
In Exercises 79–82, use a CAS to explore the integrals for various val-
ues of p (include noninteger values). For what values of p does the in-
tegral converge? What is the value of the integral when it does con-
verge? Plot the integrand for various values of p.

79. 80.

81. 82.
L

q

-q

 xp ln ƒ x ƒ dx
L

q

0
 xp ln x dx

L

q

e
 xp ln x dx

L

e

0
 xp ln x dx

Chapter 8 Questions to Guide Your Review

1. What is the formula for integration by parts? Where does it come
from? Why might you want to use it?

2. When applying the formula for integration by parts, how do you
choose the u and ? How can you apply integration by parts to
an integral of the form 

3. If an integrand is a product of the form where m and
n are nonnegative integers, how do you evaluate the integral?
Give a specific example of each case.

4. What substitutions are made to evaluate integrals of sin mx sin nx,
sin mx cos nx, and cos mx cos nx? Give an example of each case.

5. What substitutions are sometimes used to transform integrals in-
volving and into integrals
that can be evaluated directly? Give an example of each case.

6. What restrictions can you place on the variables involved in the
three basic trigonometric substitutions to make sure the substitu-
tions are reversible (have inverses)?

7. What is the goal of the method of partial fractions?

8. When the degree of a polynomial ƒ(x) is less than the degree of a
polynomial g(x), how do you write ƒ(x) g(x) as a sum of partial
fractions if g(x)

>

2x2
- a22a2

- x2, 2a2
+ x2 ,

sinn x cosm x ,
1  ƒsxd dx?

dy

a. is a product of distinct linear factors?
b. consists of a repeated linear factor?
c. contains an irreducible quadratic factor?

What do you do if the degree of ƒ is not less than the degree of g?

9. How are integral tables typically used? What do you do if a par-
ticular integral you want to evaluate is not listed in the table?

10. What is a reduction formula? How are reduction formulas used?
Give an example.

11. You are collaborating to produce a short “how-to” manual for nu-
merical integration, and you are writing about the Trapezoidal
Rule. (a) What would you say about the rule itself and how to use
it? How to achieve accuracy? (b) What would you say if you were
writing about Simpson’s Rule instead?

12. How would you compare the relative merits of Simpson’s Rule
and the Trapezoidal Rule?

13. What is an improper integral of Type I? Type II? How are the values
of various types of improper integrals defined? Give examples.

14. What tests are available for determining the convergence and di-
vergence of improper integrals that cannot be evaluated directly?
Give examples of their use.

Chapter 8 Practice Exercises

Integration by Parts
Evaluate the integrals in Exercises 1–8 using integration by parts.

1. 2.

3. 4.

5. 6.

7. 8.

Partial Fractions
Evaluate the integrals in Exercises 9–28. It may be necessary to use a
substitution first.

9. 10.

11. 12.
L

 
x + 1

x2sx - 1d
 dx

L
 

dx

xsx + 1d2

L
 

x dx

x2
+ 4x + 3L

 
x dx

x2
- 3x + 2

L
 e-2x sin 3x dx

L
 ex cos 2x dx

L
 x2 sin s1 - xd dx

L
 sx + 1d2ex dx

L
 cos-1 ax

2
b  dx

L
 tan-1 3x dx

L
 x2 ln x dx

L
 ln sx + 1d dx

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.
L

 
ds

2es
+ 1L

 
ds

es
- 1

L
 

dx

x A1 + 23 x BL
 

dx

x A32x + 1 B
L

 
2x3

+ x2
- 21x + 24

x2
+ 2x - 8

 dx
L

 
x3

+ 4x2

x2
+ 4x + 3

 dx

L
 
x3

+ 1
x3

- x
 dx

L
 

x3
+ x2

x2
+ x - 2

 dx

L
 

t dt

t4
- t2

- 2L
 

dt

t4
+ 4t2

+ 3

L
 

s3y - 7d dy

sy - 1dsy - 2dsy - 3dL
 
y + 3

2y3
- 8y

 dy

L
 

4x dx

x3
+ 4xL

 
3x2

+ 4x + 4
x3

+ x
 dx

L
 

cos u du

sin2 u + sin u - 6L
 

sin u du

cos2 u + cos u - 2
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508 Chapter 8: Techniques of Integration

Trigonometric Substitutions
Evaluate the integrals in Exercises 29–32 (a) without using a trigono-
metric substitution, (b) using a trigonometric substitution.

29. 30.

31. 32.

Evaluate the integrals in Exercises 33–36.

33. 34.

35. 36.

Trigonometric Integrals
Evaluate the integrals in Exercises 37–44.

37. 38.

39. 40.

41. 42.

43. 44.

Numerical Integration
45. According to the error-bound formula for Simpson’s Rule, how many

subintervals should you use to be sure of estimating the value of

by Simpson’s Rule with an error of no more than in absolute
value? (Remember that for Simpson’s Rule, the number of subin-
tervals has to be even.)

46. A brief calculation shows that if then the second 

derivative of lies between 0 and 8. Based on
this, about how many subdivisions would you need to estimate the
integral of ƒ from 0 to 1 with an error no greater than in ab-
solute value using the Trapezoidal Rule?

47. A direct calculation shows that

How close do you come to this value by using the Trapezoidal Rule
with Simpson’s Rule with Try them and find out.

48. You are planning to use Simpson’s Rule to estimate the value of
the integral

with an error magnitude less than You have determined that
throughout the interval of integration. How many

subintervals should you use to assure the required accuracy? (Re-
member that for Simpson’s Rule the number has to be even.)

ƒ ƒs4dsxd ƒ … 3
10-5 .

L

2

1
 ƒsxd dx

n = 6?n = 6?

L

p

0
 2 sin2 x dx = p .

10-3

ƒsxd = 21 + x4

0 … x … 1,

10-4

ln 3 =

L

3

1
 
1
x  dx

L
 et2tan2 et

+ 1 dt
L

 21 + cos st>2d dt

L
 cos 3u cos 3u du

L
 sin 5u cos 6u du

L
 tan3 x sec3 x dx

L
 tan4 x sec2 x dx

L
 cos5 x sin5 x dx

L
 sin3 x cos4 x dx

L
 

dx

29 - x2L
 

dx

9 - x2

L
 

dx

xs9 - x2dL
 

x dx

9 - x2

L
 

t dt

24t2
- 1L

 
x dx

4 - x2

L
 

x dx

24 + x2L
 

y dy

216 - y2

49. Mean temperature Use Simpson’s Rule to approximate the
average value of the temperature function

for a 365-day year. This is one way to estimate the annual mean
air temperature in Fairbanks, Alaska. The National Weather
Service’s official figure, a numerical average of the daily normal
mean air temperatures for the year, is 25.7°F, which is slightly
higher than the average value of ƒ(x).

50. Heat capacity of a gas Heat capacity is the amount of heat
required to raise the temperature of a given mass of gas with con-
stant volume by 1°C, measured in units of cal deg-mol (calories
per degree gram molecular weight). The heat capacity of oxygen
depends on its temperature T and satisfies the formula

Use Simpson’s Rule to find the average value of and the tem-
perature at which it is attained for .

51. Fuel efficiency An automobile computer gives a digital readout of
fuel consumption in gallons per hour. During a trip, a passenger
recorded the fuel consumption every 5 min for a full hour of travel.

Time Gal h Time Gal h

0 2.5 35 2.5
5 2.4 40 2.4

10 2.3 45 2.3
15 2.4 50 2.4
20 2.4 55 2.4
25 2.5 60 2.3
30 2.6

a. Use the Trapezoidal Rule to approximate the total fuel con-
sumption during the hour.

b. If the automobile covered 60 mi in the hour, what was its fuel
efficiency (in miles per gallon) for that portion of the trip?

52. A new parking lot To meet the demand for parking, your town
has allocated the area shown here. As the town engineer, you
have been asked by the town council to find out if the lot can be
built for $11,000. The cost to clear the land will be $0.10 a
square foot, and the lot will cost $2.00 a square foot to pave. Use
Simpson’s Rule to find out if the job can be done for $11,000.

67.5 ft

54 ft

Ignored

51 ft

54 ft

49.5 ft

64.4 ft

36 ft

42 ft

0 ft

Vertical spacing � 15 ft

>>

20° … T … 675°C
Cy

Cy = 8.27 + 10-5 s26T - 1.87T 2d .

>
Cy

ƒsxd = 37 sin a 2p
365

 sx - 101db + 25

T
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Improper Integrals
Evaluate the improper integrals in Exercises 53–62.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

Which of the improper integrals in Exercises 63–68 converge and
which diverge?

63. 64.

65. 66.

67. 68.

Assorted Integrations
Evaluate the integrals in Exercises 69–116. The integrals are listed in
random order.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.
L

 
21 - y2

y2  dy
L

 
x dx

22 - x

L

p>2
p>4  21 + cos 4x dx

L
 

sin 2u du

s1 + cos 2ud2

L
 

x3 dx

x2
- 2x + 1L

 u cos s2u + 1d du

L

q

2
 

dx

sx - 1d2
L

 
9 dy

81 - y4

L
 
sin2 u

cos2 u
 du

L
 
2 - cos x + sin x

sin2 x
 dx

L
 

dx

2-2x - x2L
 

dx

xsx2
+ 1d2

L
 
x3

+ 2
4 - x2 dx

L
 

x dx
1 + 1x

L

q

-q

  
dx

x2s1 + exdL

q

-q

  
2 dx

ex
+ e-x

L

q

1
 
e-t

1t
 dt

L

q

1
 
ln z
z  dz

L

q

0
 e-u cos u du

L

q

6
 

du

2u2
+ 1

L

q

-q

  
4 dx

x2
+ 16L

q

-q

  
dx

4x2
+ 9

L

0

-q

  xe3x dx
L

q

0
 x2e-x dx

L

q

1
 

3y - 1
4y3

- y2 dy
L

q

3
 

2 du

u2
- 2u

L

0

-2
 

du

su + 1d3>5
L

2

0
  

dy

(y - 1)2>3

L

1

0
 ln x dx

L

3

0
 

dx

29 - x2

83. 84.

85. 86.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

97. 98.

99. 100.

101. 102.

103. 104.

105. 106.

107. 108.

109. 110.

111. 112.

113. a. Show that .

b. Use part (a) to evaluate

dx.

114. 115.

116.
L

 
1 - cos x
1 + cos x

 dx

L

sin2 x
1 + sin2 x

 dx
L

 
sin x

sin x + cos x
 dx

L

p>2
0

 
sin x

sin x + cos x

1
a

0  ƒ(x) dx = 1
a

0  ƒ(a - x) dx

L
 
21 - x

x  dx
L

 
1

x21 - x4
 dx

L
(ln x)ln x c1x +

ln (ln x)
x d  dx

L
 
x ln x ln x

x  dx

L

1
x # ln x # ln (ln x)

 dx
L

 
ln x

x + x ln x
 dx

L

1>2
0

 31 + 21 - x2 dx
L

 
1

2x21 + x
 dx

L
 21 + 11 + x dx

L
 2x # 21 + 1x  dx

L
 

1 + x2

(1 + x)3 dx
L

 
1 + x2

1 + x3 dx

L
 

x2

1 + x3 dx
L

 
x3

1 + x2  dx

L
 

4x3
- 20x

x4
- 10x2

+ 9
 dx

L
 

dr
1 + 1r

L
 

dy

2e2y
- 1L

 
sin 5t dt

1 + scos 5td2

L
 eu23 + 4eu du

L
 e ln1x dx

L
 
cot y dy
ln sin yL

q

1
 
ln y

y3  dy

L
 tan3 t dt

L
 

et dt

e2t
+ 3et

+ 2

L
 
tan-1 x

x2  dx
L

 
t dt

29 - 4t2

L
 x3e sx2d dx

L
 

z + 1
z2sz2

+ 4d
 dz

L
 

x dx

28 - 2x2
- x4L

 
dy

y2
- 2y + 2

Chapter 8 Additional and Advanced Exercises

Evaluating Integrals
Evaluate the integrals in Exercises 1–6.

1.
L

 ssin-1 xd2 dx

2.

3. 4.
L

 sin-1 1y dy
L

 x sin-1 x dx

L
 

dx
xsx + 1dsx + 2d Á sx + md
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510 Chapter 8: Techniques of Integration

5. 6.

Evaluate the limits in Exercises 7 and 8.

7. 8.

Evaluate the limits in Exercises 9 and 10 by identifying them with def-
inite integrals and evaluating the integrals.

9. 10.

Applications
11. Finding arc length Find the length of the curve

12. Finding arc length Find the length of the graph of the function

13. Finding volume The region in the first quadrant that is en-
closed by the x-axis and the curve is revolved
about the y-axis to generate a solid. Find the volume of the solid.

14. Finding volume The region in the first quadrant that is enclosed

by the x-axis, the curve and the lines 
and is revolved about the x-axis to generate a solid. Find
the volume of the solid.

15. Finding volume The region in the first quadrant enclosed by the
coordinate axes, the curve and the line is revolved
about the y-axis to generate a solid. Find the volume of the solid.

16. Finding volume The region in the first quadrant that is bounded
above by the curve below by the x-axis, and on the
right by the line is revolved about the line to
generate a solid. Find the volume of the solid.

17. Finding volume Let R be the “triangular” region in the first
quadrant that is bounded above by the line below by the
curve and on the left by the line Find the
volume of the solid generated by revolving R about
a. the x-axis. b. the line 

18. Finding volume (Continuation of Exercise 17. ) Find the vol-
ume of the solid generated by revolving the region R about
a. the y-axis. b. the line 

19. Finding volume The region between the x-axis and the curve

is revolved about the x-axis to generate the solid shown here.

a. Show that ƒ is continuous at 

b. Find the volume of the solid.

y

0

y 5 x ln x

x
1 2

x = 0.

y = ƒsxd = e0, x = 0

x ln x, 0 6 x … 2

x = 1.

y = 1.

x = 1.y = ln x ,
y = 1,

x = ln 2x = ln 2
y = ex

- 1,

x = 1y = ex ,

x = 4
x = 1y = 5> Ax25 - x B ,

y = 3x21 - x

0 … x … 1>2.y = ln s1 - x2d, 

y =

L

x

0
 2cos 2t dt, 0 … x … p>4.

lim
n: q

 a

n - 1

k = 0
 

1

2n2
- k2

lim
n: q

 a

n

k = 1
 ln A

n
1 +

k
n

lim
x:0+

 x
L

1

x
 
cos t

t2  dtlim
x: qL

x

-x
 sin t dt

L
 

dx

x4
+ 4L

 
dt

t - 21 - t2

20. Finding volume The infinite region bounded by the coordinate
axes and the curve in the first quadrant is revolved
about the x-axis to generate a solid. Find the volume of the solid.

21. Centroid of a region Find the centroid of the region in the first
quadrant that is bounded below by the x-axis, above by the curve

and on the right by the line 

22. Centroid of a region Find the centroid of the region in the
plane enclosed by the curves and the lines

and 

23. Length of a curve Find the length of the curve from
to 

24. Finding surface area Find the area of the surface generated by
revolving the curve in Exercise 23 about the y-axis.

25. The surface generated by an astroid The graph of the equation
is an astroid (see accompanying figure). Find the

area of the surface generated by revolving the curve about the x-axis.

26. Length of a curve Find the length of the curve

27. For what value or values of a does

converge? Evaluate the corresponding integral(s).

28. For each let Prove that 
for each 

29. Infinite area and finite volume What values of p have the fol-
lowing property: The area of the region between the curve

and the x-axis is infinite but the volume of
the solid generated by revolving the region about the x-axis is finite.

30. Infinite area and finite volume What values of p have the follow-
ing property: The area of the region in the first quadrant enclosed by
the curve the y-axis, the line and the interval [0, 1]
on the x-axis is infinite but the volume of the solid generated by 
revolving the region about one of the coordinate axes is finite.

The Gamma Function and Stirling’s Formula
Euler’s gamma function (“gamma of x”; is a Greek capital g)
uses an integral to extend the factorial function from the nonnegative
integers to other real values. The formula is

For each positive x, the number is the integral of with re-
spect to t from 0 to Figure 8.21 shows the graph of near the
origin. You will see how to calculate if you do Additional
Exercise 23 in Chapter 14.

≠s1>2d
≠q .

t x - 1e-t
≠sxd

≠sxd =

L

q

0
 t x - 1e-t dt,  x 7 0.

≠≠sxd

x = 1,y = x-p ,

y = x-p, 1 … x 6 q ,

x 7 0.
xGsxd = 1Gsxd = 1

q

0  e-xt dt .x 7 0,

L

q

1
 a ax

x2
+ 1

-

1
2x
b  dx

y =

L

x

1
 32t - 1 dt ,    1 … x … 16.

x2/3 � y2/3 � 1

x

y

0–1 1

–1

1

x2>3
+ y2>3

= 1

x = e .x = 1
y = ln x

x = 1.x = 0
y = ; s1 - x2d-1>2

x = e .y = ln x ,

y = - ln x
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Chapter 8 Additional and Advanced Exercises 511

31. If n is a nonnegative integer,

a. Show that 

b. Then apply integration by parts to the integral for to
show that This gives 

(1)

c. Use mathematical induction to verify Equation (1) for every
nonnegative integer n.

32. Stirling’s formula Scottish mathematician James Stirling
(1692–1770) showed that

so, for large x,

(2)

Dropping leads to the approximation

(3)

a. Stirling’s approximation for n! Use Equation (3) and the
fact that to show that

(4)n! L ane b
n

 22np  (Stirling’s approximation) .

n! = n≠snd

≠sxd L axe b
x

 A
2p
x  (Stirling’s formula) .

Psxd

≠sxd = axe b
x

A
2p
x  s1 + Psxdd,  Psxd : 0 as x : q .

lim
x: q

aex b
x

 A
x

2p
 ≠sxd = 1,

 ≠sn + 1d = n ≠snd = n!

 o

 ≠s4d = 3≠s3d = 6

 ≠s3d = 2≠s2d = 2

 ≠s2d = 1≠s1d = 1

≠sx + 1d = x≠sxd .
≠sx + 1d

≠s1d = 1.

Ω(n + 1) � n!

As you will see if you do Exercise 104 in Section 10.1,
Equation (4) leads to the approximation

(5)

b. Compare your calculator’s value for n! with the value given by
Stirling’s approximation for as far as your
calculator can go.

c. A refinement of Equation (2) gives

or

which tells us that

(6)

Compare the values given for 10! by your calculator, Stirling’s
approximation, and Equation (6).

Tabular Integration
The technique of tabular integration also applies to integrals of the
form when neither function can be differentiated re-
peatedly to become zero. For example, to evaluate

we begin as before with a table listing successive derivatives of 
and integrals of cos x:

and its cos x and its
derivatives integrals

( ) cos x

( ) sin x

Stop here: Row is same as

first row except for multi-

plicative constants (4 on the

left, on the right).

We stop differentiating and integrating as soon as we reach a row that
is the same as the first row except for multiplicative constants. We in-
terpret the table as saying

We take signed products from the diagonal arrows and a signed inte-
gral for the last horizontal arrow. Transposing the integral on the right-
hand side over to the left-hand side now gives

5 
L

 e2x cos x dx = e2x sin x + 2e2x cos x

+

L
 s4e2xds -cos xd dx .

L
 e2x cos x dx = + se2x sin xd - s2e2xs -cos xdd

-1

-cos x  
 

"4e2x

-2e2x

+e2x

e2x

e2x

L
 e2x cos x dx

1  ƒsxdgsxd dx

n! L ane b
n

 22np e1>s12nd .

≠sxd L axe b
x

 A
2p
x  e1>s12xd,

≠sxd = axe b
x

 A
2p
x  e1>s12xds1 + Psxdd

n = 10, 20, 30, Á ,

2n n! L

n
e .

x

y

0 1–1 3–2 2–3

–1

–2

–3

1

2

3
y � �(x)

FIGURE 8.21 Euler’s gamma function
is a continuous function of x whose

value at each positive integer is n!.
The defining integral formula for is valid
only for but we can extend to
negative noninteger values of x with the
formula which is
the subject of Exercise 31.

≠sxd = s≠sx + 1dd>x ,

≠x 7 0,
≠

n + 1
≠sxd

(+ ) ;

T

T
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512 Chapter 8: Techniques of Integration

or

after dividing by 5 and adding the constant of integration.
Use tabular integration to evaluate the integrals in Exercises 33–40.

33. 34.

35. 36.

37. 38.

39. 40.

The Substitution 
The substitution

(7)

reduces the problem of integrating a rational expression in sin x and
cos x to a problem of integrating a rational function of z. This in turn
can be integrated by partial fractions.

From the accompanying figure

we can read the relation

To see the effect of the substitution, we calculate

(8)

and

 = 2 tan 
x
2

# 1
sec2 sx>2d

=

2 tan sx>2d

1 + tan2 sx>2d

 sin x = 2 sin 
x
2

 cos 
x
2

= 2 
sin sx>2d
cos sx>2d

# cos2 ax
2
b

 cos x =

1 - z 2

1 + z 2 , 

 =

2
1 + tan2 sx>2d

- 1 =

2
1 + z2 - 1

 cos x = 2 cos2 ax
2
b - 1 =

2
sec2 sx>2d

- 1

tan 
x
2

=

sin x
1 + cos x

.

A

P(cos x, sin x)

sin x
x

cos x1 0

1

2
x

z = tan 
x
2

z = tan sx>2d

L
 x2 ln saxd dx

L
 ln saxd dx

L
 eax cos bx dx

L
 eax sin bx dx

L
 cos 5x sin 4x dx

L
 sin 3x sin x dx

L
 e3x sin 4x dx

L
 e2x cos 3x dx

L
 e2x cos x dx =

e2x sin x + 2e2x cos x
5

+ C ,

(9)

Finally, so

(10)

Examples

a.

b.

Use the substitutions in Equations (7)–(10) to evaluate the integrals in
Exercises 41–48. Integrals like these arise in calculating the average
angular velocity of the output shaft of a universal joint when the input
and output shafts are not aligned.

41. 42.

43. 44.

45. 46.

47. 48.

Use the substitution to evaluate the integrals in Exercises
49 and 50.

49. 50.
L

 csc u du
L

 sec u du

z = tan su>2d

L
 

cos t dt
1 - cos tL

 
dt

sin t - cos t

L

2p>3
p>2  

cos u du
sin u cos u + sin uL

p>2
0

 
du

2 + cos u

L

p>2
p>3  

dx
1 - cos xL

p>2
0

 
dx

1 + sin x

L
 

dx
1 + sin x + cos xL

 
dx

1 - sin x

 =

2

23
 tan-1 

1 + 2 tan sx>2d

23
+ C

 =

2

23
 tan-1 

2z + 1

23
+ C

 =

1
a tan-1 aua b + C

 =

L
 

du

u2
+ a2

 =

L
 

dz

z2
+ z + 1

=

L
 

dz

sz + s1>2dd2
+ 3>4

 
L

 
1

2 + sin x
 dx =

L
 

1 + z 2

2 + 2z + 2z 2  
2 dz

1 + z 2

 = tan ax
2
b + C

 =

L
 dz = z + C

 
L

 
1

1 + cos x
 dx =

L
 
1 + z2

2
 

2 dz

1 + z2

dx =

2 dz

1 + z2 .

x = 2 tan-1 z ,

 sin x =

2z
1 + z 2 .
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Chapter 8 Technology Application Projects

Mathematica Maple Modules:
Riemann, Trapezoidal, and Simpson Approximations

Part I: Visualize the error involved in using Riemann sums to approximate the area under a curve.

Part II: Build a table of values and compute the relative magnitude of the error as a function of the step size 

Part III: Investigate the effect of the derivative function on the error.

Parts IV and V: Trapezoidal Rule approximations.

Part VI: Simpson’s Rule approximations.

Games of Chance: Exploring the Monte Carlo Probabilistic Technique for Numerical Integration
Graphically explore the Monte Carlo method for approximating definite integrals.

Computing Probabilities with Improper Integrals
More explorations of the Monte Carlo method for approximating definite integrals.

¢x .

>
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514

OVERVIEW In Section 4.8 we introduced differential equations of the form ,
where is given and y is an unknown function of . When is continuous over some inter-
val, we found the general solution by integration, . In Section 7.2 we
solved separable differential equations. Such equations arise when investigating exponen-
tial growth or decay, for example. In this chapter we study some other types of first-order
differential equations. They involve only first derivatives of the unknown function.

9.1 Solutions, Slope Fields, and Euler’s Method

We begin this section by defining general differential equations involving first derivatives.
We then look at slope fields, which give a geometric picture of the solutions to such equa-
tions. Many differential equations cannot be solved by obtaining an explicit formula for
the solution. However, we can often find numerical approximations to solutions. We pre-
sent one such method here, called Euler’s method, upon which many other numerical
methods are based.

General First-Order Differential Equations and Solutions

A first-order differential equation is an equation

(1)

in which ƒ(x, y) is a function of two variables defined on a region in the xy-plane. The
equation is of first order because it involves only the first derivative dy dx (and not
higher-order derivatives). We point out that the equations

are equivalent to Equation (1) and all three forms will be used interchangeably in the text.
A solution of Equation (1) is a differentiable function defined on an interval

I of x-values (perhaps infinite) such that

on that interval. That is, when y(x) and its derivative are substituted into Equation (1),
the resulting equation is true for all x over the interval I. The general solution to a first-
order differential equation is a solution that contains all possible solutions. The general
solution always contains an arbitrary constant, but having this property doesn’t mean a
solution is the general solution. That is, a solution may contain an arbitrary constant with-
out being the general solution. Establishing that a solution is the general solution may 

y¿sxd

d
dx

 ysxd = ƒsx, ysxdd

y = ysxd

y¿ = ƒsx, yd    and    d
dx

 y = ƒsx, yd

>

dy
dx

= ƒsx, yd

y = 1ƒ(x) dx y(x)
ƒxƒ

dy>dx = ƒ(x)

9
FIRST-ORDER

DIFFERENTIAL EQUATIONS
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9.1 Solutions, Slope Fields, and Euler’s Method 515

require deeper results from the theory of differential equations and is best studied in a
more advanced course.

EXAMPLE 1 Show that every member of the family of functions

is a solution of the first-order differential equation

on the interval , where C is any constant.

Solution Differentiating gives

We need to show that the differential equation is satisfied when we substitute into it the ex-
pressions for y, and for . That is, we need to verify that for all

This last equation follows immediately by expanding the expression on the right-hand side:

Therefore, for every value of C, the function is a solution of the differential
equation.

As was the case in finding antiderivatives, we often need a particular rather than the
general solution to a first-order differential equation The particular solution
satisfying the initial condition is the solution whose value is when

Thus the graph of the particular solution passes through the point in the
xy-plane. A first-order initial value problem is a differential equation 
whose solution must satisfy an initial condition 

EXAMPLE 2 Show that the function

is a solution to the first-order initial value problem

Solution The equation

is a first-order differential equation with 

On the left side of the equation:

dy
dx

=
d
dx

 ax + 1 -
1
3

 exb = 1 -
1
3

 ex .

ƒsx, yd = y - x.

dy
dx

= y - x

dy
dx

= y - x, ys0d =
2
3

.

y = sx + 1d -
1
3

 ex

ysx0d = y0.
y¿ = ƒsx, yd

sx0 , y0dx = x0.
y0y = ysxdysx0d = y0

y¿ = ƒsx, yd.

y = C>x + 2

1
x  c2 - aCx + 2b d =

1
x a- C

x b = -
C
x2 .

-
C
x2 =

1
x  c2 - aCx + 2b d .

x H s0, q d ,
dy>dx-C>x2(C>x) + 2

dy
dx

= C 
d
dx

 a1x b + 0 = -
C
x2 .

y = C>x + 2

s0, q d

dy
dx

=
1
x  s2 - yd

y =
C
x + 2
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On the right side of the equation:

The function satisfies the initial condition because

The graph of the function is shown in Figure 9.1.

Slope Fields: Viewing Solution Curves

Each time we specify an initial condition for the solution of a differential equa-
tion the solution curve (graph of the solution) is required to pass through the
point and to have slope there. We can picture these slopes graphically by
drawing short line segments of slope ƒ(x, y) at selected points (x, y) in the region of the 
xy-plane that constitutes the domain of ƒ. Each segment has the same slope as the solution
curve through (x, y) and so is tangent to the curve there. The resulting picture is called a
slope field (or direction field) and gives a visualization of the general shape of the solu-
tion curves. Figure 9.2a shows a slope field, with a particular solution sketched into it in
Figure 9.2b. We see how these line segments indicate the direction the solution curve takes
at each point it passes through.

ƒsx0 , y0dsx0 , y0d
y¿ = ƒsx, yd,

ysx0d = y0

ys0d = csx + 1d -
1
3

 ex d
x = 0

= 1 -
1
3

=
2
3

.

y - x = sx + 1d -
1
3

 ex
- x = 1 -

1
3

 ex .

516 Chapter 9: First-Order Differential Equations

Figure 9.3 shows three slope fields and we see how the solution curves behave by
following the tangent line segments in these fields. Slope fields are useful because
they display the overall behavior of the family of solution curves for a given differen-
tial equation. For instance, the slope field in Figure 9.3b reveals that every solution

to the differential equation specified in the figure satisfies We
will see that knowing the overall behavior of the solution curves is often critical to un-
derstanding and predicting outcomes in a real-world system modeled by a differential
equation.

limx: ; q y(x) = 0.y(x)

–4 –2 2 4

–4

–3

–2

–1

1

2

x

y

⎛
⎝

⎛
⎝0, 2

3

y � (x � 1) �   ex1
3

FIGURE 9.1 Graph of the solution to the
initial value problem in Example 2.

0 2–2–4 4

2

4

–2

–4

⎛
⎝

⎛
⎝0, 2

3

0 2–2–4 4

2

4

–2

–4

(a) (b)

x x

y y

FIGURE 9.2 (a) Slope field for (b) The particular solution

curve through the point (Example 2).a0, 
2
3
b

dy

dx
= y - x .
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9.1 Solutions, Slope Fields, and Euler’s Method 517

Constructing a slope field with pencil and paper can be quite tedious. All our exam-
ples were generated by a computer.

Euler’s Method

If we do not require or cannot immediately find an exact solution giving an explicit for-
mula for an initial value problem we can often use a computer to
generate a table of approximate numerical values of y for values of x in an appropriate in-
terval. Such a table is called a numerical solution of the problem, and the method by
which we generate the table is called a numerical method.

Given a differential equation and an initial condition we
can approximate the solution by its linearization

The function L(x) gives a good approximation to the solution y(x) in a short interval about
(Figure 9.4). The basis of Euler’s method is to patch together a string of linearizations to

approximate the curve over a longer stretch. Here is how the method works.
We know the point lies on the solution curve. Suppose that we specify a new

value for the independent variable to be (Recall that in the defini-
tion of differentials.) If the increment dx is small, then

is a good approximation to the exact solution value So from the point 
which lies exactly on the solution curve, we have obtained the point which lies
very close to the point on the solution curve (Figure 9.5).

Using the point and the slope of the solution curve through 
we take a second step. Setting we use the linearization of the solution curve
through to calculate

This gives the next approximation to values along the solution curve 
(Figure 9.6). Continuing in this fashion, we take a third step from the point with
slope to obtain the third approximation

y3 = y2 + ƒsx2, y2d dx ,

ƒsx2 , y2d
sx2 , y2d

y = ysxdsx2 , y2d

y2 = y1 + ƒsx1, y1d dx .

sx1, y1d
x2 = x1 + dx,

sx1, y1d,ƒsx1, y1dsx1, y1d
sx1, ysx1dd

sx1, y1d,
sx0 , y0d,y = ysx1d.

y1 = Lsx1d = y0 + ƒsx0 , y0d dx

dx = ¢xx1 = x0 + dx .
sx0 , y0d

x0

Lsxd = ysx0d + y¿sx0dsx - x0d or Lsxd = y0 + ƒsx0 , y0dsx - x0d .

y = ysxd
ysx0d = y0 ,dy>dx = ƒsx, yd

y¿ = ƒsx, yd, ysx0d = y0 ,

(a) y' � y � x2 (b) y' � –
1 � x2

2xy
(c) y' � (1 � x)y � x

2

FIGURE 9.3 Slope fields (top row) and selected solution curves (bottom row). In computer
renditions, slope segments are sometimes portrayed with arrows, as they are here. This is not to
be taken as an indication that slopes have directions, however, for they do not.

0

y
y � L(x) � y0 � f (x0, y0)(x � x0)

y � y (x)

(x0, y0)y0

x0
x

FIGURE 9.4 The linearization L(x) of
at x = x0 .y = ysxd

0

y

y 5 y(x)

(x1, y(x1))

(x1, y1)

x0 x1 5 x0 1 dx
dx x

(x0, y0)

FIGURE 9.5 The first Euler step
approximates with y1 = Lsx1d .ysx1d

x

y

0

Euler approximation

Error

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

x0 x1 x2 x3

dx dx dx

True solution curve
y � y(x)

FIGURE 9.6 Three steps in the Euler
approximation to the solution of the initial
value problem 
As we take more steps, the errors involved
usually accumulate, but not in the
exaggerated way shown here.

y¿ = ƒsx, yd, y sx0d = y0 .
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and so on. We are literally building an approximation to one of the solutions by following
the direction of the slope field of the differential equation.

The steps in Figure 9.6 are drawn large to illustrate the construction process, so the
approximation looks crude. In practice, dx would be small enough to make the red curve
hug the blue one and give a good approximation throughout.

EXAMPLE 3 Find the first three approximations using Euler’s method for the
initial value problem

starting at with 

Solution We have the starting values and Next we determine the 
values of x at which the Euler approximations will take place: 

and Then we find

First:  

Second:  

Third: 

The step-by-step process used in Example 3 can be continued easily. Using equally
spaced values for the independent variable in the table for the numerical solution, and gen-
erating n of them, set

Then calculate the approximations to the solution,

The number of steps n can be as large as we like, but errors can accumulate if n is too
large.

Euler’s method is easy to implement on a computer or calculator. A computer program
generates a table of numerical solutions to an initial value problem, allowing us to input 
and the number of steps n, and the step size dx. It then calculates the approximate solu-
tion values in iterative fashion, as just described.

Solving the separable equation in Example 3, we find that the exact solution to the
initial value problem is We use this information in Example 4.y = 2ex

- 1.

y1, y2 , Á , yn

y0 ,
x0

 yn = yn - 1 + ƒsxn - 1, yn - 1d dx .

 o

 y2 = y1 + ƒsx1, y1d dx

 y1 = y0 + ƒsx0 , y0d dx

 xn = xn - 1 + dx .

 o

 x2 = x1 + dx

 x1 = x0 + dx

 = 1.42 + s1 + 1.42ds0.1d = 1.662

 = y2 + s1 + y2d dx

 y3 = y2 + ƒsx2 , y2d dx

 = 1.2 + s1 + 1.2ds0.1d = 1.42

 = y1 + s1 + y1d dx

 y2 = y1 + ƒsx1, y1d dx

 = 1 + s1 + 1ds0.1d = 1.2

 = y0 + s1 + y0d dx

 y1 = y0 + ƒsx0 , y0d dx

x3 = x0 + 3 dx = 0.3.x2 = x0 + 2 dx = 0.2,
x1 = x0 + dx = 0.1,

y0 = 1.x0 = 0

dx = 0.1.x0 = 0

y¿ = 1 + y, ys0d = 1,

y1, y2 , y3

518 Chapter 9: First-Order Differential Equations

HISTORICAL BIOGRAPHY

Leonhard Euler
(1703–1783)
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9.1 Solutions, Slope Fields, and Euler’s Method 519

EXAMPLE 4 Use Euler’s method to solve

on the interval starting at and taking (a) and (b)
Compare the approximations with the values of the exact solution 

Solution

(a) We used a computer to generate the approximate values in Table 9.1. The “error”
column is obtained by subtracting the unrounded Euler values from the unrounded
values found using the exact solution. All entries are then rounded to four decimal
places.

y = 2ex
- 1.

dx = 0.05.dx = 0.1x0 = 00 … x … 1,

y¿ = 1 + y, ys0d = 1,

TABLE 9.1 Euler solution of 
step size 

x y (Euler) y (exact) Error

0 1 1 0

0.1 1.2 1.2103 0.0103

0.2 1.42 1.4428 0.0228

0.3 1.662 1.6997 0.0377

0.4 1.9282 1.9836 0.0554

0.5 2.2210 2.2974 0.0764

0.6 2.5431 2.6442 0.1011

0.7 2.8974 3.0275 0.1301

0.8 3.2872 3.4511 0.1639

0.9 3.7159 3.9192 0.2033

1.0 4.1875 4.4366 0.2491

dx = 0.1
y¿ = 1 + y, ys0d = 1 ,

10

1

2

3

4

x

y

y � 2ex � 1

FIGURE 9.7 The graph of 
superimposed on a scatterplot of the Euler
approximations shown in Table 9.1
(Example 4).

y = 2ex
- 1

By the time we reach (after 10 steps), the error is about 5.6% of the exact
solution. A plot of the exact solution curve with the scatterplot of Euler solution
points from Table 9.1 is shown in Figure 9.7.

(b) One way to try to reduce the error is to decrease the step size. Table 9.2 shows the re-
sults and their comparisons with the exact solutions when we decrease the step size to
0.05, doubling the number of steps to 20. As in Table 9.1, all computations are per-
formed before rounding. This time when we reach the relative error is only
about 2.9%.

It might be tempting to reduce the step size even further in Example 4 to obtain
greater accuracy. Each additional calculation, however, not only requires additional com-
puter time but more importantly adds to the buildup of round-off errors due to the approx-
imate representations of numbers inside the computer.

The analysis of error and the investigation of methods to reduce it when making nu-
merical calculations are important but are appropriate for a more advanced course. There
are numerical methods more accurate than Euler’s method, usually presented in a further
study of differential equations.

x = 1,

x = 1
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520 Chapter 9: First-Order Differential Equations

TABLE 9.2 Euler solution of 
step size 

x y (Euler) y (exact) Error

0 1 1 0

0.05 1.1 1.1025 0.0025

0.10 1.205 1.2103 0.0053

0.15 1.3153 1.3237 0.0084

0.20 1.4310 1.4428 0.0118

0.25 1.5526 1.5681 0.0155

0.30 1.6802 1.6997 0.0195

0.35 1.8142 1.8381 0.0239

0.40 1.9549 1.9836 0.0287

0.45 2.1027 2.1366 0.0340

0.50 2.2578 2.2974 0.0397

0.55 2.4207 2.4665 0.0458

0.60 2.5917 2.6442 0.0525

0.65 2.7713 2.8311 0.0598

0.70 2.9599 3.0275 0.0676

0.75 3.1579 3.2340 0.0761

0.80 3.3657 3.4511 0.0853

0.85 3.5840 3.6793 0.0953

0.90 3.8132 3.9192 0.1060

0.95 4.0539 4.1714 0.1175

1.00 4.3066 4.4366 0.1300

dx = 0.05
y¿ = 1 + y, ys0d = 1,

Exercises 9.1

Slope Fields
In Exercises 1–4, match the differential equations with their slope
fields, graphed here.

2

–2

–4

4

–2 2 4–4

(b)

x

y

–2

2

4

–4

2–2–4 4

(a)

x

y

1. 2.

3. 4. y¿ = y2
- x2y¿ = -

x
y

y¿ = y + 1y¿ = x + y

2

–2

–2 2 4–4

–4

4

(d)

x

y

2

–2

–2 2 4–4

–4

4

(c)

x

y
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9.1 Solutions, Slope Fields, and Euler’s Method 521

In Exercises 5 and 6, copy the slope fields and sketch in some of the
solution curves.

5.

6.

Integral Equations
In Exercises 7–10, write an equivalent first-order differential equation
and initial condition for y.

7.

8.

9.

10.

Using Euler’s Method
In Exercises 11–16, use Euler’s method to calculate the first three ap-
proximations to the given initial value problem for the specified incre-
ment size. Calculate the exact solution and investigate the accuracy of
your approximations. Round your results to four decimal places.

11.

12.

13.

14.

15.

16.

17. Use the Euler method with to estimate y(1) if 
and What is the exact value of y(1)?

18. Use the Euler method with to estimate y(2) if 
and What is the exact value of y(2)?ys1d = 2.

y¿ = y>xdx = 0.2

ys0d = 1.
y¿ = ydx = 0.2

y¿ = yex, ys0d = 2, dx = 0.5

y¿ = 2xex2

, ys0d = 2, dx = 0.1

y¿ = y2s1 + 2xd, ys -1d = 1, dx = 0.5

y¿ = 2xy + 2y, ys0d = 3, dx = 0.2

y¿ = xs1 - yd, ys1d = 0, dx = 0.2

y¿ = 1 -

y
x, ys2d = -1, dx = 0.5

y = 1 +

L

x

0
 y (t) dt

y = 2 -

L

x

0
 (1 + y (t)) sin t dt

y =

L

x

1
 
1
t  dt

y = -1 +

L

x

1
 (t - y (t)) dt

2

–2

–2 2 4–4

–4

4

x

y

y¿ = y(y + 1)(y - 1)

2

–2

–2 2 4–4

–4

4

x

y

y¿ = (y + 2)(y - 2)

19. Use the Euler method with to estimate y(5) if 
and What is the exact value of y(5)?

20. Use the Euler method with to estimate y(2) if 
and What is the exact value of y(2)?

21. Show that the solution of the initial value problem

is

22. What integral equation is equivalent to the initial value problem

COMPUTER EXPLORATIONS
In Exercises 23–28, obtain a slope field and add to it graphs of the 
solution curves passing through the given points.

23. with

a. (0, 1) b. (0, 2) c.

24. with

a. (0, 1) b. (0, 4) c. (0, 5)

25. with

a. (0, 1) b. (0, ) c. (0, ) d.

26. with

a. (0, 1) b. (0, 2) c. d. (0, 0)

27. with

a. b. (0, 1) c. (0, 3) d. (1, �1)

28. with

a. (0, 2) b. c.

In Exercises 29 and 30, obtain a slope field and graph the particular
solution over the specified interval. Use your CAS DE solver to find
the general solution of the differential equation.

29. A logistic equation

30.

Exercises 31 and 32 have no explicit solution in terms of elementary
functions. Use a CAS to explore graphically each of the differential
equations.

31.

32. A Gompertz equation

33. Use a CAS to find the solutions of subject to the
initial condition if ƒ(x) is

a. 2x b. sin 2x c. d.

Graph all four solutions over the interval to com-
pare the results.

34. a. Use a CAS to plot the slope field of the differential equation

over the region and 

b. Separate the variables and use a CAS integrator to find the
general solution in implicit form.

-3 … y … 3.-3 … x … 3

y¿ =

3x2
+ 4x + 2

2s y - 1d

-2 … x … 6

2e-x>2 cos 2x .3ex>2
ys0d = 0,

y¿ + y = ƒsxd
0 … x … 4, 0 … y … 3

y¿ = ys1>2 - ln yd, ys0d = 1>3;

y¿ = cos s2x - yd, ys0d = 2; 0 … x … 5, 0 … y … 5

y¿ = ssin xdssin yd, ys0d = 2; -6 … x … 6, -6 … y … 6

0 … y … 30 … x … 4,
 ys0d = 1>2;y¿ = ys2 - yd,

A -223, -4 Bs0, -6d

y¿ =

xy

x2
+ 4

s0, -1d
y¿ = s y - 1dsx + 2d

s0, -1d
y¿ = y2

s -1, -1d1>4-2

y¿ = ysx + yd

y¿ = 2s y - 4d
s0, -1d

y¿ = y

y¿ = ƒ(x),  y(x0) = y0?

y = -1 - x + (1 + x0 + y0) e
x - x0.

y(x0) = y0y¿ = x + y,

ys0d = 1.x sin yy¿ =

dx = 1>3
ys1d = -1.y2>2xy¿ =

dx = 0.5

T

T
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c. Using a CAS implicit function grapher, plot solution curves
for the arbitrary constant values 

d. Find and graph the solution that satisfies the initial condition

In Exercises 35–38, use Euler’s method with the specified step size to
estimate the value of the solution at the given point Find the value
of the exact solution at 

35.

36.

37.

38.

Use a CAS to explore graphically each of the differential equations in
Exercises 39–42. Perform the following steps to help with your explo-
rations.

a. Plot a slope field for the differential equation in the given
xy-window.

b. Find the general solution of the differential equation using
your CAS DE solver.

c. Graph the solutions for the values of the arbitrary constant
superimposed on your slope field plot.C = -2, -1, 0, 1, 2

y¿ = 1 + y2, ys0d = 0, dx = 0.1, x*
= 1

y¿ = 2x>y, y 7 0, ys0d = 1, dx = 0.1, x*
= 1

y¿ = 2y2(x - 1), ys2d = -1>2, dx = 0.1, x*
= 3

y¿ = 2xex2

, ys0d = 2, dx = 0.1, x*
= 1

x* .
x*.

ys0d = -1.

C = -6, -4, -2, 0, 2, 4, 6 .

522 Chapter 9: First-Order Differential Equations

d. Find and graph the solution that satisfies the specified initial
condition over the interval [0, b].

e. Find the Euler numerical approximation to the solution of the
initial value problem with 4 subintervals of the x-interval and
plot the Euler approximation superimposed on the graph pro-
duced in part (d).

f. Repeat part (e) for 8, 16, and 32 subintervals. Plot these three
Euler approximations superimposed on the graph from part (e).

g. Find the error at the specified point
for each of your four Euler approximations. Discuss

the improvement in the percentage error.

39.

40.

41.

42.
b = 3p>2y¿ = ssin xdssin yd, ys0d = 2; -6 … x … 6, -6 … y … 6;

b = 3
0 … y … 3;0 … x … 4,ys0d = 1>2; y¿ = ys2 - yd, 

b = 2y¿ = -x>y, ys0d = 2; -3 … x … 3, -3 … y … 3;

b = 1
y¿ = x + y, ys0d = -7>10; -4 … x … 4, -4 … y … 4;

x = b
s y sexactd - y sEulerdd

9.2 First-Order Linear Equations

A first-order linear differential equation is one that can be written in the form

(1)

where P and Q are continuous functions of x. Equation (1) is the linear equation’s stan-
dard form. Since the exponential growth decay equation (Section 7.2) can be
put in the standard form

we see it is a linear equation with and Equation (1) is linear (in y)
because y and its derivative dy dx occur only to the first power, they are not multiplied 

together, nor do they appear as the argument of a function such as or 

EXAMPLE 1 Put the following equation in standard form:

Solution

Divide by x.

 
dy
dx

-
3
x  y = x

 
dy
dx

= x +
3
x  y

 x 
dy
dx

= x2
+ 3y

x 
dy
dx

= x2
+ 3y, x 7 0.

2dy>dx B .sin y, ey ,A
> Qsxd = 0.Psxd = -k

dy
dx

- ky = 0,

dy>dx = ky>

dy
dx

+ Psxdy = Qsxd ,

and Qsxd = x
Standard form with Psxd = -3>x
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9.2 First-Order Linear Equations 523

Notice that P(x) is not The standard form is so the mi-
nus sign is part of the formula for P(x).

Solving Linear Equations

We solve the equation

by multiplying both sides by a positive function y(x) that transforms the left-hand side into
the derivative of the product We will show how to find y in a moment, but first we
want to show how, once found, it provides the solution we seek.

Here is why multiplying by y(x) works:

(2)

Equation (2) expresses the solution of Equation (1) in terms of the functions y(x) and Q(x).
We call y(x) an integrating factor for Equation (1) because its presence makes the equa-
tion integrable.

Why doesn’t the formula for P(x) appear in the solution as well? It does, but indi-
rectly, in the construction of the positive function y(x). We have

Condition imposed on y

Derivative Product Rule 

The terms cancel.

This last equation will hold if

(3) y = e1 P dx

 e ln y
= e1 P dx

 ln y =

L
 P dx

 
L

 
dy
y =

L
 P dx

 
dy
y = P dx

 
dy
dx

= Py

y 
dy

dx
 y 

dy
dx

= Pyy

 y 
dy
dx

+ y 
dy
dx

= y 
dy
dx

+ Pyy

 
d
dx

 syyd = y 
dy
dx

+ Pyy

 y =
1
ysxd

 
L

 ysxdQsxd dx

 ysxd # y =

L
 ysxdQsxd dx

 
d
dx

 sysxd # yd = ysxdQsxd

 ysxd 
dy
dx

+ Psxdysxdy = ysxdQsxd

 
dy
dx

+ Psxdy = Qsxd

ysxd # y .

dy
dx

+ Psxdy = Qsxd

y¿ + Psxdy = Qsxd ,+3>x .-3>x ,

Original equation is
in standard form.

Multiply by positive y(x).

Integrate with respect
to x.

y 
dy

dx
+ Pyy =

d
dx

 sy # yd .

ysxd is chosen to make

Variables separated, y 7 0

Integrate both sides.

Since we do not need absolute
value signs in ln y.

y 7 0 ,

Exponentiate both sides to solve for y.
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Thus a formula for the general solution to Equation (1) is given by Equation (2), where
y(x) is given by Equation (3). However, rather than memorizing the formula, just remem-
ber how to find the integrating factor once you have the standard form so P(x) is correctly
identified. Any antiderivative of P works for Equation (3).

524 Chapter 9: First-Order Differential Equations

To solve the linear equation multiply both sides by the
integrating factor and integrate both sides.ysxd = e1 Psxd dx

y¿ + Psxdy = Qsxd ,

When you integrate the product on the left-hand side in this procedure, you always obtain the
product y(x)y of the integrating factor and solution function y because of the way y is defined.

EXAMPLE 2 Solve the equation

Solution First we put the equation in standard form (Example 1):

so is identified.
The integrating factor is

Next we multiply both sides of the standard form by y(x) and integrate:

Solving this last equation for y gives the general solution:

EXAMPLE 3 Find the particular solution of

satisfying ys1d = -2.

3xy¿ - y = ln x + 1, x 7 0,

y = x3 a- 1
x + Cb = -x2

+ Cx3, x 7 0.

 
1
x3 y = -

1
x + C .

 
1
x3 y =

L
 
1
x2 dx

 
d
dx

 a 1
x3 yb =

1
x2

 
1
x3 

dy
dx

-
3
x4 y =

1
x2

1
x3

# ady
dx

-
3
x  yb =

1
x3

# x

 = e ln x-3

=
1
x3 .

 = e-3 ln x

 = e-3 ln ƒ x ƒ

 ysxd = e1 Psxd dx
= e1s-3>xd dx

Psxd = -3>x

dy
dx

-
3
x  y = x ,

x 
dy
dx

= x2
+ 3y, x 7 0.

HISTORICAL BIOGRAPHY

Adrien Marie Legendre
(1752–1833)

x 7 0

Constant of integration is 0,
so y is as simple as possible.

Left-hand side is 
d
dx

 sy # yd.

Integrate both sides.
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9.2 First-Order Linear Equations 525

Solution With we write the equation in standard form:

Then the integrating factor is given by

Thus

Left-hand side is yy.

Integration by parts of the right-hand side gives

Therefore

or, solving for y,

When and this last equation becomes

so

Substitution into the equation for y gives the particular solution

In solving the linear equation in Example 2, we integrated both sides of the equation
after multiplying each side by the integrating factor. However, we can shorten the amount
of work, as in Example 3, by remembering that the left-hand side always integrates into
the product of the integrating factor times the solution function. From Equation (2)
this means that

(4)

We need only integrate the product of the integrating factor y(x) with Q(x) on the right-
hand side of Equation (1) and then equate the result with y(x)y to obtain the general solution.
Nevertheless, to emphasize the role of y(x) in the solution process, we sometimes follow
the complete procedure as illustrated in Example 2.

Observe that if the function Q(x) is identically zero in the standard form given by
Equation (1), the linear equation is separable and can be solved by the method of Section 7.2:

Separating the variables 
dy
y = -Psxd dx

Qsxd K 0 
dy
dx

+ Psxdy = 0

 
dy
dx

+ Psxdy = Qsxd

ysxdy =

L
 ysxdQsxd dx .

ysxd # y

y = 2x1>3
- ln x - 4.

C = 2.

-2 = - s0 + 4d + C ,

y = -2x = 1

y = - sln x + 4d + Cx1>3 .

x-1>3y = -x-1>3sln x + 1d - 3x-1>3
+ C

x-1>3y = -x-1>3sln x + 1d +

L
 x-4>3 dx + C .

x-1>3y =
1
3L

sln x + 1dx-4>3 dx .

x 7 0y = e1- dx>3x
= e s-1>3dln x

= x-1>3 .

y¿ -
1
3x

 y =
ln x + 1

3x
.

x 7 0,
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RL Circuits

The diagram in Figure 9.8 represents an electrical circuit whose total resistance is a con-
stant R ohms and whose self-inductance, shown as a coil, is L henries, also a constant.
There is a switch whose terminals at a and b can be closed to connect a constant electrical
source of V volts.

Ohm’s Law, has to be augmented for such a circuit. The correct equation 
accounting for both resistance and inductance is

(5)

where i is the current in amperes and t is the time in seconds. By solving this equation, we
can predict how the current will flow after the switch is closed.

EXAMPLE 4 The switch in the RL circuit in Figure 9.8 is closed at time How
will the current flow as a function of time?

Solution Equation (5) is a first-order linear differential equation for i as a function of t.
Its standard form is

(6)

and the corresponding solution, given that when is

. (7)

(We leave the calculation of the solution for you to do in Exercise 28.) Since R and L are
positive, is negative and as Thus,

At any given time, the current is theoretically less than V R, but as time passes, the current
approaches the steady-state value V R. According to the equation

is the current that will flow in the circuit if either (no inductance) or
(steady current, ) (Figure 9.9).

Equation (7) expresses the solution of Equation (6) as the sum of two terms: a
steady-state solution V R and a transient solution that tends to zero as
t : q.

- sV>Rde-sR>Ldt>
i = constantdi>dt = 0

L = 0I = V>R
L 

di
dt

+ Ri = V ,

> >
lim

t: q

 i = lim
t: q

 aV
R

-
V
R

 e-sR>Ldtb =
V
R

-
V
R

# 0 =
V
R

.

t : q.e-sR>Ldt : 0- sR>Ld

i =
V
R

-
V
R

 e-sR>Ldt

t = 0,i = 0

di
dt

+
R
L

 i =
V
L

,

t = 0.

L 
di
dt

+ Ri = V ,

V = RI ,
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Switch

R L

a b

i

V
� �

FIGURE 9.8 The RL circuit in
Example 4.

i

t
0 432

i � (1 � e�Rt/L)V
R

I � V
R I

e

L
R

L
R

L
R

L
R

FIGURE 9.9 The growth of the current in
the RL circuit in Example 4. I is the
current’s steady-state value. The number

is the time constant of the circuit.
The current gets to within 5% of its
steady-state value in 3 time constants
(Exercise 27).

t = L>R

Exercises 9.2

First-Order Linear Equations
Solve the differential equations in Exercises 1–14.

1. 2.

3.

4. y¿ + stan xdy = cos2 x, -p>2 6 x 6 p>2
xy¿ + 3y =

sin x

x2 , x 7 0

ex 
dy

dx
+ 2ex y = 1x 

dy

dx
+ y = ex, x 7 0

5.

6. 7.

8. 9.

10. x 
dy

dx
=

cos x
x - 2y, x 7 0

xy¿ - y = 2x ln xe2x y¿ + 2e2x y = 2x

2y¿ = ex>2
+ ys1 + xdy¿ + y = 2x

x 
dy

dx
+ 2y = 1 -

1
x , x 7 0
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9.2 First-Order Linear Equations 527

11.

12.

13.

14.

Solving Initial Value Problems
Solve the initial value problems in Exercises 15–20.

15.

16.

17.

18.

19.

20.

21. Solve the exponential growth decay initial value problem for y as
a function of t by thinking of the differential equation as a first-
order linear equation with and 

22. Solve the following initial value problem for u as a function of t:

a. as a first-order linear equation.

b. as a separable equation.

Theory and Examples
23. Is either of the following equations correct? Give reasons for your

answers.

a. b.

24. Is either of the following equations correct? Give reasons for your
answers.

a.

b.

25. Current in a closed RL circuit How many seconds after the
switch in an RL circuit is closed will it take the current i to reach
half of its steady-state value? Notice that the time depends on R
and L and not on how much voltage is applied.

1
cos x

L
 cos x dx = tan x +

C
cos x

1
cos x

L
 cos x dx = tan x + C

x
L

 
1
x  dx = x ln ƒ x ƒ + Cxx

L
 
1
x  dx = x ln ƒ x ƒ + C

du
dt

+

k
m u = 0 sk and m positive constantsd, us0d = u0

dy

dt
= ky sk constantd, ys0d = y0

Qsxd = 0:Psxd = -k

>
dy

dx
+ xy = x, ys0d = -6

sx + 1d 
dy

dx
- 2sx2

+ xdy =

ex 2

x + 1
, x 7 -1, ys0d = 5

u 
dy

du
- 2y = u3 sec u tan u, u 7 0, ysp>3d = 2

u 
dy

du
+ y = sin u, u 7 0, ysp>2d = 1

t 
dy

dt
+ 2y = t3, t 7 0, ys2d = 1

dy

dt
+ 2y = 3, ys0d = 1

tan u 
dr
du

+ r = sin2 u, 0 6 u 6 p>2
sin u 

dr
du

+ scos udr = tan u, 0 6 u 6 p>2
st + 1d 

ds
dt

+ 2s = 3st + 1d +

1
st + 1d2, t 7 -1

st - 1d3 
ds
dt

+ 4st - 1d2s = t + 1, t 7 1
26. Current in an open RL circuit If the switch is thrown open after

the current in an RL circuit has built up to its steady-state value
the decaying current (see accompanying figure) obeys the

equation

which is Equation (5) with 

a. Solve the equation to express i as a function of t.

b. How long after the switch is thrown will it take the current to
fall to half its original value?

c. Show that the value of the current when is . (The
significance of this time is explained in the next exercise.)

27. Time constants Engineers call the number the time constant
of the RL circuit in Figure 9.9. The significance of the time constant
is that the current will reach 95% of its final value within 3 time
constants of the time the switch is closed (Figure 9.9). Thus, the
time constant gives a built-in measure of how rapidly an individual
circuit will reach equilibrium.

a. Find the value of i in Equation (7) that corresponds to 
and show that it is about 95% of the steady-state value 

b. Approximately what percentage of the steady-state current will
be flowing in the circuit 2 time constants after the switch is
closed (i.e., when )?

28. Derivation of Equation (7) in Example 4

a. Show that the solution of the equation

is

b. Then use the initial condition to determine the value of
C. This will complete the derivation of Equation (7).

c. Show that is a solution of Equation (6) and that
satisfies the equation

di
dt

+

R
L

 i = 0.

i = Ce-sR>Ldt
i = V>R

is0d = 0

i =

V
R

+ Ce-sR>Ldt .

di
dt

+

R
L

 i =

V
L

t = 2L>R

I = V>R .
t = 3L>R

L>R

i

t
0

32

V
R

I
e

L
R

L
R

L
R

I>et = L>R

V = 0.

L 
di
dt

+ Ri = 0,

I = V>R ,
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A Bernoulli differential equation is of the form

Observe that, if or 1, the Bernoulli equation is linear.
For other values of n, the substitution transforms
the Bernoulli equation into the linear equation

For example, in the equation

dy

dx
- y = e-x y2

du
dx

+ s1 - ndPsxdu = s1 - ndQsxd .

u = y1 - n
n = 0

dy

dx
+ Psxdy = Qsxdyn .

528 Chapter 9: First-Order Differential Equations

we have so that and 

Then 

Substitution into the original equation gives

or, equivalently,

This last equation is linear in the (unknown) dependent vari-
able u.

Solve the Bernoulli equations in Exercises 29–32.

29. 30.

31. 32. x2y¿ + 2xy = y3xy¿ + y = y -2

y¿ - y = xy2y¿ - y = -y2

du
dx

+ u = -e-x .

-u-2 
du
dx

- u-1
= e-x u-2

dy>dx = -y2 du>dx = -u-2 du>dx .-y -2 dy>dx .

du>dx =u = y1 - 2
= y -1n = 2,

9.3 Applications

We now look at four applications of first-order differential equations. The first application
analyzes an object moving along a straight line while subject to a force opposing its motion.
The second is a model of population growth. The third application considers a curve or curves
intersecting each curve in a second family of curves orthogonally (that is, at right angles). The
final application analyzes chemical concentrations entering and leaving a container. The vari-
ous models involve separable or linear first-order equations.

Motion with Resistance Proportional to Velocity

In some cases it is reasonable to assume that the resistance encountered by a moving object,
such as a car coasting to a stop, is proportional to the object’s velocity. The faster the object
moves, the more its forward progress is resisted by the air through which it passes. Picture
the object as a mass m moving along a coordinate line with position function s and velocity
y at time t. From Newton’s second law of motion, the resisting force opposing the motion is

If the resisting force is proportional to velocity, we have

This is a separable differential equation representing exponential change. The solution to
the equation with initial condition at is (Section 7.2)

(1)

What can we learn from Equation (1)? For one thing, we can see that if m is some-
thing large, like the mass of a 20,000-ton ore boat in Lake Erie, it will take a long time for
the velocity to approach zero (because t must be large in the exponent of the equation in
order to make kt m large enough for y to be small). We can learn even more if we integrate
Equation (1) to find the position s as a function of time t.

Suppose that a body is coasting to a stop and the only force acting on it is a resistance
proportional to its speed. How far will it coast? To find out, we start with Equation (1) and
solve the initial value problem

ds
dt

= y0 e-sk>mdt , ss0d = 0.

>

y = y0 e-sk>mdt .

t = 0y = y0

m 
dy
dt

= -ky or dy
dt

= -
k
m y sk 7 0d .

Force = mass * acceleration = m 
dy
dt

.

HISTORICAL BIOGRAPHY

James Bernoulli
(1654–1705)
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9.3 Applications 529

Integrating with respect to t gives

Substituting when gives

The body’s position at time t is therefore

(2)

To find how far the body will coast, we find the limit of s(t) as Since 
we know that as so that

Thus,

(3)

The number is only an upper bound (albeit a useful one). It is true to life in one
respect, at least: if m is large, the body will coast a long way.

EXAMPLE 1 For a 192-lb ice skater, the k in Equation (1) is about 1 3 slug sec and
How long will it take the skater to coast from 11 ft sec (7.5 mph)

to 1 ft sec? How far will the skater coast before coming to a complete stop?

Solution We answer the first question by solving Equation (1) for t:

We answer the second question with Equation (3):

Inaccuracy of the Exponential Population Growth Model

In Section 7.2 we modeled population growth with the Law of Exponential Change:

where P is the population at time t, is a constant growth rate, and is the size of the
population at time In Section 7.2 we found the solution to this model.

To assess the model, notice that the exponential growth differential equation says that

(4)
dP>dt

P
= k

P = P0 ektt = 0.
P0k 7 0

dP
dt

= kP, Ps0d = P0

 = 198 ft .

 Distance coasted =

y0 m
k

=
11 # 6
1>3

 t = 18 ln 11 L 43 sec.

 - t>18 = ln s1>11d = - ln 11

 e-t>18
= 1>11

 11e-t>18
= 1

> >6 slugs.m = 192>32 =

>>

y0 m>k
Distance coasted =

y0 m
k

.

 =

y0 m
k

 s1 - 0d =

y0 m
k

.

lim
t: q

 sstd = lim
t: q

 
y0 m

k
 s1 - e-sk>mdtd

t : q ,e-sk>mdt : 0
- sk>md 6 0,t : q .

sstd = -

y0 m
k

 e-sk>mdt
+

y0 m
k

=

y0 m
k

 s1 - e-sk/mdtd .

0 = -

y0 m
k

+ C and C =

y0 m
k

.

t = 0s = 0

s = -

y0 m
k

 e-sk>mdt
+ C .

Eq. (1) with 

 m = 6, y0 = 11, y = 1

k = 1>3, 

In the English system, where weight is
measured in pounds, mass is measured in
slugs. Thus,

assuming the gravitational constant is
32 ft sec2.>

Pounds = slugs * 32,
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is constant. This rate is called the relative growth rate. Now, Table 9.3 gives the world
population at midyear for the years 1980 to 1989. Taking and we see
from the table that the relative growth rate in Equation (4) is approximately the constant
0.017. Thus, based on the tabled data with representing 1980, representing
1981, and so forth, the world population could be modeled by the initial value problem,

The solution to this initial value problem gives the population function In
year 2008 (so ), the solution predicts the world population in midyear to be about
7169 million, or 7.2 billion (Figure 9.10), which is more than the actual population of
6707 million from the U.S. Bureau of the Census. A more realistic model would consider
environmental and other factors affecting the growth rate, which has been steadily declining
to about 0.012 since 1987. We consider one such model in Section 9.4.

Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the
family at right angles, or orthogonally (Figure 9.11). For instance, each straight line
through the origin is an orthogonal trajectory of the family of circles cen-
tered at the origin (Figure 9.12). Such mutually orthogonal systems of curves are of partic-
ular importance in physical problems related to electrical potential, where the curves in one
family correspond to strength of an electric field and those in the other family correspond
to constant electric potential. They also occur in hydrodynamics and heat-flow problems.

EXAMPLE 2 Find the orthogonal trajectories of the family of curves where
is an arbitrary constant.

Solution The curves form a family of hyperbolas having the coordinate axes as 
asymptotes. First we find the slopes of each curve in this family, or their dy dx values. Dif-
ferentiating implicitly gives

x 
dy
dx

+ y = 0 or dy
dx

= -

y
x .

xy = a
>xy = a

a Z 0
xy = a ,

x2
+ y2

= a2 ,

t = 28
P = 4454e0.017t .

dP
dt

= 0.017P,    Ps0d = 4454.

t = 1t = 0

dP L ¢P,dt = 1
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TABLE 9.3 World population (midyear)

Population
Year (millions)

1980 4454

1981 4530

1982 4610

1983 4690

1984 4770

1985 4851

1986 4933

1987 5018

1988 5105

1989 5190

85>5105 L 0.0167

87>5018 L 0.0173

85>4933 L 0.0172

82>4851 L 0.0169

81>4770 L 0.0170

80>4690 L 0.0171

80>4610 L 0.0174

80>4530 L 0.0177

76>4454 L 0.0171

≤P>P

Source: U.S. Bureau of the Census (Sept., 2007): www.census
.gov ipc www idb.>>>

t

P

0 10 30

7000

5000

4000

World population (1980–2008)

P 5 4454e0.017t

FIGURE 9.10 Notice that the value of the
solution is 7169 when

which is nearly 7% more than the
actual population in 2008.
t = 28,

P = 4454e0.017t

Orthogonal trajectory

FIGURE 9.11 An orthogonal trajectory
intersects the family of curves at right
angles, or orthogonally.

x

y

FIGURE 9.12 Every straight line through
the origin is orthogonal to the family of
circles centered at the origin.
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9.3 Applications 531

Thus the slope of the tangent line at any point (x, y) on one of the hyperbolas is
On an orthogonal trajectory the slope of the tangent line at this same point

must be the negative reciprocal, or x y. Therefore, the orthogonal trajectories must satisfy
the differential equation

This differential equation is separable and we solve it as in Section 7.2:

Separate variables.

Integrate both sides.

(5)

where is an arbitrary constant. The orthogonal trajectories are the family of hyper-
bolas given by Equation (5) and sketched in Figure 9.13.

Mixture Problems

Suppose a chemical in a liquid solution (or dispersed in a gas) runs into a container hold-
ing the liquid (or the gas) with, possibly, a specified amount of the chemical dissolved as
well. The mixture is kept uniform by stirring and flows out of the container at a known
rate. In this process, it is often important to know the concentration of the chemical in the
container at any given time. The differential equation describing the process is based on
the formula

(6)

If y(t) is the amount of chemical in the container at time t and V(t) is the total volume of
liquid in the container at time t, then the departure rate of the chemical at time t is

(7)

Accordingly, Equation (6) becomes

(8)

If, say, y is measured in pounds, V in gallons, and t in minutes, the units in Equation (8) are

EXAMPLE 3 In an oil refinery, a storage tank contains 2000 gal of gasoline that ini-
tially has 100 lb of an additive dissolved in it. In preparation for winter weather, gasoline
containing 2 lb of additive per gallon is pumped into the tank at a rate of 40 gal min. >

pounds
minutes

=

pounds
minutes

-

pounds
gallons

#
gallons
minutes

.

dy
dt

= schemical’s arrival rated -

ystd
Vstd

# soutflow rated .

 = a concentration in
container at time tb # soutflow rated .

 Departure rate =

ystd
Vstd

# soutflow rated

Rate of change
of amount

in container
= £rate at which

chemical
arrives

≥ - £rate at which
chemical
departs.

≥

b = 2C

 y2
- x2

= b, 

 
1
2

 y2
=

1
2

 x2
+ C

 
L

 y dy =

L
 x dx

 y dy = x dx

dy
dx

=
x
y .

>y¿ = -y>x .
xy = a

x

y

x2 � y2 � b
b � 0

xy � a,
a � 0

0

FIGURE 9.13 Each curve is orthogonal to
every curve it meets in the other family
(Example 2).
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Solution Let y be the amount (in pounds) of additive in the tank at time t. We know that
when The number of gallons of gasoline and additive in solution in the

tank at any time t is

Therefore,

Also,

The differential equation modeling the mixture process is

Eq. (8)

in pounds per minute.
To solve this differential equation, we first write it in standard linear form:

Thus, and The integrating factor is

 = s2000 - 5td-9 .

2000 - 5t 7 0 = e-9 ln s2000 - 5td

 ystd = e1 P dt
= e1 45

2000 - 5t dt

Qstd = 80.Pstd = 45>s2000 - 5td

dy
dt

+
45

2000 - 5t
  y = 80.

dy
dt

= 80 -

45y
2000 - 5t

 = 80 
lb

min
.

 Rate in = a2 
lb
gal
b a40 

gal
min
b

 =

45y
2000 - 5t

 
lb

min
 .

 = a y
2000 - 5t

b  45

 Rate out =

ystd
Vstd

# outflow rate

 = s2000 - 5td gal .

 Vstd = 2000 gal + a40 
gal
min

- 45 
gal
min
b  st mind

t = 0.y = 100

532 Chapter 9: First-Order Differential Equations

The well-mixed solution is pumped out at a rate of 45 gal min. How much of the additive
is in the tank 20 min after the pumping process begins (Figure 9.14)?

>

40 gal/min containing 2 lb/gal

45 gal/min containing  y  lb/gal
  V 

FIGURE 9.14 The storage tank in Example 3 mixes input
liquid with stored liquid to produce an output liquid.

Outflow rate is 45 gal min
and y = 2000 - 5t .

>

Eq. (7)
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9.3 Applications 533

Multiplying both sides of the standard equation by y(t) and integrating both sides gives

The general solution is

Because when we can determine the value of C:

The particular solution of the initial value problem is

The amount of additive 20 min after the pumping begins is

ys20d = 2[2000 - 5s20d] -
3900

s2000d9 [2000 - 5s20d]9
L 1342 lb .

y = 2s2000 - 5td -
3900

s2000d9 s2000 - 5td9 .

 C = -
3900

s2000d9 .

 100 = 2s2000 - 0d + Cs2000 - 0d9

t = 0,y = 100

y = 2s2000 - 5td + Cs2000 - 5td9 .

 s2000 - 5td-9y = 80 #
s2000 - 5td-8

s -8ds -5d
+ C .

 s2000 - 5td-9y =

L
80s2000 - 5td-9 dt

 
d
dt

 C s2000 - 5td-9y D = 80s2000 - 5td-9

 s2000 - 5td-9  
dy
dt

+ 45s2000 - 5td-10 y = 80s2000 - 5td-9

 s2000 - 5td-9 # ady
dt

+
45

2000 - 5t
  yb = 80s2000 - 5td-9

Exercises 9.3

Motion Along a Line
1. Coasting bicycle A 66-kg cyclist on a 7-kg bicycle starts coast-

ing on level ground at 9 m sec. The k in Equation (1) is about
3.9 kg sec.

a. About how far will the cyclist coast before reaching a com-
plete stop?

b. How long will it take the cyclist’s speed to drop to 1 m sec?

2. Coasting battleship Suppose that an Iowa class battleship has
mass around 51,000 metric tons (51,000,000 kg) and a k value in

>

> >
Equation (1) of about 59,000 kg sec. Assume that the ship loses
power when it is moving at a speed of 9 m sec.

a. About how far will the ship coast before it is dead in the water?

b. About how long will it take the ship’s speed to drop to 1 m sec?

3. The data in Table 9.4 were collected with a motion detector and a
CBL™ by Valerie Sharritts, a mathematics teacher at St. Francis
DeSales High School in Columbus, Ohio. The table shows the dis-
tance s (meters) coasted on in-line skates in t sec by her daughter
Ashley when she was 10 years old. Find a model for Ashley’s

>
>>
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9.4 Graphical Solutions of Autonomous Equations

In Chapter 4 we learned that the sign of the first derivative tells where the graph of a func-
tion is increasing and where it is decreasing. The sign of the second derivative tells the
concavity of the graph. We can build on our knowledge of how derivatives determine the
shape of a graph to solve differential equations graphically. We will see that the ability to

534 Chapter 9: First-Order Differential Equations

Orthogonal Trajectories
In Exercises 5–10, find the orthogonal trajectories of the family of
curves. Sketch several members of each family.

5. 6.

7. 8.

9. 10.

11. Show that the curves and are orthogonal.

12. Find the family of solutions of the given differential equation and
the family of orthogonal trajectories. Sketch both families.

a. b.

Mixture Problems
13. Salt mixture A tank initially contains 100 gal of brine in which

50 lb of salt are dissolved. A brine containing 2 lb gal of salt runs
into the tank at the rate of 5 gal min. The mixture is kept uniform
by stirring and flows out of the tank at the rate of 4 gal min.

a. At what rate (pounds per minute) does salt enter the tank at
time t ?

b. What is the volume of brine in the tank at time t ?

c. At what rate (pounds per minute) does salt leave the tank at
time t ?

d. Write down and solve the initial value problem describing the
mixing process.

e. Find the concentration of salt in the tank 25 min after the
process starts.

14. Mixture problem A 200-gal tank is half full of distilled water.
At time a solution containing 0.5 lb gal of concentrate en-
ters the tank at the rate of 5 gal min, and the well-stirred mixture
is withdrawn at the rate of 3 gal min.

a. At what time will the tank be full?

b. At the time the tank is full, how many pounds of concentrate
will it contain?

15. Fertilizer mixture A tank contains 100 gal of fresh water. A solu-
tion containing 1 lb gal of soluble lawn fertilizer runs into the tank
at the rate of 1 gal min, and the mixture is pumped out of the tank
at the rate of 3 gal min. Find the maximum amount of fertilizer in
the tank and the time required to reach the maximum.

16. Carbon monoxide pollution An executive conference room of a
corporation contains 4500 of air initially free of carbon monox-
ide. Starting at time cigarette smoke containing 4% carbon
monoxide is blown into the room at the rate of A ceil-
ing fan keeps the air in the room well circulated and the air leaves
the room at the same rate of Find the time when the
concentration of carbon monoxide in the room reaches 0.01%.

0.3 ft3>min.

0.3 ft3>min.
t = 0,

ft3

>>
>

>>
>t = 0,

>> >

x dy - 2y dx = 0x dx + y dy = 0

y2
= x32x2

+ 3y2
= 5

y = ek xy = ce-x

2x2
+ y2

= c2kx2
+ y2

= 1

y = cx2y = mx

position given by the data in Table 9.4 in the form of Equation (2).
Her initial velocity was her mass 
(she weighed 88 lb), and her total coasting distance was 4.91 m.

m = 39.92 kgy0 = 2.75 m>sec ,

TABLE 9.4 Ashley Sharritts skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

0 0 2.24 3.05 4.48 4.77

0.16 0.31 2.40 3.22 4.64 4.82

0.32 0.57 2.56 3.38 4.80 4.84

0.48 0.80 2.72 3.52 4.96 4.86

0.64 1.05 2.88 3.67 5.12 4.88

0.80 1.28 3.04 3.82 5.28 4.89

0.96 1.50 3.20 3.96 5.44 4.90

1.12 1.72 3.36 4.08 5.60 4.90

1.28 1.93 3.52 4.18 5.76 4.91

1.44 2.09 3.68 4.31 5.92 4.90

1.60 2.30 3.84 4.41 6.08 4.91

1.76 2.53 4.00 4.52 6.24 4.90

1.92 2.73 4.16 4.63 6.40 4.91

2.08 2.89 4.32 4.69 6.56 4.91

TABLE 9.5 Kelly Schmitzer skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

0 0 1.5 0.89 3.1 1.30

0.1 0.07 1.7 0.97 3.3 1.31

0.3 0.22 1.9 1.05 3.5 1.32

0.5 0.36 2.1 1.11 3.7 1.32

0.7 0.49 2.3 1.17 3.9 1.32

0.9 0.60 2.5 1.22 4.1 1.32

1.1 0.71 2.7 1.25 4.3 1.32

1.3 0.81 2.9 1.28 4.5 1.32

4. Coasting to a stop Table 9.5 shows the distance s (meters) coasted
on in-line skates in terms of time t (seconds) by Kelly Schmitzer.
Find a model for her position in the form of Equation (2). Her initial
velocity was her mass (110 lb),
and her total coasting distance was 1.32 m.

m = 49.90 kgy0 = 0.80 m>sec ,
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9.4 Graphical Solutions of Autonomous Equations 535

discern physical behavior from graphs is a powerful tool in understanding real-world sys-
tems. The starting ideas for a graphical solution are the notions of phase line and
equilibrium value. We arrive at these notions by investigating, from a point of view quite dif-
ferent from that studied in Chapter 4, what happens when the derivative of a differentiable
function is zero.

Equilibrium Values and Phase Lines

When we differentiate implicitly the equation

we obtain

Solving for we find In this case the derivative 
is a function of y only (the dependent variable) and is zero when 

A differential equation for which dy dx is a function of y only is called an autonomous
differential equation. Let’s investigate what happens when the derivative in an autonomous
equation equals zero. We assume any derivatives are continuous.

> y = 3.
y¿y¿ = 5y - 15 = 5s y - 3d.y¿ = dy>dx

1
5 a 5

5y - 15
b  

dy
dx

= 1.

1
5 ln s5y - 15d = x + 1,

DEFINITION If is an autonomous differential equation, then the
values of y for which are called equilibrium values or rest points.dy>dx = 0

dy>dx = gs yd

Thus, equilibrium values are those at which no change occurs in the dependent vari-
able, so y is at rest. The emphasis is on the value of y where not the value of x,
as we studied in Chapter 4. For example, the equilibrium values for the autonomous differ-
ential equation

are and 
To construct a graphical solution to an autonomous differential equation, we first

make a phase line for the equation, a plot on the y-axis that shows the equation’s equilib-
rium values along with the intervals where dy dx and are positive and negative.
Then we know where the solutions are increasing and decreasing, and the concavity of the
solution curves. These are the essential features we found in Section 4.4, so we can deter-
mine the shapes of the solution curves without having to find formulas for them.

EXAMPLE 1 Draw a phase line for the equation

and use it to sketch solutions to the equation.

Solution

1. Draw a number line for y and mark the equilibrium values and where

–1 2
y

dy>dx = 0.
y = 2,y = -1

dy
dx

= s y + 1ds y - 2d

d2y>dx2>

y = 2.y = -1

dy
dx

= s y + 1ds y - 2d

dy>dx = 0,
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2. Identify and label the intervals where and This step resembles what
we did in Section 4.3, only now we are marking the y-axis instead of the x-axis.

We can encapsulate the information about the sign of on the phase line itself.
Since on the interval to the left of a solution of the differential equa-
tion with a y-value less than will increase from there toward We display
this information by drawing an arrow on the interval pointing to 

Similarly, between and so any solution with a value in
this interval will decrease toward 

For we have so a solution with a y-value greater than 2 will in-
crease from there without bound.

In short, solution curves below the horizontal line in the xy-plane rise
toward Solution curves between the lines and fall away from

toward Solution curves above rise away from and keep
going up.

3. Calculate and mark the intervals where and To find we differ-
entiate with respect to x, using implicit differentiation.

Formula for . . .

From this formula, we see that changes sign at and We
add the sign information to the phase line.

y = 2.y = -1, y = 1>2,y–

 = s2y - 1ds y + 1ds y - 2d .

 = s2y - 1dy¿

 = 2yy¿ - y¿

 y– =
d
dx

 s y¿ d =
d
dx

 s y2
- y - 2d

y¿ y¿ = s y + 1ds y - 2d = y2
- y - 2

y¿

y–,y– 6 0.y– 7 0y–

y = 2y = 2y = -1.y = 2
y = 2y = -1y = -1.

y = -1

y¿ 7 0,y 7 2,
y = -1.

y = 2,y = -1y¿ 6 0

–1 2
y

-1.
y = -1.-1

y = -1,y¿ 7 0
y¿

–1 2
y

y' � 0 y' � 0 y' � 0

y¿ 6 0.y¿ 7 0
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–1 2
y

y' � 0 y' � 0 y' � 0 y' � 0
y'' � 0 y'' � 0 y'' � 0 y'' � 0

1
2

y

x

–1

2

0

y' � 0

y' � 0

y' � 0

y' � 0

y'' � 0

y'' � 0

y'' � 0

y'' � 0

1
2

FIGURE 9.15 Graphical solutions from
Example 1 include the horizontal lines

and through the
equilibrium values. No two solution curves
can ever cross or touch each other.

y = 2y = -1

differentiated implicitly
with respect to x

4. Sketch an assortment of solution curves in the xy-plane. The horizontal lines
and partition the plane into horizontal bands in which we

know the signs of and In each band, this information tells us whether the solu-
tion curves rise or fall and how they bend as x increases (Figure 9.15).

The “equilibrium lines” and are also solution curves. (The con-
stant functions and satisfy the differential equation.) Solution curves
that cross the line have an inflection point there. The concavity changes from
concave down (above the line) to concave up (below the line).

As predicted in Step 2, solutions in the middle and lower bands approach the
equilibrium value as x increases. Solutions in the upper band rise steadily
away from the value y = 2.

y = -1

y = 1>2 y = 2y = -1
y = 2y = -1

y–.y¿

y = 2y = -1, y = 1>2,
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Stable and Unstable Equilibria

Look at Figure 9.15 once more, in particular at the behavior of the solution curves near the
equilibrium values. Once a solution curve has a value near it tends steadily toward
that value; is a stable equilibrium. The behavior near is just the opposite:
all solutions except the equilibrium solution itself move away from it as x increases.
We call an unstable equilibrium. If the solution is at that value, it stays, but if it is
off by any amount, no matter how small, it moves away. (Sometimes an equilibrium value is
unstable because a solution moves away from it only on one side of the point.)

Now that we know what to look for, we can already see this behavior on the initial
phase line (the second diagram in Step 2 of Example 1). The arrows lead away from 
and, once to the left of toward 

We now present several applied examples for which we can sketch a family of solu-
tion curves to the differential equation models using the method in Example 1.

Newton’s Law of Cooling

In Section 7.2 we solved analytically the differential equation

modeling Newton’s law of cooling. Here H is the temperature of an object at time t and 
is the constant temperature of the surrounding medium.

Suppose that the surrounding medium (say a room in a house) has a constant Celsius
temperature of 15°C. We can then express the difference in temperature as As-
suming H is a differentiable function of time t, by Newton’s law of cooling, there is a con-
stant of proportionality such that

(1)

(minus k to give a negative derivative when ).
Since at the temperature 15°C is an equilibrium value. If

Equation (1) tells us that and If the object is hotter
than the room, it will get cooler. Similarly, if then and

An object cooler than the room will warm up. Thus, the behavior described by
Equation (1) agrees with our intuition of how temperature should behave. These observa-
tions are captured in the initial phase line diagram in Figure 9.16. The value is a
stable equilibrium.

We determine the concavity of the solution curves by differentiating both sides of
Equation (1) with respect to t:

Since is negative, we see that is positive when and negative when
Figure 9.17 adds this information to the phase line.

The completed phase line shows that if the temperature of the object is above the
equilibrium value of 15°C, the graph of H(t) will be decreasing and concave upward. If the
temperature is below 15°C (the temperature of the surrounding medium), the graph of H(t)
will be increasing and concave downward. We use this information to sketch typical solu-
tion curves (Figure 9.18).

dH>dt 7 0.
dH>dt 6 0d2H>dt2

-k

 
d2H
dt2 = -k 

dH
dt

.

 
d
dt

 adH
dt
b =

d
dt

 s -ksH - 15dd

H = 15

dH>dt 7 0.
sH - 15d 6 0H 6 15,

dH>dt 6 0.sH - 15d 7 0H 7 15,
H = 15,dH>dt = 0

H 7 15

dH
dt

= -ksH - 15d

k 7 0

Hstd - 15.

HS

dH
dt

= -ksH - HSd, k 7 0

y = -1.y = 2,
y = 2

y = 2
y = 2

y = 2y = -1
y = -1,

15
H

� 0 � 0dH
dt

dH
dt

FIGURE 9.16 First step in constructing
the phase line for Newton’s law of cooling.
The temperature tends towards the
equilibrium (surrounding-medium) value
in the long run.

15
H

� 0dH
dt� 0dH

dt

� 0d2H
dt2 � 0d2H

dt2

FIGURE 9.17 The complete phase line
for Newton’s law of cooling.

H

Initial
temperature

t

15

Temperature
of surrounding
medium

Initial
temperature

FIGURE 9.18 Temperature versus 
time. Regardless of initial temperature, the
object’s temperature H(t) tends toward
15°C, the temperature of the surrounding
medium.
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From the upper solution curve in Figure 9.18, we see that as the object cools down,
the rate at which it cools slows down because dH dt approaches zero. This observation is
implicit in Newton’s law of cooling and contained in the differential equation, but the
flattening of the graph as time advances gives an immediate visual representation of the
phenomenon. 

A Falling Body Encountering Resistance

Newton observed that the rate of change in momentum encountered by a moving object is
equal to the net force applied to it. In mathematical terms,

, (2)

where F is the net force acting on the object, and m and y are the object’s mass and veloc-
ity. If m varies with time, as it will if the object is a rocket burning fuel, the right-hand side
of Equation (2) expands to

using the Derivative Product Rule. In many situations, however, m is constant, 
and Equation (2) takes the simpler form

(3)

known as Newton’s second law of motion (see Section 9.3).
In free fall, the constant acceleration due to gravity is denoted by g and the one force

acting downward on the falling body is

the force due to gravity. If, however, we think of a real body falling through the air—say, a
penny from a great height or a parachutist from an even greater height—we know that at
some point air resistance is a factor in the speed of the fall. A more realistic model of free
fall would include air resistance, shown as a force in the schematic diagram in Figure 9.19.

For low speeds well below the speed of sound, physical experiments have shown that
is approximately proportional to the body’s velocity. The net force on the falling body is

therefore

giving

(4)

We can use a phase line to analyze the velocity functions that solve this differential equation.
The equilibrium point, obtained by setting the right-hand side of Equation (4) equal to

zero, is

If the body is initially moving faster than this, dy dt is negative and the body slows down.
If the body is moving at a velocity below and the body speeds up.
These observations are captured in the initial phase line diagram in Figure 9.20.

mg>k, then dy>dt 7 0
>

y =

mg
k

.

 
dy
dt

= g -
k
m y .

 m 
dy
dt

= mg - ky

F = Fp - Fr ,

Fr

Fr

Fp = mg ,

F = m 
dy
dt
 or F = ma ,

dm>dt = 0,

m 
dy
dt

+ y 
dm
dt

F =
d
dt

 smyd

>
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m
y � 0

y positive

Fp � mg

Fr � ky

FIGURE 9.19 An object falling under the
influence of gravity with a resistive force
assumed to be proportional to the velocity.

y

� 0 � 0dy
dt

dy
dt

mg
k

FIGURE 9.20 Initial phase line for the
falling body encountering resistance.
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We determine the concavity of the solution curves by differentiating both sides of
Equation (4) with respect to t:

We see that when and when Figure 9.21
adds this information to the phase line. Notice the similarity to the phase line for Newton’s
law of cooling (Figure 9.17). The solution curves are similar as well (Figure 9.22).

Figure 9.22 shows two typical solution curves. Regardless of the initial velocity, we
see the body’s velocity tending toward the limiting value This value, a stable
equilibrium point, is called the body’s terminal velocity. Skydivers can vary their terminal
velocity from 95 mph to 180 mph by changing the amount of body area opposing the fall,
which affects the value of k.

Logistic Population Growth

In Section 9.3 we examined population growth using the model of exponential change.
That is, if P represents the number of individuals and we neglect departures and arrivals,
then

(5)

where is the birth rate minus the death rate per individual per unit time.
Because the natural environment has only a limited number of resources to sustain life, it

is reasonable to assume that only a maximum population M can be accommodated. As the
population approaches this limiting population or carrying capacity, resources become less
abundant and the growth rate k decreases. A simple relationship exhibiting this behavior is

where is a constant. Notice that k decreases as P increases toward M and that k is
negative if P is greater than M. Substituting for k in Equation (5) gives the dif-
ferential equation

(6)

The model given by Equation (6) is referred to as logistic growth.
We can forecast the behavior of the population over time by analyzing the phase line

for Equation (6). The equilibrium values are and and we can see that
if and if These observations are recorded on

the phase line in Figure 9.23.
We determine the concavity of the population curves by differentiating both sides of

Equation (6) with respect to t:

(7)

If then If then and dP dt are positive and
If then and d2P>dt2

6 0.sM - 2Pd 6 0, dP>dt 7 0,M>2 6 P 6 M,d2P>dt2
7 0.

>sM - 2PdP 6 M>2,d2P>dt2
= 0.P = M>2,

 = rsM - 2Pd 
dP
dt

.

 = rM 
dP
dt

- 2rP 
dP
dt

 
d2P
dt2 =

d
dt

 srMP - rP2d

P 7 M.dP>dt 6 00 6 P 6 MdP>dt 7 0
P = 0,P = M

dP
dt

= rsM - PdP = rMP - rP2 .

rsM - Pd
r 7 0

k = rsM - Pd ,

k 7 0

dP
dt

= kP ,

y = mg>k .

y 7 mg>k .d2y>dt2
7 0y 6 mg>kd2y>dt2

6 0

d2y

dt2 =
d
dt

 ag -
k
m yb = -

k
m 

dy
dt

.
y

� 0dy
dt� 0dy

dt

� 0d2y

dt2 � 0d2y

dt2

mg
k

FIGURE 9.21 The completed phase line
for the falling body.

Initial
velocity

Initial
velocity

y

t

mg
k

mg
k

y �

FIGURE 9.22 Typical velocity curves for
a falling body encountering resistance. The
value is the terminal velocity.y = mg>k

0 M
P

� 0 � 0dP
dt

dP
dt

FIGURE 9.23 The initial phase line for
logistic growth (Equation 6).
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If then and dP dt are both negative and We add this in-
formation to the phase line (Figure 9.24).

The lines and divide the first quadrant of the tP-plane into hori-
zontal bands in which we know the signs of both dP dt and In each band, we
know how the solution curves rise and fall, and how they bend as time passes. The equi-
librium lines and are both population curves. Population curves crossing
the line have an inflection point there, giving them a sigmoid shape (curved in
two directions like a letter S). Figure 9.25 displays typical population curves. Notice
that each population curve approaches the limiting population M as  .t : q

P = M>2 P = MP = 0

d2P>dt2.>P = MP = M>2
d2P>dt2

7 0.>sM - 2PdP 7 M,
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0 M
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� 0dP
dt� 0dP
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� 0d2P
dt2 � 0d2P

dt2� 0d2P
dt2
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2

FIGURE 9.24 The completed phase line
for logistic growth (Equation 6).
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FIGURE 9.25 Population curves for logistic growth.

Exercises 9.4

Phase Lines and Solution Curves
In Exercises 1–8,

a. Identify the equilibrium values. Which are stable and which
are unstable?

b. Construct a phase line. Identify the signs of and 

c. Sketch several solution curves.

1. 2.

3. 4.

5. 6.

7. 8.

Models of Population Growth
The autonomous differential equations in Exercises 9–12 represent mod-
els for population growth. For each exercise, use a phase line analysis to
sketch solution curves for P(t), selecting different starting values P(0).
Which equilibria are stable, and which are unstable?

9. 10.

11. 12.

13. Catastrophic change in logistic growth Suppose that a healthy
population of some species is growing in a limited environment

dP
dt

= 3Ps1 - Pd aP -

1
2
bdP

dt
= 2PsP - 3d

dP
dt

= Ps1 - 2PddP
dt

= 1 - 2P

y¿ = y3
- y2y¿ = s y - 1ds y - 2ds y - 3d

y¿ = y - 2y, y 7 0y¿ = 2y, y 7 0

dy

dx
= y2

- 2y
dy

dx
= y3

- y

dy

dx
= y2

- 4
dy

dx
= s y + 2ds y - 3d

y–.y¿

and that the current population is fairly close to the carrying
capacity You might imagine a population of fish living in a
freshwater lake in a wilderness area. Suddenly a catastrophe such
as the Mount St. Helens volcanic eruption contaminates the lake
and destroys a significant part of the food and oxygen on which
the fish depend. The result is a new environment with a carrying
capacity considerably less than and, in fact, less than the
current population Starting at some time before the catastro-
phe, sketch a “before-and-after” curve that shows how the fish
population responds to the change in environment.

14. Controlling a population The fish and game department in a
certain state is planning to issue hunting permits to control the
deer population (one deer per permit). It is known that if the deer
population falls below a certain level m, the deer will become ex-
tinct. It is also known that if the deer population rises above the
carrying capacity M, the population will decrease back to M
through disease and malnutrition.

a. Discuss the reasonableness of the following model for the
growth rate of the deer population as a function of time:

where P is the population of the deer and r is a positive con-
stant of proportionality. Include a phase line.

b. Explain how this model differs from the logistic model
Is it better or worse than the logistic

model?
dP>dt = rPsM - Pd.

dP
dt

= rPsM - PdsP - md ,

P0 .
M0M1

M0 .
P0
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c. Show that if for all t, then 

d. What happens if for all t ?

e. Discuss the solutions to the differential equation. What are the
equilibrium points of the model? Explain the dependence of
the steady-state value of P on the initial values of P. About
how many permits should be issued?

Applications and Examples
15. Skydiving If a body of mass m falling from rest under the ac-

tion of gravity encounters an air resistance proportional to the
square of velocity, then the body’s velocity t seconds into the fall
satisfies the equation

where k is a constant that depends on the body’s aerodynamic
properties and the density of the air. (We assume that the fall is
too short to be affected by changes in the air’s density.)

a. Draw a phase line for the equation.

b. Sketch a typical velocity curve.

c. For a 110-lb skydiver and with time in seconds
and distance in feet, a typical value of k is 0.005. What is the
diver’s terminal velocity? Repeat for a 200-lb skydiver.

16. Resistance proportional to A body of mass m is projected
vertically downward with initial velocity Assume that the re-
sisting force is proportional to the square root of the velocity and
find the terminal velocity from a graphical analysis.

17. Sailing A sailboat is running along a straight course with the
wind providing a constant forward force of 50 lb. The only other
force acting on the boat is resistance as the boat moves through
the water. The resisting force is numerically equal to five times
the boat’s speed, and the initial velocity is 1 ft sec. What is the
maximum velocity in feet per second of the boat under this wind?

18. The spread of information Sociologists recognize a phenomenon
called social diffusion, which is the spreading of a piece of informa-
tion, technological innovation, or cultural fad among a population.
The members of the population can be divided into two classes:
those who have the information and those who do not. In a fixed
population whose size is known, it is reasonable to assume that the
rate of diffusion is proportional to the number who have the infor-
mation times the number yet to receive it. If X denotes the number of
individuals who have the information in a population of N people,
then a mathematical model for social diffusion is given by

where t represents time in days and k is a positive constant.

dX
dt

= kX sN - X d ,

>

y0 .
2Y

smg = 110d

m 
dy
dt

= mg - ky2,  k 7 0

P 6 m

lim
 t:q Pstd = M.P 7 M a. Discuss the reasonableness of the model.

b. Construct a phase line identifying the signs of and 

c. Sketch representative solution curves.

d. Predict the value of X for which the information is spreading
most rapidly. How many people eventually receive the infor-
mation?

19. Current in an RL-circuit The accompanying diagram repre-
sents an electrical circuit whose total resistance is a constant R
ohms and whose self-inductance, shown as a coil, is L henries,
also a constant. There is a switch whose terminals at a and b can
be closed to connect a constant electrical source of V volts. From
Section 9.2, we have

where i is the current in amperes and t is the time in seconds.

Use a phase line analysis to sketch the solution curve as-
suming that the switch in the RL-circuit is closed at time 
What happens to the current as This value is called the
steady-state solution.

20. A pearl in shampoo Suppose that a pearl is sinking in a thick
fluid, like shampoo, subject to a frictional force opposing its fall
and proportional to its velocity. Suppose that there is also a resis-
tive buoyant force exerted by the shampoo. According to
Archimedes’ principle, the buoyant force equals the weight of the
fluid displaced by the pearl. Using m for the mass of the pearl and
P for the mass of the shampoo displaced by the pearl as it de-
scends, complete the following steps.

a. Draw a schematic diagram showing the forces acting on the
pearl as it sinks, as in Figure 9.19.

b. Using y(t) for the pearl’s velocity as a function of time t, write
a differential equation modeling the velocity of the pearl as a
falling body.

c. Construct a phase line displaying the signs of and 

d. Sketch typical solution curves.

e. What is the terminal velocity of the pearl?

y–.y¿

t : q ?
t = 0.

Switch

R L

a b

i

V
� �

L 
di
dt

+ Ri = V ,

X–.X ¿

9.5 Systems of Equations and Phase Planes

In some situations we are led to consider not one, but several first-order differential equa-
tions. Such a collection is called a system of differential equations. In this section we pre-
sent an approach to understanding systems through a graphical procedure known as a
phase-plane analysis. We present this analysis in the context of modeling the populations
of trout and bass living in a common pond.
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Phase Planes

A general system of two first-order differential equations may take the form

Such a system of equations is called autonomous because and do not depend
on the independent variable time t, but only on the dependent variables x and y. A solution
of such a system consists of a pair of functions and that satisfies both of the dif-
ferential equations simultaneously for every over some time interval (finite or infinite).

We cannot look at just one of these equations in isolation to find solutions or 
since each derivative depends on both x and y. To gain insight into the solutions, we look at
both dependent variables together by plotting the points in the xy-plane starting
at some specified point. Therefore the solution functions define a solution curve through
the specified point, called a trajectory of the system. The xy-plane itself, in which these
trajectories reside, is referred to as the phase plane. Thus we consider both solutions 
together and study the behavior of all the solution trajectories in the phase plane. It can 
be proved that two trajectories can never cross or touch each other. (Solution trajectories
are examples of parametric curves, which are studied in detail in Chapter 11.)

A Competitive-Hunter Model

Imagine two species of fish, say trout and bass, competing for the same limited resources
(such as food and oxygen) in a certain pond. We let represent the number of trout and

the number of bass living in the pond at time t. In reality and are always inte-
ger valued, but we will approximate them with real-valued differentiable functions. This
allows us to apply the methods of differential equations.

Several factors affect the rates of change of these populations. As time passes, each
species breeds, so we assume its population increases proportionally to its size. Taken by it-
self, this would lead to exponential growth in each of the two populations. However, there is
a countervailing effect from the fact that the two species are in competition. A large number
of bass tends to cause a decrease in the number of trout, and vice-versa. Our model takes
the size of this effect to be proportional to the frequency with which the two species inter-
act, which in turn is proportional to , the product of the two populations. These consider-
ations lead to the following model for the growth of the trout and bass in the pond:

(1a)

(1b)

Here represents the trout population, the bass population, and a, b, m, n are positive
constants. A solution of this system then consists of a pair of functions and that
gives the population of each fish species at time t. Each equation in (1) contains both of the
unknown functions x and y, so we are unable to solve them individually. Instead, we will use
a graphical analysis to study the solution trajectories of this competitive-hunter model.

We now examine the nature of the phase plane in the trout-bass population model. We
will be interested in the 1st quadrant of the xy-plane, where and since popu-
lations cannot be negative. First, we determine where the bass and trout populations are
both constant. Noting that the values remain unchanged when and

, Equations (1a and 1b) then become

This pair of simultaneous equations has two solutions: and 
At these values, called equilibrium or rest points, the two populations(x, y)(m>n, a>b).

(x, y) =(x, y) = (0, 0)

(m - nx)y = 0.

(a - by)x = 0,

dy>dt = 0
dx>dt = 0(x(t), y(t))

y Ú 0,x Ú 0

y(t)x(t)
y(t)x(t)

dy
dt

= (m - nx)y.

dx
dt

= (a - by)x,

xy

y(t)x(t)y(t)
x(t)

(x(t), y(t))

y(t)x(t)
t

y(t)x(t)

dy>dtdx>dt

dy
dt

= G(x, y).

dx
dt

= F(x, y),
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9.5 Systems of Equations and Phase Planes 543

remain at constant values over all time. The point represents a pond containing no
members of either fish species; the point corresponds to a pond with an un-
changing number of each fish species.

Next, we note that if , then Equation (1a) implies , so the trout pop-
ulation is constant. Similarly, if then Equation (1b) implies , and
the bass population is constant. This information is recorded in Figure 9.26.y(t)

dy>dt = 0x = m>n,x(t)
dx>dt = 0y = a>b

(m>n, a>b)
(0, 0)

FIGURE 9.26 Rest points in the competitive-hunter model given by Equations (1a) and (1b).

FIGURE 9.27 To the left 
of the line the
trajectories move upward, 
and to the right they move
downward.

x = m>n

FIGURE 9.28 Above the line
the trajectories move

to the left, and below it they
move to the right.

y = a>b

FIGURE 9.29 Composite graphical
analysis of the trajectory directions in the
four regions determined by and
y = a>b.

x = m>n
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Bassy

x

(a)

= 0dx
dta

b
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(c)
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n

a
b
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n

a
b(   ,     )
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Trout

y

x

(b)

= 0
dy
dt

m
n

Bass

Trout

y

x
m
n

Bass

Trout

y

x

a
b

Bass

Trout(0, 0)

y

x
m
n

a
b

A B

C D

In setting up our competitive-hunter model, precise values of the constants a, b, m, n will
not generally be known. Nonetheless, we can analyze the system of Equations (1) to learn the
nature of its solution trajectories. We begin by determining the signs of and 
throughout the phase plane. Although represents the number of trout and the number
of bass at time t, we are thinking of the pair of values as a point tracing out a trajec-
tory curve in the phase plane. When is positive, is increasing and the point is moving
to the right in the phase plane. If is negative, the point is moving to the left. Likewise, the
point is moving upward where is positive and downward where is negative.

We saw that along the vertical line . To the left of this line, 
is positive since and . So the trajectories on this side of the
line are directed upward. To the right of this line, is negative and the trajectories
point downward. The directions of the associated trajectories are indicated in Figure 9.27.
Similarly, above the horizontal line , we have and the trajectories head
leftward; below this line they head rightward, as shown in Figure 9.28. Combining this in-
formation gives four distinct regions in the plane A, B, C, D, with their respective trajec-
tory directions shown in Figure 9.29.

dx>dt 6 0y = a>b
dy>dt

x 6 m>ndy>dt = (m - nx)y
dy>dtx = m>ndy>dt = 0

dy>dtdy>dt
dx>dt

x(t)dx>dt
(x(t), y(t))

y(t)x(t)
dy>dtdx>dt

Next, we examine what happens near the two equilibrium points. The trajectories near
point away from it, upward and to the right. The behavior near the equilibrium point

depends on the region in which a trajectory begins. If it starts in region B, for
instance, then it will move downward and leftward towards the equilibrium point. Depending
on where the trajectory begins, it may move downward into region D, leftward into region A,

(m>n, a>b)
(0, 0)
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or perhaps straight into the equilibrium point. If it enters into regions A or D, then it will
continue to move away from the rest point. We say that both rest points are unstable,
meaning (in this setting) there are trajectories near each point that head away from them.
These features are indicated in Figure 9.30.

It turns out that in each of the half-planes above and below the line , there is
exactly one trajectory approaching the equilibrium point (see Exercise 7).
Above these two trajectories the bass population increases and below them it decreases.
The two trajectories approaching the equilibrium point are suggested in Figure 9.31.

Our graphical analysis leads us to conclude that, under the assumptions of the
competitive-hunter model, it is unlikely that both species will reach equilibrium levels. This
is because it would be almost impossible for the fish populations to move exactly along one
of the two approaching trajectories for all time. Furthermore, the initial populations point

determines which of the two species is likely to survive over time, and mutual coex-
istence of the species is highly improbable.

Limitations of the Phase-Plane Analysis Method

Unlike the situation for the competitive-hunter model, it is not always possible to deter-
mine the behavior of trajectories near a rest point. For example, suppose we know that the
trajectories near a rest point, chosen here to be the origin , behave as in Figure 9.32.
The information provided by Figure 9.32 is not sufficient to distinguish between the three
possible trajectories shown in Figure 9.33. Even if we could determine that a trajectory
near an equilibrium point resembles that of Figure 9.33c, we would still not know how the
other trajectories behave. It could happen that a trajectory closer to the origin behaves like
the motions displayed in Figure 9.33a or 9.33b. The spiraling trajectory in Figure 9.33b
can never actually reach the rest point in a finite time period.

(0, 0)

(x0, y0)

(m>n, a>b)
y = a>b

544 Chapter 9: First-Order Differential Equations

FIGURE 9.31 Qualitative results of
analyzing the competitive-hunter model.
There are exactly two trajectories
approaching the point (m>n, a>b).

FIGURE 9.32 Trajectory direction
near the rest point (0, 0).

y

x

y

x

y

x

(a) (b) (c)

(x0, y0) (x0, y0) (x0, y0)

FIGURE 9.33 Three possible trajectory motions: (a) periodic motion, (b) motion
toward an asymptotically stable rest point, and (c) motion near an unstable rest point.

FIGURE 9.34 The solution 
is a limit cycle.

x2
+ y2

= 1

Bass

Bass win

Trout

Trout win

(0, 0)

y

x

m
n

a
b(  ,    )

y

x

(x0, y0)

x2 + y2 = 1

(x1, y1)

FIGURE 9.30 Motion along the
trajectories near the rest points (0, 0)
and (m>n, a>b).
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Trout(0, 0)

y
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m
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a
b

A B

C D

Another Type of Behavior

The system

(2a)

(2b)

can be shown to have only one equilibrium point at . Yet any trajectory starting on the
unit circle traverses it clockwise because, when , we have (see
Exercise 2). If a trajectory starts inside the unit circle, it spirals outward, asymptotically
approaching the circle as . If a trajectory starts outside the unit circle, it spirals in-
ward, again asymptotically approaching the circle as . The circle is
called a limit cycle of the system (Figure 9.34). In this system, the values of x and y even-
tually become periodic.

x2
+ y2

= 1t : q

t : q

dy>dx = -x>yx2
+ y2

= 1
(0, 0)

dy
dt

= -x + y - y(x2
+ y2)

dx
dt

= y + x - x(x2
+ y2),
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9.5 Systems of Equations and Phase Planes 545

Exercises 9.5

1. List three important considerations that are ignored in the
competitive-hunter model as presented in the text.

2. For the system (2a) and (2b), show that any trajectory starting on
the unit circle will traverse the unit circle in a peri-
odic solution. First introduce polar coordinates and rewrite the
system as and 

3. Develop a model for the growth of trout and bass, assuming that in
isolation trout demonstrate exponential decay [so that in
Equations (1a) and (1b)] and that the bass population grows logisti-
cally with a population limit M. Analyze graphically the motion in
the vicinity of the rest points in your model. Is coexistence possible?

4. How might the competitive-hunter model be validated? Include a
discussion of how the various constants a, b, m, and n might be
estimated. How could state conservation authorities use the model
to ensure the survival of both species?

5. Consider another competitive-hunter model defined by

where x and y represent trout and bass populations, respectively.

a. What assumptions are implicitly being made about the growth
of trout and bass in the absence of competition?

b. Interpret the constants a, b, m, n, and in terms of the
physical problem.

c. Perform a graphical analysis:

i) Find the possible equilibrium levels.

ii) Determine whether coexistence is possible.

iii) Pick several typical starting points and sketch typical tra-
jectories in the phase plane.

iv) Interpret the outcomes predicted by your graphical analy-
sis in terms of the constants a, b, m, n, and 

Note: When you get to part (iii), you should realize that five cases
exist. You will need to analyze all five cases.

6. An economic model Consider the following economic model.
Let P be the price of a single item on the market. Let Q be the
quantity of the item available on the market. Both P and Q are
functions of time. If one considers price and quantity as two inter-
acting species, the following model might be proposed:

where a, b, c, and ƒ are positive constants. Justify and discuss the
adequacy of the model.

a. If and find the equilib-
rium points of this system. If possible, classify each equilib-
rium point with respect to its stability. If a point cannot be
readily classified, give some explanation.

b. Perform a graphical stability analysis to determine what will
happen to the levels of P and Q as time increases.

ƒ = 30,a = 1, b = 20,000, c = 1,

dQ

dt
= cQ(ƒP - Q),

 
dP
dt

= aP a b
Q

- Pb ,

k2.k1,

k2k1,

dy

dt
= m a1 -

y

k2
b  y - nxy,

dx
dt

= a a1 -

x
k1
b  x - bxy,

a 6 0

-du>dt = -1.dr>dt = r(1 - r2)

x2
+ y2

= 1

c. Give an economic interpretation of the curves that determine
the equilibrium points.

7. Two trajectories approach equilibrium Show that the two
trajectories leading to shown in Figure 9.31 are unique
by carrying out the following steps.

a. From system (1a) and (1b) apply the Chain Rule to derive the
following equation:

b. Separate the variables, integrate, and exponentiate to obtain

,

where K is a constant of integration.

c. Let and Show that has a
unique maximum of when as shown in
Figure 9.35. Similarly, show that has a unique maximum

when also shown in Figure 9.35.

d. Consider what happens as ( ) approaches Take
limits in part (b) as and to show that either

or Thus any solution trajectory that approaches
must satisfy

e. Show that only one trajectory can approach from
below the line Pick From Figure 9.35
you can see that which implies thatƒ(y0) 6 My,

y0 6 a>b.y = a>b.
(m>n, a>b)

ya

eby
= aMy

Mx
b axm

enx b .

(m>n, a>b)
My>Mx = K.

lim
x:m>n c a ya

eby
b aenx

xm b d = K

y : a>bx : m>n (m>n, a>b).x, y

f (y)

y

My

a
b

yae–by

g(x)

x

Mx

m
n

xme–nx

x = m>n,Mx = (m>en)m
g(x)

y = a>bMy = (a>eb)a
ƒ(y)g(x) = xm>enx.ƒ(y) = ya>eby

yae-by
= Kxme-nx

dy

dx
=

(m - nx)y

(a - by)x
.

(m>n, a>b)

FIGURE 9.35 Graphs of the functions
and g(x) = xm>enx.ƒ(y) = ya>eby

y : a>b
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This in turn implies that

Figure 9.35 tells you that for there is a unique value
satisfying this last inequality. That is, for each

there is a unique value of x satisfying the equation in
part (d). Thus there can exist only one trajectory solution ap-
proaching from below, as shown in Figure 9.36.

f. Use a similar argument to show that the solution trajectory
leading to is unique if 

8. Show that the second-order differential equation 
can be reduced to a system of two first-order differential equations

Can something similar be done to the nth-order differential equa-

tion 

Lotka-Volterra Equations for a Predator-Prey Model
In 1925 Lotka and Volterra introduced the predator-prey equations, a
system of equations that models the populations of two species, one of
which preys on the other. Let x(t) represent the number of rabbits liv-
ing in a region at time t, and y(t) the number of foxes in the same re-
gion. As time passes, the number of rabbits increases at a rate propor-
tional to their population, and decreases at a rate proportional to the
number of encounters between rabbits and foxes. The foxes, which
compete for food, increase in number at a rate proportional to the
number of encounters with rabbits but decrease at a rate proportional
to the number of foxes. The number of encounters between rabbits and
foxes is assumed to be proportional to the product of the two popula-
tions. These assumptions lead to the autonomous system

dy

dt
= (-c + dx)y

dx
dt

= (a - by)x

y (n)
= F Ax, y, y¿, y–, Á , y (n - 1) B?

dz
dx

= F(x, y, z).

 
dy

dx
= z,

y– = F(x, y, y¿)

y

x

a
b

m
n

Unique x0

y0

Bass

Trout

y0 7 a>b.(m>n, a>b)

(m>n, a>b)

y 6 a>bx0 6 m>n g(x)

xm

enx 6 Mx.

My

Mx
 axm

enx b = y0 a>eby0
6 My.
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where a, b, c, d are positive constants. The values of these constants
vary according to the specific situation being modeled. We can study
the nature of the population changes without setting these constants to
specific values.

9. What happens to the rabbit population if there are no foxes present?

10. What happens to the fox population if there are no rabbits present?

11. Show that (0, 0) and ( are equilibrium points. Explain the
meaning of each of these points.

12. Show, by differentiating, that the function

is constant when x(t) and y(t) are positive and satisfy the predator-
prey equations.

While x and y may change over time, C(t) does not. Thus, C is a con-
served quantity and its existence gives a conservation law. A trajectory
that begins at a point (x, y) at time gives a value of C that remains
unchanged at future times. Each value of the constant C gives a trajec-
tory for the autonomous system, and these trajectories close up, rather
than spiraling inwards or outwards. The rabbit and fox populations oscil-
late through repeated cycles along a fixed trajectory. Figure 9.37 shows
several trajectories for the predator-prey system.

13. Using a procedure similar to that in the text for the competitive-
hunter model, show that each trajectory is traversed in a counter-
clockwise direction as time t increases.

Along each trajectory, both the rabbit and fox populations fluctuate
between their maximum and minimum levels. The maximum and
minimum levels for the rabbit population occur where the trajectory
intersects the horizontal line For the fox population, they
occur where the trajectory intersects the vertical line 
When the rabbit population is at its maximum, the fox population is
below its maximum value. As the rabbit population declines from
this point in time, we move counterclockwise around the trajectory,
and the fox population grows until it reaches its maximum value.
At this point the rabbit population has declined to and is 
no longer at its peak value. We see that the fox population reaches
its maximum value at a later time than the rabbits. The predator
population lags behind that of the prey in achieving its maximum
values. This lag effect is shown in Figure 9.38, which graphs both

and y(t).x(t)

x = c>d

x = c>d.
y = a>b.

y

Fox
population

Rabbit population0
x

a
b

c
d

t = 0

C(t) = a ln y(t) - by(t) - dx(t) + c ln x(t)

c>d, a>b)

FIGURE 9.36 For any
only one solution tra-

jectory leads to the rest point
(m>n, a>b).

y 6 a>b

FIGURE 9.37 Some trajectories along which C is conserved.
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14. At some time during a trajectory cycle, a wolf invades the rabbit-fox
territory, eats some rabbits, and then leaves. Does this mean that the
fox population will from then on have a lower maximum value? 
Explain your answer.

FIGURE 9.38 The fox and rabbit populations oscillate periodically,
with the maximum fox population lagging the maximum rabbit
population.

Chapter 9 Questions to Guide Your Review

1. What is a first-order differential equation? When is a function a
solution of such an equation?

2. What is a general solution? A particular solution?

3. What is the slope field of a differential equation 
What can we learn from such fields?

4. Describe Euler’s method for solving the initial value problem
numerically. Give an example. Comment

on the method’s accuracy. Why might you want to solve an initial
value problem numerically?

5. How do you solve linear first-order differential equations?

6. What is an orthogonal trajectory of a family of curves? Describe
how one is found for a given family of curves.

y¿ = ƒsx, yd, ysx0d = y0

y¿ = ƒsx, yd?

7. What is an autonomous differential equation? What are its equi-
librium values? How do they differ from critical points? What is a
stable equilibrium value? Unstable?

8. How do you construct the phase line for an autonomous differential
equation? How does the phase line help you produce a graph
which qualitatively depicts a solution to the differential equation?

9. Why is the exponential model unrealistic for predicting long-term
population growth? How does the logistic model correct for the
deficiency in the exponential model for population growth? What
is the logistic differential equation? What is the form of its solution?
Describe the graph of the logistic solution.

10. What is an autonomous system of differential equations? What is
a solution to such a system? What is a trajectory of the system?

Chapter 9 Practice Exercises

In Exercises 1–16 solve the differential equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13.

14.

15. (Hint:

16. x dy + s3y - x-2 cos xd dx = 0, x 7 0

dsxyd = y dx + x dy)sx + 3y2d dy + y dx = 0

e-x dy + se-xy - 4xd dx = 0

s1 + exd dy + syex
+ e-xd dx = 0

xy¿ - y = 2x ln xxy¿ + 2y = 1 - x-1

y¿

2
+ y = e-x sin x2y¿ - y = xex>2

y¿ = sy2
- 1dx-1xsx - 1d dy - y dx = 0

y¿ = xex - y csc yy¿ =

ey

xy

2x2 dx - 32y csc x dy = 0sec x dy + x cos2 y dx = 0

y¿ = xyex2

y¿ = xey2x - 2

Initial Value Problems
In Exercises 17–22 solve the initial value problem.

17.

18.

19.

20.

21.

22. y dx + s3x - xy + 2d dy = 0, ys2d = -1, y 6 0

xy¿ + sx - 2dy = 3x3e-x, ys1d = 0

x dy + sy - cos xd dx = 0, y ap
2
b = 0

dy

dx
+ 3x2y = x2, ys0d = -1

x 
dy

dx
+ 2y = x2

+ 1, x 7 0, ys1d = 1

sx + 1d 
dy

dx
+ 2y = x, x 7 -1, ys0d = 1
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Euler’s Method
In Exercises 23 and 24, use Euler’s method to solve the initial value
problem on the given interval starting at with 

23.

24.

In Exercises 25 and 26, use Euler’s method with to estimate
y(c) where y is the solution to the given initial value problem.

25.

26.

In Exercises 27 and 28, use Euler’s method to solve the initial value
problem graphically, starting at with

a. b.

27.

28.

Slope Fields
In Exercises 29–32, sketch part of the equation’s slope field. Then add
to your sketch the solution curve that passes through the point

Use Euler’s method with and to estimate
y(2). Round your answers to four decimal places. Find the exact value
of y(2) for comparison.

29. 30.

31. 32.

Autonomous Differential Equations and Phase Lines
In Exercises 33 and 34:

a. Identify the equilibrium values. Which are stable and which
are unstable?

b. Construct a phase line. Identify the signs of and 

c. Sketch a representative selection of solution curves.

33. 34.

Applications
35. Escape velocity The gravitational attraction F exerted by an

airless moon on a body of mass m at a distance s from the moon’s
center is given by the equation where g is the
acceleration of gravity at the moon’s surface and R is the moon’s
radius (see accompanying figure). The force F is negative be-
cause it acts in the direction of decreasing s.

F = -mg R2s-2 ,

dy

dx
= y - y2

dy

dx
= y2

- 1

y–.y¿

y¿ = 1>yy¿ = xy

y¿ = 1>xy¿ = x

dx = 0.2x0 = 1Ps1, -1d .

dy

dx
= -

x2
+ y

ey
+ x

 , ys0d = 0

dy

dx
=

1
ex + y + 2 , ys0d = -2

dx = -0.1 .dx = 0.1 .

x0 = 0

c = 4; 
dy

dx
=

x2
- 2y + 1

x , ys1d = 1

c = 3; 
dy

dx
=

x - 2y

x + 1
, ys0d = 1

dx = 0.05

-3 … x … -1; x0 = -3
y¿ = s2 - yds2x + 3d, ys -3d = 1;

y¿ = y + cos x, ys0d = 0; 0 … x … 2; x0 = 0

dx = 0.1 .x0

a. If the body is projected vertically upward from the moon’s
surface with an initial velocity at time use Newton’s
second law, to show that the body’s velocity at
position s is given by the equation

Thus, the velocity remains positive as long as 

The velocity is the moon’s escape velocity. A
body projected upward with this velocity or a greater one will
escape from the moon’s gravitational pull.

b. Show that if then

36. Coasting to a stop Table 9.6 shows the distance s (meters)
coasted on in-line skates in t sec by Johnathon Krueger. Find a
model for his position in the form of Equation (2) of Section 9.3.
His initial velocity was his mass 
(he weighed 68 lb), and his total coasting distance 0.97 m.

m = 30.84 kgy0 = 0.86 m>sec ,

s = R a1 +

3y0

2R
 tb2>3

.

y0 = 22gR ,

y0 = 22gR

y0 Ú 22gR .

y2
=

2gR2

s + y0 
2

- 2gR .

F = ma ,
t = 0,y0

Moon’s
center

Mass m

F � –
mgR2

s2

R
s

Chapter 9 Additional and Advanced Exercises

Theory and Applications
1. Transport through a cell membrane Under some conditions,

the result of the movement of a dissolved substance across a cell’s
membrane is described by the equation

In this equation, y is the concentration of the substance inside the
cell and dy dt is the rate at which y changes over time. The letters>

dy

dt
= k 

A
V

 sc - yd .

TABLE 9.6 Johnathon Krueger skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

0 0 0.93 0.61 1.86 0.93

0.13 0.08 1.06 0.68 2.00 0.94

0.27 0.19 1.20 0.74 2.13 0.95

0.40 0.28 1.33 0.79 2.26 0.96

0.53 0.36 1.46 0.83 2.39 0.96

0.67 0.45 1.60 0.87 2.53 0.97

0.80 0.53 1.73 0.90 2.66 0.97

T

T

T

T

T

T
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k, A, V, and c stand for constants, k being the permeability coeffi-
cient (a property of the membrane), A the surface area of the
membrane, V the cell’s volume, and c the concentration of the
substance outside the cell. The equation says that the rate at which
the concentration changes within the cell is proportional to the
difference between it and the outside concentration.

a. Solve the equation for y(t), using to denote y(0).

b. Find the steady-state concentration, 

2. Height of a rocket If an external force F acts upon a system
whose mass varies with time, Newton’s law of motion is

In this equation, m is the mass of the system at time t, y is its veloc-
ity, and is the velocity of the mass that is entering (or leav-
ing) the system at the rate dm dt. Suppose that a rocket of initial
mass starts from rest, but is driven upward by firing some of
its mass directly backward at the constant rate of 
units per second and at constant speed relative to the rocket

The only external force acting on the rocket is
due to gravity. Under these assumptions, show that the

height of the rocket above the ground at the end of t seconds 
(t small compared to ) is

3. a. Assume that P(x) and Q(x) are continuous over the interval
[a, b]. Use the Fundamental Theorem of Calculus, Part 1 to
show that any function y satisfying the equation

for is a solution to the first-order linear equation

b. If then show that any solution
y in part (a) satisfies the initial condition 

4. (Continuation of Exercise 3.) Assume the hypotheses of Exercise 3,
and assume that and are both solutions to the first-
order linear equation satisfying the initial condition ysx0d = y0 .

y2sxdy1sxd

ysx0d = y0 .
C = y0ysx0d - 1

x
x0

 ystdQstd dt,

dy

dx
+ Psxdy = Qsxd .

ysxd = e1 Psxd dx

ysxdy =

L
 ysxdQsxd dx + C

y = c ct +

m0 - bt
b

 ln 
m0 - bt

m0
d -

1
2

 gt2 .

m0>b
F = -mg
u = -c .

dm>dt = -b
m0

>y + u

dsmyd
dt

= F + sy + ud 
dm
dt

.

limt:q y std .

y0

a. Verify that satisfies the initial value
problem

b. For the integrating factor show that

Conclude that 

c. From part (a), we have Since 
for use part (b) to establish that 
on the interval (a, b). Thus for all 

Homogeneous Equations
A first-order differential equation of the form

is called homogeneous. It can be transformed into an equation whose
variables are separable by defining the new variable Then,

and

Substitution into the original differential equation and collecting terms
with like variables then gives the separable equation

After solving this separable equation, the solution of the original equation
is obtained when we replace by 

Solve the homogeneous equations in Exercises 5–10. First put the equation
in the form of a homogeneous equation.

5.

6.

7.

8.

9.

10. ax sin  
y
x - y cos  

y
x b   dx + x cos  

y
x  dy = 0

y¿ =

y
x + cos  

y - x
x

(x + y) dy + (x - y) dx = 0

(xey>x
+ y) dx - x dy = 0

x2 dy + (y2
- xy) dx = 0

(x2
+ y2) dx + xy dy = 0

y>x .y

dx
x +

dy
y - F(y)

= 0 .

dy

dx
= y + x 

dy
dx

 .

y = yx
y = y>x.

dy

dx
= F ayx b

a 6 x 6 b .y1sxd = y2sxd
y1sxd - y2sxd K 0a 6 x 6 b ,

ysxd 7 0y1sx0d - y2sx0d = 0.

ysxd[y1sxd - y2sxd] K constant .

d
dx

 sysxd[y1sxd - y2sxd]d = 0.

ysxd = e1 Psxd dx ,

y¿ + Psxdy = 0, ysx0d = 0.

ysxd = y1sxd - y2sxd

Chapter 9 Technology Application Projects

Mathematica Maple Modules:
Drug Dosages: Are They Effective? Are They Safe?
Formulate and solve an initial value model for the absorption of a drug in the bloodstream.

First-Order Differential Equations and Slope Fields
Plot slope fields and solution curves for various initial conditions to selected first-order differential equations.

/
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OVERVIEW Everyone knows how to add two numbers together, or even several. But how
do you add infinitely many numbers together? In this chapter we answer this question,
which is part of the theory of infinite sequences and series.

An important application of this theory is a method for representing a known differen-
tiable function ƒ(x) as an infinite sum of powers of x, so it looks like a “polynomial with
infinitely many terms.” Moreover, the method extends our knowledge of how to evaluate,
differentiate, and integrate polynomials, so we can work with even more general functions
than those encountered so far. These new functions are often solutions to important prob-
lems in science and engineering.

10.1 Sequences

Sequences are fundamental to the study of infinite series and many applications of mathe-
matics. We have already seen an example of a sequence when we studied Newton’s
Method in Section 4.7. There we produced a sequence of approximations that became
closer and closer to the root of a differentiable function. Now we will explore general se-
quences of numbers and the conditions under which they converge.

Representing Sequences

A sequence is a list of numbers

in a given order. Each of and so on represents a number. These are the terms of
the sequence. For example, the sequence

has first term second term , and nth term The integer n is called
the index of and indicates where occurs in the list. Order is important. The sequence

is not the same as the sequence 
We can think of the sequence

as a function that sends 1 to 2 to 3 to and in general sends the positive integer n
to the nth term More precisely, an infinite sequence of numbers is a function whose
domain is the set of positive integers.

The function associated with the sequence

sends 1 to 2 to and so on. The general behavior of this sequence is de-
scribed by the formula an = 2n .

a2 = 4,a1 = 2,

2, 4, 6, 8, 10, 12, Á , 2n, Á

an .
a3 ,a2 ,a1 ,

a1, a2, a3, Á , an, Á

4, 2, 6, 8 Á .2, 4, 6, 8 Á

anan ,
an = 2n .a2 = 4a1 = 2,

2, 4, 6, 8, 10, 12, Á , 2n, Á

a1, a2, a3

a1, a2, a3, Á , an, Á

xn

10
INFINITE SEQUENCES

AND SERIES

HISTORICAL ESSAY

Sequences and Series

7001_ThomasET_ch10p550-627.qxd  10/30/09  8:20 AM  Page 550



10.1 Sequences 551

We can equally well make the domain the integers larger than a given number and
we allow sequences of this type also. For example, the sequence

is described by the formula It can also be described by the simpler formula
where the index n starts at 6 and increases. To allow such simpler formulas, we

let the first index of the sequence be any integer. In the sequence above, starts with 
while starts with 

Sequences can be described by writing rules that specify their terms, such as

,

or by listing terms:

We also sometimes write

Figure 10.1 shows two ways to represent sequences graphically. The first marks the first
few points from on the real axis. The second method shows the graph
of the function defining the sequence. The function is defined only on integer inputs, and the
graph consists of some points in the xy-plane located at s2, a2d, Á , sn, and, Á .s1, a1d,

a1, a2, a3, Á , an, Á

5an6 = E2n Fn = 1

q

 .

 5dn6 = 51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6 .

 5cn6 = e0, 
1
2

, 
2
3

, 
3
4

, 
4
5, Á , 

n - 1
n , Á f

 5bn6 = e1, -
1
2

, 
1
3

, -
1
4

, Á , s -1dn + 1 
1
n, Á f

 5an6 = E21, 22, 23, Á , 2n, Á F
 dn = s -1dn + 1 cn =

n - 1
n , bn = s -1dn + 1 

1
n , an = 2n ,

b6 .5bn6
a15an6

bn = 2n ,
an = 10 + 2n .

12, 14, 16, 18, 20, 22 Á

n0 ,

0

an 5 �n

1 2

0 1 32 4 5

1

3

2

1

0 1 32 4 5

0

an 5

1

0

1

0

a2 a4 a5 a3 a1

1

1
n

n

an

n

an

n

an

a1 a2 a3 a4 a5

a3 a2 a1

an 5 (21)n11 1
n

FIGURE 10.1 Sequences can be represented as points on the real line or as
points in the plane where the horizontal axis n is the index number of the
term and the vertical axis is its value.an

Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases.
This happens in the sequence

e1, 
1
2

, 
1
3

, 
1
4

, Á , 
1
n, Á f

7001_ThomasET_ch10p550-627.qxd  10/30/09  8:20 AM  Page 551



whose terms approach 0 as n gets large, and in the sequence

whose terms approach 1. On the other hand, sequences like

have terms that get larger than any number as n increases, and sequences like

bounce back and forth between 1 and never converging to a single value. The follow-
ing definition captures the meaning of having a sequence converge to a limiting value. It
says that if we go far enough out in the sequence, by taking the index n to be larger than
some value N, the difference between and the limit of the sequence becomes less than
any preselected number P 7 0.

an

-1,

51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6

E21, 22, 23, Á , 2n, Á F

e0, 
1
2

, 
2
3

, 
3
4

, 
4
5, Á , 1 -

1
n, Á f
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DEFINITIONS The sequence converges to the number L if for every
positive number there corresponds an integer N such that for all n,

If no such number L exists, we say that diverges.
If converges to L, we write or simply and call L

the limit of the sequence (Figure 10.2).
an : L ,limn:q an = L ,5an6

5an6
n 7 N Q ƒ an - L ƒ 6 P .

P

5an6

aN

(N, aN)

0 1 32 N n

L

L 2 e

L 2 e L 1 eL

L 1 e

(n, an)

0 a2 a3 a1 an

n

an

FIGURE 10.2 In the representation of a
sequence as points in the plane, if

is a horizontal asymptote of the
sequence of points In this figure,
all the after lie within of L.PaNan’s

5sn, and6 .
y = L

an : L

HISTORICAL BIOGRAPHY

Nicole Oresme
(ca. 1320–1382)

The definition is very similar to the definition of the limit of a function ƒ(x) as x tends
to ( in Section 2.6). We will exploit this connection to calculate limits of
sequences.

EXAMPLE 1 Show that

(a) (b)

Solution

(a) Let be given. We must show that there exists an integer N such that for all n,

This implication will hold if or If N is any integer greater than
the implication will hold for all This proves that 

(b) Let be given. We must show that there exists an integer N such that for all n,

Since we can use any positive integer for N and the implication will hold.
This proves that for any constant k.

EXAMPLE 2 Show that the sequence diverges.

Solution Suppose the sequence converges to some number L. By choosing in
the definition of the limit, all terms of the sequence with index n larger than some N
must lie within of L. Since the number 1 appears repeatedly as every other term
of the sequence, we must have that the number 1 lies within the distance of L. P = 1>2P = 1>2 an

P = 1>2
51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6

limn:q k = k
k - k = 0,

n 7 N Q ƒ k - k ƒ 6 P .

P 7 0

limn:q s1>nd = 0.n 7 N .1>P ,
n 7 1>P .s1>nd 6 P

n 7 N Q ` 1n - 0 ` 6 P .

P 7 0

lim
n: q

 k = k sany constant kdlim
n: q

 
1
n = 0

limx:q ƒsxdq
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It follows that or equivalently, Likewise, the number
appears repeatedly in the sequence with arbitrarily high index. So we must also have

that or equivalently, But the number L cannot
lie in both of the intervals (1 2, 3 2) and because they have no overlap.
Therefore, no such limit L exists and so the sequence diverges.

Note that the same argument works for any positive number smaller than 1, not
just 1 2.

The sequence also diverges, but for a different reason. As n increases, its terms
become larger than any fixed number. We describe the behavior of this sequence by writing

In writing infinity as the limit of a sequence, we are not saying that the differences between
the terms and become small as n increases. Nor are we asserting that there is some num-
ber infinity that the sequence approaches. We are merely using a notation that captures the idea
that eventually gets and stays larger than any fixed number as n gets large (see Figure 10.3a).
The terms of a sequence might also decrease to negative infinity, as in Figure 10.3b.

an

qan

lim
n: q

2n = q .

{1n}

> P

s -3>2, -1>2d>> -3>2 6 L 6 -1>2.ƒ L - s -1d ƒ 6 1>2,
-1

1>2 6 L 6 3>2.ƒ L - 1 ƒ 6 1>2,

0 1 32 N

M

n

an

0 N

m

n

an

1 32

(a)

(b)

FIGURE 10.3 (a) The sequence
diverges to because no matter
what number M is chosen, the
terms of the sequence after some
index N all lie in the yellow band
above M. (b) The sequence
diverges to because all terms
after some index N lie below any
chosen number m.

- q

q

DEFINITION The sequence diverges to infinity if for every number M
there is an integer N such that for all n larger than If this condition
holds we write

Similarly if for every number m there is an integer N such that for all we
have then we say diverges to negative infinity and write

lim
n: q

 an = - q or an : - q .

5an6an 6 m ,
n 7 N

lim
n: q

 an = q or an : q .

N, an 7 M .
5an6

A sequence may diverge without diverging to infinity or negative infinity, as we saw
in Example 2. The sequences and 
are also examples of such divergence.

Calculating Limits of Sequences

Since sequences are functions with domain restricted to the positive integers, it is not surpris-
ing that the theorems on limits of functions given in Chapter 2 have versions for sequences.

51, 0, 2, 0, 3, 0, Á 651, -2, 3, -4, 5, -6, 7, -8, Á 6

THEOREM 1 Let and be sequences of real numbers, and let A
and B be real numbers. The following rules hold if and

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule:

4. Product Rule:

5. Quotient Rule: limn:q  
an

bn
=

A
B
 if B Z 0

limn:q san
# bnd = A # B

limn:q sk # bnd = k # B sany number kd
limn:q san - bnd = A - B

limn:q san + bnd = A + B

limn:q bn = B .
limn:q an = A

5bn65an6

The proof is similar to that of Theorem 1 of Section 2.2 and is omitted.
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EXAMPLE 3 By combining Theorem 1 with the limits of Example 1, we have:

(a)

(b)

(c) Product Rule

(d) Sum and Quotient Rules

Be cautious in applying Theorem 1. It does not say, for example, that each of the se-
quences and have limits if their sum has a limit. For instance,

and both diverge, but their sum
clearly converges to 0.

One consequence of Theorem 1 is that every nonzero multiple of a divergent sequence
diverges. For suppose, to the contrary, that converges for some number 

Then, by taking in the Constant Multiple Rule in Theorem 1, we see that the sequence

converges. Thus, cannot converge unless also converges. If does not con-
verge, then does not converge.

The next theorem is the sequence version of the Sandwich Theorem in Section 2.2.
You are asked to prove the theorem in Exercise 109. (See Figure 10.4.)

5can6
5an65an65can6

e 1
c

# can f = 5an6
k = 1>c c Z 0.5can65an6

5an + bn6 = 50, 0, 0, Á 6 5bn6 = 5-1, -2, -3, Á 65an6 = 51, 2, 3, Á 6 5an + bn65bn65an6

lim
n: q

 
4 - 7n6

n6
+ 3

= lim
n: q

 
s4>n6d - 7

1 + s3>n6d
=

0 - 7
1 + 0

= -7.

lim
n: q

 
5
n2 = 5 # lim

n: q

 
1
n

# lim
n: q

 
1
n = 5 # 0 # 0 = 0

lim
n: q

 an - 1
n b = lim

n: q

 a1 -
1
n b = lim

n: q

1 - lim
n: q

 
1
n = 1 - 0 = 1

lim
n: q

 a- 1
n b = -1 # lim

n: q

 
1
n = -1 # 0 = 0

554 Chapter 10: Infinite Sequences and Series

0

L

n
an

bn

cn

FIGURE 10.4 The terms of
sequence are sandwiched
between those of and 
forcing them to the same
common limit L.

{cn},{an}
{bn}

THEOREM 2—The Sandwich Theorem for Sequences Let and 
be sequences of real numbers. If holds for all n beyond some index
N, and if then also.limn:q  bn = Llimn:q  an = limn:q  cn = L ,

an … bn … cn

5cn65an6, 5bn6 ,

An immediate consequence of Theorem 2 is that, if and then
because We use this fact in the next example.

EXAMPLE 4 Since we know that

(a)

(b)

(c)

The application of Theorems 1 and 2 is broadened by a theorem stating that applying
a continuous function to a convergent sequence produces a convergent sequence. We state
the theorem, leaving the proof as an exercise (Exercise 110).

-
1
n … s -1dn 

1
n …

1
n .because s -1dn 

1
n : 0 

0 …
1
2n …

1
n ;because 1

2n : 0 
-

1
n …

cos n
n …

1
n ;because cos n

n : 0 
1>n : 0,

-cn … bn … cn .bn : 0
cn : 0,ƒ bn ƒ … cn

THEOREM 3—The Continuous Function Theorem for Sequences Let be a
sequence of real numbers. If and if ƒ is a function that is continuous at L
and defined at all then ƒsand : ƒsLd .an ,

an : L
5an6

Constant Multiple Rule and Example la

Difference Rule
and Example la
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EXAMPLE 5 Show that 

Solution We know that Taking and in Theorem 3
gives 

EXAMPLE 6 The sequence converges to 0. By taking and
in Theorem 3, we see that The sequence 

converges to 1 (Figure 10.5).

Using L’Hôpital’s Rule

The next theorem formalizes the connection between and It en-
ables us to use l’Hôpital’s Rule to find the limits of some sequences. 

limx:q ƒsxd .limn:q an

521>n621>n
= ƒs1>nd : ƒsLd = 20

= 1.L = 0
an = 1>n, ƒsxd = 2x ,51>n6

1sn + 1d>n : 11 = 1.
L = 1ƒsxd = 1xsn + 1d>n : 1.

2sn + 1d>n : 1.

1
3

0

1

(1, 2)

y � 2x

1

2

, 21/3⎛
⎝

⎛
⎝

, 21/2⎛
⎝

⎛
⎝

1
3

1
2

1
2

x

y

FIGURE 10.5 As and
(Example 6). The terms of 

are shown on the x-axis; the terms of
are shown as the y-values on the

graph of ƒ(x) = 2x.
{21>n}

{1>n}21>n : 20
n : q , 1>n : 0 THEOREM 4 Suppose that ƒ(x) is a function defined for all and that

is a sequence of real numbers such that for Then

lim
x: q

 ƒsxd = L Q lim
n: q

 an = L .

n Ú n0 .an = ƒsnd5an6
x Ú n0

Proof Suppose that Then for each positive number there is a num-
ber M such that for all x,

Let N be an integer greater than M and greater than or equal to Then

EXAMPLE 7 Show that

Solution The function is defined for all and agrees with the given
sequence at positive integers. Therefore, by Theorem 4, will equal

if the latter exists. A single application of l’Hôpital’s Rule shows that

We conclude that 

When we use l’Hôpital’s Rule to find the limit of a sequence, we often treat n as a
continuous real variable and differentiate directly with respect to n. This saves us from
having to rewrite the formula for as we did in Example 7.

EXAMPLE 8 Does the sequence whose nth term is

converge? If so, find limn:q an .

an = an + 1
n - 1

bn

an

limn:q sln nd>n = 0.

lim
x: q

 
ln x
x = lim

x: q

 
1>x
1

=
0
1

= 0.

limx:q sln xd>x limn:q sln nd>nx Ú 1sln xd>x
lim

n: q

 
ln n
n = 0.

n 7 N Q an = ƒsnd and ƒ an - L ƒ = ƒ ƒsnd - L ƒ 6 P .

n0 .

x 7 M Q ƒ ƒsxd - L ƒ 6 P .

Plimx:q ƒsxd = L .
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Solution The limit leads to the indeterminate form We can apply l’Hôpital’s Rule if
we first change the form to by taking the natural logarithm of 

Then,

Since and is continuous, Theorem 4 tells us that

The sequence converges to 

Commonly Occurring Limits

The next theorem gives some limits that arise frequently.

e2 .5an6
an = e ln an : e2 .

ƒsxd = exln an : 2

 = lim
n: q

 
2n2

n2
- 1

= 2 .

 = lim
n: q

 
-2>sn2

- 1d

-1>n2

 = lim
n: q

 

ln an + 1
n - 1

b
1>n

 lim
n: q

 ln an = lim
n: q

 n ln an + 1
n - 1

b

 = n ln an + 1
n - 1

b .

 ln an = ln an + 1
n - 1

bn

an :q # 0
1q .

556 Chapter 10: Infinite Sequences and Series

formq # 0

form
0
0

L’Hôpital’s Rule: differentiate
numerator and denominator.

THEOREM 5 The following six sequences converge to the limits listed below:

1. 2.

3. 4.

5. 6.

In Formulas (3) through (6), x remains fixed as n : q .

lim
n: q

 
xn

n!
= 0 sany xdlim

n: q

 a1 +
x
n b

n

= ex sany xd

lim
n: q

 xn
= 0 s ƒ x ƒ 6 1dlim

n: q

 x1>n
= 1 sx 7 0d

lim
n: q

2n n = 1lim
n: q

 
ln n
n = 0

Proof The first limit was computed in Example 7. The next two can be proved by taking
logarithms and applying Theorem 4 (Exercises 107 and 108). The remaining proofs are
given in Appendix 5.

EXAMPLE 9 These are examples of the limits in Theorem 5.

(a) Formula 1

(b) Formula 2

(c) Formula 3 with and Formula 2

(d) Formula 4 with x = -

1
2

a- 1
2
bn

: 0

x = 32n 3n = 31>nsn1/nd : 1 # 1 = 1

2n n2
= n2>n

= sn1/nd2 : s1d2
= 1

ln sn2d
n =

2 ln n
n : 2 # 0 = 0
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(e) Formula 5 with

(f) Formula 6 with

Recursive Definitions

So far, we have calculated each directly from the value of n. But sequences are often de-
fined recursively by giving

1. The value(s) of the initial term or terms, and

2. A rule, called a recursion formula, for calculating any later term from terms that pre-
cede it.

EXAMPLE 10
(a) The statements and for define the sequence 

of positive integers. With we have 
and so on.

(b) The statements and for define the sequence
of factorials. With we have 

and so on.

(c) The statements and for define the se-
quence of Fibonacci numbers. With and we have

and so on.

(d) As we can see by applying Newton’s method (see Exercise 133), the statements
and for define a sequence

that, when it converges, gives a solution to the equation  

Bounded Monotonic Sequences

Two concepts that play a key role in determining the convergence of a sequence are those
of a bounded sequence and a monotonic sequence.

sin x - x2
= 0.

n 7 0xn + 1 = xn - [ssin xn - xn
2d>scos xn - 2xnd]x0 = 1

a3 = 1 + 1 = 2, a4 = 2 + 1 = 3, a5 = 3 + 2 = 5,
a2 = 1,a1 = 11, 1, 2, 3, 5, Á

n 7 2an + 1 = an + an - 1a2 = 1,a1 = 1,

4 # a3 = 24,a4 =a3 = 3 # a2 = 6,
a2 = 2 # a1 = 2, a1 = 1,1, 2, 6, 24, Á , n!, Á

n 7 1an = n # an - 1a1 = 1

a2 = a1 + 1 = 2, a3 = a2 + 1 = 3,a1 = 1,n, Á

1, 2, 3, Á ,n 7 1an = an - 1 + 1a1 = 1

an

x = 100
100n

n!
: 0

x = -2an - 2
n bn

= a1 +
-2
n b

n

: e-2

DEFINITIONS A sequence is bounded from above if there exists a
number M such that for all n. The number M is an upper bound for

If M is an upper bound for but no number less than M is an upper
bound for then M is the least upper bound for 

A sequence is bounded from below if there exists a number m such that
for all n. The number m is a lower bound for If m is a lower bound

for but no number greater than m is a lower bound for then m is the
greatest lower bound for 

If is bounded from above and below, then is bounded. If is not
bounded, then we say that is an unbounded sequence.{an}

{an}{an}{an}
{an}.

{an},{an}
{an}.an Ú m

{an}
5an6 .5an6 ,

5an65an6 .
an … M

5an6

EXAMPLE 11

(a) The sequence has no upper bound since it eventually surpasses
every number M. However, it is bounded below by every real number less than or
equal to 1. The number is the greatest lower bound of the sequence.

(b) The sequence is bounded above by every real number greater

than or equal to 1. The upper bound is the least upper bound (Exercise 125).  

The sequence is also bounded below by every number less than or equal to which is

its greatest lower bound.

1
2

,

M = 1

1
2

, 
2
3

, 
3
4

, Á , 
n

n + 1
, Á

m = 1

1, 2, 3, Á , n, Á

n n!

1 3 1

5 148 120

10 22,026 3,628,800

20 2.4 * 10184.9 * 108

en

Factorial Notation
The notation n! (“n factorial”) means 
the product of the integers
from 1 to n. Notice that

Thus,
and

We
define 0! to be 1. Factorials grow even
faster than exponentials, as the table
suggests. The values in the table are
rounded.

5! = 1 # 2 # 3 # 4 # 5 = 5 # 4! = 120.
4! = 1 # 2 # 3 # 4 = 24
sn + 1d! = sn + 1d # n! .

1 # 2 # 3 Á n
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If a sequence converges to the number L, then by definition there is a number N
such that if That is,

If M is a number larger than and all of the finitely many numbers 
then for every index n we have so that is bounded from above. Similarly, if m
is a number smaller than and all of the numbers then m is a lower
bound of the sequence. Therefore, all convergent sequences are bounded.

Although it is true that every convergent sequence is bounded, there are bounded se-
quences that fail to converge. One example is the bounded sequence discussed
in Example 2. The problem here is that some bounded sequences bounce around in the
band determined by any lower bound m and any upper bound M (Figure 10.6). An impor-
tant type of sequence that does not behave that way is one for which each term is at least as
large, or at least as small, as its predecessor.

{s -1dn + 1}

a1, a2, Á , aN,L - 1
{an}an … M

a1, a2, Á , aN,L + 1

L - 1 6 an 6 L + 1 for n 7 N.

n 7 N.ƒ an - L ƒ 6 1
{an}

558 Chapter 10: Infinite Sequences and Series

DEFINITION A sequence is nondecreasing if for all n. That
is, The sequence is nonincreasing if for all n.
The sequence is monotonic if it is either nondecreasing or nonincreasing.5an6

an Ú an + 1a1 … a2 … a3 … Á .
an … an + 15an6

Convergent sequences are bounded

0

M

m

n

an

1 32

FIGURE 10.6 Some bounded sequences
bounce around between their bounds and
fail to converge to any limiting value.

EXAMPLE 12

(a) The sequence is nondecreasing.

(b) The sequence is nondecreasing.

(c) The sequence is nonincreasing.

(d) The constant sequence is both nondecreasing and nonincreasing.
(e) The sequence is not monotonic.

A nondecreasing sequence that is bounded from above always has a least upper
bound. Likewise, a nonincreasing sequence bounded from below always has a greatest
lower bound. These results are based on the completeness property of the real numbers,
discussed in Appendix 6. We now prove that if L is the least upper bound of a nondecreas-
ing sequence then the sequence converges to  L, and that if L is the greatest lower bound of
a nonincreasing sequence then the sequence converges to L.

1, -1, 1, -1, 1, -1, Á

3, 3, 3, Á , 3, Á

1, 
1
2

, 
1
4

, 
1
8

, Á , 
1
2n  , Á

1
2

, 
2
3

, 
3
4

, Á , 
n

n + 1
, Á

1, 2, 3, Á , n, Á

THEOREM 6—The Monotonic Sequence Theorem If a sequence is both
bounded and monotonic, then the sequence converges.

{an}

0

L

M

y 5 L

y 5 M

x

y

FIGURE 10.7 If the terms of a
nondecreasing sequence have an upper
bound M, they have a limit L … M .

Proof Suppose is nondecreasing, L is its least upper bound, and we plot the points
in the xy-plane. If M is an upper bound of the sequence, all

these points will lie on or below the line (Figure 10.7). The line is the low-
est such line. None of the points lies above but some do lie above any lower
line if is a positive number. The sequence converges to L because

(a) for all values of n, and

(b) given any there exists at least one integer N for which 

The fact that is nondecreasing tells us further that

Thus, all the numbers beyond the Nth number lie within of L. This is precisely the
condition for L to be the limit of the sequence 

The proof for nonincreasing sequences bounded from below is similar.
{an}.

Pan

an Ú aN 7 L - P for all n Ú N .

5an6
aN 7 L - P .P 7 0,

an … L

Py = L - P ,
y = L ,sn, and

y = Ly = M
s1, a1d, s2, a2d, Á , sn, and, Á

{an}
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10.1 Sequences 559

It is important to realize that Theorem 6 does not say that convergent sequences are
monotonic. The sequence converges and is bounded, but it is not monotonic
since it alternates between positive and negative values as it tends toward zero. What the
theorem does say is that a nondecreasing sequence converges when it is bounded from
above, but it diverges to infinity otherwise.

{s -1dn + 1>n}

Exercises 10.1

Finding Terms of a Sequence
Each of Exercises 1–6 gives a formula for the nth term of a se-
quence Find the values of and 

1. 2.

3. 4.

5. 6.

Each of Exercises 7–12 gives the first term or two of a sequence along
with a recursion formula for the remaining terms. Write out the first
ten terms of the sequence.

7.

8.

9.

10.

11.

12.

Finding a Sequence’s Formula
In Exercises 13–26, find a formula for the nth term of the sequence.

13. The sequence 1’s with alternating signs

14. The sequence 1’s with alternating signs

15. The sequence 

16. The sequence 

17.

18.

19. The sequence 

20. The sequence 

21. The sequence 

22. The sequence 

23.
5
1

, 
8
2

, 
11
6

, 
14
24

, 
17
120

, Á

2, 6, 10, 14, 18, Á

1, 5, 9, 13, 17, Á

-3, -2, -1, 0, 1, Á

0, 3, 8, 15, 24, Á

-  

3
2

, -  

1
6

, 
1
12

, 
3
20

, 
5
30

, Á

1
9

, 
2
12

, 
22

15
, 

23

18
, 

24

21
, Á

1, -
1
4

, 
1
9

, -
1

16
, 

1
25

, Á

1, -4, 9, -16, 25, Á

-1, 1, -1, 1, -1, Á

1, -1, 1, -1, 1, Á

a1 = 2, a2 = -1, an + 2 = an + 1>an

a1 = a2 = 1, an + 2 = an + 1 + an

a1 = -2, an + 1 = nan>sn + 1d
a1 = 2, an + 1 = s -1dn + 1an>2
a1 = 1, an + 1 = an>sn + 1d
a1 = 1, an + 1 = an + s1>2nd

an =

2n
- 1

2nan =

2n

2n + 1

an = 2 + s -1dnan =

s -1dn + 1

2n - 1

an =

1
n!

an =

1 - n

n2

a4 .a1, a2, a3 ,5an6 .
an

24.

25. The sequence 

26. The sequence 

Convergence and Divergence
Which of the sequences in Exercises 27–90 converge, and which
diverge? Find the limit of each convergent sequence.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60. an = ln n - ln sn + 1dan =

ln n

n1>n

an = sn + 4d1>sn + 4dan = a3n b
1>n

an = 2n n2an = 2n 10n

an = a1 -

1
n b

n

an = a1 +

7
n b

n

an = s0.03d1>nan = 81>n

an =

ln n
ln 2n

an =

ln sn + 1d

2n

an =

3n

n3an =

n
2n

an =

sin2 n
2nan =

sin n
n

an = np cos snpdan = sin ap
2

+

1
n b

an =

1
s0.9dnan = A

2n
n + 1

an = a- 1
2
bn

an =

s -1dn + 1

2n - 1

an = a2 -

1
2n b a3 +

1
2n ban = an + 1

2n
b a1 -

1
n b

an = s -1dn a1 -

1
n ban = 1 + s -1dn

an =

1 - n3

70 - 4n2an =

n2
- 2n + 1
n - 1

an =

n + 3
n2

+ 5n + 6
an =

1 - 5n4

n4
+ 8n3

an =

2n + 1

1 - 32n
an =

1 - 2n
1 + 2n

an =

n + s -1dn

nan = 2 + s0.1dn

5an6

0, 1, 1, 2, 2, 3, 3, 4, Á

1, 0, 1, 0, 1, Á

1
25

, 
8

125
, 

27
625

, 
64

3125
, 

125
15,625

, Á

Squares of the positive
integers, with
alternating signs
Reciprocals of squares
of the positive integers,
with alternating signs

Powers of 2 divided by
multiples of 3

Integers differing by 2
divided by products of
consecutive integers

Squares of the positive
integers diminished by 1
Integers, beginning with -3

Every other odd positive
integer

Every other even positive
integer

Integers differing by 3
divided by factorials

Alternating 1’s and 0’s

Cubes of positive integers
divided by powers of 5

Each positive integer
repeated
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61. 62.

63. (Hint: Compare with 1 n.)

64. 65.

66. 67.

68. 69.

70. 71.

72. 73.

74. 75.

76. 77.

78. 79.

80. 81.

82. 83.

84. 85.

86. 87.

88.

89. 90.

Recursively Defined Sequences
In Exercises 91–98, assume that each sequence converges and find its
limit.

91.

92.

93.

94.

95.

96.

97.

98.

51 + 41 + 31 + 21, Á

21, 31 + 21, 41 + 31 + 21,

2, 2 +

1
2

, 2 +

1

2 +

1
2

, 2 +

1

2 +

1

2 +

1
2

, Á

a1 = 3, an + 1 = 12 - 2an

a1 = 5, an + 1 = 25an

a1 = 0, an + 1 = 28 + 2an

a1 = -4, an + 1 = 28 + 2an

a1 = -1, an + 1 =

an + 6
an + 2

a1 = 2, an + 1 =

72
1 + an

an =

L

n

1
 
1
xp dx, p 7 1an =

1
n
L

n

1
 
1
x  dx

an =

1

2n2
- 1 - 2n2

+ n

an = n - 2n2
- nan =

sln nd5

2n

an =

sln nd200

nan = 2n n2
+ n

an = a1
3
bn

+

1

22n
an =

1

2n
 tan-1 n

an = tan-1 nan = s3n
+ 5nd1>n

an = 2n sin 
1

2n
an = n a1 - cos 

1
n b

an =

n2

2n - 1
 sin 

1
nan = sinh sln nd

an = tanh nan =

s10>11dn

s9/10dn
+ s11/12dn

an =

3n # 6n

2-n # n!
an = a1 -

1
n2 b

n

an = a xn

2n + 1
b1>n

, x 7 0an = a n
n + 1

bn

an = a3n + 1
3n - 1

bn

an = ln a1 +

1
n b

n

an = a1n b
1>sln nd

an =

n!
2n # 3n

an =

n!
106n

an =

s -4dn

n!

>an =

n!
nn

an = 2n 32n + 1an = 2n 4nn

560 Chapter 10: Infinite Sequences and Series

Theory and Examples
99. The first term of a sequence is Each succeeding term is

the sum of all those that come before it:

Write out enough early terms of the sequence to deduce a gen-
eral formula for that holds for 

100. A sequence of rational numbers is described as follows:

.

Here the numerators form one sequence, the denominators form
a second sequence, and their ratios form a third sequence. Let 
and be, respectively, the numerator and the denominator of
the nth fraction 

a. Verify that and, more
generally, that if or then

respectively.

b. The fractions approach a limit as n increases.
What is that limit? (Hint: Use part (a) to show that

and that is not less than n.)

101. Newton’s method The following sequences come from the re-
cursion formula for Newton’s method,

Do the sequences converge? If so, to what value? In each case,
begin by identifying the function ƒ that generates the sequence.

a.

b.

c.

102. a. Suppose that ƒ(x) is differentiable for all x in [0, 1] and that
Define sequence by the rule 

Show that Use the result in part (a) to
find the limits of the following sequences 

b. c.

d.

103. Pythagorean triples A triple of positive integers a, b, and c is
called a Pythagorean triple if Let a be an odd
positive integer and let

be, respectively, the integer floor and ceiling for a2>2.

b = j a2

2
k and c = l a2

2
m

a2
+ b2

= c2 .

an = n ln a1 +

2
n b

an = nse1>n
- 1dan = n tan-1 

1
n

5an6 .
lim n:q an = ƒ¿s0d.

nƒs1>nd .an =5an6ƒs0d = 0.

x0 = 1, xn + 1 = xn - 1

x0 = 1, xn + 1 = xn -

tan xn - 1

sec2 xn

x0 = 1, xn + 1 = xn -

xn
2

- 2
2xn

=

xn

2
+

1
xn

xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

.

ynrn
2

- 2 = ; s1>ynd2

rn = xn>yn

sa + 2bd2
- 2sa + bd2

= +1 or -1,

+1,a2
- 2b2

= -1
x1

2
- 2y1

2
= -1, x2

2
- 2y2

2
= +1

rn = xn>yn .
yn

xn

1
1

, 
3
2

, 
7
5

, 
17
12

, Á , 
a
b

, 
a + 2b
a + b

, Á

n Ú 2.xn

xn + 1 = x1 + x2 +
Á

+ xn .

x1 = 1.
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10.1 Sequences 561

a. Show that (Hint: Let and express
b and c in terms of n.)

b. By direct calculation, or by appealing to the accompanying
figure, find

104. The nth root of n!

a. Show that and hence, using Stirling’s
approximation (Chapter 8, Additional Exercise 32a), that

b. Test the approximation in part (a) for as
far as your calculator will allow.

105. a. Assuming that if c is any positive con-
stant, show that

if c is any positive constant.

b. Prove that if c is any positive constant.
(Hint: If and how large should N be to
ensure that if )

106. The zipper theorem Prove the “zipper theorem” for se-
quences: If and both converge to L, then the sequence

converges to L.

107. Prove that 

108. Prove that 

109. Prove Theorem 2. 110. Prove Theorem 3.

In Exercises 111–114, determine if the sequence is monotonic and if it
is bounded.

111. 112.

113. 114.

Which of the sequences in Exercises 115–124 converge, and which di-
verge? Give reasons for your answers.

115. 116. an = n -

1
nan = 1 -

1
n

an = 2 -

2
n -

1
2nan =

2n3n

n!

an =

s2n + 3d!
sn + 1d!

an =

3n + 1
n + 1

limn:q x1>n
= 1, sx 7 0d .

limn:q2n n = 1.

a1, b1, a2 , b2 , Á , an , bn , Á

5bn65an6
n 7 N?ƒ 1>nc

- 0 ƒ 6 P

c = 0.04 ,P = 0.001
limn:q s1>ncd = 0

lim
n: q

 
ln n
nc = 0

limn:q s1>ncd = 0

n = 40, 50, 60, Á ,

2n n! L

n
e for large values of n .

limn:q s2npd1>s2nd
= 1

lim
a: q

 

j a2

2
k

l a2

2
m
.

a = 2n + 1a2
+ b2

= c2 .

a

⎡⎢⎢ a2

2
⎢⎢⎣

⎢⎢⎣

⎡⎢⎢
a2

2

�

117. 118.

119.

120. The first term of a sequence is The next terms are
or cos (2), whichever is larger; and or cos (3),

whichever is larger (farther to the right). In general,

121. 122.

123.

124.

125. The sequence { ( )} has a least upper bound of 1
Show that if M is a number less than 1, then the terms of

eventually exceed M. That is, if there is an
integer N such that whenever Since

for every n, this proves that 1 is a least upper
bound for 

126. Uniqueness of least upper bounds Show that if and 
are least upper bounds for the sequence then 
That is, a sequence cannot have two different least upper bounds.

127. Is it true that a sequence of positive numbers must con-
verge if it is bounded from above? Give reasons for your answer.

128. Prove that if is a convergent sequence, then to every posi-
tive number there corresponds an integer N such that for all m
and n,

129. Uniqueness of limits Prove that limits of sequences are
unique. That is, show that if and are numbers such that

and then 

130. Limits and subsequences If the terms of one sequence appear
in another sequence in their given order, we call the first se-
quence a subsequence of the second. Prove that if two sub-
sequences of a sequence have different limits 
then diverges.

131. For a sequence the terms of even index are denoted by 
and the terms of odd index by Prove that if and

then 

132. Prove that a sequence converges to 0 if and only if the se-
quence of absolute values converges to 0.

133. Sequences generated by Newton’s method Newton’s method,
applied to a differentiable function ƒ(x), begins with a starting
value and constructs from it a sequence of numbers that
under favorable circumstances converges to a zero of ƒ. The
recursion formula for the sequence is

a. Show that the recursion formula for 
can be written as 

b. Starting with and calculate successive terms
of the sequence until the display begins to repeat. What num-
ber is being approximated? Explain.

a = 3,x0 = 1

xn + 1 = sxn + a>xnd>2.
ƒsxd = x2

- a, a 7 0,

xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

.

5xn6x0

5ƒ an ƒ6
5an6

an : L .a2k + 1 : L ,
a2k : La2k + 1 .

a2k5an6
5an6

L1 Z L2 ,5an6

L1 = L2 .an : L2 ,an : L1

L2L1

m 7 N and n 7 N Q  ƒ am - an ƒ 6 P .

P

5an6
5an6

M1 = M2 .5an6 ,
M2M1

5n>sn + 1d6 .
n>sn + 1d 6 1

n 7 N .n>sn + 1d 7 M
M 6 15n>sn + 1d6

n + 1n/

a1 = 1, an + 1 = 2an - 3

an =

4n + 1
+ 3n

4n

an =

n + 1
nan =

1 + 22n

2n

xn + 1 = max 5xn , cos sn + 1d6 .

x3 = x2x2 = x1

x1 = cos s1d .

an = ss -1dn
+ 1d an + 1

n b
an =

2n
- 1

3nan =

2n
- 1

2n

T

T
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134. A recursive definition of If you start with and define
the subsequent terms of by the rule 
you generate a sequence that converges rapidly to (a) Try
it. (b) Use the accompanying figure to explain why the conver-
gence is so rapid.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the sequences in Exer-
cises 135–146.

10

cos xn � 11

xn � 1

xn � 1
x

y

p>2.
xn = xn - 1 + cos xn - 1 ,5xn6

x1 = 1P/2

562 Chapter 10: Infinite Sequences and Series

a. Calculate and then plot the first 25 terms of the sequence.
Does the sequence appear to be bounded from above or be-
low? Does it appear to converge or diverge? If it does con-
verge, what is the limit L?

b. If the sequence converges, find an integer N such that
for How far in the sequence do

you have to get for the terms to lie within 0.0001 of L?

135. 136.

137.

138.

139. 140.

141. 142.

143. 144.

145. 146. an =

n41

19nan =

8n

n!

an = (123456)1>nan = s0.9999dn

an =

ln n
nan =

sin n
n

an = n sin 
1
nan = sin n

a1 = 1, an + 1 = an + s -2dn

a1 = 1, an + 1 = an +

1
5n

an = a1 +

0.5
n b

n

an = 2n n

n Ú N .ƒ an - L ƒ … 0.01

T

10.2 Infinite Series

An infinite series is the sum of an infinite sequence of numbers

The goal of this section is to understand the meaning of such an infinite sum and to de-
velop methods to calculate it. Since there are infinitely many terms to add in an infinite se-
ries, we cannot just keep adding to see what comes out. Instead we look at the result of
summing the first n terms of the sequence and stopping. The sum of the first n terms

is an ordinary finite sum and can be calculated by normal addition. It is called the nth par-
tial sum. As n gets larger, we expect the partial sums to get closer and closer to a lim-
iting value in the same sense that the terms of a sequence approach a limit, as discussed in
Section 10.1.

For example, to assign meaning to an expression like

we add the terms one at a time from the beginning and look for a pattern in how these par-
tial sums grow.

Suggestive expression
Partial sum Value for partial sum

First: 1

Second:

Third:

nth: 2 -
1

2n - 1
2n

- 1
2n - 1 sn = 1 +

1
2

+
1
4

+
Á

+
1

2n - 1

ooo     o

2 -
1
4

7
4

 s3 = 1 +
1
2

+
1
4

2 -
1
2

3
2

 s2 = 1 +
1
2

2 - 1 s1 = 1

1 +
1
2

+
1
4

+
1
8

+
1

16
+

Á

sn = a1 + a2 + a3 +
Á

+ an

a1 + a2 + a3 +
Á

+ an +
Á
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10.2 Infinite Series 563

Indeed there is a pattern. The partial sums form a sequence whose nth term is

This sequence of partial sums converges to 2 because We say

Is the sum of any finite number of terms in this series equal to 2? No. Can we actually add
an infinite number of terms one by one? No. But we can still define their sum by defining
it to be the limit of the sequence of partial sums as in this case 2 (Figure 10.8). Our
knowledge of sequences and limits enables us to break away from the confines of finite
sums.

n : q ,

“the sum of the infinite series 1 +
1
2

+
1
4

+
Á

+
1

2n - 1 +
Á is 2.”

limn:q s1>2n - 1d = 0.

sn = 2 -
1

2n - 1 .

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0

1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎨⎪⎩

⎧⎨⎩
1 21/2 1/8

1/4

FIGURE 10.8 As the lengths are added one by one, the sum
approaches 2.

1, 1�2, 1�4, 1�8, Á

DEFINITIONS Given a sequence of numbers an expression of the form

is an infinite series. The number is the nth term of the series. The sequence
defined by

is the sequence of partial sums of the series, the number being the nth partial
sum. If the sequence of partial sums converges to a limit L, we say that the series
converges and that its sum is L. In this case, we also write

If the sequence of partial sums of the series does not converge, we say that the
series diverges.

a1 + a2 +
Á

+ an +
Á

= a

q

n = 1
 an = L .

sn

 o

sn = a1 + a2 +
Á

+ an = a

n

k = 1
 ak

 o

  s2 = a1 + a2

  s1 = a1

5sn6
an

a1 + a2 + a3 +
Á

+ an +
Á

5an6 ,
HISTORICAL BIOGRAPHY

Blaise Pascal
(1623–1662)

When we begin to study a given series we might not know
whether it converges or diverges. In either case, it is convenient to use sigma notation to
write the series as

a

q

n = 1
 an, a

q

k = 1
 ak, or a  an

a1 + a2 +
Á

+ an +
Á ,

A useful shorthand
when summation
from 1 to is
understood

q
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Geometric Series

Geometric series are series of the form

in which a and r are fixed real numbers and The series can also be written as
The ratio r can be positive, as in

or negative, as in

If the nth partial sum of the geometric series is

and the series diverges because depending on the sign of a. If 
the series diverges because the nth partial sums alternate between a and 0. If we
can determine the convergence or divergence of the series in the following way:

If then as (as in Section 10.1) and If 
then and the series diverges.ƒ rn

ƒ : q

ƒ r ƒ 7 1,sn : a>s1 - rd .n : qrn : 0ƒ r ƒ 6 1,

 sn =

as1 - rnd
1 - r

, sr Z 1d .

 sns1 - rd = as1 - rnd
 sn - rsn = a - arn

 rsn = ar + ar2
+

Á
+ arn - 1

+ arn

 sn = a + ar + ar2
+

Á
+ arn - 1

ƒ r ƒ Z 1,
r = -1,limn:q sn = ; q ,

sn = a + as1d + as1d2
+

Á
+ as1dn - 1

= na ,

r = 1,

, a = 1r = -1>31 -
1
3

+
1
9

-
Á

+ a- 1
3
bn - 1

+
Á .

, a = 1r = 1>21 +
1
2

+
1
4

+
Á

+ a1
2
bn - 1

+
Á ,

g
q

n=0 arn .
a Z 0.

a + ar + ar2
+

Á
+ arn - 1

+
Á

= a

q

n = 1
 arn - 1

564 Chapter 10: Infinite Sequences and Series

Subtract from Most of
the terms on the right cancel.

sn .rsn

Factor.

We can solve for sn if r Z 1 .

Multiply by r.sn

If the geometric series converges
to 

If the series diverges.ƒ r ƒ Ú 1,

a

q

n = 1
 arn - 1

=
a

1 - r
, ƒ r ƒ 6 1.

a>s1 - rd :
a + ar + ar2

+
Á

+ arn - 1
+

Á
ƒ r ƒ 6 1,

We have determined when a geometric series converges or diverges, and to what
value. Often we can determine that a series converges without knowing the value to which
it converges, as we will see in the next several sections. The formula for the sum
of a geometric series applies only when the summation index begins with in the ex-
pression (or with the index if we write the series as ).

EXAMPLE 1 The geometric series with and is

EXAMPLE 2 The series

a

q

n = 0
 
s -1dn5

4n = 5 -
5
4

+
5

16
-

5
64

+
Á

1
9

+
1

27
+

1
81

+
Á

= a

q

n = 1
 
1
9

 a1
3
bn - 1

=

1>9
1 - s1>3d

=
1
6

.

r = 1>3a = 1>9
g

q

n=0 arnn = 0g
q

n=1 arn - 1
n = 1

a>s1 - rd
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10.2 Infinite Series 565

is a geometric series with and It converges to

EXAMPLE 3 You drop a ball from a meters above a flat surface. Each time the ball hits
the surface after falling a distance h, it rebounds a distance rh, where r is positive but less
than 1. Find the total distance the ball travels up and down (Figure 10.9).

Solution The total distance is

If and for instance, the distance is

EXAMPLE 4 Express the repeating decimal as the ratio of two integers.

Solution From the definition of a decimal number, we get a geometric series

Unfortunately, formulas like the one for the sum of a convergent geometric series are rare
and we usually have to settle for an estimate of a series’ sum (more about this later). The
next example, however, is another case in which we can find the sum exactly.

EXAMPLE 5 Find the sum of the “telescoping” series 

Solution We look for a pattern in the sequence of partial sums that might lead to a for-
mula for The key observation is the partial fraction decomposition

so

and

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

We now see that as The series converges, and its sum is 1:

a

q

n = 1
 

1
nsn + 1d

= 1.

k : q .sk : 1

sk = 1 -
1

k + 1
.

sk = a1
1

-
1
2
b + a1

2
-

1
3
b + a1

3
-

1
4
b +

Á
+ a1

k
-

1
k + 1

b .

a

k

n = 1
 

1
nsn + 1d

= a

k

n = 1
 a1n -

1
n + 1

b

1
nsn + 1d

=
1
n -

1
n + 1

,

sk .

a

q

n = 1
 

1
nsn + 1d

.

 = 5 +
23

100
 a 1

0.99
b = 5 +

23
99

=
518
99

1>s1 - 0.01d
('''''''')''''''''*

 = 5 +
23

100
 a1 +

1
100

+ a 1
100
b2

+
Á b

 5.232323 Á = 5 +
23

100
+

23
s100d2 +

23
s100d3 +

Á

5.232323 Á

s = 6 
1 + s2>3d
1 - s2>3d

= 6 a5>3
1>3 b = 30 m.

r = 2>3,a = 6 m

This sum is 2ar>s1 - rd.
(''''')'''''*

s = a + 2ar + 2ar2
+ 2ar3

+
Á

= a +
2ar

1 - r
= a 

1 + r
1 - r

.

a
1 - r

=
5

1 + s1>4d
= 4.

r = -1>4.a = 5

ar

ar2

ar3

(a)

a

FIGURE 10.9 (a) Example 3 shows how
to use a geometric series to calculate the
total vertical distance traveled by a
bouncing ball if the height of each rebound
is reduced by the factor r. (b) A
stroboscopic photo of a bouncing ball.

(b)

r = 1>100
a = 1 ,
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The nth-Term Test for a Divergent Series

One reason that a series may fail to converge is that its terms don’t become small.

EXAMPLE 6 The series

diverges because the partial sums eventually outgrow every preassigned number. Each
term is greater than 1, so the sum of n terms is greater than n.

Notice that must equal zero if the series converges. To see why, let
S represent the series’ sum and the nth partial sum. When n is
large, both and are close to S, so their difference, is close to zero. More formally,

This establishes the following theorem.

an = sn - sn - 1 :  S - S = 0.

an ,sn - 1sn

sn = a1 + a2 +
Á

+ an

g
q

n=1 anlimn:q an

a

q

n = 1
 
n + 1

n =
2
1

+
3
2

+
4
3

+
Á

+
n + 1

n +
Á

566 Chapter 10: Infinite Sequences and Series

THEOREM 7 If converges, then an : 0.a

q

n = 1
 an

Caution
Theorem 7 does not say that 
converges if It is possible for a
series to diverge when an : 0.

an : 0.
g

q

n=1 an

Theorem 7 leads to a test for detecting the kind of divergence that occurred in Example 6.

The nth-Term Test for Divergence

diverges if fails to exist or is different from zero.lim
n: q

 ana

q

n = 1
 an

EXAMPLE 7 The following are all examples of divergent series.

(a) diverges because 

(b) diverges because 

(c) diverges because does not exist.

(d) diverges because 

EXAMPLE 8 The series

2 terms 4 terms

diverges because the terms can be grouped into infinitely many clusters each of which
adds to 1, so the partial sums increase without bound. However, the terms of the series
form a sequence that converges to 0. Example 1 of Section 10.3 shows that the har-
monic series also behaves in this manner.

2n terms
(''''')'''''*('''')''''*(')'*

1 +
1
2

+
1
2

+
1
4

+
1
4

+
1
4

+
1
4

+
Á

+
1
2n +

1
2n +

Á
+

1
2n +

Á

limn:q 
-n

2n + 5
= -

1
2

Z 0.a

q

n = 1
 

-n
2n + 5

limn:qs -1dn + 1
a

q

n = 1
 s -1dn + 1

limn:q an Z 0
n + 1

n : 1.a

q

n = 1
 
n + 1

n

n2 : q .a

q

n = 1
 n2

Difference Rule for
sequences
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10.2 Infinite Series 567

Combining Series

Whenever we have two convergent series, we can add them term by term, subtract them
term by term, or multiply them by constants to make new convergent series.

THEOREM 8 If and are convergent series, then

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule: gkan = kgan = kA sany number kd .

g san - bnd = gan - gbn = A - B

g san + bnd = gan + gbn = A + B

gbn = Bgan = A

1. Every nonzero constant multiple of a divergent series diverges.

2. If converges and diverges, then and both
diverge.

g san - bndg san + bndgbngan

Proof The three rules for series follow from the analogous rules for sequences in Theo-
rem 1, Section 10.1. To prove the Sum Rule for series, let

Then the partial sums of are

Since and we have by the Sum Rule for sequences. The
proof of the Difference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial sums of 
form the sequence

which converges to kA by the Constant Multiple Rule for sequences.

As corollaries of Theorem 8, we have the following results. We omit the proofs.

sn = ka1 + ka2 +
Á

+ kan = k sa1 + a2 +
Á

+ and = kAn ,

gkan

sn : A + BBn : B ,An : A

 = An + Bn .

 = sa1 +
Á

+ and + sb1 +
Á

+ bnd
 sn = sa1 + b1d + sa2 + b2d +

Á
+ san + bnd

g san + bnd

An = a1 + a2 +
Á

+ an, Bn = b1 + b2 +
Á

+ bn .

Caution Remember that can converge when and both diverge.
For example, and diverge,
whereas converges to 0.

EXAMPLE 9 Find the sums of the following series.

(a)

Difference Rule

 = 2 -
6
5 =

4
5

 =
1

1 - s1>2d
-

1
1 - s1>6d

 = a

q

n = 1
 

1
2n - 1 - a

q

n = 1
 

1
6n - 1

 a

q

n = 1
 
3n - 1

- 1
6n - 1 = a

q

n = 1
 a 1

2n - 1 -
1

6n - 1 b

g san + bnd = 0 + 0 + 0 +
Á

gbn = s -1d + s -1d + s -1d +
Á gan = 1 + 1 + 1 +

Á

gbngang san + bnd

Geometric series with
a = 1 and r = 1>2, 1>6
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(b) Constant Multiple Rule

Geometric series with

Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number of terms with-
out altering the series’ convergence or divergence, although in the case of convergence
this will usually change the sum. If converges, then converges for any

and

Conversely, if converges for any then converges. Thus,

and

Reindexing

As long as we preserve the order of its terms, we can reindex any series without altering its
convergence. To raise the starting value of the index h units, replace the n in the formula
for by 

To lower the starting value of the index h units, replace the n in the formula for by 

We saw this reindexing in starting a geometric series with the index instead of the
index but we can use any other starting index value as well. We usually give prefer-
ence to indexings that lead to simple expressions.

EXAMPLE 10 We can write the geometric series

as

The partial sums remain the same no matter what indexing we choose.

a

q

n = 0
 
1
2n , a

q

n = 5
 

1
2n - 5 , or even a

q

n = -4
 

1
2n + 4 .

a

q

n = 1
 

1
2n - 1 = 1 +

1
2

+
1
4

+
Á

n = 1,
n = 0

a

q

n = 1
 an = a

q

n = 1 - h
 an + h = a1 + a2 + a3 +

Á .

n + h :an

a

q

n = 1
 an = a

q

n = 1 + h
 an - h = a1 + a2 + a3 +

Á .

n - h :an

a

q

n = 4
 
1
5n = aa

q

n = 1
 
1
5n b -

1
5 -

1
25

-
1

125
.

a

q

n = 1
 
1
5n =

1
5 +

1
25

+
1

125
+ a

q

n = 4
 
1
5n

g
q

n=1 ank 7 1,g
q

n=k an

a

q

n = 1
 an = a1 + a2 +

Á
+ ak - 1 + a

q

n = k
 an .

k 7 1
g

q

n=k ang
q

n=1 an

 = 8

a = 1, r = 1>2 = 4 a 1
1 - s1>2d

b
a

q

n = 0
 
4
2n = 4a

q

n = 0
 
1
2n

568 Chapter 10: Infinite Sequences and Series

HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)

7001_ThomasET_ch10p550-627.qxd  10/30/09  8:21 AM  Page 568



10.2 Infinite Series 569

Exercises 10.2

Finding nth Partial Sums
In Exercises 1–6, find a formula for the nth partial sum of each series
and use it to find the series’ sum if the series converges.

1.

2.

3.

4.

5.

6.

Series with Geometric Terms
In Exercises 7–14, write out the first few terms of each series to show
how the series starts. Then find the sum of the series.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–18, determine if the geometric series converges or di-
verges. If a series converges, find its sum.

15.

16.

17.

18.

Repeating Decimals
Express each of the numbers in Exercises 19–26 as the ratio of two
integers.

19.

20.

21.

22. d is a digit

23.

24.

25.

26. 3.142857 = 3.142857 142857 Á

1.24123 = 1.24 123 123 123 Á

1.414 = 1.414 414 414 Á

0.06 = 0.06666 Á

0.d = 0.dddd Á , where

0.7 = 0.7777 Á

0.234 = 0.234 234 234 Á

0.23 = 0.23 23 23 Á

a-2
3
b2

+ a-2
3
b3

+ a-2
3
b4

+ a-2
3
b5

+ a-2
3
b6

+
Á

a1
8
b + a1

8
b2

+ a1
8
b3

+ a1
8
b4

+ a1
8
b5

+
Á

1 + s -3d + s -3d2
+ s -3d3

+ s -3d4
+

Á

1 + a2
5
b + a2

5
b2

+ a2
5
b3

+ a2
5
b4

+
Á

a

q

n = 0
 a2n + 1

5n ba

q

n = 0
 a 1

2n +

s -1dn

5n b
a

q

n = 0
 a 5

2n -

1
3n ba

q

n = 0
 a 5

2n +

1
3n b

a

q

n = 0
s -1dn 

5
4na

q

n = 1
 
7
4n

a

q

n = 2
 
1
4na

q

n = 0
 
s -1dn

4n

5
1 # 2

+

5
2 # 3

+

5
3 # 4

+
Á

+

5
nsn + 1d

+
Á

1
2 # 3

+

1
3 # 4

+

1
4 # 5

+
Á

+

1
sn + 1dsn + 2d

+
Á

1 - 2 + 4 - 8 +
Á

+ s -1dn - 1 2n - 1
+

Á

1 -

1
2

+

1
4

-

1
8

+
Á

+ s -1dn - 1 
1

2n - 1 +
Á

9
100

+

9
1002 +

9
1003 +

Á
+

9
100n +

Á

2 +

2
3

+

2
9

+

2
27

+
Á

+

2
3n - 1 +

Á

Using the nth-Term Test
In Exercises 27–34, use the nth-Term Test for divergence to show that
the series is divergent, or state that the test is inconclusive.

27. 28.

29. 30.

31. 32.

33. 34.

Telescoping Series
In Exercises 35–40, find a formula for the nth partial sum of the series
and use it to determine if the series converges or diverges. If a series
converges, find its sum.

35. 36.

37.

38.

39.

40.

Find the sum of each series in Exercises 41–48.

41. 42.

43. 44.

45. 46.

47.

48.

Convergence or Divergence
Which series in Exercises 49–68 converge, and which diverge? Give
reasons for your answers. If a series converges, find its sum.

49. 50.

51. 52.

53. 54. a

q

n = 0
 
cos np

5na

q

n = 0
 cos np

a

q

n = 1
s -1dn + 1na

q

n = 1
s -1dn + 1 

3
2n

a

q

n = 0
A22 Bna

q

n = 0
 a 1

22
bn

a

q

n = 1
stan-1 snd - tan-1 sn + 1dd

a

q

n = 1
 a 1

ln sn + 2d
-

1
ln sn + 1d

b
a

q

n = 1
 a 1

21>n -

1

21>sn + 1d
ba

q

n = 1
 a 1

2n
-

1

2n + 1
b

a

q

n = 1
 

2n + 1
n2sn + 1d2a

q

n = 1
 

40n

s2n - 1d2s2n + 1d2

a

q

n = 1
 

6
s2n - 1ds2n + 1da

q

n = 1
 

4
s4n - 3ds4n + 1d

a

q

n = 1
 A2n + 4 - 2n + 3 B

a

q

n = 1
 acos-1 a 1

n + 1
b - cos-1 a 1

n + 2
b b

a

q

n = 1
 stan snd - tan sn - 1dd

a

q

n = 1
 A ln 2n + 1 - ln 2n B

a

q

n = 1
 a 3

n2 -

3
sn + 1d2 ba

q

n = 1
 a1n -

1
n + 1

b

a

q

n = 0
 cos npa

q

n = 1
 ln 

1
n

a

q

n = 0
 

en

en
+ na

q

n = 1
 cos 

1
n

a

q

n = 1
 

n

n2
+ 3a

q

n = 0
 

1
n + 4

a

q

n = 1
 

nsn + 1d
sn + 2dsn + 3da

q

n = 1
 

n
n + 10
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55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

Geometric Series with a Variable x
In each of the geometric series in Exercises 69–72, write out the first
few terms of the series to find a and r, and find the sum of the series.
Then express the inequality in terms of x and find the values
of x for which the inequality holds and the series converges.

69. 70.

71. 72.

In Exercises 73–78, find the values of x for which the given geometric
series converges. Also, find the sum of the series (as a function of x)
for those values of x.

73. 74.

75. 76.

77. 78.

Theory and Examples
79. The series in Exercise 5 can also be written as

Write it as a sum beginning with (a) (b)
(c)

80. The series in Exercise 6 can also be written as

Write it as a sum beginning with (a) (b)
(c)

81. Make up an infinite series of nonzero terms whose sum is

a. 1 b. c. 0.

82. (Continuation of Exercise 81. ) Can you make an infinite series of
nonzero terms that converges to any number you want? Explain.

-3

n = 20.
n = 3,n = -1,

a

q

n = 1
 

5
nsn + 1d

 and a
q

n = 0
 

5
sn + 1dsn + 2d

.

n = 5.
n = 0,n = -2,

a

q

n = 1
 

1
sn + 1dsn + 2d

 and a
q

n = -1
 

1
sn + 3dsn + 4d

.

a

q

n = 0
sln xdn

a

q

n = 0
 sinn x

a

q

n = 0
 a- 1

2
bn

sx - 3dn
a

q

n = 0
s -1dnsx + 1dn

a

q

n = 0
s -1dnx-2n

a

q

n = 0
2nxn

a

q

n = 0
 
s -1dn

2
 a 1

3 + sin x
bn

a

q

n = 0
3 ax - 1

2
bn

a

q

n = 0
s -1dnx2n

a

q

n = 0
s -1dnxn

ƒ r ƒ 6 1

a

q

n = 0
 
enp

pnea

q

n = 0
 a e
p b

n

a

q

n = 1
 ln a n

2n + 1
ba

q

n = 1
 ln a n

n + 1
b

a

q

n = 1
 
2n

+ 4n

3n
+ 4na

q

n = 1
 
2n

+ 3n

4n

a

q

n = 1
 
nn

n!a

q

n = 0
 

n!
1000n

a

q

n = 1
 a1 -

1
n b

n

a

q

n = 0
 
2n

- 1
3n

a

q

n = 0
 
1
xn , ƒ x ƒ 7 1a

q

n = 1
 

2
10n

a

q

n = 1
 ln 

1
3na

q

n = 0
 e-2n
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83. Show by example that may diverge even though 
and converge and no equals 0.

84. Find convergent geometric series and that
illustrate the fact that may converge without being equal 
to AB.

85. Show by example that may converge to something
other than A B even when and no 
equals 0.

86. If converges and for all n, can anything be said about
Give reasons for your answer.

87. What happens if you add a finite number of terms to a divergent
series or delete a finite number of terms from a divergent series?
Give reasons for your answer.

88. If converges and diverges, can anything be said about
their term-by-term sum Give reasons for your
answer.

89. Make up a geometric series that converges to the number
5 if

a. b.

90. Find the value of b for which

91. For what values of r does the infinite series

converge? Find the sum of the series when it converges.

92. Show that the error obtained by replacing a convergent
geometric series with one of its partial sums is 

93. The accompanying figure shows the first five of a sequence of
squares. The outermost square has an area of Each of the
other squares is obtained by joining the midpoints of the sides of
the squares before it. Find the sum of the areas of all the squares.

94. Helga von Koch’s snowflake curve Helga von Koch’s snow-
flake is a curve of infinite length that encloses a region of finite
area. To see why this is so, suppose the curve is generated by
starting with an equilateral triangle whose sides have length 1.

a. Find the length of the nth curve and show that

b. Find the area of the region enclosed by and show that

C1 C4C3C2

limn:q An = (8>5) A1 .
CnAn

limn:q Ln = q .
CnLn

4 m2 .

arn>s1 - rd .sn

sL - snd

1 + 2r + r2
+ 2r3

+ r4
+ 2r5

+ r6
+

Á

1 + eb
+ e2b

+ e3b
+

Á
= 9.

a = 13>2.a = 2

garn - 1

g san + bnd?
gbngan

g s1>and?
an 7 0gan

bnA = gan, B = gbn Z 0,> g san>bnd

gan bn

B = gbnA = gan

bngbn

gang san>bnd
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10.3 The Integral Test 571

10.3 The Integral Test

Given a series, we want to know whether it converges or not. In this section and the next
two, we study series with nonnegative terms. Such a series converges if its sequence of
partial sums is bounded. If we establish that a given series does converge, we generally do
not have a formula available for its sum, so we investigate methods to approximate the
sum instead.

Nondecreasing Partial Sums

Suppose that is an infinite series with for all n. Then each partial sum is
greater than or equal to its predecessor because 

Since the partial sums form a nondecreasing sequence, the Monotonic Sequence Theorem
(Theorem 6, Section 10.1) gives the following result.

s1 … s2 … s3 …
Á

… sn … sn + 1 …
Á .

sn + 1 = sn + an :
an Ú 0g

q

n=1 an

Corollary of Theorem 6 A series of nonnegative terms converges if
and only if its partial sums are bounded from above.

g
q

n=1 an

EXAMPLE 1 The series

is called the harmonic series. The harmonic series is divergent, but this doesn’t follow
from the nth-Term Test. The nth term 1 n does go to zero, but the series still diverges. The
reason it diverges is because there is no upper bound for its partial sums. To see why,
group the terms of the series in the following way:

The sum of the first two terms is 1.5. The sum of the next two terms is which
is greater than The sum of the next four terms is 

which is greater than The sum of the next
eight terms is which is
greater than The sum of the next 16 terms is greater than and
so on. In general, the sum of terms ending with is greater than 
The sequence of partial sums is not bounded from above: If the partial sum is
greater than k 2. The harmonic series diverges.

The Integral Test

We now introduce the Integral Test with a series that is related to the harmonic series, but
whose nth term is instead of 1 n.

EXAMPLE 2 Does the following series converge?

a

q

n = 1
 
1
n2 = 1 +

1
4

+
1
9

+
1

16
+

Á
+

1
n2 +

Á

>1>n2

> snn = 2k ,
2n>2n + 1

= 1>2.1>2n + 12n
16>32 = 1>2,8>16 = 1>2.

1>15 + 1>16,1>9 + 1>10 + 1>11 + 1>12 + 1>13 + 1>14 +

1>8 + 1>8 + 1>8 + 1>8 = 1>2.1>7 + 1>8,
1>5 + 1>6 +1>4 + 1>4 = 1>2.

1>3 + 1>4,

7  8
16 =

1
27  48 =

1
27  24 =

1
2

('''''')''''''*(''''')'''''*('')''*

1 +
1
2

+ a1
3

+
1
4
b + a15 +

1
6

+
1
7 +

1
8
b + a1

9
+

1
10

+
Á

+
1

16
b +

Á .

>

a

q

n = 1
 
1
n = 1 +

1
2

+
1
3

+
Á

+
1
n +

Á
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Solution We determine the convergence of by comparing it with
To carry out the comparison, we think of the terms of the series as values of

the function and interpret these values as the areas of rectangles under the
curve 

As Figure 10.10 shows,

Thus the partial sums of are bounded from above (by 2) and the series con-
verges. The sum of the series is known to be  p2>6 L 1.64493.

g
q

n=1 (1>n2)

 6 1 + 1 = 2.

 6 1 +

L

q

1
 
1
x2 dx

 6 ƒs1d +

L

n

1
 
1
x2 dx

 = ƒs1d + ƒs2d + ƒs3d +
Á

+ ƒsnd

 sn =
1
12 +

1
22 +

1
32 +

Á
+

1
n2

y = 1>x2 .
ƒsxd = 1>x2

1
q

1 s1>x2d dx .
g

q

n=1s1>n2d

572 Chapter 10: Infinite Sequences and Series

Rectangle areas sum to less
than area under graph.

1
n

1 s1>x2d dx 6 1
q

1 s1>x2d dx

As in Section 8.7, Example 3,

1
q

1 s1>x2d dx = 1 .

0 1

Graph of f(x) �

(1, f(1)) 

(2, f(2))

(3, f(3))
(n, f(n))

2 3 4 … n � 1 n …

1
x2

1
n2

1
22

1
12

1
32

1
42

x

y

FIGURE 10.10 The sum of the areas of the
rectangles under the graph of 
is less than the area under the graph
(Example 2).

ƒ(x) = 1>x2

THEOREM 9—The Integral Test Let be a sequence of positive terms.
Suppose that where ƒ is a continuous, positive, decreasing function of
x for all (N a positive integer). Then the series and the integral

both converge or both diverge.1
q

N  ƒsxd dx
g

q

n=N anx Ú N
an = ƒsnd ,

5an6

0 1 2 n3 n � 1

a1
a2

an

(a)

0 1 2 n3 n � 1

a1

a3
an

(b)

a2

x

y

x

y

y � f (x)

y � f (x)

FIGURE 10.11 Subject to the conditions
of the Integral Test, the series and
the integral both converge or
both diverge.

1
q

1 sxd dx
g

q

n=1 an

Caution

The series and integral need not have the
same value in the convergent case. As we
noted in Example 2, 

while 1
q

1 s1>x2d dx = 1.p2>6
g

q

n=1 s1>n2d =

Proof We establish the test for the case The proof for general N is similar.
We start with the assumption that ƒ is a decreasing function with for every

n. This leads us to observe that the rectangles in Figure 10.11a, which have areas
collectively enclose more area than that under the curve from

to That is,

In Figure 10.11b the rectangles have been faced to the left instead of to the right. If we mo-
mentarily disregard the first rectangle of area we see that

If we include we have

Combining these results gives

These inequalities hold for each n, and continue to hold as 

If is finite, the right-hand inequality shows that is finite. If

is infinite, the left-hand inequality shows that is infinite. Hence the series
and the integral are both finite or both infinite.

gan1
q

1  ƒsxd dx

gan1
q

1  ƒsxd dx

n : q .

L

n + 1

1
 ƒsxd dx … a1 + a2 +

Á
+ an … a1 +

L

n

1
 ƒsxd dx .

a1 + a2 +
Á

+ an … a1 +

L

n

1
 ƒsxd dx .

a1 ,

a2 + a3 +
Á

+ an …

L

n

1
 ƒsxd dx .

a1 ,

L

n + 1

1
 ƒsxd dx … a1 + a2 +

Á
+ an .

x = n + 1.x = 1
y = ƒsxda1, a2, Á , an ,

ƒsnd = an

N = 1.
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EXAMPLE 3 Show that the p-series

( p a real constant) converges if and diverges if 

Solution If then is a positive decreasing function of x. Since

the series converges by the Integral Test. We emphasize that the sum of the p-series is not
The series converges, but we don’t know the value it converges to.

If then and

The series diverges by the Integral Test.
If we have the (divergent) harmonic series

We have convergence for but divergence for all other values of p.

The p-series with is the harmonic series (Example 1). The p-Series Test shows
that the harmonic series is just barely divergent; if we increase p to 1.000000001, for in-
stance, the series converges!

The slowness with which the partial sums of the harmonic series approach infinity is
impressive. For instance, it takes more than 178 million terms of the harmonic series to
move the partial sums beyond 20. (See also Exercise 43b.)

EXAMPLE 4 The series is not a p-series, but it converges by the
Integral Test. The function is positive, continuous, and decreasing for

and

Again we emphasize that is not the sum of the series. The series converges, but we do
not know the value of its sum.

Error Estimation

If a series is shown to be convergent by the Integral Test, we may want to estimate the
size of the remainder between the total sum S of the series and its nth partial sum .
That is, we wish to estimate

.Rn = S - sn = an + 1 +  an + 2 +  an + 3 +
Á

snRn

©an

p>4
 =
p
2

-
p
4

=
p
4

.

 = lim
b: q

[arctan b - arctan 1]

 
L

q

1
 

1
x2

+ 1
 dx = lim

b: q

 Carctan x D1b
x Ú 1,

ƒsxd = 1>sx2
+ 1d

g
q

n=1 s1>sn2
+ 1dd

p = 1

p 7 1

1 +
1
2

+
1
3

+
Á

+
1
n +

Á .

p = 1,

L

q

1
 
1
xp dx =

1
1 - p

 lim
b: q

sb1 - p
- 1d = q .

1 - p 7 0p 6 1,
1>s p - 1d .

 =
1

1 - p
 s0 - 1d =

1
p - 1

,

 =
1

1 - p
 lim
b: q

 a 1
b p - 1 - 1b

 
L

q

1
 
1
xp dx =

L

q

1
 x-p dx = lim

b: q

 c x-p + 1

-p + 1
d

1

b

ƒsxd = 1>xpp 7 1,

p … 1.p 7 1,

a

q

n = 1
 
1
np =

1
1p +

1
2p +

1
3p +

Á
+

1
np +

Á

because p - 1 7 0.
b p - 1 : q  as b : q

The p-series 

converges if diverges if p … 1.p 7 1,

a

ˆ

n � 1
 

1

np
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To get a lower bound for the remainder, we compare the sum of the areas of the rec-
tangles with the area under the curve for (see Figure 10.11a). We see that

.

Similarly, from Figure 10.11b, we find an upper bound with

.

These comparisons prove the following result giving bounds on the size of the remainder.

Rn = an + 1 +  an + 2 +  an + 3 +
Á

…

L

q

n
ƒ(x) dx

Rn =  an + 1 +  an + 2 +  an + 3 +
Á

Ú

L

q

n + 1
ƒ(x) dx

x Ú ny = ƒ(x)

574 Chapter 10: Infinite Sequences and Series

Bounds for the Remainder in the Integral Test

Suppose is a sequence of positive terms with , where ƒ is a contin-
uous positive decreasing function of for all , and that converges to S.
Then the remainder satisfies the inequalities

(1)
L

q

n + 1
ƒ(x) dx … Rn …

L

q

n
ƒ(x) dx.

Rn = S - sn

©anx Ú nx
ak = ƒ(k){ak}

If we add the partial sum to each side of the inequalities in (1), we get

(2)

since . The inequalities in (2) are useful for estimating the error in approxi-
mating the sum of a convergent series. The error can be no larger than the length of the in-
terval containing S, as given by (2).

EXAMPLE 5 Estimate the sum of the series using the inequalities in (2) and

Solution We have that

.

Using this result with the inequalities in (2), we get

Taking these last in-
equalities give

If we approximate the sum S by the midpoint of this interval, we find that

The error in this approximation is less than half the length of the interval, so the error is
less than 0.005.

a

q

n = 1
 
1
n2 L 1.6453.

1.64068 … S … 1.64997.

s10 = 1 + (1>4) + (1>9) + (1>16) +
Á

+ (1>100) L 1.54977,

s10 +
1

11
… S … s10 +

1
10

.

L

q

n
 
1
x2 dx = lim

b: q

 c- 1
x d

n

b

= lim
b: q

 a-
1
b

+
1
n b =

1
n

n = 10.
©s1>n2d

sn + Rn = S

sn +

L

q

n + 1
ƒ(x) dx … S … sn +

L

q

n
ƒ(x) dx

sn
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Exercises 10.3

Applying the Integral Test
Use the Integral Test to determine if the series in Exercises 1–10 con-
verge or diverge. Be sure to check that the conditions of the Integral
Test are satisfied.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

Determining Convergence or Divergence
Which of the series in Exercises 11–40 converge, and which diverge?
Give reasons for your answers. (When you check an answer, remem-
ber that there may be more than one way to determine the series’ con-
vergence or divergence.)

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23. 24. 25.

26. 27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40. a

q

n = 1
 sech2 na

q

n = 1
 sech n

a

q

n = 1
 

n

n2
+ 1a

q

n = 1
 
8 tan-1 n

1 + n2

a

q

n = 1
 

2
1 + ena

q

n = 1
 

en

1 + e2n

a

q

n = 1
 n tan 

1
na

q

n = 1
 n sin 

1
n

a

q

n = 1
 

1
ns1 + ln2 nda

q

n = 3
 

s1>nd

sln nd2ln2 n - 1

a

q

n = 1
 

1
sln 3dna

q

n = 1
 

1
sln 2dn

a

q

n = 1
 a1 +

1
n b

n

a

q

n = 2
 
2n
ln na

q

n = 1
 

1

2n A2n + 1 B

a

q

n = 1
 

2n

n + 1a

q

n = 1
 

1
2n - 1a

q

n = 0
 

-2
n + 1

a

q

n = 1
 

5n

4n
+ 3a

q

n = 1
 
2n

3na

q

n = 2
 
ln n

2n

a

q

n = 2
 
ln n
na

q

n = 1
 
-8
na

q

n = 1
-

1
8n

a

q

n = 1
 

-2

n2n
a

q

n = 1
 

3

2n
a

q

n = 1
 

5
n + 1

a

q

n = 1
 

n
n + 1a

q

n = 1
 e-n

a

q

n = 1
 

1
10n

a

q

n = 2
 

n - 4
n2

- 2n + 1a

q

n = 1
 

n2

en>3

a

q

n = 2
 
ln (n2)

na

q

n = 1
 

n

n2
+ 4

a

q

n = 2
 

1
nsln nd2a

q

n = 1
 e-2n

a

q

n = 1
 

1
n + 4a

q

n = 1
 

1
n2

+ 4

a

q

n = 1
 

1
n0.2a

q

n = 1
 
1
n2

Theory and Examples
For what values of a, if any, do the series in Exercises 41 and 42
converge?

41. 42.

43. a. Draw illustrations like those in Figures 10.7 and 10.8 to 
show that the partial sums of the harmonic series satisfy the
inequalities

b. There is absolutely no empirical evidence for the divergence
of the harmonic series even though we know it diverges. The
partial sums just grow too slowly. To see what we mean, sup-
pose you had started with the day the universe was
formed, 13 billion years ago, and added a new term every
second. About how large would the partial sum be today,
assuming a 365-day year?

44. Are there any values of x for which converges?
Give reasons for your answer.

45. Is it true that if is a divergent series of positive numbers,
then there is also a divergent series of positive numbers
with for every n? Is there a “smallest” divergent series of
positive numbers? Give reasons for your answers.

46. (Continuation of Exercise 45. ) Is there a “largest” convergent se-
ries of positive numbers? Explain.

47. diverges

a. Use the accompanying graph to show that the partial sum 

satisfies

Conclude that 

b. What should n be in order that the partial sum 

satisfy sn 7 1000?sn = g
n
i=1 A1> A2i + 1 B B

0

1

1 2 3 4 5 ···

···

48 49 50 51
x

y

�x 1 1

1
f (x) 5 

11.5 6 s50 6 12.3.

L

51

1
 

1

2x + 1
  dx 6 s50 6

L

50

0
 

1

2x + 1
  dx.

s50 = g
50
n=1 A1> A2n + 1 B B

g
ˆ

n�1 A1/ A2n � 1 B B

bn 6 an

g
q

n=1 bn

g
q

n=1 an

g
q

n=1s1>snxdd

sn

s1 = 1

 … 1 +

L

n

1
 
1
x  dx = 1 + ln n .

 ln sn + 1d =

L

n + 1

1
 
1
x  dx … 1 +

1
2

+
Á

+

1
n

a

q

n = 3
 a 1

n - 1
-

2a
n + 1

ba

q

n = 1
 a a

n + 2
-

1
n + 4

b

T
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48. converges

a. Use the accompanying graph to determine the error if 
is used to estimate the value of 

b. Find n so that the partial sum estimates the
value of with an error of at most 0.000001.

49. Estimate the value of to within 0.01 of its exact value.

50. Estimate the value of to within 0.1 of its ex-
act value.

51. How many terms of the convergent series should
be used to estimate its value with error at most 0.00001?

52. How many terms of the convergent series 
should be used to estimate its value with error at most 0.01?

53. The Cauchy condensation test The Cauchy condensation test
says: Let be a nonincreasing sequence ( for all n)
of positive terms that converges to 0. Then converges if and
only if converges. For example, diverges because

diverges. Show why the test works.

54. Use the Cauchy condensation test from Exercise 53 to show that

a. diverges;

b. converges if and diverges if 

55. Logarithmic p-series

a. Show that the improper integral

converges if and only if 

b. What implications does the fact in part (a) have for the con-
vergence of the series

Give reasons for your answer.

56. (Continuation of Exercise 55.) Use the result in Exercise 55 to de-
termine which of the following series converge and which di-
verge. Support your answer in each case.

a. b. a

q

n = 2
 

1
nsln nd1.01a

q

n = 2
 

1
nsln nd

a

q

n = 2
 

1
nsln nd p ?

p 7 1.
L

q

2
 

dx
xsln xd p s p a positive constantd

p … 1.p 7 1a

q

n = 1
 
1
np

a

q

n = 2
 

1
n ln n

g2n # s1>2nd = g1
g s1>ndg2na2n

gan

an Ú an + 15an6

g
q

n=4 s1>nsln nd3d

g
q

n=1 s1>n1.1d

g
q

n=2 s1>sn2
+ 4dd

g
q

n=1 s1>n3d
g

q

n=1 s1>n4d
sn = g

n
i=1 s1>i4d

29

231026

30 31 32 33
x

y

x4
1f (x) 5 

···

g
q

n=1 s1>n4d.g
30
n=1 s1>n4d

s30 =

g
ˆ

n�1 s1>n4d
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c. d.

57. Euler’s constant Graphs like those in Figure 10.11 suggest that
as n increases there is little change in the difference between the
sum

and the integral

To explore this idea, carry out the following steps.

a. By taking in the proof of Theorem 9, show that

or

Thus, the sequence

is bounded from below and from above.

b. Show that

and use this result to show that the sequence in part (a)
is decreasing.

Since a decreasing sequence that is bounded from below con-
verges, the numbers defined in part (a) converge:

The number whose value is is called Euler’s
constant.

58. Use the Integral Test to show that the series

converges.

59. a. For the series , use the inequalities in Equation (2)
with to find an interval containing the sum S.

b. As in Example 5, use the midpoint of the interval found in
part (a) to approximate the sum of the series. What is the
maximum error for your approximation?

60. Repeat Exercise 59 using the series g (1>n4).

n = 10
g (1>n3)

a

q

n = 0
e-n2

0.5772 Á ,g ,

1 +

1
2

+
Á

+

1
n - ln n : g .

an

5an6

1
n + 1

6

L

n + 1

n
 
1
x  dx = ln sn + 1d - ln n ,

an = 1 +

1
2

+
Á

+

1
n - ln n

0 6 ln sn + 1d - ln n … 1 +

1
2

+
Á

+

1
n - ln n … 1.

ln sn + 1d … 1 +

1
2

+
Á

+

1
n … 1 + ln n

ƒsxd = 1>x

ln n =

L

n

1
 
1
x  dx .

1 +

1
2

+
Á

+

1
n

a

q

n = 2
 

1
nsln nd3a

q

n = 2
 

1
n lnsn3d

10.4 Comparison Tests

We have seen how to determine the convergence of geometric series, p-series, and a few
others. We can test the convergence of many more series by comparing their terms to those
of a series whose convergence is known.
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Proof In Part (a), the partial sums of are bounded above by

They therefore form a nondecreasing sequence with a limit That is, if con-
verges, then so does Figure 10.12 depicts this result, where each term of each series is
interpreted as the area of a rectangle ( just like we did for the integral test in Figure 10.11).

In Part (b), the partial sums of are not bounded from above. If they were, the par-
tial sums for would be bounded by

and would have to converge instead of diverge.

EXAMPLE 1 We apply Theorem 10 to several series.

(a) The series

diverges because its nth term

is greater than the nth term of the divergent harmonic series.

(b) The series

converges because its terms are all positive and less than or equal to the correspon-
ding terms of

The geometric series on the left converges and we have

The fact that 3 is an upper bound for the partial sums of does not mean
that the series converges to 3. As we will see in Section 10.9, the series converges to e.

(c) The series

converges. To see this, we ignore the first three terms and compare the remaining terms
with those of the convergent geometric series The term of1> A2n

+ 2n Bg
q

n=0 s1>2nd .

5 +
2
3

+
1
7 + 1 +

1

2 + 21
+

1

4 + 22
+

1

8 + 23
+

Á
+

1

2n
+ 2n

+
Á

g
q

n=0 s1>n!d

1 + a

q

n = 0
 
1
2n = 1 +

1
1 - s1>2d

= 3.

1 + a

q

n = 0
 
1
2n = 1 + 1 +

1
2

+
1
22 +

Á .

a

q

n = 0
 
1
n!

= 1 +
1
1!

+
1
2!

+
1
3!

+
Á

5
5n - 1

=
1

n -
1
5

7
1
n

a

q

n = 1
 

5
5n - 1

gdn

M*
= d1 + d2 +

Á
+ dN + a

q

n = N + 1
an

gdn

gan

gan.
gcnL … M .

M = a1 + a2 +
Á

+ aN + a

q

n = N + 1
cn .

gan

THEOREM 10—The Comparison Test Let be series with
nonnegative terms. Suppose that for some integer N

(a) If converges, then also converges.

(b) If diverges, then also diverges.gangdn

gangcn

dn … an … cn for all n 7 N.

gan, gcn, and gdn

HISTORICAL BIOGRAPHY

Albert of Saxony
(ca. 1316–1390)

y

n
1 2 3 4 5 n21 n

c1

c2

c3

c4 c5
cn21 cn

a1 a2
a3

a4
a5 an

···

FIGURE 10.12 If the total area 
of the taller rectangles is finite, then
so is the total area of the shorter

rectangles.an

gan

cn

gcn
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the truncated sequence is less than the corresponding term of the geometric se-
ries. We see that term by term we have the comparison

.

So the truncated series and the original series converge by an application of the Com-
parison Test.

The Limit Comparison Test

We now introduce a comparison test that is particularly useful for series in which is a
rational function of n.

an

1 +
1

2 + 21
+

1

4 + 22
+

1

8 + 23
+

Á
… 1 +

1
2

+
1
4

+
1
8

+
Á

1>2n

578 Chapter 10: Infinite Sequences and Series

THEOREM 11—Limit Comparison Test Suppose that and for
all (N an integer).

1. If then and both converge or both diverge.

2. If and converges, then converges.

3. If and diverges, then diverges.gangbnlim
n: q

 
an

bn
= q

gangbnlim
n: q

 
an

bn
= 0

gbnganlim
n: q

 
an

bn
= c 7 0,

n Ú N
bn 7 0an 7 0

Proof We will prove Part 1. Parts 2 and 3 are left as Exercises 55a and b.
Since there exists an integer N such that for all n

Thus, for 

If converges, then converges and converges by the Direct Compari-
son Test. If diverges, then diverges and diverges by the Direct Com-
parison Test.

EXAMPLE 2 Which of the following series converge, and which diverge?

(a)

(b)

(c) 1 + 2 ln 2
9

+
1 + 3 ln 3

14
+

1 + 4 ln 4
21

+
Á

= a

q

n = 2
 
1 + n ln n

n2
+ 5

1
1

+
1
3

+
1
7

+
1

15
+

Á
= a

q

n = 1
 

1
2n

- 1

3
4

+
5
9

+
7

16
+

9
25

+
Á

= a

q

n = 1
 

2n + 1
sn + 1d2 = a

q

n = 1
 

2n + 1
n2

+ 2n + 1

gang sc>2dbngbn

gang s3c>2dbngbn

 ac
2
bbn 6 an 6 a3c

2
bbn .

 
c
2

6

an

bn
6

3c
2

,

 -
c
2

6

an

bn
- c 6

c
2

,

n 7 N ,

n 7 N Q  ` an

bn
- c ` 6

c
2

.

c>2 7 0,
Limit definition with

and
replaced by an>bnan

P = c>2, L = c ,
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10.4 Comparison Tests 579

Solution We apply the Limit Comparison Test to each series.

(a) Let For large n, we expect to behave like
since the leading terms dominate for large n, so we let Since

and

diverges by Part 1 of the Limit Comparison Test. We could just as well have
taken but 1 n is simpler.

(b) Let For large n, we expect to behave like so we let
Since

and

converges by Part 1 of the Limit Comparison Test.

(c) Let For large n, we expect to behave like 
which is greater than 1 n for so we let Since

and

diverges by Part 3 of the Limit Comparison Test.

EXAMPLE 3 Does converge?

Solution Because ln n grows more slowly than for any positive constant c (Section
10.1, Exercise 105), we can compare the series to a convergent p-series. To get the p-series,
we see that

for n sufficiently large. Then taking and we have

l’Hôpital’s Rule

Since is a p-series with , it converges, so converges by Part 2
of the Limit Comparison Test.

ganp 7 1gbn = g s1>n5>4d

 = lim
n: q

 
4

n1>4 = 0.

 = lim
n: q

 
1>n

s1>4dn-3>4

 lim
n: q

 
an

bn
= lim

n: q

 
ln n

n1>4

bn = 1>n5>4 ,an = sln nd>n3>2

ln n

n3>2 6
n1>4
n3>2 =

1
n5>4

nc

a

q

n = 1
 
ln n

n3>2

gan

 = q ,

 lim
n: q

 
an

bn
= lim

n: q

 
n + n2 ln n

n2
+ 5

a

q

n = 2
bn = a

q

n = 2
 
1
n  diverges

bn = 1>n .n Ú 3,>sln nd>n ,
sn ln nd>n2

=anan = s1 + n ln nd>sn2
+ 5d .

gan

 = 1,

 = lim
n: q

 
1

1 - s1>2nd

 lim
n: q

 
an

bn
= lim

n: q

 
2n

2n
- 1

a

q

n = 1
bn = a

q

n = 1
 
1
2n  converges

bn = 1>2n .
1>2n ,anan = 1>s2n

- 1d .

>bn = 2>n ,
gan

lim
n: q

 
an

bn
= lim

n: q

 
2n2

+ n
n2

+ 2n + 1
= 2,

a

q

n = 1
bn = a

q

n = 1
 
1
n diverges

bn = 1>n .2n>n2
= 2>n anan = s2n + 1d>sn2

+ 2n + 1d .
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Exercises 10.4

Comparison Test
In Exercises 1–8, use the Comparison Test to determine if each series
converges or diverges.

1. 2.

3. 4.

5. 6.

7. 8.

Limit Comparison Test
In Exercises 9–16, use the Limit Comparison Test to determine if each
series converges or diverges.

9.

(Hint: Limit Comparison with 

10.

: Limit Comparison with 

11. 12.

13. 14.

15.

(Hint: Limit Comparison with 

16.

(Hint: Limit Comparison with 

Determining Convergence or Divergence
Which of the series in Exercises 17–54 converge, and which diverge?
Use any method, and give reasons for your answers.

17. 18. 19.

20. 21. 22.

23. 24.

25. 26. 27.

28. 29. 30.

31. 32. 33.

34. 35. 36. a

q

n = 1
 
n + 2n

n22na

q

n = 1
 
1 - n

n2na

q

n = 1
 
2n

n2
+ 1

a

q

n = 2
 

1

n2n2
- 1

a

q

n = 2
 
ln sn + 1d

n + 1a

q

n = 1
 

1
1 + ln n

a

q

n = 1
 
sln nd2

n3>2a

q

n = 2
 

1

2n ln n
a

q

n = 1
 
sln nd2

n3

a

q

n = 3
 

1
ln sln nda

q

n = 1
 

1

2n3
+ 2

a

q

n = 1
 a n

3n + 1
bn

a

q

n = 3
 

5n3
- 3n

n2sn - 2dsn2
+ 5da

q

n = 1
 

10n + 1
nsn + 1dsn + 2d

a

q

n = 1
 
n + 1

n22n
a

q

n = 1
 

2n
3n - 1a

q

n = 1
 
1 + cos n

n2

a

q

n = 1
 
sin2 n

2na

q

n = 1
 

3

n + 2n
a

q

n = 1
 

1

22n + 23 n

g
q

n=1 s1>n2dd

a

q

n = 1
 ln a1 +

1
n2 b

g
q

n=2 s1>ndd

a

q

n = 2
 

1
ln n

a

q

n = 1
 a2n + 3

5n + 4
bn

a

q

n = 1
 

5n

2n 4n

a

q

n = 1
 

2n

3 + 4na

q

n = 2
 

nsn + 1d
sn2

+ 1dsn - 1d

g
q

n=1 A1>2n B BAHint

a

q

n = 1
 A

n + 1
n2

+ 2

g
q

n=1 s1>n2dd

a

q

n = 1
 

n - 2
n3

- n2
+ 3

a

q

n = 1
 
2n + 1

2n2
+ 3

a

q

n = 1
 A

n + 4
n4

+ 4

a

q

n = 1
 

1
n3na

q

n = 1
 
cos2 n

n3>2

a

q

n = 2
 
n + 2
n2

- na

q

n = 2
 

1

2n - 1

a

q

n = 1
 
n - 1
n4

+ 2a

q

n = 1
 

1
n2

+ 30

37. 38.

39. 40.

41. 42.

43.

(Hint: First show that for 

44. 45. 46.

47. 48. 49.

50. 51. 52.

53. 54.

Theory and Examples
55. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.

56. If is a convergent series of nonnegative numbers, can
anything be said about Explain.

57. Suppose that and for (N an integer). If
and converges, can anything be said

about Give reasons for your answer.

58. Prove that if is a convergent series of nonnegative terms,
then converges.

59. Suppose that and Prove that diverges.

60. Suppose that and Prove that con-
verges.

61. Show that converges for and

(Hint: Limit Comparison with for 

62. (Continuation of Exercise 61.) Show that di-
verges for and 

(Hint: Limit Comparison with an appropriate p-series.)

In Exercises 63–68, use the results of Exercises 61 and 62 to deter-
mine if each series converges or diverges.

63. 64.

65. 66.

67. 68. a

q

n = 2
 

1

2n # ln n
a

q

n = 2
 

1
n1.1sln nd3

a

q

n = 2
 
sln nd1>5

n0.99a

q

n = 2
 
sln nd1000

n1.001

a

q

n = 2
 A

ln n
na

q

n = 2
 
sln nd3

n4

0 6 p … 1.- q 6 q 6 q

g
q

n=2 ssln ndq>npd

1 6 r 6 p.)g
q

n=2 1>nr

p 7 1.
- q 6 q 6 qg

q

n=2 ssln ndq>npd

gan n2an = 0.lim
n: q

an 7 0

gan an = q .lim
n: q

an 7 0

gan
2
gan

g bn ?
ganlim n:q san>bnd = q

n Ú Nbn 7 0an 7 0

g
q

n=1san>nd?
g

q

n=1 an

a

q

n = 1
 

1
1 + 22

+ 32
+

Á
+ n2a

q

n = 1
 

1
1 + 2 + 3 +

Á
+ n

a

q

n = 1
 
2n n

n2a

q

n = 1
 

1

n2n n
a

q

n = 1
 
tanh n

n2

a

q

n = 1
 
coth n

n2a

q

n = 1
 
sec-1 n

n1.3a

q

n = 1
 
tan-1 n

n1.1

a

q

n = 1
 tan 

1
na

q

n = 1
 sin 

1
na

q

n = 1
 
sn - 1d!
sn + 2d!

n Ú 2.)s1>n!d … s1>nsn - 1dd

a

q

n = 2
 
1
n!

a

q

n = 1
 ln a n

n + 1
ba

q

n = 1
 
2n

- n
n2n

a

q

n = 1
 
2n

+ 3n

3n
+ 4na

q

n = 1
 

n + 1
n2

+ 3n
# 1
5n

a

q

n = 1
 
3n - 1

+ 1
3na

q

n = 1
 

1
3n - 1

+ 1
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10.5 The Ratio and Root Tests 581

COMPUTER EXPLORATIONS
69. It is not yet known whether the series

converges or diverges. Use a CAS to explore the behavior of the
series by performing the following steps.

a. Define the sequence of partial sums

What happens when you try to find the limit of as 
Does your CAS find a closed form answer for this limit?

b. Plot the first 100 points for the sequence of partial
sums. Do they appear to converge? What would you estimate
the limit to be?

c. Next plot the first 200 points Discuss the behavior in
your own words.

d. Plot the first 400 points What happens when
Calculate the number 355 113. Explain from your

calculation what happened at For what values of k
would you guess this behavior might occur again?

k = 355.
>k = 355?

sk, skd .

sk, skd .

sk, skd

k : q ?sk

sk = a

k

n = 1
 

1
n3 sin2 n

.

a

q

n = 1
 

1
n3 sin2 n

70. a. Use Theorem 8 to show that

where the sum of a convergent p-series.

b. From Example 5, Section 10.2, show that

c. Explain why taking the first M terms in the series in part (b)
gives a better approximation to S than taking the first M terms
in the original series 

d. The exact value of S is known to be Which of the sums

gives a better approximation to S?

a

1000000

n = 1
 
1
n2 or 1 + a

1000

n = 1
 

1
n2sn + 1d

p2>6.

g
q

n=1 s1>n2d.

S = 1 + a

q

n = 1
 

1
n2sn + 1d

.

S = g
q

n=1 s1>n2d,

S = a

q

n = 1
 

1
nsn + 1d

+ a

q

n = 1
 a 1

n2 -

1
nsn + 1d

b

10.5 The Ratio and Root Tests

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio
For a geometric series this rate is a constant and the

series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a
powerful rule extending that result.

ssarn + 1d>sarnd = rd ,garn ,an + 1>an .

THEOREM 12—The Ratio Test Let be a series with positive terms and
suppose that

Then (a) the series converges if , (b) the series diverges if or is in-
finite, (c) the test is inconclusive if r = 1.

rr 7 1r 6 1

lim
n: q

 
an + 1
an

= r .

gan

Proof

(a) Let r be a number between and 1. Then the number is positive.
Since

must lie within of when n is large enough, say for all In particular,

an + 1
an

6 r + P = r, when n Ú N .

n Ú N .rPan + 1>an

an + 1
an

: r ,

P = r - rrR<1.
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That is,

These inequalities show that the terms of our series, after the Nth term, approach zero
more rapidly than the terms in a geometric series with ratio More precisely,
consider the series where for and 

Now for all n, and

The geometric series converges because so con-
verges. Since also converges.

(b) From some index M on,

The terms of the series do not approach zero as n becomes infinite, and the series
diverges by the nth-Term Test.

(c) The two series

show that some other test for convergence must be used when 

In both cases, yet the first series diverges, whereas the second converges.

The Ratio Test is often effective when the terms of a series contain factorials of ex-
pressions involving n or expressions raised to a power involving n.

EXAMPLE 1 Investigate the convergence of the following series.

(a) (b) (c)

Solution We apply the Ratio Test to each series.

(a) For the series 

The series converges because is less than 1. This does not mean that 2 3 is
the sum of the series. In fact,

a

q

n = 0
 
2n

+ 5
3n = a

q

n = 0
 a2

3
bn

+ a

q

n = 0
 
5
3n =

1
1 - s2>3d

+
5

1 - s1>3d
=

21
2

.

>r = 2>3
an + 1
an

=

s2n + 1
+ 5d>3n + 1

s2n
+ 5d>3n =

1
3

 #  
2n + 1

+ 5
2n

+ 5
=

1
3

 # a2 + 5 # 2-n

1 + 5 # 2-n b : 1
3

 #  
2
1

=
2
3

.

g
q

n=0 s2n
+ 5d>3n ,

a

q

n = 1
 
4nn!n!
s2nd!a

q

n = 1
 
s2nd!
n!n!a

q

n = 0
 
2n

+ 5
3n

r = 1,

For a

q

n = 1
 
1
n2 : an + 1

an
=

1>sn + 1d2

1>n2 = a n
n + 1

b2

: 12
= 1.

For a

q

n = 1
 
1
n :  

an + 1
an

=

1>sn + 1d
1>n =

n
n + 1

: 1.

r = 1.

a

q

n = 1
 
1
n  and  a

q

n = 1
 
1
n2

R = 1.

an + 1
an

7 1  and  aM 6 aM + 1 6 aM + 2 6
Á .

1<R ◊ ˆ .

an … cn, gan

gcnƒ r ƒ 6 1,1 + r + r2
+

Á

 = a1 + a2 +
Á

+ aN - 1 + aNs1 + r + r2
+

Ád .

 a

q

n = 1
cn = a1 + a2 +

Á
+ aN - 1 + aN + raN + r2aN +

Á

an … cnr2aN, Á , cN + m = rmaN, Á .
cN + 1 = raN, cN + 2 =n = 1, 2, Á , Ncn = angcn ,

r 6 1.

 aN + m 6 raN + m - 1 6 r maN .

 o

 aN + 3 6 raN + 2 6 r 3aN ,

 aN + 2 6 raN + 1 6 r 2aN ,

 aN + 1 6 raN ,

582 Chapter 10: Infinite Sequences and Series
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10.5 The Ratio and Root Tests 583

(b) If then and

The series diverges because is greater than 1.

(c) If then

Because the limit is we cannot decide from the Ratio Test whether the series
converges. When we notice that we conclude that

is always greater than because is always greater than 1.
Therefore, all terms are greater than or equal to and the nth term does not ap-
proach zero as The series diverges.

The Root Test

The convergence tests we have so far for work best when the formula for is rela-
tively simple. However, consider the series with the terms

To investigate convergence we write out several terms of the series:

Clearly, this is not a geometric series. The nth term approaches zero as so the 
nth-Term Test does not tell us if the series diverges. The Integral Test does not look prom-
ising. The Ratio Test produces

As the ratio is alternately small and large and has no limit. However, we will see
that the following test establishes that the series converges.

n : q ,

an + 1
an

= d 1
2n

, n odd 

n + 1
2

, n even.

n : q ,

 =
1
2

+
1
4

+
3
8

+
1

16
+

5
32

+
1

64
+

7
128

+
Á .

 a

q

n = 1
an =

1
21 +

1
22 +

3
23 +

1
24 +

5
25 +

1
26 +

7
27 +

Á

an = en>2n, n odd

1>2n, n even.

angan

n : q .
a1 = 2,

s2n + 2d>s2n + 1danan + 1

an + 1>an = s2n + 2d>s2n + 1d ,
r = 1,

 =

4sn + 1dsn + 1d
s2n + 2ds2n + 1d

=

2sn + 1d
2n + 1

: 1.

 
an + 1
an

=

4n + 1sn + 1d!sn + 1d!
s2n + 2ds2n + 1ds2nd!

#
s2nd!
4nn!n!

an = 4nn!n!>s2nd! ,

r = 4

 =

s2n + 2ds2n + 1d
sn + 1dsn + 1d

=
4n + 2
n + 1

: 4.

 
an + 1
an

=

n!n!s2n + 2ds2n + 1ds2nd!
sn + 1d!sn + 1d!s2nd!

an + 1 =

s2n + 2d!
sn + 1d!sn + 1d!

an =

s2nd!
n!n!

,

THEOREM 13—The Root Test Let be a series with for 
and suppose that

Then (a) the series converges if (b) the series diverges if or is in-
finite, (c) the test is inconclusive if r = 1.

rr 7 1r 6 1,

lim
n: q

2n an = r .

n Ú N ,an Ú 0gan
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Proof

(a) Choose an so small that Since the terms 
eventually get closer than to In other words, there exists an index such that

Then it is also true that

Now, a geometric series with ratio converges. By
comparison, converges, from which it follows that

converges.

(b) For all indices beyond some integer M, we have so that
for The terms of the series do not converge to zero. The series di-

verges by the nth-Term Test.

(c) The series and show that the test is not conclusive
when The first series diverges and the second converges, but in both cases

EXAMPLE 2 Consider again the series with terms 

Does converge?

Solution We apply the Root Test, finding that

Therefore,

Since (Section 10.1, Theorem 5), we have by the Sandwich
Theorem. The limit is less than 1, so the series converges by the Root Test.

EXAMPLE 3 Which of the following series converge, and which diverge?

(a) (b) (c)

Solution We apply the Root Test to each series.

(a) converges because 

(b) diverges because 

(c) converges because B
n a 1

1 + n
bn

=
1

1 + n
 :  0 6 1.a

q

n = 1
 a 1

1 + n
bn

A
n 2n

n3 =
2

A2n n B3 :  
2
13 7 1.a

q

n = 1
 
2n

n3

B
n n2

2n =

2n n2

2n 2n
=

A2n n B2
2

 :  
12

2
6 1.a

q

n = 1
 
n2

2n

a

q

n = 1
 a 1

1 + n
bn

a

q

n = 1
 
2n

n3a

q

n = 1
 
n2

2n

limn:q2n an = 1>22n n : 1

1
2

… 2n an …

2n n
2

.

2n an = e2n n>2, n odd 
1>2, n even.

gan

an = en>2n, n odd

1>2n, n even.

2n an : 1.
r = 1.

g
q

n=1 s1>n2dg
q

n=1 s1>ndR = 1.

n 7 M .an 7 1
2n an 7 1,1<R ◊ ˆ .

a

q

n = 1
an = a1 +

Á
+ aM - 1 + a

q

n = M
an

g
q

n=M an

sr + Pd 6 1,g
q

n=M sr + Pdn ,

an 6 sr + Pdn for n Ú M .

2n an 6 r + P when n Ú M .

M Ú Nr .P

2n an2n an : r ,r + P 6 1.P 7 0R<1.
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10.5 The Ratio and Root Tests 585

Exercises 10.5

Using the Ratio Test
In Exercises 1–8, use the Ratio Test to determine if each series con-
verges or diverges.

1. 2.

3. 4.

5. 6.

7. 8.

Using the Root Test
In Exercises 9–16, use the Root Test to determine if each series con-
verges or diverges.

9. 10.

11. 12.

13. 14.

15.

(Hint:

16.

Determining Convergence or Divergence
In Exercises 17–44, use any method to determine if the series con-
verges or diverges. Give reasons for your answer.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. a

q

n = 1
e-nsn3da

q

n = 1
 
sn + 1dsn + 2d

n!

a

q

n = 1
 
n ln n

2na

q

n = 1
 
ln n
n

a

q

n = 1
 a1n -

1
n2 b

n

a

q

n = 1
 a1n -

1
n2 b

a

q

n = 1
 
sln ndn

nna

q

n = 1
 
ln n

n3

a

q

n = 1
 a1 -

1
3n
bn

a

q

n = 1
 a1 -

3
n b

n

a

q

n = 1
 
s -2dn

3na

q

n = 1
 
2 + s -1dn

1.25n

a

q

n = 1
 an - 2

n bn

a

q

n = 1
 
n10

10n

a

q

n = 1
 

n!
10na

q

n = 1
n!e-n

a

q

n = 1
n2e-n

a

q

n = 1
 
n22

2n

a

q

n = 2
 

1
n1 + n

 s1 + x>ndn
= ex)lim

n: q

a

q

n = 1
 a1 -

1
n b

n2

a

q

n = 1
 sinn a 1

2n
ba

q

n = 1
 

8
(3 + (1>n))2n

a

q

n = 1
 aln ae2

+

1
n b b

n + 1

a

q

n = 1
 a4n + 3

3n - 5
bn

a

q

n = 1
 

4n

s3ndna

q

n = 1
 

7
s2n + 5dn

a

q

n = 1
 

n5n

s2n + 3d ln sn + 1da

q

n = 1
 
n2sn + 2d!

n! 32n

a

q

n = 2
 
3n + 2

ln na

q

n = 1
 
n4

4n

a

q

n = 1
 

2n + 1

n3n - 1a

q

n = 1
 
sn - 1d!
sn + 1d2

a

q

n = 1
 
n + 2

3na

q

n = 1
 
2n

n!

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

Recursively Defined Terms Which of the series defined
by the formulas in Exercises 45–54 converge, and which diverge?
Give reasons for your answers.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Convergence or Divergence
Which of the series in Exercises 55–62 converge, and which diverge?
Give reasons for your answers.

55. 56.

57. 58.

59. 60.

61.

62. a

q

n = 1
 

1 # 3 # Á # s2n - 1d
[2 # 4 # Á # s2nd]s3n

+ 1d

a

q

n = 1
 
1 # 3 # Á # s2n - 1d

4n2nn!

a

q

n = 1
 

nn

s2nd2a

q

n = 1
 

nn

2sn2d

a

q

n = 1
 
sn!dn

nsn2da

q

n = 1
 
sn!dn

snnd2

a

q

n = 1
 

s3nd!
n!sn + 1d!sn + 2d!a

q

n = 1
 
2nn!n!
s2nd!

a1 =

1
2

, an + 1 = sandn + 1

a1 =

1
3

, an + 1 = 2n an

a1 =

1
2

, an + 1 =

n + ln n
n + 10

 an

a1 = 1, an + 1 =

1 + ln n
n  an

a1 = 5, an + 1 =

2n n
2

 an

a1 = 2, an + 1 =

2
n an

a1 = 3, an + 1 =

n
n + 1

 an

a1 =

1
3

, an + 1 =

3n - 1
2n + 5

 an

a1 = 1, an + 1 =

1 + tan-1 n
n  an

a1 = 2, an + 1 =

1 + sin n
n  an

g
q

n=1 an

a

q

n = 1
 
s2n + 3ds2n

+ 3d
3n

+ 2a

q

n = 1
 
sn!d2

s2nd!

a

q

n = 1
 

3n

n32na

q

n = 1
 

n! ln n
nsn + 2d!

a

q

n = 2
 

n

sln ndsn>2da

q

n = 2
 

n
sln ndn

a

q

n = 1
 
n!
nna

q

n = 1
 

n!
s2n + 1d!

a

q

n = 1
 
n2nsn + 1d!

3nn!a

q

n = 1
 
sn + 3d!

3!n!3n
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Theory and Examples
63. Neither the Ratio Test nor the Root Test helps with p-series. Try

them on

and show that both tests fail to provide information about conver-
gence.

64. Show that neither the Ratio Test nor the Root Test provides infor-
mation about the convergence of

a

q

n = 2
 

1
sln nd p s p constantd .

a

q

n = 1
 
1
np

586 Chapter 10: Infinite Sequences and Series

65. Let 

Does converge? Give reasons for your answer.

66. Show that diverges. Recall from the Laws of Expo-

nents that 2(n2)
= s2ndn.

g
q

n=1 2(n2)>n!

gan

an = en>2n, if n is a prime number

1>2n, otherwise.

10.6 Alternating Series, Absolute and Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating series.
Here are three examples:

(1)

(2)

(3)

We see from these examples that the nth term of an alternating series is of the form

where is a positive number.
Series (1), called the alternating harmonic series, converges, as we will see in a moment.

Series (2), a geometric series with ratio converges to 
Series (3) diverges because the nth term does not approach zero.

We prove the convergence of the alternating harmonic series by applying the Alternating
Series Test. The Test is for convergence of an alternating series and cannot be used to con-
clude that such a series diverges.

-4>3.-2>[1 + s1>2d] =r = -1>2,

un = ƒ an ƒ

an = s -1dn + 1un or an = s -1dnun

1 - 2 + 3 - 4 + 5 - 6 +
Á

+ s -1dn + 1n +
Á

 -2 + 1 -
1
2

+
1
4

-
1
8

+
Á

+

s -1dn4
2n +

Á

1 -
1
2

+
1
3

-
1
4

+
1
5 -

Á
+

s -1dn + 1

n +
Á

THEOREM 14—The Alternating Series Test (Leibniz’s Test) The series

converges if all three of the following conditions are satisfied:

1. The are all positive.

2. The positive are (eventually) nonincreasing: for all for
some integer N.

3. un : 0.

n Ú N ,un Ú un + 1un’s

un’s

a

q

n = 1
s -1dn + 1un = u1 - u2 + u3 - u4 +

Á

Proof Assume If n is an even integer, say then the sum of the first n
terms is

 = u1 - su2 - u3d - su4 - u5d -
Á

- su2m - 2 - u2m - 1d - u2m .

 s2m = su1 - u2d + su3 - u4d +
Á

+ su2m - 1 - u2md

n = 2m ,N = 1.

7001_ThomasET_ch10p550-627.qxd  10/30/09  8:21 AM  Page 586



10.6 Alternating Series, Absolute and Conditional Convergence 587

The first equality shows that is the sum of m nonnegative terms since each term in
parentheses is positive or zero. Hence and the sequence is non-
decreasing. The second equality shows that Since is nondecreasing and
bounded from above, it has a limit, say

(4)

If n is an odd integer, say then the sum of the first n terms is
Since 

and, as 

(5)

Combining the results of Equations (4) and (5) gives (Section 10.1,

Exercise 131).

EXAMPLE 1 The alternating harmonic series

clearly satisfies the three requirements of Theorem 14 with  it therefore con-
verges.

Rather than directly verifying the definition a second way to show that the
sequence is nonincreasing is to define a differentiable function satisfying

That is, the values of ƒ match the values of the sequence at every positive inte-
ger n. If for all x greater than or equal to some positive integer N, then is
nonincreasing for It follows that or for 

EXAMPLE 2 Consider the sequence where Define 
Then from the Derivative Quotient Rule,

It follows that for That is, the sequence is nonincreasing for

A graphical interpretation of the partial sums (Figure 10.13) shows how an alternating
series converges to its limit L when the three conditions of Theorem 14 are satisfied with

Starting from the origin of the x-axis, we lay off the positive distance To
find the point corresponding to we back up a distance equal to Since

we do not back up any farther than the origin. We continue in this seesaw fash-
ion, backing up or going forward as the signs in the series demand. But for each
forward or backward step is shorter than (or at most the same size as) the preceding step
because And since the nth term approaches zero as n increases, the size of step
we take forward or backward gets smaller and smaller. We oscillate across the limit L, and
the amplitude of oscillation approaches zero. The limit L lies between any two successive
sums and and hence differs from by an amount less than 

Because

we can make useful estimates of the sums of convergent alternating series.

ƒ L - sn ƒ 6 un + 1 for n Ú N ,

un + 1 .snsn + 1sn

un + 1 … un .

n Ú N ,
u2 … u1 ,

u2 .s2 = u1 - u2 ,
s1 = u1 .N = 1.

n Ú 4.
{un}n Ú 4.un Ú un + 1

ƒ¿sxd =

10s16 - x2d
sx2

+ 16d2 … 0 whenever x Ú 4.

10x>sx2
+ 16d.

ƒsxd =un = 10n>sn2
+ 16d.

n Ú N.un Ú un + 1,ƒsnd Ú ƒsn + 1d,x Ú N.
ƒsxdƒ¿sxd … 0

ƒsnd = un.
ƒsxd{un}

un Ú un + 1,

N = 1;

a

q

n = 1
s -1dn + 1 

1
n = 1 -

1
2

+
1
3

-
1
4

+
Á

sn = Llimn:q

s2m + 1 = s2m + u2m + 1 : L + 0 = L .

m : q ,

lim
m: q

 u2m + 1 = 0

un : 0,s2m + 1 = s2m + u2m + 1 .
n = 2m + 1,

lim
m: q

 s2m = L .

5s2m6s2m … u1 .
5s2m6s2m + 2 Ú s2m ,

s2m

L0

�u1

�u2

�u3

�u4

s2 s4 s3 s1

x

FIGURE 10.13 The partial sums of an
alternating series that satisfies the
hypotheses of Theorem 14 for 
straddle the limit from the beginning.

N = 1
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We leave the verification of the sign of the remainder for Exercise 61.

EXAMPLE 3 We try Theorem 15 on a series whose sum we know:

The theorem says that if we truncate the series after the eighth term, we throw away a total
that is positive and less than 1 256. The sum of the first eight terms is 
and the sum of the first nine terms is . The sum of the geometric series is

and we note that . The difference, 
is positive and is less than 

Absolute and Conditional Convergence

We can apply the tests for convergence studied before to the series of absolute values of a
series with both positive and negative terms.

s1>256d = 0.00390625.0.0026041666 Á ,
s2>3d - 0.6640625 =0.6640625 6 (2>3) 6 0.66796875

1
1 - s -1>2d

=
1

3>2 =
2
3

,

s9 = 0.66796875
s8 = 0.6640625>

a

q

n = 0
s -1dn 

1
2n = 1 -

1
2

+
1
4

-
1
8

+
1

16
-

1
32

+
1

64
-

1
128

  +
1

256
-

Á .

588 Chapter 10: Infinite Sequences and Series

THEOREM 15—The Alternating Series Estimation Theorem If the alternating
series satisfies the three conditions of Theorem 14, then for

approximates the sum L of the series with an error whose absolute value is less
than the absolute value of the first unused term. Furthermore, the sum L
lies between any two successive partial sums and and the remainder,

has the same sign as the first unused term.L - sn ,
sn + 1,sn

un + 1 ,

sn = u1 - u2 +
Á

+ s -1dn + 1un

n Ú N ,
g

q

n=1 s -1dn + 1un

DEFINITION A series converges absolutely (is absolutely convergent)
if the corresponding series of absolute values, converges.g ƒ an ƒ ,

gan

The geometric series in Example 3 converges absolutely because the corresponding
series of absolute values

converges. The alternating harmonic series does not converge absolutely because the corre-
sponding series of absolute values is the (divergent) harmonic series.

a

q

n = 0
  

1
2n = 1 +

1
2

+
1
4

+
1
8

+
Á

DEFINITION A series that converges but does not converge absolutely
converges conditionally.

The alternating harmonic series converges conditionally.
Absolute convergence is important for two reasons. First, we have good tests for con-

vergence of series of positive terms. Second, if a series converges absolutely, then it con-
verges, as we now prove.

--
--

--
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10.6 Alternating Series, Absolute and Conditional Convergence 589

Proof For each n,

If converges, then converges and, by the Direct Comparison Test,
the nonnegative series converges. The equality 
now lets us express as the difference of two convergent series:

Therefore, converges.

Caution We can rephrase Theorem 16 to say that every absolutely convergent series con-
verges. However, the converse statement is false: Many convergent series do not converge
absolutely (such as the alternating harmonic series in Example 1).

EXAMPLE 4 This example gives two series that converge absolutely.

(a) For the corresponding series of absolute

values is the convergent series

The original series converges because it converges absolutely.

(b) For which contains both positive and nega-

tive terms, the corresponding series of absolute values is

which converges by comparison with because for every n.
The original series converges absolutely; therefore it converges.

EXAMPLE 5 If p is a positive constant, the sequence is a decreasing sequence
with limit zero. Therefore the alternating p-series

converges.
If the series converges absolutely. If the series converges condi-

tionally.

 Absolute convergence: 1 -
1

23>2 +
1

33>2 -
1

43>2 +
Á

 Conditional convergence: 1 -
1

22
+

1

23
-

1

24
+

Á

0 6 p … 1,p 7 1,

a

q

n = 1
 
s -1dn - 1

np = 1 -
1
2p +

1
3p -

1
4p +

Á , p 7 0

51>np6

ƒ sin n ƒ … 1g
q

n=1 s1>n2d

a

q

n = 1
` sin n

n2 ` =

ƒ sin 1 ƒ

1
+

ƒ sin 2 ƒ

4
+

Á ,

a

q

n = 1
 
sin n
n2 =

sin 1
1

+
sin 2

4
+

sin 3
9

+
Á ,

a

q

n = 1
 
1
n2 = 1 +

1
4

+
1
9

+
1

16
+

Á .

a

q

n = 1
s -1dn + 1 

1
n2 = 1 -

1
4

+
1
9

-
1

16
+

Á ,

g
q

n=1  an

a

q

n = 1
 an = a

q

n = 1
san + ƒ an ƒ - ƒ an ƒ d = a

q

n = 1
san + ƒ an ƒ d - a  

q

n = 1
ƒ an ƒ .

g
q

n=1 an

an = san + ƒ an ƒ d - ƒ an ƒg
q

n=1 san + ƒ an ƒ d
g

q

n=1 2 ƒ an ƒg
q

n=1 ƒ an ƒ

- ƒ an ƒ … an … ƒ an ƒ, so 0 … an + ƒ an ƒ … 2 ƒ an ƒ .

THEOREM 16—The Absolute Convergence Test If converges, then

converges.a

q

n = 1
an

a

q

n = 1
 ƒ an ƒ
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Rearranging Series

We can always rearrange the terms of a finite sum. The same result is true for an infinite
series that is absolutely convergent (see Exercise 68 for an outline of the proof ).

590 Chapter 10: Infinite Sequences and Series

THEOREM 17—The Rearrangement Theorem for Absolutely Convergent Series If
converges absolutely, and is any arrangement of the

sequence then converges absolutely and

a

q

n = 1
bn = a

q

n = 1
an .

gbn5an6 ,
b1, b2 , Á , bn , Ág

q

n=1 an

If we rearrange the terms of a conditionally convergent series, we get different results.
In fact, it can be proved that for any real number r, a given conditionally convergent series
can be rearranged so its sum is equal to r. (We omit the proof of this fact.) Here’s an exam-
ple of summing the terms of a conditionally convergent series with different orderings,
with each ordering giving a different value for the sum.

EXAMPLE 6 We know that the alternating harmonic series converges
to some number L. Moreover, by Theorem 15, L lies between the successive partial sums

and so If we multiply the series by 2 we obtain

.

Now we change the order of this last sum by grouping each pair of terms with the same
odd denominator, but leaving the negative terms with the even denominators as they are
placed (so the denominators are the positive integers in their natural order). This re-
arrangement gives

So by rearranging the terms of the conditionally convergent series the 
series becomes which is the alternating harmonic series itself. If the two
series are the same, it would imply that  which is clearly false since   

Example 6 shows that we cannot rearrange the terms of a conditionally convergent
series and expect the new series to be the same as the original one. When we are using a
conditionally convergent series, the terms must be added together in the order they are
given to obtain a correct result. On the other hand, Theorem 17 guarantees that the terms
of an absolutely convergent series can be summed in any order without affecting the result.

Summary of Tests

We have developed a variety of tests to determine convergence or divergence for an infi-
nite series of constants. There are other tests we have not presented which are sometimes
given in more advanced courses. Here is a summary of the tests we have considered.

L Z 0.2L = L,
g

q

n=1 s -1dn + 1>n,
g

q

n=1 2s -1dn + 1>n,

= a

q

n = 1
 
s -1dn + 1

n = L.

= a1 -
1
2

+
1
3

-
1
4

+
1
5 -

1
6

+
1
7 -

1
8

+
1
9

-
1

10
+

1
11

-
Áb

s2 - 1d -
1
2

+ a2
3

-
1
3
b -

1
4

+ a25 -
1
5 b -

1
6

+ a27 -
1
7 b -

1
8

+
Á

 = 2 - 1 +
2
3

-
1
2

+
2
5 -

1
3

+
2
7 -

1
4

+
2
9

-
1
5 +

2
11

-
Á

 2L = 2 a

q

n = 1
 
s -1dn + 1

n = 2 a1 -
1
2

+
1
3

-
1
4

+
1
5 -

1
6

+
1
7 -

1
8

+
1
9

-
1

10
+

1
11

-
Áb

L Z 0.s3 = 5>6,s2 = 1>2
g

q

n=1 s -1dn + 1>n
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10.6 Alternating Series, Absolute and Conditional Convergence 591

1. The nth-Term Test: Unless the series diverges.

2. Geometric series: converges if otherwise it diverges.

3. p-series: converges if otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test, Ratio Test, or Root Test.
Try comparing to a known series with the Comparison Test or the Limit Com-
parison Test.

5. Series with some negative terms: Does converge? If yes, so does 
since absolute convergence implies convergence.

6. Alternating series: converges if the series satisfies the conditions of the
Alternating Series Test.

gan

gang ƒ an ƒ

p 7 1;g1>np

ƒ r ƒ 6 1;garn

an : 0,

Exercises 10.6

Determining Convergence or Divergence
In Exercises 1–14, determine if the alternating series converges or 
diverges. Some of the series do not satisfy the conditions of the Alter-
nating Series Test.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

Absolute and Conditional Convergence
Which of the series in Exercises 15–48 converge absolutely, which
converge, and which diverge? Give reasons for your answers.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. a

q

n = 1
s -1dn + 1 A2n 10 Ba

q

n = 1
s -1dn + 1 

1 + n

n2

a

q

n = 1
 
s -2dn + 1

n + 5na

q

n = 1
s -1dn + 1 

3 + n
5 + n

a

q

n = 1
s -1dn  

sin n

n2a

q

n = 1
s -1dn 

1
n + 3

a

q

n = 1
s -1dn + 1  

n!
2na

q

n = 1
s -1dn + 1 

n

n3
+ 1

a

q

n = 1
 

s -1dn

1 + 2n
a

q

n = 1
s -1dn 

1

2n

a

q

n = 1
s -1dn + 1 

s0.1dn

na

q

n = 1
s -1dn + 1s0.1dn

a

q

n = 1
s -1dn + 1  

32n + 1

2n + 1
a

q

n = 1
s -1dn + 1  

2n + 1
n + 1

a

q

n = 1
s -1dn ln a1 +

1
n ba

q

n = 1
s -1dn + 1  

ln n
n

a

q

n = 2
s -1dn + 1 

1
ln na

q

n = 1
s -1dn + 1 a n

10
bn

a

q

n = 1
s -1dn 

10n

sn + 1d!a

q

n = 1
s -1dn + 1  

2n

n2

a

q

n = 1
s -1dn + 1  

n2
+ 5

n2
+ 4a

q

n = 1
s -1dn 

n

n2
+ 1

a

q

n = 2
s -1dn 

4
sln nd2a

q

n = 1
s -1dn + 1 

1
n3n

a

q

n = 1
s -1dn + 1 

1

n3>2a

q

n = 1
s -1dn + 1 

1

2n

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43.

44. 45.

46.

47.

48.

Error Estimation
In Exercises 49–52, estimate the magnitude of the error involved in
using the sum of the first four terms to approximate the sum of the en-
tire series.

49. 50. a

q

n = 1
s -1dn + 1 

1
10na

q

n = 1
s -1dn + 1 

1
n

1 +

1
4

-

1
9

-

1
16

+

1
25

+

1
36

-

1
49

-

1
64

+
Á

1
4

-

1
6

+

1
8

-

1
10

+

1
12

-

1
14

+
Á

a

q

n = 1
s -1dn csch n

a

q

n = 1
s -1dn sech na

q

n = 1
 

s -1dn

2n + 2n + 1

a

q

n = 1
s -1dn A2n + 1n - 2n B

a

q

n = 1
s -1dn A2n2

+ n - n Ba

q

n = 1
s -1dn A2n + 1 - 2n B

a

q

n = 1
s -1dn 

sn!d2 3n

s2n + 1d!a

q

n = 1
s -1dn 

s2nd!
2nn!n

a

q

n = 1
 
s -1dn + 1sn!d2

s2nd!a

q

n = 1
 
s -1dnsn + 1dn

s2ndn

a

q

n = 1
 
cos np

na

q

n = 1
 
cos np

n2n

a

q

n = 1
 

s -1dn - 1

n2
+ 2n + 1a

q

n = 1
 
s -100dn

n!

a

q

n = 1
s -5d-n

a

q

n = 1
s -1dn 

n
n + 1

a

q

n = 1
s -1dn 

ln n
n - ln na

q

n = 1
s -1dn 

tan-1 n

n2
+ 1

a

q

n = 2
s -1dn + 1 

1
n ln na

q

n = 1
s -1dnn2s2>3dn
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51.

52.

In Exercises 53–56, determine how many terms should be used to esti-
mate the sum of the entire series with an error of less than 0.001.

53. 54.

55. 56.

Approximate the sums in Exercises 57 and 58 with an error of magni-
tude less than 

57.

58.

Theory and Examples
59. a. The series

does not meet one of the conditions of Theorem 14. Which
one?

b. Use Theorem 17 to find the sum of the series in part (a).

60. The limit L of an alternating series that satisfies the conditions of
Theorem 14 lies between the values of any two consecutive par-
tial sums. This suggests using the average

to estimate L. Compute

as an approximation to the sum of the alternating harmonic series.
The exact sum is 

61. The sign of the remainder of an alternating series that satis-
fies the conditions of Theorem 14 Prove the assertion in Theo-
rem 15 that whenever an alternating series satisfying the condi-
tions of Theorem 14 is approximated with one of its partial sums,
then the remainder (sum of the unused terms) has the same sign
as the first unused term. (Hint: Group the remainder’s terms in
consecutive pairs.)

62. Show that the sum of the first 2n terms of the series

1 -

1
2

+

1
2

-

1
3

+

1
3

-

1
4

+

1
4

-

1
5

+

1
5

-

1
6

+
Á

ln 2 = 0.69314718 . Á

s20 +

1
2

 #  
1
21

sn + sn + 1

2
= sn +

1
2

 s -1dn + 2an + 1

1
3

-

1
2

+

1
9

-

1
4

+

1
27

-

1
8

+
Á

+

1
3n -

1
2n +

Á

a

q

n = 0
s -1dn 

1
n!

a

q

n = 0
s -1dn 

1
s2nd!

5 * 10-6 .

a

q

n = 1
s -1dn  

1
ln sln sn + 2dda

q

n = 1
s -1dn + 1  

1

An + 32n B3
a

q

n = 1
s -1dn + 1  

n

n2
+ 1a

q

n = 1
s -1dn  

1
n2

+ 3

1
1 + t

= a

q

n = 0
s -1dnt n, 0 6 t 6 1

a

q

n = 1
s -1dn + 1 

s0.01dn

n
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is the same as the sum of the first n terms of the series

Do these series converge? What is the sum of the first 
terms of the first series? If the series converge, what is their sum?

63. Show that if diverges, then diverges.

64. Show that if converges absolutely, then

65. Show that if and both converge absolutely, then
so do the following.

a. b.

c. (k any number)

66. Show by example that may diverge even if 
and both converge.

67. In the alternating harmonic series, suppose the goal is to arrange
the terms to get a new series that converges to Start the
new arrangement with the first negative term, which is 
Whenever you have a sum that is less than or equal to start
introducing positive terms, taken in order, until the new total is
greater than Then add negative terms until the total is less
than or equal to again. Continue this process until your
partial sums have been above the target at least three times and
finish at or below it. If is the sum of the first n terms of your
new series, plot the points to illustrate how the sums are
behaving.

68. Outline of the proof of the Rearrangement Theorem (Theo-
rem 17)

a. Let be a positive real number, let and let

Show that for some index and for some
index 

Since all the terms appear somewhere in the
sequence there is an index such that if

then is at most a sum of terms 
with Therefore, if 

b. The argument in part (a) shows that if converges 

absolutely then converges and 

Now show that because converges, 
converges to g

q

n=1 ƒ an ƒ .
g

q

n=1 ƒ bn ƒg
q

n=1 ƒ an ƒ

g
q

n=1 bn = g
q

n=1 an .g
q

n=1 bn

g
q

n=1 an

 … a

q

k = N1

ƒ ak ƒ + ƒ sN2 - L ƒ 6 P .

 ̀ a

n

k = 1
bk - L ` … ` a

n

k = 1
bk - sN2 ` + ƒ sN2 - L ƒ

n Ú N3 ,m Ú N1 .
amAgn

k=1 bk B - sN2n Ú N3 ,
N3 Ú N25bn6 ,

a1, a2 , Á , aN2

a

q

n = N1

 ƒ an ƒ 6

P

2
 and ƒ sN2 - L ƒ 6

P

2
.

N2 Ú N1 ,
N1sk = g

k
n=1 an .

L = g
q

n=1 an ,P

sn, snd
sn

-1>2-1>2.

-1>2,
-1>2.

-1>2.

g
q

n=1  bn

g
q

n=1  ang
q

n=1 an bn

a

q

n = 1
 kan

a

q

n = 1
san - bnda

q

n = 1
san + bnd

g
q

n=1 bng
q

n=1  an

` a
q

n = 1
an ` … a

q

n = 1
 ƒ an ƒ .

g
q

n=1  an

g
q

n=1 ƒ an ƒg
q

n=1 an

2n + 1

1
1 # 2

+

1
2 # 3

+

1
3 # 4

+

1
4 # 5

+

1
5 # 6

+
Á .

As you will see in Section 10.7, 
the sum is ln (1.01).

As you will see in Section 10.9, the sum is
cos 1, the cosine of 1 radian.

As you will see in Section 10.9,
the sum is e-1 .

T

T

T
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10.7 Power Series 593

10.7 Power Series

Now that we can test many infinite series of numbers for convergence, we can study sums
that look like “infinite polynomials.” We call these sums power series because they are de-
fined as infinite series of powers of some variable, in our case x. Like polynomials, power
series can be added, subtracted, multiplied, differentiated, and integrated to give new
power series.

Power Series and Convergence

We begin with the formal definition, which specifies the notation and terms used for
power series.

DEFINITIONS A power series about is a series of the form

(1)

A power series about is a series of the form

(2)

in which the center a and the coefficients are constants.c0, c1, c2, Á , cn, Á

a

q

n = 0
cnsx - adn

= c0 + c1sx - ad + c2sx - ad2
+

Á
+ cnsx - adn

+
Á

x � a

a

q

n = 0
cn xn

= c0 + c1 x + c2 x2
+

Á
+ cn xn

+
Á .

x � 0

Equation (1) is the special case obtained by taking in Equation (2). We will see
that a power series defines a function on a certain interval where it converges. More-
over, this function will be shown to be continuous and differentiable over the interior of
that interval.

EXAMPLE 1 Taking all the coefficients to be 1 in Equation (1) gives the geometric
power series

This is the geometric series with first term 1 and ratio x. It converges to for
We express this fact by writing

(3)

Up to now, we have used Equation (3) as a formula for the sum of the series on the
right. We now change the focus: We think of the partial sums of the series on the right as
polynomials that approximate the function on the left. For values of x near zero,
we need take only a few terms of the series to get a good approximation. As we move
toward or we must take more terms. Figure 10.14 shows the graphs of

and the approximating polynomials for and 8.
The function is not continuous on intervals containing where it
has a vertical asymptote. The approximations do not apply when x Ú 1.

x = 1,ƒsxd = 1>s1 - xd
n = 0, 1, 2 ,yn = Pnsxdƒsxd = 1>s1 - xd

-1,x = 1,

Pnsxd

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á , -1 6 x 6 1.

ƒ x ƒ 6 1.
1>s1 - xd

a

q

n = 0
xn

= 1 + x + x2
+

Á
+ xn

+
Á .

ƒsxd
a = 0

Reciprocal Power Series

1
1 - x

= a

q

n = 0
 xn, ƒ x ƒ 6 1
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EXAMPLE 2 The power series

(4)

matches Equation (2) with This

is a geometric series with first term 1 and ratio The series converges for

or The sum is

so

Series (4) generates useful polynomial approximations of for values of x near 2:

and so on (Figure 10.15).

The following example illustrates how we test a power series for convergence by 
using the Ratio Test to see where it converges and diverges.

EXAMPLE 3 For what values of x do the following power series converge?

(a) a

q

n = 1
s -1dn - 1 

xn

n = x -
x2

2
+

x3

3
-

Á

 P2sxd = 1 -
1
2

 sx - 2d +
1
4

 sx - 2d2
= 3 -

3x
2

+
x2

4
,

 P1sxd = 1 -
1
2

 sx - 2d = 2 -
x
2

 P0sxd = 1

ƒsxd = 2>x
2
x = 1 -

sx - 2d
2

+

sx - 2d2

4
-

Á
+ a- 1

2
bn

sx - 2dn
+

Á , 0 6 x 6 4.

1
1 - r

=
1

1 +
x - 2

2

=
2
x ,

0 6 x 6 4.` x - 2
2
` 6 1

r = -
x - 2

2
.

a = 2, c0 = 1, c1 = -1>2, c2 = 1>4, Á , cn = s -1>2dn .

1 -
1
2

 sx - 2d +
1
4

 sx - 2d2
+

Á
+ a- 1

2
bn

sx - 2dn
+

Á
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0

1

1–1

2

3

4

5

7

8

9

y2 � 1 � x � x2

y1 � 1 � x

y0 � 1

y � 1
1 � x

y8 � 1 � x � x2 � x3 � x4 � x5 � x6
 � x7 � x8

x

y

FIGURE 10.14 The graphs of in Example 1
and four of its polynomial approximations.

ƒsxd = 1>s1 - xd

0 2

1

1

y1 � 2 �

y2 � 3 �     �

y0 � 1

(2, 1) y �

3

2 3x
2

x2

4
2
x

x
2
x

y

FIGURE 10.15 The graphs of 
and its first three polynomial approxima-
tions (Example 2).

ƒsxd = 2>x
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10.7 Power Series 595

(b)

(c)

(d)

Solution Apply the Ratio Test to the series where is the nth term of the power
series in question. (Recall that the Ratio Test applies to series with nonnegative terms.)

(a)

The series converges absolutely for It diverges if because the nth
term does not converge to zero. At we get the alternating harmonic series

which converges. At , we get 
the negative of the harmonic series; it diverges. Series (a) con-

verges for and diverges elsewhere.

(b)

The series converges absolutely for It diverges for because the nth
term does not converge to zero. At the series becomes 

which converges by the Alternating Series Theorem. It also con-
verges at because it is again an alternating series that satisfies the conditions
for convergence. The value at is the negative of the value at Series (b)
converges for and diverges elsewhere.

(c)

The series converges absolutely for all x.

(d)

The series diverges for all values of x except 

The previous example illustrated how a power series might converge. The next result
shows that if a power series converges at more than one value, then it converges over an
entire interval of values. The interval might be finite or infinite and contain one, both, or
none of its endpoints. We will see that each endpoint of a finite interval must be tested in-
dependently for convergence or divergence.

0
x

x = 0.

` un + 1
un
` = ` sn + 1d!xn + 1

n!xn ` = sn + 1d ƒ x ƒ : q  unless x = 0.

0
x

n!
sn + 1d!

=

1 # 2 # 3 Á n
1 # 2 # 3 Á n # sn + 1d

` un + 1
un
` = ` xn + 1

sn + 1d!
# n!
xn ` =

ƒ x ƒ

n + 1
: 0 for every x .

–1 0 1
x

-1 … x … 1
x = 1.x = -1

x = -1
1>5 - 1>7 +

Á ,
1 - 1>3 +x = 1

x2
7 1x2

6 1.

2sn + 1d - 1 = 2n + 1` un + 1
un
` = ` x2n + 1

2n + 1
# 2n - 1

x2n - 1 ` =
2n - 1
2n + 1

 x2 : x2 .

–1 0 1
x

-1 6 x … 1
1>3 - 1>4 -

Á ,
-1 - 1>2 -x = -11 - 1>2 + 1>3 - 1>4 +

Á ,
x = 1,

ƒ x ƒ 7 1ƒ x ƒ 6 1.

` un + 1
un
` = ` xn + 1

n + 1
# n
x ` =

n
n + 1 ƒ x ƒ : ƒ x ƒ .

ung ƒ un ƒ ,

a

q

n = 0
n!xn

= 1 + x + 2!x2
+ 3!x3

+
Á

a

q

n = 0
 
xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

Á

a

q

n = 1
s -1dn - 1 

x2n - 1

2n - 1
= x -

x3

3
+

x5

5 -
Á
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Proof The proof uses the Comparison Test, with the given series compared to a con-
verging geometric series.

Suppose the series converges. Then by the nth-Term
Test. Hence, there is an integer N such that for all so that

(5)

Now take any x such that so that Multiplying both sides of Equation (5)
by gives

Since it follows that the geometric series converges. By the Com-
parison Test (Theorem 10), the series converges, so the original power series

converges absolutely for as claimed by the theorem. (See 
Figure 10.16.)

Now suppose that the series diverges at If x is a number with
and the series converges at x, then the first half of the theorem shows that the se-

ries also converges at d, contrary to our assumption. So the series diverges for all x with

To simplify the notation, Theorem 18 deals with the convergence of series of the form
For series of the form we can replace by and apply the re-

sults to the series 

The Radius of Convergence of a Power Series

The theorem we have just proved and the examples we have studied lead to the conclusion
that a power series behaves in one of three possible ways. It might converge
only at or converge everywhere, or converge on some interval of radius R centered
at We prove this as a Corollary to Theorem 18.x = a .

x = a ,
gcnsx - adn

gansx¿ dn .
x¿x - agansx - adngan xn .

ƒ x ƒ 7 ƒ d ƒ .

ƒ x ƒ 7 ƒ d ƒ

x = d.g
q

n=0 anxn

- ƒ c ƒ 6 x 6 ƒ c ƒg
q

n=0 anxn
g

q

n=0 ƒ an ƒ ƒ xn
ƒ

g
q

n=0 ƒ x>c ƒ
n

ƒ x>c ƒ 6 1,

ƒ an ƒ ƒ x ƒ
n

6

ƒ x ƒ
n

ƒ c ƒ
n for n 7 N.

ƒ x ƒ
n

ƒ x ƒ >  ƒ c ƒ 6 1.ƒ x ƒ 6 ƒ c ƒ,

ƒ an ƒ 6
1

ƒ c ƒ
n for n 7 N .

n 7 N,ƒ an cn
ƒ 6 1

limn:q an cn
= 0g

q

n=0 an cn
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THEOREM 18—The Convergence Theorem for Power Series If the power series

converges at then it converges

absolutely for all x with If the series diverges at then it diverges
for all x with ƒ x ƒ 7 ƒ d ƒ .

x = d ,ƒ x ƒ 6 ƒ c ƒ .

x = c Z 0, a

q

n = 0
an xn

= a0 + a1 x + a2 x2
+

Á

COROLLARY TO THEOREM 18 The convergence of the series is
described by one of the following three cases:

1. There is a positive number R such that the series diverges for x with
but converges absolutely for x with The series

may or may not converge at either of the endpoints and

2. The series converges absolutely for every 

3. The series converges at and diverges elsewhere sR = 0d .x = a

x sR = q d .

x = a + R .
x = a - R

ƒ x - a ƒ 6 R .ƒ x - a ƒ 7 R

gcnsx - adn

0 _d _2_d _ 2R R2_c_ _c_
x

FIGURE 10.16 Convergence of at
implies absolute convergence on the

interval divergence at
implies divergence for 

The corollary to Theorem 18 asserts the
existence of a radius of convergence
R Ú 0.

ƒ x ƒ 7 ƒ d ƒ .x = d
- ƒ c ƒ 6 x 6 ƒ c ƒ;

x = c
ganx

n
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10.7 Power Series 597

Proof We first consider the case where so that we have a power series 
centered at 0. If the series converges everywhere we are in Case 2. If it converges only at

then we are in Case 3. Otherwise there is a nonzero number d such that 
diverges. Let S be the set of values of x for which converges. The set S does not
include any x with since Theorem 18 implies the series diverges at all such val-
ues. So the set S is bounded. By the Completeness Property of the Real Numbers (Appen-
dix 7) S has a least upper bound R. (This is the smallest number with the property that all
elements of S are less than or equal to R.) Since we are not in Case 3, the series converges
at some number and, by Theorem 18, also on the open interval There-
fore 

If then there is a number c in S with since otherwise R would
not be the least upper bound for S. The series converges at c since so by Theorem 18
the series converges absolutely at x.

Now suppose If the series converges at x, then Theorem 18 implies it con-
verges absolutely on the open interval so that S contains this interval. Since R
is an upper bound for S, it follows that which is a contradiction. So if 
then the series diverges. This proves the theorem for power series centered at 

For a power series centered at an arbitrary point set and repeat the
argument above replacing x with Since when convergence of the series 

on a radius R open interval centered at corresponds to convergence 
of the series on a radius R open interval centered at

R is called the radius of convergence of the power series, and the interval of radius R
centered at is called the interval of convergence. The interval of convergence may
be open, closed, or half-open, depending on the particular series. At points x with

the series converges absolutely. If the series converges for all values of x,
we say its radius of convergence is infinite. If it converges only at we say its radius
of convergence is zero.

x = a ,
ƒ x - a ƒ 6 R ,

x = a

x = a.g
q

n=0 ƒ cnsx - ad ƒ
n

x¿ = 0g
q

n=0 ƒ cnsx¿ d ƒ
n

x = a ,x¿ = 0x¿ .
x¿ = x - ax = a,

a = 0.
ƒ x ƒ 7 Rƒ x ƒ … R,

s - ƒ x ƒ, ƒ x ƒ d,
ƒ x ƒ 7 R.

c H S,
ƒ x ƒ 6 c 6 R,ƒ x ƒ 6 R

R 7 0.
s - ƒ b ƒ, ƒ b ƒ d.b Z 0

ƒ x ƒ 7 ƒ d ƒ ,
g

q

n=0 cnx
n

g
q

n=0 cnd
nx = 0

g
q

n=0 cnx
na = 0,

How to Test a Power Series for Convergence

1. Use the Ratio Test (or Root Test) to find the interval where the series con-
verges absolutely. Ordinarily, this is an open interval

2. If the interval of absolute convergence is finite, test for convergence or diver-
gence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the
Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is the series di-
verges for (it does not even converge conditionally) because the
nth term does not approach zero for those values of x.

ƒ x - a ƒ 7 R
a - R 6 x 6 a + R ,

ƒ x - a ƒ 6 R or a - R 6 x 6 a + R .

Test each endpoint of the (finite)
interval of convergence.

Operations on Power Series

On the intersection of their intervals of convergence, two power series can be added and
subtracted term by term just like series of constants (Theorem 8). They can be multiplied
just as we multiply polynomials, but we often limit the computation of the product to the
first few terms, which are the most important. The following result gives a formula for the
coefficients in the product, but we omit the proof.
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Finding the general coefficient in the product of two power series can be very te-
dious and the term may be unwieldy. The following computation provides an illustration of
a product where we find the first few terms by multiplying the terms of the second series
by each term of the first series:

Multiply second series . . .

by 1 by x by 

and gather the first four powers.

We can also substitute a function for x in a convergent power series.ƒsxd

= x +
x2

2
+

5x3

6
-

x4

6
 Á.

x2
('''')''''*('''')''''*('''')''''*

= ax -
x2

2
+

x3

3
-

Áb + ax2
-

x3

2
+

x4

3
-

Áb + ax3
-

x4

2
+

x5

3
-

Áb +
Á

= s1 + x + x2
+

Ád ax -
x2

2
+

x3

3
-

Áb
aa

q

n = 0
 xnb # aa

q

n = 0
 s -1dn 

xn + 1

n + 1
b

cn
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THEOREM 19—The Series Multiplication Theorem for Power Series If

and converge absolutely for and

then converges absolutely to A(x)B(x) for 

aa
q

n = 0
an xnb # aa

q

n = 0
bn xnb = a

q

n = 0
cn xn .

ƒ x ƒ 6 R :g
q

n=0 cn xn

cn = a0 bn + a1 bn - 1 + a2 bn - 2 +
Á

+ an - 1b1 + an b0 = a

n

k = 0
ak bn - k ,

ƒ x ƒ 6 R ,Bsxd = g
q

n=0 bn xnAsxd = g
q

n=0 an xn

THEOREM 20 If converges absolutely for then

converges absolutely for any continuous function ƒ on ƒ ƒsxd ƒ 6 R.g
q

n=0 an sƒsxddn
ƒ x ƒ 6 R,g

q

n=0 an xn

Since converges absolutely for it follows from Theo-
rem 20 that converges absolutely for or 

A theorem from advanced calculus says that a power series can be differentiated term
by term at each interior point of its interval of convergence.

ƒ x ƒ 6 1>2.ƒ 4x2
ƒ 6 11>s1 - 4x2d = g

q

n=0 s4x2dn
ƒ x ƒ 6 1,1>s1 - xd = g

q

n=0 xn

THEOREM 21—The Term-by-Term Differentiation Theorem If has
radius of convergence it defines a function

This function ƒ has derivatives of all orders inside the interval, and we obtain
the derivatives by differentiating the original series term by term:

and so on. Each of these derived series converges at every point of the interval
a - R 6 x 6 a + R.

 ƒ–sxd = a

q

n = 2
nsn - 1dcnsx - adn - 2 ,

 ƒ¿sxd = a

q

n = 1
ncnsx - adn - 1,

ƒsxd = a

q

n = 0
cnsx - adn on the interval a - R 6 x 6 a + R .

R 7 0,
gcnsx - adn
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EXAMPLE 4 Find series for and if

Solution We differentiate the power series on the right term by term:

Caution Term-by-term differentiation might not work for other kinds of series. For ex-
ample, the trigonometric series

converges for all x. But if we differentiate term by term we get the series

which diverges for all x. This is not a power series since it is not a sum of positive integer
powers of x.

It is also true that a power series can be integrated term by term throughout its interval
of convergence. This result is proved in a more advanced course.

a

q

n = 1
 
n!cos sn!xd

n2 ,

a

q

n = 1
 
sin sn!xd

n2

 = a

q

n = 2
nsn - 1dxn - 2, -1 6 x 6 1

 ƒ–sxd =
2

s1 - xd3 = 2 + 6x + 12x2
+

Á
+ nsn - 1dxn - 2

+
Á

 = a

q

n = 1
nxn - 1, -1 6 x 6 1;

 ƒ¿sxd =
1

s1 - xd2 = 1 + 2x + 3x2
+ 4x3

+
Á

+ nxn - 1
+

Á

 = a

q

n = 0
xn, -1 6 x 6 1

 ƒsxd =
1

1 - x
= 1 + x + x2

+ x3
+ x4

+
Á

+ xn
+

Á

ƒ–sxdƒ¿sxd

THEOREM 22—The Term-by-Term Integration Theorem Suppose that

converges for Then

converges for and

for a - R 6 x 6 a + R .

L
ƒsxd dx = a

q

n = 0
cn 

sx - adn + 1

n + 1
+ C

a - R 6 x 6 a + R

a

q

n = 0
cn 

(x - a)n+1

n + 1

a - R 6 x 6 a + R  sR 7 0d .

ƒsxd = a

q

n = 0
cnsx - adn

EXAMPLE 5 Identify the function

ƒsxd = a

q

n = 0
 
s -1dn x2n + 1

2n + 1
= x -

x3

3
+

x5

5
-

Á , -1 … x … 1.
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Solution We differentiate the original series term by term and get

Theorem 21

This is a geometric series with first term 1 and ratio so

We can now integrate to get

The series for ƒ(x) is zero when so Hence

(6)

It can be shown that the series also converges to at the endpoints , but we
omit the proof.

Notice that the original series in Example 5 converges at both endpoints of the origi-
nal interval of convergence, but Theorem 22 can guarantee the convergence of the differ-
entiated series only inside the interval.

EXAMPLE 6 The series

converges on the open interval Therefore,

Theorem 22

or

It can also be shown that the series converges at to the number ln 2, but that was not
guaranteed by the theorem.

x = 1

ln s1 + xd = a

q

n = 1
 
s -1dn - 1 xn

n ,  -1 6 x 6 1.

 = x -
x2

2
+

x3

3
-

x4

4
+

Á 

 ln s1 + xd =

L

x

0
 

1
1 + t

 dt = t -
t2

2
+

t3

3
-

t4

4
+

Á d
0

x

-1 6 t 6 1.

1
1 + t

= 1 - t + t2
- t3

+
Á

x = ;1tan-1 x

ƒsxd = x -
x3

3
+

x5

5 -
x7

7 +
Á

= tan-1 x, -1 6 x 6 1.

C = 0.x = 0,

L
ƒ¿sxd dx =

L
 

dx
1 + x2 = tan-1 x + C .

ƒ¿sxd = 1>s1 + x2d

ƒ¿sxd =
1

1 - s -x2d
=

1
1 + x2 .

-x2 ,

ƒ¿sxd = 1 - x2
+ x4

- x6
+

Á , -1 6 x 6 1.
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p

4
= tan-1 1 = a

q

n = 0
 

s -1dn

2n + 1

ln 2 = a

q

n = 1
 
s -1dn - 1

n

Exercises 10.7

Intervals of Convergence
In Exercises 1–36, (a) find the series’ radius and interval of conver-
gence. For what values of x does the series converge (b) absolutely, (c)
conditionally?

1. 2.

3. 4.

5. 6. a

q

n = 0
s2xdn

a

q

n = 0
 
sx - 2dn

10n

a

q

n = 1
 
s3x - 2dn

na

q

n = 0
s -1dns4x + 1dn

a

q

n = 0
sx + 5dn

a

q

n = 0
x n

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. a

q

n = 0
 
s -1dnx n + 1

2n + 3
a

q

n = 0
 

x n

2n2
+ 3

a

q

n = 1
 
sx - 1dn

n3 3na

q

n = 1
 
4nx2n

n

a

q

n = 0
 
3nx n

n!a

q

n = 0
 
s -1dnx n

n!

a

q

n = 1
 
sx - 1dn

2n
a

q

n = 1
 

x n

n2n 3n

a

q

n = 1
 
s -1dnsx + 2dn

na

q

n = 0
 

nx n

n + 2
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10.7 Power Series 601

17. 18.

19. 20.

21.

22.

23. 24.

25. 26.

27. 28.

29.

30.

31. 32.

33.

34.

35.

36.

In Exercises 37–40, find the series’ radius of convergence.

37.

38.

39.

40.

(Hint: Apply the Root Test.)

In Exercises 41–48, use Theorem 20 to find the series’ interval of con-
vergence and, within this interval, the sum of the series as a function
of x.

41. 42.

43. 44.

45. 46. a

q

n = 0
sln xdn

a

q

n = 0
 a2x

2
- 1bn

a

q

n = 0
 
sx + 1d2n

9na

q

n = 0
 
sx - 1d2n

4n

a

q

n = 0
 sex

- 4dn
a

q

n = 0
 3nxn

a

q

n = 1
 a n

n + 1
bn2

 xn

a

q

n = 1
 

sn!d2

2ns2nd!
 xn

a

q

n = 1
 a 2 # 4 # 6 Á s2nd

2 # 5 # 8 Á s3n - 1d
b2

 xn

a

q

n = 1
 

n!
3 # 6 # 9 Á 3n

 xn

a

q

n = 1
 A2n + 1 - 2n B sx - 3dn

a

q

n = 1
 

1 + 2 + 3 +
Á

+ n

12
+ 22

+ 32
+

Á
+ n2 xn

a

q

n = 1
 
3 # 5 # 7 Á s2n + 1d

n2 # 2n
 xn + 1

a

q

n = 1
 

1
2 # 4 # 8 Á s2nd

 xn

a

q

n = 1
 
s3x + 1dn + 1

2n + 2a

q

n = 1
 
s4x - 5d2n + 1

n3>2

a

q

n = 2
 

xn

n ln n

a

q

n = 2
 

x n

nsln nd2

a

q

n = 0
s -2dnsn + 1dsx - 1dn

a

q

n = 1
 
s -1dn + 1sx + 2dn

n2n

a

q

n = 0
n!sx - 4dn

a

q

n = 1
nnx n

a

q

n = 1
sln ndx n

a

q

n = 1
 a1 +

1
n b

n

 x n

a

q

n = 1
 
s -1dn 32nsx - 2dn

3n

a

q

n = 1
 s2 + s -1dnd # sx + 1dn - 1

a

q

n = 1
2n ns2x + 5dn

a

q

n = 0
 
2nx n

3n

a

q

n = 0
 

nx n

4nsn2
+ 1da

q

n = 0
 
nsx + 3dn

5n 47. 48.

Theory and Examples
49. For what values of x does the series

converge? What is its sum? What series do you get if you differ-
entiate the given series term by term? For what values of x does
the new series converge? What is its sum?

50. If you integrate the series in Exercise 49 term by term, what new
series do you get? For what values of x does the new series con-
verge, and what is another name for its sum?

51. The series

converges to sin x for all x.

a. Find the first six terms of a series for cos x. For what values
of x should the series converge?

b. By replacing x by 2x in the series for sin x, find a series that
converges to sin 2x for all x.

c. Using the result in part (a) and series multiplication, calculate
the first six terms of a series for 2 sin x cos x. Compare your
answer with the answer in part (b).

52. The series

converges to for all x.

a. Find a series for Do you get the series for 
Explain your answer.

b. Find a series for Do you get the series for 
Explain your answer.

c. Replace x by in the series for to find a series that con-
verges to for all x. Then multiply the series for and 
to find the first six terms of a series for 

53. The series

converges to tan x for 

a. Find the first five terms of the series for For what
values of x should the series converge?

b. Find the first five terms of the series for For what val-
ues of x should this series converge?

c. Check your result in part (b) by squaring the series given for
sec x in Exercise 54.

54. The series

converges to sec x for 

a. Find the first five terms of a power series for the function
For what values of x should the series

converge?
ln ƒ sec x + tan x ƒ .

-p>2 6 x 6 p>2.

sec x = 1 +

x2

2
+

5
24

 x4
+

61
720

 x6
+

277
8064

 x8
+

Á

sec2 x .

ln ƒ sec x ƒ .

-p>2 6 x 6 p>2.

tan x = x +

x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+

Á

e-x # e x .
e-xe xe-x

e x
-x

e x ?1e x dx .

e x ?sd>dxde x .

e x

e x
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

Á

sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+

x9

9!
-

x11

11!
+

Á

1 -

1
2

 sx - 3d +

1
4

 sx - 3d2
+

Á
+ a- 1

2
bn

sx - 3dn
+

Á

a

q

n = 0
 ax 2

- 1
2
bn

a

q

n = 0
 ax 2

+ 1
3
bn

Get the information you need about

from Section 10.3,

Exercise 55.
a1>(n(ln n)2)

Get the information you need about
from Section 10.3,

Exercise 54.
a1>(n ln n)
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b. Find the first four terms of a series for sec x tan x. For what
values of x should the series converge?

c. Check your result in part (b) by multiplying the series for
sec x by the series given for tan x in Exercise 53.

55. Uniqueness of convergent power series

a. Show that if two power series and are
convergent and equal for all values of x in an open interval

then for every n. (Hint: Let
Differentiate term by term

to show that and both equal )ƒsnds0d>sn!d .bnan

ƒsxd = g
q

n=0 an xn
= g

q

n=0 bn xn .
an = bns -c, cd,

g
q

n=0 bn xng
q

n=0 an xn

602 Chapter 10: Infinite Sequences and Series

b. Show that if for all x in an open interval
then for every n.

56. The sum of the series To find the sum of this se-
ries, express as a geometric series, differentiate both
sides of the resulting equation with respect to x, multiply both
sides of the result by x, differentiate again, multiply by x again,
and set x equal to 1 2. What do you get?>

1>s1 - xd
g

q

n=0 sn2>2nd
an = 0s -c, cd,
g

q

n=0 an xn
= 0

10.8 Taylor and Maclaurin Series

This section shows how functions that are infinitely differentiable generate power series
called Taylor series. In many cases, these series can provide useful polynomial approxima-
tions of the generating functions. Because they are used routinely by mathematicians and
scientists, Taylor series are considered one of the most important topics of this chapter.

Series Representations

We know from Theorem 21 that within its interval of convergence the sum of a power
series is a continuous function with derivatives of all orders. But what about the other way
around? If a function ƒ(x) has derivatives of all orders on an interval I, can it be expressed
as a power series on I? And if it can, what will its coefficients be?

We can answer the last question readily if we assume that ƒ(x) is the sum of a power
series

with a positive radius of convergence. By repeated term-by-term differentiation within the
interval of convergence I, we obtain

with the nth derivative, for all n, being

Since these equations all hold at we have

and, in general,

These formulas reveal a pattern in the coefficients of any power series 
that converges to the values of ƒ on I (“represents ƒ on I”). If there is such a series (still an
open question), then there is only one such series, and its nth coefficient is

an =

ƒsndsad
n!

.

g
q

n=0 ansx - adn

ƒsndsad = n!an .

ƒ¿sad = a1, ƒ–sad = 1 # 2a2, ƒ‡sad = 1 # 2 # 3a3,

x = a ,

ƒsndsxd = n!an + a sum of terms with sx - ad as a factor .

 ƒ‡sxd = 1 # 2 # 3a3 + 2 # 3 # 4a4sx - ad + 3 # 4 # 5a5sx - ad2
+

Á ,

 ƒ–sxd = 1 # 2a2 + 2 # 3a3sx - ad + 3 # 4a4sx - ad2
+

Á ,

 ƒ¿sxd = a1 + 2a2sx - ad + 3a3sx - ad2
+

Á
+ nansx - adn - 1

+
Á ,

 = a0 + a1sx - ad + a2sx - ad2
+

Á
+ ansx - adn

+
Á

 ƒsxd = a

q

n = 0
ansx - adn
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10.8 Taylor and Maclaurin Series 603

If ƒ has a series representation, then the series must be

(1)

But if we start with an arbitrary function ƒ that is infinitely differentiable on an interval I
centered at and use it to generate the series in Equation (1), will the series then con-
verge to ƒ(x) at each x in the interior of I? The answer is maybe—for some functions it will
but for other functions it will not, as we will see.

Taylor and Maclaurin Series

The series on the right-hand side of Equation (1) is the most important and useful series
we will study in this chapter.

x = a

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

DEFINITIONS Let ƒ be a function with derivatives of all orders throughout
some interval containing a as an interior point. Then the Taylor series generated
by ƒ at is

The Maclaurin series generated by ƒ is

the Taylor series generated by ƒ at x = 0.

a

q

k = 0
 
ƒskds0d

k!
 xk

= ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á ,

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 a

q

k = 0
 
ƒskdsad

k!
 sx - adk

= ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

x = a

HISTORICAL BIOGRAPHIES

Brook Taylor
(1685–1731)

Colin Maclaurin
(1698–1746)

The Maclaurin series generated by ƒ is often just called the Taylor series of ƒ.

EXAMPLE 1 Find the Taylor series generated by at Where, if any-
where, does the series converge to 1 x?

Solution We need to find Taking derivatives we get

so that

The Taylor series is

 =
1
2

-

sx - 2d
22 +

sx - 2d2

23 -
Á

+ s -1dn 
sx - 2dn

2n + 1 +
Á .

 ƒs2d + ƒ¿s2dsx - 2d +

ƒ–s2d
2!

 sx - 2d2
+

Á
+

ƒsnds2d
n!

 sx - 2dn
+

Á

ƒsnds2d
n!

=

s -1dn

2n + 1  .Á ,
ƒ–s2d

2!
= 2-3

=
1
23,ƒ¿s2d = -

1
22,ƒs2d = 2-1

=
1
2

,

ƒsndsxd = s -1dnn!x-sn + 1d,Á ,ƒ–sxd = 2!x-3,ƒ¿sxd = -x-2,ƒsxd = x-1,

ƒs2d, ƒ¿s2d, ƒ–s2d, Á .

> a = 2.ƒsxd = 1>x
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This is a geometric series with first term 1 2 and ratio It converges ab-
solutely for and its sum is

In this example the Taylor series generated by at converges to 1 x for
or 

Taylor Polynomials

The linearization of a differentiable function ƒ at a point a is the polynomial of degree one
given by

In Section 3.11 we used this linearization to approximate ƒ(x) at values of x near a. If ƒ has
derivatives of higher order at a, then it has higher-order polynomial approximations as
well, one for each available derivative. These polynomials are called the Taylor polynomi-
als of ƒ.

P1sxd = ƒsad + ƒ¿sadsx - ad .

0 6 x 6 4.ƒ x - 2 ƒ 6 2
>a = 2ƒsxd = 1>x

1>2
1 + sx - 2d>2 =

1
2 + sx - 2d

=
1
x .

ƒ x - 2 ƒ 6 2
r = - sx - 2d>2.>

604 Chapter 10: Infinite Sequences and Series

DEFINITION Let ƒ be a function with derivatives of order k for
in some interval containing a as an interior point. Then for any

integer n from 0 through N, the Taylor polynomial of order n generated by ƒ at
is the polynomial

 +

ƒskdsad
k!

 sx - adk
+

Á
+

ƒsndsad
n!

 sx - adn .

 Pnsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

x = a

k = 1, 2, Á , N

We speak of a Taylor polynomial of order n rather than degree n because may
be zero. The first two Taylor polynomials of at for example, are

and The first-order Taylor polynomial has degree zero, not one.
Just as the linearization of ƒ at provides the best linear approximation of ƒ in

the neighborhood of a, the higher-order Taylor polynomials provide the “best” polynomial
approximations of their respective degrees. (See Exercise 40.)

EXAMPLE 2 Find the Taylor series and the Taylor polynomials generated by 
at 

Solution Since and for every the Taylor series
generated by ƒ at (see Figure 10.17) is

This is also the Maclaurin series for In the next section we will see that the series con-
verges to at every x.ex

ex .

 = a

q

k = 0
 
xk

k!
.

 = 1 + x +
x2

2
+

Á
+

xn

n!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

x = 0
n = 0, 1, 2, Á ,ƒsnds0d = 1ƒsndsxd = ex

x = 0.
ƒsxd = ex

x = a
P1sxd = 1.P0sxd = 1

x = 0,ƒsxd = cos x
ƒsndsad

0.5

1.0

y � e x

0 0.5

1.5

2.0

2.5

3.0
y � P3(x)

y � P2(x)

y � P1(x)

1.0

x

y

–0.5

FIGURE 10.17 The graph of 
and its Taylor polynomials

Notice the very close agreement near the
center (Example 2).x = 0

 P3sxd = 1 + x + sx2>2!d + sx3>3!d .

 P2sxd = 1 + x + sx2>2!d
 P1sxd = 1 + x

ƒsxd = ex
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10.8 Taylor and Maclaurin Series 605

The Taylor polynomial of order n at is

EXAMPLE 3 Find the Taylor series and Taylor polynomials generated by 
at 

Solution The cosine and its derivatives are

At the cosines are 1 and the sines are 0, so

The Taylor series generated by ƒ at 0 is

This is also the Maclaurin series for cos x. Notice that only even powers of x occur in the
Taylor series generated by the cosine function, which is consistent with the fact that it is an
even function. In Section 10.9, we will see that the series converges to cos x at every x.

Because the Taylor polynomials of orders 2n and are identical:

Figure 10.18 shows how well these polynomials approximate near 
Only the right-hand portions of the graphs are given because the graphs are symmetric
about the y-axis.

x = 0.ƒsxd = cos x

P2nsxd = P2n + 1sxd = 1 -
x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
.

2n + 1ƒs2n + 1ds0d = 0,

= a

q

k = 0
 
s -1dkx2k

s2kd!
.

= 1 + 0 # x -
x2

2!
+ 0 # x3

+
x4

4!
+

Á
+ s -1dn 

x2n

s2nd!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

ƒ‡s0d
3!

 x3
+

Á
+

ƒsnds0d
n!

 xn
+

Á

ƒs2nds0d = s -1dn, ƒs2n + 1ds0d = 0.

x = 0,

sin x . ƒs2n + 1dsxd = s -1dn + 1 cos x, ƒs2ndsxd = s -1dn 

o  o

sin x, ƒs3dsxd = -cos x, ƒ–sxd = -sin x, ƒ¿sxd = cos x, ƒsxd = 
x = 0.

ƒsxd = cos x

Pnsxd = 1 + x +
x2

2
+

Á
+

xn

n!
 .

x = 0

0 1

1
y � cos x

2

–1

–2

2 3 4 5 6 7 9

P0
P4 P8 P12 P16

P2 P6 P10 P14 P18

8
x

y

FIGURE 10.18 The polynomials

converge to cos x as We can deduce the behavior of
cos x arbitrarily far away solely from knowing the values of the
cosine and its derivatives at (Example 3).x = 0

n : q .

P2nsxd = a

n

k = 0
 
s -1dkx2k

s2kd!
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EXAMPLE 4 It can be shown (though not easily) that

(Figure 10.19) has derivatives of all orders at and that for all n. This
means that the Taylor series generated by ƒ at is

The series converges for every x (its sum is 0) but converges to ƒ(x) only at That is,
the Taylor series generated by in this example is not equal to the function 
itself. 

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-
ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a
given interval?

The answers are provided by a theorem of Taylor in the next section.

ƒsxdƒsxd
x = 0.

 = 0 + 0 +
Á

+ 0 +
Á .

 = 0 + 0 # x + 0 # x2
+

Á
+ 0 # xn

+
Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

x = 0
ƒsnds0d = 0x = 0

ƒsxd = e0, x = 0

e-1>x2

, x Z 0
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�
�
�

0 1 2

1

–1–2

 e–1/x2
,  x � 0

 0 ,       x � 0  

x

y

FIGURE 10.19 The graph of the
continuous extension of is so
flat at the origin that all of its derivatives
there are zero (Example 4). Therefore its
Taylor series is not the function itself.

y = e-1>x2

Exercises 10.8

Finding Taylor Polynomials
In Exercises 1–10, find the Taylor polynomials of orders 0, 1, 2, and 3
generated by ƒ at a.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

Finding Taylor Series at (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 11–22.

11. 12.

13. 14.

15. sin 3x 16.

17. 18.

19. 20.

21. 22.

Finding Taylor and Maclaurin Series 
In Exercises 23–32, find the Taylor series generated by ƒ at 

23.

24. ƒsxd = 2x3
+ x2

+ 3x - 8, a = 1

ƒsxd = x3
- 2x + 4, a = 2

x = a .

x2

x + 1
x4

- 2x3
- 5x + 4

sinh x =

ex
- e-x

2
cosh x =

ex
+ e-x

2

5 cos px7 cos s -xd

sin  
x
2

2 + x
1 - x

1
1 + x

xexe-x

x � 0

ƒsxd = 21 - x, a = 0ƒsxd = 2x, a = 4

ƒsxd = tan x, a = p>4ƒsxd = sin x, a = p>4
ƒsxd = 1>sx + 2d, a = 0ƒsxd = 1>x, a = 2

ƒsxd = ln s1 + xd, a = 0ƒsxd = ln x, a = 1

ƒsxd = sin x, a = 0ƒsxd = e2x, a = 0

25.

26.

27.

28.

29.

30.

31.

32.

In Exercises 33–36, find the first three nonzero terms of the Maclaurin
series for each function and the values of x for which the series con-
verges absolutely.

33.

34.

35.

36.

Theory and Examples
37. Use the Taylor series generated by at to show that

38. (Continuation of Exercise 37. ) Find the Taylor series generated by
at Compare your answer with the formula in Exercise 37.

39. Let ƒ(x) have derivatives through order n at Show that the
Taylor polynomial of order n and its first n derivatives have the
same values that ƒ and its first n derivatives have at x = a .

x = a .

x = 1.ex

ex
= ea c1 + sx - ad +

sx - ad2

2!
+

Á d .
x = aex

ƒsxd = x sin2 x

ƒsxd = (sin x) ln (1 + x)

ƒsxd = s1 - x + x2d ex

ƒsxd = cos x - s2>s1 - xdd

ƒsxd = 2x + 1, a = 0

ƒsxd = cos s2x + (p>2)d, a = p>4
ƒsxd = 2x, a = 1

ƒsxd = ex, a = 2

ƒsxd = 1>s1 - xd3, a = 0

ƒsxd = 1>x2, a = 1

ƒsxd = 3x5
- x4

+ 2x3
+ x2

- 2, a = -1

ƒsxd = x4
+ x2

+ 1, a = -2
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10.9 Convergence of Taylor Series 607

40. Approximation properties of Taylor polynomials Suppose
that ƒ(x) is differentiable on an interval centered at and that

is a polynomial of
degree n with constant coefficients Let 

Show that if we impose on g the conditions

i) The approximation error is zero at 

ii)

then

 +

ƒsndsad
n!

 sx - adn .

 gsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

lim
x:a

 
Esxd

sx - adn = 0,

x = a .Esad = 0

ƒsxd - gsxd .
Esxd =b0, Á ,  bn .

b0 + b1sx - ad +
Á

+ bnsx - adngsxd =

x = a
Thus, the Taylor polynomial is the only polynomial of de-
gree less than or equal to n whose error is both zero at and
negligible when compared with 

Quadratic Approximations The Taylor polynomial of order 2 gen-
erated by a twice-differentiable function ƒ(x) at is called the
quadratic approximation of ƒ at In Exercises 41–46, find the
(a) linearization (Taylor polynomial of order 1) and (b) quadratic
approximation of ƒ at 

41. 42.

43. 44.

45. 46. ƒsxd = tan xƒsxd = sin x

ƒsxd = cosh xƒsxd = 1>21 - x2

ƒsxd = esin xƒsxd = ln scos xd
x = 0.

x = a .
x = a

sx - adn .
x = a

Pnsxd

The error is negligible when
compared to sx - adn .

10.9 Convergence of Taylor Series

In the last section we asked when a Taylor series for a function can be expected to con-
verge to that (generating) function. We answer the question in this section with the follow-
ing theorem.

THEOREM 23—Taylor’s Theorem If ƒ and its first n derivatives 
are continuous on the closed interval between a and b, and is differentiable
on the open interval between a and b, then there exists a number c between a and
b such that

 +

ƒsndsad
n!

 sb - adn
+

ƒsn + 1dscd
sn + 1d!

 sb - adn + 1 .

 ƒsbd = ƒsad + ƒ¿sadsb - ad +

ƒ–sad
2!

 sb - ad2
+

Á

ƒsnd
ƒ¿, ƒ–, Á , ƒsnd

Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 45). There is a
proof of Taylor’s Theorem at the end of this section.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an in-
dependent variable. Taylor’s formula is easier to use in circumstances like these if we
change b to x. Here is a version of the theorem with this change.

Taylor’s Formula
If ƒ has derivatives of all orders in an open interval I containing a, then for each
positive integer n and for each x in I,

(1)

where

(2)Rnsxd =

f sn + 1dscd
sn + 1d!

 sx - adn + 1 for some c between a and x .

 +

ƒsndsad
n!

 sx - adn
+ Rnsxd ,

 ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á
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When we state Taylor’s theorem this way, it says that for each 

The function is determined by the value of the derivative at a point
c that depends on both a and x, and that lies somewhere between them. For any value of n
we want, the equation gives both a polynomial approximation of ƒ of that order and a for-
mula for the error involved in using that approximation over the interval I.

Equation (1) is called Taylor’s formula. The function is called the remainder
of order n or the error term for the approximation of ƒ by over I.Pnsxd

Rnsxd

ƒsn + 1dsn + 1dstRnsxd

ƒsxd = Pnsxd + Rnsxd .

x H I ,

608 Chapter 10: Infinite Sequences and Series

If as for all we say that the Taylor series generated by ƒ
at converges to ƒ on I, and we write

ƒsxd = a

q

k = 0
 
ƒskdsad

k!
 sx - adk .

x = a
x H I,n : qRnsxd : 0

Often we can estimate without knowing the value of c, as the following example illustrates.

EXAMPLE 1 Show that the Taylor series generated by at converges to
ƒ(x) for every real value of x.

Solution The function has derivatives of all orders throughout the interval 
Equations (1) and (2) with and give

and

Since is an increasing function of lies between and When x is negative,
so is c, and When x is zero, and When x is positive, so is c, and

Thus, for Rn(x) given as above,

and

Finally, because

Section 10.1, Theorem 5

and the series converges to for every x. Thus,

(3)

We can use the result of Example 1 with to write

e = 1 + 1 +
1
2!

+
Á

+
1
n!

+ Rns1d ,

x = 1

ex
= a

q

k = 0
 
xk

k!
= 1 + x +

x2

2!
+

Á
+

xk

k!
+

Á .

exlim
n: q

Rnsxd = 0,

lim
n: q

 
xn + 1

sn + 1d!
= 0 for every x ,

ec
6 ex

ƒ Rnsxd ƒ 6 ex 
xn + 1

sn + 1d!
 when x 7 0.

ec
6 1ƒ Rnsxd ƒ …

ƒ x ƒ
n + 1

sn + 1d!
 when x … 0,

ec
6 ex .

Rnsxd = 0.ex
= 1ec

6 1.
ex .e0

= 1x, ecex

Rnsxd =
ec

sn + 1d!
 xn + 1 for some c between 0 and x .

ex
= 1 + x +

x2

2!
+

Á
+

xn

n!
+ Rnsxd

a = 0ƒsxd = exs - q , q d .
I =

x = 0ƒsxd = ex

Rn

Polynomial from 
Section 10.8, Example 2

The Number e as a Series

e = a

q

n = 0
 
1
n!
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10.9 Convergence of Taylor Series 609

where for some c between 0 and 1,

Estimating the Remainder

It is often possible to estimate as we did in Example 1. This method of estimation is
so convenient that we state it as a theorem for future reference.

Rnsxd

ec
6 e1

6 3Rns1d = ec 
1

sn + 1d!
6

3
sn + 1d!

.

THEOREM 24—The Remainder Estimation Theorem If there is a positive
constant M such that for all t between x and a, inclusive, then
the remainder term in Taylor’s Theorem satisfies the inequality

If this inequality holds for every n and the other conditions of Taylor’s Theorem
are satisfied by ƒ, then the series converges to ƒ(x).

ƒ Rnsxd ƒ … M 
ƒ x - a ƒ

n + 1

sn + 1d!
.

Rnsxd
ƒ ƒsn + 1dstd ƒ … M

The next two examples use Theorem 24 to show that the Taylor series generated by the
sine and cosine functions do in fact converge to the functions themselves.

EXAMPLE 2 Show that the Taylor series for sin x at converges for all x.

Solution The function and its derivatives are

so

The series has only odd-powered terms and, for Taylor’s Theorem gives

All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the
Remainder Estimation Theorem with to obtain

From Theorem 5, Rule 6, we have as whatever the value
of x, so and the Maclaurin series for sin x converges to sin x for every x.
Thus,

(4)sin x = a

q

k = 0
 
s -1dkx2k + 1

s2k + 1d!
= x -

x3

3!
+

x5

5!
-

x7

7!
+

Á .

R2k + 1sxd : 0
k : q ,s ƒ x ƒ

2k + 2>s2k + 2d!d : 0

ƒ R2k + 1sxd ƒ … 1 #
ƒ x ƒ

2k + 2

s2k + 2d!
.

M = 1

sin x = x -
x3

3!
+

x5

5!
-

Á
+

s -1dkx2k + 1

s2k + 1d!
+ R2k + 1sxd .

n = 2k + 1,

f s2kds0d = 0 and f s2k + 1ds0d = s -1dk .

ƒ(2k)sxd = s -1dk sin x,  o  ƒ–sxd =  ƒsxd =  
x = 0

ƒ(2k + 1)sxd = s -1dk cos x ,

   o

ƒ‡sxd = ƒ¿sxd = 
-  sin  x, -  cos  x,

sin  x, cos  x,
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EXAMPLE 3 Show that the Taylor series for cos x at converges to cos x for every
value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 10.8, 
Example 3) to obtain Taylor’s formula for cos x with 

Because the derivatives of the cosine have absolute value less than or equal to 1, the Re-
mainder Estimation Theorem with gives

For every value of x, as Therefore, the series converges to cos x for every
value of x. Thus,

(5)

Using Taylor Series

Since every Taylor series is a power series, the operations of adding, subtracting, and multi-
plying Taylor series are all valid on the intersection of their intervals of convergence.

EXAMPLE 4 Using known series, find the first few terms of the Taylor series for the
given function using power series operations.

(a) (b)

Solution

(a)

(b)

By Theorem 20, we can use the Taylor series of the function ƒ to find the Taylor series of
where is any continuous function. The Taylor series resulting from this substitu-

tion will converge for all x such that lies within the interval of convergence of the Tayloru(x)
u(x)ƒ(u(x))

= 1 + x -
x3

3
-

x4

6
+

Á

+ ax4

4!
+

x5

4!
+

x6

2!4!
+

Áb +
Á

= a1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

Áb - ax2

2!
+

x3

2!
+

x4

2!2!
+

x5

2!3!
+

Áb

ex cos x = a1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

Áb # a1 -
x2

2!
+

x4

4!
-

Áb

=
2
3

 x +
1
3

 x -
x3

3!
+

x5

3 # 4!
-

Á
= x -

x3

6
+

x5

72
-

Á

1
3

 (2x + x cos x) =
2
3

 x +
1
3

 x a1 -
x2

2!
+

x4

4!
-

Á
+ (-1)k 

x2k

(2k)!
+

Áb

ex cos x
1
3

 (2x + x cos x)

cos x = a

q

k = 0
 
s -1dkx2k

s2kd!
= 1 -

x2

2!
+

x4

4!
-

x6

6!
+

Á .

k : q .R2k(x) : 0

ƒ R2ksxd ƒ … 1 #
ƒ x ƒ

2k + 1

s2k + 1d!
.

M = 1

cos x = 1 -
x2

2!
+

x4

4!
-

Á
+ s -1dk 

x2k

s2kd!
+ R2ksxd .

n = 2k :

x = 0

610 Chapter 10: Infinite Sequences and Series

Multiply the first 
series by each term
of the second series.
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10.9 Convergence of Taylor Series 611

series of ƒ. For instance, we can find the Taylor series for cos 2x by substituting 2x for x in
the Taylor series for cos x:

EXAMPLE 5 For what values of x can we replace sin x by with an error of
magnitude no greater than 

Solution Here we can take advantage of the fact that the Taylor series for sin x is an
alternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 10.6), the error in truncating

after is no greater than

Therefore the error will be less than or equal to if

The Alternating Series Estimation Theorem tells us something that the Remainder
Estimation Theorem does not: namely, that the estimate for sin x is an under-
estimate when x is positive, because then is positive.

Figure 10.20 shows the graph of sin x, along with the graphs of a number of its ap-
proximating Taylor polynomials. The graph of is almost indistin-
guishable from the sine curve when  0 … x … 1.

P3sxd = x - sx3>3!d

x5>120
x - sx3>3!d

ƒ x ƒ
5

120
6 3 * 10-4 or ƒ x ƒ 6

52360 * 10-4
L 0.514.

3 * 10-4

` x5

5!
` =

ƒ x ƒ
5

120
.

sx3>3!d

sin x = x -
x3

3!
  +

x5

5!
-

Á

3 * 10-4?
x - sx3>3!d

 = a

q

k = 0
s -1dk 

22kx2k

s2kd!
.

 = 1 -
22x2

2!
+

24x4

4!
-

26x6

6!
+

Á

 cos 2x = a

q

k = 0
 
s -1dks2xd2k

s2kd!
= 1 -

s2xd2

2!
+

s2xd4

4!
-

s2xd6

6!
+

Á

1

y � sin x

2 3 4 8 9

P1 P5

P3 P7 P11 P15 P19

P9 P13 P17

5 6 70

1

2

–1

–2

x

y

FIGURE 10.20 The polynomials

converge to sin x as Notice how closely approxi-
mates the sine curve for (Example 5).x … 1

P3sxdn : q .

P2n + 1sxd = a

n

k = 0
 
s -1dkx2k + 1

s2k + 1d!

Eq. (5) with
2x for x

Rounded down,
to be safe

--
--

--
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A Proof of Taylor’s Theorem

We prove Taylor’s theorem assuming The proof for is nearly the same.
The Taylor polynomial

and its first n derivatives match the function ƒ and its first n derivatives at We do
not disturb that matching if we add another term of the form where K is any
constant, because such a term and its first n derivatives are all equal to zero at The
new function

and its first n derivatives still agree with ƒ and its first n derivatives at 
We now choose the particular value of K that makes the curve agree with

the original curve at In symbols,

(7)

With K defined by Equation (7), the function

measures the difference between the original function ƒ and the approximating function 
for each x in [a, b].

We now use Rolle’s Theorem (Section 4.2). First, because and both
F and are continuous on [a, b], we know that

Next, because and both and are continuous on we know
that

Rolle’s Theorem, applied successively to implies the existence of

Finally, because is continuous on and differentiable on and
Rolle’s Theorem implies that there is a number in 

such that

(8)

If we differentiate a total of times, we get

(9)

Equations (8) and (9) together give

(10)K =

ƒsn + 1dscd
sn + 1d!
 for some number c = cn + 1 in sa, bd .

F sn + 1dsxd = ƒsn + 1dsxd - 0 - sn + 1d!K .

n + 1Fsxd = ƒsxd - Pnsxd - Ksx - adn + 1

F sn + 1dscn + 1d = 0.

sa, cndcn + 1F sndsad = F sndscnd = 0,
sa, cnd ,[a, cn]F snd

cn in sa, cn - 1d such that F sndscnd = 0.

o

c4 in sa, c3d       such that F s4dsc4d = 0,

c3 in sa, c2d        such that F‡sc3d = 0,

F–, F‡, Á , F sn - 1d

F–sc2d = 0 for some c2 in sa, c1d .

[a, c1] ,F–F¿F¿sad = F¿sc1d = 0

F¿sc1d = 0 for some c1 in sa, bd .

F¿

Fsad = Fsbd = 0

fn

Fsxd = ƒsxd - fnsxd

ƒsbd = Pnsbd + Ksb - adn + 1, or K =

ƒsbd - Pnsbd
sb - adn + 1 .

x = b .y = ƒsxd
y = fnsxd

x = a .

fnsxd = Pnsxd + Ksx - adn + 1

x = a .
Ksx - adn + 1 ,

x = a .

Pnsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á
+

f sndsad
n!

 sx - adn

a 7 ba 6 b .

612 Chapter 10: Infinite Sequences and Series
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10.9 Convergence of Taylor Series 613

Equations (7) and (10) give

This concludes the proof.

ƒsbd = Pnsbd +

ƒsn + 1dscd
sn + 1d!

 sb - adn + 1 .

Exercises 10.9

Finding Taylor Series
Use substitution (as in Example 4) to find the Taylor series at of
the functions in Exercises 1–10.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10.

Use power series operations to find the Taylor series at for the
functions in Exercises 11–28.

11. 12. 13.

14. 15. 16.

17. (Hint: )

18. 19. 20.

21. 22. 23.

24. 25. 26.

27. 28.

Find the first four nonzero terms in the Maclaurin series for the func-
tions in Exercises 29–34.

29. 30. 31.

32. 33. 34.

Error Estimates
35. Estimate the error if is used to estimate the

value of sin x at 

36. Estimate the error if 
is used to estimate the value of at 

37. For approximately what values of x can you replace sin x by
with an error of magnitude no greater than 

Give reasons for your answer.
5 * 10-4 ?x - sx3>6d

x = 1>2.ex
P4(x) = 1 + x + (x2>2) + (x3>6) + (x4>24)

x = 0.1.
P3(x) = x - sx3>6d

sin stan-1 xdesin xcos2 x #  sin x

(tan-1 x)2
ln (1 + x)

1 - x
ex sin x

ln (1 + x) - ln (1 - x)
x
3

 ln (1 + x2)

cos x - sin xex
+

1
1 + x

sin x # cos x

x tan-1 x22
s1 - xd3

1
s1 - xd2

x ln s1 + 2xdx2

1 - 2x
sin2 x

cos2 x = s1 + cos 2xd>2.cos2 x

x2 cos sx2dx cos pxsin x - x +

x3

3!

x2

2
- 1 + cos xx2 sin xxex

x = 0

1
2 - x

1

1 +
3
4 x3

tan-1 s3x4dln s1 + x2d

cos Ax2>3>22 Bcos  5x2sin apx
2
b

5 sin s -xde-x>2e-5x

x = 0
38. If cos x is replaced by and what estimate

can be made of the error? Does tend to be too large, or
too small? Give reasons for your answer.

39. How close is the approximation when For
which of these values of x is 

40. The estimate is used when x is small. Esti-
mate the error when 

41. The approximation is used when x is
small. Use the Remainder Estimation Theorem to estimate the
error when 

42. (Continuation of Exercise 41. ) When the series for 
is an alternating series. Use the Alternating Series Estimation
Theorem to estimate the error that results from replacing by

when Compare your estimate
with the one you obtained in Exercise 41.

Theory and Examples
43. Use the identity to obtain the Maclaurin

series for Then differentiate this series to obtain the
Maclaurin series for 2 sin x cos x. Check that this is the series for
sin 2x.

44. (Continuation of Exercise 43. ) Use the identity 
to obtain a power series for 

45. Taylor’s Theorem and the Mean Value Theorem Explain how
the Mean Value Theorem (Section 4.2, Theorem 4) is a special
case of Taylor’s Theorem.

46. Linearizations at inflection points Show that if the graph of a
twice-differentiable function ƒ(x) has an inflection point at

then the linearization of ƒ at is also the quadratic
approximation of ƒ at This explains why tangent lines fit
so well at inflection points.

47. The (second) second derivative test Use the equation

to establish the following test.
Let ƒ have continuous first and second derivatives and sup-

pose that Then

a. ƒ has a local maximum at a if throughout an interval
whose interior contains a;

b. ƒ has a local minimum at a if throughout an interval
whose interior contains a.

ƒ– Ú 0

ƒ– … 0

ƒ¿sad = 0.

ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sc2d
2

 sx - ad2

x = a .
x = ax = a ,

cos2 x .cos 2x + sin2 x
cos2 x =

sin2 x .
sin2 x = s1 - cos 2xd>2

-0.1 6 x 6 0.1 + x + sx 2>2d
e x

e xx 6 0,

ƒ x ƒ 6 0.1 .

ex
= 1 + x + sx2>2d

ƒ x ƒ 6 0.01.
21 + x = 1 + sx>2d

x 6 sin x?
ƒ x ƒ 6 10-3 ?sin x = x

1 - sx2>2d
ƒ x ƒ 6 0.5 ,1 - sx2>2d
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48. A cubic approximation Use Taylor’s formula with and
to find the standard cubic approximation of 

at Give an upper bound for the magnitude of
the error in the approximation when 

49. a. Use Taylor’s formula with to find the quadratic approxi-
mation of at (k a constant).

b. If for approximately what values of x in the interval
[0, 1] will the error in the quadratic approximation be less
than 1 100?

50. Improving approximations of

a. Let P be an approximation of accurate to n decimals. Show
that gives an approximation correct to 3n decimals.
(Hint: Let )

b. Try it with a calculator.

51. The Taylor series generated by is
A function defined by a power series 

with a radius of convergence has a Taylor series that con-
verges to the function at every point of Show this by
showing that the Taylor series generated by is
the series itself.

An immediate consequence of this is that series like

and

obtained by multiplying Taylor series by powers of x, as well as
series obtained by integration and differentiation of convergent
power series, are themselves the Taylor series generated by the
functions they represent.

52. Taylor series for even functions and odd functions (Continu-
ation of Section 10.7, Exercise 55.) Suppose that 
converges for all x in an open interval Show that

a. If ƒ is even, then i.e., the Taylor
series for ƒ at contains only even powers of x.

b. If ƒ is odd, then i.e., the Taylor
series for ƒ at contains only odd powers of x.

COMPUTER EXPLORATIONS
Taylor’s formula with and gives the linearization of a func-
tion at With and we obtain the standard quadraticn = 3n = 2x = 0.

a = 0n = 1

x = 0
a0 = a2 = a4 =

Á
= 0,

x = 0
a1 = a3 = a5 =

Á
= 0,

s -R, Rd .
ƒsxd = g

q

n=0 an xn

x2ex
= x2

+ x3
+

x4

2!
+

x5

3!
+

Á ,

x sin x = x2
-

x4

3!
+

x6

5!
-

x8

7!
+

Á

g
q

n=0 an xn
ƒsxd = g

q

n=0 an xn
s -R, Rd.

R 7 0
g

q

n=0 an xng
ˆ

n=0 an xn
ƒsxd = g

ˆ

n=0 an xn

P = p + x .
P + sin P

p

P

>
k = 3,

x = 0ƒsxd = s1 + xdk
n = 2

ƒ x ƒ … 0.1.
x = 0.1>s1 - xd

ƒsxd =n = 3
a = 0
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and cubic approximations. In these exercises we explore the errors asso-
ciated with these approximations. We seek answers to two questions:

a. For what values of x can the function be replaced by each
approximation with an error less than 

b. What is the maximum error we could expect if we replace the
function by each approximation over the specified interval?

Using a CAS, perform the following steps to aid in answering
questions (a) and (b) for the functions and intervals in Exercises
53–58.

Step 1: Plot the function over the specified interval.

Step 2: Find the Taylor polynomials and at

Step 3: Calculate the derivative associated
with the remainder term for each Taylor polynomial. Plot the de-
rivative as a function of c over the specified interval and estimate
its maximum absolute value, M.

Step 4: Calculate the remainder for each polynomial. Us-
ing the estimate M from Step 3 in place of plot 
over the specified interval. Then estimate the values of x that an-
swer question (a).

Step 5: Compare your estimated error with the actual error
by plotting over the specified in-

terval. This will help answer question (b).

Step 6: Graph the function and its three Taylor approximations
together. Discuss the graphs in relation to the information discov-
ered in Steps 4 and 5.

53.

54.

55.

56.

57.

58. ƒsxd = ex>3 sin 2x, ƒ x ƒ … 2

ƒsxd = e-x cos 2x, ƒ x ƒ … 1

ƒsxd = scos xdssin 2xd, ƒ x ƒ … 2

ƒsxd =

x

x2
+ 1

, ƒ x ƒ … 2

ƒsxd = s1 + xd3>2, -

1
2

… x … 2

ƒsxd =

1

21 + x
, ƒ x ƒ …

3
4

EnsxdEnsxd = ƒ ƒsxd - Pnsxd ƒ

Rnsxdƒsn + 1dscd ,
Rnsxd

ƒsn + 1dscdsn + 1dst

x = 0.
P3sxdP1sxd, P2sxd ,

10-2 ?

10.10 The Binomial Series and Applications of Taylor Series

In this section we introduce the binomial series for estimating powers and roots of bino-
mial expressions . We also show how series can be used to evaluate nonelemen-
tary integrals and limits that lead to indeterminate forms, and we provide a derivation of
the Taylor series for This section concludes with a reference table of frequently
used series.

tan-1 x.

(1 + x)m

T
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10.10 The Binomial Series and Applications of Taylor Series 615

The Binomial Series for Powers and Roots

The Taylor series generated by when m is constant, is

(1)

This series, called the binomial series, converges absolutely for To derive the
series, we first list the function and its derivatives:

We then evaluate these at and substitute into the Taylor series formula to obtain
Series (1).

If m is an integer greater than or equal to zero, the series stops after terms
because the coefficients from on are zero.

If m is not a positive integer or zero, the series is infinite and converges for 
To see why, let be the term involving Then apply the Ratio Test for absolute conver-
gence to see that

Our derivation of the binomial series shows only that it is generated by and
converges for The derivation does not show that the series converges to 
It does, but we omit the proof. (See Exercise 64.)

s1 + xdm .ƒ x ƒ 6 1.
s1 + xdm

` uk + 1
uk
` = ` m - k

k + 1
 x ` : ƒ x ƒ as k : q .

xk .uk

ƒ x ƒ 6 1.
k = m + 1

sm + 1d

x = 0

 ƒskdsxd = msm - 1dsm - 2d Á sm - k + 1ds1 + xdm - k .

 o

 ƒ‡sxd = msm - 1dsm - 2ds1 + xdm - 3

 ƒ–sxd = msm - 1ds1 + xdm - 2

 ƒ¿sxd = ms1 + xdm - 1

 ƒsxd = s1 + xdm

ƒ x ƒ 6 1.

+

msm - 1dsm - 2d Á sm - k + 1d
k!

 xk
+

Á .

1 + mx +

msm - 1d
2!

 x2
+

msm - 1dsm - 2d
3!

 x3
+

Á

ƒsxd = s1 + xdm ,

The Binomial Series

For 

where we define

and

am
k
b =

msm - 1dsm - 2d Á sm - k + 1d
k!

 for k Ú 3.

am
1
b = m, am

2
b =

msm - 1d
2!

,

s1 + xdm
= 1 + a

q

k = 1
 am

k
b  xk ,

-1 6 x 6 1,

EXAMPLE 1 If 

a-1

1
b = -1, a-1

2
b =

-1s -2d
2!

= 1,

m = -1,
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and

With these coefficient values and with x replaced by the binomial series formula gives
the familiar geometric series

EXAMPLE 2 We know from Section 3.11, Example 1, that for
small. With the binomial series gives quadratic and higher-order approxima-

tions as well, along with error estimates that come from the Alternating Series Estimation
Theorem:

Substitution for x gives still other approximations. For example,

Sometimes we can use the binomial series to find the sum of a given power series in
terms of a known function. For example,

Additional examples are provided in Exercises 59–62.

Evaluating Nonelementary Integrals

Taylor series can be used to express nonelementary integrals in terms of series. Integrals
like arise in the study of the diffraction of light.

EXAMPLE 3 Express as a power series.

Solution From the series for sin x we substitute for x to obtain

Therefore,

L
 sin x2 dx = C +

x3

3
-

x7

7 # 3!
+

x11

11 # 5!
-

x15

15 # 7!
+

x10

19 # 9!
-

Á .

sin x2
= x2

-
x6

3!
+

x10

5!
-

x14

7!
+

x18

9!
-

Á .

x2

1  sin x2 dx

1  sin x2 dx

x2
-

x6

3!
+

x10

5!
-

x14

7!
+

Á
= (x2) -

(x2)3

3!
+

(x2)5

5!
-

(x2)7

7!
+

Á
= sin x2 .

A1 -
1
x L 1 -

1
2x

-
1

8x2 for ` 1x `  small, that is,  ƒ x ƒ  large.

21 - x 2
L 1 -

x 2

2
-

x4

8
 for  ƒ x 2

ƒ  small

= 1 +
x
2

-
x2

8
+

x3

16
-

5x4

128
+

Á .

+

a1
2
b a- 1

2
b a- 3

2
b a- 5

2
b

4!
 x4

+
Á

s1 + xd1>2
= 1 +

x
2

+

a1
2
b a- 1

2
b

2!
 x2

+

a1
2
b a- 1

2
b a- 3

2
b

3!
 x3

m = 1>2,ƒ x ƒ

21 + x L 1 + sx>2d

s1 + xd-1
= 1 + a

q

k = 1
s -1dkxk

= 1 - x + x2
- x3

+
Á

+ s -1dkxk
+

Á .

-x ,

a-1

k
b =

-1s -2ds -3d Á s -1 - k + 1d
k!

= s -1dk ak!
k!
b = s -1dk .

616 Chapter 10: Infinite Sequences and Series
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10.10 The Binomial Series and Applications of Taylor Series 617

EXAMPLE 4 Estimate with an error of less than 0.001.

Solution From the indefinite integral in Example 3,

The series alternates, and we find by experiment that

is the first term to be numerically less than 0.001. The sum of the preceding two terms gives

With two more terms we could estimate

with an error of less than With only one term beyond that we have

with an error of about To guarantee this accuracy with the error formula for
the Trapezoidal Rule would require using about 8000 subintervals.

Arctangents

In Section 10.7, Example 5, we found a series for by differentiating to get

and then integrating to get

However, we did not prove the term-by-term integration theorem on which this conclusion
depended. We now derive the series again by integrating both sides of the finite formula

(2)

in which the last term comes from adding the remaining terms as a geometric series with
first term and ratio Integrating both sides of Equation (2)
from to gives

where

The denominator of the integrand is greater than or equal to 1; hence

ƒ Rnsxd ƒ …

L

ƒ x ƒ

0
t2n + 2 dt =

ƒ x ƒ
2n + 3

2n + 3
.

Rnsxd =

L

x

0
 
s -1dn + 1t2n + 2

1 + t2  dt .

tan-1 x = x -
x3

3
+

x5

5
-

x7

7
+

Á
+ s -1dn 

x2n + 1

2n + 1
+ Rnsxd ,

t = xt = 0
r = - t2 .a = s -1dn + 1t2n + 2

1
1 + t2 = 1 - t2

+ t4
- t6

+
Á

+ s -1dnt2n
+

s -1dn + 1t2n + 2

1 + t2 ,

tan-1 x = x -
x3

3
+

x5

5 -
x7

7 +
Á .

d
dx

 tan-1 x =
1

1 + x2 = 1 - x2
+ x4

- x6
+

Á

tan-1 x

1.08 * 10-9 .

L

1

0
 sin x2 dx L

1
3

-
1

42
+

1
1320

-
1

75600
+

1
6894720

L 0.310268303,

10-6 .

L

1

0
 sin x2 dx L 0.310268

L

1

0
 sin x2 dx L

1
3

-
1

42
L 0.310.

1
11 # 5!

L 0.00076

L

1

0
 sin x2 dx =

1
3

-
1

7 # 3!
+

1
11 # 5!

-
1

15 # 7!
+

1
19 # 9!

-
Á .

1
1

0  sin x2 dx
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If the right side of this inequality approaches zero as Therefore
if and

.

(3)

We take this route instead of finding the Taylor series directly because the formulas
for the higher-order derivatives of are unmanageable. When we put in Equa-
tion (3), we get Leibniz’s formula:

Because this series converges very slowly, it is not used in approximating to many deci-
mal places. The series for converges most rapidly when x is near zero. For that rea-
son, people who use the series for to compute use various trigonometric identities.

For example, if

then

and

Now Equation (3) may be used with to evaluate and with to
give The sum of these results, multiplied by 4, gives 

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions involved as
Taylor series.

EXAMPLE 5 Evaluate

Solution We represent ln x as a Taylor series in powers of This can be accom-
plished by calculating the Taylor series generated by ln x at directly or by replacing
x by in the series for in Section 10.7, Example 6. Either way, we obtain

from which we find that

EXAMPLE 6 Evaluate

lim
x:0

 
sin x - tan x

x3 .

lim 
x:1

 
ln x

x - 1
= lim

x:1
 a1 -

1
2

 sx - 1d +
Áb = 1.

ln x = sx - 1d -
1
2

 sx - 1d2
+

Á ,

ln (1 + x)x - 1
x = 1

x - 1.

lim
x:1

 
ln x

x - 1
.

p .tan-1 (1>3) .
x = 1>3tan-1 (1>2)x = 1>2

p
4

= a + b = tan-1 
1
2

+ tan-1 
1
3

.

tan sa + b d =

tan a + tan b

1 - tan a tan b
=

1
2 +

1
3

1 -
1
6

= 1 = tan 
p
4

a = tan-1 
1
2
 and b = tan-1 

1
3

,

ptan-1 x
tan-1 x

p

p
4

= 1 -
1
3

+
1
5 -

1
7 +

1
9

-
Á

+

s -1dn

2n + 1
+

Á .

x = 1tan-1 x

tan-1 x = x -
x3

3
+

x5

5 -
x7

7 +
Á , ƒ x ƒ … 1

tan-1 x = a

q

n = 0
 
s -1dnx2n + 1

2n + 1
, ƒ x ƒ … 1.

ƒ x ƒ … 1limn:q Rnsxd = 0
n : q .ƒ x ƒ … 1,

618 Chapter 10: Infinite Sequences and Series
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10.10 The Binomial Series and Applications of Taylor Series 619

Solution The Taylor series for sin x and tan x, to terms in are

Hence,

and

If we apply series to calculate we not only find the limit suc-
cessfully but also discover an approximation formula for csc x.

EXAMPLE 7 Find 

Solution

Therefore,

From the quotient on the right, we can see that if is small, then

Euler’s Identity

As you may recall, a complex number is a number of the form where a and b are 

real numbers and If we substitute ( real) in the Taylor series for and
use the relations

i2
= -1, i3

= i2i = - i, i4
= i2i2

= 1, i5
= i4i = i ,

exux = iui = 2-1.

a + bi ,

1
sin x

-
1
x L x # 1

3!
=

x
6
 or csc x L

1
x +

x
6

.

 ƒ x ƒ 

lim
x:0

 a 1
sin x

-
1
x b = lim

x:0
 §x 

1
3!

-
x2

5!
+

Á

1 -
x2

3!
+

Á

¥ = 0.

 =

x3 a 1
3!

-
x2

5!
+

Áb
x2 a1 -

x2

3!
+

Áb
= x 

1
3!

-
x2

5!
+

Á

1 -
x2

3!
+

Á

 
1

sin x
-

1
x =

x - sin x
x sin x

=

x - ax -
x3

3!
+

x5

5!
-

Áb
x # ax -

x3

3!
+

x5

5!
-

Áb

lim
x:0

 a 1
sin x

-
1
x b .

limx:0 ss1>sin xd - s1/xdd ,

 = -
1
2

.

 lim
x:0

 
sin x - tan x

x3 = lim
x:0

 a- 1
2

-
x2

8
-

Áb

sin x - tan x = -
x3

2
-

x5

8
-

Á
= x3 a- 1

2
-

x2

8
-

Áb

sin x = x -
x3

3!
+

x5

5!
-

Á, tan x = x +
x3

3
+

2x5

15
+

Á .

x5 ,
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and so on, to simplify the result, we obtain

This does not prove that because we have not yet defined what it
means to raise e to an imaginary power. Rather, it says how to define to be consistent
with other things we know.

eiu
eiu

= cos u + i sin u

 = a1 -

u2

2!
+

u4

4!
-

u6

6!
+

Áb + i au -

u3

3!
+

u5

5!
-

Áb = cos u + i sin u .

 eiu
= 1 +

iu
1!

+

i2u2

2!
+

i3u3

3!
+

i4u4

4!
+

i5u5

5!
+

i6u6

6!
+

Á

620 Chapter 10: Infinite Sequences and Series

DEFINITION

(4)For any real number u, eiu
= cos u + i sin u .

Equation (4), called Euler’s identity, enables us to define to be for any
complex number One consequence of the identity is the equation

When written in the form this equation combines five of the most important
constants in mathematics.

eip
+ 1 = 0,

eip
= -1.

a + bi .
ea # ebiea + bi

TABLE 10.1 Frequently used Taylor series

tan-1 x = x -
x3

3
+

x5

5
-

Á
+ s -1dn 

x2n + 1

2n + 1
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

2n + 1
, ƒ x ƒ … 1

ln s1 + xd = x -
x2

2
+

x3

3
-

Á
+ s -1dn - 1 

xn

n +
Á

= a

q

n = 1
 
s -1dn - 1xn

n , -1 6 x … 1

cos x = 1 -
x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
+

Á
= a

q

n = 0
 
s -1dnx2n

s2nd!
, ƒ x ƒ 6 q

sin x = x -
x3

3!
+

x5

5!
-

Á
+ s -1dn 

x2n + 1

s2n + 1d!
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

s2n + 1d!
, ƒ x ƒ 6 q

ex
= 1 + x +

x2

2!
+

Á
+

xn

n!
+

Á
= a

q

n = 0
 
xn

n!
, ƒ x ƒ 6 q

1
1 + x

= 1 - x + x2
-

Á
+ s -xdn

+
Á

= a

q

n = 0
s -1dnxn, ƒ x ƒ 6 1

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á

= a

q

n = 0
xn, ƒ x ƒ 6 1

Exercises 10.10

Binomial Series
Find the first four terms of the binomial series for the functions in Ex-
ercises 1–10.

1. 2. 3. s1 - xd-1>2s1 + xd1>3s1 + xd1>2

4. 5. 6.

7. 8. s1 + x2d-1>3s1 + x3d-1>2

a1 -

x
3
b4a1 +

x
2
b-2

s1 - 2xd1>2
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10.10 The Binomial Series and Applications of Taylor Series 621

9. 10.

Find the binomial series for the functions in Exercises 11–14.

11. 12.

13. 14.

Approximations and Nonelementary Integrals
In Exercises 15–18, use series to estimate the integrals’ values with an
error of magnitude less than (The answer section gives the inte-
grals’ values rounded to five decimal places.)

15. 16.

17. 18.

Use series to approximate the values of the integrals in Exercises
19–22 with an error of magnitude less than 

19. 20.

21. 22.

23. Estimate the error if is approximated by in the

integral 

24. Estimate the error if is approximated by 

in the integral 

In Exercises 25–28, find a polynomial that will approximate F(x)
throughout the given interval with an error of magnitude less than

25.

26.

27. (a) [0, 0.5] (b) [0, 1]

28. (a) [0, 0.5] (b) [0, 1]

Indeterminate Forms
Use series to evaluate the limits in Exercises 29–40.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. lim
x:2

 
x2

- 4
ln sx - 1d

lim
x:0

 
ln s1 + x2d
1 - cos x

lim
x: q

 sx + 1d sin 
1

x + 1
lim

x: q 
x2se-1>x2

- 1d

lim
y:0

 
tan-1 y - sin y

y3 cos y
lim
y:0

 
y - tan-1 y

y3

lim
u:0

 
sin u - u + su3>6d

u5lim
t:0

 
1 - cos t - st2>2d

t4

lim
x:0

 
ex

- e-x

xlim
x:0

 
ex

- s1 + xd
x2

Fsxd =

L

x

0
 
ln s1 + td

t  dt,

Fsxd =

L

x

0
 tan-1 t dt,

Fsxd =

L

x

0
t2e-t2

 dt, [0, 1]

Fsxd =

L

x

0
 sin t2 dt, [0, 1]

10-3 .

1
1

0  cos 2t dt .

1 -

t
2

+

t2

4!
-

t3

6!
cos 2t

1
1

0  cos t2 dt .

1 -

t4

2
+

t8

4!
cos t2

L

1

0
 
1 - cos x

x2  dx
L

0.1

0
21 + x4 dx

L

0.1

0
e-x2

 dx
L

0.1

0
 
sin x

x  dx

10-8 .

L

0.25

0
23 1 + x2 dx

L

0.1

0
 

1

21 + x4
 dx

L

0.2

0
 
e-x

- 1
x  dx

L

0.2

0
 sin x2 dx

10-3 .

a1 -

x
2
b4

s1 - 2xd3

s1 + x2d3s1 + xd4

x

23 1 + x
a1 +

1
x b

1>2
39. 40.

Using Table 10.1
In Exercises 41–52, use Table 10.1 to find the sum of each series.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Theory and Examples
53. Replace x by in the Taylor series for to obtain a se-

ries for Then subtract this from the Taylor series for
to show that for 

54. How many terms of the Taylor series for should you
add to be sure of calculating ln (1.1) with an error of magnitude
less than Give reasons for your answer.

55. According to the Alternating Series Estimation Theorem, how
many terms of the Taylor series for would you have to add
to be sure of finding with an error of magnitude less than

Give reasons for your answer.

56. Show that the Taylor series for diverges for

57. Estimating Pi About how many terms of the Taylor series for
would you have to use to evaluate each term on the right-

hand side of the equation

with an error of magnitude less than In contrast, the con-
vergence of to is so slow that even 50 terms
will not yield two-place accuracy.

p2>6g
q

n=1s1>n2d
10-6 ?

p = 48 tan-1 
1
18

+ 32 tan-1 
1
57

- 20 tan-1 
1

239

tan-1 x

ƒ x ƒ 7 1.
ƒsxd = tan-1 x

10-3 ?
p>4 tan-1 1

10-8 ?

ln s1 + xd

ln 
1 + x
1 - x

= 2 ax +

x3

3
+

x5

5
+

Á b .

ƒ x ƒ 6 1,ln s1 + xd
ln s1 - xd .

ln s1 + xd-x

1 +

x
2

+

x2

3
+

x3

4
+

x4

5
+

Á

-1 + 2x - 3x2
+ 4x3

- 5x4
+

Á

x2
- 2x3

+

22x4

2!
-

23x5

3!
+

24x6

4!
-

Á

x3
- x5

+ x7
- x9

+ x11
-

Á

1 -

32x2

2!
+

34x4

4!
-

36x6

6!
+

Á

x3
+ x4

+ x5
+ x6

+
Á

2
3

-

23

33 # 3
+

25

35 # 5
-

27

37 # 7
+

Á

p

3
-

p3

33 # 3!
+

p5

35 # 5!
-

p7

37 # 7!
+

Á

1
2

-

1
2 # 22 +

1
3 # 23 -

1
4 # 24 +

Á

1 -

32

42 # 2!
+

34

44 # 4!
-

36

46 # 6!
+

Á

a1
4
b3

+ a1
4
b4

+ a1
4
b5

+ a1
4
b6

+
Á

1 + 1 +

1
2!

+

1
3!

+

1
4!

+
Á

lim
x:0

 
ln s1 + x3d

x # sin x2lim
x:0

 
sin 3x2

1 - cos 2x

T

T

T
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58. Integrate the first three nonzero terms of the Taylor series for tan t
from 0 to x to obtain the first three nonzero terms of the Taylor
series for ln sec x.

59. a. Use the binomial series and the fact that

to generate the first four nonzero terms of the Taylor series
for What is the radius of convergence?

b. Series for Use your result in part (a) to find the first
five nonzero terms of the Taylor series for 

60. a. Series for Find the first four nonzero terms of the
Taylor series for

b. Use the first three terms of the series in part (a) to estimate
Give an upper bound for the magnitude of the 

estimation error.

61. Obtain the Taylor series for from the series for

62. Use the Taylor series for to obtain a series for

63. Estimating Pi The English mathematician Wallis discovered
the formula

Find to two decimal places with this formula.

64. Use the following steps to prove Equation (1).

a. Differentiate the series

to show that

b. Define ƒ(x) and show that .

c. From part (b), show that

65. Series for Integrate the binomial series for 
to show that for 

66. Series for for Derive the series

 tan-1 x = -

p

2
-

1
x +

1
3x3 -

1
5x5 +

Á, x 6 -1,

 tan-1 x =

p

2
-

1
x +

1
3x3 -

1
5x5 +

Á, x 7 1

�x �>1tan-1 x

sin-1 x = x + a

q

n = 1
 
1 # 3 # 5 # Á # s2n - 1d

2 # 4 # 6 # Á # s2nd
 

x2n + 1

2n + 1
.

ƒ x ƒ 6 1,
s1 - x2d-1>2sin-1 x

ƒ(x) = (1 + x)m.

g¿(x) = 0g(x) = (1 + x) - m

ƒ¿(x) =

mƒ(x)

1 + x
, -1 6 x 6 1.

ƒ(x) = 1 + a

q

k = 1
am

k
bxk

p

p

4
=

2 # 4 # 4 # 6 # 6 # 8 # Á

3 # 3 # 5 # 5 # 7 # 7 # Á
.

2x>s1 - x2d2 .
1>s1 - x2d

-1>s1 + xd .
1>s1 + xd2

sinh-1 0.25 .

sinh-1 x =

L

x

0
 

dt

21 + t2
.

sinh-1 x

cos-1 x .
cos-1 x

sin-1 x .

d
dx

 sin-1 x = s1 - x2d-1>2
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by integrating the series

in the first case from x to and in the second case from 
to x.

Euler’s Identity
67. Use Equation (4) to write the following powers of e in the form

a. b. c.

68. Use Equation (4) to show that

69. Establish the equations in Exercise 68 by combining the formal
Taylor series for and 

70. Show that

a. b.

71. By multiplying the Taylor series for and sin x, find the terms
through of the Taylor series for This series is the imag-
inary part of the series for

Use this fact to check your answer. For what values of x should
the series for converge?

72. When a and b are real, we define with the equation

Differentiate the right-hand side of this equation to show that

Thus the familiar rule holds for k complex as
well as real.

73. Use the definition of to show that for any real numbers 
and 

a. b.

74. Two complex numbers and are equal if and only if
and Use this fact to evaluate

from

where is a complex constant of integration.C = C1 + iC2

L
e sa + ibdx dx =

a - ib

a2
+ b2 e sa + ibdx

+ C ,

L
e ax cos bx dx and 

L
e ax sin bx dx

b = d .a = c
c + ida + ib

e-iu
= 1>eiu .eiu1eiu2

= eisu1 +u2d,

u2 ,
u, u1 ,eiu

sd>dxde kx
= ke kx

d
dx

 e sa + ibdx
= sa + ibde sa + ibdx .

e sa + ibdx
= eax # eibx

= eaxscos bx + i sin bxd .

e sa + ibdx

ex sin x

ex # eix
= e s1 + idx .

ex sin x .x5
ex

sinh iu = i sin u .cosh iu = cos u ,

e-iu .eiu

cos u =

eiu
+ e-iu

2
 and sin u =

eiu
- e-iu

2i
.

e-ip>2eip>4e-ip

a + bi .

- qq

1
1 + t2 =

1
t2 #  

1
1 + s1>t2d

=

1
t2 -

1
t4 +

1
t6 -

1
t8 +

Á

T

T
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Chapter 10 Questions to Guide Your Review

1. What is an infinite sequence? What does it mean for such a se-
quence to converge? To diverge? Give examples.

2. What is a monotonic sequence? Under what circumstances does
such a sequence have a limit? Give examples.

3. What theorems are available for calculating limits of sequences?
Give examples.

4. What theorem sometimes enables us to use l’Hôpital’s Rule to
calculate the limit of a sequence? Give an example.

5. What are the six commonly occurring limits in Theorem 5 that
arise frequently when you work with sequences and series?

6. What is an infinite series? What does it mean for such a series to
converge? To diverge? Give examples.

7. What is a geometric series? When does such a series converge?
Diverge? When it does converge, what is its sum? Give examples.

8. Besides geometric series, what other convergent and divergent se-
ries do you know?

9. What is the nth-Term Test for Divergence? What is the idea be-
hind the test?

10. What can be said about term-by-term sums and differences of
convergent series? About constant multiples of convergent and di-
vergent series?

11. What happens if you add a finite number of terms to a convergent
series? A divergent series? What happens if you delete a finite
number of terms from a convergent series? A divergent series?

12. How do you reindex a series? Why might you want to do this?

13. Under what circumstances will an infinite series of nonnegative
terms converge? Diverge? Why study series of nonnegative terms?

14. What is the Integral Test? What is the reasoning behind it? Give
an example of its use.

15. When do p-series converge? Diverge? How do you know? Give
examples of convergent and divergent p-series.

16. What are the Direct Comparison Test and the Limit Comparison
Test? What is the reasoning behind these tests? Give examples of
their use.

17. What are the Ratio and Root Tests? Do they always give you the
information you need to determine convergence or divergence?
Give examples.

18. What is an alternating series? What theorem is available for deter-
mining the convergence of such a series?

19. How can you estimate the error involved in approximating the
sum of an alternating series with one of the series’ partial sums?
What is the reasoning behind the estimate?

20. What is absolute convergence? Conditional convergence? How
are the two related?

21. What do you know about rearranging the terms of an absolutely
convergent series? Of a conditionally convergent series?

22. What is a power series? How do you test a power series for con-
vergence? What are the possible outcomes?

23. What are the basic facts about

a. sums, differences, and products of power series?

b. substitution of a function for x in a power series?

c. term-by-term differentiation of power series?

d. term-by-term integration of power series?

Give examples.

24. What is the Taylor series generated by a function ƒ(x) at a point
What information do you need about ƒ to construct the

series? Give an example.

25. What is a Maclaurin series?

26. Does a Taylor series always converge to its generating function?
Explain.

27. What are Taylor polynomials? Of what use are they?

28. What is Taylor’s formula? What does it say about the errors in-
volved in using Taylor polynomials to approximate functions? In
particular, what does Taylor’s formula say about the error in a lin-
earization? A quadratic approximation?

29. What is the binomial series? On what interval does it converge?
How is it used?

30. How can you sometimes use power series to estimate the values
of nonelementary definite integrals?

31. What are the Taylor series for 
and How do you estimate the errors in-

volved in replacing these series with their partial sums?
tan-1 x?cos x, ln s1 + xd,

1>s1 - xd, 1>s1 + xd, ex, sin x,

x = a?

Chapter 10 Practice Exercises

Determining Convergence of Sequences
Which of the sequences whose nth terms appear in Exercises 1–18
converge, and which diverge? Find the limit of each convergent
sequence.

1. 2.

3. 4. an = 1 + s0.9dnan =

1 - 2n

2n

an =

1 - s -1dn

2n
an = 1 +

s -1dn

n

5. 6.

7. 8.

9. 10.

11. 12. an = a1 +

1
n b

-n

an = an - 5
n bn

an =

ln s2n3
+ 1d

nan =

n + ln n
n

an =

ln s2n + 1d
nan =

ln sn2d
n

an = sin npan = sin 
np
2
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13. 14.

15. 16.

17. 18.

Convergent Series
Find the sums of the series in Exercises 19–24.

19. 20.

21. 22.

23. 24.

Determining Convergence of Series
Which of the series in Exercises 25–40 converge absolutely, which
converge conditionally, and which diverge? Give reasons for your
answers.

25. 26. 27.

28. 29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Power Series
In Exercises 41–50, (a) find the series’ radius and interval of conver-
gence. Then identify the values of x for which the series converges
(b) absolutely and (c) conditionally.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50. a

q

n = 1
scoth ndxn

a

q

n = 1
scsch ndx n

a

q

n = 0
 
s -1dnsx - 1d2n + 1

2n + 1a

q

n = 0
 
sn + 1dx 2n - 1

3n

a

q

n = 1
 

x n

2n
a

q

n = 1
 
xn

nn

a

q

n = 0
 
sn + 1ds2x + 1dn

s2n + 1d2na

q

n = 1
 
s -1dn - 1s3x - 1dn

n2

a

q

n = 1
 
sx - 1d2n - 2

s2n - 1d!a

q

n = 1
 
sx + 4dn

n3n

a

q

n = 2
 

1

n2n2
- 1

a

q

n = 1
 

1

2nsn + 1dsn + 2d

a

q

n = 1
 
2n 3n

nna

q

n = 1
 
s -3dn

n!

a

q

n = 1
 
s -1dnsn2

+ 1d
2n2

+ n - 1a

q

n = 1
 
n + 1

n!

a

q

n = 1
 
s -1dn 3n2

n3
+ 1a

q

n = 1
 

s -1dn

n2n2
+ 1

a

q

n = 3
 

ln n
ln sln nda

q

n = 1
 
ln n

n3

a

q

n = 2
 

1
n sln nd2a

q

n = 1
 

s -1dn

ln sn + 1da

q

n = 1
 

1
2n3

a

q

n = 1
 
s -1dn

2n
a

q

n = 1
 
-5
na

q

n = 1
 

1

2n

a

q

n = 1
s -1dn 

3
4na

q

n = 0
e-n

a

q

n = 3
 

-8
s4n - 3ds4n + 1da

q

n = 1
 

9
s3n - 1ds3n + 2d

a

q

n = 2
 

-2
nsn + 1da

q

n = 3
 

1
s2n - 3ds2n - 1d

an =

s -4dn

n!
an =

sn + 1d!
n!

an = 2n 2n + 1an = ns21>n
- 1d

an = a3n b
1>n

an = A
n 3n

n

624 Chapter 10: Infinite Sequences and Series

Maclaurin Series
Each of the series in Exercises 51–56 is the value of the Taylor series
at of a function ƒ(x) at a particular point. What function and
what point? What is the sum of the series?

51.

52.

53.

54.

55.

56.

Find Taylor series at for the functions in Exercises 57–64.

57. 58.

59. 60.

61. 62.

63. 64.

Taylor Series
In Exercises 65–68, find the first four nonzero terms of the Taylor
series generated by ƒ at 

65.

66.

67.

68.

Nonelementary Integrals
Use series to approximate the values of the integrals in Exercises
69–72 with an error of magnitude less than (The answer section
gives the integrals’ values rounded to 10 decimal places.)

69. 70.

71. 72.

Using Series to Find Limits
In Exercises 73–78:

a. Use power series to evaluate the limit.

b. Then use a grapher to support your calculation.

73. 74.

75. 76. lim
h:0

 
ssin hd>h - cos h

h2lim
t:0

 a 1
2 - 2 cos t

-

1
t 2 b

lim
u:0

 
eu - e- u

- 2u
u - sin u

lim
x:0

 
7 sin x

e2x
- 1

L

1>64

0
 
tan-1 x

2x
 dx

L

1>2
0

 
tan-1 x

x  dx

L

1

0
x sin sx3d dx

L

1>2
0

e-x3

 dx

10-8 .

ƒsxd = 1>x at x = a 7 0

ƒsxd = 1>sx + 1d at x = 3

ƒsxd = 1>s1 - xd at x = 2

ƒsxd = 23 + x2 at x = -1

x = a .

e-x2

e spx>2d

cos 
x3

25
cos sx5>3d

sin  
2x
3

sin px

1
1 + x3

1
1 - 2x

x = 0

 + s -1dn - 1 
1

s2n - 1d A23 B2n - 1
+

Á

1

23
-

1

923
+

1

4523
-

Á

1 + ln 2 +

sln 2d2

2!
+

Á
+

sln 2dn

n!
+

Á

1 -

p2

9 # 2!
+

p4

81 # 4!
-

Á
+ s -1dn 

p2n

32ns2nd!
+

Á

p -

p3

3!
+

p5

5!
-

Á
+ s -1dn 

p2n + 1

s2n + 1d!
+

Á

2
3

-

4
18

+

8
81

-
Á

+ s -1dn - 1 
2n

n3n +
Á

1 -

1
4

+

1
16

-
Á

+ s -1dn 
1
4n +

Á

x = 0

T
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Chapter 10 Additional and Advanced Exercises 625

77. 78.

Theory and Examples
79. Use a series representation of sin 3x to find values of r and s for

which

80. Compare the accuracies of the approximations and
by comparing the graphs of 

and Describe what you find.

81. Find the radius of convergence of the series

82. Find the radius of convergence of the series

83. Find a closed-form formula for the nth partial sum of the series
and use it to determine the convergence or

divergence of the series.

84. Evaluate by finding the limits as of
the series’ nth partial sum.

85. a. Find the interval of convergence of the series

 +

1 # 4 # 7 # Á # s3n - 2d
s3nd!

 x3n
+

Á .

 y = 1 +

1
6

 x3
+

1
180

 x6
+

Á

n : qg
q

k=2 s1>sk 2
- 1dd

g
q

n=2 ln s1 - s1>n2dd

a

q

n = 1
 

3 # 5 # 7 # Á # s2n + 1d
4 # 9 # 14 # Á # s5n - 1d

 sx - 1dn .

a

q

n = 1
 
2 # 5 # 8 # Á # s3n - 1d

2 # 4 # 6 # Á # s2nd
 x n .

gsxd = sin x - s6x>s6 + x2dd .
ƒsxd = sin x - xsin x L 6x>s6 + x2d

sin x L x

lim
x:0

 asin 3x

x3 +

r
x2 + sb = 0.

lim
y:0

 
y 2

cos y - cosh y
lim
z:0

  
1 - cos2 z

ln s1 - zd + sin z

b. Show that the function defined by the series satisfies a differ-
ential equation of the form

and find the values of the constants a and b.

86. a. Find the Maclaurin series for the function 

b. Does the series converge at Explain.

87. If and are convergent series of nonnegative
numbers, can anything be said about Give reasons
for your answer.

88. If and are divergent series of nonnegative num-
bers, can anything be said about Give reasons for
your answer.

89. Prove that the sequence and the series 
both converge or both diverge.

90. Prove that converges if for all n and
converges.

91. Suppose that are positive numbers satisfying the
following conditions:

i)

ii) the series diverges.

Show that the series

diverges.

92. Use the result in Exercise 91 to show that

diverges.

1 + a

q

n = 2
 

1
n ln n

a1

1
+

a2

2
+

a3

3
+

Á

a2 + a4 + a8 + a16 +
Á

a1 Ú a2 Ú a3 Ú
Á ;

a1, a2, a3, Á , an

g
q

n=1 an

an 7 0g
q

n=1 san>s1 + andd

g
q

k=1 sxk + 1 - xkd5xn6
g

q

n=1 an bn ?
g

q

n=1 bng
q

n=1 an

g
q

n=1 an bn ?
g

q

n=1 bng
q

n=1 an

x = 1?

x 2>s1 + xd .

d 2y

dx 2 = x ay + b

Chapter 10 Additional and Advanced Exercises

Determining Convergence of Series
Which of the series defined by the formulas in Exercises 1–4
converge, and which diverge? Give reasons for your answers.

1. 2.

3. 4.

Which of the series defined by the formulas in Exercises 5–8
converge, and which diverge? Give reasons for your answers.

5.

(Hint: Write out several terms, see which factors cancel, and then
generalize.)

6.

7.

8. if n is odd, if n is evenan = n>3nan = 1>3n

a1 = a2 = 1, an + 1 =

1
1 + an

 if n Ú 2

a1 = a2 = 7, an + 1 =

n
sn - 1dsn + 1d

 an if n Ú 2

a1 = 1, an + 1 =

nsn + 1d
sn + 2dsn + 3d

 an

g
q

n=1 an

a

q

n = 2
 
logn sn!d

n3a

q

n = 1
s -1dn tanh n

a

q

n = 1
 
stan-1 nd2

n2
+ 1a

q

n = 1
 

1

s3n - 2dn + s1>2d

g
q

n=1 an

Choosing Centers for Taylor Series
Taylor’s formula

expresses the value of ƒ at x in terms of the values of ƒ and its deriva-
tives at In numerical computations, we therefore need a to be a
point where we know the values of ƒ and its derivatives. We also need
a to be close enough to the values of ƒ we are interested in to make

so small we can neglect the remainder.

In Exercises 9–14, what Taylor series would you choose to represent
the function near the given value of x? (There may be more than one
good answer.) Write out the first four nonzero terms of the series you
choose.

9. 10.

11. 12.

13. 14. tan-1 x near x = 2cos x near x = 69

ln x near x = 1.3ex near x = 0.4

sin x near x = 6.3cos x near x = 1

sx - adn + 1

x = a .

 +

ƒsndsad
n!

 sx - adn
+

ƒsn + 1dscd
sn + 1d!

 sx - adn + 1

ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

T
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Theory and Examples
15. Let a and b be constants with Does the sequence

converge? If it does converge, what is the limit?

16. Find the sum of the infinite series

17. Evaluate

18. Find all values of x for which

converges absolutely.

19. a. Does the value of

appear to depend on the value of a? If so, how?

b. Does the value of

appear to depend on the value of b? If so, how?

c. Use calculus to confirm your findings in parts (a) and (b).

20. Show that if converges, then

converges.

21. Find a value for the constant b that will make the radius of con-
vergence of the power series

equal to 5.

22. How do you know that the functions sin x, ln x, and are not
polynomials? Give reasons for your answer.

23. Find the value of a for which the limit

is finite and evaluate the limit.

24. Find values of a and b for which

25. Raabe’s (or Gauss’s) Test The following test, which we state
without proof, is an extension of the Ratio Test.

lim
x:0

 
cos saxd - b

2x2 = -1.

lim
x:0

 
sin saxd - sin x - x

x3

e x

a

q

n = 2
 
bnx n

ln n

a

q

n = 1
 a1 + sin sand

2
bn

g
q

n=1 an

lim
n: q

 a1 -

cos sa>nd
bn

bn

, a and b constant, b Z 0,

lim
n: q

 a1 -

cos sa>nd
n bn

, a constant ,

a

q

n = 1
 

nxn

sn + 1ds2x + 1dn

a

q

n = 0
 
L

n+1

n
 

1
1 + x2  dx .

 +

3
108 +

7
109 +

Á .

1 +

2
10

+

3
102 +

7
103 +

2
104 +

3
105 +

7
106 +

2
107

5san
+ bnd1>n6 0 6 a 6 b .
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Raabe’s Test: If is a series of positive constants and
there exist constants C, K, and N such that

where for then converges if 
and diverges if 

Show that the results of Raabe’s Test agree with what you
know about the series and 

26. (Continuation of Exercise 25. ) Suppose that the terms of 
are defined recursively by the formulas

Apply Raabe’s Test to determine whether the series converges.

27. If converges, and if and for all n,

a. Show that converges.

b. Does converge? Explain.

28. (Continuation of Exercise 27. ) If converges, and if
for all n, show that converges.

(Hint: First show that )

29. Nicole Oresme’s Theorem Prove Nicole Oresme’s Theorem that

(Hint: Differentiate both sides of the equation 
)

30. a. Show that

for by differentiating the identity

twice, multiplying the result by x, and then replacing x by 1 x.

b. Use part (a) to find the real solution greater than 1 of the
equation

31. Quality control

a. Differentiate the series

to obtain a series for 

b. In one throw of two dice, the probability of getting a roll of 7
is If you throw the dice repeatedly, the probability
that a 7 will appear for the first time at the nth throw is

where The expected number of
throws until a 7 first appears is Find the sum
of this series.

c. As an engineer applying statistical control to an industrial op-
eration, you inspect items taken at random from the assembly
line. You classify each sampled item as either “good” or

g
q

n=1 nqn - 1p .
q = 1 - p = 5>6.qn - 1p ,

p = 1>6.

1>s1 - xd2 .

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á

x = a

q

n = 1
 
nsn + 1d

xn .

>
a

q

n = 1
 x

n + 1
=

x2

1 - x

ƒ x ƒ 7 1

a

q

n = 1
 
nsn + 1d

xn =

2x2

sx - 1d3

1 + g
q

n=1 xn .
1>s1 - xd =

1 +

1
2

 #  2 +

1
4

 #  3 +
Á

+

n

2n - 1 +
Á

= 4.

ƒ ln s1 - and ƒ … an>s1 - and .

g
q

n=1 ln s1 - and1 7 an 7 0
g

q

n=1 an

g
q

n=1  an>s1 - and
g

q

n=1  an
2

an 7 0an Z 1g
q

n=1  an

u1 = 1, un + 1 =

s2n - 1d2

s2nds2n + 1d
 un .

g
q

n=1  un

g
q

n=1 s1>nd .g
q

n=1 s1>n2d

C … 1.
C 7 1g

q

n=1 unn Ú N ,ƒ ƒsnd ƒ 6 K

un
un + 1

= 1 +

C
n +

ƒsnd

n2 ,

g
q

n=1 un

T

7001_ThomasET_ch10p550-627.qxd  10/30/09  8:22 AM  Page 626



Chapter 10 Technology Application Projects 627

“bad.” If the probability of an item’s being good is p and of an
item’s being bad is the probability that the first
bad item found is the nth one inspected is The average
number inspected up to and including the first bad item found
is Evaluate this sum, assuming 

32. Expected value Suppose that a random variable X may assume
the values 1, 2, 3, with probabilities where 
is the probability that X equals Suppose also
that and that The expected value of X, de-
noted by E(X ), is the number provided the series con-
verges. In each of the following cases, show that 
and find E(X ) if it exists. (Hint: See Exercise 31.)

a. b.

c.

33. Safe and effective dosage The concentration in the blood re-
sulting from a single dose of a drug normally decreases with time
as the drug is eliminated from the body. Doses may therefore
need to be repeated periodically to keep the concentration from
dropping below some particular level. One model for the effect of
repeated doses gives the residual concentration just before the

dose as

where change in concentration achievable by a single
dose (mg mL), elimination constant and 
between doses (h). See the accompanying figure.

a. Write in closed form as a single fraction, and find

b. Calculate and for and
How good an estimate of R is R10 ?t0 = 10 h .

C0 = 1 mg>mL, k = 0.1 h-1 ,R10R1

R = limn:q Rn .
Rn

t0

C0

0

Time (h)

C
on

ce
nt

ra
tio

n 
(m

g/
m

L
)

C1 � C0 � C0e–k t0

R1 � C0e–k t0

R2
R3

Rn

Cn�1
C2

t

C

t0 = timesh-1d ,k = the>C0 = the

Rn = C0 e-kt0
+ C0 e-2k t0

+
Á

+ C0 e-nk t0 ,

sn + 1dst

pk =

1
ksk + 1d

=

1
k

-

1
k + 1

pk =

5k - 1

6k
pk = 2-k

g
q

k=1 pk = 1
g

q

k=1 kpk ,
g

q

k=1  pk = 1.pk Ú 0
k sk = 1, 2, 3, Á d .

pkp1, p2, p3, Á ,Á ,

0 6 p 6 1.g
q

n=1 npn - 1q .

pn - 1q .
q = 1 - p ,

c. If and find the smallest n such that

(Source: Prescribing Safe and Effective Dosage, B. Horelick and
S. Koont, COMAP, Inc., Lexington, MA.)

34. Time between drug doses (Continuation of Exercise 33.) If a
drug is known to be ineffective below a concentration and
harmful above some higher concentration one needs to find
values of and that will produce a concentration that is safe
(not above ) but effective (not below ). See the accompany-
ing figure. We therefore want to find values for and for
which

Thus When these values are substituted in the
equation for R obtained in part (a) of Exercise 33, the resulting
equation simplifies to

To reach an effective level rapidly, one might administer a “load-
ing” dose that would produce a concentration of This
could be followed every hours by a dose that raises the concen-
tration by 

a. Verify the preceding equation for 

b. If and the highest safe concentration is e times
the lowest effective concentration, find the length of time
between doses that will assure safe and effective
concentrations.

c. Given and 
determine a scheme for administering the drug.

d. Suppose that and that the smallest effective
concentration is 0.03 mg mL. A single dose that produces a
concentration of 0.1 mg mL is administered. About how long
will the drug remain effective?

>>
k = 0.2 h-1

k = 0.02 h-1 ,CH = 2 mg>mL, CL = 0.5 mg/mL,

k = 0.05 h-1

t0 .

C0 = CH - CL mg>mL.
t0

CH mg>mL.

t0 =

1
k

 ln 
CH

CL
.

C0 = CH - CL .

t0

CL

0 Time

C
on

ce
nt

ra
tio

n 
in

 b
lo

od

C0

Highest safe level
CH

Lowest effective level

t

C

R = CL and C0 + R = CH .

t0C0

CLCH

t0C0

CH ,
CL

Rn 7 s1>2dR .
t0 = 10 h ,k = 0.01 h-1

Chapter 10 Technology Application Projects

Mathematica Maple Modules:

Bouncing Ball
The model predicts the height of a bouncing ball, and the time until it stops bouncing.

Taylor Polynomial Approximations of a Function
A graphical animation shows the convergence of the Taylor polynomials to functions having derivatives of all orders over an interval in their
domains.

/

T

7001_ThomasET_ch10p550-627.qxd  10/30/09  8:22 AM  Page 627



628

OVERVIEW In this chapter we study new ways to define curves in the plane. Instead of
thinking of a curve as the graph of a function or equation, we consider a more general way
of thinking of a curve as the path of a moving particle whose position is changing over
time. Then each of the x- and y-coordinates of the particle’s position becomes a function of
a third variable t. We can also change the way in which points in the plane themselves are
described by using polar coordinates rather than the rectangular or Cartesian system. Both
of these new tools are useful for describing motion, like that of planets and satellites, or
projectiles moving in the plane or space. In addition, we review the geometric definitions
and standard equations of parabolas, ellipses, and hyperbolas. These curves are called
conic sections, or conics, and model the paths traveled by projectiles, planets, or any other
object moving under the sole influence of a gravitational or electromagnetic force.

11.1 Parametrizations of Plane Curves

In previous chapters, we have studied curves as the graphs of functions or equations 
involving the two variables x and y. We are now going to introduce another way to describe
a curve by expressing both coordinates as functions of a third variable t.

Parametric Equations

Figure 11.1 shows the path of a moving particle in the xy-plane. Notice that the path fails
the vertical line test, so it cannot be described as the graph of a function of the variable x.
However, we can sometimes describe the path by a pair of equations, and

, where ƒ and g are continuous functions. When studying motion, t usually de-
notes time. Equations like these describe more general curves than those like 
and provide not only the graph of the path traced out but also the location of the particle

at any time t.sx, yd = sƒstd, gstdd

y = ƒsxd
y = gstd

x = ƒstd

11
PARAMETRIC EQUATIONS

AND POLAR COORDINATES

( f (t), g(t))

Position of particle
at time t

FIGURE 11.1 The curve or path traced
by a particle moving in the xy-plane is
not always the graph of a function or
single equation.

DEFINITION If x and y are given as functions

over an interval I of t-values, then the set of points defined by
these equations is a parametric curve. The equations are parametric equations
for the curve.

sx, yd = sƒstd, g stdd

x = ƒstd, y = g std

The variable t is a parameter for the curve, and its domain I is the parameter interval.
If I is a closed interval, the point (ƒ(a), g(a)) is the initial point of the curve
and (ƒ(b), g(b)) is the terminal point. When we give parametric equations and a parameter

a … t … b ,
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11.1 Parametrizations of Plane Curves 629

interval for a curve, we say that we have parametrized the curve. The equations and inter-
val together constitute a parametrization of the curve. A given curve can be represented
by different sets of parametric equations. (See Exercises 19 and 20.)

EXAMPLE 1 Sketch the curve defined by the parametric equations

.

Solution We make a brief table of values (Table 11.1), plot the points (x, y), and draw a
smooth curve through them (Figure 11.2). Each value of t gives a point (x, y) on the curve,
such as giving the point (1, 2) recorded in Table 11.1. If we think of the curve as the
path of a moving particle, then the particle moves along the curve in the direction of the ar-
rows shown in Figure 11.2. Although the time intervals in the table are equal, the consecu-
tive points plotted along the curve are not at equal arc length distances. The reason for this
is that the particle slows down at it gets nearer to the y-axis along the lower branch of the
curve as t increases, and then speeds up after reaching the y-axis at (0, 1) and moving
along the upper branch. Since the interval of values for t is all real numbers, there is no ini-
tial point and no terminal point for the curve.

t = 1

x = t2, y = t + 1, - q 6 t 6 q

(1, 2)
(4, 3)

(4, –1)

(9, 4)

(9, –2)

(0, 1)
(1, 0)

x

y

t 5 0

t 5 –1

t 5 1
t 5 2

t 5 3

t 5 –2

t 5 –3

FIGURE 11.2 The curve given by the 
parametric equations and 
(Example 1).

y = t + 1x = t2

TABLE 11.1 Values of
and for

selected values of t.

t x y

9

4

1 0

0 0 1

1 1 2

2 4 3

3 9 4

-1

-1-2

-2-3

y = t + 1x = t2

EXAMPLE 2 Identify geometrically the curve in Example 1 (Figure 11.2) by eliminat-
ing the parameter t and obtaining an algebraic equation in x and y.

Solution We solve the equation for the parameter t and substitute the result
into the parametric equation for x. This procedure gives and

The equation represents a parabola, as displayed in Figure 11.2. It is
sometimes quite difficult, or even impossible, to eliminate the parameter from a pair of
parametric equations, as we did here.

EXAMPLE 3 Graph the parametric curves

(a)

(b)

Solution

(a) Since the parametric curve lies along the unit circle
As t increases from 0 to the point starts at

(1, 0) and traces the entire circle once counterclockwise (Figure 11.3).
sx, yd = scos t, sin td2p ,x2

+ y2
= 1.

x2
+ y2

= cos2 t + sin2 t = 1,

x = a cos t,  y = a sin t,  0 … t … 2p .

x = cos t,  y = sin t,  0 … t … 2p .

x = y2
- 2y + 1

x = t2
= ( y - 1)2

= y2
- 2y + 1.

t = y - 1
y = t + 1

x
0

t

(1, 0)

y

x2 1 y2 5 1

P(cos t, sin t)

t 5 0t 5 p

 t 5 3p
2

 t 5 p
2

FIGURE 11.3 The equations 
and describe motion on the circle

The arrow shows the
direction of increasing t (Example 3).
x2

+ y2
= 1.

y = sin t
x = cos t
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630 Chapter 11: Parametric Equations and Polar Coordinates

(b) For we have 
The parametrization describes a motion that begins at the point (a, 0) and traverses the
circle once counterclockwise, returning to (a, 0) at The graph is a
circle centered at the origin with radius  and coordinate points (a cos t, a sin t).

EXAMPLE 4 The position P(x, y) of a particle moving in the xy-plane is given by the
equations and parameter interval

Identify the path traced by the particle and describe the motion.

Solution We try to identify the path by eliminating t between the equations and
With any luck, this will produce a recognizable algebraic relation between x and y.

We find that

Thus, the particle’s position coordinates satisfy the equation so the particle moves
along the parabola 

It would be a mistake, however, to conclude that the particle’s path is the entire
parabola it is only half the parabola. The particle’s x-coordinate is never negative.
The particle starts at (0, 0) when and rises into the first quadrant as t increases
(Figure 11.4). The parameter interval is and there is no terminal point.

The graph of any function can always be given a natural parametrization 
and The domain of the parameter in this case is the same as the domain of the
function ƒ.

EXAMPLE 5 A parametrization of the graph of the function is given by

.

When , this parametrization gives the same path in the xy-plane as we had in Exam-
ple 4. However, since the parameter t here can now also be negative, we obtain the left-
hand part of the parabola as well; that is, we have the entire parabolic curve. For this 
parametrization, there is no starting point and no terminal point (Figure 11.5).

Notice that a parametrization also specifies when (the value of the parameter) a parti-
cle moving along the curve is located at a specific point along the curve. In Example 4, the
point (2, 4) is reached when in Example 5, it is reached “earlier” when You
can see the implications of this aspect of parametrizations when considering the possibility
of two objects coming into collision: they have to be at the exact same location point

for some (possibly different) values of their respective parameters. We will say
more about this aspect of parametrizations when we study motion in Chapter 13.

EXAMPLE 6 Find a parametrization for the line through the point (a, b)  having slope m.

Solution A Cartesian equation of the line is If we set the parameter
, we find that and . That is,

parametrizes the line. This parametrization differs from the one we would obtain by the tech-
nique used in Example 5 when  . However, both parametrizations give the same line.t = x

x = a + t, y = b + mt, - q 6 t 6 q

y - b = mtx = a + tt = x - a
y - b = m(x - a).

P(x, y)

t = 2.t = 4;

t Ú 0

x = t, y = ƒ(t) = t2, - q 6 t 6 q

ƒ(x) = x2

y = ƒ(t).
x = ty = ƒ(x)

[0, q d
t = 0

y = x2 ;

y = x2 .
y = x2 ,

y = t = A1t B2 = x2 .

y = t .
x = 1t

x = 1t, y = t, t Ú 0.

r = a
t = 2p .x2

+ y2
= a2

x2
+ y2

= a2 cos2 t + a2 sin2 t = a2 .x = a cos t, y = a sin t, 0 … t … 2p ,

x

y

0

(1, 1)

(2, 4)

  

Starts at
t 5 0

t 5 1

t 5 4

y 5 x2, x � 0

P(�t, t)

FIGURE 11.4 The equations 
and and the interval describe
the path of a particle that traces the right-
hand half of the parabola 
(Example 4).

y = x2

t Ú 0y = t
x = 1t

x

y

0

y � x2

(–2, 4) (2, 4)

(1, 1)

t � –2 t � 2

t � 1

P(t, t 2)

FIGURE 11.5 The path defined by
is the entire

parabola (Example 5).y = x2
x = t, y = t2, - q 6 t 6 q
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EXAMPLE 7 Sketch and identify the path traced by the point P(x, y) if

Solution We make a brief table of values in Table 11.2, plot the points, and draw a
smooth curve through them, as we did in Example 1. Next we eliminate the parameter t
from the equations. The procedure is more complicated than in Example 2. Taking the dif-
ference between x and y as given by the parametric equations, we find that

If we add the two parametric equations, we get

We can then eliminate the parameter t by multiplying these last equations together:

or, multiplying together the terms on the left-hand side, we obtain a standard equation for a
hyperbola (reviewed in Section 11.6):

(1)

Thus the coordinates of all the points described by the parametric equations satisfy
Equation (1). However, Equation (1) does not require that the x-coordinate be positive. So
there are points (x, y) on the hyperbola that do not satisfy the parametric equation

for which x is always positive. That is, the parametric equations do
not yield any points on the left branch of the hyperbola given by Equation (1), points where
the x-coordinate would be negative. For small positive values of t, the path lies in the
fourth quadrant and rises into the first quadrant as t increases, crossing the x-axis when

(see Figure 11.6). The parameter domain is and there is no starting point and
no terminal point for the path.

Examples 4, 5, and 6 illustrate that a given curve, or portion of it, can be represented by
different parametrizations. In the case of Example 7, we can also represent the right-hand
branch of the hyperbola by the parametrization

which is obtained by solving Equation (1) for and letting y be the parameter. 
Still another parametrization for the right-hand branch of the hyperbola given by Equa-
tion (1) is

This parametrization follows from the trigonometric identity so

As t runs between and remains positive and runs between
and so P traverses the hyperbola’s right-hand branch. It comes in along the

branch’s lower half as reaches (2, 0) at and moves out into the first quad-
rant as t increases steadily toward . This is the same hyperbola branch for which a 
portion is shown in Figure 11.6.

p>2 t = 0,t : 0- ,
q ,- q

y = tan tp>2, x = sec t-p>2
x2

- y2
= 4 sec2 t - 4 tan2 t = 4 (sec2 t - tan2 t) = 4.

sec2 t - tan2 t = 1,

x = 2 sec t, y = 2 tan t, -  

p
2

6 t 6
p
2

.

x Ú 0

x = 24 + t2, y = t, - q 6 t 6 q ,

(0, q )t = 1

x = t + (1>t), t 7 0,

P(x, y)

x2
- y2

= 4.

sx - ydsx + yd = a2t b s2td = 4,

x + y = at +
1
t b + at -

1
t b = 2t.

x - y = at +
1
t b - at -

1
t b =

2
t .

x = t +
1
t ,    y = t -

1
t ,    t 7 0.

11.1 Parametrizations of Plane Curves 631

TABLE 11.2 Values of
and for selected
values of t.

t 1 t x y

0.1 10.0 10.1 �9.9

0.2 5.0 5.2 �4.8

0.4 2.5 2.9 �2.1

1.0 1.0 2.0 0.0

2.0 0.5 2.5 1.5

5.0 0.2 5.2 4.8

10.0 0.1 10.1 9.9

>

y = t - s1>td
x = t + s1>td

FIGURE 11.6 The curve for 
in Example 7. (The

part shown is for )0.1 … t … 10.
y = t - s1>td, t 7 0

x = t + s1>td,

t � 1
t � 2

t � 5

t � 10

t � 0.4

t � 0.2

t � 0.1

5 10

–5

–10

5

0

10

(10.1, –9.9)

(5.2, –4.8)

(2.9, –2.1)
(2, 0)

(2.5, 1.5)

(10.1, 9.9)

(5.2, 4.8)

x

y

HISTORICAL BIOGRAPHY

Christian Huygens
(1629–1695)
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632 Chapter 11: Parametric Equations and Polar Coordinates

Cycloids

The problem with a pendulum clock whose bob swings in a circular arc is that the fre-
quency of the swing depends on the amplitude of the swing. The wider the swing, the
longer it takes the bob to return to center (its lowest position).

This does not happen if the bob can be made to swing in a cycloid. In 1673, Christian
Huygens designed a pendulum clock whose bob would swing in a cycloid, a curve we de-
fine in Example 8. He hung the bob from a fine wire constrained by guards that caused it
to draw up as it swung away from center (Figure 11.7).

EXAMPLE 8 A wheel of radius a rolls along a horizontal straight line. Find parametric
equations for the path traced by a point P on the wheel’s circumference. The path is called
a cycloid.

Solution We take the line to be the x-axis, mark a point P on the wheel, start the wheel
with P at the origin, and roll the wheel to the right. As parameter, we use the angle t
through which the wheel turns, measured in radians. Figure 11.8 shows the wheel a short
while later when its base lies at units from the origin. The wheel’s center C lies at (at, a)
and the coordinates of P are

To express in terms of t, we observe that in the figure, so that

This makes

The equations we seek are

These are usually written with the a factored out:

(2)

Figure 11.9 shows the first arch of the cycloid and part of the next.

Brachistochrones and Tautochrones

If we turn Figure 11.9 upside down, Equations (2) still apply and the resulting curve
(Figure 11.10) has two interesting physical properties. The first relates to the origin O and
the point B at the bottom of the first arch. Among all smooth curves joining these points,
the cycloid is the curve along which a frictionless bead, subject only to the force of
gravity, will slide from O to B the fastest. This makes the cycloid a brachistochrone
(“brah-kiss-toe-krone”), or shortest-time curve for these points. The second property is
that even if you start the bead partway down the curve toward B, it will still take the bead
the same amount of time to reach B. This makes the cycloid a tautochrone (“taw-toe-
krone”), or same-time curve for O and B.

x = ast - sin td, y = as1 - cos td .

x = at - a sin t, y = a - a cos t .

cos u = cos a3p
2

- tb = -sin t, sin u = sin a3p
2

- tb = -cos t .

u =
3p
2

- t .

t + u = 3p>2u

x = at + a cos u, y = a + a sin u .

Cycloid

Guard
cycloid

Guard
cycloid

FIGURE 11.7 In Huygens’ pendulum
clock, the bob swings in a cycloid, so the
frequency is independent of the amplitude.

x

y

t
a
�

C(at, a)

M0 at

P(x, y) � (at � a cos �, a � a sin �)

FIGURE 11.8 The position of P(x, y) on
the rolling wheel at angle t (Example 8).

O
x

y

(x, y)

2�a

t
a

FIGURE 11.9 The cycloid curve
for

t Ú 0.
x = ast - sin td, y = as1 - cos td,

x

y

O a

a

2a

2a

2�a�a

P(at � a sin t, a � a cos t)

B(a�, 2a)

FIGURE 11.10 To study motion along an
upside-down cycloid under the influence
of gravity, we turn Figure 11.9 upside
down. This points the y-axis in the
direction of the gravitational force and
makes the downward y-coordinates
positive. The equations and parameter
interval for the cycloid are still 

The arrow shows the direction of
increasing t.

 y = as1 - cos td, t Ú 0.
 x = ast - sin td, 
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Are there any other brachistochrones joining O and B, or is the cycloid the only one?
We can formulate this as a mathematical question in the following way. At the start, the kinetic
energy of the bead is zero, since its velocity is zero. The work done by gravity in moving the
bead from (0, 0) to any other point (x, y) in the plane is mgy, and this must equal the
change in kinetic energy. That is,

Thus, the velocity of the bead when it reaches (x, y) has to be

That is,

or

The time it takes the bead to slide along a particular path from O to is

(3)

What curves if any, minimize the value of this integral?
At first sight, we might guess that the straight line joining O and B would give the

shortest time, but perhaps not. There might be some advantage in having the bead fall ver-
tically at first to build up its velocity faster. With a higher velocity, the bead could travel a
longer path and still reach B first. Indeed, this is the right idea. The solution, from a branch
of mathematics known as the calculus of variations, is that the original cycloid from O to
B is the one and only brachistochrone for O and B.

While the solution of the brachistochrone problem is beyond our present reach, we can
still show why the cycloid is a tautochrone. In the next section we show that the derivative

is simply the derivative divided by the derivative . Making the derivative
calculations and substituting into Equation (3) (we omit the details of the calculations here)
gives

Thus, the amount of time it takes the frictionless bead to slide down the cycloid to B after
it is released from rest at O is 

Suppose that instead of starting the bead at O we start it at some lower point on the cy-
cloid, a point corresponding to the parameter value The bead’s velocity at
any later point (x, y) on the cycloid is

y = a s1 - cos tdy = 22g s y - y0d = 22ga scos t0 - cos td .

t0 7 0.sx0 , y0d

p2a>g .

 =

L

p

0 A
a
g dt = pA

a
g .

 =

L

t =p

t = 0 B
a2s2 - 2 cos td
2gas1 - cos td

 dt

 Tcycloid =

L

x = ap

x = 0 B
1 + (dy>dx)2

2gy
 dx

dx>dtdy>dtdy>dx

y = ƒsxd ,

Tf =

L

x = ap

x = 0 B
1 + sdy>dxd2

2gy
 dx .

Bsap, 2ady = ƒsxdTf

dt =
ds

22gy
=

21 + sdy>dxd2 dx

22gy
.

ds
dt

= 22gy

y = 22gy .

mgy =
1
2

 my2
-

1
2

 ms0d2 .

11.1 Parametrizations of Plane Curves 633

ds is the arc length differential
along the bead’s path.

From Equations (2),

y = a s1 - cos td
dy>dt = a sin t, and
dx>dt = as1 - cos td ,
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634 Chapter 11: Parametric Equations and Polar Coordinates

Accordingly, the time required for the bead to slide from down to B is

This is precisely the time it takes the bead to slide to B from O. It takes the bead the same
amount of time to reach B no matter where it starts. Beads starting simultaneously from O,
A, and C in Figure 11.11, for instance, will all reach B at the same time. This is the reason
that Huygens’ pendulum clock is independent of the amplitude of the swing.

 = 2A
a
g s -sin-1 0 + sin-1 1d = pA

a
g .

 = 2A
a
g c-sin-1 

cos st>2d
cos st0>2d

d
t0

p

 = 2A
a
g c-sin-1 

u
c d

t = t0

t =p

 = A
a
g
L

t =p

t = t0

 
-2 du

2c2
- u2

 = A
a
g
L

p

t0

 
sin st>2d dt

2cos2 st0>2d - cos2 st>2d

 = A
a
g
L

p

t0 B
2 sin2 st>2d

s2 cos2 st0>2d - 1d - s2 cos2 st>2d - 1d
  dt

 T =

L

p

t0 B
a2s2 - 2 cos td

2gascos t0 - cos td
 dt = A

a
g
L

p

t0 A
1 - cos t

cos t0 - cos t  dt

sx0 , y0d

 c = cos st0>2d
-2 du = sin st>2d dt

 u = cos st>2d

O
x

y

A

B
C

FIGURE 11.11 Beads released
simultaneously on the upside-down cycloid
at O, A, and C will reach B at the same time.

Exercises 11.1

Finding Cartesian from Parametric Equations
Exercises 1–18 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by
finding a Cartesian equation for it. Graph the Cartesian equation. (The
graphs will vary with the equation used.) Indicate the portion of the
graph traced by the particle and the direction of motion.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14. x = 2t + 1, y = 1t, t Ú 0

x = t, y = 21 - t2, -1 … t … 0

x =

t
t - 1

, y =

t - 2
t + 1

, -1 6 t 6 1

x = t2, y = t6
- 2t4, - q 6 t 6 q

x = 1 + sin t, y = cos t - 2, 0 … t … p

x = sin t, y = cos 2t, -

p

2
… t …

p

2

x = 4 sin t, y = 5 cos t, 0 … t … 2p

x = 4 cos t, y = 2 sin t, 0 … t … 2p

x = cos sp - td, y = sin sp - td, 0 … t … p

x = cos 2t, y = sin 2t, 0 … t … p

x = 3 - 3t, y = 2t, 0 … t … 1

x = 2t - 5, y = 4t - 7, - q 6 t 6 q

x = -1t, y = t, t Ú 0

x = 3t, y = 9t2, - q 6 t 6 q

15.

16.

17.

18.

Finding Parametric Equations
19. Find parametric equations and a parameter interval for the motion

of a particle that starts at (a, 0) and traces the circle 

a. once clockwise. b. once counterclockwise.

c. twice clockwise. d. twice counterclockwise.

(There are many ways to do these, so your answers may not be
the same as the ones in the back of the book.)

20. Find parametric equations and a parameter interval for the motion
of a particle that starts at (a, 0) and traces the ellipse

a. once clockwise. b. once counterclockwise.

c. twice clockwise. d. twice counterclockwise.

(As in Exercise 19, there are many correct answers.)

In Exercises 21–26, find a parametrization for the curve.

21. the line segment with endpoints and (4, 1)

22. the line segment with endpoints and s3, -2ds -1, 3d
s -1, -3d

sx2>a2d + sy2>b2d = 1

x2
+ y2

= a2

x = 2 sinh t, y = 2 cosh t, - q 6 t 6 q

x = -cosh t, y = sinh t, - q 6 t 6 q

x = -sec t, y = tan t, -p>2 6 t 6 p>2
x = sec2 t - 1, y = tan t, -p>2 6 t 6 p>2
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23. the lower half of the parabola 

24. the left half of the parabola 

25. the ray (half line) with initial point (2, 3) that passes through the
point 

26. the ray (half line) with initial point that passes through
the point (0, 0)

27. Find parametric equations and a parameter interval for the motion
of a particle starting at the point (2, 0) and tracing the top half of
the circle four times.

28. Find parametric equations and a parameter interval for the motion
of a particle that moves along the graph of in the follow-
ing way: beginning at (0, 0) it moves to (3, 9), and then travels
back and forth from (3, 9) to infinitely many times.

29. Find parametric equations for the semicircle

using as parameter the slope of the tangent to the curve
at 

30. Find parametric equations for the circle

using as parameter the arc length s measured counterclockwise
from the point to the point 

31. Find a parametrization for the line segment joining points (0, 2) and
(4, 0) using the angle in the accompanying figure as the parameter.

32. Find a parametrization for the curve with terminal point
(0, 0) using the angle in the accompanying figure as the parameter.

33. Find a parametrization for the circle starting
at (1, 0) and moving clockwise once around the circle, using the
central angle in the accompanying figure as the parameter.

x

y

1

1

1 2 30

u

(x, y)

u

sx - 2d2
+ y2

= 1

x

y

u

(x, y)

y 5 �x

0

u

y = 2x

x

y

2

0 4

u

(x, y)

u

(x, y).(a, 0)

x2
+ y2

= a2,

(x, y).
t = dy>dx

x2
+ y2

= a2, y 7 0,

(-3, 9)

y = x2

x2
+ y2

= 4

s -1, 2d
s -1, -1d

y = x2
+ 2x

x - 1 = y2

11.1 Parametrizations of Plane Curves 635

34. Find a parametrization for the circle starting at (1, 0)
and moving counterclockwise to the terminal point (0, 1), using
the angle in the accompanying figure as the parameter.

35. The witch of Maria Agnesi The bell-shaped witch of Maria
Agnesi can be constructed in the following way. Start with a circle of
radius 1, centered at the point (0, 1), as shown in the accompanying
figure. Choose a point A on the line and connect it to the ori-
gin with a line segment. Call the point where the segment crosses
the circle B. Let P be the point where the vertical line through A
crosses the horizontal line through B. The witch is the curve traced
by P as A moves along the line Find parametric equations
and a parameter interval for the witch by expressing the coordinates
of P in terms of t, the radian measure of the angle that segment O A
makes with the positive x-axis. The following equalities (which you
may assume) will help.

a. b.

c.

36. Hypocycloid When a circle rolls on the inside of a fixed circle,
any point P on the circumference of the rolling circle describes a
hypocycloid. Let the fixed circle be let the radius
of the rolling circle be b, and let the initial position of the tracing
point P be A (a, 0). Find parametric equations for the hypocy-
cloid, using as the parameter the angle from the positive x-axis
to the line joining the circles’ centers. In particular, if as in
the accompanying figure, show that the hypocycloid is the astroid

x

y

O P

C
A(a, 0)b

u

x = a cos3 u, y = a sin3 u.

b = a>4,
u

x2
+ y2

= a2,

x

y

O

Q A

B P(x, y)(0, 1)

y 5 2

t

AB # OA = (AQ)2

y = 2 - AB sin tx = AQ

y = 2.

y = 2

x

y

1

–2
u

(x, y)

(1, 0)

(0, 1)

u

x2
+ y2

= 1
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636 Chapter 11: Parametric Equations and Polar Coordinates

37. As the point N moves along the line in the accompanying
figure, P moves in such a way that Find parametric
equations for the coordinates of P as functions of the angle t that
the line ON makes with the positive y-axis.

38. Trochoids A wheel of radius a rolls along a horizontal straight
line without slipping. Find parametric equations for the curve
traced out by a point P on a spoke of the wheel b units from its cen-
ter. As parameter, use the angle through which the wheel turns.
The curve is called a trochoid, which is a cycloid when 

Distance Using Parametric Equations
39. Find the point on the parabola 

closest to the point (2, 1 2). (Hint: Minimize the square of the
distance as a function of t.)

40. Find the point on the ellipse 
closest to the point (3 4, 0). (Hint: Minimize the square of the
distance as a function of t.)

GRAPHER EXPLORATIONS
If you have a parametric equation grapher, graph the equations over
the given intervals in Exercises 41–48.

41. Ellipse

a. b.

c.

42. Hyperbola branch (enter as 1 cos (t)), (en-
ter as sin (t) cos (t)), over

a. b.

c. -0.1 … t … 0.1 .

-0.5 … t … 0.5-1.5 … t … 1.5

> y = tan t>x = sec t

-p>2 … t … p>2.

0 … t … p0 … t … 2p

x = 4 cos t, y = 2 sin t, over

> x = 2 cos t, y = sin t, 0 … t … 2p

> x = t, y = t2, - q 6 t 6 q ,

b = a .
u

x

y

N

M

A(0, a)

t

P

O

OP = MN .
y = a 43. Parabola

44. Cycloid

a. b.

c.

45. Deltoid

What happens if you replace 2 with in the equations for x and
y? Graph the new equations and find out.

46. A nice curve

What happens if you replace 3 with in the equations for x and
y? Graph the new equations and find out.

47. a. Epicycloid

b. Hypocycloid

c. Hypotrochoid

48. a.

b.

c.

d.
0 … t … p

x = 6 cos 2t + 5 cos 6t, y = 6 sin 4t - 5 sin 6t;

0 … t … 2p
x = 6 cos t + 5 cos 3t, y = 6 sin 2t - 5 sin 3t;

0 … t … p

x = 6 cos 2t + 5 cos 6t, y = 6 sin 2t - 5 sin 6t;

0 … t … 2p
x = 6 cos t + 5 cos 3t, y = 6 sin t - 5 sin 3t; 

x = cos t + 5 cos 3t, y = 6 cos t - 5 sin 3t; 0 … t … 2p

x = 8 cos t + 2 cos 4t, y = 8 sin t - 2 sin 4t; 0 … t … 2p

x = 9 cos t - cos 9t, y = 9 sin t - sin 9t; 0 … t … 2p

-3

x = 3 cos t + cos 3t, y = 3 sin t - sin 3t; 0 … t … 2p

-2

x = 2 cos t + cos 2t, y = 2 sin t - sin 2t; 0 … t … 2p

p … t … 3p .

0 … t … 4p0 … t … 2p

x = t - sin t, y = 1 - cos t, over

x = 2t + 3, y = t2
- 1, -2 … t … 2

T

11.2 Calculus with Parametric Curves

In this section we apply calculus to parametric curves. Specifically, we find slopes, lengths,
and areas associated with parametrized curves.

Tangents and Areas

A parametrized curve and is differentiable at t if ƒ and g are differen-
tiable at t. At a point on a differentiable parametrized curve where y is also a differentiable
function of x, the derivatives , , and are related by the Chain Rule:

dy
dt

=

dy
dx

# dx
dt

 .

dy>dxdx>dtdy>dt

y = g stdx = ƒstd
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If parametric equations define y as a twice-differentiable function of x, we can apply
Equation (1) to the function to calculate as a function of t:

Eq. (1) with in place of yy¿

d2y

dx2 =
d
dx

 s y¿ d =

dy¿>dt

dx>dt
 .

d2y>dx2dy>dx = y¿

11.2 Calculus with Parametric Curves 637

Parametric Formula for 

If all three derivatives exist and 

(1)
dy
dx

=

dy>dt

dx>dt
 .

dx>dt Z 0,

dy/dx

If we may divide both sides of this equation by to solve for .dy>dxdx>dtdx>dt Z 0,

Parametric Formula for 

If the equations define y as a twice-differentiable function of
x, then at any point where and 

(2)
d2y

dx2 =

dy¿>dt

dx>dt
.

y¿ = dy>dx,dx>dt Z 0
x = ƒstd, y = gstd

d 2y/dx2

EXAMPLE 1 Find the tangent to the curve

at the point where (Figure 11.12).

Solution The slope of the curve at t is

Eq. (1)

Setting t equal to gives

The tangent line is

EXAMPLE 2 Find as a function of t if 

Solution

1. Express in terms of t.

y¿ =

dy
dx

=

dy>dt

dx>dt
=

1 - 3t2

1 - 2t

y¿ = dy>dx

x = t - t2, y = t - t3 .d2y>dx2

y = 12 x - 1.

y = 12 x - 2 + 1

y - 1 = 12 sx - 12d

=

12
1

= 12.

dy
dx
`
t =p>4 =

sec (p>4)

tan (p>4)

p>4

dy
dx

=

dy>dt

dx>dt
=

sec2 t
sec t tan t =

sec t
tan t .

t = p>4(12, 1),

x = sec t, y = tan t, -  

p
2

6 t 6
p
2

,

FIGURE 11.12 The curve in Example 1
is the right-hand branch of the hyperbola
x2

- y2
= 1.

x

y

0 1 2

1

2

(�2, 1)

  

t 5 p
4

x 5 sec t, y 5 tan t,
p
2

p
2

– , t ,
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638 Chapter 11: Parametric Equations and Polar Coordinates

2. Differentiate with respect to t.

Derivative Quotient Rule

3. Divide by .

Eq. (2)

EXAMPLE 3 Find the area enclosed by the astroid (Figure 11.13)

Solution By symmetry, the enclosed area is 4 times the area beneath the curve in the
first quadrant where We can apply the definite integral formula for area
studied in Chapter 5, using substitution to express the curve and differential dx in terms of
the parameter t. So,

Substitution for y and dx

Expand square term.

Multiply terms.

Section 8.2,
Example 3

Evaluate.

Length of a Parametrically Defined Curve

Let C be a curve given parametrically by the equations

We assume the functions ƒ and g are continuously differentiable (meaning they have
continuous first derivatives) on the interval [a, b]. We also assume that the derivatives
ƒ and g are not simultaneously zero, which prevents the curve C from having any
corners or cusps. Such a curve is called a smooth curve. We subdivide the path (or arc)
AB into n pieces at points (Figure 11.14). These points
correspond to a partition of the interval [a, b] by a = t0 6 t1 6 t2 6

Á
6 tn = b,

A = P0, P1, P2, Á , Pn = B

¿(t)¿(t)

x = ƒstd and y = gstd, a … t … b.

=
3p
8

.

=
3
2
c ap

2
- 0 - 0 - 0b -

1
2

 ap
2

+ 0 - 0 - 0b +
1
2

 (0 - 0 - 0 + 0) d
=

3
2

 c at -
1
2

 sin 2tb -
1
2

 at +
1
4

 sin 2tb +
1
2

 asin 2t -
1
3

 sin3 2tb dp>2
0

=
3
2

 c 
L

p>2
0

 (1 - cos 2t) dt -

L

p>2
0

 cos2 2t dt +

L

p>2
0

 cos3 2t dt d

=
3
2

 
L

p>2
0

 (1 - cos 2t - cos2 2t + cos3 2t) dt

=
3
2

 
L

p>2
0

 (1 - 2 cos 2t + cos2 2t)(1 + cos 2t) dt

sin4 t = a1 - cos 2t
2

b2

= 12 
L

p>2
0

 a1 - cos 2t
2

b2

 a1 + cos 2t
2

b  dt

= 4 
L

p>2
0

 sin3
 t # 3 cos2 t sin t dt

A = 4 
L

1

0
 y dx

0 … t … p>2.

x = cos3 t, y = sin3 t, 0 … t … 2p.

d2y

dx2 =

dy¿>dt

dx>dt
=

s2 - 6t + 6t2d>s1 - 2td2

1 - 2t
=

2 - 6t + 6t2

s1 - 2td3

dx>dtdy¿>dt

dy¿

dt
=

d
dt

 a1 - 3t2

1 - 2t
b =

2 - 6t + 6t2

s1 - 2td2

y¿

Figure 11.13 The astroid in Example 3.

x

y

0

1

1–1

–1

x � cos3 t
y � sin3 t
0 � t � 2�

Finding in Terms of t
1. Express in terms of t.
2. Find 
3. Divide by dx>dt.dy¿>dt

dy¿>dt.
y¿ = dy>dx

d2y>dx2

FIGURE 11.14 The smooth curve C defined
parametrically by the equations and

The length of the
curve from A to B is approximated by the
sum of the lengths of the polygonal path
(straight line segments) starting at 
then to and so on, ending at B = Pn .P1 ,

A = P0 ,

y = gstd, a … t … b .
x = ƒstd

y

x
0

A � P0

B � Pn

P1

P2

C

Pk

Pk–1
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where Join successive points of this subdivision by straight line seg-
ments (Figure 11.14). A representative line segment has length

(see Figure 11.15). If is small, the length is approximately the length of arc 
By the Mean Value Theorem there are numbers and in such that

Assuming the path from A to B is traversed exactly once as t increases from to
with no doubling back or retracing, an approximation to the (yet to be defined)

“length” of the curve AB is the sum of all the lengths 

Although this last sum on the right is not exactly a Riemann sum (because and are
evaluated at different points), it can be shown that its limit, as the norm of the partition
tends to zero and the number of segments , is the definite integral

Therefore, it is reasonable to define the length of the curve from A to B as this integral.

L

b

a
 2[ƒ¿std]2

+ [g¿std]2 dt.2[ƒ ¿ (t k
*)]2

+ [g¿(t k
**)]2 ¢tk =lim

ƒ ƒP ƒ ƒ :0
 a

n

k = 1

n : q

g¿ƒ¿

 = a

n

k = 1
2[ƒ¿stk 

* d]2
+ [g¿stk 

** d]2  ¢tk .

 a

n

k = 1
Lk = a

n

k = 1
2s¢xkd2

+ s¢ykd2

Lk :
t = b,

t = a

 ¢yk = gstkd - gstk - 1d = g¿stk 
**d ¢tk .

 ¢xk = ƒstkd - ƒstk - 1d = ƒ¿stk 
* d ¢tk ,

[tk - 1, tk]tk 
**tk 

*
Pk - 1Pk .Lk¢tk

 = 2[ƒstkd - ƒstk - 1d]2
+ [gstkd - gstk - 1d]2

 Lk = 2s¢xkd2
+ s¢ykd2

Pk = sƒstkd, gstkdd.

11.2 Calculus with Parametric Curves 639

FIGURE 11.15 The arc is
approximated by the straight line segment
shown here, which has length
Lk = 2s¢xkd2

+ s¢ykd2 .

Pk - 1 Pk

y

x
0

Lk

Δxk

Δyk

Pk–1 � ( f (tk–1), g(tk–1))

Pk � ( f (tk), g(tk))

DEFINITION If a curve C is defined parametrically by and
where and are continuous and not simultaneously

zero on [a, b], and C is traversed exactly once as t increases from to 
then the length of C is the definite integral

L =

L

b

a
 2[ƒ¿std]2

+ [g¿std]2 dt.

t = b ,t = a
g¿ƒ¿y = gstd, a … t … b,

x = ƒstd

A smooth curve C does not double back or reverse the direction of motion over the
time interval [a, b] since throughout the interval. At a point where a
curve does start to double back on itself, either the curve fails to be differentiable or both
derivatives must simultaneously equal zero. We will examine this phenomenon in Chapter 13,
where we study tangent vectors to curves.

If and then using the Leibniz notation we have the following result
for arc length:

(3)

What if there are two different parametrizations for a curve C whose length we want
to find; does it matter which one we use? The answer is no, as long as the parametrization
we choose meets the conditions stated in the definition of the length of C (see Exercise 41
for an example).

L =

L

b

a
 B a

dx
dt
b2

+ ady
dt
b2

 dt.

y = gstd,x = ƒstd

sƒ¿ d2
+ sg¿ d2

7 0
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640 Chapter 11: Parametric Equations and Polar Coordinates

EXAMPLE 4 Using the definition, find the length of the circle of radius r defined para-
metrically by

Solution As t varies from 0 to the circle is traversed exactly once, so the circumfer-
ence is

We find

and

So

EXAMPLE 5 Find the length of the astroid (Figure 11.13)

Solution Because of the curve’s symmetry with respect to the coordinate axes, its length
is four times the length of the first-quadrant portion. We have

Therefore,

The length of the astroid is four times this: 4s3>2d = 6.

 = -
3
4

 cos 2t d
0

p>2
=

3
2

.

 =
3
2

 
L

p>2
0

 sin 2t dt

 Length of first-quadrant portion =

L

p>2
0

3 cos t sin t dt

 = 3 cos t sin t .

 = 3 ƒ cos t sin t ƒ

 = 29 cos2 t sin2 t

B a
dx
dt
b2

+ ady
dt
b2

= 29 cos2 t sin2 t scos2 t + sin2 td
('')''*    

 ady
dt
b2

= [3 sin2 t scos td]2
= 9 sin4 t cos2 t

 adx
dt
b2

= [3 cos2 t s -sin td]2
= 9 cos4 t sin2 t

 x = cos3 t,    y = sin3 t

x = cos3 t, y = sin3 t, 0 … t … 2p.

L =

L

2p

0
2r2 dt = r C t D2p0 = 2pr.

adx
dt
b2

+ ady
dt
b2

 =  r2ssin2 t + cos2 td = r2.

dx
dt

= -r sin t,    
dy
dt

= r cos t

L =

L

2p

0
 B a

dx
dt
b2

+ ady
dt
b2

 dt.

2p,

x = r cos t    and    y = r sin t,    0 … t … 2p.

0 … t … p>2cos t sin t Ú 0 for 

s1>2d sin 2t
cos t sin t =

1
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Length of a Curve 

The length formula in Section 6.3 is a special case of Equation (3). Given a continuously
differentiable function we can assign as a parameter. The
graph of the function ƒ is then the curve C defined parametrically by

a special case of what we considered before. Then,

From Equation (1), we have

,

giving

Substitution into Equation (3) gives the arc length formula for the graph of con-
sistent with Equation (3) in Section 6.3.

The Arc Length Differential

Consistent with our discussion in Section 6.3, we can define the arc length function for a
parametrically defined curve and by

Then, by the Fundamental Theorem of Calculus,

The differential of arc length is

(4)

Equation (4) is often abbreviated to 

Just as in Section 6.3, we can integrate the differential ds between appropriate limits to
find the total length of a curve.

Here’s an example where we use the arc length formula to find the centroid of an arc.

EXAMPLE 6 Find the centroid of the first-quadrant arc of the astroid in Example 5.

Solution We take the curve’s density to be and calculate the curve’s mass and mo-
ments about the coordinate axes as we did in Section 6.6.

d = 1

ds = 2dx2
+ dy2.

ds = B a
dx
dt
b2

+ ady
dt
b2

 dt.

ds
dt

= 2[ƒ¿(t)]2
+ [g¿(t)]2

= B a
dx
dt
b2

+ ady
dt
b2

.

s(t) =

L

t

a
 2[ƒ¿(z)]2

+ [g¿(z)]2 dz.

y = g(t), a … t … b,x = ƒ(t)

y = ƒsxd,

t = x = 1 + [ƒ¿sxd]2 .

 adx
dt
b2

 +  ady
dt
b2

 =  1 + [ƒ¿std]2

dy
dx

=

dy>dt

dx>dt
= ƒ¿std

dx
dt

= 1 and dy
dt

= ƒ¿std.

x = t and y = ƒstd, a … t … b,

x = ta … x … b,y = ƒsxd,

y = ƒsxd

11.2 Calculus with Parametric Curves 641
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642 Chapter 11: Parametric Equations and Polar Coordinates

The distribution of mass is symmetric about the line , so . A typical seg-
ment of the curve (Figure 11.16) has mass

From 
Example 5

The curve’s mass is

Again from Example 5

The curve’s moment about the x-axis is

It follows that

The centroid is the point  

Areas of Surfaces of Revolution

In Section 6.4 we found integral formulas for the area of a surface when a curve is 
revolved about a coordinate axis. Specifically, we found that the surface area is

for revolution about the x-axis, and for revolution about the
y-axis. If the curve is parametrized by the equations and 
where ƒ and g are continuously differentiable and on [a, b], then the arc
length differential ds is given by Equation (4). This observation leads to the following formu-
las for area of surfaces of revolution for smooth parametrized curves.

(ƒ¿)2
+ (g¿)2

7 0
y = g(t), a … t … b,x = ƒ(t)

S = 12px dsS = 12py ds

(2>5, 2>5).

y =

Mx

M
=

3>5
3>2 =

2
5 .

= 3 
L

p>2
0

 sin4 t cos t dt = 3 # sin5t
5 dp>2

0
=

3
5.

Mx =

L
 ỹ dm =

L

p>2
0

 sin3 t # 3 cos t sin t dt

M =

L

p>2
0

 dm =

L

p>2
0

 3 cos t sin t dt =
3
2

 .

dm = 1 # ds = B a
dx
dt
b2

+ ady
dt
b2

 dt = 3 cos t sin t dt.

x = yy = x

FIGURE 11.16 The centroid (c.m.)
of the astroid arc in Example 6.

x

y

0

B(0, 1)

A(1, 0)

c.m.
ds

~ ~(x, y) � (cos3 t, sin3 t)
~x

~y

Area of Surface of Revolution for Parametrized Curves

If a smooth curve is traversed exactly once as t
increases from a to b, then the areas of the surfaces generated by revolving the
curve about the coordinate axes are as follows.

1. Revolution about the x-axis 

(5)

2. Revolution about the y-axis

(6)B a
dx
dt
b2

+ ady
dt
b2

 dtS =

L

b

a
 2px 

(x » 0):

B a
dx
dt
b2

+ ady
dt
b2

 dtS =

L

b

a
 2py 

( y » 0):

x = ƒstd, y = gstd, a … t … b ,

As with length, we can calculate surface area from any convenient parametrization that
meets the stated criteria.
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EXAMPLE 7 The standard parametrization of the circle of radius 1 centered at the
point (0, 1) in the xy-plane is

Use this parametrization to find the area of the surface swept out by revolving the circle
about the x-axis (Figure 11.17).

Solution We evaluate the formula

 = 2p C t - cos t D02p = 4p2.

 = 2p
L

2p

0
s1 + sin td dt

=

L

2p

0
2ps1 + sin td2s -sin td2

+ scos td2 dt
(''')'''*      

S =

L

b

a
 2py B a

dx
dt
b2

+ ady
dt
b2

 dt

x = cos t, y = 1 + sin t, 0 … t … 2p.
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Circle
x 5 cos t
y 5 1 1 sin t
0 � t � 2p

x

y

(0, 1)

FIGURE 11.17 In Example 7 we calculate
the area of the surface of revolution swept
out by this parametrized curve.

Eq. (5) for revolution
about the x-axis;
y = 1 + sin t Ú 0

1

Exercises 11.2

Tangents to Parametrized Curves
In Exercises 1–14, find an equation for the line tangent to the curve at
the point defined by the given value of t. Also, find the value of 
at this point.

1.
2.
3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Implicitly Defined Parametrizations
Assuming that the equations in Exercises 15–20 define x and y implic-
itly as differentiable functions find the slope of the
curve at the given value of t.

15.

16.

17. x + 2x3>2
= t2

+ t, y2t + 1 + 2t2y = 4, t = 0

x = 25 - 1t, y(t - 1) = 2t, t = 4

x3
+ 2t2

= 9, 2y3
- 3t2

= 4, t = 2

x = ƒ(t), y = g(t)
x = ƒ(t), y = g(t),

x = t + et, y = 1 - et, t = 0

x =

1
t + 1

, y =

t
t - 1

, t = 2

x = cos t, y = 1 + sin t, t = p>2
x = t - sin t, y = 1 - cos t, t = p>3
x = 1>t, y = -2 + ln t, t = 1

x = 2t2
+ 3, y = t4, t = -1

x = -2t + 1, y = 23t, t = 3

x = sec t, y = tan t, t = p>6
x = sec2 t - 1, y = tan t, t = -p>4
x = t, y = 2t, t = 1>4
x = cos t, y = 23 cos t, t = 2p>3
x = 4 sin t, y = 2 cos t, t = p>4
x = sin 2pt, y = cos 2pt, t = -1>6
x = 2 cos t, y = 2 sin t, t = p>4

d2y>dx2

18.

19.

20.

Area
21. Find the area under one arch of the cycloid

22. Find the area enclosed by the y-axis and the curve

23. Find the area enclosed by the ellipse

24. Find the area under over [0, 1] using the following
parametrizations.

a. b.

Lengths of Curves
Find the lengths of the curves in Exercises 25–30.
25.

26.

27.

28.

29. 30.

Surface Area
Find the areas of the surfaces generated by revolving the curves in
Exercises 31–34 about the indicated axes.

31. x = cos t, y = 2 + sin t, 0 … t … 2p; x-axis

0 … t … p>2
y = cos t, 0 … t … p>3y = 8 sin t - 8t cos t,
x = ln (sec t + tan t) - sin tx = 8 cos t + 8t sin t

x = (2t + 3)3>2>3, y = t + t2>2, 0 … t … 3

x = t2>2, y = (2t + 1)3>2>3, 0 … t … 4

x = t3, y = 3t2>2, 0 … t … 13

x = cos t, y = t + sin t, 0 … t … p

x = t3, y = t9x = t2, y = t6

y = x3

x = a cos t, y = b sin t, 0 … t … 2p .

x = t - t2, y = 1 + e-t .

x = a(t - sin t), y = a(1 - cos t).

t = ln (x - t), y = tet, t = 0

x = t3
+ t, y + 2t3

= 2x + t2, t = 1

x sin t + 2x = t, t sin t - 2t = y, t = p
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644 Chapter 11: Parametric Equations and Polar Coordinates

32.

33.
34. ,  ,  x-axis

35. A cone frustum The line segment joining the points (0, 1) and
(2, 2) is revolved about the x-axis to generate a frustum of a cone.
Find the surface area of the frustum using the parametrization

Check your result with the geom-
etry formula: 

36. A cone The line segment joining the origin to the point (h, r) is
revolved about the x-axis to generate a cone of height h and base
radius r. Find the cone’s surface area with the parametric equa-
tions Check your result with the
geometry formula: 

Centroids
37. Find the coordinates of the centroid of the curve

38. Find the coordinates of the centroid of the curve

39. Find the coordinates of the centroid of the curve

40. Most centroid calculations for curves are done with a calculator
or computer that has an integral evaluation program. As a case in
point, find, to the nearest hundredth, the coordinates of the cen-
troid of the curve

Theory and Examples
41. Length is independent of parametrization To illustrate the fact

that the numbers we get for length do not depend on the way we
parametrize our curves (except for the mild restrictions preventing
doubling back mentioned earlier), calculate the length of the semi-
circle with these two different parametrizations:

a.

b.

42. a. Show that the Cartesian formula

for the length of the curve (Section 6.3,
Equation 4), is a special case of the parametric length formula

.

Use this result to find the length of each curve.

b.

c.

43. The curve with parametric equations

is called a limaçon and is shown in the accompanying figure.
Find the points (x, y) and the slopes of the tangent lines at these
points for

a. . b. c. u = 4p>3 .u = p>2 .u = 0

x = (1 + 2 sin u) cos u, y = (1 + 2 sin u) sin u

x =

3
2

 y2>3, 0 … y … 1

x = y3>2, 0 … y … 4>3

L =

L

b

a
 B a

dx
dt
b2

+ ady

dt
b2

 dt

x = g(y), c … y … d

L =

L

d

c
 B1 + adx

dy
b2

 dy

x = sin pt, y = cos pt, -1>2 … t … 1>2
x = cos 2t, y = sin 2t, 0 … t … p>2

y = 21 - x2

x = t3, y = 3t2>2, 0 … t … 13.

x = cos t, y = t + sin t, 0 … t … p.

x = et cos t, y = et sin t, 0 … t … p.

x = cos t + t sin t, y = sin t - t cos t, 0 … t … p>2.

Area = prsslant heightd.
0 … t … 1.y = rt,x = ht,

Area = psr1 + r2dsslant heightd.
x = 2t, y = t + 1, 0 … t … 1.

0 … t … p>3;y = cos tx = ln ssec t + tan td - sin t
 -22 … t … 22; y-axisx = t + 22, y = st2>2d + 22t,

x = s2>3dt3>2, y = 22t, 0 … t … 23; y-axis

44. The curve with parametric equations

is called a sinusoid and is shown in the accompanying figure.
Find the point (x, y) where the slope of the tangent line is 
a. largest b. smallest.

The curves in Exercises 45 and 46 are called Bowditch curves or
Lissajous figures. In each case, find the point in the interior of
the first quadrant where the tangent to the curve is horizontal,
and find the equations of the two tangents at the origin.

45. 46.

47. Cycloid

a. Find the length of one arch of the cycloid

b. Find the area of the surface generated by revolving one arch
of the cycloid in part (a) about the x-axis for 

48. Volume Find the volume swept out by revolving the region
bounded by the x-axis and one arch of the cycloid

about the x-axis.

COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS to perform the following steps for the
given curve over the closed interval.

a. Plot the curve together with the polygonal path approxima-
tions for partition points over the interval. (See
Figure 11.14.)

n = 2, 4, 8

x = t - sin t, y = 1 - cos t

a = 1.

x = a(t - sin t), y = a(1 - cos t).

x

y

1–1

1

–1

x � sin 2t
y � sin 3t

x

y

1–1

x � sin t
y � sin 2t

x

y

2

0 2p

x = t, y = 1 - cos t, 0 … t … 2p

x

y

–1

1

3

1

T

T
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b. Find the corresponding approximation to the length of the
curve by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare
your approximations for with the actual length
given by the integral. How does the actual length compare
with the approximations as n increases? Explain your
answer.

n = 2, 4, 8

11.3 Polar Coordinates 645

49. ,

50.

51.

52. x = et cos t, y = et sin t, 0 … t … p

x = t - cos t, y = 1 + sin t, -p … t … p

0 … t … 6

x = 2t3
- 16t2

+ 25t + 5, y = t2
+ t - 3,

0 … t … 1x =

1
3

 t3, y =

1
2

 t2

11.3 Polar Coordinates

In this section we study polar coordinates and their relation to Cartesian coordinates. You
will see that polar coordinates are very useful for calculating many multiple integrals stud-
ied in Chapter 15. 

Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and an initial ray
from O (Figure 11.18). Then each point P can be located by assigning to it a polar coordi-
nate pair in which r gives the directed distance from O to P and gives the directed
angle from the initial ray to ray OP.

usr, ud

O x
Initial ray

� � 0

� � ��6

–11�
6

P  2,       � P  2, –11�
6

�
6

⎛
⎝

⎛
⎝

⎛
⎝

⎛
⎝

FIGURE 11.19 Polar coordinates are not
unique.

O

r

Initial ray

Origin (pole)

x

P(r, �)

�

FIGURE 11.18 To define polar
coordinates for the plane, we start with an
origin, called the pole, and an initial ray.

Polar Coordinates

Psr, ud

Directed angle from
initial ray to OP

Directed distance
from O to P

As in trigonometry, is positive when measured counterclockwise and negative when
measured clockwise. The angle associated with a given point is not unique. While a point in
the plane has just one pair of Cartesian coordinates, it has infinitely many pairs of polar co-
ordinates. For instance, the point 2 units from the origin along the ray has polar
coordinates . It also has coordinates (Figure 11.19).
In some situations we allow r to be negative. That is why we use directed distance in defin-
ing The point can be reached by turning radians counterclock-
wise from the initial ray and going forward 2 units (Figure 11.20). It can also be reached by
turning radians counterclockwise from the initial ray and going backward 2 units. So
the point also has polar coordinates 

EXAMPLE 1 Find all the polar coordinates of the point 

Solution We sketch the initial ray of the coordinate system, draw the ray from the ori-
gin that makes an angle of radians with the initial ray, and mark the point 
(Figure 11.21). We then find the angles for the other coordinate pairs of P in which 
and 

For the complete list of angles is

p
6

, p
6

; 2p, p
6

; 4p, p
6

; 6p, Á .

r = 2,
r = -2.

r = 2
s2, p>6dp>6

Ps2, p>6d .

r = -2, u = p>6.
p>6

7p>6Ps2, 7p>6dPsr, ud .

r = 2, u = -11p>6u = p>6r = 2, 
u = p>6

u

O
x

u 5 0

u 5 p�6

p�6

7p�6

P  2,        5 P  –2, p
6

7p
6

⎛
⎝

⎛
⎝

⎛
⎝

⎛
⎝

FIGURE 11.20 Polar coordinates can
have negative r-values.
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646 Chapter 11: Parametric Equations and Polar Coordinates

For the angles are

The corresponding coordinate pairs of P are

and

When the formulas give and When they give
and and so on.

Polar Equations and Graphs

If we hold r fixed at a constant value the point will lie units from
the origin O. As varies over any interval of length P then traces a circle of radius 
centered at O (Figure 11.22).

If we hold fixed at a constant value and let r vary between and 
the point traces the line through O that makes an angle of measure with the
initial ray.

u0Psr, ud
q ,- qu = u0u

ƒ a ƒ2p ,u
ƒ a ƒPsr, udr = a Z 0,

s -2, 7p>6d ,s2, 13p>6d
n = 1,s -2, -5p>6d .s2, p>6dn = 0,

a-2, -
5p
6

+ 2npb , n = 0, ;1, ;2, Á .

a2, 
p
6

+ 2npb , n = 0, ;1, ;2, Á

-
5p
6

, -
5p
6

; 2p, -
5p
6

; 4p, -
5p
6

; 6p, Á .

r = -2,

O

7p�6

–5p�6

Initial ray
x

6⎝ ⎝

  2,      5   –2, – 5p
6

p
6

⎛
⎝

⎛
⎝

⎛
⎝

⎛
⎝

5   –2, 7p⎛ ⎛

etc.

p
6

FIGURE 11.21 The point has
infinitely many polar coordinate pairs
(Example 1).

Ps2, p>6d

x

�a�

r � a

O

FIGURE 11.22 The polar equation for a
circle is r = a . Equation Graph

Circle of radius centered at O

Line through O making an angle with the initial rayu0 u = u0

ƒ a ƒ r = a

EXAMPLE 2

(a) and are equations for the circle of radius 1 centered at O.

(b) and are equations for the line in Figure 11.21.

Equations of the form and can be combined to define regions, seg-
ments, and rays.

EXAMPLE 3 Graph the sets of points whose polar coordinates satisfy the following
conditions.

(a)

(b)

(c)

Solution The graphs are shown in Figure 11.23.

Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins 
together and take the initial polar ray as the positive x-axis. The ray u = p>2, r 7 0,

2p
3

… u …
5p
6
 sno restriction on rd

-3 … r … 2 and u =
p
4

1 … r … 2 and 0 … u …
p
2

u = u0r = a

u = -5p>6u = p>6, u = 7p>6,

r = -1r = 1x

y

0 1

(a)

2

x

y

0
3

(b)

2

(c)

x

y

0

1 � r � 2, 0 � u �
p
2

u 5    ,p
4

–3 � r � 2p
4

2p
3

5p
6

2p
3

5p
6� u �

FIGURE 11.23 The graphs of typical
inequalities in r and (Example 3).u
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11.3 Polar Coordinates 647

The first two of these equations uniquely determine the Cartesian coordinates x and y
given the polar coordinates r and . On the other hand, if x and y are given, the third equa-
tion gives two possible choices for r (a positive and a negative value). For each

, there is a unique satisfying the first two equations, each then
giving a polar coordinate representation of the Cartesian point (x, y). The other polar coor-
dinate representations for the point can be determined from these two, as in Example 1.

EXAMPLE 4 Here are some equivalent equations expressed in terms of both polar 
coordinates and Cartesian coordinates.

Polar equation Cartesian equivalent

Some curves are more simply expressed with polar coordinates; others are not.

EXAMPLE 5 Find a polar equation for the circle (Figure 11.25).

Solution We apply the equations relating polar and Cartesian coordinates:

EXAMPLE 6 Replace the following polar equations by equivalent Cartesian equations
and identify their graphs.

(a)

(b)

(c)

Solution We use the substitutions 

(a)

The graph: Vertical line through x = -4 on the x-axis

The Cartesian equation: r cos u = -4

x = -4

r cos u = -4

r cos u = x, r sin u = y, r2
= x2

+ y2 .

r =
4

2 cos u - sin u

r2
= 4r cos u

r cos u = -4

 r = 6 sin u

 r = 0 or r - 6 sin u = 0

 r2
- 6r sin u = 0

 x2
+ y2

- 6y = 0

 x2
+ y2

- 6y + 9 = 9

x2
+ ( y - 3)2

= 9

x2
+ s  y - 3d2

= 9

x4
+ y4

+ 2x2y2
+ 2x3

+ 2xy2
- y2

= 0r = 1 - cos u

y2
- 3x2

- 4x - 1 = 0r = 1 + 2r cos u

x2
- y2

= 1r2 cos2 u - r2 sin2 u = 1

xy = 4r2 cos u sin u = 4

x = 2r cos u = 2

u H [0, 2pd(x, y) Z (0, 0)

u

Equations Relating Polar and Cartesian Coordinates

x = r cos u, y = r sin u, r2
= x2

+ y2, tan u =

y
x

x

y

Common
origin

0 Initial rayx

y
r

P(x, y) � P(r, �)

� � 0, r � 0�

Ray � �
�
2

FIGURE 11.24 The usual way to relate
polar and Cartesian coordinates.

becomes the positive y-axis (Figure 11.24). The two coordinate systems are then related by
the following equations.

x

y

(0, 3)

0

x2 � ( y � 3)2 � 9
or

r � 6 sin �

FIGURE 11.25 The circle in Example 5.

.Expand s y - 3d2

Cancellation

x2
+ y2

= r2

Includes both possibilities

7001_ThomasET_ch11p628-677.qxd  10/28/09  6:10 PM  Page 647



648 Chapter 11: Parametric Equations and Polar Coordinates

(b)

Completing the square

(c)

The graph: Line, slope m = 2, y-intercept b = -4

The Cartesian equation: rs2 cos u - sin ud = 4

2r cos u - r sin u = 4

2x - y = 4

y = 2x - 4

r =
4

2 cos u - sin u

The graph: Circle, radius 2, center sh, kd = s2, 0d

The Cartesian equation: r2
= 4r cos u

x2
+ y2

= 4x

x2
- 4x + y2

= 0

x2
- 4x + 4 + y2

= 4

sx - 2d2
+ y2

= 4

r2
= 4r cos u

Exercises 11.3

Polar Coordinates
1. Which polar coordinate pairs label the same point?

a. (3, 0) b. c.

d. e. f.

g. h.

2. Which polar coordinate pairs label the same point?

a. b. c.

d. e. f.

g. h.

3. Plot the following points (given in polar coordinates). Then find
all the polar coordinates of each point.

a. b. (2, 0)

c. d.

4. Plot the following points (given in polar coordinates). Then find
all the polar coordinates of each point.

a. b.

c. d.

Polar to Cartesian Coordinates

5. Find the Cartesian coordinates of the points in Exercise 1.

6. Find the Cartesian coordinates of the following points (given in
polar coordinates).

a. b. (1, 0)

c. d. A -22, p>4 Bs0, p>2d

A22, p>4 B

s -3, -p>4ds3, -p>4d

s -3, p>4ds3, p>4d

s -2, 0ds -2, p>2d

s2, p>2d

s -2, 2p>3ds -r, u + pd

s2, -2p>3ds -r, udsr, u + pd

sr, uds2, -p>3ds -2, p>3d

s -2, -p>3ds -3, 2pd

s2, p>3ds -3, pds2, 7p>3d

s2, 2p>3ds -3, 0d

e. f.

g. h.

Cartesian to Polar Coordinates
7. Find the polar coordinates, and , of the fol-

lowing points given in Cartesian coordinates.

a. (1, 1) b.

c. d.

8. Find the polar coordinates, and of the fol-
lowing points given in Cartesian coordinates.

a. b. (0, 3)

c. d.

9. Find the polar coordinates, and , of the fol-
lowing points given in Cartesian coordinates.

a. (3, 3) b.

c. d.

10. Find the polar coordinates, and of the fol-
lowing points given in Cartesian coordinates.

a. b. (1, 0)

c. d.

Graphing in Polar Coordinates
Graph the sets of points whose polar coordinates satisfy the equations
and inequalities in Exercises 11–26.

11. 12.

13. 14. 1 … r … 2r Ú 1

0 … r … 2r = 2

a13
2

, 
1
2
b(0, -3)

(-2, 0)

r … 0,-p … u 6 2p

(4, -3)(-1, 23)

(-1, 0d

r … 00 … u 6 2p

(5, -12)(-23, 1)

(-2, -2)

r Ú 0,-p … u 6 p

(-3, 4)(23, -1)

(-3, 0d

r Ú 00 … u 6 2p

A223, 2p>3 Bs -1, 7pd
s5, tan-1 s4>3dds -3, 5p>6d
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11.4 Graphing in Polar Coordinates 649

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

25.

26.

Polar to Cartesian Equations
Replace the polar equations in Exercises 27–52 with equivalent Carte-
sian equations. Then describe or identify the graph.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42. r sin u = ln r + ln cos ur = csc u er cos u

r = 4 tan u sec ur = cot u csc u

r2 sin 2u = 2r =

5
sin u - 2 cos u

r2
= 4r sin ur2

= 1

r sin u = r cos ur cos u + r sin u = 1

r = -3 sec ur = 4 csc u

r cos u = 0r sin u = 0

r sin u = -1r cos u = 2

0 … u … p>2, 1 … ƒ r ƒ … 2

-p>2 … u … p>2, 1 … r … 2

-p>4 … u … p>4, -1 … r … 1

p>4 … u … 3p>4, 0 … r … 1

0 … u … p, r = -10 … u … p, r = 1

u = p>2, r … 0u = p>2, r Ú 0

u = 11p>4, r Ú -1u = p>3, -1 … r … 3

u = 2p>3, r … -20 … u … p>6, r Ú 0 43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

Cartesian to Polar Equations
Replace the Cartesian equations in Exercises 53–66 with equivalent
polar equations.

53. 54. 55.

56. 57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. Find all polar coordinates of the origin.

68. Vertical and horizontal lines

a. Show that every vertical line in the xy-plane has a polar equa-
tion of the form 

b. Find the analogous polar equation for horizontal lines in the
xy-plane.

r = a sec u .

sx + 2d2
+ s y - 5d2

= 16sx - 3d2
+ s y + 1d2

= 4

sx - 5d2
+ y2

= 25x2
+ s y - 2d2

= 4

x2
+ xy + y2

= 1y2
= 4x

xy = 2
x2

9
+

y2

4
= 1

x2
- y2

= 1x2
+ y2

= 4x - y = 3

x = yy = 1x = 7

r sin a2p
3

- ub = 5r sin au +

p

6
b = 2

r = 2 cos u - sin ur = 2 cos u + 2 sin u

r = 3 cos ur = 8 sin u

r2
= -6r sin ur2

= -4r cos u

cos2 u = sin2 ur2
+ 2r2 cos u sin u = 1

11.4 Graphing in Polar Coordinates

It is often helpful to have the graph of an equation in polar coordinates. This section de-
scribes techniques for graphing these equations using symmetries and tangents to the
graph.

Symmetry

Figure 11.26 illustrates the standard polar coordinate tests for symmetry. The following
summary says how the symmetric points are related.

Symmetry Tests for Polar Graphs

1. Symmetry about the x-axis: If the point lies on the graph, then the point
or lies on the graph (Figure 11.26a).

2. Symmetry about the y-axis: If the point lies on the graph, then the point
or lies on the graph (Figure 11.26b).

3. Symmetry about the origin: If the point lies on the graph, then the point
or lies on the graph (Figure 11.26c).sr, u + pds -r, ud

sr, ud
s -r, -udsr, p - ud

sr, ud
s -r, p - udsr, -ud

sr, ud
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650 Chapter 11: Parametric Equations and Polar Coordinates

Slope

The slope of a polar curve in the xy-plane is still given by dy dx, which is not
To see why, think of the graph of ƒ as the graph of the parametric equations

If ƒ is a differentiable function of then so are x and y and, when we can cal-
culate dy dx from the parametric formula

Therefore we see that is not the same as dƒ>du.dy>dx

 =

df
du

 sin u + ƒsud cos u

df
du

 cos u - ƒsud sin u

 =

d
du

 sƒsud #  sin ud

d
du

 sƒsud #  cos ud

 
dy
dx

=

dy>du
dx>du

> dx>du Z 0,u ,

x = r cos u = ƒsud cos u, y = r sin u = ƒsud sin u .

r¿ = dƒ>du .
>r = ƒsud

x

y

(r, �)

(r, –�)
or (–r, � � �)

0

(a)  About the x-axis

x
0

x

y

(–r, �) or (r, � � �)

(c)  About the origin

(r, �)

x

y

0

(b)  About the y-axis

(r, � � �)
or (–r, –�) (r, �)

(–

FIGURE 11.26 Three tests for
symmetry in polar coordinates.

Section 11.2, Eq. (1)
with t = u

Product Rule for derivatives

Slope of the Curve ( )

provided at sr, ud .dx>du Z 0

dy
dx
`
sr, ud

=

ƒ¿sud sin u + ƒsud cos u

ƒ¿sud cos u - ƒsud sin u
,

ur = ƒ

If the curve passes through the origin at then and the slope
equation gives

If the graph of passes through the origin at the value the slope of the
curve there is tan The reason we say “slope at ” and not just “slope at the origin”
is that a polar curve may pass through the origin (or any point) more than once, with dif-
ferent slopes at different This is not the case in our first example, however.

EXAMPLE 1 Graph the curve 

Solution The curve is symmetric about the x-axis because

 Q  sr, -ud on the graph.

 Q  r = 1 - cos s -ud

 sr, ud on the graph Q  r = 1 - cos u

r = 1 - cos u .

u-values.

s0, u0du0 .
u = u0 ,r = ƒsud

dy
dx
`
s0, u0d

=

ƒ¿su0d sin u0

ƒ¿su0d cos u0
= tan u0 .

ƒsu0d = 0,u = u0 ,r = ƒsud

cos u = cos s -ud
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As increases from 0 to decreases from 1 to and increases
from a minimum value of 0 to a maximum value of 2. As continues on from to

increases from back to 1 and r decreases from 2 back to 0. The curve starts to
repeat when because the cosine has period 

The curve leaves the origin with slope and returns to the origin with slope

We make a table of values from to plot the points, draw a smooth curve
through them with a horizontal tangent at the origin, and reflect the curve across the x-axis
to complete the graph (Figure 11.27). The curve is called a cardioid because of its heart
shape.

EXAMPLE 2 Graph the curve 

Solution The equation requires so we get the entire graph by
running from to The curve is symmetric about the x-axis because

The curve is also symmetric about the origin because

Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when and It has a vertical

tangent both times because is infinite.
For each value of in the interval between and the formula 

gives two values of r:

We make a short table of values, plot the corresponding points, and use information
about symmetry and tangents to guide us in connecting the points with a smooth curve
(Figure 11.28).

r = ;22cos u .

r2
= 4 cos up>2,-p>2u

tan u

u = p>2.u = -p>2
 Q  s -r, ud on the graph.

 Q  s -rd2
= 4 cos u

 sr, ud on the graph Q  r2
= 4 cos u

 Q  sr, -ud on the graph.

cos  u = cos (-u) Q  r2
= 4 cos s -ud

 sr, ud on the graph Q  r2
= 4 cos u

p>2.-p>2u

cos u Ú 0,r2
= 4 cos u

r2
= 4 cos u .

u = p ,u = 0
tan s2pd = 0.

tan s0d = 0
2p .u = 2p

-12p, cos u

pu

r = 1 - cos u-1,p, cos uu
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� r � 1 � cos �

0 0

�

�
3
�
2

2�
3

1

1
2

2

3
2

(a)

(�, 2)

(�, 2)

3
2

(b)

x

y

02

1

(c)

y

x
02

1

–

r � 1 � cos �

2�
3

3
2

⎛
⎝

⎛
⎝

,

⎛
⎝

⎛
⎝1, �

2

�
3

1
2

⎛
⎝

⎛
⎝

,

2�
3

3
2

⎛
⎝

⎛
⎝

,

4�
3

3
2

⎛
⎝

⎛
⎝

,

⎛
⎝

⎛
⎝1, �

2

⎛
⎝

⎛
⎝1, 3�

2

�
3

1
2

⎛
⎝

⎛
⎝

,

�
3

1
2

⎛
⎝

⎛
⎝

,

FIGURE 11.27 The steps in graphing the
cardioid (Example 1). The
arrow shows the direction of increasing u .

r = 1 - cos u

� cos � r � �2 �cos �

0 1 �2 

�1.9 �
6

� �3
2

�1.7 �
4

�
�2
1

�1.4 

�

�

��
3

�
2
1

0 
�
2

� 0

(a)

(b)

x

y
r2 � 4 cos �

2 2
0

Loop for r � –2�cos �,

 � �  � �
2

�
2

–

Loop for r � 2�cos �,

 � �  � �
2

�
2

–

FIGURE 11.28 The graph of The arrows show the direction
of increasing The values of r in the table are rounded (Example 2).u .

r2
= 4 cos u .
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652 Chapter 11: Parametric Equations and Polar Coordinates

A Technique for Graphing

One way to graph a polar equation is to make a table of plot the
corresponding points, and connect them in order of increasing This can work well if
enough points have been plotted to reveal all the loops and dimples in the graph. Another
method of graphing that is usually quicker and more reliable is to

1. first graph in the Cartesian

2. then use the Cartesian graph as a “table” and guide to sketch the polar coordinate
graph.

This method is better than simple point plotting because the first Cartesian graph,
even when hastily drawn, shows at a glance where r is positive, negative, and nonexistent, 
as well as where r is increasing and decreasing. Here’s an example.

EXAMPLE 3 Graph the lemniscate curve

Solution Here we begin by plotting (not r) as a function of in the Cartesian
See Figure 11.29a. We pass from there to the graph of in the

(Figure 11.29b), and then draw the polar graph (Figure 11.29c). The graph in
Figure 11.29b “covers” the final polar graph in Figure 11.29c twice. We could have
managed with either loop alone, with the two upper halves, or with the two lower
halves. The double covering does no harm, however, and we actually learn a little more
about the behavior of the function this way.

ru-plane
r = ;2sin 2ur2u-plane.
ur2

r2
= sin 2u .

ru-plane,r = ƒsud

u .
(r, u)-values,r = ƒsud

–1

0

1

3�
2�2

�
4

�

�

2

r2 � sin 2�

(a)

(b)

(c)

–1

1

0

r � ��sin 2�

r � ��sin 2�

� �
2

3�
2

r2

�

�

r

No square roots of
negative numbers

� parts from
square roots

x

y

r2 � sin 2�

0

FIGURE 11.29 To plot in the
Cartesian in (b), we first plot

in the in (a) and then
ignore the values of for which is
negative. The radii from the sketch in (b)
cover the polar graph of the lemniscate in
(c) twice (Example 3).

sin 2uu

r2u-planer2
= sin 2u

ru-plane
r = ƒsud

USING TECHNOLOGY Graphing Polar Curves Parametrically

For complicated polar curves we may need to use a graphing calculator or computer to
graph the curve. If the device does not plot polar graphs directly, we can convert

into parametric form using the equations

Then we use the device to draw a parametrized curve in the Cartesian xy-plane. It may be
necessary to use the parameter t rather than for the graphing device.u

x = r cos u = ƒsud cos u, y = r sin u = ƒsud sin u .

r = ƒsud

Exercises 11.4

Symmetries and Polar Graphs
Identify the symmetries of the curves in Exercises 1–12. Then sketch
the curves.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. r2
= -cos ur2

= -sin u

r2
= sin ur2

= cos u

r = cos su>2dr = sin su>2d

r = 1 + 2 sin ur = 2 + sin u

r = 1 + sin ur = 1 - sin u

r = 2 - 2 cos ur = 1 + cos u

Graph the lemniscates in Exercises 13–16. What symmetries do these
curves have?

13. 14.

15. 16.

Slopes of Polar Curves
Find the slopes of the curves in Exercises 17–20 at the given points.
Sketch the curves along with their tangents at these points.

17. Cardioid

18. Cardioid

19. Four-leaved rose

20. Four-leaved rose r = cos 2u; u = 0, ;p>2, p

r = sin 2u; u = ;p>4, ;3p>4
r = -1 + sin u; u = 0, p

r = -1 + cos u; u = ;p>2

r2
= -cos 2ur2

= -sin 2u

r2
= 4 sin 2ur2

= 4 cos 2u
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Graphing Limaçons
Graph the limaçons in Exercises 21–24. Limaçon (“lee-ma-sahn”) is
Old French for “snail.” You will understand the name when you graph
the limaçons in Exercise 21. Equations for limaçons have the form

or There are four basic shapes.

21. Limaçons with an inner loop

a. b.

22. Cardioids

a. b.

23. Dimpled limaçons

a. b.

24. Oval limaçons

a. b.

Graphing Polar Regions and Curves
25. Sketch the region defined by the inequalities and

26. Sketch the region defined by the inequalities 
and 

In Exercises 27 and 28, sketch the region defined by the inequality.

27. 28. 0 … r2
… cos u0 … r … 2 - 2 cos u

-p>4 … u … p>4.
0 … r … 2 sec u

-p>2 … u … p>2.
-1 … r … 2

r = -2 + sin ur = 2 + cos u

r =

3
2

- sin ur =

3
2

+ cos u

r = -1 + sin ur = 1 - cos u

r =

1
2

+ sin ur =

1
2

+ cos u

r = a ; b sin u .r = a ; b cos u

11.5 Areas and Lengths in Polar Coordinates 653

29. Which of the following has the same graph as 

a.

b.

Confirm your answer with algebra.

30. Which of the following has the same graph as 

a.

b.

Confirm your answer with algebra.

31. A rose within a rose Graph the equation 

32. The nephroid of Freeth Graph the nephroid of Freeth:

33. Roses Graph the roses for and 7.

34. Spirals Polar coordinates are just the thing for defining spirals.
Graph the following spirals.

a.

b.

c. A logarithmic spiral:

d. A hyperbolic spiral:

e. An equilateral hyperbola:

(Use different colors for the two branches.)

r = ;10>2u
r = 8>u
r = eu>10

r = -u

r = u

m = 1>3, 2, 3 ,r = cos mu

r = 1 + 2 sin 
u

2
.

r = 1 - 2 sin 3u .

r = -cos su>2d
r = -sin s2u + p>2d

r = cos 2u?

r = 1 + cos u

r = -1 - cos u

r = 1 - cos u?T

T

T

T

T

T

11.5 Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions and lengths of curves in polar
coordinates. The defining ideas are the same as before, but the formulas are different in
polar versus Cartesian coordinates.

Area in the Plane

The region OTS in Figure 11.30 is bounded by the rays and and the curve
We approximate the region with n nonoverlapping fan-shaped circular sec-

tors based on a partition P of angle TOS. The typical sector has radius and
central angle of radian measure Its area is times the area of a circle of 
radius or

The area of region OTS is approximately

If ƒ is continuous, we expect the approximations to improve as the norm of the parti-
tion P goes to zero, where the norm of P is the largest value of . We are then led to the
following formula defining the region’s area:

¢uk

a

n

k = 1
 Ak = a

n

k = 1
 
1
2

 Aƒsukd B2 ¢uk .

Ak =
1
2

 rk
2 ¢uk =

1
2

 Aƒsukd B2 ¢uk .

rk ,
¢uk>2p¢uk .

rk = ƒsukd
r = ƒsud .

u = bu = a

x

y

O

S rn

rk

� � �

� � �r1

r2

�k

r � f (�)

( f (�k), �k)

��k

T

FIGURE 11.30 To derive a formula for
the area of region OTS, we approximate the
region with fan-shaped circular sectors.
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654 Chapter 11: Parametric Equations and Polar Coordinates

EXAMPLE 1 Find the area of the region in the plane enclosed by the cardioid

Solution We graph the cardioid (Figure 11.32) and determine that the radius OP sweeps
out the region exactly once as runs from 0 to The area is therefore

To find the area of a region like the one in Figure 11.33, which lies between two polar
curves and from to we subtract the integral of

from the integral of This leads to the following formula.s1>2dr2
2 du .s1>2dr1

2 du
u = b ,u = ar2 = r2sudr1 = r1sud

 = c3u + 4 sin u +

sin 2u
2
d

0

2p

= 6p - 0 = 6p .

 =

L

2p

0
s3 + 4 cos u + cos 2ud du

 =

L

2p

0
a2 + 4 cos u + 2 

1 + cos 2u
2

b  du

 =

L

2p

0
2s1 + 2 cos u + cos2 ud du

 
L

u= 2p

u= 0
 
1
2

 r 2 du =

L

2p

0
 
1
2

# 4s1 + cos ud2 du

2p .u

r = 2s1 + cos ud .

O
x

y

P(r, �)

d�

�

r

dA �    r 2d�1
2

FIGURE 11.31 The area differential dA
for the curve r = ƒ(u).

x

y

0 4

r

r 5 2(1 1 cos u)

u 5 0, 2p

P(r, u)2

–2

FIGURE 11.32 The cardioid in Example 1.

Area of the Fan-Shaped Region Between the Origin and the Curve
,

This is the integral of the area differential (Figure 11.31)

dA =
1
2

 r2 du =
1
2

 Aƒ(u) B2 du .

A =

L

b

a

 
1
2

 r2 du .

 A … U … Br = ƒsUd

y

x
0

u 5 b

u 5 a

r2

r1

FIGURE 11.33 The area of the shaded
region is calculated by subtracting the area
of the region between and the origin
from the area of the region between and
the origin.

r2

r1

x

y

0

r2 5 1

r1 5 1 2 cos u 

Upper limit
u 5 p�2

Lower limit
u 5 –p�2

u

FIGURE 11.34 The region and limits of
integration in Example 2.

Area of the Region 

(1)A =

L

b

a

 
1
2

 r2
2 du -

L

b

a

 
1
2

 r1
2 du =

L

b

a

 
1
2

 Ar2
2

- r1
2 B  du

0 … r1sUd … r … r2sUd, A … U … B

EXAMPLE 2 Find the area of the region that lies inside the circle and outside the
cardioid 

Solution We sketch the region to determine its boundaries and find the limits of integra-
tion (Figure 11.34). The outer curve is the inner curve is and 
runs from to The area, from Equation (1), isp>2.-p>2 ur1 = 1 - cos u ,r2 = 1,

r = 1 - cos u .
r = 1

 =

L

b

a

 
1
2

 Aƒsud B2 du .

A = lim
‘ P ‘:0

 a

n

k = 1
 
1
2

 Aƒsukd B2 ¢uk
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The fact that we can represent a point in different ways in polar coordinates requires extra
care in deciding when a point lies on the graph of a polar equation and in determining the
points in which polar graphs intersect. (We needed intersection points in Example 2.) In
Cartesian coordinates, we can always find the points where two curves cross by solving
their equations simultaneously. In polar coordinates, the story is different. Simultaneous so-
lution may reveal some intersection points without revealing others, so it is sometimes dif-
ficult to find all points of intersection of two polar curves. One way to identify all the points
of intersection is to graph the equations.

Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve 
by parametrizing the curve as

(2)

The parametric length formula, Equation (3) from Section 11.2, then gives the length as

This equation becomes

when Equations (2) are substituted for x and y (Exercise 29).

L =

L

b

a Br2
+ adr

du
b2

 du

L =

L

b

a B a
dx
du
b2

+ ady
du
b2

 du .

x = r cos u = ƒsud cos u, y = r sin u = ƒsud sin u, a … u … b .

r = ƒsud, a … u … b ,

 = c2 sin u -

u
2

-

sin 2u
4
d

0

p>2
= 2 -

p
4

.

 =

L

p>2
0

s2 cos u - cos2 ud du =

L

p>2
0
a2 cos u -

1 + cos 2u
2

b  du

 =

L

p>2
0

s1 - s1 - 2 cos u + cos2 udd du

 = 2
L

p>2
0

 
1
2

 Ar2
2

- r1
2 B  du

 A =

L

p>2
-p>2  

1
2

 Ar2
2

- r1
2 B  du

11.5 Areas and Lengths in Polar Coordinates 655

Square .r1

Symmetry

Length of a Polar Curve
If has a continuous first derivative for and if the point

traces the curve exactly once as runs from to then the
length of the curve is

(3)L =

L

b

a Br2
+ adr

du
b2

 du .

b ,aur = ƒsudPsr, ud
a … u … br = ƒsud

EXAMPLE 3 Find the length of the cardioid 

Solution We sketch the cardioid to determine the limits of integration (Figure 11.35). The
point traces the curve once, counterclockwise as runs from 0 to so these are
the values we take for and b .a

2p ,uPsr, ud

r = 1 - cos u .

0

1

2

r

x

y

�

r � 1 � cos � 

P(r, �)

FIGURE 11.35 Calculating the length of
a cardioid (Example 3).
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656 Chapter 11: Parametric Equations and Polar Coordinates

With

we have

and

 = c-4 cos 
u
2
d

0

2p

= 4 + 4 = 8.

 =

L

2p

0
2 sin 

u
2

 du

 =

L

2p

0
2 ` sin 

u
2
` du

 =

L

2p

0 A4 sin 2 
u
2

 du

 L =

L

b

a Br2
+ adr

du
b2

 du =

L

2p

0
22 - 2 cos u du

 = 1 - 2 cos u + cos2 u + sin2 u = 2 - 2 cos u
('')''*

1

 r2
+ adr

du
b2

= s1 - cos ud2
+ ssin ud2

r = 1 - cos u, dr
du

= sin u ,

EXERCISES 11.5

Finding Polar Areas
Find the areas of the regions in Exercises 1–8.

1. Bounded by the spiral for 

2. Bounded by the circle for 

3. Inside the oval limaçon r = 4 + 2 cos u

x

y

0

r 5 2 sin u

⎛
⎝

⎛
⎝2

p
2

,

u 5 p
4

p>4 … u … p>2r = 2 sin u

x

y

0

r 5 u
⎛
⎝

⎛
⎝

p
2

p
2

,

(p, p)

0 … u … pr = u

4. Inside the cardioid 

5. Inside one leaf of the four-leaved rose 

6. Inside one leaf of the three-leaved rose 

7. Inside one loop of the lemniscate 

8. Inside the six-leaved rose 

Find the areas of the regions in Exercises 9–16.

9. Shared by the circles and 

10. Shared by the circles and 

11. Shared by the circle and the cardioid 

12. Shared by the cardioids and 

13. Inside the lemniscate and outside the circle 23r =r2
= 6 cos 2u

r = 2s1 - cos udr = 2s1 + cos ud
r = 2s1 - cos udr = 2

r = 2 sin ur = 1

r = 2 sin ur = 2 cos u

r2
= 2 sin 3u

r2
= 4 sin 2u

x

y

1

r 5 cos 3u

r = cos 3u

r = cos 2u

r = as1 + cos ud, a 7 0

1 - cos u = 2 sin2 (u>2)

sin (u>2) Ú 0 for 0 … u … 2p
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14. Inside the circle and outside the cardioid 

15. Inside the circle and outside the circle 

16. Inside the circle above the line 

17. Inside the circle and to the right of the vertical line

18. Inside the circle and below the horizontal line

19. a. Find the area of the shaded region in the accompanying figure.

b. It looks as if the graph of 
could be asymptotic to the lines and Is it?
Give reasons for your answer.

20. The area of the region that lies inside the cardioid curve
and outside the circle is not

Why not? What is the area? Give reasons for your answers.

Finding Lengths of Polar Curves
Find the lengths of the curves in Exercises 21–28.

21. The spiral 

22. The spiral 

23. The cardioid 

24. The curve 

25. The parabolic segment 

26. The parabolic segment r = 2>s1 - cos ud, p>2 … u … p

r = 6>s1 + cos ud, 0 … u … p>2
r = a sin2 su>2d, 0 … u … p, a 7 0

r = 1 + cos u

r = eu>22, 0 … u … p

r = u2, 0 … u … 25

1
2L

2p

0
[scos u + 1d2

- cos2 u] du = p .

r = cos ur = cos u + 1

x = -1.x = 1
r = tan u, -p>2 6 u 6 p>2,

x

y

0 1–1

(1, ��4)

r � tan �

� � �
�
2

�
2

–

r � (�2�2) csc �

r = 3 csc u

r = 4 sin u

r = sec u
r = 4 cos u

r = 3 csc ur = 6

r = 1r = -2 cos u

as1 + cos ud, a 7 0r =

r = 3a cos u 27. The curve 

28. The curve 

29. The length of the curve ( ), Assuming
that the necessary derivatives are continuous, show how the sub-
stitutions

(Equations 2 in the text) transform

into

30. Circumferences of circles As usual, when faced with a new
formula, it is a good idea to try it on familiar objects to be sure it
gives results consistent with past experience. Use the length for-
mula in Equation (3) to calculate the circumferences of the fol-
lowing circles 

a. b. c.

Theory and Examples
31. Average value If ƒ is continuous, the average value of the polar

coordinate r over the curve with respect
to is given by the formula

Use this formula to find the average value of r with respect to 
over the following curves 

a. The cardioid 

b. The circle 

c. The circle 

32. ( ) ( ) Can anything be said about the relative
lengths of the curves and 

Give reasons for your answer.a … u … b ?
r = 2ƒsud,r = ƒsud,  a … u … b ,

Uvs. r � 2ƒUr � ƒ

r = a cos u, -p>2 … u … p>2
r = a

r = as1 - cos ud
sa 7 0d .

u

rav =

1
b - a

 
L

b

a
ƒsud du .

u

r = ƒsud, a … u … b ,

r = a sin ur = a cos ur = a

sa 7 0d.

L =

L

b

a Br2
+ adr

du
b2

 du .

L =

L

b

a B a
dx
du
b2

+ ady

du
b2

 du

x = ƒsud cos u, y = ƒsud sin u

A … U … BUr � ƒ

r = 21 + sin 2u, 0 … u … p22

r = cos3 su>3d, 0 … u … p>4

11.6 Conic Sections

In this section we define and review parabolas, ellipses, and hyperbolas geometrically and 
derive their standard Cartesian equations. These curves are called conic sections or conics be-
cause they are formed by cutting a double cone with a plane (Figure 11.36). This geometry
method was the only way they could be described by Greek mathematicians who did not have
our tools of Cartesian or polar coordinates. In the next section we express the conics in polar
coordinates.

Parabolas

DEFINITIONS A set that consists of all the points in a plane equidistant from
a given fixed point and a given fixed line in the plane is a parabola. The fixed
point is the focus of the parabola. The fixed line is the directrix.
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658 Chapter 11: Parametric Equations and Polar Coordinates

Circle: plane perpendicular
to cone axis

Ellipse: plane oblique
to cone axis

Point: plane through
cone vertex only

Single line: plane
tangent to cone

Pair of intersecting lines

Parabola: plane parallel
to side of cone

Hyperbola: plane cuts
both halves of cone

(a)

(b)

FIGURE 11.36 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts,
called branches. The point and lines obtained by passing the plane through the cone’s vertex (b) are degenerate conic sections.

If the focus F lies on the directrix L, the parabola is the line through F perpendicular to
L. We consider this to be a degenerate case and assume henceforth that F does not lie on L.

A parabola has its simplest equation when its focus and directrix straddle one of the 
coordinate axes. For example, suppose that the focus lies at the point F(0, p) on the positive 
y-axis and that the directrix is the line (Figure 11.37). In the notation of the figure,
a point P(x, y) lies on the parabola if and only if From the distance formula,

When we equate these expressions, square, and simplify, we get

Standard form (1)

These equations reveal the parabola’s symmetry about the y-axis. We call the y-axis the
axis of the parabola (short for “axis of symmetry”).

The point where a parabola crosses its axis is the vertex. The vertex of the parabola
lies at the origin (Figure 11.37). The positive number p is the parabola’s focal length.x2

= 4py

y =
x2

4p
 or x2

= 4py .

 PQ = 2sx - xd2
+ ( y - s -pdd2

= 2s y + pd2 .

 PF = 2sx - 0d2
+ s y - pd2

= 2x2
+ s y - pd2

PF = PQ .
y = -p

Directrix: y � –p

The vertex lies
halfway between
directrix and focus.

Q(x, –p)

P(x, y)

F(0, p)
Focus

p

p

x2 � 4py

L

x

y

FIGURE 11.37 The standard form of the
parabola x2

= 4py, p 7 0.
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If the parabola opens downward, with its focus at and its directrix the line
then Equations (1) become

By interchanging the variables x and y, we obtain similar equations for parabolas opening
to the right or to the left (Figure 11.38).

y = -
x2

4p
 and x2

= -4py.

y = p ,
s0, -pd

11.6 Conic Sections 659

Vertex

Directrix
x � –p

0

Focus

F(p, 0)

y2 � 4px

x

y

(a)

Directrix
x � p

0

Focus

F(–p, 0)

y2 � –4px

Vertex

x

y

(b)

FIGURE 11.38 (a) The parabola (b) The parabola y2
= -4px .y2

= 4px .

EXAMPLE 1 Find the focus and directrix of the parabola 

Solution We find the value of p in the standard equation 

Then we find the focus and directrix for this value of p:

Ellipses

Directrix: x = -p or x = -
5
2

.

Focus: s p, 0d = a5
2

, 0b

4p = 10, so p =
10
4

=
5
2

.

y2
= 4px :

y2
= 10x .

DEFINITIONS An ellipse is the set of points in a plane whose distances
from two fixed points in the plane have a constant sum. The two fixed points
are the foci of the ellipse.

The line through the foci of an ellipse is the ellipse’s focal axis. The point on
the axis halfway between the foci is the center. The points where the focal axis
and ellipse cross are the ellipse’s vertices (Figure 11.39).

Vertex VertexFocus FocusCenter

Focal axis

FIGURE 11.39 Points on the focal axis of
an ellipse.

If the foci are and (Figure 11.40), and is denoted by 2a,
then the coordinates of a point P on the ellipse satisfy the equation

2sx + cd2
+ y2

+ 2sx - cd2
+ y2

= 2a .

PF1 + PF2F2sc, 0dF1s -c, 0d

x

y

Focus Focus

Center0F1(–c, 0)
F2(c, 0)

P(x, y)

a

b

FIGURE 11.40 The ellipse defined by the
equation is the graph of
the equation 
where b2

= a2
- c2.

sx2>a2d + s y2>b2d = 1,
PF1 + PF2 = 2a
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660 Chapter 11: Parametric Equations and Polar Coordinates

To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

(2)

Since is greater than the length (by the triangle inequality for triangle
), the number 2a is greater than 2c. Accordingly, and the number in

Equation (2) is positive.
The algebraic steps leading to Equation (2) can be reversed to show that every point P

whose coordinates satisfy an equation of this form with also satisfies the equa-
tion A point therefore lies on the ellipse if and only if its coordinates
satisfy Equation (2).

If

(3)

then and Equation (2) takes the form

(4)

Equation (4) reveals that this ellipse is symmetric with respect to the origin and both
coordinate axes. It lies inside the rectangle bounded by the lines and It
crosses the axes at the points and The tangents at these points are perpen-
dicular to the axes because

is zero if and infinite if 
The major axis of the ellipse in Equation (4) is the line segment of length 2a joining

the points The minor axis is the line segment of length 2b joining the points
The number a itself is the semimajor axis, the number b the semiminor axis.

The number c, found from Equation (3) as

is the center-to-focus distance of the ellipse. If , the ellipse is a circle.

EXAMPLE 2 The ellipse

(5)

(Figure 11.41) has

If we interchange x and y in Equation (5), we have the equation

. (6)

The major axis of this ellipse is now vertical instead of horizontal, with the foci and ver-
tices on the y-axis. There is no confusion in analyzing Equations (5) and (6). If we find the
intercepts on the coordinate axes, we will know which way the major axis runs because it
is the longer of the two axes.

x2

9
+

y2

16
= 1

Center: s0, 0d .

Vertices: s ;a, 0d = s ;4, 0d

Foci: s ;c, 0d = A ;27, 0 B
Center-to-focus distance: c = 216 - 9 = 27

Semimajor axis: a = 216 = 4, Semiminor axis: b = 29 = 3

x2

16
+

y2

9
= 1

a = b

c = 2a2
- b2 ,

s0, ;bd .
s ;a, 0d .

y = 0.x = 0

dy
dx

= -
b2x
a2y

s0, ;bd .s ;a, 0d
y = ;b .x = ;a

x2

a2 +

y2

b2 = 1.

a2
- c2

= b2

b = 2a2
- c2 ,

PF1 + PF2 = 2a .
0 6 c 6 a

a2
- c2a 7 cPF1 F2

F1 F2PF1 + PF2

x2

a2 +

y2

a2
- c2 = 1.

x

y

(0, 3)

(0, –3)

Vertex
(4, 0)

Vertex
(–4, 0)

Focus Focus

Center

0(–�7, 0) (�7, 0)

x2

16
y2

9
�      � 1

FIGURE 11.41 An ellipse with its major
axis horizontal (Example 2).

Obtained from Eq. (4) 
by implicit differentiation
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Hyperbolas

11.6 Conic Sections 661

Standard-Form Equations for Ellipses Centered at the Origin

:

:

In each case, a is the semimajor axis and b is the semiminor axis.

Vertices: s0, ;ad
Foci: s0, ;cd
Center-to-focus distance: c = 2a2

- b2

x2

b2 +

y2

a2 = 1 sa 7 bdFoci on the y-axis

Vertices: s ;a, 0d
Foci: s ;c, 0d
Center-to-focus distance: c = 2a2

- b2

x2

a2 +

y2

b2 = 1 sa 7 bdFoci on the x-axis

Focus Focus

Center

Focal axis

Vertices

FIGURE 11.42 Points on the focal axis of
a hyperbola.

If the foci are and (Figure 11.43) and the constant difference is 2a,
then a point (x, y) lies on the hyperbola if and only if

(7)

To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

(8)

So far, this looks just like the equation for an ellipse. But now is negative because
2a, being the difference of two sides of triangle is less than 2c, the third side.

The algebraic steps leading to Equation (8) can be reversed to show that every point
P whose coordinates satisfy an equation of this form with also satisfies
Equation (7). A point therefore lies on the hyperbola if and only if its coordinates satisfy
Equation (8).

If we let b denote the positive square root of 

(9)

then and Equation (8) takes the more compact form

(10)
x2

a2 -

y2

b2 = 1.

a2
- c2

= -b2

b = 2c2
- a2 ,

c2
- a2 ,

0 6 a 6 c

PF1 F2 ,
a2

- c2

x2

a2 +

y2

a2
- c2 = 1.

2sx + cd2
+ y2

- 2sx - cd2
+ y2

= ;2a .

F2sc, 0dF1s -c, 0d

DEFINITIONS A hyperbola is the set of points in a plane whose distances
from two fixed points in the plane have a constant difference. The two fixed
points are the foci of the hyperbola.

The line through the foci of a hyperbola is the focal axis. The point on the
axis halfway between the foci is the hyperbola’s center. The points where the 
focal axis and hyperbola cross are the vertices (Figure 11.42).

x

y

0F1(–c, 0) F2(c, 0)

x � –a x � a

P(x, y)

FIGURE 11.43 Hyperbolas have two
branches. For points on the right-hand
branch of the hyperbola shown here,

For points on the left-
hand branch, We then
let b = 2c2

- a2.
PF2 - PF1 = 2a .

PF1 - PF2 = 2a .
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662 Chapter 11: Parametric Equations and Polar Coordinates

The differences between Equation (10) and the equation for an ellipse (Equation 4) are the
minus sign and the new relation

From Eq. (9)

Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate
axes. It crosses the x-axis at the points The tangents at these points are vertical
because

is infinite when The hyperbola has no y-intercepts; in fact, no part of the curve lies
between the lines and 

The lines

are the two asymptotes of the hyperbola defined by Equation (10). The fastest way to find
the equations of the asymptotes is to replace the 1 in Equation (10) by 0 and solve the new
equation for y:

EXAMPLE 3 The equation

(11)

is Equation (10) with and (Figure 11.44). We have

If we interchange x and y in Equation (11), the foci and vertices of the resulting 
hyperbola will lie along the y-axis. We still find the asymptotes in the same way as before,
but now their equations will be .y = ;2x>25

Asymptotes: x2

4
-

y2

5 = 0 or y = ;

25
2

 x .

Center: s0, 0d
Foci: s ;c, 0d = s ;3, 0d, Vertices: s ;a, 0d = s ;2, 0d
Center-to-focus distance: c = 2a2

+ b2
= 24 + 5 = 3

b2
= 5a2

= 4

x2

4
-

y2

5 = 1

x2

a2 -

y2

b2 = 1 :  
x2

a2 -

y2

b2 = 0 :  y = ;
b
a x.

('')''* ('')''* (')'*

y = ;
b
a x

x = a .x = -a
y = 0.

dy
dx

=
b2x
a2y

s ;a, 0d .

c2
= a2

+ b2 .

Obtained from Eq. (10) 
by implicit differentiation

hyperbola 0 for 1 asymptotes

Standard-Form Equations for Hyperbolas Centered at the Origin

:

Notice the difference in the asymptote equations (b a in the first, a b in the second).>>
 Asymptotes: x2

a2 -

y2

b2 = 0 or y = ;
b
a x

 Vertices: s ;a, 0d

 Foci: s ;c, 0d

 Center-to-focus distance: c = 2a2
+ b2

x2

a2 -

y2

b2 = 1Foci on the x-axis :

 Asymptotes: 
y2

a2 -
x2

b2 = 0 or y = ;
a
b

 x

 Vertices: s0, ;ad

 Foci: s0, ;cd

 Center-to-focus distance: c = 2a2
+ b2

y2

a2 -
x2

b2 = 1Foci on the y-axis

x

y

F(3, 0)F(–3, 0)

2–2

y � –       x�5
2

y �        x�5
2

x2

4
y2

5
�      � 1

FIGURE 11.44 The hyperbola and its
asymptotes in Example 3.
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We shift conics using the principles reviewed in Section 1.2, replacing x by and
y by .

EXAMPLE 4 Show that the equation represents a hy-
perbola. Find its center, asymptotes, and foci.

Solution We reduce the equation to standard form by completing the square in x and y as
follows:

This is the standard form Equation (10) of a hyperbola with x replaced by and y
replaced by . The hyperbola is shifted one unit to the left and one unit upward, and it
has center and , or and . Moreover,

,

so the asymptotes are the two lines

.

The shifted foci have coordinates A -1 ;  25, 1 B .
x + 1

2
- ( y - 1) = 0 and x + 1

2
+ ( y - 1) = 0

a2
= 4, b2

= 1, c2
= a2

+ b2
= 5

y = 1x = -1y - 1 = 0x + 1 = 0
y - 1

x + 1

 
(x + 1)2

4
- ( y - 1)2

= 1.

 (x2
+ 2x + 1) - 4( y2

- 2y + 1) = 7 + 1 - 4

(x2
+ 2x) - 4( y2

- 2y) = 7

x2
- 4y2

+ 2x + 8y - 7 = 0

y + k
x + h

11.6 Conic Sections 663

Exercises 11.6

Identifying Graphs
Match the parabolas in Exercises 1–4 with the following equations:

Then find each parabola’s focus and directrix.

1. 2.

3. 4.

x

y

x

y

x

y

x

y

x2
= 2y, x2

= -6y, y2
= 8x, y2

= -4x .

Match each conic section in Exercises 5–8 with one of these equations:

Then find the conic section’s foci and vertices. If the conic section is a
hyperbola, find its asymptotes as well.

5. 6.

x

y

x

y

 
y2

4
- x2

= 1, x2

4
-

y2

9
= 1.

 
x2

4
+

y2

9
= 1, x2

2
+ y2

= 1, 
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664 Chapter 11: Parametric Equations and Polar Coordinates

7. 8.

Parabolas
Exercises 9–16 give equations of parabolas. Find each parabola’s fo-
cus and directrix. Then sketch the parabola. Include the focus and di-
rectrix in your sketch.

9. 10. 11.

12. 13. 14.

15. 16.

Ellipses
Exercises 17–24 give equations for ellipses. Put each equation in stan-
dard form. Then sketch the ellipse. Include the foci in your sketch.

17. 18.

19. 20.

21. 22.

23. 24.

Exercises 25 and 26 give information about the foci and vertices of 
ellipses centered at the origin of the xy-plane. In each case, find the 
ellipse’s standard-form equation from the given information.

25. Foci: Vertices: 

26. Foci: Vertices: 

Hyperbolas
Exercises 27–34 give equations for hyperbolas. Put each equation in
standard form and find the hyperbola’s asymptotes. Then sketch the
hyperbola. Include the asymptotes and foci in your sketch.

27. 28.

29. 30.

31. 32.

33. 34.

Exercises 35–38 give information about the foci, vertices, and asymp-
totes of hyperbolas centered at the origin of the xy-plane. In each case,
find the hyperbola’s standard-form equation from the information given.

35. Foci: 36. Foci:

Asymptotes: Asymptotes:

37. Vertices: 38. Vertices:

Asymptotes: Asymptotes: y = ;

1
2

 xy = ;

4
3

 x

s0, ;2ds ;3, 0d

y = ;

1

23
 xy = ;x

s ;2, 0dA0, ;22 B

64x2
- 36y2

= 23048y2
- 2x2

= 16

y2
- 3x2

= 38x2
- 2y2

= 16

y2
- x2

= 4y2
- x2

= 8

9x2
- 16y2

= 144x2
- y2

= 1

s0, ;5ds0, ;4d

s ;2, 0dA ;22, 0 B

169x2
+ 25y2

= 42256x2
+ 9y2

= 54

9x2
+ 10y2

= 903x2
+ 2y2

= 6

2x2
+ y2

= 42x2
+ y2

= 2

7x2
+ 16y2

= 11216x2
+ 25y2

= 400

x = 2y2x = -3y2

y = -8x2y = 4x2y2
= -2x

x2
= -8yx2

= 6yy2
= 12x

x

y

x

y

Shifting Conic Sections
You may wish to review Section 1.2 before solving Exercises 39–56.

39. The parabola is shifted down 2 units and right 1 unit to

generate the parabola 

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the
parabola.

40. The parabola is shifted left 1 unit and up 3 units to

generate the parabola 

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the
parabola.

41. The ellipse is shifted 4 units to the right
and 3 units up to generate the ellipse

a. Find the foci, vertices, and center of the new ellipse.

b. Plot the new foci, vertices, and center, and sketch in the new
ellipse.

42. The ellipse is shifted 3 units to the left
and 2 units down to generate the ellipse

a. Find the foci, vertices, and center of the new ellipse.

b. Plot the new foci, vertices, and center, and sketch in the new
ellipse.

43. The hyperbola is shifted 2 units to the
right to generate the hyperbola

a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

b. Plot the new center, foci, vertices, and asymptotes, and sketch
in the hyperbola.

44. The hyperbola is shifted 2 units down to
generate the hyperbola

a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

b. Plot the new center, foci, vertices, and asymptotes, and sketch
in the hyperbola.

Exercises 45–48 give equations for parabolas and tell how many units
up or down and to the right or left each parabola is to be shifted. Find
an equation for the new parabola, and find the new vertex, focus, and
directrix.

45. down 3 46. up 3

47. down 7 48. down 2x2
= 6y, left 3 ,x2

= 8y, right 1 ,

y2
= -12x, right 4 ,y2

= 4x, left 2 ,

s y + 2d2

4
-

x2

5
= 1.

s y2>4d - sx2>5d = 1

sx - 2d2

16
-

y2

9
= 1.

sx2>16d - s y2>9d = 1

sx + 3d2

9
+

s y + 2d2

25
= 1.

sx2>9d + s y2>25d = 1

sx - 4d2

16
+

s y - 3d2

9
= 1.

sx2>16d + s y2>9d = 1

sx + 1d2
= -4sy - 3d .

x2
= -4y

s y + 2d2
= 8sx - 1d .

y2
= 8x
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Exercises 49–52 give equations for ellipses and tell how many units up
or down and to the right or left each ellipse is to be shifted. Find an
equation for the new ellipse, and find the new foci, vertices, and center.

49. left 2, down 1

50. right 3, up 4

51. right 2, up 3

52. left 4, down 5

Exercises 53–56 give equations for hyperbolas and tell how many
units up or down and to the right or left each hyperbola is to be shifted.
Find an equation for the new hyperbola, and find the new center, foci,
vertices, and asymptotes.

53. right 2, up 2

54. left 2, down 1

55. left 1, down 1

56. right 1, up 3

Find the center, foci, vertices, asymptotes, and radius, as appropriate,
of the conic sections in Exercises 57–68.

57.

58.

59. 60.

61. 62.

63.

64.

65. 66.

67. 68.

Theory and Examples
69. If lines are drawn parallel to the coordinate axes through a point P

on the parabola the parabola partitions the rec-
tangular region bounded by these lines and the coordinate axes
into two smaller regions, A and B.

a. If the two smaller regions are revolved about the y-axis, show
that they generate solids whose volumes have the ratio 4:1.

b. What is the ratio of the volumes generated by revolving the
regions about the x-axis?

0
x

y

A

B

P

y2 � kx

y2
= kx, k 7 0,

y2
- 4x2

+ 16x = 242x2
- y2

+ 6y = 3

x2
- y2

+ 4x - 6y = 6x2
- y2

- 2x + 4y = 4

4x2
+ y2

+ 8x - 2y = -1

x2
+ 2y2

- 2x - 4y = -1

9x2
+ 6y2

+ 36y = 0x2
+ 5y2

+ 4x = 1

y2
- 4y - 8x - 12 = 0x2

+ 2x + 4y - 3 = 0

2x2
+ 2y2

- 28x + 12y + 114 = 0

x2
+ 4x + y2

= 12

y2

3
- x2

= 1,

y2
- x2

= 1,

x2

16
-

y2

9
= 1,

x2

4
-

y2

5
= 1,

x2

16
+

y2

25
= 1,

x2

3
+

y2

2
= 1,

x2

2
+ y2

= 1,

x2

6
+

y2

9
= 1,
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70. Suspension bridge cables hang in parabolas The suspension
bridge cable shown in the accompanying figure supports a uni-
form load of w pounds per horizontal foot. It can be shown that if
H is the horizontal tension of the cable at the origin, then the
curve of the cable satisfies the equation

Show that the cable hangs in a parabola by solving this differential
equation subject to the initial condition that when 

71. The width of a parabola at the focus Show that the number 4p
is the width of the parabola at the focus by
showing that the line cuts the parabola at points that are 4p
units apart.

72. The asymptotes of ( ) � ( ) 1 Show that the ver-
tical distance between the line and the upper half of

the right-hand branch of the hyperbola
approaches 0 by showing that

Similar results hold for the remaining portions of the hyperbola
and the lines 

73. Area Find the dimensions of the rectangle of largest area that
can be inscribed in the ellipse with its sides paral-
lel to the coordinate axes. What is the area of the rectangle?

74. Volume Find the volume of the solid generated by revolving 
the region enclosed by the ellipse about the 
(a) x-axis, (b) y-axis.

75. Volume The “triangular” region in the first quadrant bounded
by the x-axis, the line and the hyperbola 
is revolved about the x-axis to generate a solid. Find the volume
of the solid.

76. Tangents Show that the tangents to the curve from
any point on the line are perpendicular.

77. Tangents Find equations for the tangents to the circle 
at the points where the circle crosses the coordinate

axes.

78. Volume The region bounded on the left by the y-axis, on the
right by the hyperbola and above and below by the
lines is revolved about the y-axis to generate a solid. Find
the volume of the solid.

79. Centroid Find the centroid of the region that is bounded below
by the x-axis and above by the ellipse 

80. Surface area The curve which
is part of the upper branch of the hyperbola is 
revolved about the x-axis to generate a surface. Find the area of
the surface.

y2
- x2

= 1,
y = 2x2

+ 1, 0 … x … 22,

sx2>9d + s y2>16d = 1.

y = ;3
x2

- y2
= 1,

sy - 1d2
= 5

sx - 2d2 +

x = -p
y2

= 4px

9x2
- 4y2

= 36x = 4,

9x2
+ 4y2

= 36

x2
+ 4y2

= 4

y = ; sb>adx .

lim
x: q

 aba x -

b
a2x2

- a2b =

b
a lim

x: q

 Ax - 2x2
- a2 B = 0.

sx2>a2d - s y2>b2d = 1
y = sb>ad2x2

- a2

y = sb>adx
�y2/b2x2/a2

y = p
x2

= 4py s p 7 0d

x

y

Bridge cable

0

x = 0.y = 0

dy

dx
=

w
H

 x .
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666 Chapter 11: Parametric Equations and Polar Coordinates

81. The reflective property of parabolas The accompanying figure
shows a typical point on the parabola The line
L is tangent to the parabola at P. The parabola’s focus lies at F( p, 0).
The ray extending from P to the right is parallel to the x-axis. 
We show that light from F to P will be reflected out along by
showing that equals Establish this equality by taking the fol-
lowing steps.

a. Show that 

b. Show that 

c. Use the identity

to show that 

Since and are both acute, implies b = a .tan b = tan aba

tan a = 2p>y0 .

tan a =

tan f - tan b

1 + tan f tan b

tan f = y0>sx0 - pd .

tan b = 2p>y0 .

a .b

L¿

L¿

y2
= 4px .Psx0 , y0d

This reflective property of parabolas is used in applications like
car headlights, radio telescopes, and satellite TV dishes.

x

y

0 F( p, 0)

P(x0, y0)

�

�

�

�

L

L'

y0

y2 � 4px

11.7 Conics in Polar Coordinates

Polar coordinates are especially important in astronomy and astronautical engineering 
because satellites, moons, planets, and comets all move approximately along ellipses,
parabolas, and hyperbolas that can be described with a single relatively simple polar coor-
dinate equation. We develop that equation here after first introducing the idea of a conic
section’s eccentricity. The eccentricity reveals the conic section’s type (circle, ellipse,
parabola, or hyperbola) and the degree to which it is “squashed” or flattened.

Eccentricity

Although the center-to-focus distance c does not appear in the equation

for an ellipse, we can still determine c from the equation If we fix a
and vary c over the interval the resulting ellipses will vary in shape. They are
circles if (so that ) and flatten as c increases. If the foci and vertices
overlap and the ellipse degenerates into a line segment. Thus we are led to consider the ratio

. We use this ratio for hyperbolas as well, only in this case c equals 

instead of , and define these ratios with the somewhat familiar term eccentricity.2a2
- b2

2a2
+ b2e = c>a

c = a ,a = bc = 0
0 … c … a ,

c = 2a2
- b2 .

x2

a2 +

y2

b2 = 1, sa 7 bd

DEFINITION
The eccentricity of the ellipse is

The eccentricity of the hyperbola is

The eccentricity of a parabola is e = 1.

e =
c
a =

2a2
+ b2

a .

sx2>a2d - s y2>b2d = 1

e =
c
a =

2a2
- b2

a .

sx2>a2d + s y2>b2d = 1 sa 7 bd
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Whereas a parabola has one focus and one directrix, each ellipse has two foci and two
directrices. These are the lines perpendicular to the major axis at distances from the
center. The parabola has the property that

(1)

for any point P on it, where F is the focus and D is the point nearest P on the directrix. For
an ellipse, it can be shown that the equations that replace Equation (1) are

(2)

Here, e is the eccentricity, P is any point on the ellipse, and are the foci, and and
are the points on the directrices nearest P (Figure 11.45).
In both Equations (2) the directrix and focus must correspond; that is, if we use the

distance from P to we must also use the distance from P to the directrix at the same
end of the ellipse. The directrix corresponds to and the directrix

corresponds to 
As with the ellipse, it can be shown that the lines act as directrices for the

hyperbola and that

(3)

Here P is any point on the hyperbola, and are the foci, and and are the points
nearest P on the directrices (Figure 11.46).

In both the ellipse and the hyperbola, the eccentricity is the ratio of the distance be-
tween the foci to the distance between the vertices (because ).c>a = 2c>2a

D2D1F2F1

PF1 = e # PD1 and PF2 = e # PD2 .

x = ;a>eF2sc, 0d .x = a>e F1s -c, 0d ,x = -a>eF1 ,

D2

D1F2F1

PF1 = e # PD1, PF2 = e # PD2 .

PF = 1 # PD

;a>e

11.7 Conics in Polar Coordinates 667

x

y
Directrix 1
x � – a

e

Directrix 2
x � a

eb

–b

0

a
c � ae

a
e

D1 D2
P(x, y)

F1(–c, 0) F2(c, 0)

FIGURE 11.45 The foci and directrices
of the ellipse 
Directrix 1 corresponds to focus and
directrix 2 to focus F2 .

F1

sx2>a2d + s y2>b2d = 1.

Directrix 1
x � – a

e

Directrix 2
x � a

e

a

c � ae

a
e

F1(–c, 0) F2(c, 0)

D2D1
P(x, y)

x

y

0

FIGURE 11.46 The foci and directrices
of the hyperbola 
No matter where P lies on the hyperbola,

and PF2 = e # PD2 .PF1 = e # PD1

sx2>a2d - s  y2>b2d = 1.

Eccentricity =
distance between foci

distance between vertices

(4)PF = e # PD ,

In an ellipse, the foci are closer together than the vertices and the ratio is less than 1. In a
hyperbola, the foci are farther apart than the vertices and the ratio is greater than 1.

The “focus–directrix” equation unites the parabola, ellipse, and hyperbola
in the following way. Suppose that the distance PF of a point P from a fixed point F (the fo-
cus) is a constant multiple of its distance from a fixed line (the directrix). That is, suppose

PF = e # PD

where e is the constant of proportionality. Then the path traced by P is

(a) a parabola if 

(b) an ellipse of eccentricity e if and

(c) a hyperbola of eccentricity e if 

There are no coordinates in Equation (4), and when we try to translate it into coordinate
form, it translates in different ways depending on the size of e. At least, that is what hap-
pens in Cartesian coordinates. However, as we will see, in polar coordinates the equation

translates into a single equation regardless of the value of e.
Given the focus and corresponding directrix of a hyperbola centered at the origin and

with foci on the x-axis, we can use the dimensions shown in Figure 11.46 to find e. Knowing
e, we can derive a Cartesian equation for the hyperbola from the equation as
in the next example. We can find equations for ellipses centered at the origin and with foci
on the x-axis in a similar way, using the dimensions shown in Figure 11.45.

PF = e # PD ,

PF = e # PD

e 7 1.

e 6 1,

e = 1,
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668 Chapter 11: Parametric Equations and Polar Coordinates

EXAMPLE 1 Find a Cartesian equation for the hyperbola centered at the origin that has
a focus at (3, 0) and the line as the corresponding directrix.

Solution We first use the dimensions shown in Figure 11.46 to find the hyperbola’s ec-
centricity. The focus is

The directrix is the line

When combined with the equation that defines eccentricity, these results give

Knowing e, we can now derive the equation we want from the equation 
In the notation of Figure 11.47, we have

Eq. (4)

Polar Equations

To find polar equations for ellipses, parabolas, and hyperbolas, we place one focus at the
origin and the corresponding directrix to the right of the origin along the vertical line

(Figure 11.48). In polar coordinates, this makes

and

The conic’s focus–directrix equation then becomes

which can be solved for r to obtain the following expression.

r = esk - r cos ud ,

PF = e # PD

PD = k - FB = k - r cos u .

PF = r

x = k

 
x2

3
-

y2

6
= 1.

 2x2
- y2

= 6

 x2
- 6x + 9 + y2

= 3sx2
- 2x + 1d

e = 23 2sx - 3d2
+ s y - 0d2

= 23 ƒ x - 1 ƒ

 PF = e # PD 

PF = e # PD.

e =
c
a =

3
e , so e2

= 3 and e = 23.

e = c>a
x =

a
e = 1, so a = e .

sc, 0d = s3, 0d, so c = 3.

x = 1

0 1 F(3, 0)

D(1, y)

P(x, y)

x

x � 1

y

x2

3
y2

6�      � 1

FIGURE 11.47 The hyperbola and
directrix in Example 1.

Conic section

P

F B

r

r cos �

Focus at
origin

D

x
k

x � k

Directrix

FIGURE 11.48 If a conic section is put in
the position with its focus placed at the
origin and a directrix perpendicular to the
initial ray and right of the origin, we can
find its polar equation from the conic’s
focus–directrix equation.

Polar Equation for a Conic with Eccentricity e

(5)

where is the vertical directrix.x = k 7 0

r =
ke

1 + e cos u
,

EXAMPLE 2 Here are polar equations for three conics. The eccentricity values identi-
fying the conic are the same for both polar and Cartesian coordinates.

 e = 2 : hyperbola  r =
2k

1 + 2 cos u

 e = 1 : parabola  r =
k

1 + cos u

 e =
1
2

 : ellipse  r =
k

2 + cos u
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You may see variations of Equation (5), depending on the location of the directrix. If
the directrix is the line to the left of the origin (the origin is still a focus), we re-
place Equation (5) with

The denominator now has a instead of a If the directrix is either of the lines
or the equations have sines in them instead of cosines, as shown in

Figure 11.49.
y = -k ,y = k

s + d .s - d

r =
ke

1 - e cos u
.

x = -k

11.7 Conics in Polar Coordinates 669

Focus at origin

Directrix x � k

r � ke
1 � e cos �

x
Focus at origin

Directrix x � –k

r � ke
1 � e cos �

x

Directrix y � k

r � ke
1 � e sin �

y

Focus at
origin

Directrix y � –k

r � ke
1 � e sin �

y
Focus at origin

(a) (b)

(c) (d)

FIGURE 11.49 Equations for conic sections with
eccentricity but different locations of the directrix.
The graphs here show a parabola, so e = 1.

e 7 0

EXAMPLE 3 Find an equation for the hyperbola with eccentricity 3 2 and directrix

Solution We use Equation (5) with and 

EXAMPLE 4 Find the directrix of the parabola

Solution We divide the numerator and denominator by 10 to put the equation in standard
polar form:

This is the equation

with and The equation of the directrix is 

From the ellipse diagram in Figure 11.50, we see that k is related to the eccentricity e
and the semimajor axis a by the equation

k =
a
e - ea .

x = 5>2.e = 1.k = 5>2
r =

ke
1 + e cos u

r =

5>2
1 + cos u

 .

r =
25

10 + 10 cos u
.

r =

2s3>2d
1 + s3>2d cos u

 or r =
6

2 + 3 cos u
.

e = 3>2:k = 2

x = 2.
>

Center
Focus at
origin

ea

a

a
e

x

Directrix
x � k

FIGURE 11.50 In an ellipse with
semimajor axis a, the focus–directrix
distance is so
ke = as1 - e2d .

k = sa>ed - ea ,
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670 Chapter 11: Parametric Equations and Polar Coordinates

From this, we find that Replacing ke in Equation (5) by gives
the standard polar equation for an ellipse.

as1 - e2dke = as1 - e2d .

x

y

O

�0

r0

�

r

L

P(r, �)

P0(r0 , �0)

FIGURE 11.51 We can obtain a polar
equation for line L by reading the relation

from the right triangle
OP0 P .
r0 = r cos su - u0d

Polar Equation for the Ellipse with Eccentricity e and Semimajor Axis a

(6)r =

as1 - e2d
1 + e cos u

Notice that when Equation (6) becomes which represents a circle.

Lines

Suppose the perpendicular from the origin to line L meets L at the point with
(Figure 11.51). Then, if is any other point on L, the points and O are

the vertices of a right triangle, from which we can read the relation

r0 = r cos su - u0d .

P, P0 ,Psr, udr0 Ú 0
P0sr0, u0d ,

r = a ,e = 0,

The Standard Polar Equation for Lines

If the point is the foot of the perpendicular from the origin to the line
L, and then an equation for L is

(7)r cos su - u0d = r0 .

r0 Ú 0,
P0sr0, u0d

For example, if and , we find that

, or .

Circles

To find a polar equation for the circle of radius a centered at we let be a
point on the circle and apply the Law of Cosines to triangle (Figure 11.52). This gives

If the circle passes through the origin, then and this equation simplifies to

If the circle’s center lies on the positive x-axis, and we get the further simplifica-
tion

. (8)r = 2a cos u

u0 = 0

 r = 2a cos su - u0d .

 r2
= 2ar cos su - u0d

 a2
= a2

+ r2
- 2ar cos su - u0d

r0 = a

a2
= r0

2
+ r2

- 2r0 r cos su - u0d .

OP0 P
Psr, udP0sr0, u0d ,

x + 23 y = 4 
1
2

 r cos u +

23
2

 r sin u = 2

 r acos u cos 
p
3

+ sin u sin 
p
3
b = 2

 r cos au -
p
3
b = 2

r0 = 2u0 = p>3

O
x

y

�0

r0
�

r

a

P(r, �)

P0(r0 , �0)

FIGURE 11.52 We can get a polar
equation for this circle by applying the
Law of Cosines to triangle OP0 P .
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11.7 Conics in Polar Coordinates 671

If the center lies on the positive y-axis, and the
equation becomes

. (9)

Equations for circles through the origin centered on the negative x- and y-axes can be
obtained by replacing r with in the above equations.

EXAMPLE 5 Here are several polar equations given by Equations (8) and (9) for circles
through the origin and having centers that lie on the x- or y-axis.

Center Polar
Radius (polar coordinates) equation

3 (3, 0)

2

1 2

1 r = -2 sin us -1, p>2d
r = -cos us -1>2, 0d>
r = 4 sin us2, p>2d
r = 6 cos u

-r

r = 2a sin u

r = 2a cos su - u0d
u = p>2, cos su - p>2d = sin u ,

Exercises 11.7

Ellipses and Eccentricity
In Exercises 1–8, find the eccentricity of the ellipse. Then find and
graph the ellipse’s foci and directrices.

1. 2.

3. 4.

5. 6.

7. 8.

Exercises 9–12 give the foci or vertices and the eccentricities of el-
lipses centered at the origin of the xy-plane. In each case, find the
ellipse’s standard-form equation in Cartesian coordinates.

9. Foci: 10. Foci:
Eccentricity: 0.5 Eccentricity: 0.2

11. Vertices: 12. Vertices:
Eccentricity: 0.1 Eccentricity: 0.24

Exercises 13–16 give foci and corresponding directrices of ellipses
centered at the origin of the xy-plane. In each case, use the dimensions
in Figure 11.45 to find the eccentricity of the ellipse. Then find the el-
lipse’s standard-form equation in Cartesian coordinates.

13. Focus: 14. Focus: (4, 0)

Directrix: Directrix:

15. Focus: 16. Focus:

Directrix: Directrix:

Hyperbolas and Eccentricity
In Exercises 17–24, find the eccentricity of the hyperbola. Then find
and graph the hyperbola’s foci and directrices.

17. 18.

19. 20. y2
- x2

= 4y2
- x2

= 8

9x2
- 16y2

= 144x2
- y2

= 1

x = -222x = -16

A -22, 0 Bs -4, 0d

x =

16
3

x =

9

25

A25, 0 B

s ;10, 0ds0, ;70d

s ;8, 0ds0, ;3d

169x2
+ 25y2

= 42256x2
+ 9y2

= 54

9x2
+ 10y2

= 903x2
+ 2y2

= 6

2x2
+ y2

= 42x2
+ y2

= 2

7x2
+ 16y2

= 11216x2
+ 25y2

= 400

21. 22.

23. 24.

Exercises 25–28 give the eccentricities and the vertices or foci of hy-
perbolas centered at the origin of the xy-plane. In each case, find the
hyperbola’s standard-form equation in Cartesian coordinates.

25. Eccentricity: 3 26. Eccentricity: 2
Vertices: Vertices:

27. Eccentricity: 3 28. Eccentricity: 1.25
Foci: Foci:

Eccentricities and Directrices
Exercises 29–36 give the eccentricities of conic sections with one fo-
cus at the origin along with the directrix corresponding to that focus.
Find a polar equation for each conic section.

29. 30.

31. 32.

33. 34.

35. 36.

Parabolas and Ellipses
Sketch the parabolas and ellipses in Exercises 37–44. Include the direc-
trix that corresponds to the focus at the origin. Label the vertices with
appropriate polar coordinates. Label the centers of the ellipses as well.

37. 38.

39. 40.

41. 42.

43. 44. r =

4
2 - sin u

r =

8
2 - 2 sin u

r =

12
3 + 3 sin u

r =

400
16 + 8 sin u

r =

4
2 - 2 cos u

r =

25
10 - 5 cos u

r =

6
2 + cos u

r =

1
1 + cos u

e = 1>3, y = 6e = 1>5, y = -10

e = 1>4, x = -2e = 1>2, x = 1

e = 2, x = 4e = 5, y = -6

e = 1, y = 2e = 1, x = 2

s0, ;5ds ;3, 0d

s ;2, 0ds0, ;1d

64x2
- 36y2

= 23048y2
- 2x2

= 16

y2
- 3x2

= 38x2
- 2y2

= 16
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672 Chapter 11: Parametric Equations and Polar Coordinates

Lines
Sketch the lines in Exercises 45–48 and find Cartesian equations for
them.

45. 46.

47. 48.

Find a polar equation in the form for each of the
lines in Exercises 49–52.

49. 50.
51. 52.

Circles
Sketch the circles in Exercises 53–56. Give polar coordinates for their
centers and identify their radii.

53. 54.
55. 56.

Find polar equations for the circles in Exercises 57–64. Sketch each
circle in the coordinate plane and label it with both its Cartesian and
polar equations.

57. 58.

59. 60.

61. 62.

63. 64.

Examples of Polar Equations
Graph the lines and conic sections in Exercises 65–74.

65. 66.
67. 68.
69. 70.

71. 72. r = 1>s1 + cos udr = 1>s1 - sin ud
r = 8>s4 + sin udr = 8>s4 + cos ud
r = -2 cos ur = 4 sin u

r = 4 sec su + p>6dr = 3 sec su - p>3d

x2
+ y2

-

4
3

 y = 0x2
+ y2

+ y = 0

x2
- 16x + y2

= 0x2
+ 2x + y2

= 0

x2
+ s y + 7d2

= 49x2
+ s y - 5d2

= 25

sx + 2d2
+ y2

= 4sx - 6d2
+ y2

= 36

r = -8 sin ur = -2 cos u

r = 6 sin ur = 4 cos u

x = -4y = -5
23 x - y = 122 x + 22 y = 6

r cos su - u0d = r0

r cos au +

p

3
b = 2r cos au -

2p
3
b = 3

r cos au +

3p
4
b = 1r cos au -

p

4
b = 22

73. 74.

75. Perihelion and aphelion A planet travels about its sun in an el-
lipse whose semimajor axis has length a. (See accompanying figure.)

a. Show that when the planet is closest to the sun
and that when the planet is farthest from the sun.

b. Use the data in the table in Exercise 76 to find how close each
planet in our solar system comes to the sun and how far away
each planet gets from the sun.

76. Planetary orbits Use the data in the table below and Equa-
tion (6) to find polar equations for the orbits of the planets.

Semimajor axis
Planet (astronomical units) Eccentricity

Mercury 0.3871 0.2056

Venus 0.7233 0.0068

Earth 1.000 0.0167

Mars 1.524 0.0934

Jupiter 5.203 0.0484

Saturn 9.539 0.0543

Uranus 19.18 0.0460

Neptune 30.06 0.0082

Aphelion
(farthest
from sun)

Perihelion
(closest
to sun)

Planet

Sun

�
a

r = as1 + ed
r = as1 - ed

r = 1>s1 + 2 cos udr = 1>s1 + 2 sin ud

Chapter 11 Questions to Guide Your Review

1. What is a parametrization of a curve in the xy-plane? Does a func-
tion always have a parametrization? Are parametrizations
of a curve unique? Give examples.

2. Give some typical parametrizations for lines, circles, parabolas,
ellipses, and hyperbolas. How might the parametrized curve differ
from the graph of its Cartesian equation?

3. What is a cycloid? What are typical parametric equations for cy-
cloids? What physical properties account for the importance of
cycloids?

4. What is the formula for the slope of a parametrized curve
? When does the formula apply? When can you

expect to be able to find as well? Give examples.

5. How can you sometimes find the area bounded by a parametrized
curve and one of the coordinate axes?

6. How do you find the length of a smooth parametrized curve
? What does smoothness have 

to do with length? What else do you need to know about the
parametrization in order to find the curve’s length? Give examples.

x = ƒ(t), y = g(t), a … t … b

d2y>dx2
x = ƒ(t), y = g(t)

dy>dx

y = ƒ(x)
7. What is the arc length function for a smooth parametrized curve?

What is its arc length differential?

8. Under what conditions can you find the area of the surface gener-
ated by revolving a curve about
the x-axis? the y-axis? Give examples.

9. How do you find the centroid of a smooth parametrized curve
? Give an example.

10. What are polar coordinates? What equations relate polar coordi-
nates to Cartesian coordinates? Why might you want to change
from one coordinate system to the other?

11. What consequence does the lack of uniqueness of polar coordi-
nates have for graphing? Give an example.

12. How do you graph equations in polar coordinates? Include in
your discussion symmetry, slope, behavior at the origin, and the
use of Cartesian graphs. Give examples.

13. How do you find the area of a region 
in the polar coordinate plane? Give examples.a … u … b ,

0 … r1sud … r … r2sud, 

x = ƒ(t), y = g(t), a … t … b

x = ƒ(t), y = g(t), a … t … b,

T
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14. Under what conditions can you find the length of a curve
in the polar coordinate plane? Give an ex-

ample of a typical calculation.

15. What is a parabola? What are the Cartesian equations for parabo-
las whose vertices lie at the origin and whose foci lie on the coor-
dinate axes? How can you find the focus and directrix of such a
parabola from its equation?

16. What is an ellipse? What are the Cartesian equations for ellipses
centered at the origin with foci on one of the coordinate axes?
How can you find the foci, vertices, and directrices of such an 
ellipse from its equation?

r = ƒsud, a … u … b ,

Chapter 11 Practice Exercises 673

17. What is a hyperbola? What are the Cartesian equations for hyper-
bolas centered at the origin with foci on one of the coordinate
axes? How can you find the foci, vertices, and directrices of such
an ellipse from its equation?

18. What is the eccentricity of a conic section? How can you classify
conic sections by eccentricity? How are an ellipse’s shape and ec-
centricity related?

19. Explain the equation 

20. What are the standard equations for lines and conic sections in
polar coordinates? Give examples.

PF = e # PD .

Chapter 11 Practice Exercises

Identifying Parametric Equations in the Plane
Exercises 1–6 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by
finding a Cartesian equation for it. Graph the Cartesian equation and
indicate the direction of motion and the portion traced by the particle.

1.

2.

3.

4.

5.

6.

Finding Parametric Equations and Tangent Lines
7. Find parametric equations and a parameter interval for the motion of

a particle in the xy-plane that traces the ellipse 
once counterclockwise. (There are many ways to do this.)

8. Find parametric equations and a parameter interval for the motion
of a particle that starts at the point in the xy-plane and
traces the circle three times clockwise. (There are
many ways to do this.)

In Exercises 9 and 10, find an equation for the line in the xy-plane that
is tangent to the curve at the point corresponding to the given value of t.
Also, find the value of at this point.

9.

10.

11. Eliminate the parameter to express the curve in the form 

a. b.

12. Find parametric equations for the given curve.

a. Line through with slope 3

b.

c.

d.

Lengths of Curves
Find the lengths of the curves in Exercises 13–19.

13.

14. x = y2>3, 1 … y … 8

y = x1>2
- s1>3dx3>2, 1 … x … 4

9x2
+ 4y2

= 36

y = 4x2
- x

(x - 1)2
+ ( y + 2)2

= 9

(1, -2)

x = cos t, y = tan tx = 4t2, y = t3
- 1

y = ƒ(x) .

x = 1 + 1>t2, y = 1 - 3>t; t = 2

x = (1>2) tan t, y = (1>2) sec t; t = p>3
d2y>dx2

x2
+ y2

= 4
(-2, 0)

16x2
+ 9y2

= 144

x = 4 cos t, y = 9 sin t; 0 … t … 2p

x = -cos t, y = cos2 t; 0 … t … p

x = -2 cos t, y = 2 sin t; 0 … t … p

x = (1>2) tan t, y = (1>2) sec t; -p>2 6 t 6 p>2
x = 2t, y = 1 - 2t; t Ú 0

x = t>2, y = t + 1; - q 6 t 6 q

15.

16.

17.

18.

19.

20. Find the length of the enclosed loop 

shown here. The loop starts at and ends at 

Surface Areas
Find the areas of the surfaces generated by revolving the curves in Ex-
ercises 21 and 22 about the indicated axes.

21. x-axis

22. y-axis

Polar to Cartesian Equations
Sketch the lines in Exercises 23–28. Also, find a Cartesian equation
for each line.

23. 24.

25. 26.

27. 28. r = A323 B  csc ur = - s3>2d csc u

r = -22 sec ur = 2 sec u

r cos au -

3p
4
b =

22
2

r cos au +

p

3
b = 223

x = t2
+ 1>(2t), y = 41t, 1>12 … t … 1; 

x = t2>2, y = 2t, 0 … t … 15; 

y

0

1

1

–1

2 4
x

t � ��3t � 0

t  � 0

t  � 0

t = 23.t = -23

x = t2, y = st3>3d - t

x = 3 cos u, y = 3 sin u, 0 … u …

3p
2

x = t3
- 6t2, y = t3

+ 6t2, 0 … t … 1

x = 5 cos t - cos 5t, y = 5 sin t - sin 5t, 0 … t … p>2
x = sy3>12d + s1>yd, 1 … y … 2

y = s5>12dx6>5
- s5>8dx4>5, 1 … x … 32
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674 Chapter 11: Parametric Equations and Polar Coordinates

Find Cartesian equations for the circles in Exercises 29–32. Sketch
each circle in the coordinate plane and label it with both its Cartesian
and polar equations.

29. 30.

31. 32.

Cartesian to Polar Equations
Find polar equations for the circles in Exercises 33–36. Sketch each
circle in the coordinate plane and label it with both its Cartesian and
polar equations.

33. 34.

35. 36.

Graphs in Polar Coordinates
Sketch the regions defined by the polar coordinate inequalities in Ex-
ercises 37 and 38.

37. 38.

Match each graph in Exercises 39–46 with the appropriate equation
(a)– (1). There are more equations than graphs, so some equations will
not be matched.

a. b. c.

d. e. f.

g. h. i.

j. k. l.

39. Four-leaved rose 40. Spiral

41. Limaçon 42. Lemniscate

43. Circle 44. Cardioid

45. Parabola 46. Lemniscate

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

r = 2 cos u + 1r = -sin ur2
= sin 2u

r =

2
1 - cos u

r = 1 - sin ur = 1 + cos u

r2
= cos 2ur = ur = sin 2u

r =

6
1 - 2 cos u

r cos u = 1r = cos 2u

-4 sin u … r … 00 … r … 6 cos u

x2
+ y2

+ 4x = 0x2
+ y2

- 3x = 0

x2
+ y2

- 2y = 0x2
+ y2

+ 5y = 0

r = -6 cos ur = 222 cos u

r = 323 sin ur = -4 sin u

Area in Polar Coordinates
Find the areas of the regions in the polar coordinate plane described in
Exercises 47–50.

47. Enclosed by the limaçon 

48. Enclosed by one leaf of the three-leaved rose 

49. Inside the “figure eight” and outside the circle

50. Inside the cardioid and outside the circle

Length in Polar Coordinates
Find the lengths of the curves given by the polar coordinate equations
in Exercises 51–54.

51.

52.

53.

54.

Graphing Conic Sections
Sketch the parabolas in Exercises 55–58. Include the focus and direc-
trix in each sketch.

55. 56.

57. 58.

Find the eccentricities of the ellipses and hyperbolas in Exercises 59–62.
Sketch each conic section. Include the foci, vertices, and asymptotes
(as appropriate) in your sketch.

59. 60.

61. 62.

Exercises 63–68 give equations for conic sections and tell how many
units up or down and to the right or left each curve is to be shifted. Find
an equation for the new conic section, and find the new foci, vertices,
centers, and asymptotes, as appropriate. If the curve is a parabola, find
the new directrix as well.

63.

64.

65.

66.

67.

68.

Identifying Conic Sections
Complete the squares to identify the conic sections in Exercises 69–76.
Find their foci, vertices, centers, and asymptotes (as appropriate). If the
curve is a parabola, find its directrix as well.

69. 70.

71. 72.

73.

74.

75. 76. x2
+ y2

+ 4x + 2y = 1x2
+ y2

- 2x - 2y = 0

25x2
+ 9y2

- 100x + 54y = 44

9x2
+ 16y2

+ 54x - 64y = -1

x2
- 2x + 8y = -17y2

- 2y + 16x = -49

4x2
- y2

+ 4y = 8x2
- 4x - 4y2

= 0

x2

36
-

y2

64
= 1, left 10, down 3

y2

8
-

x2

2
= 1, right 2, up 222

x2

169
+

y2

144
= 1, right 5, up 12

x2

9
+

y2

25
= 1, left 3, down 5

y2
= 10x, left 1>2, down 1

x2
= -12y, right 2, up 3

5y2
- 4x2

= 203x2
- y2

= 3

x2
+ 2y2

= 416x2
+ 7y2

= 112

y2
= - s8>3dxy2

= 3x

x2
= 2yx2

= -4y

r = 21 + cos 2u, -p>2 … u … p>2
r = 8 sin3 su>3d, 0 … u … p>4
r = 2 sin u + 2 cos u, 0 … u … p>2
r = -1 + cos u

r = 2 sin u

r = 2s1 + sin ud
r = 1

r = 1 + cos 2u

r = sin 3u

r = 2 - cos u
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Conics in Polar Coordinates
Sketch the conic sections whose polar coordinate equations are given
in Exercises 77–80. Give polar coordinates for the vertices and, in the
case of ellipses, for the centers as well.

77. 78.

79. 80.

Exercises 81–84 give the eccentricities of conic sections with one fo-
cus at the origin of the polar coordinate plane, along with the directrix
for that focus. Find a polar equation for each conic section.

81. 82.

83. 84.

Theory and Examples
85. Find the volume of the solid generated by revolving the region en-

closed by the ellipse about (a) the x-axis, (b) the
y-axis.

9x2
+ 4y2

= 36

e = 1>3, r sin u = -6e = 1>2, r sin u = 2

e = 1, r cos u = -4e = 2, r cos u = 2

r =

12
3 + sin u

r =

6
1 - 2 cos u

r =

8
2 + cos u

r =

2
1 + cos u

Chapter 11 Additional and Advanced Exercises 675

86. The “triangular” region in the first quadrant bounded by the 
x-axis, the line and the hyperbola is re-
volved about the x-axis to generate a solid. Find the volume of the
solid.

87. Show that the equations transform the
polar equation

into the Cartesian equation

88. Archimedes spirals The graph of an equation of the form
where a is a nonzero constant, is called an Archimedes

spiral. Is there anything special about the widths between the suc-
cessive turns of such a spiral?

r = au ,

s1 - e2dx2
+ y2

+ 2kex - k2
= 0.

r =

k
1 + e cos u

x = r cos u, y = r sin u

9x2
- 4y2

= 36x = 4,

Chapter 11 Additional and Advanced Exercises

Finding Conic Sections
1. Find an equation for the parabola with focus (4, 0) and directrix

Sketch the parabola together with its vertex, focus, and di-
rectrix.

2. Find the vertex, focus, and directrix of the parabola

3. Find an equation for the curve traced by the point P(x, y) if the
distance from P to the vertex of the parabola is twice the
distance from P to the focus. Identify the curve.

4. A line segment of length runs from the x-axis to the y-axis.
The point P on the segment lies a units from one end and b units
from the other end. Show that P traces an ellipse as the ends of
the segment slide along the axes.

5. The vertices of an ellipse of eccentricity 0.5 lie at the points
Where do the foci lie?

6. Find an equation for the ellipse of eccentricity 2 3 that has the line
as a directrix and the point (4, 0) as the corresponding focus.

7. One focus of a hyperbola lies at the point and the corre-
sponding directrix is the line Find an equation for the
hyperbola if its eccentricity is (a) 2, (b) 5.

8. Find an equation for the hyperbola with foci and (0, 2)
that passes through the point (12, 7).

9. Show that the line

is tangent to the ellipse at the point
on the ellipse.sx1, y1d

b2x2
+ a2y2

- a2b2
= 0

b2xx1 + a2yy1 - a2b2
= 0

s0, -2d

y = -1.
s0, -7d

x = 2
>

s0, ;2d .

a + b

x2
= 4y

x2
- 6x - 12y + 9 = 0.

x = 3.

10. Show that the line

is tangent to the hyperbola at the point
on the hyperbola.

Equations and Inequalities
What points in the xy-plane satisfy the equations and inequalities in
Exercises 11–16? Draw a figure for each exercise.

11.

12.

13.

14.

15.

16.

Polar Coordinates
17. a. Find an equation in polar coordinates for the curve

b. Find the length of the curve from to 

18. Find the length of the curve in
the polar coordinate plane.

Exercises 19–22 give the eccentricities of conic sections with one fo-
cus at the origin of the polar coordinate plane, along with the directrix
for that focus. Find a polar equation for each conic section.

19. 20.

21. 22. e = 1>3, r sin u = -6e = 1>2, r sin u = 2

e = 1, r cos u = -4e = 2, r cos u = 2

r = 2 sin3 su>3d, 0 … u … 3p ,

t = 2p .t = 0

x = e2t cos t, y = e2t sin t; - q 6 t 6 q .

s9x2
+ 4y2

- 36ds4x2
+ 9y2

- 16d 7 0

s9x2
+ 4y2

- 36ds4x2
+ 9y2

- 16d … 0

sx2>9d - s y2>16d … 1

sx2>9d + s y2>16d … 1

sx + ydsx2
+ y2

- 1d = 0

sx2
- y2

- 1dsx2
+ y2

- 25dsx2
+ 4y2

- 4d = 0

sx1, y1d
b2x2

- a2y2
- a2b2

= 0

b2xx1 - a2yy1 - a2b2
= 0
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676 Chapter 11: Parametric Equations and Polar Coordinates

Theory and Examples
23. Epicycloids When a circle rolls externally along the circumfer-

ence of a second, fixed circle, any point P on the circumference of
the rolling circle describes an epicycloid, as shown here. Let the
fixed circle have its center at the origin O and have radius a.

Let the radius of the rolling circle be b and let the initial position
of the tracing point P be A(a, 0). Find parametric equations for
the epicycloid, using as the parameter the angle from the posi-
tive x-axis to the line through the circles’ centers.

24. Find the centroid of the region enclosed by the x-axis and the cy-
cloid arch

The Angle Between the Radius Vector and the Tangent Line to a
Polar Coordinate Curve In Cartesian coordinates, when we want to
discuss the direction of a curve at a point, we use the angle 
measured counterclockwise from the positive x-axis to the tangent
line. In polar coordinates, it is more convenient to calculate the angle

from the radius vector to the tangent line (see the accompanying
figure). The angle can then be calculated from the relation

(1)

which comes from applying the Exterior Angle Theorem to the trian-
gle in the accompanying figure.

Suppose the equation of the curve is given in the form 
where is a differentiable function of Then

(2)

are differentiable functions of with

(3) 
dy

du
= r cos u + sin u 

dr
du

 .

 
dx
du

= -r sin u + cos u 
dr
du

 , 

u

x = r cos u and y = r sin u

u .ƒsud
r = ƒsud ,

x

y

0
� �

�

r

r � f (�)

P(r, �)

f = u + c ,

f

c

f

x = ast - sin td, y = as1 - cos td; 0 … t … 2p .

u

x

y

O

�

b
C

P

A(a, 0)

Since from (1),

Furthermore,

because is the slope of the curve at P. Also,

Hence

(4)

The numerator in the last expression in Equation (4) is found from
Equations (2) and (3) to be

Similarly, the denominator is

When we substitute these into Equation (4), we obtain

(5)

This is the equation we use for finding as a function of 

25. Show, by reference to a figure, that the angle between the tan-
gents to two curves at a point of intersection may be found from
the formula

(6)

When will the two curves intersect at right angles?

26. Find the value of for the curve 

27. Find the angle between the radius vector to the curve 
and its tangent when 

28. a. Graph the hyperbolic spiral What appears to happen
to as the spiral winds in around the origin?

b. Confirm your finding in part (a) analytically.

29. The circles and intersect at the point
Show that their tangents are perpendicular there.

30. Find the angle at which the cardioid crosses the
ray u = p>2.

r = as1 - cos ud
s13>2, p>3d .

r = sin ur = 23 cos u

c

ru = 1.

u = p>6.
r = 2a sin 3u

r = sin4 su>4d .tan c

tan b =

tan c2 - tan c1

1 + tan c2 tan c1
.

b

u .c

tan c =

r
dr>du .

x 
dx
du

+ y 
dy

du
= r 

dr
du

.

x 
dy

du
- y 

dx
du

= r2 .

 =

x 
dy

du
- y 

dx
du

x 
dx
du

+ y 
dy

du

. tan c =

dy>du
dx>du -

y
x

1 +

y
x 

dy>du
dx>du

tan u =

y
x .

tan f

tan f =

dy

dx
=

dy>du
dx>du

tan c = tan sf - ud =

tan f - tan u

1 + tan f tan u
 .

c = f - u

T
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Chapter 11 Technology Application Projects 677

Chapter 11 Technology Application Projects

Mathematica Maple Module:
Radar Tracking of a Moving Object
Part I: Convert from polar to Cartesian coordinates.

Parametric and Polar Equations with a Figure Skater
Part I: Visualize position, velocity, and acceleration to analyze motion defined by parametric equations.
Part II: Find and analyze the equations of motion for a figure skater tracing a polar plot.

/
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678

OVERVIEW To apply calculus in many real-world situations and in higher mathematics,
we need a mathematical description of three-dimensional space. In this chapter we intro-
duce three-dimensional coordinate systems and vectors. Building on what we already
know about coordinates in the xy-plane, we establish coordinates in space by adding a
third axis that measures distance above and below the xy-plane. Vectors are used to study
the analytic geometry of space, where they give simple ways to describe lines, planes, sur-
faces, and curves in space. We use these geometric ideas later in the book to study motion
in space and the calculus of functions of several variables, with their many important ap-
plications in science, engineering, economics, and higher mathematics.

12.1 Three-Dimensional Coordinate Systems

To locate a point in space, we use three mutually perpendicular coordinate axes, arranged
as in Figure 12.1. The axes shown there make a right-handed coordinate frame. When you
hold your right hand so that the fingers curl from the positive x-axis toward the positive 
y-axis, your thumb points along the positive z-axis. So when you look down on the 
xy-plane from the positive direction of the z-axis, positive angles in the plane are measured
counterclockwise from the positive x-axis and around the positive z-axis. (In a left-handed
coordinate frame, the z-axis would point downward in Figure 12.1 and angles in the plane
would be positive when measured clockwise from the positive x-axis. Right-handed and
left-handed coordinate frames are not equivalent.)

The Cartesian coordinates (x, y, z) of a point P in space are the values at which the
planes through P perpendicular to the axes cut the axes. Cartesian coordinates for space
are also called rectangular coordinates because the axes that define them meet at right
angles. Points on the x-axis have y- and z-coordinates equal to zero. That is, they have co-
ordinates of the form (x, 0, 0). Similarly, points on the y-axis have coordinates of the form
(0, y, 0), and points on the z-axis have coordinates of the form (0, 0, z).

The planes determined by the coordinates axes are the xy-plane, whose standard
equation is the yz-plane, whose standard equation is and the xz-plane,
whose standard equation is They meet at the origin (0, 0, 0) (Figure 12.2). The ori-
gin is also identified by simply 0 or sometimes the letter O.

The three coordinate planes and divide space into eight cells
called octants. The octant in which the point coordinates are all positive is called the first
octant; there is no convention for numbering the other seven octants.

The points in a plane perpendicular to the x-axis all have the same x-coordinate, this being
the number at which that plane cuts the x-axis. The y- and z-coordinates can be any numbers.
Similarly, the points in a plane perpendicular to the y-axis have a common y-coordinate and
the points in a plane perpendicular to the z-axis have a common z-coordinate. To write equa-
tions for these planes, we name the common coordinate’s value. The plane is the plane
perpendicular to the x-axis at The plane is the plane perpendicular to the y-axisy = 3x = 2.

x = 2

z = 0x = 0, y = 0,

y = 0.
x = 0;z = 0;

12
VECTORS AND THE

GEOMETRY OF SPACE

z

x

(x, 0, 0)

(x, y, 0)

(x, 0, z)

(0, 0, z)

(0, y, z)

(0, y, 0)

x = constant

y = constant

z = constant

y

P(x, y, z)0

FIGURE 12.1 The Cartesian coordinate
system is right-handed.
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12.1 Three-Dimensional Coordinate Systems 679

at The plane is the plane perpendicular to the z-axis at Figure 12.3
shows the planes and together with their intersection point (2, 3, 5).

The planes and in Figure 12.3 intersect in a line parallel to the z-axis.
This line is described by the pair of equations A point (x, y, z) lies on the
line if and only if and Similarly, the line of intersection of the planes 
and is described by the equation pair This line runs parallel to the
x-axis. The line of intersection of the planes and parallel to the y-axis, is de-
scribed by the equation pair 

In the following examples, we match coordinate equations and inequalities with the
sets of points they define in space.

EXAMPLE 1 We interpret these equations and inequalities geometrically.

(a) The half-space consisting of the points on and above the
xy-plane.

(b) The plane perpendicular to the x-axis at This
plane lies parallel to the yz-plane and 3 units behind it.

(c) The second quadrant of the xy-plane.

(d) The first octant.

(e) The slab between the planes and (planes
included).

(f) The line in which the planes and inter-
sect. Alternatively, the line through the point 
parallel to the x-axis.

EXAMPLE 2 What points P(x, y, z) satisfy the equations

Solution The points lie in the horizontal plane and, in this plane, make up the cir-
cle We call this set of points “the circle in the plane ” or,
more simply, “the circle ” (Figure 12.4).x2

+ y2
= 4, z = 3

z = 3x2
+ y2

= 4x2
+ y2

= 4.
z = 3

x2
+ y2

= 4 and z = 3?

s0, -2, 2d
z = 2y = -2y = -2, z = 2

y = 1y = -1-1 … y … 1

x Ú 0, y Ú 0, z Ú 0

z = 0, x … 0, y Ú 0

x = -3.x = -3

z Ú 0

x = 2, z = 5.
z = 5,x = 2

y = 3, z = 5.z = 5
y = 3y = 3.x = 2

x = 2, y = 3.
y = 3x = 2

z = 5,x = 2, y = 3,
z = 5.z = 5y = 3.

FIGURE 12.2 The planes and divide
space into eight octants.

z = 0x = 0, y = 0, FIGURE 12.3 The planes and 
determine three lines through the point (2, 3, 5).

z = 5x = 2, y = 3,

z

yz-plane: x � 0

xz-plane: y � 0

xy-plane: z � 0

y

x

(0, 0, 0)

Origin

y

z

x

(0, 0, 5) (2, 3, 5)

(0, 3, 0)
(2, 0, 0)

0

Line y � 3, z � 5

Line x � 2, z � 5

Plane y � 3

Line x � 2, y � 3

Plane z � 5

Plane x � 2

x

z

(0, 2, 0)

y(2, 0, 0)

(0, 2, 3)

The circle
x2 1 y2 5 4,  z 5 3

The plane
z 5 3

x2 1 y2 5 4, z 5 0

(2, 0, 3)

FIGURE 12.4 The circle in
the plane (Example 2).z = 3

x2
+ y2

= 4
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Distance and Spheres in Space

The formula for the distance between two points in the xy-plane extends to points in space.

680 Chapter 12: Vectors and the Geometry of Space

The Distance Between and is

ƒ P1 P2 ƒ = 2sx2 - x1d2
+ s y2 - y1d2

+ sz2 - z1d2

P2sx2 , y2 , z2dP1sx1 , y1 , z1d

Proof We construct a rectangular box with faces parallel to the coordinate planes and the
points and at opposite corners of the box (Figure 12.5). If and

are the vertices of the box indicated in the figure, then the three box edges
and have lengths

Because triangles and are both right-angled, two applications of the
Pythagorean theorem give

(see Figure 12.5).
So

Therefore

EXAMPLE 3 The distance between and is

We can use the distance formula to write equations for spheres in space (Figure 12.6).
A point P(x, y, z) lies on the sphere of radius a centered at precisely when

or

sx - x0d2
+ sy - y0d2

+ sz - z0d2
= a2 .

ƒ P0 P ƒ = a
P0sx0 , y0 , z0d

 = 245 L 6.708.

 = 216 + 4 + 25

 ƒ P1 P2 ƒ = 2s -2 - 2d2
+ s3 - 1d2

+ s0 - 5d2

P2s -2, 3, 0dP1s2, 1, 5d

ƒ P1 P2 ƒ = 2sx2 - x1d2
+ s  y2 - y1d2

+ sz2 - z1d2

 = sx2 - x1d2
+ sy2 - y1d2

+ sz2 - z1d2

 = ƒ x2 - x1 ƒ
2

+ ƒ y2 - y1 ƒ
2

+ ƒ z2 - z1 ƒ
2

 = ƒ P1 A ƒ
2

+ ƒ AB ƒ
2

+ ƒ BP2 ƒ
2

 ƒ P1 P2 ƒ
2

= ƒ P1 B ƒ
2

+ ƒ BP2 ƒ
2

ƒ P1 P2 ƒ
2

= ƒ P1 B ƒ
2

+ ƒ BP2 ƒ
2 and ƒ P1 B ƒ

2
= ƒ P1 A ƒ

2
+ ƒ AB ƒ

2

P1 ABP1 BP2

ƒ P1 A ƒ = ƒ x2 - x1 ƒ , ƒ AB ƒ = ƒ y2 - y1 ƒ , ƒ BP2 ƒ = ƒ z2 - z1 ƒ .

BP2P1 A, AB ,
Bsx2 , y2 , z1d

Asx2 , y1 , z1dP2P1

The Standard Equation for the Sphere of Radius a and Center

sx - x0d2
+ sy - y0d2

+ sz - z0d2
= a2

sx0 , y0 , z0d

EXAMPLE 4 Find the center and radius of the sphere

Solution We find the center and radius of a sphere the way we find the center and radius
of a circle: Complete the squares on the x-, y-, and z-terms as necessary and write each

x2
+ y2

+ z2
+ 3x - 4z + 1 = 0.

FIGURE 12.5 We find the distance
between and by applying the
Pythagorean theorem to the right
triangles and P1 BP2 .P1 AB

P2P1

x

z

y

0

P1(x1, y1, z1)

A(x2, y1, z1)

P2(x2, y2, z2)

B(x2, y2, z1)

FIGURE 12.6 The sphere of radius a
centered at the point .sx0 , y0 , z0d

P0(x0, y0, z0)
P(x, y, z)

a

y

z

0

x

Substitute
ƒ P1 B ƒ

2
= ƒ P1 A ƒ

2
+ ƒ AB ƒ

2 .
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12.1 Three-Dimensional Coordinate Systems 681

quadratic as a squared linear expression. Then, from the equation in standard form, read
off the center and radius. For the sphere here, we have

From this standard form, we read that and The
center is The radius is 

EXAMPLE 5 Here are some geometric interpretations of inequalities and equations 
involving spheres.

(a) The interior of the sphere 

(b) The solid ball bounded by the sphere 
Alternatively, the sphere 

together with its interior.

(c) The exterior of the sphere 

(d) The lower hemisphere cut from the sphere 
by the xy-plane (the plane ).

Just as polar coordinates give another way to locate points in the xy-plane (Section
11.3), alternative coordinate systems, different from the Cartesian coordinate system de-
veloped here, exist for three-dimensional space. We examine two of these coordinate sys-
tems in Section 15.7.

z = 0y2
+ z2

= 4
x2

+x2
+ y2

+ z2
= 4, z … 0

x2
+ y2

+ z2
= 4.x2

+ y2
+ z2

7 4

4
x2

+ y2
+ z2

=z2
= 4.

x2
+ y2

+x2
+ y2

+ z2
… 4

x2
+ y2

+ z2
= 4.x2

+ y2
+ z2

6 4

221>2.s -3>2, 0, 2d .
a = 221>2.x0 = -3>2, y0 = 0, z0 = 2,

 ax +
3
2
b2

+ y2
+ sz - 2d2

= -1 +
9
4

+ 4 =
21
4

.

 ax2
+ 3x + a3

2
b2b + y2

+ az2
- 4z + a-4

2
b2b = -1 + a3

2
b2

+ a-4
2
b2

 sx2
+ 3xd + y2

+ sz2
- 4zd = -1

 x2
+ y2

+ z2
+ 3x - 4z + 1 = 0

Exercises 12.1

Geometric Interpretations of Equations
In Exercises 1–16, give a geometric description of the set of points in
space whose coordinates satisfy the given pairs of equations.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11.

12.

13.

14.

15.

16. z = y2, x = 1

y = x2, z = 0

x2
+ y2

+ z2
= 4, y = x

x2
+ y2

= 4, z = y

x2
+ s y - 1d2

+ z2
= 4, y = 0

x2
+ y2

+ sz + 3d2
= 25, z = 0

x2
+ y2

+ z2
= 25, y = -4

x2
+ y2

+ z2
= 1, x = 0

y2
+ z2

= 1, x = 0x2
+ z2

= 4, y = 0

x2
+ y2

= 4, z = -2x2
+ y2

= 4, z = 0

x = 1, y = 0y = 0, z = 0

x = -1, z = 0x = 2, y = 3

Geometric Interpretations of Inequalities and Equations
In Exercises 17–24, describe the sets of points in space whose coordi-
nates satisfy the given inequalities or combinations of equations and
inequalities.

17. a. b.

18. a. b.

c.

19. a. b.

20. a. b.

c.

21. a.

b.

22. a. b.

23. a. b.

24. a.

b. z = y3, x = 2

z = 1 - y, no restriction on x

x … y2, 0 … z … 2y Ú x2, z Ú 0

x = y, no restriction on zx = y, z = 0

x2
+ y2

+ z2
… 1, z Ú 0

1 … x2
+ y2

+ z2
… 4

x2
+ y2

… 1, no restriction on z

x2
+ y2

… 1, z = 3x2
+ y2

… 1, z = 0

x2
+ y2

+ z2
7 1x2

+ y2
+ z2

… 1

0 … x … 1, 0 … y … 1, 0 … z … 1

0 … x … 1, 0 … y … 10 … x … 1

x Ú 0, y … 0, z = 0x Ú 0, y Ú 0, z = 0
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In Exercises 25–34, describe the given set with a single equation or
with a pair of equations.

25. The plane perpendicular to the

a. x-axis at (3, 0, 0) b. y-axis at 

c. z-axis at 

26. The plane through the point perpendicular to the

a. x-axis b. y-axis c. z-axis

27. The plane through the point parallel to the

a. xy-plane b. yz-plane c. xz-plane

28. The circle of radius 2 centered at (0, 0, 0) and lying in the

a. xy-plane b. yz-plane c. xz-plane

29. The circle of radius 2 centered at (0, 2, 0) and lying in the

a. xy-plane b. yz-plane c. plane 

30. The circle of radius 1 centered at and lying in a plane
parallel to the

a. xy-plane b. yz-plane c. xz-plane

31. The line through the point parallel to the

a. x-axis b. y-axis c. z-axis

32. The set of points in space equidistant from the origin and the
point (0, 2, 0)

33. The circle in which the plane through the point (1, 1, 3) perpendic-
ular to the z-axis meets the sphere of radius 5 centered at the origin

34. The set of points in space that lie 2 units from the point (0, 0, 1)
and, at the same time, 2 units from the point 

Inequalities to Describe Sets of Points
Write inequalities to describe the sets in Exercises 35–40.

35. The slab bounded by the planes and (planes
included)

36. The solid cube in the first octant bounded by the coordinate
planes and the planes and 

37. The half-space consisting of the points on and below the xy-plane

38. The upper hemisphere of the sphere of radius 1 centered at the
origin

39. The (a) interior and (b) exterior of the sphere of radius 1 centered
at the point (1, 1, 1)

40. The closed region bounded by the spheres of radius 1 and radius 2
centered at the origin. (Closed means the spheres are to be in-
cluded. Had we wanted the spheres left out, we would have asked
for the open region bounded by the spheres. This is analogous to
the way we use closed and open to describe intervals: closed
means endpoints included, open means endpoints left out. Closed
sets include boundaries; open sets leave them out.)

Distance
In Exercises 41–46, find the distance between points and .

41.

42.

43. P2s4, -2, 7dP1s1, 4, 5d,

P2s2, 5, 0dP1s -1, 1, 5d,

P2s3, 3, 0dP1s1, 1, 1d,

P2P1

z = 2x = 2, y = 2,

z = 1z = 0

s0, 0, -1d

s1, 3, -1d

s -3, 4, 1d

y = 2

s3, -1, 1d

s3, -1, 2d

s0, 0, -2d

s0, -1, 0d

682 Chapter 12: Vectors and the Geometry of Space

44.

45.

46.

Spheres
Find the centers and radii of the spheres in Exercises 47–50.

47.

48.

49.

50.

Find equations for the spheres whose centers and radii are given in 
Exercises 51–54.

Center Radius

51. (1, 2, 3)

52. 2

53.

54. 7

Find the centers and radii of the spheres in Exercises 55–58.

55.

56.

57.

58.

Theory and Examples

59. Find a formula for the distance from the point P(x, y, z) to the

a. x-axis b. y-axis c. z-axis

60. Find a formula for the distance from the point P(x, y, z) to the

a. xy-plane b. yz-plane c. xz-plane

61. Find the perimeter of the triangle with vertices 
and C(3, 4, 5).

62. Show that the point P(3, 1, 2) is equidistant from the points
and B(4, 3, 1).

63. Find an equation for the set of all points equidistant from the
planes and 

64. Find an equation for the set of all points equidistant from the
point and the xy-plane.

65. Find the point on the sphere 
nearest

a. the xy-plane. b. the point 

66. Find the point equidistant from the points (0, 0, 0), (0, 4, 0), (3, 0, 0),
and (2, 2, -3).

s0, 7, -5d.

x2
+ sy - 3d2

+ sz + 5d2
= 4

(0, 0, 2)

y = -1.y = 3

As2, -1, 3d

Bs1, -1, 3d,
As -1, 2, 1d,

3x2
+ 3y2

+ 3z2
+ 2y - 2z = 9

2x2
+ 2y2

+ 2z2
+ x + y + z = 9

x2
+ y2

+ z2
- 6y + 8z = 0

x2
+ y2

+ z2
+ 4x - 4z = 0

s0, -7, 0d

4
9

a-1, 
1
2

, -
2
3
b

s0, -1, 5d
214

x2
+ ay +

1
3
b2

+ az -

1
3
b2

=

16
9

Ax - 22 B2 + Ay - 22 B2 + Az + 22 B2 = 2

sx - 1d2
+ ay +

1
2
b2

+ sz + 3d2
= 25

sx + 2d2
+ y2

+ sz - 2d2
= 8

P2s0, 0, 0dP1s5, 3, -2d,

P2s2, -2, -2dP1s0, 0, 0d,

P2s2, 3, 4dP1s3, 4, 5d,
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12.2 Vectors 683

12.2 Vectors

Some of the things we measure are determined simply by their magnitudes. To record
mass, length, or time, for example, we need only write down a number and name an appro-
priate unit of measure. We need more information to describe a force, displacement, or ve-
locity. To describe a force, we need to record the direction in which it acts as well as how
large it is. To describe a body’s displacement, we have to say in what direction it moved as
well as how far. To describe a body’s velocity, we have to know where the body is headed
as well as how fast it is going. In this section we show how to represent things that have
both magnitude and direction in the plane or in space.

Component Form

A quantity such as force, displacement, or velocity is called a vector and is represented by
a directed line segment (Figure 12.7). The arrow points in the direction of the action and
its length gives the magnitude of the action in terms of a suitably chosen unit. For exam-
ple, a force vector points in the direction in which the force acts and its length is a measure
of the force’s strength; a velocity vector points in the direction of motion and its length is
the speed of the moving object. Figure 12.8 displays the velocity vector v at a specific
location for a particle moving along a path in the plane or in space. (This application of
vectors is studied in Chapter 13.)

FIGURE 12.7 The directed line segment
is called a vector.AB

1

Initial
point

Terminal
point

A

B

AB

x

y

y

z

0
0

x

v v

(a)  two dimensions (b)  three dimensions

FIGURE 12.8 The velocity vector of a particle moving along a path 
(a) in the plane (b) in space. The arrowhead on the path indicates the
direction of motion of the particle.

DEFINITIONS The vector represented by the directed line segment has
initial point A and terminal point B and its length is denoted by Two
vectors are equal if they have the same length and direction.

ƒ AB
1

ƒ .
AB
1

x

y

O

A

P

D

C

F

E

B

FIGURE 12.9 The four arrows in the
plane (directed line segments) shown
here have the same length and direction.
They therefore represent the same vector,
and we write AB

1
= CD

1
= OP

1
= EF

1
.

The arrows we use when we draw vectors are understood to represent the same vector
if they have the same length, are parallel, and point in the same direction (Figure 12.9)
regardless of the initial point.

In textbooks, vectors are usually written in lowercase, boldface letters, for example u,
v, and w. Sometimes we use uppercase boldface letters, such as F, to denote a force vector.
In handwritten form, it is customary to draw small arrows above the letters, for example 

and 
We need a way to represent vectors algebraically so that we can be more precise about

the direction of a vector. Let There is one directed line segment equal to 
whose initial point is the origin (Figure 12.10). It is the representative of v in standard 
position and is the vector we normally use to represent v. We can specify v by writing the

PQ
1v = PQ

1
.

Fs .ws,ys,
us,

x

z

y

0

P(x1, y1, z1)

Q(x2, y2, z2)

(v1, v2, v3)Position vector
of PQ

v � �v1, v2, v3�  v3

v1
v2

FIGURE 12.10 A vector in standard
position has its initial point at the origin.
The directed line segments and v are
parallel and have the same length.

PQ
1

PQ
1
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coordinates of its terminal point when v is in standard position. If v is a vector
in the plane its terminal point has two coordinates.sv1, v2d

sv1, v2 , v3d

684 Chapter 12: Vectors and the Geometry of Space

DEFINITION

If v is a two-dimensional vector in the plane equal to the vector with initial point
at the origin and terminal point then the component form of v is

If v is a three-dimensional vector equal to the vector with initial point at the ori-
gin and terminal point then the component form of v is

v = 8v1, v2 , v39 .
sv1, v2, v3d ,

v = 8v1, v29 .
sv1, v2d ,

So a two-dimensional vector is an ordered pair of real numbers, and a
three-dimensional vector is an ordered triple of real numbers. The num-
bers and are the components of v.

If is represented by the directed line segment where the initial
point is and the terminal point is then 

and (see Figure 12.10). Thus, 

and are the components of 
In summary, given the points and the standard position vec-

tor equal to is

If v is two-dimensional with and as points in the plane, then
There is no third component for planar vectors. With this under-

standing, we will develop the algebra of three-dimensional vectors and simply drop the
third component when the vector is two-dimensional (a planar vector).

Two vectors are equal if and only if their standard position vectors are identical. Thus
and are equal if and only if and 

The magnitude or length of the vector is the length of any of its equivalent di-
rected line segment representations. In particular, if is the
standard position vector for then the distance formula gives the magnitude or length
of v, denoted by the symbol or ƒ ƒ v ƒ ƒ.ƒ v ƒ

PQ
1

,
v = 8x2 - x1, y2 - y1, z2 - z19

PQ
1

u3 = v3 .u1 = v1, u2 = v2 ,8v1, v2, v398u1, u2, u39

v = 8x2 - x1, y2 - y19 .
Qsx2 , y2dPsx1, y1d

v = 8x2 - x1, y2 - y1, z2 -  z19 .
PQ
1v = 8v1, v2 , v39

Qsx2 , y2 , z2d ,Psx1, y1, z1d
PQ
1

.v3 = z2 - z1

v1 = x2 - x1, v2 = y2 - y1 ,z1 + v3 = z2y1 + v2 = y2 ,
x1 + v1 = x2,Qsx2 , y2 , z2d ,Psx1, y1, z1d

PQ
1

,v = 8v1, v2 , v39
v3v1, v2 ,

v = 8v1, v2 , v39
v = 8v1, v29

The magnitude or length of the vector is the nonnegative number

(see Figure 12.10).

ƒ v ƒ = 2v1
2

+ v2
2

+ v3
2

= 2sx2 - x1d2
+ s y2 - y1d2

+ sz2 - z1d2

v = PQ
1

The only vector with length 0 is the zero vector or This
vector is also the only vector with no specific direction.

EXAMPLE 1 Find the (a) component form and (b) length of the vector with initial
point and terminal point 

Solution

(a) The standard position vector v representing has components

v1 = x2 - x1 = -5 - s -3d = -2,  v2 = y2 - y1 = 2 - 4 =  -2,

PQ
1

Qs -5, 2, 2d .Ps -3, 4, 1d

0 = 80, 0, 09 .0 = 80, 09
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12.2 Vectors 685

and

The component form of is

(b) The length or magnitude of is

EXAMPLE 2 A small cart is being pulled along a smooth horizontal floor with a 20-lb
force F making a 45° angle to the floor (Figure 12.11). What is the effective force moving
the cart forward?

Solution The effective force is the horizontal component of given by

Notice that F is a two-dimensional vector.

Vector Algebra Operations

Two principal operations involving vectors are vector addition and scalar multiplication.
A scalar is simply a real number, and is called such when we want to draw attention to its
differences from vectors. Scalars can be positive, negative, or zero and are used to “scale”
a vector by multiplication.

a = ƒ F ƒ  cos 45° = s20d a22
2
b L 14.14 lb .

F = 8a, b9 ,

ƒ v ƒ = 2s -2d2
+ s -2d2

+ s1d2
= 29 = 3.

v = PQ
1

v = 8-2, -2, 19 .
PQ
1
v3 = z2 - z1 = 2 - 1 = 1.

x

y

45°

F = �a, b� 

FIGURE 12.11 The force
pulling the cart forward is
represented by the vector F
whose horizontal component is
the effective force (Example 2).

DEFINITIONS Let and be vectors with k a
scalar.

Scalar multiplication: ku = 8ku1, ku2 , ku39
Addition:  u + v = 8u1 + v1, u2 + v2 , u3 + v39

v = 8v1, v2 , v39u = 8u1, u2 , u39

We add vectors by adding the corresponding components of the vectors. We multiply
a vector by a scalar by multiplying each component by the scalar. The definitions apply to
planar vectors except there are only two components, and 

The definition of vector addition is illustrated geometrically for planar vectors in 
Figure 12.12a, where the initial point of one vector is placed at the terminal point of the
other. Another interpretation is shown in Figure 12.12b (called the parallelogram law of 

8v1, v29 .8u1, u29

�u1  �  v1, u2  �  v2� 

v2

v1

u2

u1

u

vu + v

x

y

(a)

u

v
u + v

x

y

(b)

0 0

FIGURE 12.12 (a) Geometric interpretation of the vector sum. (b) The parallelogram law of
vector addition.
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addition), where the sum, called the resultant vector, is the diagonal of the parallelogram.
In physics, forces add vectorially as do velocities, accelerations, and so on. So the force
acting on a particle subject to two gravitational forces, for example, is obtained by adding
the two force vectors.

Figure 12.13 displays a geometric interpretation of the product ku of the scalar k and
vector u. If then ku has the same direction as u; if then the direction of ku
is opposite to that of u. Comparing the lengths of u and ku, we see that

The length of ku is the absolute value of the scalar k times the length of u. The vector
has the same length as u but points in the opposite direction.

The of two vectors is defined by

If and then

.

Note that so adding the vector to v gives u (Figure 12.14a).
Figure 12.14b shows the difference as the sum 

EXAMPLE 3 Let and Find the components of

(a) (b) (c)

Solution

(a)

(b)

(c)

Vector operations have many of the properties of ordinary arithmetic.

=
1
2

 211. ̀
1
2

 u ` = ` h-
1
2

, 
3
2

, 
1
2
i ` = C a- 1

2
b2

+ a3
2
b2

+ a1
2
b2

= 8-1 - 4, 3 - 7, 1 - 09 = 8-5, -4, 19u - v = 8-1, 3, 19 - 84, 7, 09
= 8-2, 6, 29 + 812, 21, 09 = 810, 27, 29 2u + 3v = 28-1, 3, 19 + 384, 7, 09

` 1
2

 u ` .u - v2u + 3v

v = 84, 7, 09 .u = 8-1, 3, 19
u + s -vd .u - v

su - vdsu - vd + v = u ,

u - v = 8u1 - v1, u2 - v2, u3 - v39
v = 8v1, v2 , v39 ,u = 8u1, u2 , u39

u - v = u + s -vd .

difference u - v
s -1du = -u

 = 2k22u1
2

+ u2
2

+ u3
2

= ƒ k ƒ ƒ u ƒ .

 ƒ ku ƒ = 2sku1d2
+ sku2d2

+ sku3d2
= 2k2su1

2
+ u2

2
+ u3

2d

k 6 0,k 7 0,

686 Chapter 12: Vectors and the Geometry of Space

u

1.5u

2u –2u

FIGURE 12.13 Scalar multiples of u.

u

v

u � v

(a)

u

v

–v

u � (–v)

(b)

FIGURE 12.14 (a) The vector
when added to v, gives u.

(b) u - v = u + s -vd .
u - v,

Properties of Vector Operations

Let u, v, w be vectors and a, b be scalars.

1. 2.
3. 4.
5. 6.
7. 8.
9. sa + bdu = au + bu

asu + vd = au + avasbud = sabdu
1u = u0u = 0
u + s -ud = 0u + 0 = u
su + vd + w = u + sv + wdu + v = v + u

These properties are readily verified using the definitions of vector addition and multi-
plication by a scalar. For instance, to establish Property 1, we have

 = v + u.

 = 8v1, v2, v39 + 8u1, u2, u39
 = 8v1 + u1, v2 + u2, v3 + u39
 = 8u1 + v1, u2 + v2, u3 + v39

 u + v = 8u1, u2, u39 + 8v1, v2, v39
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12.2 Vectors 687

When three or more space vectors lie in the same plane, we say they are coplanar vec-
tors. For example, the vectors u, v, and are always coplanar.

Unit Vectors

A vector v of length 1 is called a unit vector. The standard unit vectors are

Any vector can be written as a linear combination of the standard unit
vectors as follows:

We call the scalar (or number) the of the vector v, the
and the In component form, the vector from 

to is

P1P2

(Figure 12.15).
Whenever its length is not zero and

That is, is a unit vector in the direction of v, called the direction of the nonzero 
vector v.

EXAMPLE 4 Find a unit vector u in the direction of the vector from to

Solution We divide by its length:

The unit vector u is the direction of  

EXAMPLE 5 If is a velocity vector, express v as a product of its speed
times a unit vector in the direction of motion.

Solution Speed is the magnitude (length) of v:

The unit vector has the same direction as v:

v
ƒ v ƒ

=

3i - 4j
5

=
3
5 i -

4
5 j .

v> ƒ v ƒ

ƒ v ƒ = 2s3d2
+ s -4d2

= 29 + 16 = 5.

v = 3i - 4j

P1P2
1

.

 u =

P1P2
1

ƒ P1P2
1

ƒ

=

2i + 2j - k
3

=
2
3

 i +
2
3

 j -
1
3

 k .

 ƒ P1P2
1

ƒ = 2s2d2
+ s2d2

+ s -1d2
= 24 + 4 + 1 = 29 = 3

 P1P2
1

= s3 - 1di + s2 - 0dj + s0 - 1dk = 2i + 2j - k

P1P2
1

P2s3, 2, 0d .
P1s1, 0, 1d

v> ƒ v ƒ

` 1
ƒ v ƒ

 v ` =
1

ƒ v ƒ

 ƒ v ƒ = 1.

ƒ v ƒv Z 0,

1  
= sx2 - x1di + s y2 - y1dj + sz2 - z1dk

P2sx2 , y2 , z2d
P1sx1, y1, z1dk-component .v3j-component ,

v2i-componentv1

 = v1 i + v2  j + v3 k .

 = v181, 0, 09 + v280, 1, 09 + v380, 0, 19
 v = 8v1, v2, v39 = 8v1, 0, 09 + 80, v2, 09 + 80, 0, v39

v = 8v1, v2 , v39
i = 81, 0, 09,  j = 80, 1, 09, and k = 80, 0, 19 .

u + v

y

z

O

k

x

i
j

P2(x2, y2, z2)

OP2 � x2i � y2 j � z2k

P1P2

P1(x1, y1, z1)

OP1 � x1i � y1j � z1k

FIGURE 12.15 The vector from to 
is 
sz2 - z1dk.

s y2 - y1dj +P1P2
1

= sx2 - x1di +

P2P1

HISTORICAL BIOGRAPHY

Hermann Grassmann
(1809–1877)
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So

In summary, we can express any nonzero vector v in terms of its two important features,

length and direction, by writing v = ƒ v ƒ

v
ƒ v ƒ

.

v = 3i - 4j = 5 a35 i -
4
5 jb

(')'*

.

688 Chapter 12: Vectors and the Geometry of Space

Length
(speed)

Direction of motion

If then

1. is a unit vector in the direction of v;

2. the equation expresses v as its length times its direction.v = ƒ v ƒ

v
ƒ v ƒ

v
ƒ v ƒ

v Z 0,

EXAMPLE 6 A force of 6 newtons is applied in the direction of the vector
Express the force F as a product of its magnitude and direction.

Solution The force vector has magnitude 6 and direction so

Midpoint of a Line Segment

Vectors are often useful in geometry. For example, the coordinates of the midpoint of a
line segment are found by averaging.

 = 6 a2
3

 i +
2
3

 j -
1
3

 kb .

 F = 6 
v
ƒ v ƒ

= 6 
2i + 2j - k

222
+ 22

+ s -1d2
= 6 

2i + 2j - k
3

v
ƒ v ƒ

,

v = 2i + 2j - k .

The midpoint M of the line segment joining points and
is the point

ax1 + x2

2
,  

y1 + y2

2
,  

z1 + z2

2
b .

sx2, y2, z2dP2

P1sx1, y1, z1d

O

P1(x1, y1, z1)

P2(x2, y2, z2)

M
x1 � x2

2
z1 � z2

2
y1 � y2

2
, ,⎛

⎝
⎛
⎝

FIGURE 12.16 The coordinates of the
midpoint are the averages of the
coordinates of P1 and P2.

To see why, observe (Figure 12.16) that

EXAMPLE 7 The midpoint of the segment joining and is

a3 + 7
2

,  
-2 + 4

2
,  

0 + 4
2
b = s5, 1, 2d .

P2s7, 4, 4dP1s3, -2, 0d

 =

x1 + x2

2
 i +

y1 + y2

2
 j +

z1 + z2

2
 k .

 =
1
2

 sOP
1

1 + OP
1

2d

 OM
1

= OP
1

1 +
1
2

 sP1P2
1 d = OP

1
1 +

1
2

 sOP
1

2 - OP
1

1d
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Applications

An important application of vectors occurs in navigation.

EXAMPLE 8 A jet airliner, flying due east at 500 mph in still air, encounters a 70-mph
tailwind blowing in the direction 60° north of east. The airplane holds its compass head-
ing due east but, because of the wind, acquires a new ground speed and direction. What
are they?

Solution If velocity of the airplane alone and velocity of the tailwind,
then (Figure 12.17). The velocity of the airplane with respect to
the ground is given by the magnitude and direction of the resultant vector If we let
the positive x-axis represent east and the positive y-axis represent north, then the compo-
nent forms of u and v are

Therefore,

and

Figure 12.17

The new ground speed of the airplane is about 538.4 mph, and its new direction is about
6.5° north of east.

Another important application occurs in physics and engineering when several forces
are acting on a single object.

EXAMPLE 9 A 75-N weight is suspended by two wires, as shown in Figure 12.18a. Find
the forces and acting in both wires.

Solution The force vectors and have magnitudes and and components that
are measured in Newtons. The resultant force is the sum and must be equal in
magnitude and acting in the opposite (or upward) direction to the weight vector w (see
Figure 12.18b). It follows from the figure that

and

Since the resultant vector leads to the system of equations

Solving for in the first equation and substituting the result into the second equation,
we get

and

It follows that

ƒ F1 ƒ =
75

sin 55° + cos 55° tan 40°
L 57.67 N,

ƒ F1 ƒ sin 55° +

ƒ F1 ƒ cos 55°
cos 40°

 sin 40° = 75.ƒ F2 ƒ =

ƒ F1 ƒ cos 55°
cos 40°

ƒ F2 ƒ

ƒ F1 ƒ sin 55° + ƒ F2 ƒ sin 40° = 75.

- ƒ F1 ƒ cos 55° + ƒ F2 ƒ cos 40° = 0

F1 + F2 = 80, 759,
F2 = 8ƒ F2 ƒ cos 40°, ƒ F2 ƒ sin 40°9.F1 = 8- ƒ F1 ƒ cos 55°, ƒ F1 ƒ sin 55°9

F1 + F2

ƒ F2 ƒƒ F1 ƒF2F1

F2F1

u = tan-1 
3523

535
 L 6.5°.

 ƒ u + v ƒ = 25352
+ s3513d2

L 538.4

 u + v = 8535, 35239 = 535i + 3523 j

u = 8500, 09 and v = 870 cos 60°, 70 sin 60°9 = 835, 35239 .

u + v .
ƒ u ƒ = 500 and ƒ v ƒ = 70

v = theu = theE

N

u

v
u � v30̊

70

500

NOT TO SCALE

�

FIGURE 12.17 Vectors representing
the velocities of the airplane u and
tailwind v in Example 8.

F1

F2

40°

75

40°

55°

55°

(a)

(b)

�F1�

�F2� F2

F1

40°55°

F � F1� F2 � �0, 75�

w � �0, �75�

FIGURE 12.18 The suspended weight
in Example 9.

7001_ThomasET_ch12p678-724.qxd  10/30/09  7:23 AM  Page 689



and

The force vectors are then and F2 = 833.08, 27.769.F1 = 8-33.08, 47.249

 =
75 cos 55°

sins55° + 40°d
L 43.18 N.

 ƒ F2 ƒ =
75 cos 55°

sin 55° cos 40° + cos 55° sin 40°

690 Chapter 12: Vectors and the Geometry of Space

Exercises 12.2

Vectors in the Plane
In Exercises 1–8, let and Find the (a) com-
ponent form and (b) magnitude (length) of the vector.

1. 3u 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–16, find the component form of the vector.

9. The vector where and 

10. The vector where O is the origin and P is the midpoint of seg-
ment RS, where and 

11. The vector from the point to the origin

12. The sum of and where 
and 

13. The unit vector that makes an angle with the positive
x-axis

14. The unit vector that makes an angle with the positive
x-axis

15. The unit vector obtained by rotating the vector coun-
terclockwise about the origin

16. The unit vector obtained by rotating the vector coun-
terclockwise about the origin

Vectors in Space
In Exercises 17–22, express each vector in the form 

17. if is the point and is the point 

18. if is the point (1, 2, 0) and is the point 

19. if A is the point and B is the point 

20. if A is the point (1, 0, 3) and B is the point 

21. if and 

22. if and v = 81, 1, 19u = 8-1, 0, 29-2u + 3v

v = 82, 0, 39u = 81, 1, -195u - v

s -1, 4, 5dAB
1

s -10, 8, 1ds -7, -8, 1dAB
1

s -3, 0, 5dP2P1P1P2
1

s2, 9, -2dP2s5, 7, -1dP1P1P2
1

v2 j + v3 k .
v = v1 i +

81, 09 135°

80, 19 120°

u = -3p>4
u = 2p>3

D = s -2, 2dC = s -1, 3d ,
A = s1, -1d, B = s2, 0d, CD

1
,AB

1
A = s2, 3d

S = s -4, 3dR = s2, -1d
OP
1

Q = s2, -1dP = s1, 3dPQ
1

,

-

5
13

 u +

12
13

 v
3
5

 u +

4
5

 v

-2u + 5v2u - 3v

u - vu + v

-2v

v = 8-2, 59 .u = 83, -29 Geometric Representations
In Exercises 23 and 24, copy vectors and w head to tail as needed
to sketch the indicated vector.

23.

a. b.

c. d.

24.

a. b.

c. d.

Length and Direction
In Exercises 25–30, express each vector as a product of its length and
direction.

25. 26.

27. 5k 28.

29. 30.
i

23
+

j

23
+

k

23

1

26
 i -

1

26
 j -

1

26
 k

3
5

 i +

4
5

 k

9i - 2j + 6k2i + j - 2k

u + v + w2u - v

u - v + wu - v

u

w

v

u - wu - v

u + v + wu + v

v

w
u

u, v,
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12.2 Vectors 691

31. Find the vectors whose lengths and directions are given. Try to do
the calculations without writing.

Length Direction

a. 2 i

b.

c.

d. 7

32. Find the vectors whose lengths and directions are given. Try to do
the calculations without writing.

Length Direction

a. 7

b.

c.

d.

33. Find a vector of magnitude 7 in the direction of 

34. Find a vector of magnitude 3 in the direction opposite to the di-
rection of 

Direction and Midpoints
In Exercises 35–38, find

a. the direction of and

b. the midpoint of line segment 

35.

36.

37.

38.

39. If and B is the point (5, 1, 3), find A.

40. If and A is the point find B.

Theory and Applications
41. Linear combination Let and 

Find scalars a and b such that 

42. Linear combination Let and 
Write where is parallel to v and is par-

allel to w. (See Exercise 41.)

43. Velocity An airplane is flying in the direction 25° west of north
at 800 km h. Find the component form of the velocity of the air-
plane, assuming that the positive x-axis represents due east and
the positive y-axis represents due north.

44. (Continuation of Example 8.) What speed and direction should
the jetliner in Example 8 have in order for the resultant vector to
be 500 mph due east?

45. Consider a 100-N weight suspended by two wires as shown in the
accompanying figure. Find the magnitudes and components of
the force vectors and F2.F1

>

u2u1u = u1 + u2 ,i + j .
w =u = i - 2j , v = 2i + 3j ,

u = av + bw .i - j .
w =u = 2i + j, v = i + j ,

s -2, -3, 6d ,= -7i + 3j + 8kAB
1

= i + 4j - 2kAB
1

P2s2, -2, -2dP1s0, 0, 0d

P2s2, 3, 4dP1s3, 4, 5d

P2s4, -2, 7dP1s1, 4, 5d

P2s2, 5, 0dP1s -1, 1, 5d

P1 P2 .

P1P2
1

v = s1>2di - s1>2dj - s1>2dk .

v = 12i - 5k .

1

22
 i +

1

23
 j -

1

26
 ka 7 0

3
13

 i -

4
13

 j -

12
13

 k
13
12

-

3
5

 i -

4
5

 k22

- j

6
7

 i -

2
7

 j +

3
7

 k

3
5

 j +

4
5

 k
1
2

-k23

46. Consider a 50-N weight suspended by two wires as shown in the
accompanying figure. If the magnitude of vector is 35 N, find
angle and the magnitude of vector 

47. Consider a w-N weight suspended by two wires as shown in the
accompanying figure. If the magnitude of vector is 100 N, find
w and the magnitude of vector 

48. Consider a 25-N weight suspended by two wires as shown in the
accompanying figure. If the magnitudes of vectors and are
both 75 N, then angles and are equal. Find 

49. Location A bird flies from its nest 5 km in the direction 60°
north of east, where it stops to rest on a tree. It then flies 10 km in
the direction due southeast and lands atop a telephone pole. Place
an xy-coordinate system so that the origin is the bird’s nest, the
x-axis points east, and the y-axis points north.

a. At what point is the tree located?

b. At what point is the telephone pole?

50. Use similar triangles to find the coordinates of the point Q that di-
vides the segment from to into two
lengths whose ratio is 

51. Medians of a triangle Suppose that A, B, and C are the corner
points of the thin triangular plate of constant density shown here.

a. Find the vector from C to the midpoint M of side AB.

b. Find the vector from C to the point that lies two-thirds of the
way from C to M on the median CM.

p>q = r .
P2sx2, y2, z2dP1sx1, y1, z1d

F1 F2

25

a b

a.ba

F2F1

F1 F2

35˚

w

40˚

F1.
F2

F1

F2

60˚a

50

F2.a

F1

F1 F2

45˚

100

30˚
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c. Find the coordinates of the point in which the medians of
intersect. According to Exercise 17, Section 6.6, this

point is the plate’s center of mass.

52. Find the vector from the origin to the point of intersection of the
medians of the triangle whose vertices are

As1, -1, 2d,  Bs2, 1, 3d,  and Cs -1, 2, -1d .

z

y

x

c.m.

M

C(1, 1, 3)

B(1, 3, 0)

A(4, 2, 0)

¢ABC

692 Chapter 12: Vectors and the Geometry of Space

53. Let ABCD be a general, not necessarily planar, quadrilateral in
space. Show that the two segments joining the midpoints of oppo-
site sides of ABCD bisect each other. (Hint: Show that the seg-
ments have the same midpoint.)

54. Vectors are drawn from the center of a regular n-sided polygon in
the plane to the vertices of the polygon. Show that the sum of the
vectors is zero. (Hint: What happens to the sum if you rotate the
polygon about its center?)

55. Suppose that A, B, and C are vertices of a triangle and that a, b,
and c are, respectively, the midpoints of the opposite sides. Show
that 

56. Unit vectors in the plane Show that a unit vector in the plane
can be expressed as obtained by rotating
i through an angle in the counterclockwise direction. Explain
why this form gives every unit vector in the plane.

u

u = scos udi + ssin udj ,

Aa
1

+ Bb
1

+ Cc
1

= 0.

12.3 The Dot Product

If a force F is applied to a particle moving along a path, we often need to know the magni-
tude of the force in the direction of motion. If v is parallel to the tangent line to the path at
the point where F is applied, then we want the magnitude of F in the direction of v. Figure
12.19 shows that the scalar quantity we seek is the length where is the angle
between the two vectors F and v.

In this section we show how to calculate easily the angle between two vectors directly
from their components. A key part of the calculation is an expression called the dot prod-
uct. Dot products are also called inner or scalar products because the product results in a
scalar, not a vector. After investigating the dot product, we apply it to finding the projec-
tion of one vector onto another (as displayed in Figure 12.19) and to finding the work done
by a constant force acting through a displacement.

Angle Between Vectors

When two nonzero vectors u and v are placed so their initial points coincide, they form an
angle of measure (Figure 12.20). If the vectors do not lie along the same
line, the angle is measured in the plane containing both of them. If they do lie along the
same line, the angle between them is 0 if they point in the same direction and if they
point in opposite directions. The angle is the angle between u and v. Theorem 1 gives a
formula to determine this angle.

u

p

u

0 … u … pu

uƒ F ƒ  cos u ,

THEOREM 1—Angle Between Two Vectors The angle between two nonzero
vectors is given by

u = cos-1 au1 v1 + u2 v2 + u3 v3

ƒ u ƒ ƒ v ƒ

b .

8v1, v2, v39u = 8u1, u2, u39 and v =

u

v

F

Length � ⎥ F⎥  cos �

�

FIGURE 12.19 The magnitude of the force
F in the direction of vector v is the length

of the projection of F onto v.ƒ F ƒ  cos u

u

v

�

FIGURE 12.20 The angle between u and v.

Before proving Theorem 1, we focus attention on the expression 
in the calculation for This expression is the sum of the products of the corresponding
components for the vectors u and v.

u .
u1 v1 + u2 v2 + u3 v3
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v

u

�

w

FIGURE 12.21 The parallelogram law of
addition of vectors gives w = u - v.

In the notation of the dot product, the angle between two vectors u and v is

u = cos-1 a u # v
ƒ u ƒ ƒ v ƒ

b .

DEFINITION The dot product of vectors 
and is

u # v = u1 v1 + u2 v2 + u3 v3 .

v = 8v1, v2, v39
u = 8u1, u2, u39u # v s“u dot v”d

EXAMPLE 1
(a)

(b)

The dot product of a pair of two-dimensional vectors is defined in a similar fashion:

We will see throughout the remainder of the book that the dot product is a key tool for
many important geometric and physical calculations in space (and the plane), not just for
finding the angle between two vectors.

Proof of Theorem 1 Applying the law of cosines (Equation (8), Section 1.3) to the trian-
gle in Figure 12.21, we find that

Law of cosines

Because the component form of w is So

and

Therefore,

Since we have

u = cos-1 au1 v1 + u2 v2 + u3 v3

ƒ u ƒ ƒ v ƒ

b .

0 … u 6 p,

 cos u =

u1 v1 + u2 v2 + u3 v3

ƒ u ƒ ƒ v ƒ

.

 ƒ u ƒ ƒ v ƒ  cos u = u1 v1 + u2 v2 + u3 v3

 2 ƒ u ƒ ƒ v ƒ  cos u = ƒ u ƒ
2

+ ƒ v ƒ
2

- ƒ w ƒ
2

= 2su1 v1 + u2 v2 + u3 v3d

ƒ u ƒ
2

+ ƒ v ƒ
2

- ƒ w ƒ
2

= 2su1 v1 + u2v2 + u3 v3) .

 = u1
2

- 2u1v1 + v1
2

+ u2
2

- 2u2v2 + v2
2

+ u3
2

- 2u3v3 + v3
2

 = su1 - v1d2
+ su2 - v2d2

+ su3 - v3d2

 ƒ w ƒ
2

= A2su1 - v1d2
+ su2 - v2d2

+ su3 - v3d2 B2
 ƒ v ƒ

2
= A2v1

2
+ v2

2
+ v3

2 B2 = v1
2

+ v2
2

+ v3
2

 ƒ u ƒ
2

= A2u1
2

+ u2
2

+ u3
2 B2 = u1

2
+ u2

2
+ u3

2

8u1 - v1, u2 - v2 , u3 - v39 .w = u - v ,

 2 ƒ u ƒ ƒ v ƒ  cos u = ƒ u ƒ
2

+ ƒ v ƒ
2

- ƒ w ƒ
2 .

 ƒ w ƒ
2

= ƒ u ƒ
2

+ ƒ v ƒ
2

- 2 ƒ u ƒ ƒ v ƒ  cos u

8u1, u29 # 8v1, v29 = u1 v1 + u2 v2 .

a1
2

 i + 3j + kb # s4i - j + 2kd = a1
2
b s4d + s3ds -1d + s1ds2d = 1

 = -6 - 4 + 3 =  -7

 81, -2, -19 # 8-6, 2, -39 = s1ds -6d + s -2ds2d + s -1ds -3d
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EXAMPLE 2 Find the angle between and 

Solution We use the formula above:

The angle formula applies to two-dimensional vectors as well.

EXAMPLE 3 Find the angle in the triangle ABC determined by the vertices
and (Figure 12.22).

Solution The angle is the angle between the vectors and The component
forms of these two vectors are

First we calculate the dot product and magnitudes of these two vectors.

Then applying the angle formula, we have

Perpendicular (Orthogonal) Vectors

Two nonzero vectors u and v are perpendicular or orthogonal if the angle between them is
For such vectors, we have because The converse is also

true. If u and v are nonzero vectors with then and
u = cos-1 0 = p>2.

cos u = 0u # v = ƒ u ƒ ƒ v ƒ  cos u = 0,
cos sp>2d = 0.u # v = 0p>2.

 L 78.1° or 1.36 radians.

 = cos-1 ¢ 4

A229 B A213 B ≤
 u = cos-1 ¢ CA

1 # CB
1

ƒ CA
1

ƒ ƒ CB
1

ƒ

≤
 ƒ CB

1
ƒ = 2s -2d2

+ s3d2
= 213

 ƒ CA
1

ƒ = 2s -5d2
+ s -2d2

= 229

 CA
1 # CB

1
= s -5ds -2d + s -2ds3d = 4

CA
1

= 8-5, -29 and CB
1

= 8-2, 39 .
CB
1

.CA
1

u

C = s5, 2dA = s0, 0d, B = s3, 5d ,
u

= cos-1 a -4
s3ds7d

b L 1.76 radians. u = cos-1 a u # v
ƒ u ƒ ƒ v ƒ

b
 ƒ v ƒ = 2s6d2

+ s3d2
+ s2d2

= 249 = 7

 ƒ u ƒ = 2s1d2
+ s -2d2

+ s -2d2
= 29 = 3

 u # v = s1ds6d + s -2ds3d + s -2ds2d = 6 - 6 - 4 = -4

v = 6i + 3j + 2k.u = i - 2j - 2k

694 Chapter 12: Vectors and the Geometry of Space

x

y

A

�

B(3, 5)

C(5, 2)

1

1

FIGURE 12.22 The triangle in
Example 3.

DEFINITION Vectors u and v are orthogonal (or perpendicular) if and only
if u # v = 0.

EXAMPLE 4 To determine if two vectors are orthogonal, calculate their dot product.

(a) and are orthogonal because 

(b) and are orthogonal because 
s -2ds2d + s1ds4d = 0.

u # v = s3ds0d +v = 2j + 4ku = 3i - 2j + k

u # v = s3ds4d + s -2ds6d = 0.v = 84, 69u = 83, -29
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(c) 0 is orthogonal to every vector u since

Dot Product Properties and Vector Projections

The dot product obeys many of the laws that hold for ordinary products of real numbers
(scalars).

 = 0.

 = s0dsu1d + s0dsu2d + s0dsu3d
 0 # u = 80, 0, 09 # 8u1, u2, u39

Properties of the Dot Product
If u, v, and w are any vectors and c is a scalar, then

1. 2.

3. 4.

5. 0 # u = 0.

u # u = ƒ u ƒ
2u # sv + wd = u # v + u # w

scud # v = u # scvd = csu # vdu # v = v # u

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)

Q

P

u

S

v

R

Q

P

u

S

v

R

FIGURE 12.23 The vector projection of
u onto v.

v

Force 5 u

projv u

FIGURE 12.24 If we pull on the box with
force u, the effective force moving the box
forward in the direction v is the projection
of u onto v.

Proofs of Properties 1 and 3 The properties are easy to prove using the definition. For
instance, here are the proofs of Properties 1 and 3.

1.

3.

We now return to the problem of projecting one vector onto another, posed in the
opening to this section. The vector projection of onto a nonzero vector 
(Figure 12.23) is the vector determined by dropping a perpendicular from Q to the line
PS. The notation for this vector is

If u represents a force, then represents the effective force in the direction of v
(Figure 12.24).

If the angle between u and v is acute, has length and direction
(Figure 12.25). If is obtuse, and has length and di-

rection In both cases,

 = au # v

ƒ v ƒ
2 bv.

ƒ u ƒ  cos u =

ƒ u ƒ ƒ v ƒ  cos u

ƒ v ƒ

=

u # v

ƒ v ƒ

 = au # v
ƒ v ƒ

b  
v
ƒ v ƒ

 projv u = s ƒ u ƒ  cos ud 
v
ƒ v ƒ

-v> ƒ v ƒ .
- ƒ u ƒ  cos uprojv ucos u 6 0uv> ƒ v ƒ

ƒ u ƒ  cos uprojv uu

projv u

projv u s“the vector projection of u onto v”d .

PR
1

v = PS
1u = PQ

1

 = u # v + u # w

 = su1 v1 + u2 v2 + u3 v3d + su1 w1 + u2 w2 + u3 w3d

 = u1 v1 + u1 w1 + u2 v2 + u2 w2 + u3 v3 + u3 w3

 = u1sv1 + w1d + u2sv2 + w2d + u3sv3 + w3d

 u # sv + wd = 8u1, u2 , u39 # 8v1 + w1, v2 + w2 , v3 + w39
u # v = u1 v1 + u2 v2 + u3 v3 = v1 u1 + v2 u2 + v3 u3 = v # u
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The number is called the scalar component of u in the direction of v (or of u
onto v). To summarize,

ƒ u ƒ  cos u

696 Chapter 12: Vectors and the Geometry of Space

u

v

(b)

u

v 

(a)

�

�

projv u projv u

Length � �u� cos � Length � –�u� cos � 

FIGURE 12.25 The length of is (a) if and 
(b) if cos u 6 0.- ƒ u ƒ  cos u

cos u Ú 0ƒ u ƒ  cos uprojv u

The vector projection of u onto v is the vector

(1)

The scalar component of u in the direction of v is the scalar

(2)ƒ u ƒ  cos u =
u # v
ƒ v ƒ

= u # v
ƒ v ƒ

.

projv  u = au # v

ƒ v ƒ
2 bv.

Note that both the vector projection of u onto v and the scalar component of u onto v de-
pend only on the direction of the vector v and not its length (because we dot u with 
which is the direction of v).

EXAMPLE 5 Find the vector projection of onto 
and the scalar component of u in the direction of v.

Solution We find from Equation (1):

We find the scalar component of u in the direction of v from Equation (2):

Equations (1) and (2) also apply to two-dimensional vectors. We demonstrate this in the
next example.

EXAMPLE 6 Find the vector projection of a force onto and
the scalar component of F in the direction of v.

v = i - 3jF = 5i + 2j

 = 2 - 2 -
4
3

= -
4
3

.

 ƒ u ƒ  cos u = u # v
ƒ v ƒ

= s6i + 3j + 2kd # a1
3

 i -
2
3

 j -
2
3

 kb

 = -
4
9

 si - 2j - 2kd = -
4
9

 i +
8
9

 j +
8
9

 k .

 projv u =
u # v
v # v  v =

6 - 6 - 4
1 + 4 + 4

 si - 2j - 2kd

projv u

v = i - 2j - 2ku = 6i + 3j + 2k

v> ƒ v ƒ ,
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Solution The vector projection is

The scalar component of F in the direction of v is

A routine calculation (see Exercise 29) verifies that the vector is orthogo-
nal to the projection vector (which has the same direction as v). So the equation

Parallel to v Orthogonal to v

expresses u as a sum of orthogonal vectors.

Work

In Chapter 6, we calculated the work done by a constant force of magnitude F in moving
an object through a distance d as That formula holds only if the force is directed
along the line of motion. If a force F moving an object through a displacement 
has some other direction, the work is performed by the component of F in the direction of
D. If is the angle between F and D (Figure 12.26), then

. =  F # D

 =  s ƒ F ƒ  cos ud ƒ D ƒ

Work = ascalar component of F
in the direction of D b slength of Dd

u

D = PQ
1W = Fd .

('')''*(')'*

u = projv u + su - projv ud = ¢u # v

ƒ v ƒ
2 ≤v + ¢u - ¢u # v

ƒ v ƒ
2 ≤v≤

projv u
u - projv u

ƒ F ƒ  cos u =
F # v
ƒ v ƒ

=
5 - 6

21 + 9
= -

1

210
.

 = -
1

10
 i +

3
10

 j .

 =
5 - 6
1 + 9

 si - 3jd = -
1

10
 si - 3jd

 projv F = ¢F # v

ƒ v ƒ
2 ≤v

DEFINITION The work done by a constant force F acting through a displace-
ment is

W = F # D.

D = PQ
1

EXAMPLE 7 If (newtons), and the work done by
F in acting from P to Q is

Definition

Given values

We encounter more challenging work problems in Chapter 16 when we learn to find
the work done by a variable force along a path in space.

 = s120ds1>2d = 60 J s joulesd .

 = s40ds3d cos 60°

 = ƒ F ƒ ƒ D ƒ  cos u

 Work = F # D

u = 60°,ƒ D ƒ = 3 m,ƒ F ƒ = 40 N

F

P QD

_F_ cos u

u

FIGURE 12.26 The work done by a
constant force F during a displacement D
is , which is the dot product
F # D.

s ƒ F ƒ  cos ud ƒ D ƒ
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Exercises 12.3

Dot Product and Projections
In Exercises 1–8, find

a.

b. the cosine of the angle between v and u

c. the scalar component of u in the direction of v

d. the vector 

1.

2.

3.

4.

5.

6.

7.

8.

Angle Between Vectors
Find the angles between the vectors in Exercises 9–12 to the nearest
hundredth of a radian.

9.

10.

11.

12.

13. Triangle Find the measures of the angles of the triangle whose
vertices are and 

14. Rectangle Find the measures of the angles between the diago-
nals of the rectangle whose vertices are 

and 

15. Direction angles and direction cosines The direction angles
and of a vector are defined as follows:

is the angle between v and the positive x-axis 

is the angle between v and the positive y-axis 

is the angle between v and the positive z-axis 

y

z

x

v

0
�

�

�

s0 … g … pd .g

s0 … b … pdb

s0 … a … pda

v = ai + bj + ckga, b,

D = s4, 1d .C = s3, 4d ,
A = s1, 0d, B = s0, 3d,

C = s1, -2d .A = s -1, 0d, B = s2, 1d ,

u = i + 22j - 22k, v = - i + j + k

u = 23i - 7j, v = 23i + j - 2k

u = 2i - 2j + k, v = 3i + 4k

u = 2i + j, v = i + 2j - k

v = h 1

22
, 

1

23
i , u = h 1

22
, -

1

23
i

v = 5i + j, u = 2i + 217j

v = - i + j, u = 22i + 23j + 2k

v = 5j - 3k, u = i + j + k

v = 2i + 10j - 11k, u = 2i + 2j + k

v = 10i + 11j - 2k, u = 3j + 4k

v = s3>5di + s4>5dk, u = 5i + 12j

v = 2i - 4j + 25k, u = -2i + 4j - 25k

projv u .

v # u, ƒ v ƒ , ƒ u ƒ

a. Show that

and These cosines are called
the direction cosines of v.

b. Unit vectors are built from direction cosines Show that if
is a unit vector, then a, b, and c are the

direction cosines of v.

16. Water main construction A water main is to be constructed
with a 20% grade in the north direction and a 10% grade in the
east direction. Determine the angle required in the water main
for the turn from north to east.

Theory and Examples
17. Sums and differences In the accompanying figure, it looks as

if and are orthogonal. Is this mere coincidence,
or are there circumstances under which we may expect the sum of
two vectors to be orthogonal to their difference? Give reasons for
your answer.

18. Orthogonality on a circle Suppose that AB is the diameter of a
circle with center O and that C is a point on one of the two arcs
joining A and B. Show that and are orthogonal.

19. Diagonals of a rhombus Show that the diagonals of a rhombus
(parallelogram with sides of equal length) are perpendicular.

B
O

v

A

C

u–u

CB
1

CA
1

v1 � v2

v1 � v2

v2

v1 –v2

v1 - v2v1 + v2

East

North

�

u

v = ai + bj + ck

cos2 a + cos2 b + cos2 g = 1.

cos a =

a
ƒ v ƒ

,  cos b =

b
ƒ v ƒ

,  cos g =

c
ƒ v ƒ

,

T
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12.3 The Dot Product 699

20. Perpendicular diagonals Show that squares are the only rec-
tangles with perpendicular diagonals.

21. When parallelograms are rectangles Prove that a parallelo-
gram is a rectangle if and only if its diagonals are equal in length.
(This fact is often exploited by carpenters.)

22. Diagonal of parallelogram Show that the indicated diagonal of
the parallelogram determined by vectors u and v bisects the angle
between u and v if 

23. Projectile motion A gun with muzzle velocity of 1200 ft sec is
fired at an angle of 8° above the horizontal. Find the horizontal
and vertical components of the velocity.

24. Inclined plane Suppose that a box is being towed up an in-
clined plane as shown in the figure. Find the force w needed to
make the component of the force parallel to the inclined plane
equal to 2.5 lb.

25. a. Cauchy-Schwartz inequality Since ,
show that the inequality holds for any vec-
tors u and v.

b. Under what circumstances, if any, does equal 
Give reasons for your answer.

26. Copy the axes and vector shown here. Then shade in the points (x, y)
for which Justify your answer.

27. Orthogonal unit vectors If and are orthogonal unit vec-
tors and find 

28. Cancellation in dot products In real-number multiplication, if
and we can cancel the u and conclude that

Does the same rule hold for the dot product? That is, if
and can you conclude that Give

reasons for your answer.

29. Using the definition of the projection of u onto v, show by direct
calculation that 

30. A force is applied to a spacecraft with velocity
vector Express F as a sum of a vector parallel to v
and a vector orthogonal to v.

v = 3i - j.
F = 2i + j - 3k

su - projv ud # projv u = 0.

v1 = v2?u Z 0 ,u # v1 = u # v2

v1 = v2 .
u Z 0,uv1 = uv2

v # u1 .v = au1 + bu2 ,
u2u1

x

y

0

v

sxi + yjd # v … 0.

ƒ u ƒ ƒ v ƒ ?ƒ u # v ƒ

ƒ u # v ƒ … ƒ u ƒ ƒ v ƒ

ƒ u ƒ ƒ v ƒ  cos uu # v =

15˚

33˚

w

>

u

v

ƒ u ƒ = ƒ v ƒ .

Equations for Lines in the Plane
31. Line perpendicular to a vector Show that is per-

pendicular to the line by establishing that the slope
of the vector v is the negative reciprocal of the slope of the given
line.

32. Line parallel to a vector Show that the vector is
parallel to the line by establishing that the slope of
the line segment representing v is the same as the slope of the
given line.

In Exercises 33–36, use the result of Exercise 31 to find an equation
for the line through P perpendicular to v. Then sketch the line. Include
v in your sketch as a vector starting at the origin.

33. 34.

35. 36.

In Exercises 37–40, use the result of Exercise 32 to find an equation
for the line through P parallel to v. Then sketch the line. Include v in
your sketch as a vector starting at the origin.

37. 38.

39. 40.

Work
41. Work along a line Find the work done by a force (mag-

nitude 5 N) in moving an object along the line from the origin to
the point (1, 1) (distance in meters).

42. Locomotive The Union Pacific’s Big Boy locomotive could 
pull 6000-ton trains with a tractive effort (pull) of 602,148 N
(135,375 lb). At this level of effort, about how much work did Big
Boy do on the (approximately straight) 605-km journey from 
San Francisco to Los Angeles?

43. Inclined plane How much work does it take to slide a crate
20 m along a loading dock by pulling on it with a 200 N force at
an angle of 30° from the horizontal?

44. Sailboat The wind passing over a boat’s sail exerted a 1000-lb
magnitude force F as shown here. How much work did the wind
perform in moving the boat forward 1 mi? Answer in foot-pounds.

Angles Between Lines in the Plane
The acute angle between intersecting lines that do not cross at right
angles is the same as the angle determined by vectors normal to the
lines or by the vectors parallel to the lines.

�

�

�

n1
n2

L2

L2

L1

L1
v1

v2

F

60°
1000 lb
magnitude
force

F = 5i

Ps1, 3d, v = 3i - 2jPs1, 2d, v = - i - 2j

Ps0, -2d, v = 2i + 3jPs -2, 1d, v = i - j

Ps11, 10d, v = 2i - 3jPs -2, -7d, v = -2i + j

Ps -1, 2d, v = -2i - jPs2, 1d, v = i + 2j

bx - ay = c
v = ai + bj

ax + by = c
v = ai + bj
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Use this fact and the results of Exercise 31 or 32 to find the acute an-
gles between the lines in Exercises 45–50.

45.

46. y = 23x - 1, y = -23x + 2

3x + y = 5, 2x - y = 4

700 Chapter 12: Vectors and the Geometry of Space

47.

48.

49.

50. 12x + 5y = 1, 2x - 2y = 3

3x - 4y = 3, x - y = 7

x + 23y = 1, A1 - 23 Bx + A1 + 23 By = 8

23x - y = -2, x - 23y = 1

12.4 The Cross Product

In studying lines in the plane, when we needed to describe how a line was tilting, we used the
notions of slope and angle of inclination. In space, we want a way to describe how a plane is
tilting. We accomplish this by multiplying two vectors in the plane together to get a third vec-
tor perpendicular to the plane. The direction of this third vector tells us the “inclination” of the
plane. The product we use to multiply the vectors together is the vector or cross product, the
second of the two vector multiplication methods. We study the cross product in this section.

The Cross Product of Two Vectors in Space

We start with two nonzero vectors u and v in space. If u and v are not parallel, they deter-
mine a plane. We select a unit vector n perpendicular to the plane by the right-hand rule.
This means that we choose n to be the unit (normal) vector that points the way your right
thumb points when your fingers curl through the angle from u to v (Figure 12.27). Then
the cross product (“u cross v”) is the vector defined as follows.u * v

u

DEFINITION

u * v = s ƒ u ƒ ƒ v ƒ  sin ud n

v

u

n
�

u � v

FIGURE 12.27 The construction of
u * v.

Parallel Vectors

Nonzero vectors u and v are parallel if and only if u * v = 0 .

Unlike the dot product, the cross product is a vector. For this reason it’s also called the
vector product of u and v, and applies only to vectors in space. The vector is or-
thogonal to both u and v because it is a scalar multiple of n.

There is a straightforward way to calculate the cross product of two vectors from their
components. The method does not require that we know the angle between them (as sug-
gested by the definition), but we postpone that calculation momentarily so we can focus
first on the properties of the cross product.

Since the sines of 0 and are both zero, it makes sense to define the cross product of
two parallel nonzero vectors to be 0. If one or both of u and v are zero, we also define

to be zero. This way, the cross product of two vectors u and v is zero if and only if u
and v are parallel or one or both of them are zero.
u * v

p

u * v

The cross product obeys the following laws.

Properties of the Cross Product
If u, v, and w are any vectors and r, s are scalars, then

1. 2.

3. 4.

5. 6. u * sv * wd = (u # w)v - (u # v)w0 * u = 0

sv + wd * u = v * u + w * uv * u = - su * vd
u * sv + wd = u * v + u * wsrud * ssvd = srsdsu * vd
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12.4 The Cross Product 701

To visualize Property 3, for example, notice that when the fingers of your right hand
curl through the angle from v to u, your thumb points the opposite way; the unit vector
we choose in forming is the negative of the one we choose in forming (Fig-
ure 12.28).

Property 1 can be verified by applying the definition of cross product to both sides of
the equation and comparing the results. Property 2 is proved in Appendix 8. Property 4
follows by multiplying both sides of the equation in Property 2 by and reversing the 
order of the products using Property 3. Property 5 is a definition. As a rule, cross product
multiplication is not associative so does not generally equal .
(See Additional Exercise 17.)

When we apply the definition to calculate the pairwise cross products of i, j, and k,
we find (Figure 12.29)

and

Is the Area of a Parallelogram

Because n is a unit vector, the magnitude of isu * v

ƒ u * v ƒ

i * i = j * j = k * k = 0 .

 k * i = - si * kd = j

 j * k = - sk * jd = i

 i * j = - sj * id = k

u * sv * wdsu * vd * w

-1

u * vv * u
uv

u

�–n

v � u

FIGURE 12.28 The construction of
v * u.

i

jk

Diagram for recalling
these products

y

x

z

i

k � i � j � –( j � i)

–i
–j

–k

j � k � i � –(i � k)

i � j � k � –(k � j)

FIGURE 12.29 The pairwise cross
products of i, j, and k.

v

u

�

h � �v� �sin ��

Area � base ⋅ height  
� �u� ⋅ �v��sin ��

� �u × v�

FIGURE 12.30 The parallelogram
determined by u and v.

ƒ u * v ƒ = ƒ u ƒ ƒ v ƒ  ƒ sin u ƒ ƒ n ƒ = ƒ u ƒ ƒ v ƒ  sin u .

This is the area of the parallelogram determined by u and v (Figure 12.30), being the
base of the parallelogram and the height.

Determinant Formula for 

Our next objective is to calculate from the components of u and v relative to a
Cartesian coordinate system.

Suppose that

Then the distributive laws and the rules for multiplying i, j, and k tell us that

The component terms in the last line are hard to remember, but they are the same as
the terms in the expansion of the symbolic determinant

3 i j k

u1 u2 u3

v1 v2 v3

3 .
 = su2 v3 - u3 v2d i - su1 v3 - u3 v1d j + su1 v2 - u2 v1dk.

+ u3 v1 k * i + u3 v2 k * j + u3 v3 k * k

+ u2 v1 j * i + u2 v2 j * j + u2 v3 j * k

 = u1 v1 i * i + u1 v2 i * j + u1 v3 i * k

u * v = su1 i + u2 j + u3 kd * sv1 i + v2  j + v3 kd

u = u1 i + u2  j + u3 k    and    v = v1 i + v2 j + v3 k.

u * v

u * v

ƒ v ƒ ƒ sin u ƒ

ƒ u ƒ
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So we restate the calculation in this easy-to-remember form.

702 Chapter 12: Vectors and the Geometry of Space

Calculating the Cross Product as a Determinant

If and then

u * v = 3 i j k

u1 u2 u3

v1 v2 v3

3 .
v = v1 i + v2 j + v3 k,u = u1 i + u2 j + u3 k

Determinants
and determinants are

evaluated as follows:

EXAMPLE

EXAMPLE

(For more information, see the Web site 
at www.aw.com/thomas.)

 = 10 - 18 + 10 = 2
+ 1s6 + 4d

 = -5s1 - 3d - 3s2 + 4d

+ s1d ` 2 1

-4 3
`- s3d ` 2 1

-4 1
`

= s -5d ` 1 1

3 1
`3 -5 3 1

2 1 1

-4 3 1

3
- a2 ` b1 b3

c1 c3
` + a3 ` b1 b2

c1 c2
`

= a1 ` b2 b3

c2 c3
`3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3
 = 6 + 4 = 10

 ̀
2 1

-4 3
` = s2ds3d - s1ds -4d

` a b

c d
` = ad - bc

3 * 32 * 2

EXAMPLE 1 Find and if and 

Solution

EXAMPLE 2 Find a vector perpendicular to the plane of and
(Figure 12.31).

Solution The vector is perpendicular to the plane because it is perpendicular
to both vectors. In terms of components,

EXAMPLE 3 Find the area of the triangle with vertices and
(Figure 12.31).

Solution The area of the parallelogram determined by P, Q, and R is

Values from Example 2

The triangle’s area is half of this, or  

EXAMPLE 4 Find a unit vector perpendicular to the plane of 
and 

Solution Since is perpendicular to the plane, its direction n is a unit vector
perpendicular to the plane. Taking values from Examples 2 and 3, we have

n =

PQ
1

* PR
1

ƒ PQ
1

* PR
1

ƒ

=
6i + 6k

622
=

1

22
 i +

1

22
 k.

PQ
1

* PR
1

Rs -1, 1, 2d .
Ps1, -1, 0d, Qs2, 1, -1d ,

322.

 = 2s6d2
+ s6d2

= 22 # 36 = 622.

 ƒ PQ
1

* PR
1

ƒ = ƒ 6i + 6k ƒ

Rs -1, 1, 2d
Ps1, -1, 0d, Qs2, 1, -1d ,

 = 6i + 6k.

 PQ
1

* PR
1

= 3 i j k

1 2 -1

-2 2 2

3 = ` 2 -1

2 2
` i - ` 1 -1

-2 2
` j + ` 1 2

-2 2
` k

 PR
1

= s -1 - 1di + s1 + 1dj + s2 - 0dk = -2i + 2j + 2k

 PQ
1

= s2 - 1di + s1 + 1dj + s -1 - 0dk = i + 2j - k

PQ
1

* PR
1

Rs -1, 1, 2d
Ps1, -1, 0d, Qs2, 1, -1d ,

 v * u = - su * vd = 2i + 6j - 10k

 = -2i - 6j + 10k

 u * v = 3 i j k

2 1 1

-4 3 1

3 = ` 1 1

3 1
` i - ` 2 1

-4 1
` j + ` 2 1

-4 3
` k

v = -4i + 3j + k.u = 2i + j + kv * uu * v

y

x

z

0

P(1, –1, 0)

Q(2, 1, –1)

R(–1, 1, 2)

FIGURE 12.31 The vector is
perpendicular to the plane of triangle PQR
(Example 2). The area of triangle PQR is
half of (Example 3).ƒ PQ

1
* PR

1
ƒ

PQ
1

* PR
1
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12.4 The Cross Product 703

For ease in calculating the cross product using determinants, we usually write vectors
in the form rather than as ordered triples 

Torque

When we turn a bolt by applying a force F to a wrench (Figure 12.32), we produce a
torque that causes the bolt to rotate. The torque vector points in the direction of the axis of
the bolt according to the right-hand rule (so the rotation is counterclockwise when viewed
from the tip of the vector). The magnitude of the torque depends on how far out on the
wrench the force is applied and on how much of the force is perpendicular to the wrench at
the point of application. The number we use to measure the torque’s magnitude is the prod-
uct of the length of the lever arm r and the scalar component of F perpendicular to r. In
the notation of Figure 12.32,

or If we let n be a unit vector along the axis of the bolt in the direction of the
torque, then a complete description of the torque vector is or

Recall that we defined to be 0 when u and v are parallel. This is consistent with the
torque interpretation as well. If the force F in Figure 12.32 is parallel to the wrench, mean-
ing that we are trying to turn the bolt by pushing or pulling along the line of the wrench’s
handle, the torque produced is zero.

EXAMPLE 5 The magnitude of the torque generated by force F at the pivot point P in
Figure 12.33 is

In this example the torque vector is pointing out of the page toward you.

Triple Scalar or Box Product

The product is called the triple scalar product of u, v, and w (in that order).
As you can see from the formula

the absolute value of this product is the volume of the parallelepiped (parallelogram-sided
box) determined by u, v, and w (Figure 12.34). The number is the area of the baseƒ u * v ƒ

ƒ su * vd # w ƒ = ƒ u * v ƒ ƒ w ƒ ƒ cos u ƒ,

su * vd # w

 L 56.4 ft-lb .

 L s3ds20ds0.94d

 ƒ PQ
1

* F ƒ = ƒ PQ
1

ƒ ƒ F ƒ  sin 70°

u * v

Torque vector = s ƒ r ƒ ƒ F ƒ  sin ud n.

r * F,
ƒ r * F ƒ.

Magnitude of torque vector = ƒ r ƒ ƒ F ƒ  sin u ,

v = 8v1, v2, v39 .v = v1 i + v2 j + v3 k

n

r

F
�

Torque

Component of F
perpendicular to r.
Its length is �F� sin �.

FIGURE 12.32 The torque vector
describes the tendency of the force F
to drive the bolt forward.

F

P Q
3 ft bar

20 lb
magnitude
force

70°

FIGURE 12.33 The magnitude of the
torque exerted by F at P is about 56.4 ft-lb
(Example 5). The bar rotates counter-
clockwise around P.

v

w

u

�Height � �w� �cos ��

u � v

Area of base
� �u � v�

Volume � area of base · height
� �u � v� �w� �cos ��

� �(u � v) · w�

FIGURE 12.34 The number is the volume of a parallelepiped.ƒ su * vd # w ƒ
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parallelogram. The number is the parallelepiped’s height. Because of this
geometry, is also called the box product of u, v, and w.

By treating the planes of v and w and of w and u as the base planes of the paral-
lelepiped determined by u, v, and w, we see that

Since the dot product is commutative, we also have

The triple scalar product can be evaluated as a determinant:

 = 3 u1 u2 u3

v1 v2 v3

w1 w2 w3

3 .
 = w1 ` u2 u3

v2 v3
` - w2 ` u1 u3

v1 v3
` + w3 ` u1 u2

v1 v2
`

 su * vd # w = c ` u2 u3

v2 v3
` i - ` u1 u3

v1 v3
` j + ` u1 u2

v1 v2
` k d # w

su * vd # w = u # sv * wd .

su * vd # w = sv * wd # u = sw * ud # v.

su * vd # w
ƒ w ƒ ƒ cos u ƒ

704 Chapter 12: Vectors and the Geometry of Space

The dot and cross may be interchanged in
a triple scalar product without altering its
value.

Calculating the Triple Scalar Product as a Determinant

su * vd # w = 3 u1 u2 u3

v1 v2 v3

w1 w2 w3

3
EXAMPLE 6 Find the volume of the box (parallelepiped) determined by 

and 

Solution Using the rule for calculating determinants, we find

The volume is ƒ su * vd # w ƒ = 23 units cubed.

su * vd # w = 3 1 2 -1

-2 0 3

0 7 -4

3 = -23.

w = 7j - 4k.v = -2i + 3k,
u = i + 2j - k, 

Exercises 12.4

Cross Product Calculations
In Exercises 1–8, find the length and direction (when defined) of

and 

1.

2.

3.

4.

5.

6. u = i * j, v = j * k

u = 2i, v = -3j

u = i + j - k, v = 0

u = 2i - 2j + 4k, v = - i + j - 2k

u = 2i + 3j, v = - i + j

u = 2i - 2j - k, v = i - k

v * u.u * v

7.

8.

In Exercises 9–14, sketch the coordinate axes and then include the
vectors u, v, and as vectors starting at the origin.

9. 10.

11. 12.

13. 14. u = j + 2k, v = iu = i + j, v = i - j

u = 2i - j, v = i + 2ju = i - k, v = j + k

u = i - k, v = ju = i, v = j

u * v

u =

3
2

 i -

1
2

 j + k, v = i + j + 2k

u = -8i - 2j - 4k, v = 2i + 2j + k
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12.4 The Cross Product 705

Triangles in Space
In Exercises 15–18,

a. Find the area of the triangle determined by the points P, Q,
and R.

b. Find a unit vector perpendicular to plane PQR.

15.

16.

17.

18.

Triple Scalar Products
In Exercises 19–22, verify that 

and find the volume of the parallelepiped (box) deter-
mined by u, v, and w.

u v w

19. 2i 2j 2k

20.

21.

22.

Theory and Examples
23. Parallel and perpendicular vectors Let 

Which vectors, if any, are (a) per-
pendicular? (b) Parallel? Give reasons for your answers.

24. Parallel and perpendicular vectors Let 

Which vectors, if any, are (a) perpendicular? (b) Parallel? Give
reasons for your answers.

In Exercises 25 and 26, find the magnitude of the torque exerted by F
on the bolt at P if and Answer in foot-
pounds.

25. 26.

27. Which of the following are always true, and which are not always
true? Give reasons for your answers.

a.

b.

c.

d.

e.

f.

g.

h.

28. Which of the following are always true, and which are not always
true? Give reasons for your answers.

a. b. u * v = - sv * udu # v = v # u

su * vd # w = u # sv * wd
su * vd # v = 0

u * sv + wd = u * v + u * w

u * v = v * u

u * s -ud = 0

u * 0 = 0 * u = 0

u # u = ƒ u ƒ

ƒ u ƒ = 2u # u

F
Q

P

135°
F

Q

P

60°

ƒ F ƒ = 30 lb .ƒ PQ
1

ƒ = 8 in .

r = - sp>2di - pj + sp>2dk.w = i + k,v = - i + j + k,
u = i + 2j - k,

j - 5k, w = -15i + 3j - 3k.
u = 5i - j + k, v =

2i + 4j - 2k- i - ki + j - 2k

i + 2k2i - j + k2i + j

- i + 2j - k2i + j - 2ki - j + k

sw * ud # v
su * vd # w = sv * wd # u =

Ps -2, 2, 0d, Qs0, 1, -1d, Rs -1, 2, -2d

Ps2, -2, 1d, Qs3, -1, 2d, Rs3, -1, 1d

Ps1, 1, 1d, Qs2, 1, 3d, Rs3, -1, 1d

Ps1, -1, 2d, Qs2, 0, -1d, Rs0, 2, 1d

c.

d.

e.

f.

g.

h.

29. Given nonzero vectors u, v, and w, use dot product and cross
product notation, as appropriate, to describe the following.

a. The vector projection of u onto v

b. A vector orthogonal to u and v

c. A vector orthogonal to and w

d. The volume of the parallelepiped determined by u, v, and w

e. A vector orthogonal to and 

f. A vector of length in the direction of v

30. Compute and What can you conclude
about the associativity of the cross product?

31. Let u, v, and w be vectors. Which of the following make sense,
and which do not? Give reasons for your answers.

a.

b.

c.

d.

32. Cross products of three vectors Show that except in degener-
ate cases, lies in the plane of u and v, whereas

lies in the plane of v and w. What are the degener-
ate cases?

33. Cancellation in cross products If and 
then does Give reasons for your answer.

34. Double cancellation If and if and
then does Give reasons for your answer.

Area of a Parallelogram
Find the areas of the parallelograms whose vertices are given in Exer-
cises 35–40.

35.

36.

37.

38.

39.

40.

Area of a Triangle
Find the areas of the triangles whose vertices are given in Exercises
41–47.

41.

42.

43.

44.

45.

46.

47. As1, -1, 1d,  Bs0, 1, 1d,  Cs1, 0, -1d
As0, 0, 0d,  Bs -1, 1, -1d,  Cs3, 0, 3d
As1, 0, 0d,  Bs0, 2, 0d,  Cs0, 0, -1d
As -6, 0d,  Bs10, -5d,  Cs -2, 4d
As -5, 3d,  Bs1, -2d,  Cs6, -2d
As -1, -1d,  Bs3, 3d,  Cs2, 1d
As0, 0d,  Bs -2, 3d,  Cs3, 1d

As1, 0, -1d,  Bs1, 7, 2d,  Cs2, 4, -1d,  Ds0, 3, 2d

As0, 0, 0d,  Bs3, 2, 4d,  Cs5, 1, 4d,  Ds2, -1, 0d

As -6, 0d,  Bs1, -4d,  Cs3, 1d,  Ds -4, 5d

As -1, 2d,  Bs2, 0d,  Cs7, 1d,  Ds4, 3d

As0, 0d,  Bs7, 3d,  Cs9, 8d,  Ds2, 5d

As1, 0d,  Bs0, 1d,  Cs -1, 0d,  Ds0, -1d

v = w?u # v = u # w,
u * v = u * wu Z 0

v = w?
u Z 0,u * v = u * w

u * sv * wd
su * vd * w

u # sv # wd
u * sv * wd
u * sv # wd
su * vd # w

i * sj * jd.si * jd * j

ƒ u ƒ

u * wu * v

u * v

su * vd # u = v # su * vd
su * ud # u = 0

u # u = ƒ u ƒ
2

csu * vd = scud * v = u * scvd sany number cd
scud # v = u # scvd = csu # vd sany number cd
s -ud * v = - su * vd
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48. Find the volume of a parallelepiped if four of its eight vertices are
and 

49. Triangle area Find a formula for the area of the triangle in the
xy-plane with vertices at and Explain
your work.

sb1, b2d .s0, 0d, sa1, a2d ,

Ds3, -4, 5d.As0, 0, 0d, Bs1, 2, 0d, Cs0, -3, 2d,

706 Chapter 12: Vectors and the Geometry of Space

50. Triangle area Find a concise formula for the area of a triangle
in the xy-plane with vertices and sc1, c2d .sa1, a2d, sb1, b2d ,

12.5 Lines and Planes in Space

This section shows how to use scalar and vector products to write equations for lines, line
segments, and planes in space. We will use these representations throughout the rest of the
book.

Lines and Line Segments in Space

In the plane, a line is determined by a point and a number giving the slope of the line. In
space a line is determined by a point and a vector giving the direction of the line.

Suppose that L is a line in space passing through a point parallel to a
vector Then L is the set of all points P(x, y, z) for which is

parallel to v (Figure 12.35). Thus, for some scalar parameter t. The value of t
depends on the location of the point P along the line, and the domain of t is 
The expanded form of the equation is

which can be rewritten as

(1)

If r(t) is the position vector of a point P(x, y, z) on the line and is the position vector
of the point then Equation (1) gives the following vector form for the equa-
tion of a line in space.

P0sx0, y0, z0d ,
r0

xi + yj + zk = x0 i + y0 j + z0 k + tsv1 i + v2 j + v3 kd .

sx - x0di + s y - y0dj + sz - z0dk = tsv1 i + v2 j + v3 kd ,

= tvP0 P
1 s - q , q d .

= tvP0 P
1

P0 P
1v = v1 i + v2 j + v3 k.

P0sx0, y0, z0d

y

z

0

x

v

L
P(x, y, z)

P0(x0, y0, z0)

FIGURE 12.35 A point P lies on L
through parallel to v if and only if

is a scalar multiple of v.P0 P
1

P0

Vector Equation for a Line
A vector equation for the line L through parallel to v is

(2)

where r is the position vector of a point P(x, y, z) on L and is the position
vector of P0sx0, y0, z0d .

r0

rstd = r0 + tv, - q 6 t 6 q ,

P0sx0, y0, z0d

Parametric Equations for a Line
The standard parametrization of the line through parallel to

is

(3)x = x0 + tv1,  y = y0 + tv2,  z = z0 + tv3,  - q 6 t 6 q

v = v1 i + v2  j + v3 k
P0sx0 , y0 , z0d

Equating the corresponding components of the two sides of Equation (1) gives three
scalar equations involving the parameter t:

These equations give us the standard parametrization of the line for the parameter interval
- q 6 t 6 q .

x = x0 + tv1, y = y0 + tv2, z = z0 + tv3 .
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12.5 Lines and Planes in Space 707

EXAMPLE 1 Find parametric equations for the line through parallel to
(Figure 12.36).

Solution With equal to and equal to
Equations (3) become

EXAMPLE 2 Find parametric equations for the line through and

Solution The vector

is parallel to the line, and Equations (3) with give

We could have chosen as the “base point” and written

These equations serve as well as the first; they simply place you at a different point on the
line for a given value of t.

Notice that parametrizations are not unique. Not only can the “base point” change, but
so can the parameter. The equations and also
parametrize the line in Example 2.

To parametrize a line segment joining two points, we first parametrize the line
through the points. We then find the t-values for the endpoints and restrict t to lie in the
closed interval bounded by these values. The line equations together with this added
restriction parametrize the segment.

EXAMPLE 3 Parametrize the line segment joining the points and
(Figure 12.37).

Solution We begin with equations for the line through P and Q, taking them, in this
case, from Example 2:

We observe that the point

on the line passes through at and at We add the
restriction to parametrize the segment:

The vector form (Equation (2)) for a line in space is more revealing if we think of a
line as the path of a particle starting at position and moving in the direction
of vector v. Rewriting Equation (2), we have

(4) = r0 + t ƒ v ƒ  
v
ƒ v ƒ

.

 rstd = r0 + tv

P0sx0, y0, z0d

x = -3 + 4t,  y = 2 - 3t,  z = -3 + 7t,  0 … t … 1.

0 … t … 1
t = 1.Qs1, -1, 4dt = 0Ps -3, 2, -3d

sx, y, zd = s -3 + 4t, 2 - 3t, -3 + 7td

x = -3 + 4t,  y = 2 - 3t,  z = -3 + 7t .

Qs1, -1, 4d
Ps -3, 2, -3d

z = -3 + 7t3x = -3 + 4t3, y = 2 - 3t3 ,

x = 1 + 4t,  y = -1 - 3t,  z = 4 + 7t .

Qs1, -1, 4d

x = -3 + 4t,  y = 2 - 3t,  z = -3 + 7t .

sx0 , y0 , z0d = s -3, 2, -3d

 = 4i - 3j + 7k

 PQ
1

= s1 - s -3ddi + s -1 - 2dj + s4 - s -3ddk

Qs1, -1, 4d .
Ps -3, 2, -3d

x = -2 + 2t,  y = 4t,  z = 4 - 2t .

2i + 4j - 2k,
v1 i + v2 j + v3 ks -2, 0, 4dP0sx0 , y0 , z0d

v = 2i + 4j - 2k
s -2, 0, 4d

y

z

0

x

2 4

4

2

4

8

v � 2i � 4j � 2k

t � 2
P2(2, 8, 0)

P1(0, 4, 2)

t � 1

t � 0

P0(–2, 0, 4)

FIGURE 12.36 Selected points and
parameter values on the line in Example 1.
The arrows show the direction of
increasing t.

y

z

0

x

1 2

–1

–3

t � 1

t � 0
P(–3, 2, –3)

Q(1, –1, 4)

FIGURE 12.37 Example 3 derives a
parametrization of line segment PQ. The
arrow shows the direction of increasing t.

Initial Time Speed Direction
position

ææ æ æ
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In other words, the position of the particle at time t is its initial position plus its distance
moved in the direction of its straight-line motion.

EXAMPLE 4 A helicopter is to fly directly from a helipad at the origin in the direction
of the point (1, 1, 1) at a speed of 60 ft sec. What is the position of the helicopter after 
10 sec?

Solution We place the origin at the starting position (helipad) of the helicopter. Then the
unit vector

gives the flight direction of the helicopter. From Equation (4), the position of the helicop-
ter at any time t is

When 

After 10 sec of flight from the origin toward (1, 1, 1), the helicopter is located at the point
in space. It has traveled a distance of 

which is the length of the vector r(10).

The Distance from a Point to a Line in Space

To find the distance from a point S to a line that passes through a point P parallel to a vec-
tor v, we find the absolute value of the scalar component of in the direction of a vector
normal to the line (Figure 12.38). In the notation of the figure, the absolute value of the

scalar component is which is 
ƒ PS
1

* v ƒ

ƒ v ƒ

.ƒ PS
1

ƒ  sin u ,

PS
1

600 ft ,
s60 ft>secds10 secd =s20023, 20023, 20023d

 = h20023, 20023, 20023i .

 rs10d = 20023 si + j + kd

t = 10 sec,

 = 2023tsi + j + kd .

 = 0 + ts60d¢ 1

23
 i +

1

23
 j +

1

23
 k≤rstd = r0 + tsspeeddu

u =
1

23
 i +

1

23
 j +

1

23
 k

>

v> ƒ v ƒsspeed * timed

708 Chapter 12: Vectors and the Geometry of Space

Distance from a Point S to a Line Through P Parallel to v

(5)d =

ƒ PS
1

* v ƒ

ƒ v ƒ

S

P
v

�

�PS� sin �

FIGURE 12.38 The distance from 
S to the line through P parallel to v is

where is the angle between
and v.PS

1
uƒ PS

1
ƒ  sin u ,

EXAMPLE 5 Find the distance from the point S(1, 1, 5) to the line

Solution We see from the equations for L that L passes through P(1, 3, 0) parallel to
With

PS
1

= s1 - 1d i + s1 - 3d j + s5 - 0dk = -2j + 5k

v = i - j + 2k.

L: x = 1 + t, y = 3 - t, z = 2t .
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12.5 Lines and Planes in Space 709

and

Equation (5) gives

An Equation for a Plane in Space

A plane in space is determined by knowing a point on the plane and its “tilt” or orienta-
tion. This “tilt” is defined by specifying a vector that is perpendicular or normal to the
plane.

Suppose that plane M passes through a point and is normal to the
nonzero vector Then M is the set of all points P(x, y, z) for which

is orthogonal to n (Figure 12.39). Thus, the dot product This equation is
equivalent to

or

Asx - x0d + Bs y - y0d + Csz - z0d = 0.

sA i + B j + Ckd # [sx - x0d i + s y - y0d j + sz - z0dk] = 0

n # P0 P
1

= 0.P0 P
1

n = A i + B j + Ck.
P0sx0 , y0 , z0d

d =

ƒ PS
1

* v ƒ

ƒ v ƒ

=

21 + 25 + 4

21 + 1 + 4
=

230

26
= 25.

PS
1

* v = 3 i j k

0 -2 5

1 -1 2

3 = i + 5j + 2k,

n

P0(x0, y0, z0)

Plane M

P(x, y, z)

FIGURE 12.39 The standard equation for
a plane in space is defined in terms of a
vector normal to the plane: A point P lies
in the plane through normal to n if and
only if n # P0 P

1
= 0.

P0

Equation for a Plane
The plane through normal to has

Vector equation: n # P0 P
1

= 0

Component equation: Asx - x0d + Bs y - y0d + Csz - z0d = 0

Component equation simplified: Ax + By + Cz = D, where

D = Ax0 + By0 + Cz0

n = Ai + Bj + CkP0sx0, y0, z0d

EXAMPLE 6 Find an equation for the plane through perpendicular to

Solution The component equation is

Simplifying, we obtain

Notice in Example 6 how the components of became the coeffi-
cients of x, y, and z in the equation The vector 
is normal to the plane Ax + By + Cz = D .

n = Ai + Bj + Ck5x + 2y - z = -22.
n = 5i + 2j - k

 5x + 2y - z = -22.

 5x + 15 + 2y - z + 7 = 0

5sx - s -3dd + 2s y - 0d + s -1dsz - 7d = 0.

n = 5i + 2j - k.
P0s -3, 0, 7d
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EXAMPLE 7 Find an equation for the plane through A(0, 0, 1), B(2, 0, 0), and C(0, 3, 0).

Solution We find a vector normal to the plane and use it with one of the points (it does
not matter which) to write an equation for the plane.

The cross product

is normal to the plane. We substitute the components of this vector and the coordinates of
A(0, 0, 1) into the component form of the equation to obtain

Lines of Intersection

Just as lines are parallel if and only if they have the same direction, two planes are parallel
if and only if their normals are parallel, or for some scalar k. Two planes that are
not parallel intersect in a line.

EXAMPLE 8 Find a vector parallel to the line of intersection of the planes
and 

Solution The line of intersection of two planes is perpendicular to both planes’ normal
vectors and (Figure 12.40) and therefore parallel to Turning this around,

is a vector parallel to the planes’ line of intersection. In our case,

Any nonzero scalar multiple of will do as well.

EXAMPLE 9 Find parametric equations for the line in which the planes
and intersect.

Solution We find a vector parallel to the line and a point on the line and use Equations (3).
Example 8 identifies as a vector parallel to the line. To find a

point on the line, we can take any point common to the two planes. Substituting in
the plane equations and solving for x and y simultaneously identifies one of these points as

The line is

The choice is arbitrary and we could have chosen or just as well. Or
we could have let and solved for y and z. The different choices would simply give
different parametrizations of the same line.

Sometimes we want to know where a line and a plane intersect. For example, if we are
looking at a flat plate and a line segment passes through it, we may be interested in know-
ing what portion of the line segment is hidden from our view by the plate. This application
is used in computer graphics (Exercise 74).

x = 0
z = -1z = 1z = 0

x = 3 + 14t,  y = -1 + 2t,  z = 15t .

s3, -1, 0d .

z = 0
v = 14i + 2j + 15k

2x + y - 2z = 53x - 6y - 2z = 15

n1 * n2

n1 * n2 = 3 i j k

3  -6  -2

2 1 -2

3 = 14i + 2j + 15k.

n1 * n2

n1 * n2 .n2n1

2x + y - 2z = 5.3x - 6y - 2z = 15

n1 = kn2

 3x + 2y + 6z = 6.

 3sx - 0d + 2s y - 0d + 6sz - 1d = 0

AB
1

* AC
1

= 3 i j k

2 0  -1

0 3  -1

3 = 3i + 2j + 6k

710 Chapter 12: Vectors and the Geometry of Space

PLANE 2

PLA
N

E 1

n1 � n2

n2

n1

FIGURE 12.40 How the line of
intersection of two planes is related to the
planes’ normal vectors (Example 8).
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12.5 Lines and Planes in Space 711

EXAMPLE 10 Find the point where the line

intersects the plane 

Solution The point

lies in the plane if its coordinates satisfy the equation of the plane, that is, if

The point of intersection is

The Distance from a Point to a Plane

If P is a point on a plane with normal n, then the distance from any point S to the plane is
the length of the vector projection of onto n. That is, the distance from S to the plane is

(6)

where is normal to the plane.

EXAMPLE 11 Find the distance from S(1, 1, 3) to the plane 

Solution We find a point P in the plane and calculate the length of the vector projection
of onto a vector n normal to the plane (Figure 12.41). The coefficients in the equation

give

n = 3i + 2j + 6k.

3x + 2y + 6z = 6
PS
1

3x + 2y + 6z = 6.

n = Ai + Bj + Ck

d = ` PS
1 # n

ƒ n ƒ

`
PS
1

sx, y, zd ƒ t = -1 = a8
3

- 2, 2, 1 - 1b = a 2
3

, 2, 0b .

 t = -1.

 8t = -8

 8 + 6t - 4t + 6 + 6t = 6

 3 a8
3

+ 2tb + 2s -2td + 6s1 + td = 6

a8
3

+ 2t, -2t, 1 + tb

3x + 2y + 6z = 6.

x =
8
3

+ 2t,  y = -2t, z = 1 + t

(0, 0, 1)

(2, 0, 0)

0

y

x

z

n � 3i � 2j � 6k

Distance from
S to the plane

P(0, 3, 0)

3x � 2y � 6z � 6

S(1, 1, 3)

FIGURE 12.41 The distance from S to the plane is the
length of the vector projection of onto n (Example 11).PS

1
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The points on the plane easiest to find from the plane’s equation are the intercepts. If
we take P to be the y-intercept (0, 3, 0), then

The distance from S to the plane is

Angles Between Planes

The angle between two intersecting planes is defined to be the acute angle between their
normal vectors (Figure 12.42).

EXAMPLE 12 Find the angle between the planes and

Solution The vectors

are normals to the planes. The angle between them is

About 79 deg L 1.38 radians.

 = cos-1 a 4
21
b

 u = cos-1 a n1
# n2

ƒ n1 ƒ ƒ n2 ƒ

b

n1 = 3i - 6j - 2k,  n2 = 2i + j - 2k

2x + y - 2z = 5.
3x - 6y - 2z = 15

 = ` 37 -
4
7 +

18
7 ` =

17
7 .

 = ` si - 2j + 3kd # a37 i +
2
7 j +

6
7 kb `

length of projn PS
1 d = ` PS

1 # n
ƒ n ƒ

`

 ƒ n ƒ = 2s3d2
+ s2d2

+ s6d2
= 249 = 7.

 = i - 2j + 3k,

 PS
1

= s1 - 0di + s1 - 3dj + s3 - 0dk
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�

n2
n1

�

FIGURE 12.42 The angle between two
planes is obtained from the angle between
their normals.

Exercises 12.5

Lines and Line Segments
Find parametric equations for the lines in Exercises 1–12.

1. The line through the point parallel to the vector

2. The line through and 

3. The line through and 

4. The line through P(1, 2, 0) and 

5. The line through the origin parallel to the vector 

6. The line through the point parallel to the line

7. The line through (1, 1, 1) parallel to the z-axis

8. The line through perpendicular to the plane
3x + 7y - 5z = 21

s2, 4, 5d

x = 1 + 2t, y = 2 - t, z = 3t
s3, -2, 1d

2j + k

Qs1, 1, -1d
Qs3, 5, -2dPs -2, 0, 3d
Qs -1, 0, 1dPs1, 2, -1d

i + j + k
Ps3, -4, -1d

9. The line through perpendicular to the plane

10. The line through (2, 3, 0) perpendicular to the vectors 
and 

11. The x-axis 12. The z-axis

Find parametrizations for the line segments joining the points in Exer-
cises 13–20. Draw coordinate axes and sketch each segment, indicat-
ing the direction of increasing t for your parametrization.

13. (0, 0, 0), (1, 1, 3 2) 14. (0, 0, 0), (1, 0, 0)

15. (1, 0, 0), (1, 1, 0) 16. (1, 1, 0), (1, 1, 1)

17. 18. (0, 2, 0), (3, 0, 0)

19. (2, 0, 2), (0, 2, 0) 20. s1, 0, -1d, s0, 3, 0d
s0, 1, 1d, s0, -1, 1d

>

v = 3i + 4j + 5k2j + 3k
u = i +

x + 2y + 2z = 13
s0, -7, 0d
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12.5 Lines and Planes in Space 713

Planes
Find equations for the planes in Exercises 21–26.

21. The plane through normal to 

22. The plane through parallel to the plane

23. The plane through and 

24. The plane through (2, 4, 5), (1, 5, 7), and 

25. The plane through perpendicular to the line

26. The plane through perpendicular to the vector from
the origin to A

27. Find the point of intersection of the lines 
and and

then find the plane determined by these lines.

28. Find the point of intersection of the lines 
and and then

find the plane determined by these lines.

In Exercises 29 and 30, find the plane determined by the intersecting
lines.

29.

30.

31. Find a plane through and perpendicular to the line of
intersection of the planes 

32. Find a plane through the points and per-
pendicular to the plane 

Distances
In Exercises 33–38, find the distance from the point to the line.

33.

34.

35.

36.

37.

38.

In Exercises 39–44, find the distance from the point to the plane.

39.

40.

41.

42.

43.

44.

45. Find the distance from the plane to the plane

46. Find the distance from the line 
to the plane x + 2y + 6z = 10.z = - s1>2d - s1>2dt

x = 2 + t, y = 1 + t, 

x + 2y + 6z = 10.
x + 2y + 6z = 1

s1, 0, -1d,  -4x + y + z = 4

s0, -1, 0d,  2x + y + 2z = 4

s2, 2, 3d,  2x + y + 2z = 4

s0, 1, 1d,  4y + 3z = -12

s0, 0, 0d,  3x + 2y + 6z = 6

s2, -3, 4d,  x + 2y + 2z = 13

s -1, 4, 3d;  x = 10 + 4t,  y = -3,  z = 4t

s3, -1, 4d;  x = 4 - t,  y = 3 + 2t,  z = -5 + 3t

s2, 1, -1d;  x = 2t,  y = 1 + 2t,  z = 2t

s2, 1, 3d;  x = 2 + 2t,  y = 1 + 6t,  z = 3

s0, 0, 0d;  x = 5 + 3t,  y = 5 + 4t,  z = -3 - 5t

s0, 0, 12d;  x = 4t,  y = -2t,  z = 2t

4x - y + 2z = 7.
P1s1, 2, 3d, P2s3, 2, 1d

2x + y - z = 3, x + 2y + z = 2.
P0s2, 1, -1d

 L2: x = 1 + s,  y = 4 + s,  z = -1 + s;  - q 6 s 6 q

 L1: x = t,  y = 3 - 3t,  z = -2 - t;  - q 6 t 6 q

 L2: x = 1 - 4s,   y = 1 + 2s,   z = 2 - 2s;   - q 6 s 6 q

 L1: x = -1 + t,  y = 2 + t,  z = 1 - t;  - q 6 t 6 q

x = 2s + 2,  y = s + 3,  z = 5s + 6, z = t + 1,
- t + 2,x = t,  y =

-4s - 1,x = s + 2,  y = 2s + 4,  z = z = 4t + 3,
 y = 3t + 2,x = 2t + 1, 

As1, -2, 1d

x = 5 + t,  y = 1 + 3t,  z = 4t

P0s2, 4, 5d
s -1, 6, 8d

s0, -2, 1ds1, 1, -1d, s2, 0, 2d ,

3x + y + z = 7

s1, -1, 3d
n = 3i - 2j - kP0s0, 2, -1d

Angles
Find the angles between the planes in Exercises 47 and 48.

47.

48.

Use a calculator to find the acute angles between the planes in Exer-
cises 49–52 to the nearest hundredth of a radian.

49.

50.

51.

52.

Intersecting Lines and Planes
In Exercises 53–56, find the point in which the line meets the plane.

53.

54.

55.

56.

Find parametrizations for the lines in which the planes in Exercises
57–60 intersect.

57.

58.

59.

60.

Given two lines in space, either they are parallel, or they intersect, or
they are skew (imagine, for example, the flight paths of two planes in
the sky). Exercises 61 and 62 each give three lines. In each exercise,
determine whether the lines, taken two at a time, are parallel, intersect,
or are skew. If they intersect, find the point of intersection.

61.

62.

Theory and Examples
63. Use Equations (3) to generate a parametrization of the line

through parallel to Then generate
another parametrization of the line using the point 
and the vector 

64. Use the component form to generate an equation for the plane
through normal to Then generate
another equation for the same plane using the point 
and the normal vector 

65. Find the points in which the line 
meets the coordinate planes. Describe the reasoning be-

hind your answer.

66. Find equations for the line in the plane that makes an angle
of rad with i and an angle of rad with j. Describe the rea-
soning behind your answer.

67. Is the line parallel to the plane
Give reasons for your answer.2x + y - z = 8?

x = 1 - 2t, y = 2 + 5t, z = -3t

p>3p>6 z = 3

z = 3t
x = 1 + 2t, y = -1 - t, 

n2 = -22i + 222j - 22k .
P2s3, -2, 0d

n1 = i - 2j + k .P1s4, 1, 5d

v2 = - i + s1>2dj - s3>2dk .
P2s -2, -2, 1d

v1 = 2i - j + 3k .Ps2, -4, 7d

 L3: x = 5 + 2r, y = 1 - r, z = 8 + 3r;   - q 6 r 6 q

 L2: x = 2 - s,  y = 3s,  z = 1 + s;  - q 6 s 6 q

 L1: x = 1 + 2t,  y = -1 - t,  z = 3t;  - q 6 t 6 q

 L3: x = 3 + 2r, y = 2 + r, z = -2 + 2r;   - q 6 r 6 q

 L2: x = 1 + 4s, y = 1 + 2s, z = -3 + 4s;   - q 6 s 6 q

 L1: x = 3 + 2t,  y = -1 + 4t,  z = 2 - t;   - q 6 t 6 q

5x - 2y = 11,  4y - 5z = -17

x - 2y + 4z = 2,  x + y - 2z = 5

3x - 6y - 2z = 3,  2x + y - 2z = 2

x + y + z = 1,  x + y = 2

x = -1 + 3t,  y = -2,  z = 5t;  2x - 3z = 7

x = 1 + 2t,  y = 1 + 5t,  z = 3t;  x + y + z = 2

x = 2,  y = 3 + 2t,  z = -2 - 2t;  6x + 3y - 4z = -12

x = 1 - t,  y = 3t,  z = 1 + t;  2x - y + 3z = 6

4y + 3z = -12,  3x + 2y + 6z = 6

2x + 2y - z = 3,  x + 2y + z = 2

x + y + z = 1,  z = 0 sthe xy-planed
2x + 2y + 2z = 3,  2x - 2y - z = 5

5x + y - z = 10,  x - 2y + 3z = -1

x + y = 1,  2x + y - 2z = 2

T
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68. How can you tell when two planes and
are parallel? Perpendicular? Give rea-

sons for your answer.

69. Find two different planes whose intersection is the line
Write equations for each

plane in the form 

70. Find a plane through the origin that is perpendicular to the plane
in a right angle. How do you know that

your plane is perpendicular to M?

71. The graph of is a plane for any
nonzero numbers a, b, and c. Which planes have an equation of
this form?

72. Suppose and are disjoint (nonintersecting) nonparallel lines.
Is it possible for a nonzero vector to be perpendicular to both 
and Give reasons for your answer.

73. Perspective in computer graphics In computer graphics and
perspective drawing, we need to represent objects seen by the eye
in space as images on a two-dimensional plane. Suppose that the
eye is at as shown here and that we want to represent a
point as a point on the yz-plane. We do this by pro-
jecting onto the plane with a ray from E. The point will be
portrayed as the point P(0, y, z). The problem for us as graphics
designers is to find y and z given E and 

a. Write a vector equation that holds between and Use
the equation to express y and z in terms of and z1 .x0, x1, y1 ,

EP
1

1 .EP
1

P1 .

P1P1

P1sx1, y1, z1d
Esx0, 0, 0d

L2 ?
L1

L2L1

s y>bd + sz>cd = 1sx>ad +

3y + z = 12M: 2x +

Ax + By + Cz = D .
x = 1 + t, y = 2 - t, z = 3 + 2t .

A2 x + B2 y + C2 z = D2

A1 x + B1 y + C1 z = D1

714 Chapter 12: Vectors and the Geometry of Space

b. Test the formulas obtained for y and z in part (a) by investi-
gating their behavior at and and by seeing
what happens as What do you find?

74. Hidden lines in computer graphics Here is another typical
problem in computer graphics. Your eye is at (4, 0, 0). You are
looking at a triangular plate whose vertices are at (1, 0, 1), (1, 1, 0),
and The line segment from (1, 0, 0) to (0, 2, 2) passes
through the plate. What portion of the line segment is hidden
from your view by the plate? (This is an exercise in finding inter-
sections of lines and planes.)

s -2, 2, 2d .

0 y

z

x

P(0, y, z)

P1(x1, y1, z1)

E(x0, 0, 0)

(x1, y1, 0)

x0 : q .
x1 = x0x1 = 0

12.6 Cylinders and Quadric Surfaces

Up to now, we have studied two special types of surfaces: spheres and planes. In this section,
we extend our inventory to include a variety of cylinders and quadric surfaces. Quadric
surfaces are surfaces defined by second-degree equations in x, y, and z. Spheres are quadric
surfaces, but there are others of equal interest which will be needed in Chapters 14–16.

Cylinders

A cylinder is a surface that is generated by moving a straight line along a given planar
curve while holding the line parallel to a given fixed line. The curve is called a generating
curve for the cylinder (Figure 12.43). In solid geometry, where cylinder means circular
cylinder, the generating curves are circles, but now we allow generating curves of any
kind. The cylinder in our first example is generated by a parabola.

EXAMPLE 1 Find an equation for the cylinder made by the lines parallel to the z-axis
that pass through the parabola (Figure 12.44).

Solution The point lies on the parabola in the xy-plane. Then, for
any value of z, the point lies on the cylinder because it lies on the line

through parallel to the z-axis. Conversely, any point 
whose y-coordinate is the square of its x-coordinate lies on the cylinder because it lies on
the line through parallel to the z-axis (Figure 12.44).

Regardless of the value of z, therefore, the points on the surface are the points whose
coordinates satisfy the equation This makes an equation for the cylinder.
Because of this, we call the cylinder “the cylinder  ”y = x2.

y = x2y = x2 .

P0x = x0 , y = x0
2

Qsx0 , x0
2, zdP0x = x0 , y = x0

2
Qsx0 , x0

2, zd
y = x2P0sx0 , x0

2, 0d

y = x2, z = 0

y

z

x
Lines through
generating curve
parallel to x-axis

Generating curve
(in the yz-plane)

FIGURE 12.43 A cylinder and generating
curve.
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12.6 Cylinders and Quadric Surfaces 715

As Example 1 suggests, any curve in the xy-plane defines a cylinder par-
allel to the z-axis whose equation is also For instance, the equation

defines the circular cylinder made by the lines parallel to the z-axis that pass
through the circle in the xy-plane.

In a similar way, any curve in the xz-plane defines a cylinder parallel to
the y-axis whose space equation is also . Any curve defines a
cylinder parallel to the x-axis whose space equation is also . The axis of a
cylinder need not be parallel to a coordinate axis, however.

Quadric Surfaces

A quadric surface is the graph in space of a second-degree equation in x, y, and z. We 
focus on the special equation

where A, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids, parabol-
oids, elliptical cones, and hyperboloids. Spheres are special cases of ellipsoids. We 
present a few examples illustrating how to sketch a quadric surface, and then give a sum-
mary table of graphs of the basic types.

EXAMPLE 2 The ellipsoid

(Figure 12.45) cuts the coordinate axes at and It lies
within the rectangular box defined by the inequalities and 
The surface is symmetric with respect to each of the coordinate planes because each vari-
able in the defining equation is squared.

ƒ z ƒ … c .ƒ x ƒ … a, ƒ y ƒ … b ,
s0, 0, ;  cd .s0, ;  b, 0d ,s ;  a, 0, 0d ,

x2

a2 +

y2

b2 +
z2

c2 = 1

Ax2
+ By2

+ Cz2
+ Dz = E,

hs y, zd = c
hs y, zd = cg sx, zd = c

g sx, zd = c
x2

+ y2
= 1

x2
+ y2

= 1
ƒsx, yd = c .

ƒsx, yd = c

x

z

y

PA
RABOLA

0

y � x2

P0(x0, x0
2, 0)

Q0(x0, x0
2, z)

FIGURE 12.44 Every point of the
cylinder in Example 1 has coordinates of
the form We call it “the
cylinder ”y = x2 .

sx0 , x0
2, zd .

y

x

z

E
L

L
IP

S
E

c

z0

a

b y

x

z

E
L

L
IP

S
E

ELLIPSE

Elliptical cross-section
      in the plane z � z0

The ellipse       �      � 1

in the xy-plane

x2

a2

y2

b2

The ellipse       �      � 1

in the yz-plane

y2

b2
z2

c2

The ellipse

in the xz-plane

x2

a2
z2

c2�       � 1

FIGURE 12.45 The ellipsoid

in Example 2 has elliptical cross-sections in each of the three coordinate planes.

x2

a2 +

y2

b2 +

z2

c2 = 1

The curves in which the three coordinate planes cut the surface are ellipses. For example,

x2

a2 +

y2

b2 = 1 when z = 0.
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The curve cut from the surface by the plane is the ellipse

If any two of the semiaxes a, b, and c are equal, the surface is an ellipsoid of revolu-
tion. If all three are equal, the surface is a sphere.

EXAMPLE 3 The hyperbolic paraboloid

has symmetry with respect to the planes and (Figure 12.46). The cross-
sections in these planes are

(1)

(2)

In the plane the parabola opens upward from the origin. The parabola in the plane
opens downward.

If we cut the surface by a plane the cross-section is a hyperbola,

with its focal axis parallel to the y-axis and its vertices on the parabola in Equation (1). If
is negative, the focal axis is parallel to the x-axis and the vertices lie on the parabola in

Equation (2).
z0

y2

b2 -
x2

a2 =

z0
c ,

z = z0 7 0,
y = 0

x = 0,

 y = 0: the parabola z = -
c
a2 x2 .

 x = 0: the parabola z =
c

b2 y2 .

y = 0x = 0

y2

b2 -
x2

a2 =
z
c,  c 7 0

x2

a2s1 - sz0>cd2d
+

y2

b2s1 - sz0>cd2d
= 1.

z = z0 , ƒ z0 ƒ 6 c ,
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y

z

x y

z

x

The parabola z �     y2 in the yz-planec
b2

The parabola z � –     x2 

in the xz-plane

c
a2

Part of the hyperbola       �      � 1

in the plane z � c

y2

b2
x2

a2

Part of the hyperbola       �      � 1

in the plane z � –c

y2

b2
x2

a2

Saddle
point

HYPERBOLA

PARA B O LA

P
A

R
A

B
O

LA

FIGURE 12.46 The hyperbolic paraboloid The cross-sections in planes perpendicular to the 
z-axis above and below the xy-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.

s y2>b2d - sx2>a2d = z>c, c 7 0.

Near the origin, the surface is shaped like a saddle or mountain pass. To a person trav-
eling along the surface in the yz-plane the origin looks like a minimum. To a person travel-
ing the xz-plane the origin looks like a maximum. Such a point is called a saddle point of
a surface. We will say more about saddle points in Section 14.7.

Table 12.1 shows graphs of the six basic types of quadric surfaces. Each surface
shown is symmetric with respect to the z-axis, but other coordinate axes can serve as well
(with appropriate changes to the equation).
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TABLE 12.1 Graphs of Quadric Surfaces

y

x

z

E
L

L
IP

S
E

c

z0

a

b y
x

z
E

L
L

IP
S

E

ELLIPSE

Elliptical cross-section
      in the plane z � z0

The ellipse       �      � 1

in the xy-plane

x2

a2

y2

b2

The ellipse       �      � 1

in the yz-plane

y2

b2
z2

c2

The ellipse

in the xz-plane

x2

a2
z2

c2�       � 1

ELLIPSOID

ba

z

x

y

P
A

R
A

B
O

L
A

ELLIPSE

The parabola z �     x2

in the xz-plane

c
a2

The parabola z �     y2

in the yz-plane

c
b2

z � c

The ellipse       �      � 1

in the plane z � c

x2

a2

y2

b2

z

y

x

ELLIPTICAL PARABOLOID

ELLIPSE

a b

x

y

z

z � c

The line z � –   y

in the yz-plane

c
b

The line z �    x

in the xz-plane

c
a

The ellipse      �      � 1

in the plane z � c

x2

a2
y2

b2

ELLIPSE

z

y

x

ELLIPTICAL CONE

H
Y

P
E

R
B

O
L

A
ELLIPSE

ELLIPSE

ELLIPSE

a

b

z

y

x

z � c

Part of the hyperbola        �      � 1 in the xz-planex2

a2
z2

c2

The ellipse      �      � 2

in the plane z � c

x2

a2

y2

b2

The ellipse      �      � 1

in the xy-plane

x2

a2

y2

b2

Part of the hyperbola        �      � 1

in the yz-plane

y2

b2
z2

c2

a�2
b�2

H
Y

P
E

R
B

O
L

A

z

y

x

HYPERBOLOID OF ONE SHEET

HY

PER
B

O
L

A

z

ELLIPSE
a b

0

y

x

H
Y

P
E

R
B

O
L

A

ELLIPSE

The ellipse      �      � 1

in the plane z � c�2

x2

a2

y2

b2

The hyperbola

      �      � 1

in the xz-plane

z2

c2
x2

a2

The hyperbola

      �      � 1

in the yz-plane

z2

c2

y2

b2

(0, 0, c)
Vertex

(0, 0, –c)
Vertex

H
Y

PERBOLA

z

y

x

HYPERBOLOID OF TWO SHEETS

y

z

x

x

The parabola z �     y2 in the yz-planec
b2

The parabola z � –     x2 

in the xz-plane

c
a2

Part of the hyperbola       �      � 1

in the plane z � c

y2

b2
x2

a2

Part of the hyperbola       �      � 1

in the plane z � –c

y2

b2
x2

a2

Saddle
point

HYPERBOL A

PARA B O LA

P
A

R
A

B
O

LA

HYPERBOLIC PARABOLOID

y

z

x

 �      � 1x2

a2

x2

a2 +

y2

b2 +

z2

c2 = 1

x2

a2 +

y2

b2 -

z2

c2 = 1x2

a2 +

y2

b2 =

z2

c2

y2

b2 -
x2

a2 =

z
c, c 7 0

x2

a2 +

y2

b2 =

z
c

z2

c2 -
x2

a2 -

y2

b2 = 1
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Exercises 12.6

Matching Equations with Surfaces
In Exercises 1–12, match the equation with the surface it defines.
Also, identify each surface by type (paraboloid, ellipsoid, etc.) The
surfaces are labeled (a)–(1).

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

a. b.

c. d.

e. f.

g. h.

i. j. z

yx

z

y
x

z

yx

z

y
x

z

yx

z

y
x

z

yx

z

yx

z

y
x

z

y
x

9x2
+ 4y2

+ 2z2
= 36x2

+ 4z2
= y2

z = -4x2
- y2x = z2

- y2

z2
+ x2

- y2
= 1x2

+ 2z2
= 8

x = -y2
- z2x = y2

- z2

y2
+ z2

= x29y2
+ z2

= 16

z2
+ 4y2

- 4x2
= 4x2

+ y2
+ 4z2

= 10

k. l.

Drawing
Sketch the surfaces in Exercises 13–44.

CYLINDERS

13. 14.

15. 16.

ELLIPSOIDS

17. 18.

19. 20.

PARABOLOIDS AND CONES

21. 22.

23. 24.

25. 26.

HYPERBOLOIDS

27. 28.

29. 30.

HYPERBOLIC PARABOLOIDS

31. 32.

ASSORTED

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

Theory and Examples
45. a. Express the area A of the cross-section cut from the ellipsoid

by the plane as a function of c. (The area of an ellipse
with semiaxes a and b is )

b. Use slices perpendicular to the z-axis to find the volume of
the ellipsoid in part (a).

c. Now find the volume of the ellipsoid

Does your formula give the volume of a sphere of radius a if
a = b = c?

x2

a2 +

y2

b2 +

z2

c2 = 1.

pab .
z = c

x2
+

y2

4
+

z2

9
= 1

x2
+ y2

= z4y2
+ z2

- 4x2
= 4

y2
- x2

- z2
= 1z = - sx2

+ y2d
16y2

+ 9z2
= 4x2x2

+ z2
= 1

x2
+ z2

= yx2
+ y2

- z2
= 4

16x2
+ 4y2

= 1y = - sx2
+ z2d

4x2
+ 4y2

= z2z = 1 + y2
- x2

x2
- y2

= zy2
- x2

= z

s y2>4d - sx2>4d - z2
= 1z2

- x2
- y2

= 1

y2
+ z2

- x2
= 1x2

+ y2
- z2

= 1

4x2
+ 9z2

= 9y2x2
+ y2

= z2

y = 1 - x2
- z2x = 4 - 4y2

- z2

z = 8 - x2
- y2z = x2

+ 4y2

9x2
+ 4y2

+ 36z2
= 364x2

+ 9y2
+ 4z2

= 36

4x2
+ 4y2

+ z2
= 169x2

+ y2
+ z2

= 9

4x2
+ y2

= 36x2
+ 4z2

= 16

z = y2
- 1x2

+ y2
= 4

z

y
x

z

x y
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46. The barrel shown here is shaped like an ellipsoid with equal pieces
cut from the ends by planes perpendicular to the z-axis. The cross-
sections perpendicular to the z-axis are circular. The barrel is 2h
units high, its midsection radius is R, and its end radii are both r.
Find a formula for the barrel’s volume. Then check two things.
First, suppose the sides of the barrel are straightened to turn the
barrel into a cylinder of radius R and height 2h. Does your formula
give the cylinder’s volume? Second, suppose and so
the barrel is a sphere. Does your formula give the sphere’s volume?

47. Show that the volume of the segment cut from the paraboloid

by the plane equals half the segment’s base times its altitude.

48. a. Find the volume of the solid bounded by the hyperboloid

and the planes and z = h, h 7 0.z = 0

x2

a2 +

y2

b2 -

z2

c2 = 1

z = h

x2

a2 +

y2

b2 =

z
c

z

y

h r

–h

R

x r

h = Rr = 0

b. Express your answer in part (a) in terms of h and the areas 
and of the regions cut by the hyperboloid from the planes

and 

c. Show that the volume in part (a) is also given by the formula

where is the area of the region cut by the hyperboloid
from the plane 

Viewing Surfaces
Plot the surfaces in Exercises 49–52 over the indicated domains. If
you can, rotate the surface into different viewing positions.

49.

50.

51.

52.

a.

b.

c.

d.

COMPUTER EXPLORATIONS
Use a CAS to plot the surfaces in Exercises 53–58. Identify the type of
quadric surface from your graph.

53. 54.

55. 56.

57. 58. y - 24 - z2
= 0

x2

9
- 1 =

y2

16
+

z2

2

y2

16
= 1 -

x2

9
+ z5x2

= z2
- 3y2

x2

9
-

z2

9
= 1 -

y2

16
x2

9
+

y2

36
= 1 -

z2

25

-2 … x … 2, -1 … y … 1

-2 … x … 2, -2 … y … 2

-1 … x … 1, -2 … y … 3

-3 … x … 3, -3 … y … 3

z = x2
+ 2y2 over

z = x2
+ y2, -3 … x … 3, -3 … y … 3

z = 1 - y2, -2 … x … 2, -2 … y … 2

z = y2, -2 … x … 2, -0.5 … y … 2

z = h>2.
Am

V =

h
6

 sA0 + 4Am + Ahd ,

z = h .z = 0
Ah

A0

T

Chapter 12 Questions to Guide Your Review

1. When do directed line segments in the plane represent the same
vector?

2. How are vectors added and subtracted geometrically? Alge-
braically?

3. How do you find a vector’s magnitude and direction?

4. If a vector is multiplied by a positive scalar, how is the result re-
lated to the original vector? What if the scalar is zero? Negative?

5. Define the dot product (scalar product) of two vectors. Which al-
gebraic laws are satisfied by dot products? Give examples. When
is the dot product of two vectors equal to zero?

6. What geometric interpretation does the dot product have? Give
examples.

7. What is the vector projection of a vector u onto a vector v? Give
an example of a useful application of a vector projection.

8. Define the cross product (vector product) of two vectors. Which al-
gebraic laws are satisfied by cross products, and which are not? Give
examples. When is the cross product of two vectors equal to zero?

9. What geometric or physical interpretations do cross products
have? Give examples.

10. What is the determinant formula for calculating the cross product
of two vectors relative to the Cartesian i, j, k-coordinate system?
Use it in an example.

11. How do you find equations for lines, line segments, and planes in
space? Give examples. Can you express a line in space by a single
equation? A plane?

12. How do you find the distance from a point to a line in space?
From a point to a plane? Give examples.

13. What are box products? What significance do they have? How are
they evaluated? Give an example.

14. How do you find equations for spheres in space? Give examples.

15. How do you find the intersection of two lines in space? A line and
a plane? Two planes? Give examples.

16. What is a cylinder? Give examples of equations that define cylin-
ders in Cartesian coordinates.

17. What are quadric surfaces? Give examples of different kinds of
ellipsoids, paraboloids, cones, and hyperboloids (equations and
sketches).
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720 Chapter 12: Vectors and the Geometry of Space

Chapter 12 Practice Exercises

Vector Calculations in Two Dimensions
In Exercises 1–4, let and Find (a) the com-
ponent form of the vector and (b) its magnitude.

1. 2.

3. 4. 5v

In Exercises 5–8, find the component form of the vector.

5. The vector obtained by rotating through an angle of 
radians

6. The unit vector that makes an angle of radian with the posi-
tive x-axis

7. The vector 2 units long in the direction 

8. The vector 5 units long in the direction opposite to the direction
of 

Express the vectors in Exercises 9–12 in terms of their lengths and
directions.

9. 10.

11. Velocity vector when 

12. Velocity vector 
when .

Vector Calculations in Three Dimensions
Express the vectors in Exercises 13 and 14 in terms of their lengths
and directions.

13. 14.

15. Find a vector 2 units long in the direction of 

16. Find a vector 5 units long in the direction opposite to the direction
of 

In Exercises 17 and 18, find 
the angle between v and u, the scalar component of u in the

direction of v, and the vector projection of u onto v.

17. 18.

In Exercises 19 and 20, find projv u.

19. 20.

In Exercises 21 and 22, draw coordinate axes and then sketch u, v, and
as vectors at the origin.

21. 22.

23. If and the angle between v and w is find

24. For what value or values of a will the vectors 
and be parallel?v = -4i - 8j + ak

u = 2i + 4j - 5k

ƒ v - 2w ƒ .
p>3,ƒ v ƒ = 2, ƒ w ƒ = 3,

u = i - j, v = i + ju = i, v = i + j

u * v

 v = i + j + k u = i + j - 5k

 u = i - 2j v = 2i + j - k

 u = - i - k u = 2i + j - 2k

 v = i + j + 2k v = i + j

ƒ v * u ƒ ,
ƒ v ƒ , ƒ u ƒ , v # u, u # v, v * u, u * v, 

v = s3>5d i + s4>5dk.

v = 4i - j + 4k.

i + 2j - k2i - 3j + 6k

t = ln 2
set sin t + et cos tdjv = set cos t - et sin tdi +

t = p>2.v = s -2 sin tdi + s2 cos tdj
- i - j22i + 22j

s3>5di + s4>5dj

4i - j

p>6
2p>380, 19

-2u

u + v3u - 4v

v = 82, -59 .u = 8-3, 49 In Exercises 25 and 26, find (a) the area of the parallelogram deter-
mined by vectors u and v and (b) the volume of the parallelepiped
determined by the vectors u, v, and w.

25.

26.

Lines, Planes, and Distances
27. Suppose that n is normal to a plane and that v is parallel to the

plane. Describe how you would find a vector n that is both per-
pendicular to v and parallel to the plane.

28. Find a vector in the plane parallel to the line 

In Exercises 29 and 30, find the distance from the point to the line.

29. (2, 2, 0);

30. (0, 4, 1);

31. Parametrize the line that passes through the point (1, 2, 3) parallel
to the vector 

32. Parametrize the line segment joining the points P(1, 2, 0) and

In Exercises 33 and 34, find the distance from the point to the plane.

33.

34.

35. Find an equation for the plane that passes through the point
normal to the vector 

36. Find an equation for the plane that passes through the point
perpendicular to the line 

In Exercises 37 and 38, find an equation for the plane through points
P, Q, and R.

37.

38.

39. Find the points in which the line 
meets the three coordinate planes.

40. Find the point in which the line through the origin perpendicular
to the plane meets the plane 

41. Find the acute angle between the planes and 

42. Find the acute angle between the planes and

43. Find parametric equations for the line in which the planes
and intersect.

44. Show that the line in which the planes

intersect is parallel to the line

x = -3 + 2t, y = 3t, z = 1 + 4t .

x + 2y - 2z = 5 and 5x - 2y - z = 0

x - y + 2z = -8x + 2y + z = 1

1.y + z =

x + y = 1

22z = -3.
x + y +x = 7

2z = 6.3x - 5y +2x - y - z = 4

z = 3t
x = 1 + 2t, y = -1 - t,

Ps1, 0, 0d, Qs0, 1, 0d, Rs0, 0, 1d
Ps1, -1, 2d, Qs2, 1, 3d, Rs -1, 2, -1d

z = 3t .
x = -1 + t, y = 6 - 2t,s -1, 6, 0d

n = 2i + j + k.s3, -2, 1d

s3, 0, 10d, 2x + 3y + z = 2

s6, 0, -6d, x - y = 4

Qs1, 3, -1d .

v = -3i + 7k.

x = 2 + t, y = 2 + t, z = t

x = - t, y = t, z = -1 + t

ax + by = c .

u = i + j, v = j, w = i + j + k

u = i + j - k, v = 2i + j + k, w = - i - 2j + 3k
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45. The planes and intersect in a line.

a. Show that the planes are orthogonal.

b. Find equations for the line of intersection.

46. Find an equation for the plane that passes through the point 
(1, 2, 3) parallel to and 

47. Is related in any special way to the plane
Give reasons for your answer.

48. The equation represents the plane through normal
to n. What set does the inequality represent?

49. Find the distance from the point P(1, 4, 0) to the plane through
A(0, 0, 0), , and 

50. Find the distance from the point (2, 2, 3) to the plane

51. Find a vector parallel to the plane and orthogo-
nal to 

52. Find a unit vector orthogonal to A in the plane of B and C if
and 

53. Find a vector of magnitude 2 parallel to the line of intersection of
the planes and 

54. Find the point in which the line through the origin perpendicular
to the plane meets the plane 

55. Find the point in which the line through P(3, 2, 1) normal to the
plane meets the plane.

56. What angle does the line of intersection of the planes
and make with the positive 

x-axis?

57. The line

intersects the plane in a point P. Find the co-
ordinates of P and find equations for the line in the plane through
P perpendicular to L.

58. Show that for every real number k the plane

contains the line of intersection of the planes

59. Find an equation for the plane through and
that lies parallel to the line through

and 

60. Is the line related in any
way to the plane Give reasons for your
answer.

61. Which of the following are equations for the plane through the
points Q(3, 0, 2), and Rs -2, 1, 0d?Ps1, 1, -1d ,

-4x - 6y + 10z = 9?
x = 1 + 2t,  y = -2 + 3t,  z = -5t

Ds16>5, -13>5, 0d .Cs -2, -13>5, 26>5d
Bs1, -2, 1d

As -2, 0, -3d

x - 2y + z + 3 = 0 and 2x - y - z + 1 = 0.

x - 2y + z + 3 + k s2x - y - z + 1d = 0

x + 3y - z = -4

L: x = 3 + 2t,  y = 2t,  z = t

x + y + 2z = 02x + y - z = 0

2x - y + 2z = -2

2z = 6.3x - 5y +2x - y - z = 4

x - y + 2z + 7 = 0.x + 2y + z - 1 = 0

C = i + j - 2k.A = 2i - j + k, B = i + 2j + k,

i + j + k.
2x - y - z = 4

2x + 3y + 5z = 0.

Cs2, -1, 0d .Bs2, 0, -1d

n # P0 P
1

7 0
P0n # P0 P

1
= 0

2x + y = 5?
v = 2i - 4j + k

v = i - j + 2k.u = 2i + 3j + k

2x + 2y - z = 33x + 6z = 1 a.

b.

c.

d.

e.

62. The parallelogram shown here has vertices at 
and D. Find

a. the coordinates of D,

b. the cosine of the interior angle at B,

c. the vector projection of onto 

d. the area of the parallelogram,

e. an equation for the plane of the parallelogram,

f. the areas of the orthogonal projections of the parallelogram
on the three coordinate planes.

63. Distance between lines Find the distance between the line 
through the points and and the line 
through the points and The distance is to
be measured along the line perpendicular to the two lines. First find
a vector n perpendicular to both lines. Then project onto n.

64. (Continuation of Exercise 63.) Find the distance between the line
through A(4, 0, 2) and B(2, 4, 1) and the line through C(1, 3, 2)
and D(2, 2, 4).

Quadric Surfaces
Identify and sketch the surfaces in Exercises 65–76.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76. z2
- x2

- y2
= 1y2

- x2
- z2

= 1

4y2
+ z2

- 4x2
= 4x2

+ y2
- z2

= 4

x2
+ z2

= y2x2
+ y2

= z2

y = - sx2
+ z2dz = - sx2

+ y2d

36x2
+ 9y2

+ 4z2
= 364x2

+ 4y2
+ z2

= 4

x2
+ s y - 1d2

+ z2
= 1x2

+ y2
+ z2

= 4

AC
1

Ds4, 5, -2d .Cs3, 1, -1d
L2Bs -1, 1, 0dAs1, 0, -1d
L1

BC
1

,BA
1

z

y

x

D

C(1, 2, 3)

A(2, –1, 4)

B(1, 0, –1)

Bs1, 0, -1d, Cs1, 2, 3d ,
As2, -1, 4d,

=  0
+ s y - 1dj + zkds2i - j + 3kd * s -3i + kd # ssx + 2di

s2i - 3j + 3kd * ssx + 2di + s y - 1dj + zkd = 0

sx + 2d + 11s y - 1d = 3z

x = 3 - t,  y = -11t,  z = 2 - 3t

s2i - 3j + 3kd # ssx + 2di + s y - 1dj + zkd = 0
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Chapter 12 Additional and Advanced Exercises

1. Submarine hunting Two surface ships on maneuvers are trying
to determine a submarine’s course and speed to prepare for an air-
craft intercept. As shown here, ship A is located at (4, 0, 0),
whereas ship B is located at (0, 5, 0). All coordinates are given in
thousands of feet. Ship A locates the submarine in the direction of
the vector and ship B locates it in the direction
of the vector Four minutes ago, the submarine was
located at The aircraft is due in 20 min. Assuming
that the submarine moves in a straight line at a constant speed, to
what position should the surface ships direct the aircraft?

2. A helicopter rescue Two helicopters, and are traveling
together. At time they separate and follow different
straight-line paths given by

Time t is measured in hours and all coordinates are measured
in miles. Due to system malfunctions, stops its flight at (446,
13, 1) and, in a negligible amount of time, lands at (446, 13, 0).
Two hours later, is advised of this fact and heads toward at
150 mph. How long will it take to reach 

3. Torque The operator’s manual for the Toro® 21 in. lawnmower
says “tighten the spark plug to ” If you are
installing the plug with a 10.5-in. socket wrench that places the
center of your hand 9 in. from the axis of the spark plug, about
how hard should you pull? Answer in pounds.

4. Rotating body The line through the origin and the point 
A(1, 1, 1) is the axis of rotation of a right body rotating with a
constant angular speed of 3 2 rad sec. The rotation appears to be>>

9 in.

15 ft-lb s20.4 N # md .

H2 ?H1

H2H1

H2

 H2: x = 6 + 110t,  y = -3 + 4t,  z = -3 + t .

 H1: x = 6 + 40t,  y = -3 + 10t,  z = -3 + 2t

t = 0,
H2 ,H1

z

y
x

(4, 0, 0)

Submarine

(0, 5, 0)
Ship A

Ship B

NOT TO SCALE

s2, -1, -1>3d .
18i - 6j - k.

2i + 3j - s1>3dk,

clockwise when we look toward the origin from A. Find the veloc-
ity v of the point of the body that is at the position B(1, 3, 2).

5. Consider the weight suspended by two wires in each diagram.
Find the magnitudes and components of vectors and and
angles and 

a.

b.

(Hint: This triangle is a right triangle.)

6. Consider a weight of w N suspended by two wires in the diagram,
where and are force vectors directed along the wires.

a. Find the vectors and and show that their magnitudes are

and

ƒ T2 ƒ =

w cos a

sin sa + b d

ƒ T1 ƒ =

w cos b

sin sa + b d

T2T1

T1 T2

a b

w

ba

T2T1

F1 F2

200 lbs

13 ft

a b

12 ft
5 ft

F1
F2

100 lbs

5 ft
a b

4 ft3 ft

b.a

F2,F1

y

z

O

x

1

1

3
v

B(1, 3, 2)A(1, 1, 1)
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b. For a fixed determine the value of which minimizes the
magnitude 

c. For a fixed determine the value of which minimizes the
magnitude 

7. Determinants and planes

a. Show that

is an equation for the plane through the three noncollinear
points and 

b. What set of points in space is described by the equation

8. Determinants and lines Show that the lines

and

intersect or are parallel if and only if

9. Consider a regular tetrahedron of side length 2.

a. Use vectors to find the angle formed by the base of the
tetrahedron and any one of its other edges.

b. Use vectors to find the angle formed by any two adjacent
faces of the tetrahedron. This angle is commonly referred to
as a dihedral angle.

10. In the figure here, D is the midpoint of side AB of triangle ABC,
and E is one-third of the way between C and B. Use vectors to
prove that F is the midpoint of line segment CD.

C

A B

E

F

D

u

C

P

B

2 1

1

22

A

D

u

u

3 a1 c1 b1 - d1

a2 c2 b2 - d2

a3 c3 b3 - d3

3 = 0.

- q 6 t 6 q ,z = c3 t + d3,y = c2 t + d2,x = c1 t + d1,

- q 6 s 6 qz = a3 s + b3,y = a2 s + b2,x = a1 s + b1,

4 x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

4 = 0?

P3sx3, y3, z3d .P1sx1, y1, z1d, P2sx2, y2, z2d ,

3 x1 - x y1 - y z1 - z

x2 - x y2 - y z2 - z

x3 - x y3 - y z3 - z

3 = 0

ƒ T2 ƒ .
ba

ƒ T1 ƒ .
ab 11. Use vectors to show that the distance from to the line

is

12. a. Use vectors to show that the distance from to the
plane is

b. Find an equation for the sphere that is tangent to the planes
and if the planes 

and pass through the center of the sphere.

13. a. Show that the distance between the parallel planes
and is

b. Find the distance between the planes and

c. Find an equation for the plane parallel to the plane
if the point is equidistant from

the two planes.

d. Write equations for the planes that lie parallel to and 5 units
away from the plane 

14. Prove that four points A, B, C, and D are coplanar (lie in a com-
mon plane) if and only if 

15. The projection of a vector on a plane Let P be a plane in space
and let v be a vector. The vector projection of v onto the plane P,

can be defined informally as follows. Suppose the sun is
shining so that its rays are normal to the plane P. Then is
the “shadow” of v onto P. If P is the plane and

find 

16. The accompanying figure shows nonzero vectors v, w, and z,
with z orthogonal to the line L, and v and w making equal angles

with L. Assuming , find w in terms of v and z.

17. Triple vector products The triple vector products
and are usually not equal, although the formulas for
evaluating them from components are similar:

Verify each formula for the following vectors by evaluating its
two sides and comparing the results.

u v w

a. 2i 2j 2k

b.

c.

d. 2i + 4j - 2k- i - ki + j - 2k

i + 2k2i - j + k2i + j

- i + 2j - k2i + j - 2ki - j + k

 u * sv * wd = su # wdv - su # vdw.

 su * vd * w = su # wdv - sv # wdu.

u * sv * wd
su * vd * w

v w

z

L
��

ƒ v ƒ = ƒ w ƒb

projP  v.v = i + j + k,
x + 2y + 6z = 6

projP  v
projP  v,

AD
1 # sAB

1
* BC

1 d = 0.

x - 2y + z = 3.

s3, 2, -1d2x - y + 2z = -4

2x + 3y - z = 12.
2x + 3y - z = 6

d =

ƒ D1 - D2 ƒ

ƒ Ai + Bj + Ck ƒ

.

Ax + By + Cz = D2Ax + By + Cz = D1

3x - z = 0
2x - y = 0x + y + z = 9x + y + z = 3

d =

ƒ Ax1 + By1 + Cz1 - D ƒ

2A2
+ B2

+ C2
.

Ax + By + Cz = D
P1sx1, y1, z1d

d =

ƒ ax1 + by1 - c ƒ

2a2
+ b2

.

ax + by = c
P1sx1, y1d
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724 Chapter 12: Vectors and the Geometry of Space

18. Cross and dot products Show that if u, v, w, and r are any
vectors, then

a.

b.

c.

19. Cross and dot products Prove or disprove the formula

20. By forming the cross product of two appropriate vectors, derive
the trigonometric identity

sin sA - Bd = sin A cos B - cos A sin B .

u * su * su * vdd # w = - ƒ u ƒ
2 u # v * w.

su * vd # sw * rd = ` u # w v # w

u # r v # r
` .

u * v = su # v * idi + su # v * jdj + su # v * kdk

u * sv * wd + v * sw * ud + w * su * vd = 0

21. Use vectors to prove that

for any four numbers a, b, c, and d. (Hint: Let and
)

22. Dot multiplication is positive definite Show that dot multipli-
cation of vectors is positive definite; that is, show that 
for every vector u and that if and only if 

23. Show that for any vectors u and v.

24. Show that bisects the angle between u and v.

25. Show that and are orthogonal.ƒ v ƒ u - ƒ u ƒ vƒ v ƒ u + ƒ u ƒ v

w = ƒ v ƒ u + ƒ u ƒ v

ƒ u + v ƒ … ƒ u ƒ + ƒ v ƒ

u = 0.u # u = 0
u # u Ú 0

v = ci + dj.
u = ai + bj

sa2
+ b2dsc2

+ d2d Ú sac + bdd2

Chapter 12 Technology Application Projects

Mathematica Maple Module:
Using Vectors to Represent Lines and Find Distances
Parts I and II: Learn the advantages of interpreting lines as vectors.
Part III: Use vectors to find the distance from a point to a line.

Putting a Scene in Three Dimensions onto a Two-Dimensional Canvas
Use the concept of planes in space to obtain a two-dimensional image.

Getting Started in Plotting in 3D
Part I: Use the vector definition of lines and planes to generate graphs and equations, and to compare different forms for the equations of a 
single line.
Part II: Plot functions that are defined implicitly.

/
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OVERVIEW Now that we have learned about vectors and the geometry of space, we can
combine these ideas with our earlier study of functions. In this chapter we introduce the
calculus of vector-valued functions. The domains of these functions are real numbers, as
before, but their ranges are vectors, not scalars. We use this calculus to describe the paths
and motions of objects moving in a plane or in space, and we will see that the velocities
and accelerations of these objects along their paths are vectors. We will also introduce new
quantities that describe how an object’s path can turn and twist in space.

13.1 Curves in Space and Their Tangents

When a particle moves through space during a time interval I, we think of the particle’s co-
ordinates as functions defined on I:

(1)

The points make up the curve in space that we call the
particle’s path. The equations and interval in Equation (1) parametrize the curve.

A curve in space can also be represented in vector form. The vector

(2)

from the origin to the particle’s position P(ƒ(t), g(t), h(t)) at time t is the particle’s position
vector (Figure 13.1). The functions ƒ, g, and h are the component functions (compo-
nents) of the position vector. We think of the particle’s path as the curve traced by r dur-
ing the time interval I. Figure 13.2 displays several space curves generated by a computer
graphing program. It would not be easy to plot these curves by hand.

rstd = OP
1

= ƒstdi + g stdj + hstdk

sx, y, zd = sƒstd, g std, hstdd, t H I ,

x = ƒstd, y = g std, z = hstd, t H I .

725

13
VECTOR-VALUED

FUNCTIONS AND MOTION

IN SPACE

r

y

z

O

x

P( f (t), g(t), h(t))

FIGURE 13.1 The position vector
of a particle moving through

space is a function of time.
r = OP

1

r(t) 5 (cos t)i 1 (sin t)j 1 (sin2t)k 
r(t) 5 (sin3t)(cos t)i 1

    (sin3t)(sin t)j 1 tk 
r(t) 5 (4 1 sin20t)(cos t)i 1

    (4 1 sin20t)(sint)j 1
    (cos20t)k 

y

z

x y

(a) (b) (c)

z

x
y

x

z

FIGURE 13.2 Space curves are defined by the position vectors r(t).
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Equation (2) defines r as a vector function of the real variable t on the interval I. More
generally, a vector-valued function or vector function on a domain set D is a rule that
assigns a vector in space to each element in D. For now, the domains will be intervals of
real numbers resulting in a space curve. Later, in Chapter 16, the domains will be regions
in the plane. Vector functions will then represent surfaces in space. Vector functions on a
domain in the plane or space also give rise to “vector fields,” which are important to the
study of the flow of a fluid, gravitational fields, and electromagnetic phenomena. We
investigate vector fields and their applications in Chapter 16.

Real-valued functions are called scalar functions to distinguish them from vector
functions. The components of r in Equation (2) are scalar functions of t. The domain of a
vector-valued function is the common domain of its components.

EXAMPLE 1 Graph the vector function

Solution The vector function

is defined for all real values of t. The curve traced by r winds around the circular cylinder
(Figure 13.3). The curve lies on the cylinder because the i- and j-components

of r, being the x- and y-coordinates of the tip of r, satisfy the cylinder’s equation:

The curve rises as the k-component increases. Each time t increases by the
curve completes one turn around the cylinder. The curve is called a helix (from an old
Greek word for “spiral”). The equations

parametrize the helix, the interval being understood. Figure 13.4 shows
more helices. Note how constant multiples of the parameter t can change the number of
turns per unit of time.

- q 6 t 6 q

x = cos t, y = sin t, z = t

2p ,z = t

x2
+ y2

= scos td2
+ ssin td2

= 1.

x2
+ y2

= 1

rstd = scos tdi + ssin tdj + tk

rstd = scos tdi + ssin tdj + tk.

726 Chapter 13: Vector-Valued Functions and Motion in Space

y

z

0

x

(1, 0, 0)

r
P

t

x2 � y2 � 1t � 0

t � �
2

t � 2�
t � �

2�

FIGURE 13.3 The upper half of the
helix 
(Example 1).

rstd = scos tdi + ssin tdj + tk

x

y

r(t) 5 (cos t)i 1 (sin t)j 1 tk

x

z

y

r(t) 5 (cos 5t)i 1 (sin 5t)j 1 tk

z

r(t) 5 (cos t)i 1 (sin t)j 1 0.3tk

x

z

y

FIGURE 13.4 Helices spiral upward around a cylinder, like coiled springs.

Limits and Continuity

The way we define limits of vector-valued functions is similar to the way we define limits
of real-valued functions.

7001_ThomasET_ch13p725-764.qxd  10/30/09  7:26 AM  Page 726



If then it can be shown that precisely when

We omit the proof. The equation

(3)

provides a practical way to calculate limits of vector functions.

EXAMPLE 2 If then

We define continuity for vector functions the same way we define continuity for scalar
functions.

 =

22
2

 i +

22
2

 j +
p
4

 k.

 lim
t:p>4 rstd = a lim

t:p>4 cos tb i + a lim
t:p>4 sin tb j + a lim

t:p>4 tbk

rstd = scos tdi + ssin tdj + tk,

lim
t: t0

 rstd = a lim
t: t0

 ƒstdb i + a lim
t: t0

 gstdb j + a lim
t: t0

 hstdbk

lim
t: t0

 ƒstd = L1, lim
t: t0

 gstd = L2, and lim
t: t0

 hstd = L3 .

limt:t0 rstd = LL = L1i + L2 j + L3k,

13.1 Curves in Space and Their Tangents 727

DEFINITION Let be a vector function with
domain D, and L a vector. We say that r has limit L as t approaches and write

if, for every number there exists a corresponding number such that
for all 

ƒ rstd - L ƒ 6 P whenever  0 6 ƒ t - t0 ƒ 6 d.

t H D
d 7 0P 7 0,

lim
t: t0

 rstd = L

t0
rstd = ƒstdi + gstdj + hstdk

DEFINITION A vector function r(t) is continuous at a point in its
domain if The function is continuous if it is continuous at
every point in its domain.

limt:t0 rstd = rst0d .
t = t0

From Equation (3), we see that r(t) is continuous at if and only if each compo-
nent function is continuous there (Exercise 31).

EXAMPLE 3
(a) All the space curves shown in Figures 13.2 and 13.4 are continuous because their

component functions are continuous at every value of t in 

(b) The function

is discontinuous at every integer, where the greatest integer function is 
discontinuous.

Derivatives and Motion

Suppose that is the position vector of a particle moving
along a curve in space and that ƒ, g, and h are differentiable functions of t. Then the differ-
ence between the particle’s positions at time t and time is

¢r = rst + ¢td - rstd

t + ¢t

rstd = ƒstdi + gstdj + hstdk

: t;
gstd = scos tdi + ssin tdj + : t;k

s - q , q d .

t = t0
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(Figure 13.5a). In terms of components,

As approaches zero, three things seem to happen simultaneously. First, Q approaches
P along the curve. Second, the secant line PQ seems to approach a limiting position tan-
gent to the curve at P. Third, the quotient (Figure 13.5b) approaches the limit

We are therefore led to the following definition.

 = cdƒ
dt
d i + cdg

dt
d j + cdh

dt
dk.

 + c lim
¢t:0

 
hst + ¢td - hstd

¢t
dk

 lim
¢t:0

 
¢r
¢t

= c lim
¢t:0

 
ƒst + ¢td - ƒstd

¢t
d i + c lim

¢t:0
 
gst + ¢td - gstd

¢t
d j

¢r>¢t

¢t

 = [ƒst + ¢td - ƒstd]i + [gst + ¢td - gstd]j + [hst + ¢td - hstd]k.

 - [ƒstdi + gstdj + hstdk]

 = [ƒst + ¢tdi + gst + ¢tdj + hst + ¢tdk]

 ¢r = rst + ¢td - rstd
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y

z

(a)
x

P

C

O

O

Q
r(t � �t) � r(t) 

r(t)

r(t � �t)

y

z

(b)
x

P

C

Q

r(t � �t) � r(t) 

r(t)

r'(t)

r(t � �t)

�t

FIGURE 13.5 As the point Q
approaches the point P along the curve C.
In the limit, the vector becomes the
tangent vector r¿std .

PQ
1 >¢t

¢t : 0,

DEFINITION The vector function has a
derivative (is differentiable) at t if ƒ, g, and h have derivatives at t. The derivative
is the vector function

r¿std =
dr
dt

= lim
¢t:0

 
rst + ¢td - rstd

¢t
=

dƒ
dt

 i +

dg
dt

 j +
dh
dt

 k.

rstd = ƒstdi + gstdj + hstdk

A vector function r is differentiable if it is differentiable at every point of its domain.
The curve traced by r is smooth if dr dt is continuous and never 0, that is, if ƒ, g, and h
have continuous first derivatives that are not simultaneously 0.

The geometric significance of the definition of derivative is shown in Figure 13.5.
The points P and Q have position vectors r(t) and and the vector is repre-
sented by For the scalar multiple 

points in the same direction as the vector As this vector approaches a vector
that is tangent to the curve at P (Figure 13.5b). The vector when different from 0, is
defined to be the vector tangent to the curve at P. The tangent line to the curve at a point

is defined to be the line through the point parallel to We require
for a smooth curve to make sure the curve has a continuously turning tangent at

each point. On a smooth curve, there are no sharp corners or cusps.
A curve that is made up of a finite number of smooth curves pieced together in a con-

tinuous fashion is called piecewise smooth (Figure 13.6).
Look once again at Figure 13.5. We drew the figure for positive, so points for-

ward, in the direction of the motion. The vector having the same direction as 
points forward too. Had been negative, would have pointed backward, against the
direction of motion. The quotient however, being a negative scalar multiple of 
would once again have pointed forward. No matter how points, points forward
and we expect the vector when different from 0, to do the same.
This means that the derivative dr dt, which is the rate of change of position with respect to
time, always points in the direction of motion. For a smooth curve, dr dt is never zero; the
particle does not stop or reverse direction.

>>dr>dt = lim¢t:0 ¢r>¢t ,
¢r>¢t¢r

¢r,¢r>¢t ,
¢r¢t

¢r,¢r>¢t ,
¢r¢t

dr>dt Z 0
r¿st0d .sƒst0d, gst0d, hst0dd

r¿std ,
¢t : 0,PQ

1
.

s1>¢tdsrst + ¢td - rstdd¢t 7 0,rst + ¢td - rstd .
PQ
1rst + ¢td ,

>

C1

C2

C3 C4

C5

FIGURE 13.6 A piecewise smooth curve
made up of five smooth curves connected
end to end in a continuous fashion. The
curve here is not smooth at the points
joining the five smooth curves.
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EXAMPLE 4 Find the velocity, speed, and acceleration of a particle whose motion in
space is given by the position vector Sketch the
velocity vector 

Solution The velocity and acceleration vectors at time t are

and the speed is

When we have

A sketch of the curve of motion, and the velocity vector when can be seen in
Figure 13.7.

We can express the velocity of a moving particle as the product of its speed and 
direction:

Differentiation Rules

Because the derivatives of vector functions may be computed component by component,
the rules for differentiating vector functions have the same form as the rules for differenti-
ating scalar functions.

Velocity = ƒ v ƒ a v
ƒ v ƒ

b = sspeeddsdirectiond .

t = 7p>4,

v a7p
4
b = 22 i + 22 j + 5 k, a a7p

4
b = -22 i + 22 j, ` v a7p

4
b ` = 229 .

t = 7p>4,

ƒ vstd ƒ = 2s -2 sin td2
+ s2 cos td2

+ s -5 sin 2td2
= 24 + 25 sin2 2t .

 astd = rflstd = -2 cos t i - 2 sin t j - 10 cos 2t k,

 = -2 sin t i + 2 cos t j - 5 sin 2t k,

 vstd = rœstd = -2 sin t i + 2 cos t j - 10 cos t sin t k

vs7p>4d.
rstd = 2 cos t i + 2 sin t j + 5 cos2 t k.

13.1 Curves in Space and Their Tangents 729

z

x

y

7p
4

r′⎛⎝
⎛
⎝

7p
4

t �

FIGURE 13.7 The curve and the velocity
vector when for the motion
given in Example 4.

t = 7p>4

DEFINITIONS If r is the position vector of a particle moving along a smooth
curve in space, then

is the particle’s velocity vector, tangent to the curve. At any time t, the direction of
v is the direction of motion, the magnitude of v is the particle’s speed , and the
derivative when it exists, is the particle’s acceleration vector. In
summary,

1. Velocity is the derivative of 

2. Speed is the magnitude of 

3. Acceleration is the derivative of 

4. The unit vector is the direction of motion at time t.v> ƒ v ƒ

velocity: a =
dv
dt

=
d2r
dt2 .

velocity: Speed = ƒ v ƒ .

position: v =
dr
dt

.

a = dv>dt ,

vstd =
dr
dt
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We will prove the product rules and Chain Rule but leave the rules for constants, scalar
multiples, sums, and differences as exercises.

Proof of the Dot Product Rule Suppose that

and

Then

Proof of the Cross Product Rule We model the proof after the proof of the Product Rule
for scalar functions. According to the definition of derivative,

To change this fraction into an equivalent one that contains the difference quotients for the
derivatives of u and v, we subtract and add in the numerator. Then

= lim
h:0

 
ust + hd - ustd

h
* lim

h:0
 vst + hd + lim

h:0
 ustd * lim

h:0
 
vst + hd - vstd

h
.

= lim
h:0

 cust + hd - ustd
h

* vst + hd + ustd *

vst + hd - vstd
h

d
= lim

h:0
 
ust + hd * vst + hd - ustd * vst + hd + ustd * vst + hd - ustd * vstd

h

d
dt

 su * vd

ustd * vst + hd

d
dt

 su * vd = lim
h:0

 
ust + hd * vst + hd - ustd * vstd

h
.

u # v¿u¿
# v

('''')'''*(''')''''*

 = u1
œy1 + u2

œy2 + u3
œy3 + u1y1

œ

+ u2y2
œ

+ u3y3
œ .

 
d
dt

 su # vd =
d
dt

 su1 y1 + u2 y2 + u3 y3d

v = y1stdi + y2stdj + y3stdk .

u = u1stdi + u2stdj + u3stdk

730 Chapter 13: Vector-Valued Functions and Motion in Space

Differentiation Rules for Vector Functions
Let u and v be differentiable vector functions of t, C a constant vector, c any
scalar, and ƒ any differentiable scalar function.

1. Constant Function Rule:

2. Scalar Multiple Rules:

3. Sum Rule:

4. Difference Rule:

5. Dot Product Rule:

6. Cross Product Rule:

7. Chain Rule:
d
dt

 [usƒstdd] = ƒ¿stdu¿sƒstdd

d
dt

 [ustd * vstd] = u¿std * vstd + ustd * v¿std

d
dt

 [ustd # vstd] = u¿std # vstd + ustd # v¿std

d
dt

 [ustd - vstd] = u¿std - v¿std

d
dt

 [ustd + vstd] = u¿std + v¿std

d
dt

 [ƒstdustd] = ƒ¿stdustd + ƒstdu¿std

d
dt

 [custd] = cu¿std

d
dt

 C = 0

When you use the Cross Product Rule,
remember to preserve the order of the
factors. If u comes first on the left side
of the equation, it must also come first
on the right or the signs will be wrong.
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The last of these equalities holds because the limit of the cross product of two vector func-
tions is the cross product of their limits if the latter exist (Exercise 32). As h approaches
zero, approaches v(t) because v, being differentiable at t, is continuous at t (Exer-
cise 33). The two fractions approach the values of du dt and dv dt at t. In short,

Proof of the Chain Rule Suppose that is a differentiable
vector function of s and that is a differentiable scalar function of t. Then a, b, and
c are differentiable functions of t, and the Chain Rule for differentiable real-valued func-
tions gives

Vector Functions of Constant Length

When we track a particle moving on a sphere centered at the origin (Figure 13.8), the posi-
tion vector has a constant length equal to the radius of the sphere. The velocity vector dr dt,
tangent to the path of motion, is tangent to the sphere and hence perpendicular to r. This is
always the case for a differentiable vector function of constant length: The vector and its
first derivative are orthogonal. By direct calculation,

is constant.

Differentiate both sides.

Rule 5 with 

The vectors and r(t) are orthogonal because their dot product is 0. In summary,rœstd

 2r¿std # rstd = 0.

rstd = ustd = vstd r¿std # rstd + rstd # r¿std = 0

 
d
dt

 [rstd # rstd] = 0

ƒ rstd ƒ = c rstd # rstd = c2

>

s = ƒstd = ƒ¿stdu¿sƒstdd .

 =
ds
dt

 
du
ds

 =
ds
dt

 ada
ds

 i +
db
ds

 j +
dc
ds

 kb
 =

da
ds

 
ds
dt

 i +
db
ds

 
ds
dt

 j +
dc
ds

 
ds
dt

 k

 
d
dt

 [ussd] =
da
dt

 i +
db
dt

 j +
dc
dt

 k

s = ƒstd
ussd = assdi + bssdj + cssdk

d
dt

 su * vd =
du
dt

* v + u *
dv
dt

.

>>vst + hd

13.1 Curves in Space and Their Tangents 731

If r is a differentiable vector function of t of constant length, then

(4)r # dr
dt

= 0.

We will use this observation repeatedly in Section 13.4. The converse is also true (see
Exercise 27).

As an algebraic convenience, we
sometimes write the product of a scalar c
and a vector v as vc instead of cv. This
permits us, for instance, to write the
Chain Rule in a familiar form:

where s = ƒstd .

du
dt

=

du
ds

 
ds
dt

,

y

z

x

P
r(t)

dr
dt

FIGURE 13.8 If a particle moves on a
sphere in such a way that its position r is a
differentiable function of time, then
r # sdr>dtd = 0.

Exercises 13.1

Motion in the Plane
In Exercises 1–4, r(t) is the position of a particle in the xy-plane at
time t. Find an equation in x and y whose graph is the path of the par-
ticle. Then find the particle’s velocity and acceleration vectors at the
given value of t.

1. rstd = st + 1di + st2
- 1dj, t = 1

2.

3.

4. rstd = scos 2tdi + s3 sin 2tdj, t = 0

rstd = et i +

2
9

 e2t j, t = ln 3

rstd =

t
t + 1

 i +

1
t  j, t = -1>2
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Exercises 5–8 give the position vectors of particles moving along vari-
ous curves in the xy-plane. In each case, find the particle’s velocity
and acceleration vectors at the stated times and sketch them as vectors
on the curve.

5. Motion on the circle

6. Motion on the circle

7. Motion on the cycloid

8. Motion on the parabola

Motion in Space
In Exercises 9–14, r(t) is the position of a particle in space at time t.
Find the particle’s velocity and acceleration vectors. Then find the par-
ticle’s speed and direction of motion at the given value of t. Write the
particle’s velocity at that time as the product of its speed and direction.

9.

10.

11.

12.

13.

14.

In Exercises 15–18, r(t) is the position of a particle in space at time t.
Find the angle between the velocity and acceleration vectors at time

15.

16.

17.

18.

Tangents to Curves
As mentioned in the text, the tangent line to a smooth curve

at is the line that passes through
the point parallel to the curve’s velocity vec-
tor at In Exercises 19–22, find parametric equations for the line
that is tangent to the given curve at the given parameter value 

19.

20.

21.

22. rstd = scos tdi + ssin tdj + ssin 2tdk, t0 =

p

2

rstd = ln t i +

t - 1
t + 2

 j + t ln t k, t0 = 1

rstd = t2 i + s2t - 1dj + t3 k, t0 = 2

rstd = ssin tdi + st2
- cos tdj + et k, t0 = 0

t = t0 .
t0 .

vst0d ,sƒst0d, gst0d, hst0dd
t = t0rstd = ƒstdi + gstdj + hstdk

rstd =

4
9

 s1 + td3>2 i +

4
9

 s1 - td3>2 j +

1
3

 tk

rstd = sln st2
+ 1ddi + stan-1 tdj + 2t2

+ 1 k

rstd = a22
2

 tb i + a22
2

 t - 16t2b j

rstd = s3t + 1di + 23t j + t2k

t = 0.

rstd = se-tdi + s2 cos 3tdj + s2 sin 3tdk, t = 0

rstd = s2 ln st + 1ddi + t2 j +

t2

2
 k, t = 1

rstd = ssec tdi + stan tdj +

4
3

 tk, t = p>6
rstd = s2 cos tdi + s3 sin tdj + 4tk, t = p>2
rstd = s1 + tdi +

t2

22
 j +

t3

3
 k, t = 1

rstd = st + 1di + st2
- 1dj + 2tk, t = 1

rstd = t i + st2
+ 1dj; t = -1, 0,  and 1

y = x2
+ 1

rstd = st - sin tdi + s1 - cos tdj; t = p and 3p>2
x = t - sin t,  y = 1 - cos t

rstd = a4 cos 
t
2
b i + a4 sin 

t
2
b j; t = p and 3p>2

x2
+ y2

= 16

rstd = ssin tdi + scos tdj; t = p>4 and p>2
x2

+ y2
= 1
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Theory and Examples
23. Motion along a circle Each of the following equations in parts

(a)–(e) describes the motion of a particle having the same path,
namely the unit circle Although the path of each
particle in parts (a)–(e) is the same, the behavior, or “dynamics,”
of each particle is different. For each particle, answer the follow-
ing questions.

i) Does the particle have constant speed? If so, what is its con-
stant speed?

ii) Is the particle’s acceleration vector always orthogonal to its
velocity vector?

iii) Does the particle move clockwise or counterclockwise
around the circle?

iv) Does the particle begin at the point (1, 0)?

a.

b.

c.

d.

e.

24. Motion along a circle Show that the vector-valued function

describes the motion of a particle moving in the circle of radius 1
centered at the point and lying in the plane

25. Motion along a parabola A particle moves along the top of the
parabola from left to right at a constant speed of 5 units
per second. Find the velocity of the particle as it moves through
the point (2, 2).

26. Motion along a cycloid A particle moves in the xy-plane in
such a way that its position at time t is

a. Graph r(t). The resulting curve is a cycloid.

b. Find the maximum and minimum values of and (Hint:
Find the extreme values of and first and take square
roots later.)

27. Let r be a differentiable vector function of t. Show that if
for all t, then is constant.

28. Derivatives of triple scalar products

a. Show that if u, v, and w are differentiable vector functions of
t, then

b. Show that

(Hint: Differentiate on the left and look for vectors whose prod-
ucts are zero.)

d
dt

 ar # dr
dt

*

d2r
dt2 b = r # adr

dt
*

d3r
dt3 b .

 u # v *

dw
dt

. 
d
dt

 su # v * wd =

du
dt

# v * w + u # dv
dt

* w +

ƒ r ƒr # sdr>dtd = 0

ƒ a ƒ
2

ƒ v ƒ
2

ƒ a ƒ .ƒ v ƒ

rstd = st - sin tdi + s1 - cos tdj.

y2
= 2x

x + y - 2z = 2.
s2, 2, 1d

+ cos t ¢ 1

22
 i -

1

22
 j≤ + sin t ¢ 1

23
 i +

1

23
 j +

1

23
 k≤ rstd = s2i + 2j + kd

rstd = cos st2di + sin st2dj, t Ú 0

rstd = scos tdi - ssin tdj, t Ú 0

rstd = cos st - p>2di + sin st - p>2dj, t Ú 0

rstd = cos s2tdi + sin s2tdj, t Ú 0

rstd = scos tdi + ssin tdj, t Ú 0

x2
+ y2

= 1.

T
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29. Prove the two Scalar Multiple Rules for vector functions.

30. Prove the Sum and Difference Rules for vector functions.

31. Component Test for Continuity at a Point Show that the vec-
tor function r defined by is contin-
uous at if and only if ƒ, g, and h are continuous at 

32. Limits of cross products of vector functions Suppose
that 

and Use the determi-
nant formula for cross products and the Limit Product Rule for
scalar functions to show that

33. Differentiable vector functions are continuous Show that if
is differentiable at then it is

continuous at as well.

34. Constant Function Rule Prove that if u is the vector function
with the constant value C, then 

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 35–38.

a. Plot the space curve traced out by the position vector r.

b. Find the components of the velocity vector dr dt.

c. Evaluate dr dt at the given point and determine the equation of
the tangent line to the curve at 

d. Plot the tangent line together with the curve over the given interval.

rst0d .
t0>

>

du>dt = 0.

t0

t = t0 ,rstd = ƒstdi + gstdj + hstdk

lim
t: t0

sr1std * r2stdd = A * B.

limt:t0 r2std = B. limt:t0 r1std = A,g3stdk,
ƒ1stdi + ƒ2stdj + ƒ3stdk, r2std = g1stdi + g2stdj +r1std =

t0 .t = t0

hstdkƒstdi + g stdj +rstd =
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35.

36.

37.

38.

In Exercises 39 and 40, you will explore graphically the behavior of
the helix

as you change the values of the constants a and b. Use a CAS to per-
form the steps in each exercise.

39. Set Plot the helix r(t) together with the tangent line to the
curve at for 1, 2, 4, and 6 over the interval

Describe in your own words what happens to the
graph of the helix and the position of the tangent line as a in-
creases through these positive values.

40. Set Plot the helix r(t) together with the tangent line to the
curve at for and 4 over the interval

Describe in your own words what happens to the
graph of the helix and the position of the tangent line as b in-
creases through these positive values.

0 … t … 4p .
2 ,1>2,b = 1>4,t = 3p>2a = 1.

0 … t … 4p .
a =t = 3p>2b = 1.

rstd = scos atdi + ssin atdj + btk

-3 … t … 5, t0 = 3
rstd = sln st2

+ 2ddi + stan-1 3tdj + 2t2
+ 1 k, 

t0 = p>4rstd = ssin 2tdi + sln s1 + tddj + tk, 0 … t … 4p, 

rstd = 22t i + e t j + e-t k, -2 … t … 3, t0 = 1

0 … t … 6p, t0 = 3p>2rstd = ssin t - t cos tdi + scos t + t sin tdj + t2k, 

13.2 Integrals of Vector Functions; Projectile Motion

In this section we investigate integrals of vector functions and their application to motion
along a path in space or in the plane.

Integrals of Vector Functions

A differentiable vector function R(t) is an antiderivative of a vector function r(t) on an in-
terval I if at each point of I. If R is an antiderivative of r on I, it can be shown,
working one component at a time, that every antiderivative of r on I has the form 
for some constant vector C (Exercise 41). The set of all antiderivatives of r on I is the
indefinite integral of r on I.

R + C
dR>dt = r

DEFINITION The indefinite integral of r with respect to t is the set of all
antiderivatives of r, denoted by If R is any antiderivative of r, then

L
 rstd dt = Rstd + C.

1  rstd dt .

The usual arithmetic rules for indefinite integrals apply.
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EXAMPLE 1 To integrate a vector function, we integrate each of its components.

(1)

(2)

As in the integration of scalar functions, we recommend that you skip the steps in Equa-
tions (1) and (2) and go directly to the final form. Find an antiderivative for each compo-
nent and add a constant vector at the end.

Definite integrals of vector functions are best defined in terms of components. The
definition is consistent with how we compute limits and derivatives of vector functions.

 = ssin tdi + t j - t 2k + C

 = ssin t + C1di + st + C2dj - st 2
+ C3dk

 
L

 sscos tdi + j - 2tkd dt = a
L

 cos t dtb i + a
L

 dtb j - a
L

 2t dtbk

734 Chapter 13: Vector-Valued Functions and Motion in Space

DEFINITION If the components of are integrable
over [a, b], then so is r, and the definite integral of r from a to b is

L

b

a
 rstd dt = a

L

b

a
 ƒstd dtb i + a

L

b

a
gstd dtb j + a

L

b

a
hstd dtbk.

rstd = ƒstdi + gstdj + hstdk

EXAMPLE 2 As in Example 1, we integrate each component.

The Fundamental Theorem of Calculus for continuous vector functions says that

where R is any antiderivative of r, so that (Exercise 42).

EXAMPLE 3 Suppose we do not know the path of a hang glider, but only its acceleration
vector We also know that initially (at time ) the
glider departed from the point (3, 0, 0) with velocity Find the glider’s position as
a function of t.

Solution Our goal is to find r(t) knowing

Integrating both sides of the differential equation with respect to t gives

We use to find 

 C1 = 0.

 3j = 3j + C1

 3j = - s3 sin 0di + s3 cos 0dj + s0dk + C1

C1 :vs0d = 3j

vstd = - s3 sin tdi + s3 cos tdj + 2tk + C1.

The differential equation: a =
d2r
dt2 = - s3 cos tdi - s3 sin tdj + 2k

The initial conditions: vs0d = 3j  and  rs0d = 3i + 0j + 0k.

vs0d = 3j.
t = 0astd = - s3 cos tdi - s3 sin tdj + 2k.

R¿std = rstd

L

b

a
rstd dt = Rstd Dab = Rsbd - Rsad

 = pj - p2k

 = [0 - 0]i + [p - 0]j - [p2
- 02]k

 = Csin t D
0

p
i + C t D

0

p
j - C t 2 D

0

p

k

 
L

p

0
sscos tdi + j - 2tkd dt = a

L

p

0
 cos t dtb i + a

L

p

0
 dtb j - a

L

p

0
2t dtbk

C2 j - C3kC = C1i +
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The glider’s velocity as a function of time is

Integrating both sides of this last differential equation gives

We then use the initial condition to find 

The glider’s position as a function of t is

This is the path of the glider shown in Figure 13.9. Although the path resembles that of a
helix due to its spiraling nature around the z-axis, it is not a helix because of the way it is
rising. (We say more about this in Section 13.5.)

Note: It turned out in this example that both of the constant vectors of integration, 
and are 0. Exercises 15 and 16 give examples for which the constant vectors of inte-
gration are not 0.

The Vector and Parametric Equations for Ideal Projectile Motion

A classic example of integrating vector functions is the derivation of the equations for the
motion of a projectile. In physics, projectile motion describes how an object fired at some
angle from an initial position, and acted upon by only the force of gravity, moves in a ver-
tical coordinate plane. In the classic example, we ignore the effects of any frictional drag
on the object, which may vary with its speed and altitude, and also the fact that the force of
gravity changes slightly with the projectile’s changing height. In addition, we ignore the
long-distance effects of the Earth turning beneath the projectile, such as in a rocket launch
or the firing of a projectile from a cannon. Ignoring these effects gives us a reasonable ap-
proximation of the motion in most cases.

To derive equations for projectile motion, we assume that the projectile behaves like a
particle moving in a vertical coordinate plane and that the only force acting on the projec-
tile during its flight is the constant force of gravity, which always points straight down. We
assume that the projectile is launched from the origin at time into the first quadrant with
an initial velocity (Figure 13.10). If makes an angle with the horizontal, then

If we use the simpler notation for the initial speed then

(3)

The projectile’s initial position is

(4)

Newton’s second law of motion says that the force acting on the projectile is equal to
the projectile’s mass m times its acceleration, or if r is the projectile’s position
vector and t is time. If the force is solely the gravitational force then

m 
d2r
dt2 = -mg j and d2r

dt2 = -g j

-mg j,
msd2r>dt2d

r0 = 0i + 0j = 0.

v0 = sy0 cos adi + sy0 sin adj.

ƒ v0 ƒ ,y0

v0 = s ƒ v0 ƒ cos adi + s ƒ v0 ƒ sin adj.

av0v0

t = 0

C2,
C1

rstd = s3 cos tdi + s3 sin tdj + t2k.

 C2 = 0.

 3i = 3i + s0dj + s0dk + C2

 3i = s3 cos 0di + s3 sin 0dj + s02dk + C2

C2 :rs0d = 3i

rstd = s3 cos tdi + s3 sin tdj + t2k + C2.

dr
dt

= vstd = - s3 sin tdi + s3 cos tdj + 2tk.
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z

x y

(3, 0, 0)

FIGURE 13.9 The path of the hang glider
in Example 3. Although the path spirals
around the z-axis, it is not a helix.

x

y

(a)

(b)

a

x

y

0
R

Horizontal range

v

a 5 –gj

_v0_ cos a i

_v0_ sin a j
v0

r 5 0 at
time t 5 0

(x, y)

a 5 –gj

r 5 x i 1 yj

FIGURE 13.10 (a) Position, velocity,
acceleration, and launch angle at 
(b) Position, velocity, and acceleration at a
later time t.

t = 0.
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where g is the acceleration due to gravity. We find r as a function of t by solving the fol-
lowing initial value problem.

The first integration gives

A second integration gives

Substituting the values of and from Equations (3) and (4) gives

.

Collecting terms, we have

v0t
('''''')''''''*

r = -
1
2

 gt2j + sy0 cos adt i + sy0 sin adt j + 0

r0v0

r = -
1
2

 gt2j + v0 t + r0 .

dr
dt

= - sgtdj + v0 .

Initial conditions: r = r0 and dr
dt

= v0 when t = 0

Differential equation:  
d2r
dt2 = -g j

736 Chapter 13: Vector-Valued Functions and Motion in Space

Ideal Projectile Motion Equation

(5)r = sy0 cos adt i + asy0 sin adt -
1
2

 gt2b j.

Equation (5) is the vector equation for ideal projectile motion. The angle is the pro-
jectile’s launch angle (firing angle, angle of elevation), and as we said before, is the
projectile’s initial speed. The components of r give the parametric equations

(6)

where x is the distance downrange and y is the height of the projectile at time 

EXAMPLE 4 A projectile is fired from the origin over horizontal ground at an initial
speed of 500 m sec and a launch angle of 60°. Where will the projectile be 10 sec later?

Solution We use Equation (5) with and to find the
projectile’s components 10 sec after firing.

Ten seconds after firing, the projectile is about above ground and down-
range from the origin.

Ideal projectiles move along parabolas, as we now deduce from Equations (6). If we
substitute from the first equation into the second, we obtain the Cartesian-
coordinate equation

This equation has the form so its graph is a parabola.y = ax2
+ bx ,

y = - a g

2y0
2 cos2 a

b x2
+ stan adx .

t = x>sy0 cos ad

2500 m3840 m

 L 2500i + 3840j

 = s500d a1
2
b s10di + as500d a23

2
b10 - a1

2
b s9.8ds100db j

 r = sy0 cos adt i + asy0 sin adt -
1
2

 gt2b j

t = 10y0 = 500, a = 60°, g = 9.8,

>

t Ú 0.

x = sy0 cos adt and y = sy0 sin adt -
1
2

 gt2 ,

y0 ,
a
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A projectile reaches its highest point when its vertical velocity component is zero.
When fired over horizontal ground, the projectile lands when its vertical component
equals zero in Equation (5), and the range R is the distance from the origin to the point of
impact. We summarize the results here, which you are asked to verify in Exercise 27.

13.2 Integrals of Vector Functions; Projectile Motion 737

Height, Flight Time, and Range for Ideal Projectile Motion
For ideal projectile motion when an object is launched from the origin over a hor-
izontal surface with initial speed and launch angle 

Range:  R =

y0
2

g  sin 2a .

Flight time:   t =

2y0 sin a
g

Maximum height: ymax =

sy0 sin ad2

2g

a :y0

If we fire our ideal projectile from the point instead of the origin (Figure 13.11),
the position vector for the path of motion is

(7)

as you are asked to show in Exercise 29.

Projectile Motion with Wind Gusts

The next example shows how to account for another force acting on a projectile, due to a
gust of wind. We also assume that the path of the baseball in Example 5 lies in a vertical
plane.

EXAMPLE 5 A baseball is hit when it is 3 ft above the ground. It leaves the bat with
initial speed of 152 ft sec, making an angle of 20° with the horizontal. At the instant the
ball is hit, an instantaneous gust of wind blows in the horizontal direction directly opposite
the direction the ball is taking toward the outfield, adding a component of 
to the ball’s initial velocity 

(a) Find a vector equation (position vector) for the path of the baseball.

(b) How high does the baseball go, and when does it reach maximum height?

(c) Assuming that the ball is not caught, find its range and flight time.

Solution

(a) Using Equation (3) and accounting for the gust of wind, the initial velocity of the
baseball is

The initial position is Integration of gives

dr
dt

= - sgtdj + v0 .

d2r>dt2
= -g jr0 = 0i + 3j.

 = s152 cos 20° - 8.8di + s152 sin 20°dj.

 = s152 cos 20°di + s152 sin 20°dj - s8.8di

 v0 = sy0 cos adi + sy0 sin adj - 8.8i

s8.8 ft>sec = 6 mphd .
-8.8i sft>secd

>

r = sx0 + sy0 cos adtdi + ay0 + sy0 sin adt -
1
2

 gt2b j,

sx0, y0d

0
x

y

a

v0

(x0, y0)

6653_T12E_Fig13_011.eps

FIGURE 13.11 The path of a projectile
fired from with an initial velocity

at an angle of degrees with the
horizontal.

av0

sx0 , y0d
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A second integration gives

Substituting the values of and into the last equation gives the position vector of
the baseball.

(b) The baseball reaches its highest point when the vertical component of velocity is
zero, or

Solving for t we find

Substituting this time into the vertical component for r gives the maximum height

That is, the maximum height of the baseball is about 45.2 ft, reached about 1.6 sec
after leaving the bat.

(c) To find when the baseball lands, we set the vertical component for r equal to 0 and
solve for t:

The solution values are about and Substituting the posi-
tive time into the horizontal component for r, we find the range

Thus, the horizontal range is about 442 ft, and the flight time is about 3.3 sec.

In Exercises 37 and 38, we consider projectile motion when there is air resistance
slowing down the flight.

 L 442 ft .

 R = s152 cos 20° - 8.8ds3.3d

t = -0.06 sec.t = 3.3 sec

 3 + s51.99dt - 16t 2
= 0.

 3 + s152 sin 20°dt - 16t2
= 0

 L 45.2 ft .

 ymax = 3 + s152 sin 20°ds1.62d - 16s1.62d2

t =
152 sin 20°

32
L 1.62 sec.

dy
dt

= 152 sin 20° - 32t = 0.

 = s152 cos 20° - 8.8dt i + A3 + (152 sin 20°dt - 16t2 B j.
 = -16t2j + s152 cos 20° - 8.8dt i + s152 sin 20°dt j + 3j

 r = -
1
2

 gt2j + v0 t + r0

r0v0

r = -
1
2

 gt2j + v0 t + r0 .

738 Chapter 13: Vector-Valued Functions and Motion in Space

Exercises 13.2

Integrating Vector-Valued Functions
Evaluate the integrals in Exercises 1–10.

1.

2.
L

2

1
cs6 - 6tdi + 32t j + a 4

t2 bk d  dt

L

1

0
[t3i + 7j + st + 1dk] dt

3.

4.

5.
L

4

1
c1t  i +

1
5 - t

 j +

1
2t

 k d  dt

L

p>3
0

[ssec t tan tdi + stan tdj + s2 sin t cos tdk] dt

L

p>4
-p>4[ssin tdi + s1 + cos tdj + ssec2 tdk] dt
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6.

7.

8.

9.

10.

Initial Value Problems
Solve the initial value problems in Exercises 11–16 for r as a vector
function of t.

11.

12.

13.

14.

15.

16.

Motion Along a Straight Line
17. At time a particle is located at the point (1, 2, 3). It travels

in a straight line to the point (4, 1, 4), has speed 2 at (1, 2, 3) and
constant acceleration Find an equation for the posi-
tion vector r(t) of the particle at time t.

18. A particle traveling in a straight line is located at the point
and has speed 2 at time The particle moves

toward the point (3, 0, 3) with constant acceleration 
Find its position vector r(t) at time t.

Projectile Motion
Projectile flights in the following exercises are to be treated as ideal
unless stated otherwise. All launch angles are assumed to be measured
from the horizontal. All projectiles are assumed to be launched from
the origin over a horizontal surface unless stated otherwise.

19. Travel time A projectile is fired at a speed of 840 m sec at an
angle of 60°. How long will it take to get 21 km downrange?

>

2i + j + k.
t = 0.s1, -1, 2d

3i - j + k.

t = 0,

Differential equation:
d 2r
dt2 = - si + j + kd

Initial conditions: rs0d = 10i + 10j + 10k  and

dr
dt

 `
t = 0

= 0

Differential equation:
d 2r
dt2 = -32k

Initial conditions: rs0d = 100k  and

dr
dt

 `
t = 0

= 8i + 8j

Differential equation:
dr
dt

= st3
+ 4tdi + t j + 2t2 k

Initial condition: rs0d = i + j

Differential equation:
dr
dt

=

3
2

 st + 1d1>2i + e-t j +

1
t + 1

 k

Initial condition: rs0d = k

Differential equation:
dr
dt

= s180tdi + s180t - 16t2dj

Initial condition: rs0d = 100j

Differential equation:
dr
dt

= - t i - t j - tk

Initial condition: rs0d = i + 2j + 3k

L

p/4

0
[sec t i + tan2 t j - t sin t k] dt

L

p>2
0

[cos t i - sin 2t j + sin2 t k] dt

L

ln 3

1
[tet i + et j + ln t k] dt

L

1

0
[tet2

 i + e-t j + k] dt

L

1

0
c 2

21 - t2
 i +

23

1 + t2 k d  dt
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20. Finding muzzle speed Find the muzzle speed of a gun whose
maximum range is 24.5 km.

21. Flight time and height A projectile is fired with an initial
speed of 500 m sec at an angle of elevation of 45°.

a. When and how far away will the projectile strike?

b. How high overhead will the projectile be when it is 5 km
downrange?

c. What is the greatest height reached by the projectile?

22. Throwing a baseball A baseball is thrown from the stands 32 ft
above the field at an angle of 30° up from the horizontal. When
and how far away will the ball strike the ground if its initial speed
is 32 ft sec?

23. Firing golf balls A spring gun at ground level fires a golf ball
at an angle of 45°. The ball lands 10 m away.

a. What was the ball’s initial speed?

b. For the same initial speed, find the two firing angles that
make the range 6 m.

24. Beaming electrons An electron in a TV tube is beamed hori-
zontally at a speed of toward the face of the tube
40 cm away. About how far will the electron drop before it hits?

25. Equal-range firing angles What two angles of elevation will
enable a projectile to reach a target 16 km downrange on the same
level as the gun if the projectile’s initial speed is 400 m sec?

26. Range and height versus speed

a. Show that doubling a projectile’s initial speed at a given
launch angle multiplies its range by 4.

b. By about what percentage should you increase the initial
speed to double the height and range?

27. Verify the results given in the text (following Example 4) for the
maximum height, flight time, and range for ideal projectile 
motion.

28. Colliding marbles The accompanying figure shows an experi-
ment with two marbles. Marble A was launched toward marble B
with launch angle and initial speed At the same instant,
marble B was released to fall from rest at units directly
above a spot R units downrange from A. The marbles were found
to collide regardless of the value of Was this mere coinci-
dence, or must this happen? Give reasons for your answer.

29. Firing from Derive the equations

(see Equation (7) in the text) by solving the following initial value
problem for a vector r in the plane.

 y = y0 + sy0 sin adt -

1
2

 gt2

 x = x0 + sy0 cos adt, 

sx0, y0d

B

A

R

1
2

�

v0

R tan �
gt2

y0 .

R tan a
y0 .a

>

5 * 106 m>sec

>

>
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30. Where trajectories crest For a projectile fired from the ground
at launch angle with initial speed consider as a variable
and as a fixed constant. For each we obtain
a parabolic trajectory as shown in the accompanying figure. Show
that the points in the plane that give the maximum heights of
these parabolic trajectories all lie on the ellipse

where 

31. Launching downhill An ideal projectile is launched straight
down an inclined plane as shown in the accompanying figure.

a. Show that the greatest downhill range is achieved when the
initial velocity vector bisects angle AOR.

b. If the projectile were fired uphill instead of down, what
launch angle would maximize its range? Give reasons for
your answer.

32. Elevated green A golf ball is hit with an initial speed of 
116 ft sec at an angle of elevation of 45° from the tee to a green
that is elevated 45 ft above the tee as shown in the diagram. 
Assuming that the pin, 369 ft downrange, does not get in the way,
where will the ball land in relation to the pin?

>

A

R

V
er

tic
al

O

Hill

v0

�

x

y

0

Ellipse

⎛
⎝

1
2

⎛
⎝

Parabolic
trajectory

R, ymax

x Ú 0.

x2
+ 4 ay -

y0
2

4g
b2

=

y0
4

4g2 ,

a, 0 6 a 6 p>2,y0

ay0 ,a

   
dr
dt

 s0d = sy0 cos adi + sy0 sin adj

 Initial conditions:   rs0d = x0 i + y0 j

 Differential equation: d2r
dt2 = -g j
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33. Volleyball A volleyball is hit when it is 4 ft above the ground
and 12 ft from a 6-ft-high net. It leaves the point of impact with
an initial velocity of 35 ft sec at an angle of 27° and slips by the
opposing team untouched.

a. Find a vector equation for the path of the volleyball.

b. How high does the volleyball go, and when does it reach
maximum height?

c. Find its range and flight time.

d. When is the volleyball 7 ft above the ground? How far
(ground distance) is the volleyball from where it will land?

e. Suppose that the net is raised to 8 ft. Does this change things?
Explain.

34. Shot put In Moscow in 1987, Natalya Lisouskaya set a women’s
world record by putting an 8 lb 13 oz shot 73 ft 10 in. Assuming
that she launched the shot at a 40° angle to the horizontal from
6.5 ft above the ground, what was the shot’s initial speed?

35. Model train The accompanying multiflash photograph shows a
model train engine moving at a constant speed on a straight horizon-
tal track. As the engine moved along, a marble was fired into the air
by a spring in the engine’s smokestack. The marble, which continued
to move with the same forward speed as the engine, rejoined the en-
gine 1 sec after it was fired. Measure the angle the marble’s path
made with the horizontal and use the information to find how high
the marble went and how fast the engine was moving.

36. Hitting a baseball under a wind gust A baseball is hit when it
is 2.5 ft above the ground. It leaves the bat with an initial velocity
of 145 ft sec at a launch angle of 23°. At the instant the ball is hit,
an instantaneous gust of wind blows against the ball, adding a
component of to the ball’s initial velocity. A 15-ft-
high fence lies 300 ft from home plate in the direction of the flight.

a. Find a vector equation for the path of the baseball.

b. How high does the baseball go, and when does it reach
maximum height?

-14i sft>secd

>

>

369 ft

Pin

Green

45 ft

NOT TO SCALE

Tee

45°
116 ft /sec
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c. Find the range and flight time of the baseball, assuming that
the ball is not caught.

d. When is the baseball 20 ft high? How far (ground distance) is
the baseball from home plate at that height?

e. Has the batter hit a home run? Explain.

Projectile Motion with Linear Drag
The main force affecting the motion of a projectile, other than gravity,
is air resistance. This slowing down force is drag force, and it acts in a
direction opposite to the velocity of the projectile (see accompanying
figure). For projectiles moving through the air at relatively low speeds,
however, the drag force is (very nearly) proportional to the speed (to
the first power) and so is called linear.

37. Linear drag Derive the equations

by solving the following initial value problem for a vector r in the
plane.

The drag coefficient k is a positive constant representing re-
sistance due to air density, and are the projectile’s initial
speed and launch angle, and g is the acceleration of gravity.

38. Hitting a baseball with linear drag Consider the baseball
problem in Example 5 when there is linear drag (see Exercise
37). Assume a drag coefficient but no gust of wind.

a. From Exercise 37, find a vector form for the path of the
baseball.

b. How high does the baseball go, and when does it reach
maximum height?

c. Find the range and flight time of the baseball.

d. When is the baseball 30 ft high? How far (ground distance) is
the baseball from home plate at that height?

e. A 10-ft-high outfield fence is 340 ft from home plate in the
direction of the flight of the baseball. The outfielder can jump
and catch any ball up to 11 ft off the ground to stop it from
going over the fence. Has the batter hit a home run?

k = 0.12 ,

ay0

 
dr
dt
`
t=0

= v0 = sy0 cos adi + sy0 sin adj

 Initial conditions:  rs0d = 0

 Differential equation: d2r
dt2 = -gj - kv = -gj - k 

dr
dt

 y =

y0

k
 s1 - e-k tdssin ad +

g

k2 s1 - k t - e-k td

 x =

y0

k
 s1 - e-k td cos a

y

x

Drag force

Velocity

Gravity
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Theory and Examples
39. Establish the following properties of integrable vector functions.

a. The Constant Scalar Multiple Rule:

The Rule for Negatives,

is obtained by taking 

b. The Sum and Difference Rules:

c. The Constant Vector Multiple Rules:

and

40. Products of scalar and vector functions Suppose that the
scalar function u(t) and the vector function r(t) are both defined
for 

a. Show that ur is continuous on [a, b] if u and r are continuous
on [a, b].

b. If u and r are both differentiable on [a, b], show that ur is dif-
ferentiable on [a, b] and that

41. Antiderivatives of vector functions

a. Use Corollary 2 of the Mean Value Theorem for scalar func-
tions to show that if two vector functions and have
identical derivatives on an interval I, then the functions differ
by a constant vector value throughout I.

b. Use the result in part (a) to show that if R(t) is any anti-
derivative of r(t) on I, then any other antiderivative of r on I
equals for some constant vector C.

42. The Fundamental Theorem of Calculus The Fundamental
Theorem of Calculus for scalar functions of a real variable holds
for vector functions of a real variable as well. Prove this by using
the theorem for scalar functions to show first that if a vector func-
tion r(t) is continuous for then

at every point t of (a, b). Then use the conclusion in part (b) of
Exercise 41 to show that if R is any antiderivative of r on [a, b]
then

L

b

a
rstd dt = Rsbd - Rsad .

d
dt

 
L

t

a
rstd dt = rstd

a … t … b ,

Rstd + C

R2stdR1std

d
dt

 surd = u 
dr
dt

+ r 
du
dt

.

a … t … b .

L

b

a
C * rstd dt = C *

L

b

a
rstd dt sany constant vector Cd

L

b

a
C # rstd dt = C #

L

b

a
rstd dt sany constant vector Cd

L

b

a
sr1std ; r2stdd dt =

L

b

a
r1std dt ;

L

b

a
r2std dt

k = -1.

L

b

a
s -rstdd dt = -

L

b

a
rstd dt ,

L

b

a
krstd dt = k

L

b

a
r std dt sany scalar kd
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43. Hitting a baseball with linear drag under a wind gust Con-
sider again the baseball problem in Example 5. This time assume
a drag coefficient of 0.08 and an instantaneous gust of wind that
adds a component of to the initial velocity at the
instant the baseball is hit.

a. Find a vector equation for the path of the baseball.

b. How high does the baseball go, and when does it reach
maximum height?

c. Find the range and flight time of the baseball.

d. When is the baseball 35 ft high? How far (ground distance) is
the baseball from home plate at that height?

-17.6i sft>secd
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e. A 20-ft-high outfield fence is 380 ft from home plate in the
direction of the flight of the baseball. Has the batter hit a
home run? If “yes,” what change in the horizontal component
of the ball’s initial velocity would have kept the ball in the
park? If “no,” what change would have allowed it to be a
home run?

44. Height versus time Show that a projectile attains three-quarters
of its maximum height in half the time it takes to reach the maxi-
mum height.

13.3 Arc Length in Space

In this and the next two sections, we study the mathematical features of a curve’s shape
that describe the sharpness of its turning and its twisting.

Arc Length Along a Space Curve

One of the features of smooth space and plane curves is that they have a measurable
length. This enables us to locate points along these curves by giving their directed distance
s along the curve from some base point, the way we locate points on coordinate axes by
giving their directed distance from the origin (Figure 13.12). This is what we did for plane
curves in Section 11.2.

To measure distance along a smooth curve in space, we add a z-term to the formula
we use for curves in the plane.

Base point

s–2

–1 20
1

3
4

FIGURE 13.12 Smooth curves can be
scaled like number lines, the coordinate of
each point being its directed distance along
the curve from a preselected base point.

DEFINITION The length of a smooth curve 
that is traced exactly once as t increases from to , is

(1)L =

L

b

a
 C adx

dt
b2

+ ady
dt
b2

+ adz
dt
b2

 dt .

t = bt = aa … t … b ,
rstd = xstdi + ystdj + zstdk,

Just as for plane curves, we can calculate the length of a curve in space from any con-
venient parametrization that meets the stated conditions. We omit the proof.

The square root in Equation (1) is the length of a velocity vector dr dt. This en-
ables us to write the formula for length a shorter way.

>ƒ v ƒ ,

Arc Length Formula

(2)L =

L

b

a
ƒ v ƒ dt

EXAMPLE 1 A glider is soaring upward along the helix 
How long is the glider’s path from to ?t = 2pt = 0

ssin tdj + tk.rstd = scos tdi +
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Solution The path segment during this time corresponds to one full turn of the helix
(Figure 13.13). The length of this portion of the curve is

This is times the circumference of the circle in the xy-plane over which the helix
stands.

If we choose a base point on a smooth curve C parametrized by t, each value of t
determines a point on C and a “directed distance”

measured along C from the base point (Figure 13.14). This is the arc length function we
defined in Section 11.2 for plane curves that have no z-component. If s(t) is the
distance along the curve from to P(t). If s(t) is the negative of the distance.
Each value of s determines a point on C and this parametrizes C with respect to s. We call
s an arc length parameter for the curve. The parameter’s value increases in the direction
of increasing t. We will see that the arc length parameter is particularly effective for inves-
tigating the turning and twisting nature of a space curve.

t 6 t0 ,Pst0d
t 7 t0 ,

sstd =

L

t

t0
 ƒ vstd ƒ dt ,

Pstd = sxstd, ystd, zstdd
Pst0d

22

 =

L

2p

0
22 dt = 2p22 units of length.

 L =

L

b

a
ƒ v ƒ dt =

L

2p

0
2s -sin td2

+ scos td2
+ s1d2 dt
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y

z

0

x

(1, 0, 0)

r
P

t � 0

t � �
2

t � 2�
t � �

2�

FIGURE 13.13 The helix in Example 1,
.ssin tdj + tkscos tdi +rstd =

x

0

y

r

z

Base
point

P(t0)

s(t)

P(t)

FIGURE 13.14 The directed distance
along the curve from to any point
P(t) is 

sstd =

L

t

t0
 ƒ vstd ƒ dt .

Pst0d

Arc Length Parameter with Base Point 

(3)sstd =

L

t

t0

2[x¿std]2
+ [y¿std]2

+ [z¿std]2 dt =

L

t

t0
 ƒ vstd ƒ dt

Pst0d

We use the Greek letter (“tau”) as the variable of integration in Equation (3) because
the letter t is already in use as the upper limit.

If a curve r(t) is already given in terms of some parameter t and s(t) is the arc length
function given by Equation (3), then we may be able to solve for t as a function of

Then the curve can be reparametrized in terms of s by substituting for
The new parametrization identifies a point on the curve with its directed

distance along the curve from the base point.

EXAMPLE 2 This is an example for which we can actually find the arc length parame-
trization of a curve. If the arc length parameter along the helix

from to t is

Eq. (3)

Value from Example 1

Solving this equation for t gives Substituting into the position vector r gives
the following arc length parametrization for the helix:

rstssdd = ¢cos 
s

22
≤ i + ¢sin 

s

22
≤j +

s

22
 k.

t = s>22.

 = 22 t .

 =

L

t

0
22 dt

 sstd =

L

t

t0
 ƒ vstd ƒ dt

t0

rstd = scos tdi + ssin tdj + tk

t0 = 0,

t: r = rstssdd .
s: t = tssd .

t
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Unlike Example 2, the arc length parametrization is generally difficult to find analyti-
cally for a curve already given in terms of some other parameter t. Fortunately, however,
we rarely need an exact formula for s(t) or its inverse t(s).

Speed on a Smooth Curve

Since the derivatives beneath the radical in Equation (3) are continuous (the curve is
smooth), the Fundamental Theorem of Calculus tells us that s is a differentiable function
of t with derivative

(4)

Equation (4) says that the speed with which a particle moves along its path is the magni-
tude of v, consistent with what we know.

Although the base point plays a role in defining s in Equation (3), it plays no
role in Equation (4). The rate at which a moving particle covers distance along its path is
independent of how far away it is from the base point.

Notice that since, by definition, is never zero for a smooth curve. We
see once again that s is an increasing function of t.

Unit Tangent Vector

We already know the velocity vector is tangent to the curve and that the
vector

is therefore a unit vector tangent to the (smooth) curve, called the unit tangent vector
(Figure 13.15). The unit tangent vector T is a differentiable function of t whenever v is a
differentiable function of t. As we will see in Section 13.5, T is one of three unit vectors in
a traveling reference frame that is used to describe the motion of objects traveling in three
dimensions.

EXAMPLE 3 Find the unit tangent vector of the curve

representing the path of the glider in Example 3, Section 13.2.

Solution In that example, we found

and

Thus,

For the counterclockwise motion

around the unit circle, we see that

is already a unit vector, so (Figure 13.16).T = v

v = s -sin tdi + scos tdj

rstd = scos tdi + ssin tdj

T =
v
ƒ v ƒ

= -
3 sin t

29 + 4t2
 i +

3 cos t

29 + 4t2
 j +

2t

29 + 4t2
 k.

ƒ v ƒ = 29 + 4t2 .

v =
dr
dt

= - s3 sin tdi + s3 cos tdj + 2tk

rstd = s3 cos tdi + s3 sin tdj + t2k

T =
v
ƒ v ƒ

rstdv = dr>dt

ƒ v ƒds>dt 7 0

Pst0d

ds
dt

= ƒ vstd ƒ .
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HISTORICAL BIOGRAPHY

Josiah Willard Gibbs
(1839–1903)

y

z

0

x

r

s

v

P(t0)

T 5 v
_v_

FIGURE 13.15 We find the unit tangent
vector T by dividing v by ƒ v ƒ .

x

y

0
t

r

T 5 v

P(x, y)

(1, 0)

x2 1 y2 5 1

FIGURE 13.16 Counterclockwise motion
around the unit circle.
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The velocity vector is the change in the position vector r with respect to time t, but
how does the position vector change with respect to arc length? More precisely, what is the
derivative Since for the curves we are considering, s is one-to-one and
has an inverse that gives t as a differentiable function of s (Section 3.8). The derivative of
the inverse is

This makes r a differentiable function of s whose derivative can be calculated with the
Chain Rule to be

(5)

This equation says that dr ds is the unit tangent vector in the direction of the velocity vec-
tor v (Figure 13.15).

>
dr
ds

=
dr
dt

 
dt
ds

= v 
1
ƒ v ƒ

=
v

ƒ v ƒ

= T.

dt
ds

=
1

ds>dt
=

1
ƒ v ƒ

.

ds>dt 7 0dr>ds?
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Exercises 13.3

Finding Tangent Vectors and Lengths
In Exercises 1–8, find the curve’s unit tangent vector. Also, find the
length of the indicated portion of the curve.

1.

2.

3.

4.

5.

6.

7.

8.

9. Find the point on the curve

at a distance units along the curve from the point in
the direction of increasing arc length.

10. Find the point on the curve

at a distance units along the curve from the point in
the direction opposite to the direction of increasing arc length.

Arc Length Parameter
In Exercises 11–14, find the arc length parameter along the curve
from the point where by evaluating the integral

from Equation (3). Then find the length of the indicated portion of the
curve.

11.

12.

13.

14. rstd = s1 + 2tdi + s1 + 3tdj + s6 - 6tdk, -1 … t … 0

rstd = set cos tdi + set sin tdj + et k, - ln 4 … t … 0

rstd = scos t + t sin tdi + ssin t - t cos tdj, p>2 … t … p

rstd = s4 cos tdi + s4 sin tdj + 3tk, 0 … t … p>2

s =

L

t

0
 ƒ vstd ƒ dt

t = 0

s0, -12, 0d13p

rstd = s12 sin tdi - s12 cos tdj + 5tk

s0, 5, 0d26p

rstd = s5 sin tdi + s5 cos tdj + 12tk

rstd = st sin t + cos tdi + st cos t - sin tdj, 22 … t … 2

rstd = st cos tdi + st sin tdj + A222>3 B t3>2 k, 0 … t … p

rstd = 6t3 i - 2t3 j - 3t3 k, 1 … t … 2

rstd = scos3 t dj + ssin3 t dk, 0 … t … p>2
rstd = s2 + tdi - st + 1dj + tk, 0 … t … 3

rstd = t i + s2>3dt3>2 k, 0 … t … 8

rstd = s6 sin 2tdi + s6 cos 2tdj + 5tk, 0 … t … p

rstd = s2 cos tdi + s2 sin tdj + 25tk, 0 … t … p

Theory and Examples
15. Arc length Find the length of the curve

from (0, 0, 1) to 

16. Length of helix The length of the turn of the helix in
Example 1 is also the length of the diagonal of a square units
on a side. Show how to obtain this square by cutting away and
flattening a portion of the cylinder around which the helix winds.

17. Ellipse

a. Show that the curve 
is an ellipse by showing that it is the intersection

of a right circular cylinder and a plane. Find equations for the
cylinder and plane.

b. Sketch the ellipse on the cylinder. Add to your sketch the unit
tangent vectors at and 

c. Show that the acceleration vector always lies parallel to the
plane (orthogonal to a vector normal to the plane). Thus, if
you draw the acceleration as a vector attached to the ellipse, it
will lie in the plane of the ellipse. Add the acceleration 
vectors for and to your sketch.

d. Write an integral for the length of the ellipse. Do not try to
evaluate the integral; it is nonelementary.

e. Numerical integrator Estimate the length of the ellipse to
two decimal places.

18. Length is independent of parametrization To illustrate that
the length of a smooth space curve does not depend on the param-
etrization you use to compute it, calculate the length of one turn
of the helix in Example 1 with the following parametrizations.

a.

b.

c. rstd = scos tdi - ssin td j - tk, -2p … t … 0

rstd = [cos st>2d]i + [sin st>2d] j + st>2dk, 0 … t … 4p

rstd = scos 4tdi + ssin 4tdj + 4tk, 0 … t … p>2

3p>2t = 0, p>2, p ,

3p>2.t = 0, p>2, p ,

 0 … t … 2p ,
rstd = scos tdi + ssin tdj + s1 - cos tdk,

2p
2p22

A22, 22, 0 B .
rstd = A22t B i + A22t B j + s1 - t2dk

T
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19. The involute of a circle If a string wound around a fixed circle
is unwound while held taut in the plane of the circle, its end P
traces an involute of the circle. In the accompanying figure, the
circle in question is the circle and the tracing point
starts at (1, 0). The unwound portion of the string is tangent to the
circle at Q, and t is the radian measure of the angle from the posi-
tive x-axis to segment OQ. Derive the parametric equations

of the point P(x, y) for the involute.

x

y

Q

t

O 1 (1, 0)

String

P(x, y)

x = cos t + t sin t, y = sin t - t cos t, t 7 0

x2
+ y2

= 1
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20. (Continuation of Exercise 19. ) Find the unit tangent vector to the
involute of the circle at the point P(x, y).

21. Distance along a line Show that if u is a unit vector, then the
arc length parameter along the line from the
point where , is t itself.

22. Use Simpson’s Rule with to approximate the length of arc
of from the origin to the point (2, 4, 8).r(t) = t i + t2j + t3k

n = 10

t = 0P0sx0, y0, z0d
rstd = P0 + t u

13.4 Curvature and Normal Vectors of a Curve

In this section we study how a curve turns or bends. We look first at curves in the coordi-
nate plane, and then at curves in space.

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, turns as the curve
bends. Since T is a unit vector, its length remains constant and only its direction changes
as the particle moves along the curve. The rate at which T turns per unit of length along
the curve is called the curvature (Figure 13.17). The traditional symbol for the curvature
function is the Greek letter (“kappa”).k

T = dr>ds

DEFINITION If T is the unit vector of a smooth curve, the curvature function
of the curve is

k = ` dT
ds
` .

x

y

0

s

P T

T

T

P0

FIGURE 13.17 As P moves along the
curve in the direction of increasing arc
length, the unit tangent vector turns. The
value of at P is called the
curvature of the curve at P.

ƒ dT>ds ƒ

If is large, T turns sharply as the particle passes through P, and the curvature
at P is large. If is close to zero, T turns more slowly and the curvature at P is
smaller.

ƒ dT>ds ƒ

ƒ dT>ds ƒ
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If a smooth curve r(t) is already given in terms of some parameter t other than the arc
length parameter s, we can calculate the curvature as

Chain Rule

ds
dt

= ƒ v ƒ =
1
ƒ v ƒ

 ` dT
dt
` .

 =
1

ƒ ds>dt ƒ

 ` dT
dt
`

 k = ` dT
ds
` = ` dT

dt
 
dt
ds
`
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Formula for Calculating Curvature
If r(t) is a smooth curve, then the curvature is

(1)

where is the unit tangent vector.T = v> ƒ v ƒ

k =
1
ƒ v ƒ

 ` dT
dt
` ,

Testing the definition, we see in Examples 1 and 2 below that the curvature is constant
for straight lines and circles.

EXAMPLE 1 A straight line is parametrized by for constant vectors C
and v. Thus, and the unit tangent vector is a constant vector that 
always points in the same direction and has derivative 0 (Figure 13.18). It follows that, for
any value of the parameter t, the curvature of the straight line is

EXAMPLE 2 Here we find the curvature of a circle. We begin with the parametrization

of a circle of radius a. Then,

From this we find

Hence, for any value of the parameter t, the curvature of the circle is

Although the formula for calculating in Equation (1) is also valid for space curves, in
the next section we find a computational formula that is usually more convenient to apply.

k

k =
1
ƒ v ƒ

 ` dT
dt
` =

1
a s1d =

1
a =

1
radius

.

 ̀
dT
dt
` = 2cos2 t + sin2 t = 1.

 
dT
dt

= - scos tdi - ssin tdj

 T =
v

ƒ v ƒ

= - ssin tdi + scos tdj

 ƒ v ƒ = 2s -a sin td2
+ sa cos td2

= 2a2
= ƒ a ƒ = a .

 v =
dr
dt

= - sa sin tdi + sa cos tdj

rstd = sa cos tdi + sa sin tdj

k =
1
ƒ v ƒ

 ` dT
dt
` = 1

ƒ v ƒ

 ƒ 0 ƒ = 0. 

T = v> ƒ v ƒrœstd = v,
rstd = C + tv

T

FIGURE 13.18 Along a straight line, T
always points in the same direction. The
curvature, is zero (Example 1).ƒ dT>ds ƒ ,

ƒ a ƒ = a .

Since a 7 0,
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Among the vectors orthogonal to the unit tangent vector T is one of particular signifi-
cance because it points in the direction in which the curve is turning. Since T has constant
length (namely, 1), the derivative dT ds is orthogonal to T (Equation 4, Section 13.1).
Therefore, if we divide dT ds by its length we obtain a unit vector N orthogonal to T
(Figure 13.19).

k ,> >

748 Chapter 13: Vector-Valued Functions and Motion in Space

T

s

T

N 5 1
κ

dT
ds

N 5 1
κ

dT
ds

P0

P1
P2

FIGURE 13.19 The vector dT ds,
normal to the curve, always points in the
direction in which T is turning. The unit
normal vector N is the direction of dT ds.>

>

DEFINITION At a point where the principal unit normal vector for
a smooth curve in the plane is

N =
1
k 

dT
ds

.

k Z 0,

The vector dT ds points in the direction in which T turns as the curve bends. Therefore,
if we face in the direction of increasing arc length, the vector dT ds points toward the right if
T turns clockwise and toward the left if T turns counterclockwise. In other words, the princi-
pal normal vector N will point toward the concave side of the curve (Figure 13.19).

If a smooth curve r(t) is already given in terms of some parameter t other than the arc
length parameter s, we can use the Chain Rule to calculate N directly:

This formula enables us to find N without having to find and s first.k

dt
ds

=

1
ds>dt

7 0 cancels. =

dT>dt

ƒ dT>dt ƒ

.

 =

sdT>dtdsdt>dsd
ƒ dT>dt ƒ ƒ dt>ds ƒ

 N =

dT>ds

ƒ dT>ds ƒ

>>

Formula for Calculating N
If r(t) is a smooth curve, then the principal unit normal is

(2)

where is the unit tangent vector.T = v> ƒ v ƒ

N =

dT>dt

ƒ dT>dt ƒ

,

EXAMPLE 3 Find T and N for the circular motion

Solution We first find T:

From this we find

 ̀
dT
dt
` = 24 cos2 2t + 4 sin2 2t = 2

 
dT
dt

= - s2 cos 2tdi - s2 sin 2tdj

 T =
v

ƒ v ƒ

= - ssin 2tdi + scos 2tdj.

 ƒ v ƒ = 24 sin2 2t + 4 cos2 2t = 2

 v = - s2 sin 2tdi + s2 cos 2tdj

rstd = scos 2tdi + ssin 2tdj.
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and

Eq. (2)

Notice that verifying that N is orthogonal to T. Notice too, that for the circular
motion here, N points from r(t) towards the circle’s center at the origin.

Circle of Curvature for Plane Curves

The circle of curvature or osculating circle at a point P on a plane curve where is
the circle in the plane of the curve that

1. is tangent to the curve at P (has the same tangent line the curve has)

2. has the same curvature the curve has at P

3. lies toward the concave or inner side of the curve (as in Figure 13.20).

The radius of curvature of the curve at P is the radius of the circle of curvature,
which, according to Example 2, is

To find we find and take the reciprocal. The center of curvature of the curve at P is
the center of the circle of curvature.

EXAMPLE 4 Find and graph the osculating circle of the parabola at the origin.

Solution We parametrize the parabola using the parameter (Section 11.1, 
Example 5)

First we find the curvature of the parabola at the origin, using Equation (1):

so that

From this we find

At the origin, so the curvature is

Eq. (1)

 = s1d202
+ 22

= 2.

 =
1

21
 ƒ 0i + 2j ƒ

 ks0d =
1

ƒ vs0d ƒ

 ` dT
dt

 s0d `
t = 0,

dT
dt

= -4ts1 + 4t2d-3>2 i + [2s1 + 4t2d-1>2
- 8t2s1 + 4t2d-3>2] j.

T =
v

ƒ v ƒ

= s1 + 4t2d-1>2 i + 2ts1 + 4t2d-1>2 j.

 ƒ v ƒ = 21 + 4t 2

 v =
dr
dt

= i + 2t j

rstd = t i + t2j.

t = x

y = x2

kr ,

Radius of curvature = r =
1
k .

k Z 0

T # N = 0,

 = - scos 2tdi - ssin 2tdj.

 N =

dT>dt

ƒ dT>dt ƒ
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Curve

N
T

P(x, y)

Center of
curvature

Radius of
curvature

Circle of
curvature

FIGURE 13.20 The osculating circle at
P(x, y) lies toward the inner side of the
curve.
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Therefore, the radius of curvature is . At the origin we have and 
so Thus the center of the circle is . The equation of the osculating circle is
therefore

.

You can see from Figure 13.21 that the osculating circle is a better approximation to the
parabola at the origin than is the tangent line approximation  

Curvature and Normal Vectors for Space Curves

If a smooth curve in space is specified by the position vector r(t) as a function of some
parameter t, and if s is the arc length parameter of the curve, then the unit tangent vector

The curvature in space is then defined to be

(3)

just as for plane curves. The vector dT ds is orthogonal to T, and we define the principal
unit normal to be

(4)

EXAMPLE 5 Find the curvature for the helix (Figure 13.22)

Solution We calculate T from the velocity vector v:

Then using Equation (3),

From this equation, we see that increasing b for a fixed a decreases the curvature. De-
creasing a for a fixed b eventually decreases the curvature as well. 

If the helix reduces to a circle of radius a and its curvature reduces to 1 a, as it
should. If the helix becomes the z-axis, and its curvature reduces to 0, again as it
should.

a = 0,
>b = 0,

 =
a

a2
+ b2 2scos td2

+ ssin td2
=

a
a2

+ b2 .

 =
a

a2
+ b2 ƒ - scos tdi - ssin tdj ƒ

 =
1

2a2
+ b2

 ` 1

2a2
+ b2

 [- sa cos tdi - sa sin tdj] `
 k =

1
ƒ v ƒ

 ` dT
dt
`

 T =
v
ƒ v ƒ

=
1

2a2
+ b2

 [- sa sin tdi + sa cos tdj + bk] .

 ƒ v ƒ = 2a2 sin2 t + a2 cos2 t + b2
= 2a2

+ b2

 v = - sa sin tdi + sa cos tdj + bk

rstd = sa cos tdi + sa sin tdj + btk, a, b Ú 0, a2
+ b2

Z 0.

N =
1
k 

dT
ds

=

dT>dt

ƒ dT>dt ƒ

.

>
k = ` dT

ds
` =

1
ƒ v ƒ

 ` dT
dt
`

T is dr>ds = v> ƒ v ƒ .

y = 0.

sx - 0d2
+ ay -

1
2
b2

= a1
2
b2

(0, 1>2)N = j.
T = i,t = 01>k = 1>2
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x

y

0 1

Osculating
circle

1
2

y � x2

FIGURE 13.21 The osculating circle for
the parabola at the origin 
(Example 4).

y = x2

y

z

0

x

(a, 0, 0)

r
P

t � 0

t � �
2

t � 2�
t � �

2�b

x2 � y2 � a2

FIGURE 13.22 The helix 

drawn with a and b positive and 
(Example 5).

t Ú 0

rstd = sa cos tdi + sa sin tdj + btk,
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EXAMPLE 6 Find N for the helix in Example 5 and describe how the vector is pointing.

Solution We have

Example 5

Eq. (4)

Thus, N is parallel to the xy-plane and always points toward the z-axis.

 = - scos tdi - ssin tdj.

 = -

2a2
+ b2

a  #  
1

2a2
+ b2

 [sa cos tdi + sa sin tdj]

 N =

dT>dt

ƒ dT>dt ƒ

 ̀
dT
dt
` =

1

2a2
+ b2

 2a2 cos2 t + a2 sin2 t =
a

2a2
+ b2

 
dT
dt

= -
1

2a2
+ b2

 [sa cos tdi + sa sin tdj]
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Exercises 13.4

Plane Curves
Find T, N, and for the plane curves in Exercises 1–4.

1.

2.

3.

4.

5. A formula for the curvature of the graph of a function in the
xy-plane

a. The graph in the xy-plane automatically has the
parametrization and the vector formula

Use this formula to show that if ƒ is a
twice-differentiable function of x, then

b. Use the formula for in part (a) to find the curvature of
Compare your answer

with the answer in Exercise 1.

c. Show that the curvature is zero at a point of inflection.

6. A formula for the curvature of a parametrized plane curve

a. Show that the curvature of a smooth curve 
defined by twice-differentiable functions and

is given by the formula

The dots in the formula denote differentiation with respect to t,
one derivative for each dot. Apply the formula to find the curva-
tures of the following curves.

b.

c. rstd = [tan-1 ssinh td]i + sln cosh tdj.

rstd = t i + sln sin tdj, 0 6 t 6 p

k =

ƒ x 
#
y
$

- y 
#
x
$

ƒ

sx
# 2

+ y
# 2d3>2 .

y = g std
x = ƒstdg stdj

rstd = ƒstdi +

y = ln scos xd, -p>2 6 x 6 p>2.
k

ksxd =

ƒ ƒ–sxd ƒ

C1 + sƒ¿sxdd2 D3>2 .

rsxd = x i + ƒsxdj.
x = x, y = ƒsxd ,

y = ƒsxd

rstd = scos t + t sin tdi + ssin t - t cos tdj, t 7 0

rstd = s2t + 3di + s5 - t2dj

rstd = sln sec tdi + t j, -p>2 6 t 6 p>2
rstd = t i + sln cos tdj, -p>2 6 t 6 p>2

k

7. Normals to plane curves

a. Show that and 
are both normal to the curve at the

point (ƒ(t), g(t)).

To obtain N for a particular plane curve, we can choose the one of
n or from part (a) that points toward the concave side of the
curve, and make it into a unit vector. (See Figure 13.19.) Apply
this method to find N for the following curves.

b.

c.

8. (Continuation of Exercise 7. )

a. Use the method of Exercise 7 to find N for the curve 
when when 

b. Calculate N for directly from T using Equation (4) for
the curve in part (a). Does N exist at Graph the curve
and explain what is happening to N as t passes from negative
to positive values.

Space Curves
Find T, N, and for the space curves in Exercises 9–16.

9.

10.

11.

12.

13.

14.

15.

16.

More on Curvature
17. Show that the parabola has its largest curvature

at its vertex and has no minimum curvature. (Note: Since the cur-
vature of a curve remains the same if the curve is translated or ro-
tated, this result is true for any parabola.)

y = ax2, a Z 0,

rstd = scosh tdi - ssinh tdj + tk

rstd = t i + sa cosh st>addj, a 7 0

rstd = scos3 tdi + ssin3 tdj, 0 6 t 6 p>2
rstd = st3>3di + st2>2dj, t 7 0

rstd = s6 sin 2tdi + s6 cos 2tdj + 5tk

rstd = set cos tdi + set sin tdj + 2k

rstd = scos t + t sin tdi + ssin t - t cos tdj + 3k

rstd = s3 sin tdi + s3 cos tdj + 4tk

k

t = 0?
t Z 0

t 7 0.t 6 0;ti + s1>3dt 3 j
rstd =

rstd = 24 - t2 i + t j, -2 … t … 2

rstd = t i + e2tj

-n

rstd = ƒstdi + g stdjƒ¿stdj
-nstd = g¿stdi -nstd = -g¿stdi + ƒ¿stdj
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18. Show that the ellipse has its
largest curvature on its major axis and its smallest curvature on its
minor axis. (As in Exercise 17, the same is true for any ellipse.)

19. Maximizing the curvature of a helix In Example 5, we found
the curvature of the helix 

to be What is the largest value 
can have for a given value of b? Give reasons for your answer.

20. Total curvature We find the total curvature of the portion of a
smooth curve that runs from to by integrating

from to If the curve has some other parameter, say t, then
the total curvature is

where and correspond to and Find the total curvatures of

a. The portion of the helix 

b. The parabola 

21. Find an equation for the circle of curvature of the curve
at the point (The curve parame-

trizes the graph of in the xy-plane.)

22. Find an equation for the circle of curvature of the curve 
at the point 

where 

The formula

derived in Exercise 5, expresses the curvature of a twice-
differentiable plane curve as a function of x. Find the curva-
ture function of each of the curves in Exercises 23–26. Then graph ƒ(x)
together with over the given interval. You will find some surprises.

23. 24.

25. 26. y = ex, -1 … x … 2y = sin x, 0 … x … 2p

y = x4>4, -2 … x … 2y = x2, -2 … x … 2

ksxd

y = ƒsxd
ksxd

ksxd =

ƒ ƒ–sxd ƒ

C1 + sƒ¿sxdd2 D3>2 ,

t = 1.
s0, -2d ,s2 ln tdi - [t + s1>td] j,  e-2

… t … e2 ,
rstd =

y = sin x
sp>2, 1d .rstd = t i + ssin tdj

y = x2, - q 6 x 6 q .

0 … t … 4p .
rstd = s3 cos tdi + s3 sin tdj + tk,

s1 .s0t1t0

K =

L

s1

s0

k ds =

L

t1

t0

k 
ds
dt

 dt =

L

t1

t0

 k ƒ v ƒ dt ,

s1 .s0k

s = s1 7 s0s = s0

kk = a>sa2
+ b2d .sa, b Ú 0d
rstd = sa cos tdi + sa sin tdj + btk

x = a cos t, y = b sin t, a 7 b 7 0,
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COMPUTER EXPLORATIONS
In Exercises 27–34 you will use a CAS to explore the osculating circle
at a point P on a plane curve where Use a CAS to perform the
following steps:

a. Plot the plane curve given in parametric or function form over
the specified interval to see what it looks like.

b. Calculate the curvature of the curve at the given value using
the appropriate formula from Exercise 5 or 6. Use the 
parametrization and if the curve is given as a
function 

c. Find the unit normal vector N at Notice that the signs of the
components of N depend on whether the unit tangent vector T is
turning clockwise or counterclockwise at (See Exercise 7.)

d. If is the vector from the origin to the center (a, b)
of the osculating circle, find the center C from the vector equation

The point on the curve is given by the position vector

e. Plot implicitly the equation of the
osculating circle. Then plot the curve and osculating circle 
together. You may need to experiment with the size of the 
viewing window, but be sure it is square.

27.

28.

29.

30.

31.

32.

33.

34. y = xs1 - xd2>5, -1 … x … 2, x0 = 1>2
y = x2

- x, -2 … x … 5, x0 = 1

rstd = se-t cos tdi + se-t sin tdj, 0 … t … 6p, t0 = p>4
t0 = 3p>2rstd = s2t - sin tdi + s2 - 2 cos tdj, 0 … t … 3p, 

rstd = st3
- 2t2

- tdi +

3t

21 + t2
 j, -2 … t … 5, t0 = 1

rstd = t2i + st3
- 3tdj, -4 … t … 4, t0 = 3>5

rstd = scos3 tdi + ssin3 tdj, 0 … t … 2p, t0 = p>4
rstd = s3 cos tdi + s5 sin tdj, 0 … t … 2p, t0 = p>4

sx - ad2
+ s y - bd2

= 1>k2

rst0d .
Psx0 , y0d

C = rst0d +

1
kst0d

 Nst0d .

C = a i + b j

t = t0 .

t0 .

y = ƒsxd .
y = ƒstdx = t

t0k

k Z 0.

T

13.5 Tangential and Normal Components of Acceleration

If you are traveling along a space curve, the Cartesian i, j, and k coordinate system for rep-
resenting the vectors describing your motion is not truly relevant to you. What is meaning-
ful instead are the vectors representative of your forward direction (the unit tangent vector
T), the direction in which your path is turning (the unit normal vector N), and the tendency
of your motion to “twist” out of the plane created by these vectors in the direction perpen-
dicular to this plane (defined by the unit binormal vector ). Expressing the ac-
celeration vector along the curve as a linear combination of this TNB frame of mutually
orthogonal unit vectors traveling with the motion (Figure 13.23) is particularly revealing
of the nature of the path and motion along it.

The TNB Frame

The binormal vector of a curve in space is a unit vector orthogonal to both T
and N (Figure 13.24). Together T, N, and B define a moving right-handed vector frame that
plays a significant role in calculating the paths of particles moving through space. It is called
the Frenet (“fre-nay”) frame (after Jean-Frédéric Frenet, 1816–1900), or the TNB frame.

B = T * N,

B = T * N

y

z

x

N 5 1
κ

dT
ds

P0

s

P

B 5 T × N 

T 5 dr
dsr

FIGURE 13.23 The TNB frame of
mutually orthogonal unit vectors traveling
along a curve in space.
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Tangential and Normal Components of Acceleration

When an object is accelerated by gravity, brakes, or a combination of rocket motors, we
usually want to know how much of the acceleration acts in the direction of motion, in the
tangential direction T. We can calculate this using the Chain Rule to rewrite v as

Then we differentiate both ends of this string of equalities to get

 =
d2s
dt 2 T + k ads

dt
b2

N.

 =
d2s
dt2  T +

ds
dt

 adT
ds

 
ds
dt
b =

d2s
dt2  T +

ds
dt

 akN 
ds
dt
b

 a =
dv
dt

=
d
dt

 aT 
ds
dt
b =

d2s
dt2  T +

ds
dt

 
dT
dt

v =
dr
dt

=
dr
ds

 
ds
dt

= T 
ds
dt

 .
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T

P

B

N

FIGURE 13.24 The vectors T, N, and B
(in that order) make a right-handed frame
of mutually orthogonal unit vectors in
space.

DEFINITION If the acceleration vector is written as

(1)

then

(2)

are the tangential and normal scalar components of acceleration.

aT =
d2s
dt2 =

d
dt

 ƒ v ƒ and aN = k ads
dt
b2

= k ƒ v ƒ
2

a = aTT + aNN,

T

s

N

a

P0

aT 5 d2s
dt2

⎛
⎝

⎛
⎝
2

aN 5 κ ds
dt

FIGURE 13.25 The tangential and
normal components of acceleration. The
acceleration a always lies in the plane of T
and N, orthogonal to B.

Notice that the binormal vector B does not appear in Equation (1). No matter how the path
of the moving object we are watching may appear to twist and turn in space, the accelera-
tion a always lies in the plane oƒ T and N orthogonal to B. The equation also tells us ex-
actly how much of the acceleration takes place tangent to the motion and how
much takes place normal to the motion (Figure 13.25).

What information can we discover from Equations (2)? By definition, acceleration a
is the rate of change of velocity v, and in general, both the length and direction of v change
as an object moves along its path. The tangential component of acceleration measures
the rate of change of the length of v (that is, the change in the speed). The normal compo-
nent of acceleration measures the rate of change of the direction of v.

Notice that the normal scalar component of the acceleration is the curvature times the
square of the speed. This explains why you have to hold on when your car makes a sharp
(large ), high-speed (large ) turn. If you double the speed of your car, you will experi-
ence four times the normal component of acceleration for the same curvature.

If an object moves in a circle at a constant speed, is zero and all the accelera-
tion points along N toward the circle’s center. If the object is speeding up or slowing down,
a has a nonzero tangential component (Figure 13.26).

To calculate we usually use the formula which comes from
solving the equation for With this formula, we can find 
without having to calculate first.k

aNaN.ƒ a ƒ
2

= a # a = aT
2

+ aN
2

aN = 2ƒ a ƒ
2

- aT
2 ,aN,

d2s>dt2

ƒ v ƒk

aN

aT

[ksds>dtd2]
sd2s>dt2d

Formula for Calculating the Normal Component of Acceleration

(3)aN = 2ƒ a ƒ
2

- aT
2

P

C

T

a

d2s
dt2

k_v_2N 5        Nr
_v_2

FIGURE 13.26 The tangential and
normal components of the acceleration 
of an object that is speeding up as it moves
counterclockwise around a circle of 
radius r .

dT
ds

= kN
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EXAMPLE 1 Without finding T and N, write the acceleration of the motion

in the form (The path of the motion is the involute of the circle in Figure
13.27. See also Section 13.3, Exercise 19.)

Solution We use the first of Equations (2) to find 

Knowing we use Equation (3) to find 

We then use Equation (1) to find a:

Torsion

How does dB ds behave in relation to T, N, and B? From the rule for differentiating a
cross product, we have

Since N is the direction of dT ds, and

From this we see that dB ds is orthogonal to T since a cross product is orthogonal to its
factors.

Since dB ds is also orthogonal to B (the latter has constant length), it follows that
dB ds is orthogonal to the plane of B and T. In other words, dB ds is parallel to N, so
dB ds is a scalar multiple of N. In symbols,

The negative sign in this equation is traditional. The scalar is called the torsion along the
curve. Notice that

We use this equation for our next definition.

dB
ds

# N = -tN # N = -ts1d = -t.

t

dB
ds

= -tN.

> >> >
>

dB
ds

= 0 + T *
dN
ds

= T *
dN
ds

.

sdT>dsd * N = 0>

dB
ds

=

d(T * N)
ds

=
dT
ds

* N + T *
dN
ds

.

>

a = aTT + aNN = s1dT + stdN = T + tN.

 = 2st2
+ 1d - s1d = 2t2

= t .

 aN = 2ƒ a ƒ
2

- aT
2

 ƒ a ƒ
2

= t2
+ 1

 a = scos t - t sin tdi + ssin t + t cos tdj

aN:aT,

 aT =
d
dt

 ƒ v ƒ =
d
dt

 std = 1.

 ƒ v ƒ = 2t2 cos2 t + t2 sin2 t = 2t2
= ƒ t ƒ = t

 = st cos tdi + st sin tdj

 v =
dr
dt

= s -sin t + sin t + t cos tdi + scos t - cos t + t sin tdj

aT:

a = aTT + aNN.

rstd = scos t + t sin tdi + ssin t - t cos tdj, t 7 0
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Strin
g

O

y

t

(1, 0)
x

Q r

T
a

x2 1 y2 5 1 

P(x, y)tN

FIGURE 13.27 The tangential and
normal components of the acceleration of
the motion 

for If a string
wound around a fixed circle is unwound
while held taut in the plane of the circle, its
end P traces an involute of the circle
(Example 1).

t 7 0.ssin t - t cos tdj,
rstd = scos t + t sin tdi +

t 7 0

Eq. (2)

After some algebra

7001_ThomasET_ch13p725-764.qxd  10/30/09  7:27 AM  Page 754



Unlike the curvature which is never negative, the torsion may be positive, nega-
tive, or zero.

The three planes determined by T, N, and B are named and shown in Figure 13.28.
The curvature can be thought of as the rate at which the normal plane turns
as the point P moves along its path. Similarly, the torsion is the rate at
which the osculating plane turns about T as P moves along the curve. Torsion measures
how the curve twists.

Look at Figure 13.29. If P is a train climbing up a curved track, the rate at which the
headlight turns from side to side per unit distance is the curvature of the track. The rate at
which the engine tends to twist out of the plane formed by T and N is the torsion. In a
more advanced course it can be shown that a space curve is a helix if and only if it has con-
stant nonzero curvature and constant nonzero torsion.

t = - sdB>dsd # N
k = ƒ dT>ds ƒ

tk ,

13.5 Tangential and Normal Components of Acceleration 755

DEFINITION Let The torsion function of a smooth curve is

(4)t = -
dB
ds

# N.

B = T * N.

P

Binormal

Osculating plane
Unit tangent

N
T

B

Normal plane

Principal
normal

Rectifying
plane

FIGURE 13.28 The names of the three
planes determined by T, N, and B.

T
N

B

P

The torsion

at P is –(dB/ds)⋅N.

ds
dB

The curvature at P
is �(dT/ds)�.

s increases

s � 0

FIGURE 13.29 Every moving body travels with a TNB frame
that characterizes the geometry of its path of motion.

Computational Formulas

The most widely used formula for torsion, derived in more advanced texts, is

(5)

The dots in Equation (5) denote differentiation with respect to t, one derivative for
each dot. Thus, (“x dot”) means dx dt, (“x double dot”) means and (“x triple
dot”) means Similarly, and so on.

There is also an easy-to-use formula for curvature, as given in the following summary
table (see Exercise 21).

y
#

= dy>dt ,d3x>dt3 .
x%d2x>dt2 ,x

$>x
#

t =

3 x# y
#

z
#

x
$

y
$

z
$

x% y% z%
3

ƒ v * a ƒ
2  sif v * a Z 0d .
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Computation Formulas for Curves in Space

Unit tangent vector:

Principal unit normal vector:

Binormal vector:

Curvature:

Torsion: 

Tangential and normal scalar
components of acceleration:

 aN = k ƒ v ƒ
2

= 2ƒ a ƒ
2

- aT
2

 aT =
d
dt ƒ v ƒ

 a = aTT + aNN

 t = -
dB
ds

# N =

3 x# y
#

z
#

x
$

y
$

z
$

x% y% z%
3

ƒ v * a ƒ
2

 k = ` dT
ds
` =

ƒ v * a ƒ

ƒ v ƒ
3

 B = T * N

   N =

dT>dt

ƒ dT>dt ƒ

 T =
v

ƒ v ƒ

Exercises 13.5

Finding Tangential and Normal Components
In Exercises 1 and 2, write a in the form without
finding T and N.

1.

2.

In Exercises 3–6, write a in the form at the given
value of t without finding T and N.

3.

4.

5.

6.

Finding the TNB Frame
In Exercises 7 and 8, find r, T, N, and B at the given value of t. Then
find equations for the osculating, normal, and rectifying planes at that
value of t.

7.

8.

In Exercises 9–16 of Section 13.4, you found T, N, and . Now, in the
following Exercises 9–16, find B and for these space curves.

9.

10.

11. rstd = set cos tdi + set sin tdj + 2k

rstd = scos t + t sin tdi + ssin t - t cos tdj + 3k

rstd = s3 sin tdi + s3 cos tdj + 4tk

t

k

rstd = scos tdi + ssin tdj + tk, t = 0

rstd = scos tdi + ssin tdj - k, t = p>4

rstd = set cos tdi + set sin tdj + 22e t k, t = 0

rstd = t2i + st + s1>3dt3dj + st - s1>3dt3dk, t = 0

rstd = st cos tdi + st sin tdj + t2k, t = 0

rstd = st + 1di + 2tj + t2k, t = 1

a = aTT + aNN

rstd = s1 + 3tdi + st - 2dj - 3tk

rstd = sa cos tdi + sa sin tdj + btk

a = aTT + aNN
12.

13.

14.

15.

16.

Physical Applications
17. The speedometer on your car reads a steady 35 mph. Could you

be accelerating? Explain.

18. Can anything be said about the acceleration of a particle that is
moving at a constant speed? Give reasons for your answer.

19. Can anything be said about the speed of a particle whose acceler-
ation is always orthogonal to its velocity? Give reasons for your
answer.

20. An object of mass m travels along the parabola with a
constant speed of 10 units sec. What is the force on the object
due to its acceleration at (0, 0)? at Write your answers
in terms of i and j. (Remember Newton’s law, )

Theory and Examples
21. Vector formula for curvature For a smooth curve, use Equa-

tion (1) to derive the curvature formula

.k =

ƒ v * a ƒ

ƒ v ƒ
3

F = ma.
s21>2, 2d?

> y = x2

rstd = scosh tdi - ssinh tdj + tk

rstd = ti + sa cosh st>addj, a 7 0

rstd = scos3 tdi + ssin3 tdj, 0 6 t 6 p>2
rstd = st3>3di + st2>2dj, t 7 0

rstd = s6 sin 2tdi + s6 cos 2tdj + 5tk
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22. Show that a moving particle will move in a straight line if the nor-
mal component of its acceleration is zero.

23. A sometime shortcut to curvature If you already know 
and then the formula gives a convenient way to
find the curvature. Use it to find the curvature and radius of cur-
vature of the curve

(Take and from Example 1.)

24. Show that and are both zero for the line

25. What can be said about the torsion of a smooth plane curve
Give reasons for your answer.

26. The torsion of a helix Show that the torsion of the helix

is What is the largest value can have for a
given value of a? Give reasons for your answer.

27. Differentiable curves with zero torsion lie in planes That a
sufficiently differentiable curve with zero torsion lies in a plane is
a special case of the fact that a particle whose velocity remains
perpendicular to a fixed vector C moves in a plane perpendicular
to C. This, in turn, can be viewed as the following result.

Suppose is twice differentiable
for all t in an interval [a, b], that when and thatt = a ,r = 0

rstd = ƒstdi + gstdj + hstdk

tt = b>sa2
+ b2d .

rstd = sa cos tdi + sa sin tdj + btk, a, b Ú 0

rstd = ƒstdi + gstdj?

rstd = sx0 + Atdi + s y0 + Btdj + sz0 + Ctdk.

tk

ƒ v ƒaN

rstd = scos t + t sin tdi + ssin t - t cos tdj, t 7 0.

aN = k ƒ v ƒ
2

ƒ v ƒ ,
ƒ aN ƒ

13.6 Velocity and Acceleration in Polar Coordinates 757

for all t in [a, b]. Show that for all t in [a, b].
(Hint: Start with and apply the initial conditions in
reverse order.).

28. A formula that calculates from B and v If we start with the
definition and apply the Chain Rule to rewrite
dB ds as

we arrive at the formula

The advantage of this formula over Equation (5) is that it is easier
to derive and state. The disadvantage is that it can take a lot of
work to evaluate without a computer. Use the new formula to find
the torsion of the helix in Exercise 26.

COMPUTER EXPLORATIONS
Rounding the answers to four decimal places, use a CAS to find v, a,
speed, T, N, B, and the tangential and normal components of ac-
celeration for the curves in Exercises 29–32 at the given values of t.

29.

30.

31.

32. rstd = s3t - t2di + s3t2dj + s3t + t3dk, t = 1

rstd = st - sin tdi + s1 - cos tdj + 2- t k, t = -3p

rstd = set cos tdi + set sin tdj + e t k, t = ln 2

rstd = st cos tdi + st sin tdj + tk, t = 23

k, t ,

t = -

1
ƒ v ƒ

 adB
dt

# Nb .

dB
ds

=

dB
dt

 
dt
ds

=

dB
dt

 
1
ƒ v ƒ

,

> t = - sdB>dsd # N
T

a = d2r>dt2
hstd = 0v # k = 0

13.6 Velocity and Acceleration in Polar Coordinates

In this section we derive equations for velocity and acceleration in polar coordinates.
These equations are useful for calculating the paths of planets and satellites in space, and
we use them to examine Kepler’s three laws of planetary motion.

Motion in Polar and Cylindrical Coordinates

When a particle at moves along a curve in the polar coordinate plane, we express
its position, velocity, and acceleration in terms of the moving unit vectors

(1)

shown in Figure 13.30. The vector points along the position vector so The
vector orthogonal to points in the direction of increasing 

We find from Equations (1) that

When we differentiate and with respect to t to find how they change with time,
the Chain Rule gives

(2)u# r =

dur

du
 u
#

= u
#

uu, u# u =

duu
du

 u
#

= -u
#

ur .

uuur

 
duu
du

= - scos udi - ssin udj = -ur .

 
dur

du
= - ssin udi + scos udj = uu

u .ur ,uu ,
r = rur .OP

1
,ur

ur = scos udi + ssin udj, uu = - ssin udi + scos udj,

P(r, u)

O

y

x�

r

u�

ur
P(r, �)

FIGURE 13.30 The length of r is the
positive polar coordinate r of the point P.
Thus, which is is also r r.
Equations (1) express and in terms
of i and j.

uuur

>r> ƒ r ƒ ,ur ,
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Hence, we can express the velocity vector in terms of and as

See Figure 13.31. As in the previous section, we use Newton’s dot notation for time deriv-
atives to keep the formulas as simple as we can: means means and 
so on.

The acceleration is

When Equations (2) are used to evaluate and and the components are separated, the
equation for acceleration in terms of and becomes

To extend these equations of motion to space, we add to the right-hand side of the
equation Then, in these cylindrical coordinates, we have

(3)

The vectors and k make a right-handed frame (Figure 13.32) in which

Planets Move in Planes

Newton’s law of gravitation says that if r is the radius vector from the center of a sun of
mass M to the center of a planet of mass m, then the force F of the gravitational attraction
between the planet and sun is

(Figure 13.33). The number G is the universal gravitational constant. If we measure mass in
kilograms, force in newtons, and distance in meters, G is about 

Combining the gravitation law with Newton’s second law, for the force act-
ing on the planet gives

The planet is accelerated toward the sun’s center of mass at all times.
Since is a scalar multiple of r, we have

From this last equation,

It follows that

(4)

for some constant vector C.

r * r# = C

d
dt

 sr * r# d = r# * r# + r * r$ = r * r$ = 0.

r * r$ = 0.

r$

 r$ = -
GM

ƒ r ƒ
2 

r
ƒ r ƒ

.

 mr$ = -
GmM

ƒ r ƒ
2  

r
ƒ r ƒ

,

F = mr$,
6.6726 * 10-11 Nm2 kg-2 .

F = -
GmM

ƒ r ƒ
2  

r
ƒ r ƒ

ur * uu = k, uu * k = ur, k * ur = uu .

ur, uu ,

 a = sr
$

- ru
# 2dur + sru

$

+ 2r
#
u
#

duu + z
$k.

 v = r
# ur + ru

#

uu + z
# k

 r = rur + zk

r = rur .
zk

a = sr
$

- ru
# 2dur + sru

$

+ 2r
#
u
#

duu .

uuur

u# uu# r

a = v# = sr
$ur + r

# u# rd + sr
#
u
#

uu + ru
$

uu + ru
#

u# ud .

du>dt ,dur>dt, u
#

u# r

v = r# =
d
dt

 arurb = r
# ur + ru# r = r

# ur + ru
#

uu .

uuur
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.

.

O

y

x�

r

v

P(r, �)

rur

r�u�

FIGURE 13.31 In polar coordinates, the
velocity vector is

v = r
#  ur + ru

#

 uu.

x

y

z

k

zk

r � rur � zk

rur

ur

u�

�

FIGURE 13.32 Position vector and basic
unit vectors in cylindrical coordinates.
Notice that if z Z 0.ƒ r ƒ Z r

r
m

M

r
�r�

F � – GmM
�r�2

r
�r�

FIGURE 13.33 The force of gravity is
directed along the line joining the centers
of mass.

0
(')'*
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Equation (4) tells us that r and always lie in a plane perpendicular to C. Hence, the
planet moves in a fixed plane through the center of its sun (Figure 13.34). We next see how
Kepler’s laws describe the motion in a precise way.

Kepler’s First Law (Ellipse Law)

Kepler’s first law says that a planet’s path is an ellipse with the sun at one focus. The ec-
centricity of the ellipse is

(5)

and the polar equation (see Section 11.7, Equation (5)) is

(6)

Here is the speed when the planet is positioned at its minimum distance from the sun.
We omit the lengthy proof. The sun’s mass M is 

Kepler’s Second Law (Equal Area Law)

Kepler’s second law says that the radius vector from the sun to a planet (the vector r in our
model) sweeps out equal areas in equal times (Figure 13.35). To derive the law, we use
Equation (3) to evaluate the cross product from Equation (4):

(7)

Setting t equal to zero shows that

Substituting this value for C in Equation (7) gives

This is where the area comes in. The area differential in polar coordinates is

(Section 11.5). Accordingly, dA dt has the constant value

(8)

So is constant, giving Kepler’s second law.

Kepler’s Third Law (Time–Distance Law)

The time T it takes a planet to go around its sun once is the planet’s orbital period.
Kepler’s third law says that T and the orbit’s semimajor axis a are related by the equation

Since the right-hand side of this equation is constant within a given solar system, the ratio
of to is the same ƒor every planet in the system.a3T 2

T 2

a3 =
4p2

GM
.

dA>dt

dA
dt

=
1
2

 r2u
#

=
1
2

 r0 y0.

>
dA =

1
2

 r2 du

r0 y0k = r2u
#

k, or r2u
#

= r0 y0 .

C = [r sru
#

d]t = 0 k = r0 y0k.

 = r sru
#

dk.

k0
('')''*('')''*

 = rr
# sur * urd + r sru

#

dsur * uud

 = rur * sr
#ur + ru

#

uud

 C = r * r# = r * v

C = r * r#

1.99 * 1030 kg.
r0y0

r =

s1 + edr0

1 + e cos u
.

e =

r0y0
2

GM
- 1

r#
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.

.
r

r

Planet

Sun

C � r × r

FIGURE 13.34 A planet that obeys
Newton’s laws of gravitation and motion
travels in the plane through the sun’s center
of mass perpendicular to C = r * r# .

r

Planet

Sun

FIGURE 13.35 The line joining a planet
to its sun sweeps over equal areas in equal
times.

HISTORICAL BIOGRAPHY

Johannes Kepler
(1571–1630)

Eq. (3), z
#

= 0
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Here is a partial derivation of Kepler’s third law. The area enclosed by the planet’s
elliptical orbit is calculated as follows:

Eq. (8)

If b is the semiminor axis, the area of the ellipse is so

(9)

It remains only to express a and e in terms of and M. Equation (5) does this
for e. For a, we observe that setting equal to in Equation (6) gives

Hence, from Figure 13.36,

(10)

Squaring both sides of Equation (9) and substituting the results of Equations (5) and (10)
produces Kepler’s third law (Exercise 9).

2a = r0 + rmax =

2r0

1 - e
=

2r0GM

2GM - r0y0
2 .

rmax = r0 
1 + e
1 - e

.

pu

r0, y0, G ,

T =
2pab
r0 y0

=
2pa2

r0 y0
 21 - e2 .

pab,

 =
1
2

 Tr0 y0 .

 =

L

T

0

1
2

 r0 y0 dt

 Area =

L

T

0
 dA
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For any ellipse,

b = a21 - e 2

r

Planet

Sunrmax r0

FIGURE 13.36 The length of the major
axis of the ellipse is 2a = r0 + rmax.

Exercises 13.6

In Exercises 1–5, find the velocity and acceleration vectors in terms of
ur and 

1. and

2. and

3. and

4. and

5. and

6. Type of orbit For what values of in Equation (5) is the orbit
in Equation (6) a circle? An ellipse? A parabola? A hyperbola?

7. Circular orbits Show that a planet in a circular orbit moves
with a constant speed. (Hint: This is a consequence of one of 
Kepler’s laws.)

y0

u = 2tr = 2 cos 4t

u = 1 - e-tr = a(1 + sin t)

du
dt

= 2r = eau

du
dt

= 2tr = a sin 2u

du
dt

= 3r = a(1 - cos u)

uu.
8. Suppose that r is the position vector of a particle moving along a

plane curve and dA dt is the rate at which the vector sweeps out
area. Without introducing coordinates, and assuming the neces-
sary derivatives exist, give a geometric argument based on incre-
ments and limits for the validity of the equation

9. Kepler’s third law Complete the derivation of Kepler’s third
law (the part following Equation (10)).

10. Find the length of the major axis of Earth’s orbit using 
Kepler’s third law and the fact that Earth’s orbital period is
365.256 days.

dA
dt

=

1
2 ƒ r * r# ƒ .

>

Chapter 13 Questions to Guide Your Review

1. State the rules for differentiating and integrating vector functions.
Give examples.

2. How do you define and calculate the velocity, speed, direction of
motion, and acceleration of a body moving along a sufficiently
differentiable space curve? Give an example.

3. What is special about the derivatives of vector functions of con-
stant length? Give an example.

4. What are the vector and parametric equations for ideal projectile
motion? How do you find a projectile’s maximum height, flight
time, and range? Give examples.
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5. How do you define and calculate the length of a segment of a
smooth space curve? Give an example. What mathematical
assumptions are involved in the definition?

6. How do you measure distance along a smooth curve in space
from a preselected base point? Give an example.

7. What is a differentiable curve’s unit tangent vector? Give an
example.

8. Define curvature, circle of curvature (osculating circle), center of
curvature, and radius of curvature for twice-differentiable curves
in the plane. Give examples. What curves have zero curvature?
Constant curvature?

9. What is a plane curve’s principal normal vector? When is it
defined? Which way does it point? Give an example.

Chapter 13 Practice Exercises 761

10. How do you define N and for curves in space? How are these
quantities related? Give examples.

11. What is a curve’s binormal vector? Give an example. How is this
vector related to the curve’s torsion? Give an example.

12. What formulas are available for writing a moving body’s accelera-
tion as a sum of its tangential and normal components? Give an
example. Why might one want to write the acceleration this way?
What if the body moves at a constant speed? At a constant speed
around a circle?

13. State Kepler’s laws.

k

Chapter 13 Practice Exercises

Motion in the Plane
In Exercises 1 and 2, graph the curves and sketch their velocity and
acceleration vectors at the given values of t. Then write a in the form

without finding T and N, and find the value of at
the given values of t.

1. and 

2.

3. The position of a particle in the plane at time t is

Find the particle’s highest speed.

4. Suppose Show that the angle be-
tween r and a never changes. What is the angle?

5. Finding curvature At point P, the velocity and acceleration of
a particle moving in the plane are and

Find the curvature of the particle’s path at P.

6. Find the point on the curve where the curvature is greatest.

7. A particle moves around the unit circle in the xy-plane. Its posi-
tion at time t is where x and y are differentiable
functions of t. Find dy dt if Is the motion clockwise or
counterclockwise?

8. You send a message through a pneumatic tube that follows the
curve (distance in meters). At the point (3, 3), 
and Find the values of and at (3, 3).

9. Characterizing circular motion A particle moves in the plane
so that its velocity and position vectors are always orthogonal.
Show that the particle moves in a circle centered at the origin.

10. Speed along a cycloid A circular wheel with radius 1 ft and
center C rolls to the right along the x-axis at a half-turn per sec-
ond. (See the accompanying figure.) At time t seconds, the posi-
tion vector of the point P on the wheel’s circumference is

a. Sketch the curve traced by P during the interval 0 … t … 3.

r = spt - sin ptdi + s1 - cos ptdj.

a # jv # ja # i = -2.
v # i = 49y = x3

v # i = y .>r = xi + yj,

y = ex

a = 5i + 15j .
v = 3i + 4j

rstd = set cos tdi + set sin tdj.

r =

1

21 + t2
 i +

t

21 + t2
 j.

rstd = A23 sec t B i + A23 tan t B j, t = 0

p>4rstd = s4 cos tdi + A22 sin t B j, t = 0

ka = aTT + aNN

b. Find v and a at and 3 and add these vectors to
your sketch.

c. At any given time, what is the forward speed of the topmost
point of the wheel? Of C?

Projectile Motion
11. Shot put A shot leaves the thrower’s hand 6.5 ft above the ground

at a 45° angle at 44 ft sec. Where is it 3 sec later?

12. Javelin A javelin leaves the thrower’s hand 7 ft above the ground
at a 45° angle at 80 ft sec. How high does it go?

13. A golf ball is hit with an initial speed at an angle to the hori-
zontal from a point that lies at the foot of a straight-sided hill that
is inclined at an angle to the horizontal, where

Show that the ball lands at a distance

measured up the face of the hill. Hence, show that the greatest
range that can be achieved for a given occurs when 

i.e., when the initial velocity vector bisects the
angle between the vertical and the hill.

sp>4d ,sf>2d +

a =y0

2y0
2 cos a

g cos2 f
 sin sa - fd ,

0 6 f 6 a 6

p

2
.

f

ay0

>
>

x

y

1

C

P

�t
r

0

t = 0, 1, 2 ,
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14. Javelin In Potsdam in 1988, Petra Felke of (then) East Germany
set a women’s world record by throwing a javelin 262 ft 5 in.

a. Assuming that Felke launched the javelin at a 40° angle to the
horizontal 6.5 ft above the ground, what was the javelin’s ini-
tial speed?

b. How high did the javelin go?

Motion in Space
Find the lengths of the curves in Exercises 15 and 16.

15.

16.

In Exercises 17–20, find T, N, B, and at the given value of t.

17.

18.

19.

20.

In Exercises 21 and 22, write a in the form at 
without finding T and N.

21.

22.

23. Find T, N, B, and as functions of t if

24. At what times in the interval are the velocity and ac-
celeration vectors of the motion 
orthogonal?

25. The position of a particle moving in space at time is

Find the first time r is orthogonal to the vector 

26. Find equations for the osculating, normal, and rectifying planes
of the curve at the point (1, 1, 1).

27. Find parametric equations for the line that is tangent to the curve
at 

28. Find parametric equations for the line tangent to the helix 

at the point where 

Theory and Examples
29. Synchronous curves By eliminating from the ideal projectile

equations

show that This shows that projec-
tiles launched simultaneously from the origin at the same initial
speed will, at any given instant, all lie on the circle of radius 
centered at regardless of their launch angle. These
circles are the synchronous curves of the launching.

s0, -gt2>2d ,
y0 t

x2
+ s y + gt2>2d2

= y0
2 t2 .

x = sy0 cos adt, y = sy0 sin adt -

1
2

 gt2 ,

a

t = p>4.A22 cos t B i + A22 sin t B j + tk

r(t) =

t = 0.rstd = e ti + ssin tdj + ln s1 - tdk

rstd = t i + t2j + t3k

i - j.

rstd = 2i + a4 sin 
t
2
b j + a3 -

t
p bk.

t Ú 0

s3 sin tdkrstd = i + s5 cos tdj +

0 … t … p

A22 cos t B j + ssin tdk.rstd = ssin tdi +

tk ,

rstd = s2 + tdi + st + 2t2dj + s1 + t2dk

rstd = s2 + 3t + 3t2di + s4t + 4t2dj - s6 cos tdk

t = 0a = aTT + aNN

rstd = s3 cosh 2tdi + s3 sinh 2tdj + 6tk, t = ln 2

rstd = ti +

1
2

 e2tj, t = ln 2

rstd = set sin 2tdi + set cos 2tdj + 2e t k, t = 0

rstd =

4
9

 s1 + td3>2 i +

4
9

 s1 - td3>2j +

1
3

 tk, t = 0

tk ,

rstd = s3 cos tdi + s3 sin tdj + 2t3>2k, 0 … t … 3

rstd = s2 cos tdi + s2 sin tdj + t2k, 0 … t … p>4
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30. Radius of curvature Show that the radius of curvature of a
twice-differentiable plane curve is given by
the formula

31. An alternative definition of curvature in the plane An alterna-
tive definition gives the curvature of a sufficiently differentiable
plane curve to be where is the angle between T and i
(Figure 13.37a). Figure 13.37b shows the distance s measured
counterclockwise around the circle from the point
(a, 0) to a point P, along with the angle at P. Calculate the circle’s
curvature using the alternative definition. (Hint: )f = u + p>2.

f

x2
+ y2

= a2

fƒ df>ds ƒ ,

r =

x
# 2

+ y
# 2

2x
$2

+ y
$ 2

- s
$2

, where s
$

=

d
dt

 2x
# 2

+ y
# 2 .

rstd = ƒstdi + g stdj
T

x

y

y

x

0

�

�
�

T

i

(a)

(b)

O

a
s

s � 0 at (a, 0)

P

Tx2 � y2 � a2

FIGURE 13.37 Figures for Exercise 31.

32. The view from Skylab 4 What percentage of Earth’s surface
area could the astronauts see when Skylab 4 was at its apogee
height, 437 km above the surface? To find out, model the visible
surface as the surface generated by revolving the circular arc GT,
shown here, about the y-axis. Then carry out these steps:

1. Use similar triangles in the figure to show that 
Solve for 

2. To four significant digits, calculate the visible area as

3. Express the result as a percentage of Earth’s surface area.

y

x

437 G

6380

0

T

⎧
⎨
⎩

S (Skylab)

y0

x � �(6380)2 � y2

VA =

L

6380

y0

2pxC1 + adx
dy
b2

 dy .

y0 .6380>s6380 + 437d .
y0>6380 =
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Chapter 13 Additional and Advanced Exercises

Applications
1. A frictionless particle P, starting from rest at time at the

point (a, 0, 0), slides down the helix

under the influence of gravity, as in the accompanying figure. The
in this equation is the cylindrical coordinate and the helix is

the curve in cylindrical coordinates. We
assume to be a differentiable function of t for the motion. The
law of conservation of energy tells us that the particle’s speed

after it has fallen straight down a distance z is where g is
the constant acceleration of gravity.

a. Find the angular velocity when 

b. Express the particle’s and z-coordinates as functions of t.

c. Express the tangential and normal components of the velocity 
dr dt and acceleration as functions of t. Does the acceler-
ation have any nonzero component in the direction of the binor-
mal vector B?

2. Suppose the curve in Exercise 1 is replaced by the conical helix
shown in the accompanying figure.

a. Express the angular velocity as a function of 

b. Express the distance the particle travels along the helix as a
function of 

P

Conical helix
r � a�, z � b�

Positive z-axis points down.

Cone z �    rb
a

x

y

z

u .

u .du>dt

r = au, z = bu

x

y

z

a

P

r

The helix
r � a, z � b�

Positive z-axis
points down.

d2r>dt2>
u-

u = 2p .du>dt

22gz ,

u

r = a, z = bu, u Ú 0,
uu

rsud = sa cos udi + sa sin udj + buk sa, b 7 0d

t = 0
Motion in Polar and Cylindrical Coordinates
3. Deduce from the orbit equation

that a planet is closest to its sun when and show that 
at that time.

4. A Kepler equation The problem of locating a planet in its orbit
at a given time and date eventually leads to solving “Kepler”
equations of the form

a. Show that this particular equation has a solution between
and 

b. With your computer or calculator in radian mode, use 
Newton’s method to find the solution to as many places as
you can.

5. In Section 13.6, we found the velocity of a particle moving in the
plane to be

a. Express and in terms of and by evaluating the dot
products and 

b. Express and in terms of and by evaluating the dot
products and 

6. Express the curvature of a twice-differentiable curve in
the polar coordinate plane in terms of ƒ and its derivatives.

7. A slender rod through the origin of the polar coordinate plane ro-
tates (in the plane) about the origin at the rate of 3 rad min. A
beetle starting from the point (2, 0) crawls along the rod toward
the origin at the rate of 1 in. min.

a. Find the beetle’s acceleration and velocity in polar form when
it is halfway to (1 in. from) the origin.

b. To the nearest tenth of an inch, what will be the length of the
path the beetle has traveled by the time it reaches the origin?

8. Arc length in cylindrical coordinates

a. Show that when you express in
terms of cylindrical coordinates, you get 

b. Interpret this result geometrically in terms of the edges and a
diagonal of a box. Sketch the box.

c. Use the result in part (a) to find the length of the curve

9. Unit vectors for position and motion in cylindrical coordinates
When the position of a particle moving in space is given in cylin-
drical coordinates, the unit vectors we use to describe its position
and motion are

and k (see accompanying figure). The particle’s position vector is
then where r is the positive polar distance coordi-
nate of the particle’s position.

r = rur + zk,

ur = scos udi + ssin udj, uu = - ssin udi + scos udj,

r = eu, z = eu, 0 … u … u ln 8 .

r2 du2
+ dz2 .

ds2
= dr2

+

ds2
= dx2

+ dy2
+ dz2

>
>

r = ƒsud
v # uu .v # ur

y
#

x
#

r u
#

r
#

v # j.v # i
ru

#

r
#

y
#

x
#

v = x
#  i + y 

# j = r
#  ur + ru

#

 uu .

x = 2.x = 0

ƒsxd = x - 1 -

1
2

 sin x = 0.

r = r0u = 0

r =

s1 + edr0

1 + e cos u

T

T
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a. Show that and k, in this order, form a right-handed
frame of unit vectors.

ur, uu ,

y

z

x

k

r

u�

ur

z

r

(r, �, 0)

�

0

764 Chapter 13: Vector-Valued Functions and Motion in Space

b. Show that

c. Assuming that the necessary derivatives with respect to t
exist, express and in terms of and 

10. Conservation of angular momentum Let r(t) denote the posi-
tion in space of a moving object at time t. Suppose the force act-
ing on the object at time t is

where c is a constant. In physics the angular momentum of an
object at time t is defined to be where m is
the mass of the object and v(t) is the velocity. Prove that angular
momentum is a conserved quantity; i.e., prove that L(t) is a 
constant vector, independent of time. Remember Newton’s law

(This is a calculus problem, not a physics problem.)F = ma.

Lstd = rstd * mvstd ,

Fstd = -

c

ƒ rstd ƒ
3 rstd ,

u
#

.ur, uu, k, r
#
,a = r$v = r#

dur

du
= uu and 

duu
du

= -ur .

Chapter 13 Technology Application Projects

Mathematica Maple Module:

Radar Tracking of a Moving Object
Visualize position, velocity, and acceleration vectors to analyze motion.

Parametric and Polar Equations with a Figure Skater
Visualize position, velocity, and acceleration vectors to analyze motion.

Moving in Three Dimensions
Compute distance traveled, speed, curvature, and torsion for motion along a space curve. Visualize and compute the tangential, normal, and
binormal vectors associated with motion along a space curve.

/
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OVERVIEW Many functions depend on more than one independent variable. For instance,
the volume of a right circular cylinder is a function of its radius and its height,
so it is a function V(r, h) of two variables r and h. In this chapter we extend the basic ideas
of single variable calculus to functions of several variables. Their derivatives are more var-
ied and interesting because of the different ways the variables can interact. The applica-
tions of these derivatives are also more varied than for single-variable calculus, and in the
next chapter we will see that the same is true for integrals involving several variables.

14.1 Functions of Several Variables

In this section we define functions of more than one independent variable and discuss
ways to graph them.

Real-valued functions of several independent real variables are defined similarly to
functions in the single-variable case. Points in the domain are ordered pairs (triples,
quadruples, n-tuples) of real numbers, and values in the range are real numbers as we have
worked with all along.

V = pr2h

765

14
PARTIAL DERIVATIVES

DEFINITIONS Suppose D is a set of n-tuples of real numbers 
A real-valued function ƒ on D is a rule that assigns a unique (single) real
number

to each element in D. The set D is the function’s domain. The set of w-values
taken on by ƒ is the function’s range. The symbol w is the dependent variable
of ƒ, and ƒ is said to be a function of the n independent variables to We
also call the ’s the function’s input variables and call w the function’s output
variable.

xj

xn.x1

w = ƒsx1, x2, Á , xnd

sx1, x2, Á , xnd.

If ƒ is a function of two independent variables, we usually call the independent variables x
and y and the dependent variable z, and we picture the domain of ƒ as a region in the xy-plane
(Figure 14.1). If ƒ is a function of three independent variables, we call the independent vari-
ables x, y, and z and the dependent variable w, and we picture the domain as a region in space.

In applications, we tend to use letters that remind us of what the variables stand for. To
say that the volume of a right circular cylinder is a function of its radius and height, we
might write To be more specific, we might replace the notation ƒ(r, h) by the
formula that calculates the value of V from the values of r and h, and write In
either case, r and h would be the independent variables and V the dependent variable of the
function.

V = pr 2h.
V = ƒsr, hd.
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As usual, we evaluate functions defined by formulas by substituting the values of the
independent variables in the formula and calculating the corresponding value of the 
dependent variable. For example, the value of at the point
(3, 0, 4) is

Domains and Ranges

In defining a function of more than one variable, we follow the usual practice of excluding
inputs that lead to complex numbers or division by zero. If cannot
be less than If cannot be zero. The domain of a function is as-
sumed to be the largest set for which the defining rule generates real numbers, unless the
domain is otherwise specified explicitly. The range consists of the set of output values for
the dependent variable.

EXAMPLE 1 (a) These are functions of two variables. Note the restrictions that may
apply to their domains in order to obtain a real value for the dependent variable z.

Function Domain Range

Entire plane

(b) These are functions of three variables with restrictions on some of
their domains.

Function Domain Range

Entire space

Half-space 

Functions of Two Variables

Regions in the plane can have interior points and boundary points just like intervals on the
real line. Closed intervals [a, b] include their boundary points, open intervals (a, b) don’t
include their boundary points, and intervals such as [a, b) are neither open nor closed.

s - q , q dz 7 0w = xy ln z

s0, q dsx, y, zd Z s0, 0, 0dw =
1

x 2
+ y 2

+ z 2

[0, q dw = 2x 2
+ y 2

+ z 2

[-1, 1]z = sin xy

s - q , 0d ´ s0, q dxy Z 0z =
1
xy

[0, q dy Ú x 2z = 2y - x 2

ƒsx, yd = 1>sxyd, xyx 2.
ƒsx, yd = 2y - x 2, y

ƒs3, 0, 4d = 2s3d2
+ s0d2

+ s4d2
= 225 = 5.

ƒsx, y, zd = 2x 2
+ y 2

+ z 2

766 Chapter 14: Partial Derivatives

y

x z
0 0D f (x, y)

f (a, b)

f

(a, b)

(x, y)

FIGURE 14.1 An arrow diagram for the function z = ƒsx, yd.

7001_ThomasET_ch14p765-853.qxd  10/30/09  7:40 AM  Page 766



As with a half-open interval of real numbers [a, b), some regions in the plane are nei-
ther open nor closed. If you start with the open disk in Figure 14.3 and add to it some of
but not all its boundary points, the resulting set is neither open nor closed. The boundary
points that are there keep the set from being open. The absence of the remaining boundary
points keeps the set from being closed.

14.1 Functions of Several Variables 767

DEFINITIONS A point in a region (set) R in the xy-plane is an interior
point of R if it is the center of a disk of positive radius that lies entirely in R
(Figure 14.2). A point is a boundary point of R if every disk centered at

contains points that lie outside of R as well as points that lie in R. (The
boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region.
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points. A region is closed if it contains all its boundary
points (Figure 14.3).

sx0, y0d
sx0, y0d

sx0, y0d

R

(a) Interior point

R

(b) Boundary point

(x0, y0)

(x0, y0)

FIGURE 14.2 Interior points and
boundary points of a plane region R. An
interior point is necessarily a point of R. A
boundary point of R need not belong to R.

y

x
0

y

x
0

y

x
0

{(x, y) � x2 � y2 � 1}
Open unit disk.
Every point an
interior point.

{(x, y) � x2 � y2 � 1}
Boundary of unit
disk. (The unit
circle.)

{(x, y) � x2 � y2 � 1}
Closed unit disk.
Contains all
boundary points.

FIGURE 14.3 Interior points and boundary points of the unit disk in the plane.

DEFINITIONS A region in the plane is bounded if it lies inside a disk of fixed
radius. A region is unbounded if it is not bounded.

y

x
0 1–1

1

Interior points,
where y � x2 � 0

The parabola
y � x2 � 0
is the boundary.

Outside,
y � x2 � 0

FIGURE 14.4 The domain of in
Example 2 consists of the shaded region
and its bounding parabola.

ƒsx, yd

Examples of bounded sets in the plane include line segments, triangles, interiors of
triangles, rectangles, circles, and disks. Examples of unbounded sets in the plane include
lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants,
half-planes, and the plane itself.

EXAMPLE 2 Describe the domain of the function 

Solution Since ƒ is defined only where the domain is the closed, un-
bounded region shown in Figure 14.4. The parabola is the boundary of the domain.
The points above the parabola make up the domain’s interior.

Graphs, Level Curves, and Contours of Functions of Two Variables

There are two standard ways to picture the values of a function ƒ(x, y). One is to draw and
label curves in the domain on which ƒ has a constant value. The other is to sketch the sur-
face in space.z = ƒsx, yd

y = x 2
y - x2

Ú 0,

ƒsx, yd = 2y - x 2.
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EXAMPLE 3 Graph and plot the level curves 
and in the domain of ƒ in the plane.

Solution The domain of ƒ is the entire xy-plane, and the range of ƒ is the set of real num-
bers less than or equal to 100. The graph is the paraboloid the posi-
tive portion of which is shown in Figure 14.5.

The level curve is the set of points in the xy-plane at which

which is the circle of radius 10 centered at the origin. Similarly, the level curves
and (Figure 14.5) are the circles

The level curve consists of the origin alone. (It is still a level curve.)
If then the values of are negative. For example, the circle

which is the circle centered at the origin with radius 12, gives the constant
value and is a level curve of ƒ.

The curve in space in which the plane cuts a surface is made up of 
the points that represent the function value It is called the contour curve

to distinguish it from the level curve in the domain of ƒ. Figure 14.6
shows the contour curve on the surface defined by the
function The contour curve lies directly above the circle

which is the level curve in the function’s domain.
Not everyone makes this distinction, however, and you may wish to call both kinds of

curves by a single name and rely on context to convey which one you have in mind. On
most maps, for example, the curves that represent constant elevation (height above sea
level) are called contours, not level curves (Figure 14.7).

Functions of Three Variables

In the plane, the points where a function of two independent variables has a constant value
make a curve in the function’s domain. In space, the points where a function

of three independent variables has a constant value make a surface in the
function’s domain.

ƒsx, y, zd = c
ƒsx, yd = c

ƒsx, yd = 75x 2
+ y 2

= 25,
ƒsx, yd = 100 - x 2

- y 2.
z = 100 - x 2

- y 2ƒsx, yd = 75
ƒsx, yd = cƒsx, yd = c

ƒsx, yd = c.
z = ƒsx, ydz = c

ƒsx, yd = -44
x2

+ y2
= 144,

ƒsx, ydx2
+ y2

7 100,
ƒsx, yd = 100

 ƒsx, yd = 100 - x 2
- y 2

= 75, or x 2
+ y 2

= 25.

 ƒsx, yd = 100 - x 2
- y 2

= 51, or x 2
+ y 2

= 49

ƒsx, yd = 75ƒsx, yd = 51

ƒsx, yd = 100 - x 2
- y 2

= 0, or x 2
+ y 2

= 100,

ƒsx, yd = 0

z = 100 - x 2
- y 2,

ƒsx, yd = 75ƒsx, yd = 51,
ƒsx, yd = 0,ƒsx, yd = 100 - x 2

- y 2

768 Chapter 14: Partial Derivatives

y

z

x

10
10

100

f (x, y) 5 75

f (x, y) 5 0

f (x, y) 5 51
(a typical
level curve in
the function’s
domain)

The surface
z 5 f (x, y)
  5 100 2 x2 2 y2

is the graph of f.

FIGURE 14.5 The graph and selected
level curves of the function in
Example 3.

ƒsx, yd

z

x

0

y

75

100

The contour curve f (x, y) � 100 � x2 � y2 � 75
is the circle x2 � y2 � 25 in the plane z � 75. 

Plane z � 75

The level curve f (x, y) � 100 � x2 � y2 � 75
is the circle x2 � y2 � 25 in the xy-plane.

z � 100 � x2 � y2

FIGURE 14.6 A plane parallel to
the xy-plane intersecting a surface

produces a contour curve.z = ƒsx, yd

z = c

DEFINITION The set of points (x, y, z) in space where a function of three
independent variables has a constant value is called a level surface
of ƒ.

ƒsx, y, zd = c

DEFINITIONS The set of points in the plane where a function ƒ(x, y) has
a constant value is called a level curve of ƒ. The set of all points
(x, y, ƒ(x, y)) in space, for (x, y) in the domain of ƒ, is called the graph of ƒ. The
graph of ƒ is also called the surface z � f sx, yd.

ƒsx, yd = c

Since the graphs of functions of three variables consist of points (x, y, z, ƒ(x, y, z)) lying
in a four-dimensional space, we cannot sketch them effectively in our three-dimensional
frame of reference. We can see how the function behaves, however, by looking at its three-
dimensional level surfaces.

EXAMPLE 4 Describe the level surfaces of the function

ƒsx, y, zd = 2x 2
+ y 2

+ z 2 .

7001_ThomasET_ch14p765-853.qxd  10/30/09  7:41 AM  Page 768



14.1 Functions of Several Variables 769

FIGURE 14.7 Contours on Mt. Washington in New Hampshire. (Reproduced by permission
from the Appalachian Mountain Club.)

x

y

z

1
2

3

�x2 � y2 � z2 � 3

�x2 � y2 � z2 � 2

�x2 � y2 � z2 � 1

FIGURE 14.8 The level surfaces of
are

concentric spheres (Example 4).
ƒsx, y, zd = 2x2

+ y2
+ z2

Solution The value of ƒ is the distance from the origin to the point (x, y, z). Each level sur-
face is a sphere of radius c centered at the origin. Figure 14.8
shows a cutaway view of three of these spheres. The level surface 
consists of the origin alone.

We are not graphing the function here; we are looking at level surfaces in the function’s
domain. The level surfaces show how the function’s values change as we move through
its domain. If we remain on a sphere of radius c centered at the origin, the function
maintains a constant value, namely c. If we move from a point on one sphere to a point
on another, the function’s value changes. It increases if we move away from the origin
and decreases if we move toward the origin. The way the values change depends on the
direction we take. The dependence of change on direction is important. We return to it in
Section 14.5.

The definitions of interior, boundary, open, closed, bounded, and unbounded for re-
gions in space are similar to those for regions in the plane. To accommodate the extra di-
mension, we use solid balls of positive radius instead of disks.

2x 2
+ y 2

+ z 2
= 0

2x 2
+ y 2

+ z 2
= c, c 7 0 ,

x

y

z

(a) Interior point

x

y

z

(b) Boundary point

(x0, y0, z0)

(x0, y0, z0)

FIGURE 14.9 Interior points and
boundary points of a region in space. As
with regions in the plane, a boundary point
need not belong to the space region R.

DEFINITIONS A point in a region R in space is an interior point of
R if it is the center of a solid ball that lies entirely in R (Figure 14.9a). A point

is a boundary point of R if every solid ball centered at 
contains points that lie outside of R as well as points that lie inside R (Figure
14.9b). The interior of R is the set of interior points of R. The boundary of R is
the set of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if
it contains its entire boundary.

sx0 , y0 , z0dsx0 , y0 , z0d

sx0 , y0 , z0d

Examples of open sets in space include the interior of a sphere, the open half-space
the first octant (where x, y, and z are all positive), and space itself. Examples of

closed sets in space include lines, planes, and the closed half-space . A solid spherez Ú 0
z 7 0,
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with part of its boundary removed or a solid cube with a missing face, edge, or corner
point is neither open nor closed.

Functions of more than three independent variables are also important. For exam-
ple, the temperature on a surface in space may depend not only on the location of the
point P(x, y, z) on the surface but also on the time t when it is visited, so we would write

Computer Graphing

Three-dimensional graphing programs for computers and calculators make it possible to
graph functions of two variables with only a few keystrokes. We can often get information
more quickly from a graph than from a formula.

EXAMPLE 5 The temperature w beneath the Earth’s surface is a function of the depth x
beneath the surface and the time t of the year. If we measure x in feet and t as the number
of days elapsed from the expected date of the yearly highest surface temperature, we can
model the variation in temperature with the function

(The temperature at 0 ft is scaled to vary from to so that the variation at x feet can
be interpreted as a fraction of the variation at the surface.)

Figure 14.10 shows a graph of the function. At a depth of 15 ft, the variation (change
in vertical amplitude in the figure) is about 5% of the surface variation. At 25 ft, there is
almost no variation during the year.

The graph also shows that the temperature 15 ft below the surface is about half a year
out of phase with the surface temperature. When the temperature is lowest on the surface
(late January, say), it is at its highest 15 ft below. Fifteen feet below the ground, the seasons
are reversed.

Figure 14.11 shows computer-generated graphs of a number of functions of two vari-
ables together with their level curves.

-1,+1

w = cos s1.7 * 10-2t - 0.2xde-0.2x.

ƒsx, y, z, td.T =

770 Chapter 14: Partial Derivatives

15
25

t
x

w

FIGURE 14.10 This graph shows the
seasonal variation of the temperature
below ground as a fraction of surface
temperature (Example 5).

z

y

x

x

y

y

z

x

x

y

x

z

y

y2

x

y

FIGURE 14.11 Computer-generated graphs and level curves of typical functions of two variables.

 z � sin x � 2 sin y z � (4x2 � y2)e–x2�y2
(a) (b) (c) z � xye–y2
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14.1 Functions of Several Variables 771

Exercises 14.1

Domain, Range, and Level Curves
In Exercises 1–4, find the specific function values.

1.

a. b.

c. d.

2.

a. b.

c. d.

3.

a. b.

c. d.

4.

a. b.

c. d.

In Exercises 5–12, find and sketch the domain for each function.

5.

6.

7.

8.

9.

10.

11.

12.

In Exercises 13–16, find and sketch the level curves on
the same set of coordinate axes for the given values of c. We refer to
these level curves as a contour map.

13.

14.

15.

16.

In Exercises 17–30, (a) find the function’s domain, (b) find the function’s
range, (c) describe the function’s level curves, (d) find the boundary
of the function’s domain, (e) determine if the domain is an open re-
gion, a closed region, or neither, and (f) decide if the domain is bounded
or unbounded.

17. 18.

19. 20. ƒsx, yd = x 2
- y 2ƒsx, yd = 4x 2

+ 9y 2

ƒsx, yd = 2y - xƒsx, yd = y - x

ƒsx, yd = 225 - x2
- y2

 , c = 0, 1, 2, 3, 4

ƒsx, yd = xy, c = -9, -4, -1, 0, 1, 4, 9

ƒsx, yd = x2
+ y2, c = 0, 1, 4, 9, 16, 25

ƒsx, yd = x + y - 1, c = -3, -2, -1, 0, 1, 2, 3

ƒsx, yd = c

ƒsx, yd =

1
ln s4 - x2

- y2d

ƒsx, yd = 2sx2
- 4dsy2

- 9d

ƒsx, yd = ln sxy + x - y - 1d
ƒsx, yd = cos-1 sy - x2d

ƒsx, yd =

sin sxyd

x2
+ y2

- 25

ƒsx, yd =

sx - 1dsy + 2d

sy - xdsy - x3d

ƒsx, yd = ln sx2
+ y2

- 4d
ƒsx, yd = 2y - x - 2

ƒ a 4

22
 , 

5

22
 , 

6

22
bƒs -1, 2, 3d

ƒs2, -3, 6dƒs0, 0, 0d
ƒsx, y, zd = 249 - x2

- y2
- z2

ƒs2, 2, 100dƒ a0, -
1
3

, 0b
ƒ a1, 

1
2

, -
1
4
bƒs3, -1, 2d

ƒsx, y, zd =

x - y

y2
+ z2

ƒ a-

p

2
, -7bƒ ap, 

1
4
b

ƒ a-3, 
p

12
bƒ a2, 

p

6
b

ƒsx, yd = sin sxyd
ƒs -3, -2dƒs2, 3d
ƒs -1, 1dƒs0, 0d

ƒsx, yd = x2
+ xy3

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Matching Surfaces with Level Curves
Exercises 31–36 show level curves for the functions graphed in
(a)–(f ) on the following page. Match each set of curves with the ap-
propriate function.

31. 32.

33. 34.

35. 36.

x

y

x

y

x

y

x

y

y

xx

y

ƒsx, yd = ln s9 - x2
- y2dƒsx, yd = ln sx2

+ y2
- 1d

ƒsx, yd = tan-1 ayx bƒsx, yd = sin-1 s y - xd

ƒsx, yd = e-sx2
+ y2dƒsx, yd = ln sx 2

+ y 2d

ƒsx, yd = 29 - x 2
- y 2ƒsx, yd =

1

216 - x 2
- y 2

ƒsx, yd = y>x 2ƒsx, yd = xy
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a.

b.

c.

d.

e.

z �
xy(x2 � y2)

x2 � y2

z

x

y

z � e–y cos x
x

y

z

z � 1
4x2 � y2

x y

z

z � –
xy2

x2 � y2

z

y
x

z � (cos x)(cos y) e –�x2 � y2 /4

z

y
x
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f.

Functions of Two Variables
Display the values of the functions in Exercises 37–48 in two ways:
(a) by sketching the surface and (b) by drawing an assort-
ment of level curves in the function’s domain. Label each level curve
with its function value.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

Finding Level Curves
In Exercises 49–52, find an equation for and sketch the graph of the
level curve of the function ƒ(x, y) that passes through the given point.

49.

50.

51.

52.

Sketching Level Surfaces
In Exercises 53–60, sketch a typical level surface for the function.

53. 54.

55. 56.

57. 58.

59.

60.

Finding Level Surfaces
In Exercises 61–64, find an equation for the level surface of the func-
tion through the given point.

61.

62. ƒsx, y, zd = ln sx 2
+ y + z 2d, s -1, 2, 1d

ƒsx, y, zd = 2x - y - ln z, s3, -1, 1d

ƒsx, y, zd = sx 2>25d + s y 2>16d + sz 2>9d

ƒsx, y, zd = z - x 2
- y 2

ƒsx, y, zd = y 2
+ z 2ƒsx, y, zd = x 2

+ y 2

ƒsx, y, zd = zƒsx, y, zd = x + z

ƒsx, y, zd = ln sx 2
+ y 2

+ z 2dƒsx, y, zd = x 2
+ y 2

+ z 2

ƒsx, yd =

2y - x

x + y + 1
 , s -1, 1d

ƒsx, yd = 2x + y2
- 3 , s3, -1d

ƒsx, yd = 2x 2
- 1, s1, 0d

ƒsx, yd = 16 - x 2
- y 2, A222, 22 B

ƒsx, yd = 2x2
+ y2

- 4ƒsx, yd = 2x2
+ y2

+ 4

ƒsx, yd = 1 - ƒ x ƒ - ƒ y ƒƒsx, yd = 1 - ƒ y ƒ

ƒsx, yd = 6 - 2x - 3yƒsx, yd = 4x 2
+ y 2

ƒsx, yd = 4 - x 2
- y 2ƒsx, yd = x 2

- y

ƒsx, yd = 2x 2
+ y 2ƒsx, yd = x 2

+ y 2

ƒsx, yd = 2xƒsx, yd = y 2

z = ƒsx, yd

z � y2 � y4 � x2

z

x y
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63.

64.

In Exercises 65–68, find and sketch the domain of ƒ. Then find an
equation for the level curve or surface of the function passing through
the given point.

65.

66.

67.

68.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for each of the functions in
Exercises 69–72.

a. Plot the surface over the given rectangle.

b. Plot several level curves in the rectangle.

c. Plot the level curve of ƒ through the given point.

69.

70.
0 … y … 5p, Ps4p, 4pd
ƒsx, yd = ssin xdscos yde2x2

+ y2>8, 0 … x … 5p, 

Ps3p, 3pd

ƒsx, yd = x sin 
y

2
+ y sin 2x, 0 … x … 5p, 0 … y … 5p, 

gsx, y, zd =

L

y

x
 

dt

1 + t2 +

L

z

0
 

du

24 - u2
, A0, 1, 23 B

ƒsx, yd =

L

y

x
 

du

21 - u2
, s0, 1d

gsx, y, zd = a

q

n = 0
 
sx + ydn

n!zn , sln 4, ln 9, 2d

ƒsx, yd = a

q

n = 0
 axy b

n

, s1, 2d

gsx, y, zd =

x - y + z

2x + y - z
 , s1, 0, -2d

gsx, y, zd = 2x2
+ y2

+ z2
 , A1, -1, 22 B
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71.

72.

Use a CAS to plot the implicitly defined level surfaces in Exercises
73–76.

73. 74.

75.

76.

Parametrized Surfaces Just as you describe curves in the plane
parametrically with a pair of equations defined on
some parameter interval I, you can sometimes describe surfaces in
space with a triple of equations 
defined on some parameter rectangle Many
computer algebra systems permit you to plot such surfaces in
parametric mode. (Parametrized surfaces are discussed in detail in
Section 16.5.) Use a CAS to plot the surfaces in Exercises 77–80. Also
plot several level curves in the xy-plane.

77.

78.

79.

80.
0 … u … 2p, 0 … y … p

x = 2 cos u cos y, y = 2 cos u sin y, z = 2 sin u, 
0 … u … 2p, 0 … y … 2p
x = s2 + cos ud cos y, y = s2 + cos ud sin y, z = sin u, 
0 … y … 2p
x = u cos y, y = u sin y, z = y, 0 … u … 2, 
0 … y … 2p
x = u cos y, y = u sin y, z = u, 0 … u … 2, 

a … u … b, c … y … d.
x = ƒsu, yd, y = gsu, yd, z = hsu, yd

x = ƒstd, y = gstd

sin ax
2
b - scos yd2x 2

+ z 2
= 2

x + y 2
- 3z 2

= 1

x 2
+ z2

= 14 ln sx 2
+ y 2

+ z2d = 1

-2p … y … p, Psp, -pd
ƒsx, yd = e sx0.1

- yd sin sx 2
+ y 2d, 0 … x … 2p, 

-2p … y … 2p, Psp, pd
ƒsx, yd = sin sx + 2 cos yd, -2p … x … 2p, 

14.2 Limits and Continuity in Higher Dimensions

This section treats limits and continuity for multivariable functions. These ideas are analo-
gous to limits and continuity for single-variable functions, but including more independent
variables leads to additional complexity and important differences requiring some new
ideas.

Limits for Functions of Two Variables

If the values of ƒ(x, y) lie arbitrarily close to a fixed real number L for all points (x, y) suf-
ficiently close to a point we say that ƒ approaches the limit L as (x, y) approaches

This is similar to the informal definition for the limit of a function of a single vari-
able. Notice, however, that if lies in the interior of ƒ’s domain, (x, y) can approach

from any direction. For the limit to exist, the same limiting value must be obtained
whatever direction of approach is taken. We illustrate this issue in several examples fol-
lowing the definition.

sx0, y0d
sx0, y0d

sx0, y0d.
sx0, y0d,
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The definition of limit says that the distance between ƒ(x, y) and L becomes arbitrarily
small whenever the distance from (x, y) to is made sufficiently small (but not 0).
The definition applies to interior points as well as boundary points of the domain
of ƒ, although a boundary point need not lie within the domain. The points (x, y) that ap-
proach are always taken to be in the domain of ƒ. See Figure 14.12.sx0, y0d

sx0, y0d
sx0, y0d

774 Chapter 14: Partial Derivatives

DEFINITION We say that a function ƒ(x, y) approaches the limit L as (x, y)
approaches and write

if, for every number there exists a corresponding number such that
for all (x, y) in the domain of ƒ,

ƒ ƒsx, yd - L ƒ 6 P whenever 0 6 2sx - x0d2
+ s y - y0d2

6 d.

d 7 0P 7 0,

lim
sx, yd: sx0, y0d

 ƒsx, yd = L

sx0, y0d,

y

x z
0 0

D

L � e L � eL

f
(x, y)

(x0, y0)
)(

δ

FIGURE 14.12 In the limit definition, is the radius of a disk
centered at For all points within this disk, the function
values lie inside the corresponding interval sL - P, L + Pd.ƒsx, yd

sx, yd(x0, y0).
d

As for functions of a single variable, it can be shown that

For example, in the first limit statement above, and Using the defini-
tion of limit, suppose that is chosen. If we let equal this we see that

implies

That is,

ƒ ƒsx, yd - x0 ƒ 6 P whenever 0 6 2sx - x0d2
+ s y - y0d2

6 d.

x = ƒsx, yd ƒ ƒsx, yd - x0 ƒ 6 P

2a2
= ƒ a ƒ ƒ x - x0 ƒ 6 P

sx - x0d2
… sx - x0d2

+ sy - y0d2 2sx - x0d2
6 P

0 6 2sx - x0d2
+ sy - y0d2

6 d = P

P,dP 7 0
L = x0.ƒsx, yd = x

 lim
sx, yd: sx0, y0d

 k = k sany number kd.

 lim
sx, yd: sx0, y0d

 y = y0

 lim
sx, yd: sx0, y0d

 x = x0
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So a has been found satisfying the requirement of the definition, and

As with single-variable functions, the limit of the sum of two functions is the sum of
their limits (when they both exist), with similar results for the limits of the differences,
constant multiples, products, quotients, powers, and roots.

lim
sx, yd: sx0 , y0d

 ƒsx, yd = lim
sx, yd: sx0 , y0d

 x = x0.

d

14.2 Limits and Continuity in Higher Dimensions 775

THEOREM 1—Properties of Limits of Functions of Two Variables The fol-
lowing rules hold if L, M, and k are real numbers and

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule:

4. Product Rule:

5. Quotient Rule:

6. Power Rule: n a positive integer

7. Root Rule:

n a positive integer, and if n is even, we
assume that L 7 0.

lim
sx, yd: sx0 , y0d

2n ƒsx, yd = 2n L =  L1>n,

lim
sx, yd: sx0 , y0d

[ƒsx, yd]n
= Ln,

lim
sx, yd: sx0 , y0d 

 
ƒsx, yd
gsx, yd

=
L
M

 , M Z 0

lim
sx, yd: sx0, y0d

 sƒsx, yd # gsx, ydd = L # M

lim
sx, yd: sx0 , y0d

 kƒsx, yd = kL sany number kd

lim
sx, yd: sx0 , y0d

(ƒsx, yd - gsx, ydd = L - M

lim
sx, yd: sx0 , y0d

(ƒsx, yd + gsx, ydd = L + M

lim
sx, yd: sx0, y0d

 ƒsx, yd = L and lim
sx, yd: sx0 , y0d

 gsx, yd = M.

While we won’t prove Theorem 1 here, we give an informal discussion of why it’s true.
If (x, y) is sufficiently close to then ƒ(x, y) is close to L and g(x, y) is close to 
M (from the informal interpretation of limits). It is then reasonable that is
close to is close to kƒ(x, y) is close to kL;
is close to LM; and ƒ(x, y) g(x, y) is close to L M if 

When we apply Theorem 1 to polynomials and rational functions, we obtain the useful
result that the limits of these functions as can be calculated by evaluating the
functions at The only requirement is that the rational functions be defined at 

EXAMPLE 1 In this example, we can combine the three simple results following the limit
definition with the results in Theorem 1 to calculate the limits. We simply substitute the x and
y values of the point being approached into the functional expression to find the limiting
value.

(a)

(b)

EXAMPLE 2 Find

lim
sx, yd: s0,0d

 
x2

- xy

2x - 2y
.

lim
sx, yd: s3, -4d

2x 2
+ y 2

= 2s3d2
+ s -4d2

= 225 = 5

lim
sx, yd: s0,1d

  
x - xy + 3

x 2y + 5xy - y 3 =

0 - s0ds1d + 3

s0d2s1d + 5s0ds1d - s1d3 = -3

sx0 , y0d.sx0 , y0d.
sx, yd : sx0 , y0d

M Z 0.>> ƒsx, ydgsx, ydL - M;L + M; ƒsx, yd - gsx, yd
ƒsx, yd + gsx, yd

sx0 , y0d,
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Solution Since the denominator approaches 0 as we cannot
use the Quotient Rule from Theorem 1. If we multiply numerator and denominator by

however, we produce an equivalent fraction whose limit we can find:

We can cancel the factor because the path (along which ) is not
in the domain of the function

EXAMPLE 3 Find if it exists.

Solution We first observe that along the line the function always has value 0
when Likewise, along the line the function has value 0 provided So
if the limit does exist as (x, y) approaches (0, 0), the value of the limit must be 0. To see if
this is true, we apply the definition of limit.

Let be given, but arbitrary. We want to find a such that

or

Since we have that

So if we choose and let we get

It follows from the definition that

lim
sx, yd: s0,0d

 
4xy 2

x 2
+ y 2 = 0.

` 4xy 2

x 2
+ y 2 - 0 ` … 42x 2

+ y 2
6 4d = 4 aP

4
b = P.

0 6 2x2
+ y2

6 d,d = P>4

y 2

x 2
+ y 2

… 1
4 ƒ x ƒ y 2

x 2
+ y 2 … 4 ƒ x ƒ = 42x 2

… 42x 2
+ y 2 .

y 2
… x 2

+ y 2

4 ƒ x ƒ y 2

x 2
+ y 2 6 P whenever 0 6 2x 2

+ y 2
6 d.

` 4xy 2

x 2
+ y 2 - 0 ` 6 P whenever 0 6 2x 2

+ y 2
6 d

d 7 0P 7 0

x Z 0.y = 0,y Z 0.
x = 0,

lim
sx, yd: s0,0d

 
4xy2

x 2
+ y 2

x 2
- xy

2x - 2y
.

x - y = 0y = xsx - yd

 = 0 A20 + 20 B = 0

 = lim
sx, yd: s0,0d

 x A2x + 2y B
 = lim

sx, yd: s0,0d
 
x Ax - y B A2x + 2y B

x - y

 lim
sx, yd: s0,0d

 
x 2

- xy

2x - 2y
= lim

sx, yd: s0,0d
 
Ax 2

- xy B A2x + 2y B
A2x - 2y B A2x + 2y B

2x + 2y,

sx, yd : s0, 0d,2x - 2y

776 Chapter 14: Partial Derivatives

Algebra

Known limit values

Cancel the nonzero
factor sx - yd.
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EXAMPLE 4 If does exist?

Solution The domain of ƒ does not include the y-axis, so we do not consider any points
where in the approach toward the origin Along the x-axis, the value of

the function is for all So if the limit does exist as the
value of the limit must be On the other hand, along the line the value of the
function is for all That is, the function ƒ approaches the value 1
along the line This means that for every disk of radius centered at the disk
will contain points on the x-axis where the value of the function is 0, and also points

along the line where the value of the function is 1. So no matter how small we
choose as the radius of the disk in Figure 14.12, there will be points within the disk for
which the function values differ by 1. Therefore, the limit cannot exist because we can take

to be any number less than 1 in the limit definition and deny that or 1, or any
other real number. The limit does not exist because we have different limiting values along
different paths approaching the point 

Continuity

As with functions of a single variable, continuity is defined in terms of limits.

s0, 0d.

L = 0P

d

y = xsx, xd
sx, 0d

s0, 0d,dy = x.
x Z 0.ƒsx, xd = x>x = 1

y = x,L = 0.
sx, yd : s0, 0d,x Z 0.ƒsx, 0d = 0

s0, 0d.x = 0sx, yd

 lim
(x, y): (0, 0)

 ƒsx, ydƒsx, yd =

y
x  ,
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DEFINITION A function ƒ(x, y) is continuous at the point if

1. ƒ is defined at 

2. exists,

3.

A function is continuous if it is continuous at every point of its domain.

lim
sx, yd: sx0, y0d

 ƒsx, yd = ƒsx0, y0d.

lim
sx, yd: sx0, y0d

 ƒsx, yd
sx0, y0d,

(x0, y0)

(a)

z

–y

x

x

y

0

0.8
1

0

00.8

0.8

1

–0.8
–1

–0.8

–0.8
–1

(b)

0.8

–0.8

FIGURE 14.13 (a) The graph of

The function is continuous at every point
except the origin. (b) The values of ƒ are
different constants along each line

(Example 5).y = mx, x Z 0

ƒsx, yd = L
2xy

x2
+ y2 , sx, yd Z s0, 0d

0, sx, yd = s0, 0).

As with the definition of limit, the definition of continuity applies at boundary points
as well as interior points of the domain of ƒ. The only requirement is that each point (x, y)
near be in the domain of ƒ.

A consequence of Theorem 1 is that algebraic combinations of continuous functions
are continuous at every point at which all the functions involved are defined. This means
that sums, differences, constant multiples, products, quotients, and powers of continuous
functions are continuous where defined. In particular, polynomials and rational functions
of two variables are continuous at every point at which they are defined.

EXAMPLE 5 Show that

is continuous at every point except the origin (Figure 14.13).

Solution The function ƒ is continuous at any point because its values are
then given by a rational function of x and y and the limiting value is obtained by substitut-
ing the values of x and y into the functional expression.

sx, yd Z s0, 0d

ƒsx, yd = L
2xy

x 2
+ y 2 , sx, yd Z s0, 0d

0, sx, yd = s0, 0d

sx0, y0d
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At (0, 0), the value of ƒ is defined, but ƒ, we claim, has no limit as The
reason is that different paths of approach to the origin can lead to different results, as we
now see.

For every value of m, the function ƒ has a constant value on the “punctured” line
because

Therefore, ƒ has this number as its limit as (x, y) approaches (0, 0) along the line:

This limit changes with each value of the slope m. There is therefore no single num-
ber we may call the limit of ƒ as (x, y) approaches the origin. The limit fails to exist,
and the function is not continuous.

Examples 4 and 5 illustrate an important point about limits of functions of two or more
variables. For a limit to exist at a point, the limit must be the same along every approach path.
This result is analogous to the single-variable case where both the left- and right-sided limits
had to have the same value. For functions of two or more variables, if we ever find paths with
different limits, we know the function has no limit at the point they approach.

lim
sx, yd: s0,0d

 ƒsx, yd = lim
sx, yd: s0,0d

 cƒsx, yd `
y = mx
d =

2m
1 + m2 .

ƒsx, yd `
y = mx

=

2xy

x 2
+ y 2 `

y = mx
=

2xsmxd
x 2

+ smxd2 =
2mx 2

x 2
+ m2x 2 =

2m
1 + m2 .

y = mx, x Z 0,

sx, yd : s0, 0d.
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Two-Path Test for Nonexistence of a Limit
If a function ƒ(x, y) has different limits along two different paths in the domain of
ƒ as (x, y) approaches then does not exist.limsx, yd:sx0, y0d ƒsx, ydsx0, y0d,

Having the same limit along all straight lines approaching does not imply
a limit exists at .(x0, y0)

(x0, y0)

(a)

x

(b)

0

1

–1

y

1

–1

0

0

0

z

x
y

FIGURE 14.14 (a) The graph of
(b) Along each

path the value of ƒ is constant, but
varies with k (Example 6).

y = kx2
ƒsx, yd = 2x2y>sx4

+ y2d.

EXAMPLE 6 Show that the function

(Figure 14.14) has no limit as (x, y) approaches (0, 0).

Solution The limit cannot be found by direct substitution, which gives the indeterminate
form 0 0. We examine the values of ƒ along curves that end at (0, 0). Along the curve 

the function has the constant value

Therefore,

This limit varies with the path of approach. If (x, y) approaches (0, 0) along the parabola
for instance, and the limit is 1. If (x, y) approaches (0, 0) along the x-axis,

and the limit is 0. By the two-path test, ƒ has no limit as (x, y) approaches (0, 0).

It can be shown that the function in Example 6 has limit 0 along every path 
(Exercise 53). We conclude that

y = mx

k = 0
k = 1y = x 2,

lim
sx, yd: s0,0d

 ƒsx, yd = lim
sx, yd: s0,0d

 cƒsx, yd `
y = k x2

d =
2k

1 + k2 .

ƒsx, yd `
y = kx2

=

2x 2y

x4
+ y 2 `

y = kx2
=

2x 2skx 2d
x4

+ skx 2d2 =
2kx4

x4
+ k 2x 4 =

2k
1 + k 2 .

kx2, x Z 0,
y =>

ƒsx, yd =

2x 2y

x4
+ y 2

along y = kx2

along y = mx
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Whenever it is correctly defined, the composite of continuous functions is also continu-
ous. The only requirement is that each function be continuous where it is applied. The proof,
omitted here, is similar to that for functions of a single variable (Theorem 9 in Section 2.5).

14.2 Limits and Continuity in Higher Dimensions 779

Continuity of Composites
If ƒ is continuous at and g is a single-variable function continuous at

then the composite function defined by 
is continuous at sx0, y0d.

hsx, yd = gsƒsx, yddh = g � fƒsx0, y0d,
sx0, y0d

For example, the composite functions

are continuous at every point (x, y).

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the conclusions
about limits and continuity for sums, products, quotients, powers, and composites all ex-
tend to functions of three or more variables. Functions like

are continuous throughout their domains, and limits like

where P denotes the point (x, y, z), may be found by direct substitution.

Extreme Values of Continuous Functions on Closed, Bounded Sets

The Extreme Value Theorem (Theorem 1, Section 4.1) states that a function of a single
variable that is continuous throughout a closed, bounded interval [a, b] takes on an ab-
solute maximum value and an absolute minimum value at least once in [a, b]. The same
holds true of a function that is continuous on a closed, bounded set R in the
plane (like a line segment, a disk, or a filled-in triangle). The function takes on an ab-
solute maximum value at some point in R and an absolute minimum value at some
point in R.

Similar results hold for functions of three or more variables. A continuous function
for example, must take on absolute maximum and minimum values on any

closed, bounded set (solid ball or cube, spherical shell, rectangular solid) on which it is de-
fined. We will learn how to find these extreme values in Section 14.7.

w = ƒsx, y, zd,

z = ƒsx, yd

lim
P: s1,0,-1d

  
e x + z

z 2
+ cos 2xy

=
e1 - 1

s -1d2
+ cos 0

=
1
2

,

ln sx + y + zd and y sin z
x - 1

e x - y,  cos 
xy

x 2
+ 1

, ln s1 + x 2y 2d

Exercises 14.2

Limits with Two Variables
Find the limits in Exercises 1–12.

1. 2. lim
sx, yd: s0,4d

 
x

2y
lim

sx, yd: s0,0d
  
3x 2

- y 2
+ 5

x 2
+ y 2

+ 2

3. 4.

5. 6. lim
sx, yd: s0,0d

 cos 
x 2

+ y 3

x + y + 1
lim

sx, yd: s0,p>4d
 sec x tan y

lim
sx, yd: s2, -3d

 a1x +

1
y b

2

lim
sx, yd: s3,4d

2x 2
+ y 2

- 1
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7. 8.

9. 10.

11. 12.

Limits of Quotients
Find the limits in Exercises 13–24 by rewriting the fractions first.

13. 14.

15.

16.

17.

18. 19.

20.

21. 22.

23. 24.

Limits with Three Variables
Find the limits in Exercises 25–30.

25. 26.

27.

28. 29.

30.

Continuity in the Plane
At what points (x, y) in the plane are the functions in Exercises 31–34
continuous?

31. a. b.

32. a. b.

33. a. b.

34. a. b. g sx, yd =

1
x2

- y
g sx, yd =

x 2
+ y 2

x 2
- 3x + 2

g sx, yd =

x + y

2 + cos x
g sx, yd = sin  

1
xy

ƒsx, yd =

y

x 2
+ 1

ƒsx, yd =

x + y
x - y

ƒsx, yd = ln sx 2
+ y 2dƒsx, yd = sin sx + yd

lim
P: s2, -3,6d

 ln2x 2
+ y 2

+ z 2

lim
P: sp,0,3d

 ze-2y cos 2xlim
P: s-1>4,p>2,2d

 tan-1 xyz

lim
P: sp,p,0d

 ssin2 x + cos2 y + sec2 zd

lim
P: s1,-1,-1d

  
2xy + yz

x 2
+ z 2lim

P: s1,3,4d
 a1x +

1
y +

1
z b

lim
sx, yd: s2,2d

 
x - y

x4
- y4lim

sx, yd: s1,-1d
 
x3

+ y3

x + y

lim
sx, yd: s0,0d

 
1 - cos sxyd

xylim
sx, yd: s0,0d

 
sin sx2

+ y2d

x2
+ y2

lim
sx, yd: s4,3d

 
2x - 2y + 1

x - y - 1

lim
sx, yd: s2,0d

 
22x - y - 2

2x - y - 4
lim

sx, yd: s2,2d
 

x + y - 4

2x + y - 2

lim
sx, yd: s0,0d

 
x - y + 22x - 22y

2x - 2y

lim
sx, yd: s2, -4d

  
y + 4

x2y - xy + 4x 2
- 4x

lim
sx, yd: s1,1d

 
xy - y - 2x + 2

x - 1

lim
sx, yd: s1,1d

 
x 2

- y 2

x - ylim
sx, yd: s1,1d

  
x 2

- 2xy + y 2

x - y

lim
sx, yd: sp>2,0d

  
cos y + 1

y - sin x
lim

sx, yd: s1, p>6d
  

x sin y

x 2
+ 1

lim
sx, yd: s1>27, p3d

 cos23  xylim
sx, yd: s0,0d

 
e y sin x

x

lim
sx, yd: s1,1d

 ln ƒ 1 + x 2 y 2
ƒlim

sx, yd: s0,ln 2d
 e x - y
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Continuity in Space
At what points (x, y, z) in space are the functions in Exercises 35–40
continuous?

35. a.

b.

36. a. b.

37. a. b.

38. a. b.

39. a.

b.

40. a.

b.

No Limit at a Point
By considering different paths of approach, show that the functions in
Exercises 41–48 have no limit as 

41. 42.

43. 44.

45. 46.

47. 48.

Theory and Examples
In Exercises 49 and 50, show that the limits do not exist.

49. 50.

51. Let 

Find each of the following limits, or explain that the limit does not ex-
ist.

a.

b.

c. lim
(x, y): (0,0)

 ƒsx, yd

lim
(x, y): (2,3)

 ƒsx, yd

lim
(x, y): (0,1)

 ƒsx, yd

ƒsx, yd = •
1, y Ú x4

1, y … 0

0, otherwise.

 lim
(x, y): (1, -1)

 
xy + 1

x2
- y2 lim

(x, y): (1,1)
 
xy2

- 1

y - 1

hsx, yd =

x 2y

x4
+ y2hsx, yd =

x 2
+ y
y

g sx, yd =

x2
- y

x - ygsx, yd =

x - y
x + y

ƒsx, yd =

xy

ƒ xy ƒ

ƒsx, yd =

x4
- y 2

x4
+ y 2

z

yx

z

y

x

ƒsx, yd =

x4

x4
+ y 2ƒsx, yd = -

x

2x 2
+ y 2

sx, yd : s0, 0d.

hsx, y, zd =

1

4 - 2x2
+ y2

+ z2
- 9

hsx, y, zd = 24 - x2
- y2

- z2

hsx, y, zd =

1

z - 2x2
+ y2

hsx, y, zd = ln sz - x2
- y2

- 1d

hsx, y, zd =

1
ƒ xy ƒ + ƒ z ƒ

hsx, y, zd =

1
ƒ y ƒ + ƒ z ƒ

hsx, y, zd =

1
x 2

+ z 2
- 1

hsx, y, zd = xy sin 
1
z

ƒsx, y, zd = e x + y cos zƒsx, y, zd = ln xyz

ƒsx, y, zd = 2x 2
+ y 2

- 1

ƒsx, y, zd = x 2
+ y 2

- 2z 2

x Z y

x Z y

x Z y

x Z 1

y Z -4, x Z x2

x + y Z 4 2x - y Z 4

x Z y + 1
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52. Let 

Find the following limits.

a.

b.

c.

53. Show that the function in Example 6 has limit 0 along every
straight line approaching (0, 0).

54. If what can you say about

if ƒ is continuous at If ƒ is not continuous at 
Give reasons for your answers.

The Sandwich Theorem for functions of two variables states that if
for all in a disk centered

at and if g and h have the same finite limit L as
then

Use this result to support your answers to the questions in Exercises
55–58.

55. Does knowing that

tell you anything about

Give reasons for your answer.

56. Does knowing that

tell you anything about

Give reasons for your answer.

57. Does knowing that tell you anything about

Give reasons for your answer.

58. Does knowing that tell you anything about

Give reasons for your answer.

lim
sx, yd: s0,0d

 x cos 
1
y ?

ƒ cos s1>yd ƒ … 1

lim
sx, yd: s0,0d

 y sin 
1
x ?

ƒ sin s1>xd ƒ … 1

lim
sx, yd: s0,0d

 
4 - 4 cos 2ƒ xy ƒ

ƒ xy ƒ

?

2 ƒ xy ƒ -

x2y2

6
6 4 - 4 cos 2ƒ xy ƒ 6 2 ƒ xy ƒ

lim
sx, yd: s0,0d

 
tan-1 xy

xy ?

1 -

x 2y 2

3
6

tan-1 xy
xy 6 1

lim
sx, yd: sx0 , y0d

 ƒsx, yd = L.

sx, yd : sx0 , y0d,
sx0 , y0d

sx, yd Z sx0 , y0dgsx, yd … ƒsx, yd … hsx, yd

sx0 , y0d?sx0 , y0d?

lim
sx, yd: sx0 , y0d

 ƒsx, yd

ƒsx0 , y0d = 3,

 lim
(x, y): (0, 0)

 ƒsx, yd

 lim
(x, y): (-2, 1)

 ƒsx, yd

 lim
(x, y): (3, -2)

 ƒsx, yd

ƒsx, yd = e x2, x Ú 0

x3, x 6 0
 .

14.2 Limits and Continuity in Higher Dimensions 781

59. (Continuation of Example 5.)

a. Reread Example 5. Then substitute into the formula

and simplify the result to show how the value of ƒ varies with
the line’s angle of inclination.

b. Use the formula you obtained in part (a) to show that the limit
of ƒ as along the line varies from 
to 1 depending on the angle of approach.

60. Continuous extension Define ƒ(0, 0) in a way that extends

to be continuous at the origin.

Changing to Polar Coordinates If you cannot make any headway
with in rectangular coordinates, try changing to
polar coordinates. Substitute and investigate
the limit of the resulting expression as In other words, try to
decide whether there exists a number L satisfying the following crite-
rion:

Given there exists a such that for all r and 

(1)

If such an L exists, then

For instance,

To verify the last of these equalities, we need to show that Equation (1) is

satisfied with and That is, we need to show
that given any , there exists a such that for all r and 

Since

the implication holds for all r and if we take 
In contrast,

takes on all values from 0 to 1 regardless of how small is, so that

does not exist.
In each of these instances, the existence or nonexistence of the

limit as is fairly clear. Shifting to polar coordinates does not al-
ways help, however, and may even tempt us to false conclusions. For
example, the limit may exist along every straight line (or ray)

and yet fail to exist in the broader sense. Example 5 
illustrates this point. In polar coordinates, 
becomes

ƒsr cos u, r sin ud =

r cos u sin 2u

r 2 cos4 u + sin2 u

ƒsx, yd = s2x 2yd>sx4
+ y 2d

u = constant

r : 0

limsx, yd:s0,0d x
2>sx 2

+ y 2d
ƒ r ƒ

x 2

x 2
+ y 2 =

r 2 cos2 u

r 2 = cos2 u

d = P.u

ƒ r cos3 u ƒ = ƒ r ƒ ƒ cos3 u ƒ … ƒ r ƒ
# 1 = ƒ r ƒ ,

ƒ r ƒ 6 d Q  ƒ r cos3 u - 0 ƒ 6 P.

u,d 7 0P 7 0
L = 0.ƒsr, ud = r cos3 u

lim
sx, yd: s0,0d

 
x3

x 2
+ y 2 = lim

r:0
 
r 3 cos3 u

r 2 = lim
r:0

 r cos3 u = 0.

lim
sx, yd: s0,0d

 ƒsx, yd = lim
r:0

 ƒsr cos u, r sin ud = L.

ƒ r ƒ 6 d Q  ƒ ƒsr, ud - L ƒ 6 P.

u,d 7 0P 7 0,

r : 0.
x = r cos u, y = r sin u,

limsx, yd:s0,0d ƒsx, yd

ƒsx, yd = xy 
x 2

- y 2

x 2
+ y 2

-1y = mxsx, yd : s0, 0d

ƒsx, yd `
y = mx

=

2m

1 + m2

m = tan u
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for If we hold constant and let the limit is 0. On the
path however, we have and

In Exercises 61–66, find the limit of ƒ as or show that
the limit does not exist.

61. 62.

63. 64.

65.

66.

In Exercises 67 and 68, define ƒ(0, 0) in a way that extends ƒ to be
continuous at the origin.

67.

68. ƒsx, yd =

3x 2y

x 2
+ y 2

ƒsx, yd = ln a3x 2
- x 2y 2

+ 3y 2

x 2
+ y 2 b

ƒsx, yd =

x 2
- y 2

x 2
+ y 2

ƒsx, yd = tan-1 a ƒ x ƒ + ƒ y ƒ

x 2
+ y 2 b

ƒsx, yd =

2x

x 2
+ x + y 2ƒsx, yd =

y 2

x 2
+ y 2

ƒsx, yd = cos a x 3
- y 3

x 2
+ y 2 bƒsx, yd =

x 3
- xy 2

x 2
+ y 2

sx, yd : s0, 0d

 =

2r cos2 u sin u

2r 2 cos4 u
=

r sin u

r 2 cos2 u
= 1.

 ƒsr cos u, r sin ud =

r cos u sin 2u

r 2 cos4 u + sr cos2 ud2

r sin u = r 2 cos2 uy = x 2,
r : 0,ur Z 0.
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Using the Limit Definition
Each of Exercises 69–74 gives a function ƒ(x, y) and a positive number 
In each exercise, show that there exists a such that for all (x, y),

69.

70.

71.

72.

73.

74.

Each of Exercises 75–78 gives a function ƒ(x, y, z) and a positive num-
ber In each exercise, show that there exists a such that for all
(x, y, z),

75.

76.

77.

78.

79. Show that is continuous at every point

80. Show that is continuous at the origin.ƒsx, y, zd = x 2
+ y 2

+ z 2

sx0 , y0 , z0d.
ƒsx, y, zd = x + y - z

ƒsx, y, zd = tan2 x + tan2 y + tan2 z, P = 0.03

ƒsx, y, zd =

x + y + z

x 2
+ y 2

+ z 2
+ 1

 , P = 0.015

ƒsx, y, zd = xyz, P = 0.008

ƒsx, y, zd = x 2
+ y 2

+ z 2, P = 0.015

2x 2
+ y 2

+ z 2
6 d Q  ƒ ƒsx, y, zd - ƒs0, 0, 0d ƒ 6 P.

d 7 0P.

ƒsx, yd =

x3
+ y4

x2
+ y2  and f (0, 0) = 0, P = 0.02

ƒsx, yd =

xy2

x2
+ y2  and f (0, 0) = 0, P = 0.04

ƒsx, yd = sx + yd>s2 + cos xd, P = 0.02

ƒsx, yd = sx + yd>sx2
+ 1d, P = 0.01

ƒsx, yd = y>sx2
+ 1d, P = 0.05

ƒsx, yd = x2
+ y2, P = 0.01

2x 2
+ y 2

6 d Q  ƒ ƒsx, yd - ƒs0, 0d ƒ 6 P.

d 7 0
P.

14.3 Partial Derivatives

The calculus of several variables is similar to single-variable calculus applied to several
variables one at a time. When we hold all but one of the independent variables of a function
constant and differentiate with respect to that one variable, we get a “partial” derivative.
This section shows how partial derivatives are defined and interpreted geometrically, and
how to calculate them by applying the rules for differentiating functions of a single variable.
The idea of differentiability for functions of several variables requires more than the exis-
tence of the partial derivatives, but we will see that differentiable functions of several vari-
ables behave in the same way as differentiable single-variable functions.

Partial Derivatives of a Function of Two Variables

If is a point in the domain of a function ƒ(x, y), the vertical plane will cut
the surface in the curve (Figure 14.15). This curve is the graph
of the function in the plane The horizontal coordinate in this plane is
x; the vertical coordinate is z. The y-value is held constant at , so y is not a variable.

We define the partial derivative of ƒ with respect to x at the point as the ordi-
nary derivative of with respect to x at the point To distinguish partial de-
rivatives from ordinary derivatives we use the symbol rather than the d previously used.
In the definition, h represents a real number, positive or negative.

0

x = x0.ƒsx, y0d
sx0, y0d

y0

y = y0.z = ƒsx, y0d
z = ƒsx, y0dz = ƒsx, yd

y = y0sx0 , y0d
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An equivalent expression for the partial derivative is

The slope of the curve at the point in the plane 
is the value of the partial derivative of ƒ with respect to x at (In Figure 14.15 this
slope is negative.) The tangent line to the curve at P is the line in the plane that
passes through P with this slope. The partial derivative at gives the rate of
change of ƒ with respect to x when y is held fixed at the value 

We use several notations for the partial derivative:

or and or  

The definition of the partial derivative of ƒ(x, y) with respect to y at a point is
similar to the definition of the partial derivative of ƒ with respect to x. We hold x fixed at
the value and take the ordinary derivative of with respect to y at y0 .ƒsx0, ydx0

sx0, y0d

0z
0x  .ƒx,  

0ƒ
0x ,  zx,

0z
0x `

sx0, y0d 
,ƒxsx0, y0d,

0ƒ
0x  sx0, y0d

y0 .
sx0, y0d0ƒ>0x

y = y0

sx0, y0d.
y = y0Psx0, y0, ƒsx0, y0ddz = ƒsx, y0d

d
dx

 ƒ(x, y0) `
x = x0

.

14.3 Partial Derivatives 783

x
y

z

0

 

Tangent line

The curve z � f (x, y0)
in the plane y � y0

P(x0, y0, f (x0, y0))

Vertical axis in
the plane y � y0

z � f (x, y)

y0

x0

Horizontal axis in the plane y � y0

(x0 � h,  y0)
(x0, y0)

FIGURE 14.15 The intersection of the plane 
with the surface viewed from above the first
quadrant of the xy-plane.

z = ƒsx, yd,
y = y0

DEFINITION The partial derivative of ƒ(x, y) with respect to x at the point
is

provided the limit exists.

0ƒ
0x  `

sx0, y0d
= lim

h:0
 
ƒsx0 + h, y0d - ƒsx0, y0d

h
,

sx0, y0d

DEFINITION The partial derivative of ƒ(x, y) with respect to y at the point
is

provided the limit exists.

0ƒ
0y  `

sx0, y0d
=

d
dy

 ƒsx0, yd `
y = y0

= lim
h:0

 
ƒsx0, y0 + hd - ƒsx0, y0d

h
,

sx0, y0d
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The slope of the curve at the point in the vertical
plane (Figure 14.16) is the partial derivative of ƒ with respect to y at The
tangent line to the curve at P is the line in the plane that passes through P with this
slope. The partial derivative gives the rate of change of ƒ with respect to y at when
x is held fixed at the value 

The partial derivative with respect to y is denoted the same way as the partial deriva-
tive with respect to x:

Notice that we now have two tangent lines associated with the surface at
the point (Figure 14.17). Is the plane they determine tangent to the sur-
face at P? We will see that it is for the differentiable functions defined at the end of this
section, and we will learn how to find the tangent plane in Section 14.6. First we have to
learn more about partial derivatives themselves.

Psx0, y0, ƒsx0, y0dd
z = ƒsx, yd

0ƒ
0y  sx0, y0d, ƒysx0, y0d, 0ƒ

0y , ƒy .

x0.
sx0, y0d

x = x0

sx0, y0d.x = x0

Psx0, y0, ƒsx0, y0ddz = ƒsx0, yd

784 Chapter 14: Partial Derivatives

x

z

y

P(x0, y0, f (x0, y0))

y0x0

(x0, y0)

(x0, y0 � k)

The curve z � f (x0, y)
in the plane

x � x0

Horizontal axis
in the plane x � x0

 z � f (x, y)

Tangent line

Vertical axis
in the plane

x � x0

0

FIGURE 14.16 The intersection of the
plane with the surface 
viewed from above the first quadrant of 
the xy-plane.

z = ƒsx, yd,x = x0

x

y

z

This tangent line
has slope fy(x0, y0). This tangent line

has slope fx(x0, y0).

The curve z � f (x, y0)
in the plane y � y0

z �  f (x, y)

x � x0y � y0 (x0, y0)

The curve z � f (x0, y)
in the plane x � x0

 P(x0, y0, f (x0, y0))

FIGURE 14.17 Figures 14.15 and 14.16 combined. The tangent
lines at the point determine a plane that, in this
picture at least, appears to be tangent to the surface.

sx0, y0, ƒsx0, y0dd

Calculations

The definitions of and give us two different ways of differentiating ƒ at a
point: with respect to x in the usual way while treating y as a constant and with respect to y
in the usual way while treating x as a constant. As the following examples show, the values
of these partial derivatives are usually different at a given point 

EXAMPLE 1 Find the values of and at the point if

Solution To find we treat y as a constant and differentiate with respect to x:

The value of at is 2s4d + 3s -5d = -7.s4, -5d0ƒ>0x

0ƒ
0x =

0

0x sx 2
+ 3xy + y - 1d = 2x + 3 # 1 # y + 0 - 0 = 2x + 3y.

0ƒ>0x,

ƒsx, yd = x2
+ 3xy + y - 1.

s4, -5d0ƒ>0y0ƒ>0x

sx0, y0d.

0ƒ>0y0ƒ>0x
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To find we treat x as a constant and differentiate with respect to y:

The value of at is  

EXAMPLE 2 Find as a function if 

Solution We treat x as a constant and ƒ as a product of y and sin xy:

EXAMPLE 3 Find and as functions if

Solution We treat ƒ as a quotient. With y held constant, we get

With x held constant, we get

Implicit differentiation works for partial derivatives the way it works for ordinary
derivatives, as the next example illustrates.

EXAMPLE 4 Find if the equation

defines z as a function of the two independent variables x and y and the partial derivative
exists.

Solution We differentiate both sides of the equation with respect to x, holding y constant
and treating z as a differentiable function of x:

 
0z
0x =

z
yz - 1

.

 ay -
1
z b  

0z
0x = 1

 y 
0z
0x -

1
z  

0z
0x = 1 + 0

 
0

0x s yzd -
0

0x ln z =
0x
0x +

0y
0x

yz - ln z = x + y

0z>0x

 =

s y + cos xds2d - 2ys1d
s y + cos xd2 =

2 cos x
s y + cos xd2 .

ƒy =
0

0y a 2y
y + cos x b =

s y + cos xd 
0

0y s2yd - 2y 
0

dy
 s y + cos xd

s y + cos xd2

 =

s y + cos xds0d - 2ys -sin xd
s y + cos xd2 =

2y sin x

s y + cos xd2 .

 ƒx =
0

0x a 2y
y + cos x b =

s y + cos xd 
0

0x s2yd - 2y 
0

0x s y + cos xd

s y + cos xd2

ƒsx, yd =

2y
y + cos x .

ƒyƒx

 = s y cos xyd 
0

0y sxyd + sin xy = xy cos xy + sin xy.

 
0ƒ
0y =

0

0y s y sin xyd = y 
0

0y sin xy + ssin xyd 
0

0y s yd

ƒsx, yd = y sin xy.0ƒ>0y

3s4d + 1 = 13.s4, -5d0ƒ>0y

0ƒ
0y =

0

0y sx 2
+ 3xy + y - 1d = 0 + 3 # x # 1 + 1 - 0 = 3x + 1.

0ƒ>0y,

14.3 Partial Derivatives 785

With y constant,
0

0x
 s yzd = y 

0z
0x

.
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EXAMPLE 5 The plane intersects the paraboloid in a parabola.
Find the slope of the tangent to the parabola at (1, 2, 5) (Figure 14.18).

Solution The slope is the value of the partial derivative at (1, 2):

As a check, we can treat the parabola as the graph of the single-variable function
in the plane and ask for the slope at The slope,

calculated now as an ordinary derivative, is

Functions of More Than Two Variables

The definitions of the partial derivatives of functions of more than two independent vari-
ables are like the definitions for functions of two variables. They are ordinary derivatives
with respect to one variable, taken while the other independent variables are held constant.

EXAMPLE 6 If x, y, and z are independent variables and

then

EXAMPLE 7 If resistors of and ohms are connected in parallel to make an
R-ohm resistor, the value of R can be found from the equation

(Figure 14.19). Find the value of when and ohms.

Solution To find we treat and as constants and, using implicit differentia-
tion, differentiate both sides of the equation with respect to 

When and 

1
R

=
1

30
+

1
45

+
1

90
=

3 + 2 + 1
90

=
6

90
=

1
15

,

R3 = 90,R1 = 30, R2 = 45,

 
0R
0R2

=
R2

R2
2 = a R

R2
b2

.

 -
1

R2 
0R
0R2

= 0 -
1

R2
2 + 0

 
0

0R2
 a1

R
b =

0

0R2
 a 1

R1
+

1
R2

+
1
R3
b

R2 :
R3R10R>0R2,

R3 = 90R1 = 30, R2 = 45,0R>0R2

1
R

=
1
R1

+
1
R2

+
1
R3

R3R1, R2 ,

 = x cos s y + 3zd 
0

0z s y + 3zd = 3x cos s y + 3zd.

 
0ƒ
0z =

0

0z [x sin s y + 3zd] = x 
0

0z sin s y + 3zd

ƒsx, y, zd = x sin s y + 3zd,

dz
dy

 `
y = 2

=
d
dy

 s1 + y 2d `
y = 2

= 2y `
y = 2

= 4.

y = 2.x = 1z = s1d2
+ y 2

= 1 + y 2

0z
0y `

s1,2d
=

0

0y sx 2
+ y 2d `

s1,2d
= 2y `

s1,2d
= 2s2d = 4.

0z>0y

z = x 2
+ y 2x = 1
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x

y
1 2

(1, 2, 5)

z

Surface
z � x2 � y2

x � 1

Tangent
line

Plane
x � 1

FIGURE 14.18 The tangent to the curve
of intersection of the plane and
surface at the point (1, 2, 5)
(Example 5).

z = x 2
+ y 2

x = 1

� �

R3

R2

R1

FIGURE 14.19 Resistors arranged this
way are said to be connected in parallel
(Example 7). Each resistor lets a portion of
the current through. Their equivalent
resistance R is calculated with the formula

1
R

=

1
R1

+

1
R2

+

1
R3

.
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so and

Thus at the given values, a small change in the resistance leads to a change in R about
th as large.

Partial Derivatives and Continuity

A function ƒ(x, y) can have partial derivatives with respect to both x and y at a point with-
out the function being continuous there. This is different from functions of a single vari-
able, where the existence of a derivative implies continuity. If the partial derivatives of
ƒ(x, y) exist and are continuous throughout a disk centered at however, then ƒ is
continuous at as we see at the end of this section.

EXAMPLE 8 Let

(Figure 14.20).

(a) Find the limit of ƒ as (x, y) approaches (0, 0) along the line 

(b) Prove that ƒ is not continuous at the origin.

(c) Show that both partial derivatives and exist at the origin.

Solution

(a) Since ƒ(x, y) is constantly zero along the line (except at the origin), we have

(b) Since the limit in part (a) proves that ƒ is not continuous at (0, 0).

(c) To find at (0, 0), we hold y fixed at Then for all x, and the
graph of ƒ is the line in Figure 14.20. The slope of this line at any x is In
particular, at (0, 0). Similarly, is the slope of line at any y, so

at (0, 0).

Example 8 notwithstanding, it is still true in higher dimensions that differentiability at
a point implies continuity. What Example 8 suggests is that we need a stronger require-
ment for differentiability in higher dimensions than the mere existence of the partial deriv-
atives. We define differentiability for functions of two variables (which is slightly more
complicated than for single-variable functions) at the end of this section and then revisit
the connection to continuity.

Second-Order Partial Derivatives

When we differentiate a function ƒ(x, y) twice, we produce its second-order derivatives.
These derivatives are usually denoted by

and
0

2ƒ
0y0x  or  ƒxy .

0
2ƒ

0x0y  or  ƒyx ,

0
2ƒ

0y2  or  ƒyy ,
0

2ƒ

0x2  or  ƒxx ,

0ƒ>0y = 0
L20ƒ>0y0ƒ>0x = 0

0ƒ>0x = 0.L1

ƒsx, yd = 1y = 0.0ƒ>0x

ƒs0, 0d = 1,

lim
sx, yd: s0,0d

 ƒsx, yd `
y = x

= lim
sx, yd: s0,0d

0 = 0.

y = x

0ƒ>0y0ƒ>0x

y = x.

ƒsx, yd = e0, xy Z 0

1, xy = 0

sx0, y0d,
sx0 , y0d,

1>9 R2

0R
0R2

= a15
45
b2

= a1
3
b2

=
1
9

.

R = 15
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y

z

x

0

1

L1

L 2

z �
0,  xy � 0
1,  xy � 0

FIGURE 14.20 The graph of

consists of the lines and and the four
open quadrants of the xy-plane. The
function has partial derivatives at the
origin but is not continuous there
(Example 8).

L2L1

ƒsx, yd = e0, xy Z 0

1, xy = 0
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The defining equations are

and so on. Notice the order in which the mixed partial derivatives are taken:

EXAMPLE 9 If find the second-order derivatives

Solution The first step is to calculate both first partial derivatives.

Now we find both partial derivatives of each first partial:

The Mixed Derivative Theorem

You may have noticed that the “mixed” second-order partial derivatives

in Example 9 are equal. This is not a coincidence. They must be equal whenever
and are continuous, as stated in the following theorem.ƒyxƒ, ƒx , ƒy , ƒxy ,

0
2ƒ

0y0x and 0
2ƒ

0x0y

 
0

2ƒ

0y2 =
0

0y a0ƒ
0y b = -x cos y. 

0
2ƒ

0x2 =
0

0x a0ƒ
0x b = ye x.

 
0

2ƒ
0x0y =

0

0x a0ƒ
0y b = -sin y + e x 

0
2ƒ

0y0x =
0

0y a0ƒ
0x b = -sin y + e x

 = -x sin y + e x = cos y + ye x

 
0ƒ
0y =

0

0y sx cos y + ye xd 
0ƒ
0x =

0

0x sx cos y + ye xd

0
2ƒ

0x2 , 0
2ƒ

0y0x , 0
2ƒ

0y2 , and 0
2ƒ

0x0y .

ƒsx, yd = x cos y + yex,

 ƒyx = sƒydx Means the same thing.

0
2ƒ

0x0y  Differentiate first with respect to y, then with respect to x.

0
2ƒ

0x2 =
0

0x a0ƒ
0x b , 0

2ƒ
0x0y =

0

0x a0ƒ
0y b ,
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HISTORICAL BIOGRAPHY

Pierre-Simon Laplace
(1749–1827)

THEOREM 2—The Mixed Derivative Theorem If and its partial
derivatives and are defined throughout an open region containing
a point (a, b) and are all continuous at (a, b), then

ƒxysa, bd = ƒyxsa, bd.

ƒyxƒx , ƒy , ƒxy ,
ƒsx, yd

HISTORICAL BIOGRAPHY

Alexis Clairaut
(1713–1765)

Theorem 2 is also known as Clairaut’s Theorem, named after the French mathemati-
cian Alexis Clairaut who discovered it. A proof is given in Appendix 9. Theorem 2 says
that to calculate a mixed second-order derivative, we may differentiate in either order, pro-
vided the continuity conditions are satisfied. This ability to proceed in different order
sometimes simplifies our calculations.

EXAMPLE 10 Find if

w = xy +
e y

y 2
+ 1

.

0
2w>0x0y
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Solution The symbol tells us to differentiate first with respect to y and then
with respect to x. However, if we interchange the order of differentiation and differentiate
first with respect to x we get the answer more quickly. In two steps,

If we differentiate first with respect to y, we obtain as well. We can differen-
tiate in either order because the conditions of Theorem 2 hold for at all points ( ).

Partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial derivatives, because
these appear the most frequently in applications, there is no theoretical limit to how many
times we can differentiate a function as long as the derivatives involved exist. Thus, we get
third- and fourth-order derivatives denoted by symbols like

,

and so on. As with second-order derivatives, the order of differentiation is immaterial as
long as all the derivatives through the order in question are continuous.

EXAMPLE 11 Find 

Solution We first differentiate with respect to the variable y, then x, then y again, and
finally with respect to z:

Differentiability

The starting point for differentiability is not the difference quotient we saw in studying single-
variable functions, but rather the idea of increment. Recall from our work with functions of a sin-
gle variable in Section 3.11 that if is differentiable at then the change in the
value of ƒ that results from changing x from to is given by an equation of the form

in which as For functions of two variables, the analogous property be-
comes the definition of differentiability. The Increment Theorem (proved in Appendix 9)
tells us when to expect the property to hold.

¢x : 0.P : 0

¢y = ƒ¿sx0d¢x + P¢x

x0 + ¢xx0

x = x0,y = ƒsxd

 ƒyxyz = -4

 ƒyxy = -4z

 ƒyx = -4yz + 2x

 ƒy = -4xyz + x2

ƒyxyz if  ƒsx, y, zd = 1 - 2xy 2z + x 2y.

 
0

4ƒ

0x 2
0y 2 = ƒyyxx , 

 
0

3ƒ

0x0y 2 = ƒyyx

x0, y0w
0

2w>0x0y = 1

0w
0x = y and 0

2w
0y0x = 1.

0
2w>0x0y

14.3 Partial Derivatives 789

THEOREM 3—The Increment Theorem for Functions of Two Variables Suppose
that the first partial derivatives of ƒ(x, y) are defined throughout an open region R
containing the point and that and are continuous at Then
the change

in the value of ƒ that results from moving from to another point 
in R satisfies an equation of the form

in which each of as both ¢x, ¢y : 0.P1, P2 : 0

¢z = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y

(x0 + ¢x, y0 + ¢yd
sx0, y0d

¢z = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0, y0d

sx0, y0d.ƒyƒxsx0, y0d
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You can see where the epsilons come from in the proof given in Appendix 9. Similar re-
sults hold for functions of more than two independent variables.

790 Chapter 14: Partial Derivatives

DEFINITION A function is differentiable at if 
and exist and satisfies an equation of the form

in which each of as both We call ƒ differentiable if it is
differentiable at every point in its domain, and say that its graph is a smooth surface.

¢x, ¢y : 0.P1, P2 : 0

¢z = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y

¢zƒysx0, y0d
ƒxsx0, y0dsx0, y0dz = ƒsx, yd

COROLLARY OF THEOREM 3 If the partial derivatives and of a function
ƒ(x, y) are continuous throughout an open region R, then ƒ is differentiable at
every point of R.

ƒyƒx

THEOREM 4—Differentiability Implies Continuity If a function is
differentiable at then ƒ is continuous at sx0 , y0d.sx0 , y0d,

ƒsx, yd

Because of this definition, an immediate corollary of Theorem 3 is that a function is
differentiable at if its first partial derivatives are continuous there.sx0, y0d

If is differentiable, then the definition of differentiability assures that
approaches 0 as and approach 0. This tells

us that a function of two variables is continuous at every point where it is differentiable.
¢y¢x¢z = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 , y0d

z = ƒsx, yd

As we can see from Corollary 3 and Theorem 4, a function ƒ(x, y) must be continuous at a
point if and are continuous throughout an open region containing 
Remember, however, that it is still possible for a function of two variables to be discontin-
uous at a point where its first partial derivatives exist, as we saw in Example 8. Existence
alone of the partial derivatives at that point is not enough, but continuity of the partial de-
rivatives guarantees differentiability.

sx0 , y0d.ƒyƒxsx0 , y0d

Exercises 14.3

Calculating First-Order Partial Derivatives
In Exercises 1–22, find and 

1. 2.

3.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. ƒsx, yd = cos2 s3x - y2dƒsx, yd = sin2 sx - 3yd
ƒsx, yd = e xy ln yƒsx, yd = ln sx + yd
ƒsx, yd = e-x sin sx + ydƒsx, yd = e sx + y + 1d

ƒsx, yd = tan-1 s y>xdƒsx, yd = sx + yd>sxy - 1d
ƒsx, yd = x>sx2

+ y2dƒsx, yd = 1>sx + yd
ƒsx, yd = sx3

+ s y>2dd2>3ƒsx, yd = 2x2
+ y2

ƒsx, yd = s2x - 3yd3ƒsx, yd = sxy - 1d2

ƒsx, yd = 5xy - 7x 2
- y 2

+ 3x - 6y + 2

ƒsx, yd = sx2
- 1ds y + 2d

ƒsx, yd = x2
- xy + y2ƒsx, yd = 2x2

- 3y - 4

0ƒ>0y.0ƒ>0x
19. 20.

21.

22.

In Exercises 23–34, find and 

23. 24.

25.

26.

27. 28.

29. ƒsx, y, zd = ln sx + 2y + 3zd

ƒsx, y, zd = sec-1 sx + yzdƒsx, y, zd = sin-1 sxyzd

ƒsx, y, zd = sx2
+ y2

+ z2d-1>2
ƒsx, y, zd = x - 2y2

+ z2

ƒsx, y, zd = xy + yz + xzƒsx, y, zd = 1 + xy2
- 2z2

ƒz.ƒx , ƒy ,

ƒsx, yd = a

q

n = 0
sxydn s ƒ xy ƒ 6 1d

ƒsx, yd =

L

y

x
 g std dt sg continuous for all td

ƒsx, yd = logy xƒsx, yd = xy
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30. 31.

32.

33.

34.

In Exercises 35–40, find the partial derivative of the function with re-
spect to each variable.

35. 36.

37. 38.

39. Work done by the heart (Section 3.11, Exercise 61)

40. Wilson lot size formula (Section 4.6, Exercise 53)

Calculating Second-Order Partial Derivatives
Find all the second-order partial derivatives of the functions in Exer-
cises 41–50.

41. 42.

43.

44. 45.

46. 47.

48. 49.

50.

Mixed Partial Derivatives
In Exercises 51–54, verify that 

51. 52.

53. 54.

55. Which order of differentiation will calculate faster: x first or y
first? Try to answer without writing anything down.

a.

b.

c.

d.

e.

f.

56. The fifth-order partial derivative is zero for each of
the following functions. To show this as quickly as possible, which
variable would you differentiate with respect to first: x or y? Try
to answer without writing anything down.

a.

b.

c.

d. ƒsx, yd = xe y2>2
ƒsx, yd = x2

+ 5xy + sin x + 7e x

ƒsx, yd = y2
+ yssin x - x4d

ƒsx, yd = y 2x4ex
+ 2

0
5ƒ>0x 2

0y3

ƒsx, yd = x ln xy

ƒsx, yd = x2
+ 5xy + sin x + 7e x

ƒsx, yd = y + x2y + 4y3
- ln s y2

+ 1d

ƒsx, yd = y + sx>yd

ƒsx, yd = 1>x
ƒsx, yd = x sin y + e y

fxy

w = x sin y + y sin x + xyw = xy2
+ x2y3

+ x3y4

w = e x
+ x ln y + y ln xw = ln s2x + 3yd

wxy = wyx.

w =

x - y

x2
+ y

w = x sin sx2ydw = yex2
-  y

w = x2 tan sxydssx, yd = tan-1 s y>xd

r sx, yd = ln sx + ydhsx, yd = xe y
+ y + 1

g sx, yd = x 2y + cos y + y sin x

ƒsx, yd = sin xyƒsx, yd = x + y + xy

Asc, h, k, m, qd =

km
q + cm +

hq

2

WsP, V, d, y, gd = PV +

Vdy2

2g

g sr, u, zd = r s1 - cos ud - zhsr, f, ud = r sin f cos u

g su, yd = y2e s2u>ydƒst, ad = cos s2pt - ad

ƒsx, y, zd = sinh sxy - z 2d
ƒsx, y, zd = tanh sx + 2y + 3zd
ƒsx, y, zd = e-xyz

ƒsx, y, zd = e-sx2
+ y2

+ z2dƒsx, y, zd = yz ln sxyd
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Using the Partial Derivative Definition
In Exercises 57–60, use the limit definition of partial derivative to
compute the partial derivatives of the functions at the specified points.

57.

58.

59.

60.

and at

61. Let Find the slope of the line tangent to
this surface at the point and lying in the a. plane 
b. plane 

62. Let Find the slope of the line tangent to this
surface at the point and lying in the a. plane 
b. plane 

63. Three variables Let be a function of three inde-
pendent variables and write the formal definition of the partial
derivative at Use this definition to find at
(1, 2, 3) for 

64. Three variables Let be a function of three inde-
pendent variables and write the formal definition of the partial
derivative at Use this definition to find at

for 

Differentiating Implicitly
65. Find the value of at the point (1, 1, 1) if the equation

defines z as a function of the two independent variables x and y
and the partial derivative exists.

66. Find the value of at the point if the equation

defines x as a function of the two independent variables y and z
and the partial derivative exists.

Exercises 67 and 68 are about the triangle shown here.

67. Express A implicitly as a function of a, b, and c and calculate
and 

68. Express a implicitly as a function of A, b, and B and calculate
and 

69. Two dependent variables Express in terms of u and y if the
equations and define u and as functions
of the independent variables x and y, and if exists. (Hint: Dif-
ferentiate both equations with respect to x and solve for by
eliminating ux .)

yx

yx

yy = u ln yx = y ln u
yx

0a>0B.0a>0A

0A>0b.0A>0a

c

B

C
A

a

b

xz + y ln x - x2
+ 4 = 0

s1, -1, -3d0x>0z

xy + z3x - 2yz = 0

0z>0x

ƒsx, y, zd = -2xy2
+ yz2.s -1, 0, 3d

0ƒ>0ysx0 , y0 , z0d.0ƒ>0y

w = ƒsx, y, zd
ƒsx, y, zd = x2yz2.

0ƒ>0zsx0 , y0 , z0d.0ƒ>0z

w = ƒsx, y, zd
y = 1.

x = -1s -1, 1d
ƒsx, yd = x2

+ y3.

y = -1.
x = 2s2, -1d

ƒsx, yd = 2x + 3y - 4.

s0, 0d
0ƒ
0y

0ƒ
0x

ƒsx, yd = •
sin sx3

+ y4d

x2
+ y2 , (x, y) Z s0, 0d

0, sx, yd = s0, 0d,

ƒsx, yd = 22x + 3y - 1, 
0ƒ
0x and 

0ƒ
0y   at s -2, 3d

ƒsx, yd = 4 + 2x - 3y - xy 2, 
0ƒ
0x    and   

0ƒ
0y   at s -2, 1d

ƒsx, yd = 1 - x + y - 3x 2y, 
0ƒ
0x    and   

0ƒ
0y    at s1, 2d

7001_ThomasET_ch14p765-853.qxd  10/30/09  7:41 AM  Page 791



70. Two dependent variables Find and if the equa-
tions and define x and y as functions
of the independent variables u and and the partial derivatives
exist. (See the hint in Exercise 69.) Then let and find

71. Let 

Find and and state the domain for each partial 
derivative.

72. Let 

Find and and state the domain for each partial 
derivative.

Theory and Examples
The three-dimensional Laplace equation

is satisfied by steady-state temperature distributions in
space, by gravitational potentials, and by electrostatic potentials. The
two-dimensional Laplace equation

obtained by dropping the term from the previous equation,
describes potentials and steady-state temperature distributions in a
plane (see the accompanying figure). The plane (a) may be treated as
a thin slice of the solid (b) perpendicular to the z-axis.

(a)

(b)

Boundary temperatures controlled

�       � 0
∂2f

∂x2

∂2f

∂y2

�       �       � 0
∂2f

∂x2

∂2f

∂y2

∂2f

∂z2

0
2ƒ>0z2

0
2ƒ

0x2 +

0
2ƒ

0y2 = 0,

T = ƒsx, y, zd

0
2ƒ

0x2 +

0
2ƒ

0y2 +

0
2ƒ

0z2 = 0

ƒyx,ƒx, ƒy, ƒxy,

ƒsx, yd = b2x, x Ú 0

x2, x 6 0.

ƒyx,ƒx, ƒy, ƒxy,

ƒsx, yd = b y3, y Ú 0

-y2, y 6 0.

0s>0u.
s = x2

+ y2
y,

y = x2
- yu = x2

- y2
0y>0u0x>0u
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Show that each function in Exercises 73–80 satisfies a Laplace
equation.

73.

74.

75.

76.

77.

78.

79.

80.

The Wave Equation If we stand on an ocean shore and take a snap-
shot of the waves, the picture shows a regular pattern of peaks and val-
leys in an instant of time. We see periodic vertical motion in space,
with respect to distance. If we stand in the water, we can feel the rise
and fall of the water as the waves go by. We see periodic vertical mo-
tion in time. In physics, this beautiful symmetry is expressed by the
one-dimensional wave equation

where w is the wave height, x is the distance variable, t is the time
variable, and c is the velocity with which the waves are propagated.

In our example, x is the distance across the ocean’s surface, but in
other applications, x might be the distance along a vibrating string,
distance through air (sound waves), or distance through space (light
waves). The number c varies with the medium and type of wave.

Show that the functions in Exercises 81–87 are all solutions of
the wave equation.

81.

82.

83.

84. 85.

86.

87. where ƒ is a differentiable function of u, and 
where a is a constant

88. Does a function ƒ(x, y) with continuous first partial derivatives
throughout an open region R have to be continuous on R? Give
reasons for your answer.

89. If a function has continuous second partial derivatives
throughout an open region R, must the first-order partial deriva-
tives of ƒ be continuous on R? Give reasons for your answer.

ƒsx, yd

asx + ctd,
u =w = ƒsud,

w = 5 cos s3x + 3ctd + e x + ct

w = tan s2x - 2ctdw = ln s2x + 2ctd
w = sin sx + ctd + cos s2x + 2ctd
w = cos s2x + 2ctd
w = sin sx + ctd

w

x

x

0
2w

0t2 = c2 
0

2w

0x2 ,

ƒsx, y, zd = e3x + 4y cos 5z

ƒsx, y, zd = sx 2
+ y 2

+ z 2d-1>2
ƒsx, yd = tan-1 

x
y

ƒsx, yd = 3x + 2y - 4

ƒsx, yd = ln2x 2
+ y 2

ƒsx, yd = e-2y cos 2x

ƒsx, y, zd = 2z 3
- 3sx 2

+ y 2dz
ƒsx, y, zd = x 2

+ y 2
- 2z 2
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90. The heat equation An important partial differential equation
that describes the distribution of heat in a region at time t can be
represented by the one-dimensional heat equation

Show that satisfies the heat equation for
constants and . What is the relationship between and for
this function to be a solution?

91. Let ƒsx, yd = •
xy2

x2
+ y4, (x, y) Z s0, 0d

0, sx, yd = s0, 0d.

baba

usx, td = sin saxd # e-bt

0ƒ
0t =

0
2ƒ

0x2 .
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Show that and exist, but ƒ is not differentiable at
(Hint: Use Theorem 4 and show that ƒ is not continuous at

)

92. Let 

Show that and exist, but ƒ is not differentiable at
s0, 0d.

ƒys0, 0dƒxs0, 0d

ƒsx, yd = b0, x2
6 y 6 2x2

1, otherwise.

s0, 0d.
s0, 0d.

ƒys0, 0dƒxs0, 0d

14.4 The Chain Rule

The Chain Rule for functions of a single variable studied in Section 3.6 says that when
is a differentiable function of x and is a differentiable function of t, w is

a differentiable function of t and dw dt can be calculated by the formula

For functions of two or more variables the Chain Rule has several forms. The form de-
pends on how many variables are involved, but once this is taken into account, it works
like the Chain Rule in Section 3.6.

Functions of Two Variables

The Chain Rule formula for a differentiable function when and
are both differentiable functions of t is given in the following theorem.y = ystd

x = xstdw = ƒsx, yd

dw
dt

=
dw
dx

 
dx
dt

.

> x = gstdw = ƒsxd

THEOREM 5—Chain Rule for Functions of One Independent Variable and Two
Intermediate Variables If is differentiable and if 
are differentiable functions of t, then the composite is a
differentiable function of t and

or

dw
dt

=

0ƒ
0x  

dx
dt

+

0ƒ
0y  

dy
dt

.

dw
dt

= ƒxsxstd, ystdd # x¿std + ƒysxstd, ystdd # y¿std,

w = ƒsxstd, ystdd
x = xstd, y = ystdw = ƒsx, ydEach of indicates the partial 

derivative of ƒ with respect to x.

0ƒ
0x , 

0w
0x , ƒx

Proof The proof consists of showing that if x and y are differentiable at then w
is differentiable at and

where The subscripts indicate where each of the derivatives is to be
evaluated.

P0 = sxst0d, yst0dd.

adw
dt
b

t0

= a0w
0x bP0

 adx
dt
b

t0

+ a0w
0y bP0

 ady
dt
b

t0

,

t0
t = t0 ,
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Let and be the increments that result from changing t from to 
Since ƒ is differentiable (see the definition in Section 14.3),

where as To find dw dt, we divide this equation through by 
and let approach zero. The division gives

Letting approach zero gives

Often we write for the partial derivative so we can rewrite the Chain
Rule in Theorem 5 in the form

0ƒ>0x,0w>0x

 = a0w
0x bP0

 adx
dt
b

t0

+ a0w
0y bP0

 ady
dt
b

t0

+ 0 # adx
dt
b

t0

+ 0 # ady
dt
b

t0

.

 adw
dt
b

t0

= lim
¢t:0

 
¢w
¢t

¢t

¢w
¢t

= a0w
0x bP0

 
¢x
¢t

+ a0w
0y bP0

 
¢y

¢t
+ P1 

¢x
¢t

+ P2 
¢y

¢t
.

¢t
¢t>¢x, ¢y : 0.P1, P2 : 0

¢w = a0w
0x bP0

 ¢x + a0w
0y bP0

 ¢y + P1¢x + P2¢y ,

t0 + ¢t.t0¢w¢x, ¢y,
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To remember the Chain Rule picture the
diagram below. To find dw dt, start at w
and read down each route to t, multiplying
derivatives along the way. Then add the
products.

Chain Rule

t

yx

w � f (x, y)

0w
0y

0w
0x

dy
dt

dx
dt

dw
dt

0w
0x

dx
dt

0w
0y

dy
dt

� �

Intermediate
variables

Dependent
variable

Independent
variable

>
dw
dt

=
0w
0x  

dx
dt

+
0w
0y  

dy
dt

.

However, the meaning of the dependent variable w is different on each side of the preced-
ing equation. On the left-hand side, it refers to the composite function 
as a function of the single variable t. On the right-hand side, it refers to the function

as a function of the two variables x and y. Moreover, the single derivatives
and are being evaluated at a point whereas the partial derivatives

and are being evaluated at the point with and 
With that understanding, we will use both of these forms interchangeably throughout the
text whenever no confusion will arise.

The branch diagram in the margin provides a convenient way to remember the Chain
Rule. The “true” independent variable in the composite function is t, whereas x and y are
intermediate variables (controlled by t) and w is the dependent variable.

A more precise notation for the Chain Rule shows where the various derivatives in
Theorem 5 are evaluated:

EXAMPLE 1 Use the Chain Rule to find the derivative of

with respect to t along the path What is the derivative’s value at

Solution We apply the Chain Rule to find dw dt as follows:

 = cos 2t.

 = -sin2 t + cos2 t

 = ssin tds -sin td + scos tdscos td
 = s yds -sin td + sxdscos td

 =

0sxyd
0x  #  

d
dt

 scos td +

0sxyd
0y  #  

d
dt

 ssin td

 
dw
dt

=
0w
0x  

dx
dt

+
0w
0y  

dy
dt

>
t = p>2?

x = cos t, y = sin t.

w = xy

dw
dt

 st0d =

0ƒ
0x  sx0 , y0) #  

dx
dt

 st0d +

0ƒ
0y  sx0 , y0d 

#  
dy
dt

 st0d.

y0 = y st0d.x0 = x st0dsx0, y0d,0w>0y0w>0x
t0,dy>dtdw>dt, dx>dt,

w = ƒsx, yd

w = ƒsxstd, ystdd
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In this example, we can check the result with a more direct calculation. As a function of t,

so

In either case, at the given value of t,

Functions of Three Variables

You can probably predict the Chain Rule for functions of three intermediate variables, as it
only involves adding the expected third term to the two-variable formula.

adw
dt
b

t =p>2 = cos a2 # p
2
b = cos p = -1 .

dw
dt

=
d
dt

 a1
2

 sin 2tb =
1
2

 #  2 cos 2t = cos 2t .

w = xy = cos t sin t =
1
2

 sin 2t ,

14.4 The Chain Rule 795

THEOREM 6—Chain Rule for Functions of One Independent Variable and Three
Intermediate Variables If is differentiable and x, y, and z are
differentiable functions of t, then w is a differentiable function of t and

dw
dt

=
0w
0x  

dx
dt

+
0w
0y  

dy
dt

+
0w
0z  

dz
dt

.

w = ƒsx, y, zd

The proof is identical with the proof of Theorem 5 except that there are now three in-
termediate variables instead of two. The branch diagram we use for remembering the new
equation is similar as well, with three routes from w to t.

EXAMPLE 2 Find dw dt if

In this example the values of w(t) are changing along the path of a helix (Section 13.1) as t
changes. What is the derivative’s value at 

Solution Using the Chain Rule for three intermediate variables, we have

so

For a physical interpretation of change along a curve think of an object whose posi-
tion is changing with time t. If is the temperature at each point (x, y, z)
along a curve C with parametric equations and then the com-
posite function represents the temperature relative to t along the
curve. The derivative dw dt is then the instantaneous rate of change of temperature due to
the motion along the curve, as calculated in Theorem 6.

Functions Defined on Surfaces

If we are interested in the temperature at points (x, y, z) on the earth’s sur-
face, we might prefer to think of x, y, and z as functions of the variables r and s that give

w = ƒsx, y, zd

>w = Tsxstd, ystd, zstdd
z = zstd,x = xstd, y = ystd,

w = Tsx, y, zd

 adw
dt
b

t = 0
= 1 + cos s0d = 2.

 = -sin2 t + cos2 t + 1 = 1 + cos 2t,

 = ssin tds -sin td + scos tdscos td + 1

 = s yds -sin td + sxdscos td + s1ds1d

 
dw
dt

=
0w
0x  

dx
dt

+
0w
0y  

dy
dt

+
0w
0z  

dz
dt

t = 0?

w = xy + z, x = cos t, y = sin t, z = t.

>
Here we have three routes from w to t
instead of two, but finding dw dt is still
the same. Read down each route,
multiplying derivatives along the way; 
then add.

>

Chain Rule

t

zyx

w � f (x, y, z)

0w
0z

0w
0x

0w
0y

dy
dt dz

dt
dx
dt

dw
dt

0w
0x

dx
dt

0w
0y

dy
dt� �

0w
0z

dz
dt�

Intermediate
variables

Dependent
variable

Independent
variable

Substitute for the
intermediate
variables.
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the points’ longitudes and latitudes. If and we could
then express the temperature as a function of r and s with the composite function

Under the conditions stated below, w has partial derivatives with respect to both r and s
that can be calculated in the following way.

w = ƒsgsr, sd, hsr, sd, ksr, sdd.

z = ksr, sd,x = gsr, sd, y = hsr, sd,

796 Chapter 14: Partial Derivatives

THEOREM 7—Chain Rule for Two Independent Variables and Three Intermediate
Variables Suppose that and 
If all four functions are differentiable, then w has partial derivatives with respect to
r and s, given by the formulas

0w
0s =

0w
0x  

0x
0s +

0w
0y  

0y
0s +

0w
0z  

0z
0s .

0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r +

0w
0z  

0z
0r

z = ksr, sd.y = hsr, sd,x = gsr, sd, w = ƒsx, y, zd, 

w

(a)

g h k

f

x y z

r, s

Dependent
variable

Independent
variables

Intermediate
variables

w � f ( g(r, s), h (r, s), k (r, s))

(b)

r

zx y

w � f (x, y, z)

0w
0x 0w

0y

0y
0r

0x
0r

0w
0z

0z
0r

0w
0r

0w
0x

0x
0r

0w
0y

0y
0r�

0w
0z

0z
0r��

s

zx y

(c)

0w
0x

0w
0y

0y
0s0x

0s

0w
0z

0z
0s

0w
0s

0w
0x

0x
0s

0w
0y

0y
0s�

0w
0z

0z
0s��

w � f (x, y, z)

FIGURE 14.21 Composite function and branch diagrams for Theorem 7.

The first of these equations can be derived from the Chain Rule in Theorem 6 by hold-
ing s fixed and treating r as t. The second can be derived in the same way, holding r fixed
and treating s as t. The branch diagrams for both equations are shown in Figure 14.21.

EXAMPLE 3 Express and in terms of r and s if

Solution Using the formulas in Theorem 7, we find

 = s1d a- r
s2 b + s2d a1s b + s2zds0d =

2
s -

r
s2

 
0w
0s =

0w
0x  

0x
0s +

0w
0y  

0y
0s +

0w
0z  

0z
0s

 =
1
s + 4r + s4rds2d =

1
s + 12r

 = s1d a1s b + s2ds2rd + s2zds2d

 
0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r +

0w
0z  

0z
0r

w = x + 2y + z2, x =
r
s , y = r2

+ ln s, z = 2r.

0w>0s0w>0r

Substitute for intermediate
variable z.
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If ƒ is a function of two intermediate variables instead of three, each equation in The-
orem 7 becomes correspondingly one term shorter.

14.4 The Chain Rule 797

If and then

0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r and 0w

0s =
0w
0x  

0x
0s +

0w
0y  

0y
0s .

y = hsr, sd,w = ƒsx, yd, x = gsr, sd,

Substitute
for the
intermediate
variables.

Chain Rule

r

yx

 w � f (x, y)

0w
0x

0x
0r

0w
0y

0y
0r

0w
0r

0w
0x

0x
0r

0w
0y

0y
0r� �

FIGURE 14.22 Branch diagram for
the equation

0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r .

Chain Rule

r

x

s

w � f (x)

dw
dx

0x
0r

0x
0s

0w
0r

dw
dx

0x
0r�

0w
0s

dw
dx

0x
0s�

FIGURE 14.23 Branch diagram for
differentiating ƒ as a composite function of
r and s with one intermediate variable.

If and then

0w
0r =

dw
dx

 
0x
0r and 0w

0s =
dw
dx

 
0x
0s .

x = gsr, sd,w = ƒsxd

Figure 14.22 shows the branch diagram for the first of these equations. The diagram
for the second equation is similar; just replace r with s.

EXAMPLE 4 Express and in terms of r and s if

Solution The preceding discussion gives the following.

If ƒ is a function of a single intermediate variable x, our equations are even simpler.

 = 4r   = 4s

 = 2sr - sd + 2sr + sd   = -2sr - sd + 2sr + sd

 = s2xds1d + s2yds1d   = s2xds -1d + s2yds1d

 
0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r   

0w
0s =

0w
0x  

0x
0s +

0w
0y  

0y
0s

w = x2
+ y2, x = r - s, y = r + s .

0w>0s0w>0r

In this case, we use the ordinary (single-variable) derivative, dw dx. The branch diagram is
shown in Figure 14.23.

Implicit Differentiation Revisited

The two-variable Chain Rule in Theorem 5 leads to a formula that takes some of the alge-
bra out of implicit differentiation. Suppose that

1. The function F(x, y) is differentiable and

2. The equation defines y implicitly as a differentiable function of x, say

Since the derivative dw dx must be zero. Computing the derivative from
the Chain Rule (branch diagram in Figure 14.24), we find

 = Fx
# 1 + Fy

#
dy
dx

.

 0 =
dw
dx

= Fx 
dx
dx

+ Fy 
dy
dx

>w = Fsx, yd = 0,

y = hsxd.
Fsx, yd = 0

>

Theorem 5 with 
and ƒ = F

t = x
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If we can solve this equation for dy dx to get

We state this result formally.

dy
dx

= -

Fx

Fy
.

>Fy = 0w>0y Z 0,

798 Chapter 14: Partial Derivatives

x

x

w � F(x, y)

� Fx
0w
0x

dx
dx � 1

y � h(x)

Fy �
0w
0y

dy
dx � h'(x)

� Fx • 1 � Fy •
dw
dx

dy
dx

FIGURE 14.24 Branch diagram for
differentiating with respect
to x. Setting leads to a simple
computational formula for implicit
differentiation (Theorem 8).

dw>dx = 0
w = Fsx, yd

THEOREM 8—A Formula for Implicit Differentiation Suppose that F(x, y) is
differentiable and that the equation defines y as a differentiable
function of x. Then at any point where 

(1)
dy
dx

= -

Fx

Fy
.

Fy Z 0,
Fsx, yd = 0

EXAMPLE 5 Use Theorem 8 to find dy dx if 

Solution Take Then

This calculation is significantly shorter than a single-variable calculation using implicit
differentiation.

The result in Theorem 8 is easily extended to three variables. Suppose that the equa-
tion defines the variable z implicitly as a function Then for all

in the domain of ƒ, we have Assuming that F and ƒ are differ-
entiable functions, we can use the Chain Rule to differentiate the equation 
with respect to the independent variable x:

so

A similar calculation for differentiating with respect to the independent variable y gives

Whenever we can solve these last two equations for the partial derivatives of
to obtainz = ƒsx, yd

Fz Z 0,

Fy + Fz 
0z
0y = 0.

Fx + Fz 
0z
0x = 0.

 = Fx
# 1 + Fy

# 0 + Fz
# 0z
0x  ,

 0 =
0F
0x  

0x
0x +

0F
0y  

0y
0x +

0F
0z  

0z
0x

Fsx, y, zd = 0
Fsx, y, ƒsx, ydd = 0.sx, yd

z = ƒsx, yd.Fsx, y, zd = 0

 =

2x + y cos xy
2y - x cos xy

.

 
dy
dx

= -

Fx

Fy
= -

-2x - y cos xy
2y - x cos xy

Fsx, yd = y 2
- x 2

- sin xy.

y 2
- x 2

- sin xy = 0.>

(2)
0z
0x = -

Fx

Fz
  and 0z

0y = -

Fy

Fz
 .

y is constant when 
differentiating with 
respect to x.
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An important result from advanced calculus, called the Implicit Function Theorem,
states the conditions for which our results in Equations (2) are valid. If the partial deriva-
tives and are continuous throughout an open region R in space containing the
point and if for some constant and then
the equation defines z implicitly as a differentiable function of x and y near

and the partial derivatives of z are given by Equations (2).

EXAMPLE 6 Find  and  at if  

Solution Let Then

and

Since and all first partial derivatives are continuous,
the Implicit Function Theorem says that defines z as a differentiable func-
tion of x and y near the point From Equations (2),

and

At we find

and

Functions of Many Variables

We have seen several different forms of the Chain Rule in this section, but each one is just
a special case of one general formula. When solving particular problems, it may help to
draw the appropriate branch diagram by placing the dependent variable on top, the inter-
mediate variables in the middle, and the selected independent variable at the bottom. To
find the derivative of the dependent variable with respect to the selected independent vari-
able, start at the dependent variable and read down each route of the branch diagram to the
independent variable, calculating and multiplying the derivatives along each route. Then
add the products found for the different routes.

In general, suppose that is a differentiable function of the variables
(a finite set) and the are differentiable functions of (an-

other finite set). Then w is a differentiable function of the variables p through t, and the par-
tial derivatives of w with respect to these variables are given by equations of the form

The other equations are obtained by replacing p by one at a time.
One way to remember this equation is to think of the right-hand side as the dot prod-

uct of two vectors with components

Derivatives of w with Derivatives of the intermediate
respect to the variables with respect to the

intermediate variables selected independent variable

('''')''''*('''')''''*

a0w
0x , 

0w
0y , Á , 

0w
0y
b and a0x

0p, 
0y
0p, Á , 

0y
0p b .

q, Á , t,

0w
0p =

0w
0x  

0x
0p +

0w
0y  

0y
0p +

Á
+

0w
0y

 
0y
0p .

p, q, Á , tx, y, Á , yx, y, Á , y
w = ƒsx, y, Á , yd

0z
0y = -

1
1

= -1.
0z
0x = -

0
1

= 0

s0, 0, 0d

0z
0y = -

Fy

Fz
= -

exz
- z sin y

2z + xyexz
+ cos y

.
0z
0x = -

Fx

Fz
= -

3x2
+ zyexz

2z + xyexz
+ cos y

s0, 0, 0d.
Fsx, y, zd = 0

Fs0, 0, 0d = 0, Fzs0, 0, 0d = 1 Z 0,

Fz = 2z + xyexz
+ cos y.Fy = exz

- z sin y,Fx = 3x2
+ zyexz,

Fsx, y, zd = x3
+ z2

+ yexz
+ z cos y.

x3
+ z2

+ yexz
+ z cos y = 0.s0, 0, 0d0z

0y
0z
0x

sx0, y0, z0d,
Fsx, y, zd = c

Fzsx0, y0, z0d Z 0,c, Fsx0, y0, z0d = csx0, y0, z0d,
FzFx, Fy,

14.4 The Chain Rule 799
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Exercises 14.4

Chain Rule: One Independent Variable
In Exercises 1–6, (a) express dw dt as a function of t, both by using the
Chain Rule and by expressing w in terms of t and differentiating di-
rectly with respect to t. Then (b) evaluate dw dt at the given value of t.

1.

2.

3.

4.

5.

6.

Chain Rule: Two and Three Independent Variables
In Exercises 7 and 8, (a) express and as functions of u and

both by using the Chain Rule and by expressing z directly in terms
of u and before differentiating. Then (b) evaluate and at
the given point 

7.

8.

In Exercises 9 and 10, (a) express and as functions of u
and both by using the Chain Rule and by expressing w directly in
terms of u and before differentiating. Then (b) evaluate and

at the given point (u, ).

9.

10.

In Exercises 11 and 12, (a) express and as func-
tions of x, y, and z both by using the Chain Rule and by expressing u
directly in terms of x, y, and z before differentiating. Then (b) evaluate

and at the given point (x, y, z).

11.

12.

Using a Branch Diagram
In Exercises 13–24, draw a branch diagram and write a Chain Rule
formula for each derivative.

13.

14.

15.

z = ksu, yd

0w
0u  and 

0w
0y

 for w = hsx, y, zd, x = ƒsu, yd, y = gsu, yd, 

dz
dt

 for z = ƒsu, y, wd, u = gstd, y = hstd, w = kstd

dz
dt

 for z = ƒsx, yd, x = gstd, y = hstd

sx, y, zd = sp>4, 1>2, -1>2d
u = e qr sin-1 p, p = sin x, q = z 2 ln y, r = 1>z; 

sx, y, zd = A23, 2, 1 Br = x + y - z; 

u =

p - q
q - r , p = x + y + z, q = x - y + z, 

0u>0z0u>0x, 0u>0y,

0u>0z0u>0x, 0u>0y,

z = uey; su, yd = s -2, 0d
w = ln sx 2

+ y 2
+ z 2d, x = uey sin u, y = uey cos u, 

su, yd = s1>2, 1d
w = xy + yz + xz, x = u + y, y = u - y, z = uy ; 

y0w>0y 0w>0uy

y

0w>0y0w>0u

su, yd = s1.3, p>6d
z = tan-1 sx>yd, x = u cos y, y = u sin y; 
su, yd = s2, p>4d
z = 4e x ln y, x = ln su cos yd, y = u sin y; 

su, yd.
0z>0y0z>0uy

y

0z>0y0z>0u

w = z - sin xy, x = t, y = ln t, z = et - 1; t = 1

t = 1
w = 2ye x

- ln z, x = ln st 2
+ 1d, y = tan-1 t, z = e t; 

t = 3
w = ln sx 2

+ y 2
+ z 2d, x = cos t, y = sin t, z = 42t ; 

w =

x
z +

y
z , x = cos2 t, y = sin2 t, z = 1>t; t = 3

w = x 2
+ y 2, x = cos t + sin t, y = cos t - sin t; t = 0

w = x 2
+ y 2, x = cos t, y = sin t; t = p

>
> 16.

17.

18.

19.

20.

21.

22.

23.

24.

Implicit Differentiation
Assuming that the equations in Exercises 25–28 define y as a differen-
tiable function of x, use Theorem 8 to find the value of dy dx at the
given point.

25.

26.

27.

28.

Find the values of and at the points in Exercises 29–32.

29.

30.

31.

32.

Finding Partial Derivatives at Specified Points
33. Find when if 

34. Find when if 

35. Find when if 

36. Find when if 

37. Find and when if
and

38. Find and when , if
and q = 1y + 3 tan-1 u.

ln qz =y = -2u = 10z>0y0z>0u

x = eu
+ ln y.5 tan-1 x

z =u = ln 2, y = 10z>0y0z>0u

x = u2
+ y2, y = uy.

z = sin xy + x sin y,u = 0, y = 10z>0u

x = u - 2y + 1, y = 2u + y - 2.
w = x2

+ sy>xd,u = 0, y = 00w>0y
x = y2>u, y = u + y, z = cos u.

w = xy + ln z,u = -1, y = 20w>0y
y = cos sr + sd, z = sin sr + sd.x = r - s,

w = sx + y + zd2, r = 1, s = -10w>0r

xe y
+ ye z

+ 2 ln x - 2 - 3 ln 2 = 0, s1, ln 2, ln 3d
sin sx + yd + sin s y + zd + sin sx + zd = 0, sp, p, pd

1
x +

1
y +

1
z - 1 = 0, s2, 3, 6d

z3
- xy + yz + y 3

- 2 = 0, s1, 1, 1d

0z>0y0z>0x

xe y
+ sin xy + y - ln 2 = 0, s0, ln 2d

x2
+ xy + y 2

- 7 = 0, s1, 2d
xy + y 2

- 3x - 3 = 0, s -1, 1d
x 3

- 2y 2
+ xy = 0, s1, 1d

>

0w
0s  for w = gsx, yd, x = hsr, s, td, y = ksr, s, td

0w
0r  and 

0w
0s  for w = ƒsx, yd, x = gsrd, y = hssd

z = js p, qd, y = ks p, qd

0w
0p  for w = ƒsx, y, z, yd, x = gs p, qd, y = hs p, qd, 

0w
0s  and 

0w
0t  for w = gsud, u = hss, td

0y
0r  for y = ƒsud, u = gsr, sd

0z
0t  and 

0z
0s for z = ƒsx, yd, x = gst, sd, y = hst, sd

0w
0x  and 

0w
0y  for w = gsu, yd, u = hsx, yd, y = ksx, yd

0w
0u  and 

0w
0y

 for w = gsx, yd, x = hsu, yd, y = ksu, yd

t = ksx, yd

0w
0x  and 

0w
0y  for w = ƒsr, s, td, r = gsx, yd, s = hsx, yd, 
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Theory and Examples
39. Assume that and Find and .

40. Assume that and 

Find and 

41. Changing voltage in a circuit The voltage V in a circuit that
satisfies the law is slowly dropping as the battery wears
out. At the same time, the resistance R is increasing as the resistor
heats up. Use the equation

to find how the current is changing at the instant when 
and 

42. Changing dimensions in a box The lengths a, b, and c of the
edges of a rectangular box are changing with time. At the instant
in question, 

and At what rates are the box’s vol-
ume V and surface area S changing at that instant? Are the box’s
interior diagonals increasing in length or decreasing?

43. If ƒ(u, w) is differentiable and and
show that

44. Polar coordinates Suppose that we substitute polar coordinates
and in a differentiable function

a. Show that

and

b. Solve the equations in part (a) to express and in terms of
and 

c. Show that

45. Laplace equations Show that if satisfies the
Laplace equation and if and

then w satisfies the Laplace equation 

46. Laplace equations Let where ,
, and Show that w satisfies the Laplace

equation if all the necessary functions are differ-
entiable.

wxx + wyy = 0
i = 2-1.y = x - iy

u = x + iyw = ƒsud + g syd,

wxx + wyy = 0.y = xy,
u = sx 2

- y 2d>2ƒuu + ƒyy = 0
w = ƒsu, yd

sƒxd2
+ sƒyd2

= a0w
0r b

2

+

1
r 2 a0w

0u
b2

.

0w>0u.0w>0r
ƒyƒx

1
r  

0w
0u

= -ƒx sin u + ƒy cos u.

0w
0r = ƒx cos u + ƒy sin u

w = ƒsx, yd.
y = r sin ux = r cos u

0ƒ
0x +

0ƒ
0y +

0ƒ
0z = 0.

w = z - x,
u = x - y, y = y - z,y,

dc>dt = -3 m>sec.1 m>sec,
da>dt = db>dt =c = 3 m,b = 2 m,a = 1 m,

R

� �
V

I

Battery

-0.01 volt>sec.
dV>dt =dR>dt = 0.5 ohm>sec,I = 0.04 amp,600 ohms,

R =

dV
dt

=

0V
0I

 
dI
dt

+

0V
0R

 
dR
dt

V = IR

0w
0s .

0w
0t

x2

2
.

0f
0y sx, yd =

0f
0x sx, yd = xy,w = ƒQts2, 

s
tR ,

0w
0s

0w
0tƒ¿sxd = ex.w = ƒss3

+ t2d

14.4 The Chain Rule 801

47. Extreme values on a helix Suppose that the partial derivatives
of a function ƒ(x, y, z) at points on the helix 

are

At what points on the curve, if any, can ƒ take on extreme values?

48. A space curve Let Find the value of dw dt
at the point on the curve 

49. Temperature on a circle Let be the temperature 
at the point (x, y) on the circle 
and suppose that

a. Find where the maximum and minimum temperatures on the
circle occur by examining the derivatives dT dt and 

b. Suppose that Find the maximum and
minimum values of T on the circle.

50. Temperature on an ellipse Let be the temperature
at the point (x, y) on the ellipse

and suppose that

a. Locate the maximum and minimum temperatures on the el-
lipse by examining dT dt and 

b. Suppose that Find the maximum and minimum
values of T on the ellipse.

Differentiating Integrals Under mild continuity restrictions, it is
true that if

then Using this fact and the Chain Rule, we

can find the derivative of

by letting

where Find the derivatives of the functions in Exercises 51
and 52.

51. 52. Fsxd =

L

1

x2
2t 3

+ x 2 dtFsxd =

L

x2

0
2t 4

+ x 3 dt

u = ƒsxd.

Gsu, xd =

L

u

a
 g st, xd dt,

Fsxd =

L

ƒsxd

a
 g st, xd dt

F¿sxd =

L

b

a
 gxst, xd dt.

Fsxd =

L

b

a
 g st, xd dt,

T = xy - 2.

d2T>dt2.>

0T
0x = y, 0T

0y = x.

x = 222 cos t, y = 22 sin t, 0 … t … 2p,

T = g sx, yd

T = 4x 2
- 4xy + 4y 2.

d 2T>dt 2.>

0T
0x = 8x - 4y, 0T

0y = 8y - 4x.

x = cos t, y = sin t, 0 … t … 2p
T = ƒsx, yd

z = t.
x = cos t, y = ln st + 2d,s1, ln 2, 0d

>w = x 2e 2y cos 3z .

ƒx = cos t, ƒy = sin t, ƒz = t 2
+ t - 2.

z = t
x = cos t, y = sin t,
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14.5 Directional Derivatives and Gradient Vectors

If you look at the map (Figure 14.25) showing contours within the Halelca Forest Reserve
in Kauai, you will notice that the streams flow perpendicular to the contours. The streams
are following paths of steepest descent so the waters reach the Pacific Ocean as quickly as
possible. Therefore, the fastest instantaneous rate of change in a stream’s elevation above
sea level has a particular direction. In this section, you will see why this direction, called
the “downhill” direction, is perpendicular to the contours.

802 Chapter 14: Partial Derivatives

FIGURE 14.25 Contours within the Halelca Forest
Reserve in Kauai show streams, which follow paths of
steepest descent, running perpendicular to the contours.
(On their way to the Pacific, some streams appear to
meander in valleys of fairly constant elevation.)

Directional Derivatives in the Plane

We know from Section 14.4 that if ƒ(x, y) is differentiable, then the rate at which ƒ changes
with respect to t along a differentiable curve is

At any point this equation gives the rate of change of ƒ with
respect to increasing t and therefore depends, among other things, on the direction of mo-
tion along the curve. If the curve is a straight line and t is the arc length parameter along
the line measured from in the direction of a given unit vector u, then dƒ dt is the rate of
change of ƒ with respect to distance in its domain in the direction of u. By varying u, we
find the rates at which ƒ changes with respect to distance as we move through in differ-
ent directions. We now define this idea more precisely.

Suppose that the function ƒ(x, y) is defined throughout a region R in the xy-plane, that
is a point in R, and that is a unit vector. Then the equations

parametrize the line through parallel to u. If the parameter s measures arc length from
in the direction of u, we find the rate of change of ƒ at in the direction of u by calcu-

lating dƒ ds at (Figure 14.26).P0> P0P0

P0

x = x0 + su1, y = y0 + su2

u = u1 i + u2 jP0sx0, y0d

P0

>P0

P0sx0, y0d = P0sgst0d, hst0dd,

dƒ
dt

=

0ƒ
0x  

dx
dt

+

0ƒ
0y  

dy
dt

.

x = gstd, y = hstd

x

y

0

R

Line x � x0 � su1, y � y0 � su2

u � u1i � u2 j

Direction of
increasing s

P0(x0, y0) 

FIGURE 14.26 The rate of change of ƒ in
the direction of u at a point is the rate at
which ƒ changes along this line at P0 .

P0
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The directional derivative defined by Equation (1) is also denoted by

The partial derivatives and are the directional derivatives of ƒ at in
the i and j directions. This observation can be seen by comparing Equation (1) to the defi-
nitions of the two partial derivatives given in Section 14.3.

EXAMPLE 1 Using the definition, find the derivative of

at in the direction of the unit vector 

Solution Applying the definition in Equation (1), we obtain

The rate of change of at in the direction is 

Interpretation of the Directional Derivative

The equation represents a surface S in space. If then the point
lies on S. The vertical plane that passes through P and parallel to u

intersects S in a curve C (Figure 14.27). The rate of change of ƒ in the direction of u is the
slope of the tangent to C at P in the right-handed system formed by the vectors u and k.

When the directional derivative at is evaluated at When
the directional derivative at is evaluated at The directional deriva-

tive generalizes the two partial derivatives. We can now ask for the rate of change of ƒ in
any direction u, not just the directions i and j.

sx0, y0d.0ƒ>0yP0u = j,
sx0, y0d.0ƒ>0xP0u = i,

P0sx0, y0dPsx0, y0, z0d
z0 = ƒsx0, y0d,z = ƒsx, yd

5>12.uP0s1, 2dƒsx, yd = x2
+ xy

 = lim
s:0

 

5s

22
+ s2

s = lim
s:0

 ¢ 5

22
+ s≤ =

5

22
.

 = lim
s:0

 

¢1 +
2s

22
+

s2

2 ≤ + ¢2 +
3s

22
+

s2

2 ≤ - 3

s

 = lim
s:0

 

¢1 +
s

22
≤2

+ ¢1 +
s

22
≤ ¢2 +

s

22
≤ - s12

+ 1 # 2d

s

 = lim
s:0

 

ƒ¢1 + s # 1

22
, 2 + s # 1

22
≤ - ƒs1, 2d

s

 ¢dƒ
ds
≤

u,P0

= lim
s:0

 
ƒsx0 + su1, y0 + su2d - ƒsx0, y0d

s

u = A1>22 B i + A1>22 B j.P0s1, 2d

ƒsx, yd = x 2
+ xy

P0ƒysx0, y0dƒxsx0, y0d

sDu ƒdP0.

14.5 Directional Derivatives and Gradient Vectors 803

DEFINITION The derivative of ƒ at in the direction of the unit
vector is the number

(1)

provided the limit exists.

adƒ
ds
b

u,P0

= lim
s:0

 
ƒsx0 + su1, y0 + su2d - ƒsx0, y0d

s ,

u2ju � u1i �
P0(x0, y0)

“The derivative of ƒ at 
in the direction of u”

P0

Eq. (1)

⎫
⎬
⎭

z

x

yC

Q

s

Surface S:
z � f (x, y)

f (x0 � su1, y0 � su2 ) � f (x0, y0)

Tangent line

P(x0, y0, z0)

P0(x0, y0) u � u1i � u2 j

(x0 � su1, y0 � su2)

FIGURE 14.27 The slope of curve C at
is slope (PQ); this is the 

directional derivative

adƒ

ds
b

u, P0

= sDu ƒdP0.

lim
Q:P

P0
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For a physical interpretation of the directional derivative, suppose that is
the temperature at each point (x, y) over a region in the plane. Then is the temper-
ature at the point and is the instantaneous rate of change of the temper-
ature at stepping off in the direction u.

Calculation and Gradients

We now develop an efficient formula to calculate the directional derivative for a differen-
tiable function ƒ. We begin with the line

(2)

through parametrized with the arc length parameter s increasing in the direction
of the unit vector Then by the Chain Rule we find

(3)

Equation (3) says that the derivative of a differentiable function ƒ in the direction of u
at is the dot product of u with the special vector called the gradient of ƒ at P0 .P0

 = c a0ƒ
0x bP0

 i + a0ƒ
0y bP0

j d # cu1 i + u2 j d .

 = a0ƒ
0x bP0

u1 + a0ƒ
0y bP0

u2

 adƒ
ds
b

u,P0

= a0ƒ
0x bP0

 
dx
ds

+ a0ƒ
0y bP0

 
dy
ds

u = u1 i + u2 j.
P0sx0, y0d,

x = x0 + su1 , y = y0 + su2 ,

P0

sDu ƒdP0P0sx0, y0d
ƒsx0, y0d

T = ƒsx, yd

804 Chapter 14: Partial Derivatives

Chain Rule for differentiable ƒ

From Eqs. (2),
and dy>ds = u2dx>ds = u1

Gradient of ƒ at P0 Direction u
144442444443 14243

DEFINITION The gradient vector (gradient) of ƒ(x, y) at a point 
is the vector

obtained by evaluating the partial derivatives of ƒ at P0.

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j

P0sx0, y0d

THEOREM 9—The Directional Derivative Is a Dot Product If is
differentiable in an open region containing then

(4)

the dot product of the gradient at and u.P0§ƒ

adƒ
ds
b

u,P0

= s§ƒdP0
# u,

P0sx0 , y0d,
ƒsx, yd

The notation is read “grad ƒ” as well as “gradient of ƒ” and “del ƒ.” The symbol by
itself is read “del.” Another notation for the gradient is grad ƒ.

§§ƒ

EXAMPLE 2 Find the derivative of at the point (2, 0) in the
direction of 

Solution The direction of v is the unit vector obtained by dividing v by its length:

u =
v

ƒ v ƒ

=
v
5

=
3
5 i -

4
5 j.

v = 3i - 4j.
ƒsx, yd = xe y

+ cos sxyd
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The partial derivatives of ƒ are everywhere continuous and at (2, 0) are given by

The gradient of ƒ at (2, 0) is

(Figure 14.28). The derivative of ƒ at (2, 0) in the direction of v is therefore

Evaluating the dot product in the formula

where is the angle between the vectors u and reveals the following properties.§ƒ,u

Duƒ = §ƒ # u = ƒ §ƒ ƒ ƒ u ƒ cos u = ƒ §ƒ ƒ cos u,

 = si + 2jd # a35 i -
4
5 jb =

3
5 -

8
5 = -1.

 sDuƒd ƒ s2,0d = §ƒ ƒ s2,0d # u

§ƒ ƒ s2,0d = ƒxs2, 0di + ƒys2, 0dj = i + 2j

 fys2, 0d = sxe y
- x sin sxydds2,0d = 2e0

- 2 # 0 = 2.

 fxs2, 0d = se y
- y sin sxydds2,0d = e0

- 0 = 1

14.5 Directional Derivatives and Gradient Vectors 805

x

y

0 1 3 4

–1

1

2
∇f � i � 2j

u �    i �    j3
5

4
5

P0(2, 0)

FIGURE 14.28 Picture as a vector
in the domain of ƒ. The figure shows a
number of level curves of ƒ. The rate at
which ƒ changes at (2, 0) in the direction

is 
(Example 2).

§ƒ # u = -1u = s3>5di - s4>5dj

§ƒ

As we discuss later, these properties hold in three dimensions as well as two.

EXAMPLE 3 Find the directions in which 

(a) increases most rapidly at the point (1, 1).

(b) decreases most rapidly at (1, 1).

(c) What are the directions of zero change in ƒ at (1, 1)?

Solution

(a) The function increases most rapidly in the direction of at (1, 1). The gradient there
is

Its direction is

(b) The function decreases most rapidly in the direction of at (1, 1), which is

-u = -
1

22
 i -

1

22
 j.

- §ƒ

u =

i + j

ƒ i + j ƒ

=

i + j

2s1d2
+ s1d2

=
1

22
 i +

1

22
 j.

s§ƒds1,1d = sxi + yjds1,1d = i + j.

§ƒ

ƒsx, yd = sx 2>2d + s y 2>2d

Properties of the Directional Derivative 

1. The function ƒ increases most rapidly when or when and u
is the direction of That is, at each point P in its domain, ƒ increases most
rapidly in the direction of the gradient vector at P. The derivative in this
direction is

2. Similarly, ƒ decreases most rapidly in the direction of The derivative in
this direction is 

3. Any direction u orthogonal to a gradient is a direction of zero change
in ƒ because then equals and

Duƒ = ƒ §ƒ ƒ cos sp>2d = ƒ §ƒ ƒ
# 0 = 0.

p>2u

§f Z 0

Duƒ = ƒ §ƒ ƒ cos spd = - ƒ §ƒ ƒ .
- §ƒ.

Duƒ = ƒ §ƒ ƒ cos s0d = ƒ §ƒ ƒ .

§ƒ
§ƒ.

u = 0cos u = 1

Duƒ = §ƒ # u = ƒ §ƒ ƒ cos u

Eq. (4)
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(c) The directions of zero change at (1, 1) are the directions orthogonal to 

See Figure 14.29.

Gradients and Tangents to Level Curves

If a differentiable function has a constant value c along a smooth curve
(making the curve a level curve of ƒ ), then Differenti-

ating both sides of this equation with respect to t leads to the equations

(5)

Equation (5) says that is normal to the tangent vector dr dt, so it is normal to the curve.>§ƒ

dr

dt
§ƒ

('')''*('')''*

 a0ƒ
0x  i +

0ƒ
0y  jb # adg

dt
 i +

dh
dt

 jb = 0.

 
0ƒ
0x  

dg
dt

+

0ƒ
0y  

dh
dt

= 0

 
d
dt

 ƒsgstd, hstdd =
d
dt

 scd

ƒsgstd, hstdd = c.r = gstdi + hstdj
ƒsx, yd

n = -
1

22
 i +

1

22
 j and -n =

1

22
 i -

1

22
 j.

§ƒ:

806 Chapter 14: Partial Derivatives

Chain Rule

z

x

y
1

1

(1, 1)

(1, 1, 1)

Most rapid
increase in f

Most rapid
decrease in f

∇f � i � j

Zero change
in f

–∇f

z � f (x, y)

�      �
2
x2

2
y2

FIGURE 14.29 The direction in which
increases most rapidly at (1, 1) is

the direction of It corre-
sponds to the direction of steepest ascent
on the surface at (1, 1, 1) (Example 3).

§ƒ ƒ s1,1d = i + j.
ƒsx, yd

At every point in the domain of a differentiable function ƒ(x, y), the gra-
dient of ƒ is normal to the level curve through (Figure 14.30).sx0, y0d

sx0, y0d
The level curve f (x, y) � f (x0, y0)

(x0, y0)

∇f (x0, y0)

FIGURE 14.30 The gradient of a differ-
entiable function of two variables at a point
is always normal to the function’s level
curve through that point.

y

x
0–1–2

1

1 2

∇f (–2, 1) � – i � 2j x � 2y � –4

(–2, 1)

�2

2�2

� y2 � 2x2

4

FIGURE 14.31 We can find the tangent
to the ellipse by treating
the ellipse as a level curve of the function

(Example 4).ƒsx, yd = sx 2>4d + y 2

sx 2>4d + y 2
= 2

Equation (5) validates our observation that streams flow perpendicular to the contours
in topographical maps (see Figure 14.25). Since the downflowing stream will reach its
destination in the fastest way, it must flow in the direction of the negative gradient vectors
from Property 2 for the directional derivative. Equation (5) tells us these directions are
perpendicular to the level curves.

This observation also enables us to find equations for tangent lines to level curves.
They are the lines normal to the gradients. The line through a point normal to a
vector has the equation

(Exercise 39). If N is the gradient the equation is
the tangent line given by

(6)

EXAMPLE 4 Find an equation for the tangent to the ellipse

(Figure 14.31) at the point 

Solution The ellipse is a level curve of the function

The gradient of ƒ at is

§ƒ ƒ s-2,1d = ax
2

 i + 2yjb
s-2,1d

= - i + 2j.

s -2, 1d

ƒsx, yd =
x 2

4
+ y 2.

s -2, 1d.

x 2

4
+ y 2

= 2

ƒxsx0, y0dsx - x0d + ƒysx0, y0dsy - y0d = 0.

s§ƒdsx0, y0d = ƒxsx0, y0di + ƒysx0, y0dj,

Asx - x0d + Bs y - y0d = 0

N = Ai + Bj
P0sx0, y0d
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The tangent is the line

Eq. (6)

If we know the gradients of two functions ƒ and g, we automatically know the gradients of
their sum, difference, constant multiples, product, and quotient. You are asked to establish
the following rules in Exercise 40. Notice that these rules have the same form as the corre-
sponding rules for derivatives of single-variable functions.

x - 2y = -4. 

 s -1dsx + 2d + s2ds y - 1d = 0

14.5 Directional Derivatives and Gradient Vectors 807

Algebra Rules for Gradients

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule:

4. Product Rule:

5. Quotient Rule: § aƒg b =

g§ƒ - ƒ§g

g2

§sƒgd = ƒ§g + g§ƒ

§skƒd = k§ƒ sany number kd
§sƒ - gd = §ƒ - §g

§sƒ + gd = §ƒ + §g

EXAMPLE 5 We illustrate two of the rules with

We have

1. Rule 2

2.

Rule 4

Functions of Three Variables

For a differentiable function ƒ(x, y, z) and a unit vector in space, we
have

and

The directional derivative can once again be written in the form

so the properties listed earlier for functions of two variables extend to three variables. At
any given point, ƒ increases most rapidly in the direction of and decreases most rapidly
in the direction of In any direction orthogonal to the derivative is zero.§ƒ,- §ƒ.

§ƒ

Duƒ = §ƒ # u = ƒ §ƒ ƒ ƒ u ƒ  cos u = ƒ §ƒ ƒ  cos u,

Duƒ = §ƒ # u =

0ƒ
0x  u1 +

0ƒ
0y  u2 +

0ƒ
0z  u3.

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k

u = u1 i + u2 j + u3 k

 = 3ysi - jd + sx - yd3j = g§ƒ + ƒ§g

 = 3ysi - jd + s3x - 3ydj

 = 3ysi - jd + 3yj + s3x - 6ydj

§sƒgd = §s3xy - 3y2d = 3yi + s3x - 6ydj

§sƒ - gd = §sx - 4yd = i - 4j = §ƒ - §g

ƒsx, yd = x - y gsx, yd = 3y

§ƒ = i - j §g = 3j.
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EXAMPLE 6
(a) Find the derivative of at in the direction of

(b) In what directions does ƒ change most rapidly at and what are the rates of change
in these directions?

Solution

(a) The direction of v is obtained by dividing v by its length:

The partial derivatives of ƒ at are

The gradient of ƒ at is

The derivative of ƒ at in the direction of v is therefore

(b) The function increases most rapidly in the direction of and de-
creases most rapidly in the direction of The rates of change in the directions are,
respectively,

ƒ §ƒ ƒ = 2s2d2
+ s -2d2

+ s -1d2
= 29 = 3 and - ƒ §ƒ ƒ = -3 .

- §ƒ.
§ƒ = 2i - 2j - k

 =
4
7 +

6
7 -

6
7 =

4
7 .

 sDuƒds1,1,0d = §ƒ ƒs1,1,0d # u = s2i - 2j - kd # a27 i -
3
7 j +

6
7 kb

P0

§ƒ ƒ s1,1,0d = 2i - 2j - k.

P0

ƒx = s3x2
- y2ds1,1,0d = 2, ƒy = -2xy ƒ s1,1,0d = -2, ƒz = -1 ƒ s1,1,0d = -1.

P0

 u =
v

ƒ v ƒ

=
2
7 i -

3
7 j +

6
7 k.

 ƒ v ƒ = 2s2d2
+ s -3d2

+ s6d2
= 249 = 7

P0,

v = 2i - 3j + 6k.
P0s1, 1, 0dƒsx, y, zd = x 3

- xy 2
- z
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Exercises 14.5

Calculating Gradients
In Exercises 1– 6, find the gradient of the function at the given point.
Then sketch the gradient together with the level curve that passes
through the point.

1. 2.

3. 4.

5.

6.

In Exercises 7–10, find at the given point.

7.

8.

9.

10. ƒsx, y, zd = e x + y cos z + s y + 1d sin-1 x, s0, 0, p>6d
ƒsx, y, zd = sx2

+ y2
+ z2d-1>2

+ ln sxyzd, s -1, 2, -2d
ƒsx, y, zd = 2z3

- 3sx 2
+ y 2dz + tan-1 xz, s1, 1, 1d

ƒsx, y, zd = x 2
+ y 2

- 2z 2
+ z ln x, s1, 1, 1d

§f

ƒsx, yd = tan-1 
2x
y  , s4, -2d

ƒsx, yd = 22x + 3y, s -1, 2d

gsx, yd =

x 2

2
-

y 2

2
, A22, 1 Bgsx, yd = xy 2, s2, -1d

ƒsx, yd = ln sx 2
+ y 2d, s1, 1dƒsx, yd = y - x, s2, 1d

Finding Directional Derivatives
In Exercises 11–18, find the derivative of the function at in the di-
rection of u.

11.

12.

13.

14.

15.

16.

17.

18.
u = i + 2j + 2k
hsx, y, zd = cos xy + e yz

+ ln zx, P0s1, 0, 1>2d, 

gsx, y, zd = 3e x cos yz, P0s0, 0, 0d, u = 2i + j - 2k

ƒsx, y, zd = x 2
+ 2y 2

- 3z 2, P0s1, 1, 1d, u = i + j + k

ƒsx, y, zd = xy + yz + zx, P0s1, -1, 2d, u = 3i + 6j - 2k

u = 3i - 2j
hsx, yd = tan-1 sy>xd + 23 sin-1 sxy>2d, P0s1, 1d, 

u = 12i + 5jgsx, yd =

x - y

xy + 2
, P0s1, -1d, 

ƒsx, yd = 2x2
+ y2, P0s -1, 1d, u = 3i - 4j

ƒsx, yd = 2xy - 3y2, P0s5, 5d, u = 4i + 3j

P0
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In Exercises 19–24, find the directions in which the functions increase
and decrease most rapidly at Then find the derivatives of the func-
tions in these directions.

19.

20.

21.

22.

23.

24.

Tangent Lines to Level Curves
In Exercises 25–28, sketch the curve together with and
the tangent line at the given point. Then write an equation for the
tangent line.

25.

26.

27.

28.

Theory and Examples
29. Let Find the directions u and the

values of for which

a. is largest b. is smallest

c. d.

e.

30. Let Find the directions u and the values of

for which

a. is largest b. is smallest

c. d.

e. Du ƒ a-

1
2

 , 
3
2
b = 1

Du ƒ a-

1
2

 , 
3
2
b = -2Du ƒ a-

1
2

 , 
3
2
b = 0

Du ƒ a-

1
2

 , 
3
2
bDu ƒ a-

1
2

 , 
3
2
b

Du ƒ a-

1
2

, 
3
2
b

ƒsx, yd =

(x - y)

(x + y)
.

Du ƒs1, -1d = -3

Du ƒs1, -1d = 4Du ƒs1, -1d = 0

Du ƒs1, -1dDu ƒs1, -1d
Du ƒs1, -1d

ƒsx, yd = x2
- xy + y2

- y.

x2
- xy + y2

= 7, s -1, 2d
xy = -4, s2, -2d
x2

- y = 1, A22, 1 B
x2

+ y2
= 4, A22, 22 B

§ƒƒsx, yd = c

hsx, y, zd = ln sx2
+ y2

- 1d + y + 6z, P0s1, 1, 0d
ƒsx, y, zd = ln xy + ln yz + ln xz, P0s1, 1, 1d
gsx, y, zd = xe y

+ z2, P0s1, ln 2, 1>2d
ƒsx, y, zd = sx>yd - yz, P0s4, 1, 1d
ƒsx, yd = x2y + e xy sin y, P0s1, 0d
ƒsx, yd = x2

+ xy + y2, P0s -1, 1d

P0.
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31. Zero directional derivative In what direction is the derivative
of at P(3, 2) equal to zero?

32. Zero directional derivative In what directions is the derivative
of at P(1, 1) equal to zero?

33. Is there a direction u in which the rate of change of 
at P(1, 2) equals 14? Give reasons for your

answer.

34. Changing temperature along a circle Is there a direction u in
which the rate of change of the temperature function 

(temperature in degrees Celsius, distance in feet) at
is Give reasons for your answer.

35. The derivative of ƒ(x, y) at in the direction of is
and in the direction of is What is the derivative of

ƒ in the direction of Give reasons for your answer.

36. The derivative of ƒ(x, y, z) at a point P is greatest in the direction
of In this direction, the value of the derivative is

a. What is at P? Give reasons for your answer.

b. What is the derivative of ƒ at P in the direction of 

37. Directional derivatives and scalar components How is the
derivative of a differentiable function ƒ(x, y, z) at a point in the
direction of a unit vector u related to the scalar component of

in the direction of u? Give reasons for your answer.

38. Directional derivatives and partial derivatives Assuming that
the necessary derivatives of ƒ(x, y, z) are defined, how are 

and related to and Give reasons for your
answer.

39. Lines in the xy-plane Show that 
is an equation for the line in the xy-plane through the point

normal to the vector 

40. The algebra rules for gradients Given a constant k and the
gradients

,

establish the algebra rules for gradients.

§g =

0g
0x  i +

0g
0y  j +

0g
0z  k,§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k

N = Ai + Bj.sx0 , y0d

Asx - x0d + Bsy - y0d = 0

ƒz?ƒx , ƒy,Dk ƒDj ƒ,
Di ƒ,

s§ƒdP0

P0

i + j?

§ƒ

213.
v = i + j - k.

- i - 2j?
-3 .-2j212

i + jP0s1, 2d

-3°C>ft ?Ps1, -1, 1d
2xy - yz

T sx, y, zd =

x2
- 3xy + 4y2

ƒsx, yd =

ƒsx, yd = sx2
- y2d>sx2

+ y2d

ƒsx, yd = xy + y2

14.6 Tangent Planes and Differentials

In this section we define the tangent plane at a point on a smooth surface in space. Then
we show how to calculate an equation of the tangent plane from the partial derivatives of
the function defining the surface. This idea is similar to the definition of the tangent line at
a point on a curve in the coordinate plane for single-variable functions (Section 3.1). We
then study the total differential and linearization of functions of several variables.

Tangent Planes and Normal Lines

If is a smooth curve on the level surface of a
differentiable function ƒ, then Differentiating both sides of thisƒsgstd, hstd, kstdd = c.

ƒsx, y, zd = cr = gstdi + hstdj + kstdk
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equation with respect to t leads to

Chain Rule

(1)

At every point along the curve, is orthogonal to the curve’s velocity vector.
Now let us restrict our attention to the curves that pass through (Figure 14.32). All

the velocity vectors at are orthogonal to at so the curves’ tangent lines all lie in
the plane through normal to We now define this plane.§ƒ.P0

P0,§ƒP0

P0

§ƒ

dr>dt§ƒ

('''')''''*('''')''''*

 a0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  kb # adg

dt
 i +

dh
dt

 j +
dk
dt

 kb = 0.

 
0ƒ
0x  

dg
dt

+

0ƒ
0y  

dh
dt

+

0ƒ
0z  

dk
dt

= 0

 
d
dt

 ƒsgstd, hstd, kstdd =
d
dt

 scd
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DEFINITIONS The tangent plane at the point on the level sur-
face of a differentiable function ƒ is the plane through normal
to 

The normal line of the surface at is the line through parallel to §ƒ ƒ P0.P0P0

§ƒ ƒ P0.
P0ƒsx, y, zd = c

P0sx0 , y0 , z0d

Tangent Plane to at 

(2)

Normal Line to at 

(3)x = x0 + ƒxsP0dt, y = y0 + ƒysP0dt, z = z0 + ƒzsP0dt

P0sx0 , y0 , z0dƒsx, y, zd = c

ƒxsP0dsx - x0d + ƒysP0dsy - y0d + ƒzsP0dsz - z0d = 0

P0sx0 , y0, z0dƒsx, y, zd = c

z

y

x

Normal line

Tangent plane

The surface
x2 1 y2 1 z 2 9 5 0

P0(1, 2, 4)

FIGURE 14.33 The tangent plane
and normal line to this surface at 
(Example 1).

P0

∇f
v2

v1
P0

f (x, y, z) � c

FIGURE 14.32 The gradient is
orthogonal to the velocity vector of every
smooth curve in the surface through 
The velocity vectors at therefore lie in a
common plane, which we call the tangent
plane at .P0

P0

P0.

§ƒ

From Section 12.5, the tangent plane and normal line have the following equations:

EXAMPLE 1 Find the tangent plane and normal line of the surface

A circular paraboloid

at the point 

Solution The surface is shown in Figure 14.33.
The tangent plane is the plane through perpendicular to the gradient of ƒ at 

The gradient is

The tangent plane is therefore the plane

The line normal to the surface at is

To find an equation for the plane tangent to a smooth surface at a point
where we first observe that the equation is z = ƒsx, ydz0 = ƒsx0, y0d,P0sx0, y0, z0d

z = ƒsx, yd

x = 1 + 2t, y = 2 + 4t, z = 4 + t.

P0

2sx - 1d + 4s y - 2d + sz - 4d = 0, or 2x + 4y + z = 14.

§ƒ ƒ P0 = s2xi + 2yj + kds1,2,4d = 2i + 4j + k.

P0 .P0

P0s1, 2, 4d .

ƒsx, y, zd = x 2
+ y 2

+ z - 9 = 0
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equivalent to The surface is therefore the zero level surface
of the function The partial derivatives of F are

The formula

for the plane tangent to the level surface at therefore reduces to

ƒxsx0 , y0dsx - x0d + ƒysx0 , y0dsy - y0d - sz - z0d = 0.

P0

FxsP0dsx - x0d + FysP0dsy - y0d + FzsP0dsz - z0d = 0

 Fz =
0

0z sƒsx, yd - zd = 0 - 1 =  -1.

 Fy =
0

0y sƒsx, yd - zd = fy - 0 = fy

 Fx =
0

0x sƒsx, yd - zd = fx - 0 = fx

Fsx, y, zd = ƒsx, yd - z.
z = ƒsx, ydƒsx, yd - z = 0.
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Plane Tangent to a Surface at 
The plane tangent to the surface of a differentiable function ƒ at the
point is

(4)ƒxsx0 , y0dsx - x0d + ƒysx0 , y0dsy - y0d - sz - z0d = 0.

sx0 , y0 , ƒsx0 , y0ddP0sx0 , y0 , z0d =

z = ƒsx, yd
xx0, y0, ƒxx0, y0ccz = ƒxx, yc

z

y

x

∇g

(1, 1, 3)
∇f

The cylinder
x2 � y2 � 2 � 0

f (x, y, z)

∇f � ∇g

The plane
x � z � 4 � 0

g(x, y, z)

The ellipse E

FIGURE 14.34 This cylinder and plane
intersect in an ellipse E (Example 3).

EXAMPLE 2 Find the plane tangent to the surface at (0, 0, 0).

Solution We calculate the partial derivatives of and use
Equation (4):

The tangent plane is therefore

Eq. (4)

or

EXAMPLE 3 The surfaces

A cylinder

and

A plane

meet in an ellipse E (Figure 14.34). Find parametric equations for the line tangent to E at
the point 

Solution The tangent line is orthogonal to both and at and therefore parallel
to The components of v and the coordinates of give us equations for the
line. We have

 v = s2i + 2jd * si + kd = 3 i j k

2 2 0

1 0 1

3 = 2i - 2j - 2k.

 §g ƒ s1,1,3d = si + kds1,1,3d = i + k

 §ƒ ƒ s1,1,3d = s2xi + 2yjds1,1,3d = 2i + 2j

P0v = §ƒ * §g.
P0,§g§ƒ

P0s1, 1, 3d .

gsx, y, zd = x + z - 4 = 0

ƒsx, y, zd = x 2
+ y 2

- 2 = 0

x - y - z = 0.

1 # sx - 0d - 1 # s y - 0d - sz - 0d = 0,

 ƒys0, 0d = s -x sin y - e xds0,0d = 0 - 1 =  -1.

 ƒxs0, 0d = scos y - ye xds0,0d = 1 - 0 # 1 = 1

ƒsx, yd = x cos y - yex

z = x cos y - ye x
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The tangent line is

Estimating Change in a Specific Direction

The directional derivative plays the role of an ordinary derivative when we want to esti-
mate how much the value of a function ƒ changes if we move a small distance ds from a
point to another point nearby. If ƒ were a function of a single variable, we would have

Ordinary derivative increment

For a function of two or more variables, we use the formula

Directional derivative increment

where u is the direction of the motion away from P0.

*dƒ = s§ƒ ƒ P0
# ud ds,

*dƒ = ƒ¿sP0d ds.

P0

x = 1 + 2t, y = 1 - 2t, z = 3 - 2t.

812 Chapter 14: Partial Derivatives

Estimating the Change in ƒ in a Direction u
To estimate the change in the value of a differentiable function ƒ when we move a
small distance ds from a point in a particular direction u, use the formula

14243
Directional Distance
derivative increment

}dƒ = s§ƒ ƒ P0
# ud  ds

P0

EXAMPLE 4 Estimate how much the value of

will change if the point moves 0.1 unit from straight toward

Solution We first find the derivative of ƒ at in the direction of the vector 
The direction of this vector is

The gradient of ƒ at is

Therefore,

The change dƒ in ƒ that results from moving unit away from in the direction
of u is approximately

How to Linearize a Function of Two Variables

Functions of two variables can be complicated, and we sometimes need to approximate
them with simpler ones that give the accuracy required for specific applications without
being so difficult to work with. We do this in a way that is similar to the way we find linear
replacements for functions of a single variable (Section 3.11).

dƒ = s§ƒ ƒ P0
# udsdsd = a- 2

3
b s0.1d L -0.067 unit.

P0ds = 0.1

§ƒ ƒ P0
# u = si + 2kd # a2

3
 i +

1
3

 j -
2
3

 kb =
2
3

-
4
3

= -
2
3

.

§ƒ ƒ s0,1,0d = ss y cos xdi + ssin x + 2zdj + 2ykds0,1,0d = i + 2k.

P0

u =

P0 P1
1

ƒ P0 P1
1

ƒ

=

P0 P1
1

3
=

2
3

 i +
1
3

 j -
2
3

 k.

2i + j - 2k.
P0 P1

1
=P0

P1s2, 2, -2d.
P0s0, 1, 0dPsx, y, zd

ƒsx, y, zd = y sin x + 2yz
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Suppose the function we wish to approximate is near a point at
which we know the values of and and at which ƒ is differentiable. If we move from

to any nearby point (x, y) by increments and (see Fig-
ure 14.35), then the definition of differentiability from Section 14.3 gives the change

where as If the increments and are small, the products
and will eventually be smaller still and we have the approximation

In other words, as long as and are small, ƒ will have approximately the same value
as the linear function L.

¢y¢x

Lsx, yd
(''''''''''''')'''''''''''''*

ƒsx, yd L ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d.

P2¢yP1¢x
¢y¢x¢x, ¢y : 0.P1, P2 : 0

ƒsx, yd - ƒsx0, y0d = fxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y,

¢y = y - y0¢x = x - x0sx0, y0d
ƒyƒ, ƒx,

sx0, y0dz = ƒsx, yd
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A point
near (x0, y0)

(x, y)

Dy 5 y 2 y0

Dx 5 x 2 x0
(x0, y0)

A point where
f is differentiable

FIGURE 14.35 If ƒ is differentiable at
then the value of ƒ at any point

(x, y) nearby is approximately
ƒsx0 , y0d + ƒxsx0 , y0d¢x + ƒysx0 , y0d¢y.

sx0 , y0d,

DEFINITIONS The linearization of a function ƒ(x, y) at a point where
ƒ is differentiable is the function

(5)

The approximation

is the standard linear approximation of ƒ at sx0 , y0d.

ƒsx, yd L Lsx, yd

Lsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d.

sx0, y0d

From Equation (4), we find that the plane is tangent to the surface
at the point Thus, the linearization of a function of two variables is a

tangent-plane approximation in the same way that the linearization of a function of a
single variable is a tangent-line approximation. (See Exercise 63.)

EXAMPLE 5 Find the linearization of

at the point (3, 2).

Solution We first evaluate and at the point 

giving

The linearization of ƒ at (3, 2) is  

When approximating a differentiable function ƒ(x, y) by its linearization L(x, y) at
an important question is how accurate the approximation might be.sx0 , y0d,

Lsx, yd = 4x - y - 2.

 = 8 + s4dsx - 3d + s -1ds y - 2d = 4x - y - 2.

 Lsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d

 ƒys3, 2d =
0

0y ax 2
- xy +

1
2

 y 2
+ 3b

s3,2d
= s -x + yds3,2d = -1, 

 ƒxs3, 2d =
0

0x ax 2
- xy +

1
2

 y2
+ 3b

s3,2d
= s2x - yds3,2d = 4

 ƒs3, 2d = ax2
- xy +

1
2

 y2
+ 3b

s3,2d
= 8

sx0 , y0d = s3, 2d:ƒyƒ, ƒx ,

ƒsx, yd = x2
- xy +

1
2

 y2
+ 3

sx0 , y0d.z = ƒsx, yd
z = Lsx, yd
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If we can find a common upper bound M for and on a rectangle R
centered at (Figure 14.36), then we can bound the error E throughout R by
using a simple formula (derived in Section 14.9). The error is defined by 
ƒsx, yd - Lsx, yd.

Esx, yd =

sx0, y0d
ƒ ƒxy ƒƒ ƒxx ƒ , ƒ ƒyy ƒ ,

814 Chapter 14: Partial Derivatives

y

x
0

k
h

R

(x0, y0)

FIGURE 14.36 The rectangular region
in the

xy-plane.
R: ƒ x - x0 ƒ … h,  ƒ y - y0 ƒ … k

The Error in the Standard Linear Approximation
If ƒ has continuous first and second partial derivatives throughout an open set
containing a rectangle R centered at and if M is any upper bound for the
values of and on R, then the error E(x, y) incurred in replacing
ƒ(x, y) on R by its linearization

satisfies the inequality

ƒ Esx, yd ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2.

Lsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0dsy - y0d

ƒ ƒxy ƒƒ ƒxx ƒ , ƒ ƒyy ƒ ,
sx0 , y0d

To make small for a given M, we just make and small.

EXAMPLE 6 Find an upper bound for the error in the approximation 
in Example 5 over the rectangle

Express the upper bound as a percentage of ƒ(3, 2), the value of ƒ at the center of the
rectangle.

Solution We use the inequality

To find a suitable value for M, we calculate and finding, after a routine
differentiation, that all three derivatives are constant, with values

The largest of these is 2, so we may safely take M to be 2. With we then
know that, throughout R,

Finally, since and on R, we have

As a percentage of the error is no greater than

Differentials

Recall from Section 3.11 that for a function of a single variable, we defined the
change in ƒ as x changes from a to by

and the differential of ƒ as

dƒ = ƒ¿sad¢x.

¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x
y = ƒsxd,

0.04
8

* 100 = 0.5% .

ƒs3, 2d = 8,

ƒ Esx, yd ƒ … s0.1 + 0.1d2
= 0.04.

ƒ y - 2 ƒ … 0.1ƒ x - 3 ƒ … 0.1

ƒ Esx, yd ƒ …
1
2

 s2ds ƒ x - 3 ƒ + ƒ y - 2 ƒ d2
= s ƒ x - 3 ƒ + ƒ y - 2 ƒ d2.

sx0 , y0d = s3, 2d,

ƒ ƒxx ƒ = ƒ 2 ƒ = 2, ƒ ƒxy ƒ = ƒ -1 ƒ = 1, ƒ ƒyy ƒ = ƒ 1 ƒ = 1.

ƒyy,ƒxx, ƒxy,

ƒ Esx, yd ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2 .

R: ƒ x - 3 ƒ … 0.1, ƒ y - 2 ƒ … 0.1 .

ƒsx, yd L Lsx, yd

ƒ y - y0 ƒƒ x - x0 ƒƒ Esx, yd ƒ
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We now consider the differential of a function of two variables.
Suppose a differentiable function ƒ(x, y) and its partial derivatives exist at a point

If we move to a nearby point the change in ƒ is

A straightforward calculation from the definition of L(x, y), using the notation 
and shows that the corresponding change in L is

The differentials dx and dy are independent variables, so they can be assigned any values.
Often we take and We then have the following
definition of the differential or total differential of ƒ.

dy = ¢y = y - y0 .dx = ¢x = x - x0 ,

 = ƒxsx0 , y0d¢x + ƒysx0 , y0d¢y.

 ¢L = Lsx0 + ¢x, y0 + ¢yd - Lsx0 , y0d

y - y0 = ¢y,
x - x0 = ¢x

¢ƒ = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 , y0d.

sx0 + ¢x, y0 + ¢yd,sx0 , y0d.

14.6 Tangent Planes and Differentials 815

DEFINITION If we move from to a point nearby,
the resulting change

in the linearization of ƒ is called the total differential of ƒ.

dƒ = ƒxsx0 , y0d dx + ƒysx0 , y0d dy

sx0 + dx, y0 + dydsx0 , y0d

EXAMPLE 7 Suppose that a cylindrical can is designed to have a radius of 1 in. and a
height of 5 in., but that the radius and height are off by the amounts and

Estimate the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in we use

With and we get

EXAMPLE 8 Your company manufactures right circular cylindrical molasses storage
tanks that are 25 ft high with a radius of 5 ft. How sensitive are the tanks’ volumes to small
variations in height and radius?

Solution With the total differential gives the approximation for the change in
volume as

Thus, a 1-unit change in r will change V by about A 1-unit change in h will
change V by about The tank’s volume is 10 times more sensitive to a small change
in r than it is to a small change of equal size in h. As a quality control engineer concerned
with being sure the tanks have the correct volume, you would want to pay special attention
to their radii.

In contrast, if the values of r and h are reversed to make and then the
total differential in V becomes

Now the volume is more sensitive to changes in h than to changes in r (Figure 14.37).
The general rule is that functions are most sensitive to small changes in the variables

that generate the largest partial derivatives.

dV = s2prhds25,5d dr + spr 2ds25,5d dh = 250p dr + 625p dh.

h = 5,r = 25

25p units.
250p units.

 = 250p dr + 25p dh.

 = s2prhds5,25d dr + spr 2ds5,25d dh

 dV = Vrs5, 25d dr + Vhs5, 25d dh

V = pr 2h,

 = 0.3p - 0.1p = 0.2p L 0.63 in3

 dV = 2pr0h0 dr + pr0
2 dh = 2ps1ds5ds0.03d + ps1d2s -0.1d

Vh = pr2,Vr = 2prh

¢V L dV = Vrsr0 , h0d dr + Vhsr0 , h0d dh.

V = pr2h,

dh = -0.1.
dr = +0.03

(a) (b)

r � 5

r � 25
h � 25

h � 5

FIGURE 14.37 The volume of cylinder
(a) is more sensitive to a small change in r
than it is to an equally small change in h.
The volume of cylinder (b) is more
sensitive to small changes in h than it
is to small changes in r (Example 8).

7001_ThomasET_ch14p765-853.qxd  10/30/09  7:42 AM  Page 815



EXAMPLE 9 The volume of a right circular cylinder is to be calculated from
measured values of r and h. Suppose that r is measured with an error of no more than 2%
and h with an error of no more than 0.5%. Estimate the resulting possible percentage er-
ror in the calculation of V.

Solution We are told that

Since

we have

We estimate the error in the volume calculation to be at most 4.5%.

Functions of More Than Two Variables

Analogous results hold for differentiable functions of more than two variables.

1. The linearization of ƒ(x, y, z) at a point is

2. Suppose that R is a closed rectangular solid centered at and lying in an open region
on which the second partial derivatives of ƒ are continuous. Suppose also that

and are all less than or equal to M throughout R. Then
the error in the approximation of ƒ by L is bounded
throughout R by the inequality

3. If the second partial derivatives of ƒ are continuous and if x, y, and z change from
and by small amounts dx, dy, and dz, the total differential

gives a good approximation of the resulting change in ƒ.

EXAMPLE 10 Find the linearization L(x, y, z) of

at the point Find an upper bound for the error incurred in replacing
ƒ by L on the rectangle

Solution Routine calculations give

ƒs2, 1, 0d = 2, ƒxs2, 1, 0d = 3, ƒys2, 1, 0d = -2, ƒzs2, 1, 0d = 3.

R: ƒ x - 2 ƒ … 0.01, ƒ y - 1 ƒ … 0.02, ƒ z ƒ … 0.01.

sx0 , y0 , z0d = s2, 1, 0d.

ƒsx, y, zd = x2
- xy + 3 sin z

dƒ = ƒxsP0d dx + ƒysP0d dy + ƒzsP0d dz

z0x0 , y0 ,

ƒ E ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ + ƒ z - z0 ƒ d2.

Esx, y, zd = ƒsx, y, zd - Lsx, y, zd
ƒ ƒyz ƒƒ ƒxx ƒ , ƒ ƒyy ƒ , ƒ ƒzz ƒ , ƒ ƒxy ƒ , ƒ ƒxz ƒ ,

P0

Lsx, y, zd = ƒsP0d + ƒxsP0dsx - x0d + ƒysP0ds y - y0d + ƒzsP0dsz - z0d.

P0sx0 , y0 , z0d

 … 2s0.02d + 0.005 = 0.045.

 … ` 2 
dr
r ` + ` dh

h
`

 ̀
dV
V
` = ` 2 

dr
r +

dh
h
`

dV
V

=
2prh dr + pr 2 dh

pr 2h
=

2 dr
r +

dh
h

,

` dr
r * 100 ` … 2 and ` dh

h
* 100 ` … 0.5.

V = pr2h

816 Chapter 14: Partial Derivatives
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Thus,

Since

and we may take as a bound on the second partials.
Hence, the error incurred by replacing ƒ by L on R satisfies

ƒ E ƒ …
1
2

 s2ds0.01 + 0.02 + 0.01d2
= 0.0016.

M = 2ƒ -3 sin z ƒ … 3 sin 0.01 L .03,

 ƒxy = -1,  ƒxz = 0,  ƒyz = 0,  ƒxx = 2,  ƒyy = 0,  ƒzz = -3 sin z, 

Lsx, y, zd = 2 + 3sx - 2d + s -2ds y - 1d + 3sz - 0d = 3x - 2y + 3z - 2.

14.6 Tangent Planes and Differentials 817

Exercises 14.6

Tangent Planes and Normal Lines to Surfaces
In Exercises 1–8, find equations for the

(a) tangent plane and

(b) normal line at the point on the given surface.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, find an equation for the plane that is tangent to the
given surface at the given point.

9. 10.

11. 12.

Tangent Lines to Space Curves
In Exercises 13–18, find parametric equations for the line tangent to
the curve of intersection of the surfaces at the given point.

13. Surfaces: 

Point: (1, 1, 1)

14. Surfaces: 

Point: (1, 1, 1)

15. Surfaces: 

Point: (1, 1, 1 2)

16. Surfaces: 

Point: (1 2, 1, 1 2)

17. Surfaces: 

Point: (1, 1, 3)

18. Surfaces: 

Point: A22, 22, 4 B
x 2

+ y 2
= 4, x 2

+ y 2
- z = 0

= 11x 2
+ y 2

+ z 2
x 3

+ 3x 2y 2
+ y 3

+ 4xy - z 2
= 0, 

>>
x + y 2

+ z = 2, y = 1

>
x 2

+ 2y + 2z = 4, y = 1

xyz = 1, x 2
+ 2y 2

+ 3z 2
= 6

x + y 2
+ 2z = 4, x = 1

z = 4x 2
+ y 2, s1, 1, 5dz = 2y - x, s1, 2, 1d

z = e-sx2
+ y2d, s0, 0, 1dz = ln sx 2

+ y 2d, s1, 0, 0d

x2
+ y2

- 2xy - x + 3y - z = -4, P0s2, -3, 18d

x + y + z = 1, P0s0, 1, 0d

x 2
- xy - y 2

- z = 0, P0s1, 1, -1d

cos px - x2y + e xz
+ yz = 4, P0s0, 1, 2d

x 2
+ 2xy - y 2

+ z 2
= 7, P0s1, -1, 3d

2z - x 2
= 0, P0s2, 0, 2d

x 2
+ y 2

- z 2
= 18, P0s3, 5, -4d

x 2
+ y 2

+ z 2
= 3, P0s1, 1, 1d

P0

Estimating Change
19. By about how much will

change if the point P(x, y, z) moves from a distance
of unit in the direction of 

20. By about how much will

change as the point P(x, y, z) moves from the origin a distance of
unit in the direction of 

21. By about how much will

change if the point P(x, y, z) moves from a distance
of unit toward the point 

22. By about how much will

change if the point P(x, y, z) moves from a dis-
tance of unit toward the origin?

23. Temperature change along a circle Suppose that the Celsius
temperature at the point (x, y) in the xy-plane is 
and that distance in the xy-plane is measured in meters. A particle
is moving clockwise around the circle of radius 1 m centered at
the origin at the constant rate of 2 m sec.

a. How fast is the temperature experienced by the particle
changing in degrees Celsius per meter at the point

b. How fast is the temperature experienced by the particle
changing in degrees Celsius per second at P?

24. Changing temperature along a space curve The Celsius tem-
perature in a region in space is given by 
A particle is moving in this region and its position at time t is
given by where time is measured in
seconds and distance in meters.

a. How fast is the temperature experienced by the particle
changing in degrees Celsius per meter when the particle is at
the point 

b. How fast is the temperature experienced by the particle
changing in degrees Celsius per second at P?

Ps8, 6, -4d?

z = - t2,y = 3t,x = 2t2,

2x2
- xyz.T sx, y, zd =

P A1>2, 23>2 B?

>

T sx, yd = x sin 2y

ds = 0.1
P0s -1, -1, -1d

hsx, y, zd = cos spxyd + xz 2

P1s0, 1, 2)?ds = 0.2
P0s2, -1, 0d

gsx, y, zd = x + x cos z - y sin z + y

2i + 2j - 2k?ds = 0.1

ƒsx, y, zd = e x cos yz

3i + 6j - 2k?ds = 0.1
P0s3, 4, 12d

ƒsx, y, zd = ln2x 2
+ y 2

+ z 2
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Finding Linearizations
In Exercises 25–30, find the linearization L(x, y) of the function at
each point.

25. at a. (0, 0), b. (1, 1)

26. at a. (0, 0), b. (1, 2)

27. at a. (0, 0), b. (1, 1)

28. at a. (1, 1), b. (0, 0)

29. at a. (0, 0), b.

30. at a. (0, 0), b. (1, 2)

31. Wind chill factor Wind chill, a measure of the apparent tem-
perature felt on exposed skin, is a function of air temperature and
wind speed. The precise formula, updated by the National
Weather Service in 2001 and based on modern heat transfer the-
ory, a human face model, and skin tissue resistance, is

where T is air temperature in °F and is wind speed in mph. A
partial wind chill chart is given.

y

+ 0.4275 T # y0.16,

- 35.75 y0.16W = Wsy, Td = 35.74 + 0.6215 T

ƒsx, yd = e 2y - x

s0, p>2dƒsx, yd = e x cos y

ƒsx, yd = x3y4

ƒsx, yd = 3x - 4y + 5

ƒsx, yd = sx + y + 2d2

ƒsx, yd = x 2
+ y 2

+ 1

818 Chapter 14: Partial Derivatives

34.

35.

36.

37.

38.

Linearizations for Three Variables
Find the linearizations L(x, y, z) of the functions in Exercises 39–44 at
the given points.

39.

a. (1, 1, 1) b. (1, 0, 0) c. (0, 0, 0)

40.

a. (1, 1, 1) b. (0, 1, 0) c. (1, 0, 0)

41. at

a. (1, 0, 0) b. (1, 1, 0) c. (1, 2, 2)

42. at

a. b. (2, 0, 1)

43. at

a. (0, 0, 0) b. c.

44. at

a. (1, 0, 0) b. (1, 1, 0) c. (1, 1, 1)

In Exercises 45–48, find the linearization L(x, y, z) of the function
ƒ(x, y, z) at Then find an upper bound for the magnitude of the
error E in the approximation over the region R.

45.

46.

47.

48.

Estimating Error; Sensitivity to Change
49. Estimating maximum error Suppose that T is to be found

from the formula where x and y are found to
be 2 and ln 2 with maximum possible errors of and

Estimate the maximum possible error in the com-
puted value of T.

50. Estimating volume of a cylinder About how accurately may
be calculated from measurements of r and h that are in

error by 1%?
V = pr 2h

0.02.ƒ dy ƒ =

ƒ dx ƒ = 0.1
T = x se y

+ e-yd,

R: ƒ x ƒ … 0.01, ƒ y ƒ … 0.01, ƒ z - p>4 ƒ … 0.01

ƒsx, y, zd = 22 cos x sin s y + zd at P0s0, 0, p>4d,

R: ƒ x - 1 ƒ … 0.01, ƒ y - 1 ƒ … 0.01, ƒ z ƒ … 0.01

ƒsx, y, zd = xy + 2yz - 3xz at P0s1, 1, 0d,
R: ƒ x - 1 ƒ … 0.01, ƒ y - 1 ƒ … 0.01, ƒ z - 2 ƒ … 0.08

ƒsx, y, zd = x 2
+ xy + yz + s1>4dz2 at P0s1, 1, 2d,

R: ƒ x - 1 ƒ … 0.01, ƒ y - 1 ƒ … 0.01, ƒ z - 2 ƒ … 0.02

ƒsx, y, zd = xz - 3yz + 2 at P0s1, 1, 2d,
ƒsx, y, zd L Lsx, y, zd

P0.

ƒsx, y, zd = tan-1 sxyzd

a0, 
p

4
, 
p

4
ba0, 

p

2
, 0b

ƒsx, y, zd = e x
+ cos s y + zd

sp>2, 1, 1d
ƒsx, y, zd = ssin xyd>z
ƒsx, y, zd = 2x 2

+ y 2
+ z 2

ƒsx, y, zd = x 2
+ y 2

+ z 2 at

ƒsx, y, zd = xy + yz + xz at

R: ƒ x - 1 ƒ … 0.2, ƒ y - 1 ƒ … 0.2

ƒsx, yd = ln x + ln y at  P0s1, 1d,
sUse ex

… 1.11 and ƒ cos y ƒ … 1 in estimating E.d
R: ƒ x ƒ … 0.1, ƒ y ƒ … 0.1

ƒsx, yd = ex cos y at  P0s0, 0d,
R: ƒ x - 1 ƒ … 0.1, ƒ y - 2 ƒ … 0.1

ƒsx, yd = xy2
+ y cos sx - 1d at  P0s1, 2d,

sUse ƒ cos y ƒ … 1 and ƒ sin y ƒ … 1 in estimating E.d
R: ƒ x ƒ … 0.2, ƒ y ƒ … 0.2

ƒsx, yd = 1 + y + x cos y at  P0s0, 0d,
R: ƒ x - 2 ƒ … 0.1, ƒ y - 2 ƒ … 0.1

ƒsx, yd = s1>2dx2
+ xy + s1>4dy2

+ 3x - 3y + 4 at  P0s2, 2d,

T (°F)

(mph)
Y

30 25 20 15 10 5 0

5 25 19 13 7 1

10 21 15 9 3

15 19 13 6 0

20 17 11 4

25 16 9 3

30 15 8 1

35 14 7 0 -41-34-27-21-14-7

-39-33-26-19-12-5

-37-31-24-17-11-4

-35-29-22-15-9-2

-32-26-19-13-7

-28-22-16-10-4

-22-16-11-5

�10�5

a. Use the table to find and 

b. Use the formula to find and

c. Find the linearization of the function at the
point 

d. Use in part (c) to estimate the following wind chill 
values.

i) ii)

iii) (Explain why this value is much different
from the value found in the table.)

32. Find the linearization of the function in Exercise
31 at the point Use it to estimate the following wind
chill values.

a. b. c.

Bounding the Error in Linear Approximations
In Exercises 33–38, find the linearization L(x, y) of the function
ƒ(x, y) at Then find an upper bound for the magnitude of the
error in the approximation over the rectangle R.

33.

R: ƒ x - 2 ƒ … 0.1, ƒ y - 1 ƒ … 0.1

ƒsx, yd = x2
- 3xy + 5 at  P0s2, 1d,

ƒsx, yd L Lsx, yd
ƒ E ƒP0.

Ws60, -30dWs53, -19dWs49, -22d

s50, -20d.
Wsy, TdLsy, Td

Ws5, -10d
Ws27, 2dWs24, 6d

Lsy, Td
s25, 5d.

Wsy, TdLsy, Td
Ws60, 30d.

Ws50, -40d,Ws10, -40d,
Ws15, 15d.Ws30, -10d,Ws20, 25d,
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51. Consider a closed rectangular box with a square base as shown in
the accompanying figure. If x is measured with error at most 2%
and y is measured with error at most 3%, use a differential to esti-
mate the corresponding percentage error in computing the box’s

a. surface area

b. volume.

52. Consider a closed container in the shape of a cylinder of radius
10 cm and height 15 cm with a hemisphere on each end, as shown
in the accompanying figure.

The container is coated with a layer of ice cm thick. Use a dif-
ferential to estimate the total volume of ice. (Hint: Assume r is ra-
dius with and h is height with )

53. Maximum percentage error If and 
to the nearest millimeter, what should we expect the maximum
percentage error in calculating to be?

54. Variation in electrical resistance The resistance R produced
by wiring resistors of and ohms in parallel (see accompany-
ing figure) can be calculated from the formula

a. Show that

b. You have designed a two-resistor circuit like the one shown to
have resistances of and but
there is always some variation in manufacturing and the
resistors received by your firm will probably not have these
exact values. Will the value of R be more sensitive to
variation in or to variation in Give reasons for your
answer.

c. In another circuit like the one shown you plan to change 
from 20 to 20.1 ohms and from 25 to 24.9 ohms. By about
what percentage will this change R?

R2

R1

�

�
V R1 R2

R2?R1

R2 = 400 ohms,R1 = 100 ohms

dR = a R
R1
b2

 dR1 + a R
R2
b2

 dR2.

1
R

=

1
R1

+

1
R2

.

R2R1

V = pr 2h

h = 12.0 cmr = 5.0 cm

dh = 0.dr = 1>2
1>2

15 cm

10 cm

x
x

y
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55. You plan to calculate the area of a long, thin rectangle from
measurements of its length and width. Which dimension should
you measure more carefully? Give reasons for your answer.

56. a. Around the point (1, 0), is more
sensitive to changes in x or to changes in y? Give reasons for
your answer.

b. What ratio of dx to dy will make dƒ equal zero at (1, 0)?

57. Error carryover in coordinate changes

a. If and as shown here, with
approximately what accuracy can you calculate the polar
coordinates r and of the point P(x, y) from the formulas

and Express your estimates
as percentage changes of the values that r and have at the
point 

b. At the point are the values of r and more
sensitive to changes in x or to changes in y? Give reasons for
your answer.

58. Designing a soda can A standard 12-fl-oz can of soda is essen-
tially a cylinder of radius and height 

a. At these dimensions, how sensitive is the can’s volume to a
small change in radius versus a small change in height?

b. Could you design a soda can that appears to hold more soda
but in fact holds the same 12 fl oz? What might its
dimensions be? (There is more than one correct answer.)

59. Value of a determinant If is much greater than 
and to which of a, b, c, and d is the value of the determinant

most sensitive? Give reasons for your answer.

60. Estimating maximum error Suppose that 
and that x, y, and z can be measured with maximum possible er-
rors of and respectively. Estimate the max-
imum possible error in calculating u from the measured values

61. The Wilson lot size formula The Wilson lot size formula in
economics says that the most economical quantity Q of goods
(radios, shoes, brooms, whatever) for a store to order is given by
the formula where K is the cost of placing the
order, M is the number of items sold per week, and h is the
weekly holding cost for each item (cost of space, utilities,
security, and so on). To which of the variables K, M, and h is Q
most sensitive near the point Give
reasons for your answer.

sK0, M0, h0d = s2, 20, 0.05d?

Q = 22KM>h ,

x = 2,  y = ln 3,  z = p>2.

;p>180,;0.2, ;0.6,

u = xe y
+ y sin z

ƒsa, b, c, dd = ` a b

c d
`

ƒ d ƒ ,
ƒ b ƒ , ƒ c ƒ ,ƒ a ƒ2 : 2

h = 5 in.r = 1 in.

usx0, y0d = s3, 4d,
sx0, y0d = s3, 4d.

u

u = tan-1 s y>xd?r 2
= x 2

+ y 2
u

y = 4 ; 0.01,x = 3 ; 0.01

y

x
0

4

3

r

�

P(3 ; 0.01, 4 ; 0.01)

ƒsx, yd = x 2s y + 1d
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62. Surveying a triangular field The area of a triangle is 
(1 2)ab sin C, where a and b are the lengths of two sides of the
triangle and C is the measure of the included angle. In surveying a
triangular plot, you have measured a, b, and C to be 150 ft, 200 ft,
and 60°, respectively. By about how much could your area calcu-
lation be in error if your values of a and b are off by half a foot
each and your measurement of C is off by 2°? See the accompa-
nying figure. Remember to use radians.

Theory and Examples
63. The linearization of ƒ(x, y) is a tangent-plane approximation

Show that the tangent plane at the point on
the surface defined by a differentiable function ƒ is
the plane

or

Thus, the tangent plane at is the graph of the linearization of ƒ
at (see accompanying figure).

z

x

y

(x0,  y0)

z � L(x, y)

z � f (x, y)

(x0,  y0,  f (x0, y0))

P0

P0

z = ƒsx0, y0d + ƒxsx0, y0dsx - x0d + ƒysx0, y0ds y - y0d.

ƒxsx0, y0dsx - x0d + ƒysx0, y0ds y - y0d - sz - ƒsx0, y0dd = 0

z = ƒsx, yd
P0sx0, y0, ƒsx0, y0dd

a � 150 ;    ft1
2

b � 200 ;    ft1
2

C � 60° ; 2°

>
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64. Change along the involute of a circle Find the derivative of
in the direction of the unit tangent vector of

the curve

65. Change along a helix Find the derivative of 
in the direction of the unit tangent vector of the

helix

at the points where and The function ƒ gives
the square of the distance from a point P(x, y, z) on the helix to the
origin. The derivatives calculated here give the rates at which the
square of the distance is changing with respect to t as P moves
through the points where and 

66. Normal curves A smooth curve is normal to a surface
at a point of intersection if the curve’s velocity

vector is a nonzero scalar multiple of at the point.
Show that the curve

is normal to the surface when 

67. Tangent curves A smooth curve is tangent to the surface at a
point of intersection if its velocity vector is orthogonal to 
there.

Show that the curve

is tangent to the surface when t = 1.x 2
+ y 2

- z = 1

rstd = 2t i + 2t j + s2t - 1dk

§f

t = 1.x 2
+ y 2

- z = 3

rstd = 2t i + 2t j -

1
4

 st + 3dk

§ƒ
ƒsx, y, zd = c

p>4.t = -p>4, 0,

p>4.t = -p>4, 0,

rstd = scos tdi + ssin tdj + tk

x 2
+ y 2

+ z 2
ƒsx, y, zd =

rstd = scos t + t sin tdi + ssin t - t cos tdj, t 7 0.

ƒsx, yd = x 2
+ y 2

14.7 Extreme Values and Saddle Points

Continuous functions of two variables assume extreme values on closed, bounded domains
(see Figures 14.38 and 14.39). We see in this section that we can narrow the search for
these extreme values by examining the functions’ first partial derivatives. A function of
two variables can assume extreme values only at domain boundary points or at interior do-
main points where both first partial derivatives are zero or where one or both of the first
partial derivatives fail to exist. However, the vanishing of derivatives at an interior point 
(a, b) does not always signal the presence of an extreme value. The surface that is the
graph of the function might be shaped like a saddle right above (a, b) and cross its tangent
plane there.

HISTORICAL BIOGRAPHY

Siméon-Denis Poisson
(1781–1840)
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Derivative Tests for Local Extreme Values

To find the local extreme values of a function of a single variable, we look for points
where the graph has a horizontal tangent line. At such points, we then look for local max-
ima, local minima, and points of inflection. For a function ƒ(x, y) of two variables, we look
for points where the surface has a horizontal tangent plane. At such points, we
then look for local maxima, local minima, and saddle points. We begin by defining max-
ima and minima.

z = ƒsx, yd

14.7 Extreme Values and Saddle Points 821

y

x

FIGURE 14.38 The function

has a maximum value of 1 and a minimum
value of about on the square re-
gion ƒ x ƒ … 3p>2, ƒ y ƒ … 3p>2.

-0.067

z = scos xdscos yde-2x 2
+ y2

z

y
x

FIGURE 14.39 The “roof surface”

has a maximum value of 0 and a minimum
value of on the square region 
ƒ y ƒ … a .

ƒ x ƒ … a,-a

z =

1
2

 A ƒ  ƒ x ƒ - ƒ y ƒ ƒ - ƒ x ƒ - ƒ y ƒ B

DEFINITIONS Let be defined on a region R containing the point
(a, b). Then

1. ƒ(a, b) is a local maximum value of ƒ if for all domain
points (x, y) in an open disk centered at (a, b).

2. ƒ(a, b) is a local minimum value of ƒ if for all domain
points (x, y) in an open disk centered at (a, b).

ƒsa, bd … ƒsx, yd

ƒsa, bd Ú ƒsx, yd

ƒsx, yd

Local maxima correspond to mountain peaks on the surface and local minima
correspond to valley bottoms (Figure 14.40). At such points the tangent planes, when they
exist, are horizontal. Local extrema are also called relative extrema.

As with functions of a single variable, the key to identifying the local extrema is a
first derivative test.

z = ƒsx, yd

Local maxima
(no greater value of f nearby)

Local minimum
(no smaller value
of f nearby)

FIGURE 14.40 A local maximum occurs at a mountain peak and a local
minimum occurs at a valley low point.

THEOREM 10—First Derivative Test for Local Extreme Values If ƒ(x, y) has a
local maximum or minimum value at an interior point (a, b) of its domain and if
the first partial derivatives exist there, then and ƒysa, bd = 0.ƒxsa, bd = 0

Proof If ƒ has a local extremum at (a, b), then the function has a local ex-
tremum at (Figure 14.41). Therefore, (Chapter 4, Theorem 2). Now

so A similar argument with the function 
shows that 

If we substitute the values and into the equation

ƒxsa, bdsx - ad + ƒysa, bds y - bd - sz - ƒsa, bdd = 0

ƒysa, bd = 0ƒxsa, bd = 0

ƒysa, bd = 0.
hsyd = ƒsa, ydƒxsa, bd = 0.g¿sad = ƒxsa, bd,

g¿sad = 0x = a
gsxd = ƒsx, bdy

x

0

z

a
b

(a, b, 0)

h(y) � f (a, y)

z � f (x, y)

� 0
0 f
0y

� 0
0f
0x

g(x) � f (x, b)

FIGURE 14.41 If a local maximum of ƒ
occurs at then the first
partial derivatives and are
both zero.

ƒysa, bdƒxsa, bd
x = a, y = b ,
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for the tangent plane to the surface at (a, b), the equation reduces to

or

Thus, Theorem 10 says that the surface does indeed have a horizontal tangent plane at a
local extremum, provided there is a tangent plane there.

z = ƒsa, bd.

0 # sx - ad + 0 # s y - bd - z + ƒsa, bd = 0

z = ƒsx, yd
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DEFINITION An interior point of the domain of a function ƒ(x, y) where both
and are zero or where one or both of and do not exist is a critical point

of ƒ.
ƒyƒxƒyƒx

DEFINITION A differentiable function ƒ(x, y) has a saddle point at a critical
point (a, b) if in every open disk centered at (a, b) there are domain points (x, y)
where and domain points where The
corresponding point (a, b, ƒ(a, b)) on the surface is called a saddle
point of the surface (Figure 14.42).

z = ƒsx, yd
ƒsx, yd 6 ƒsa, bd.sx, ydƒsx, yd 7 ƒsa, bd

x

z

y

x

z

y

z �
xy (x2 � y2)

x2 � y2

z � y2 � y4 � x2

FIGURE 14.42 Saddle points at the
origin.

Theorem 10 says that the only points where a function ƒ(x, y) can assume extreme val-
ues are critical points and boundary points. As with differentiable functions of a single
variable, not every critical point gives rise to a local extremum. A differentiable function
of a single variable might have a point of inflection. A differentiable function of two vari-
ables might have a saddle point.

EXAMPLE 1 Find the local extreme values of 

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the
partial derivatives and exist everywhere. Therefore, local extreme
values can occur only where

The only possibility is the point (0, 2), where the value of ƒ is 5. Since 
is never less than 5, we see that the critical point (0, 2) gives a local

minimum (Figure 14.43).

EXAMPLE 2 Find the local extreme values (if any) of 

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the
partial derivatives and exist everywhere. Therefore, local extrema can
occur only at the origin where and Along the positive x-axis, how-
ever, ƒ has the value along the positive y-axis, ƒ has the value

Therefore, every open disk in the xy-plane centered at (0, 0) contains
points where the function is positive and points where it is negative. The function has a
saddle point at the origin and no local extreme values (Figure 14.44a). Figure 14.44b dis-
plays the level curves (they are hyperbolas) of ƒ, and shows the function decreasing and
increasing in an alternating fashion among the four groupings of hyperbolas.

That at an interior point (a, b) of R does not guarantee ƒ has a local ex-
treme value there. If ƒ and its first and second partial derivatives are continuous on R, how-
ever, we may be able to learn more from the following theorem, proved in Section 14.9.

ƒx = ƒy = 0

ƒs0, yd = y2
7 0.

ƒsx, 0d = -x2
6 0;

ƒy = 0.ƒx = 0s0, 0d
ƒy = 2yƒx = -2x

ƒsx, yd = y2
- x2.

x2
+ s y - 2d2

+ 5
ƒsx, yd =

ƒx = 2x = 0 and ƒy = 2y - 4 = 0.

ƒy = 2y - 4ƒx = 2x

ƒsx, yd = x2
+ y2

- 4y + 9.

1
2

1 2 3 4

5

z

y
x

10

15

FIGURE 14.43 The graph of the function
is a

paraboloid which has a local minimum
value of 5 at the point (0, 2) (Example 1).

ƒsx, yd = x2
+ y2

- 4y + 9
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The expression is called the discriminant or Hessian of ƒ. It is some-
times easier to remember it in determinant form,

Theorem 11 says that if the discriminant is positive at the point (a, b), then the surface
curves the same way in all directions: downward if giving rise to a local maxi-
mum, and upward if giving a local minimum. On the other hand, if the discrimi-
nant is negative at (a, b), then the surface curves up in some directions and down in others,
so we have a saddle point.

EXAMPLE 3 Find the local extreme values of the function

Solution The function is defined and differentiable for all x and y and its domain has no
boundary points. The function therefore has extreme values only at the points where and

are simultaneously zero. This leads to

or

Therefore, the point is the only point where ƒ may take on an extreme value. To
see if it does so, we calculate

The discriminant of ƒ at is

The combination

tells us that ƒ has a local maximum at The value of ƒ at this point is

EXAMPLE 4 Find the local extreme values of 

Solution Since ƒ is differentiable everywhere, it can assume extreme values only where

ƒx = 6y - 6x = 0 and ƒy = 6y - 6y2
+ 6x = 0.

ƒsx, yd = 3y2
- 2y3

- 3x2
+ 6xy.

ƒs -2, -2d = 8.
s -2, -2d .

ƒxx 6 0 and ƒxx ƒyy - ƒxy
2

7 0

ƒxx ƒyy - ƒxy
2

= s -2ds -2d - s1d2
= 4 - 1 = 3.

sa, bd = s -2, -2d

ƒxx = -2, ƒyy = -2, ƒxy = 1.

s -2, -2d

x = y = -2.

ƒx = y - 2x - 2 = 0, ƒy = x - 2y - 2 = 0,

ƒy

ƒx

ƒsx, yd = xy - x2
- y2

- 2x - 2y + 4.

ƒxx 7 0,
ƒxx 6 0,

ƒxx ƒyy - ƒxy
2

= ` ƒxx ƒxy

ƒxy ƒyy
` .

ƒxx ƒyy - ƒxy
2

14.7 Extreme Values and Saddle Points 823

THEOREM 11—Second Derivative Test for Local Extreme Values Suppose that
ƒ(x, y) and its first and second partial derivatives are continuous throughout a
disk centered at (a, b) and that Then

i) ƒ has a local maximum at (a, b) if and at (a, b).

ii) ƒ has a local minimum at (a, b) if and at (a, b).

iii) ƒ has a saddle point at (a, b) if at (a, b).

iv) the test is inconclusive at (a, b) if at (a, b). In this case,
we must find some other way to determine the behavior of ƒ at (a, b).

ƒxx ƒyy - ƒxy
2

= 0

ƒxx ƒyy - ƒxy
2

6 0

ƒxx ƒyy - ƒxy
2

7 0ƒxx 7 0

ƒxx ƒyy - ƒxy
2

7 0ƒxx 6 0

ƒxsa, bd = ƒysa, bd = 0 .

y

z

x

z � y2 � x2

y

x

Saddle
point

f inc

f dec

f inc

f dec

–1–3
–1 –3

3

1

3

1

FIGURE 14.44 (a) The origin is a saddle
point of the function 
There are no local extreme values
(Example 2). (b) Level curves for the
function ƒ in Example 2. 

ƒsx, yd = y2
- x2.

(a)

(b)
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From the first of these equations we find and substitution for y into the second
equation then gives

The two critical points are therefore (0, 0) and (2, 2).
To classify the critical points, we calculate the second derivatives:

The discriminant is given by

At the critical point (0, 0) we see that the value of the discriminant is the negative number
so the function has a saddle point at the origin. At the critical point (2, 2) we see that

the discriminant has the positive value 72. Combining this result with the negative value of
the second partial Theorem 11 says that the critical point (2, 2) gives a local
maximum value of A graph of the surface is shown
in Figure 14.45.

Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function ƒ(x, y) on a closed
and bounded region R into three steps.

1. List the interior points of R where ƒ may have local maxima and minima and evaluate
ƒ at these points. These are the critical points of ƒ.

2. List the boundary points of R where ƒ has local maxima and minima and evaluate ƒ at
these points. We show how to do this shortly.

3. Look through the lists for the maximum and minimum values of ƒ. These will be the
absolute maximum and minimum values of ƒ on R. Since absolute maxima and min-
ima are also local maxima and minima, the absolute maximum and minimum values
of ƒ appear somewhere in the lists made in Steps 1 and 2.

EXAMPLE 5 Find the absolute maximum and minimum values of

on the triangular region in the first quadrant bounded by the lines 

Solution Since ƒ is differentiable, the only places where ƒ can assume these values are
points inside the triangle (Figure 14.46) where and points on the boundary.

(a) Interior points. For these we have

yielding the single point The value of ƒ there is

(b) Boundary points. We take the triangle one side at a time:

i) On the segment OA, The function

ƒsx, yd = ƒsx, 0d = 2 + 2x - x2

y = 0.

ƒs1, 1d = 4.

sx, yd = s1, 1d.

fx = 2 - 2x = 0, fy = 2 - 2y = 0,

ƒx = ƒy = 0

y = 9 - x .y = 0,x = 0,

ƒsx, yd = 2 + 2x + 2y - x2
- y2

ƒs2, 2d = 12 - 16 - 12 + 24 = 8.
ƒxx = -6,

-72,

ƒxxƒyy - ƒxy 
2

= s -36 + 72yd - 36 = 72sy - 1d.

ƒxx = -6, ƒyy = 6 - 12y, ƒxy = 6.

6x - 6x2
+ 6x = 0 or 6x s2 - xd = 0.

x = y,
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3 

5 

10 

3 

2 

z 

y 

x 

2 
1 

FIGURE 14.45 The surface
has a saddle

point at the origin and a local maximum at
the point (2, 2) (Example 4).

z = 3y2
- 2y3

- 3x2
+ 6xy

y

x
O

(1, 1)

x � 0

B(0, 9)

y � 9 � x

A(9, 0)y � 0

⎛
⎝

⎛
⎝

9
2

9
2

,

FIGURE 14.46 This triangular region is
the domain of the function in Example 5.
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may now be regarded as a function of x defined on the closed interval Its
extreme values (we know from Chapter 4) may occur at the endpoints

and at the interior points where The only interior point where
is where

ii) On the segment OB, and

We know from the symmetry of ƒ in x and y and from the analysis we just carried out
that the candidates on this segment are

iii) We have already accounted for the values of ƒ at the endpoints of AB, so we need
only look at the interior points of AB. With we have

Setting gives

At this value of x,

Summary We list all the candidates: The maximum is 4, which ƒ
assumes at (1, 1). The minimum is which ƒ assumes at (0, 9) and (9, 0).

Solving extreme value problems with algebraic constraints on the variables usually re-
quires the method of Lagrange multipliers introduced in the next section. But sometimes
we can solve such problems directly, as in the next example.

EXAMPLE 6 A delivery company accepts only rectangular boxes the sum of whose
length and girth (perimeter of a cross-section) does not exceed 108 in. Find the dimensions
of an acceptable box of largest volume.

Solution Let x, y, and z represent the length, width, and height of the rectangular box, re-
spectively. Then the girth is We want to maximize the volume of the box
(Figure 14.47) satisfying (the largest box accepted by the delivery
company). Thus, we can write the volume of the box as a function of two variables:

.

.

Setting the first partial derivatives equal to zero,

 Vzs y, zd = 108y - 2y2
- 4yz = s108 - 2y - 4zdy = 0,

 Vys y, zd = 108z - 4yz - 2z2
= s108 - 4y - 2zdz = 0

 = 108yz - 2y2z - 2yz2

 Vs y, zd = s108 - 2y - 2zdyz

x + 2y + 2z = 108
V = xyz2y + 2z.

-61,
4, 2, -61, 3, - s41>2d.

y = 9 -
9
2

=
9
2
 and ƒsx, yd = ƒ a9

2
, 

9
2
b = -

41
2

.

x =
18
4

=
9
2

.

ƒ¿sx, 9 - xd = 18 - 4x = 0

ƒsx, yd = 2 + 2x + 2s9 - xd - x2
- s9 - xd2

= -61 + 18x - 2x2.

y = 9 - x,

ƒs0, 0d = 2, ƒs0, 9d = -61, ƒs0, 1d = 3.

ƒsx, yd = ƒs0, yd = 2 + 2y - y2.

x = 0

ƒsx, 0d = ƒs1, 0d = 3.

x = 1,ƒ¿sx, 0d = 0
ƒ¿sx, 0d = 2 - 2x = 0.

 x = 9 where ƒs9, 0d = 2 + 18 - 81 =  -61

 x = 0 where ƒs0, 0d = 2

0 … x … 9.
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and
x = 108 - 2y - 2z
V = xyz

x y

z

Girth � distance
around here

FIGURE 14.47 The box in Example 6.
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gives the critical points (0, 0), (0, 54), (54, 0), and (18, 18). The volume is zero at (0, 0),
(0, 54), (54, 0), which are not maximum values. At the point (18, 18), we apply the Second
Derivative Test (Theorem 11):

Then

Thus,

and

imply that gives a maximum volume. The dimensions of the package are
and The maximum volume is

or 

Despite the power of Theorem 11, we urge you to remember its limitations. It does not
apply to boundary points of a function’s domain, where it is possible for a function to have
extreme values along with nonzero derivatives. Also, it does not apply to points where
either or fails to exist.ƒyƒx

6.75 ft3.V = s36ds18ds18d = 11,664 in3,
z = 18 in.x = 108 - 2s18d - 2s18d = 36 in., y = 18 in.,

s18, 18d

CVyy Vzz - V yz
2 D s18,18d = 16s18ds18d - 16s -9d2

7 0

Vyys18, 18d = -4s18d 6 0

Vyy Vzz - V yz
2

= 16yz - 16s27 - y - zd2.

Vyy = -4z, Vzz = -4y, Vyz = 108 - 4y - 4z.
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Summary of Max-Min Tests
The extreme values of ƒ(x, y) can occur only at

i) boundary points of the domain of ƒ

ii) critical points (interior points where or points where or 
fails to exist).

If the first- and second-order partial derivatives of ƒ are continuous throughout a
disk centered at a point (a, b) and the nature of ƒ(a, b)
can be tested with the Second Derivative Test:

i) and at 

ii) and at 

iii) at 

iv) at sa, bd  Q   test is inconclusiveƒxx ƒyy - ƒxy
2

= 0

sa, bd  Q   saddle pointƒxx ƒyy - ƒxy
2

6 0

sa, bd  Q   local minimumƒxx ƒyy - ƒxy
2

7 0ƒxx 7 0

sa, bd  Q   local maximumƒxx ƒyy - ƒxy
2

7 0ƒxx 6 0

ƒxsa, bd = ƒysa, bd = 0,

ƒyƒxƒx = ƒy = 0

Exercises 14.7

Finding Local Extrema
Find all the local maxima, local minima, and saddle points of the
functions in Exercises 1–30.

1.

2.

3.

4. ƒsx, yd = 5xy - 7x2
+ 3x - 6y + 2

ƒsx, yd = x2
+ xy + 3x + 2y + 5

ƒsx, yd = 2xy - 5x2
- 2y2

+ 4x + 4y - 4

ƒsx, yd = x2
+ xy + y2

+ 3x - 3y + 4

5.

6.

7.

8.

9.

10. ƒsx, yd = x2
+ 2xy

ƒsx, yd = x2
- y2

- 2x + 4y + 6

ƒsx, yd = x2
- 2xy + 2y2

- 2x + 2y + 1

ƒsx, yd = 2x2
+ 3xy + 4y2

- 5x + 2y

ƒsx, yd = x2
- 4xy + y2

+ 6y + 2

ƒsx, yd = 2xy - x2
- 2y2

+ 3x + 4
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

Finding Absolute Extrema
In Exercises 31–38, find the absolute maxima and minima of the func-
tions on the given domains.

31. on the closed triangular
plate bounded by the lines in the first
quadrant

32. on the closed triangular plate in the
first quadrant bounded by the lines 

33. on the closed triangular plate bounded by the
lines in the first quadrant

34. on the rectangular plate

35. on the rectangular plate

36. on the rectangular plate

37. on the rectangular plate 
(see accompanying figure).

38. on the triangular plate bounded by
the lines in the first quadrantx = 0, y = 0, x + y = 1
ƒsx, yd = 4x - 8xy + 2y + 1

z

y
x

z 5 (4x 2 x2) cos y

-p>4 … y … p>4 1 … x … 3, ƒsx, yd = s4x - x2d cos y

1, 0 … y … 10 … x …

ƒsx, yd = 48xy - 32x3
- 24y2

0 … x … 5, -3 … y … 0
Tsx, yd = x2

+ xy + y2
- 6x + 2

0 … x … 5, -3 … y … 3
Tsx, yd = x2

+ xy + y2
- 6x

x = 0, y = 0, y + 2x = 2
ƒsx, yd = x2

+ y2

x = 0, y = 4, y = x
Dsx, yd = x2

- xy + y2
+ 1

x = 0,  y = 2,  y = 2x
ƒsx, yd = 2x2

- 4x + y2
- 4y + 1

ƒsx, yd = ln sx + yd + x2
- y

ƒsx, yd = 2 ln x + ln y - 4x - y

ƒsx, yd = exsx2
- y2dƒsx, yd = e-ysx2

+ y2d
ƒsx, yd = ey

- yexƒsx, yd = ex2
+ y2

- 4x

ƒsx, yd = e2x cos yƒsx, yd = y sin x

ƒsx, yd =

1
x + xy +

1
yƒsx, yd =

1
x2

+ y2
- 1

ƒsx, yd = x4
+ y4

+ 4xy

ƒsx, yd = 4xy - x4
- y4

ƒsx, yd = 2x3
+ 2y3

- 9x2
+ 3y2

- 12y

ƒsx, yd = x3
+ 3xy2

- 15x + y3
- 15y

ƒsx, yd = x3
+ y3

+ 3x2
- 3y2

- 8

ƒsx, yd = 6x2
- 2x3

+ 3y2
+ 6xy

ƒsx, yd = x3
+ 3xy + y3

ƒsx, yd = x3
- y3

- 2xy + 6

ƒsx, yd = 1 - 23 x2
+ y2

ƒsx, yd = 256x2
- 8y2

- 16x - 31 + 1 - 8x
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39. Find two numbers a and b with such that

has its largest value.

40. Find two numbers a and b with such that

has its largest value.

41. Temperatures A flat circular plate has the shape of the region
The plate, including the boundary where

is heated so that the temperature at the point (x, y) is

Find the temperatures at the hottest and coldest points on the
plate.

42. Find the critical point of

in the open first quadrant and show that ƒ takes
on a minimum there.

Theory and Examples
43. Find the maxima, minima, and saddle points of ƒ(x, y), if any,

given that

a.

b.

c.

Describe your reasoning in each case.

44. The discriminant is zero at the origin for each of the
following functions, so the Second Derivative Test fails there. De-
termine whether the function has a maximum, a minimum, or nei-
ther at the origin by imagining what the surface looks
like. Describe your reasoning in each case.

a. b.

c. d.

e. f.

45. Show that (0, 0) is a critical point of no
matter what value the constant k has. (Hint: Consider two cases:

and )

46. For what values of the constant k does the Second Derivative Test
guarantee that will have a saddle point
at (0, 0)? A local minimum at (0, 0)? For what values of k is the
Second Derivative Test inconclusive? Give reasons for your
answers.

47. If must ƒ have a local maximum or min-
imum value at (a, b)? Give reasons for your answer.

48. Can you conclude anything about ƒ(a, b) if ƒ and its first and sec-
ond partial derivatives are continuous throughout a disk centered
at the critical point (a, b) and and differ in sign?
Give reasons for your answer.

49. Among all the points on the graph of that lie
above the plane find the point farthest from
the plane.

x + 2y + 3z = 0,
z = 10 - x2

- y2

ƒyysa, bdƒxxsa, bd

ƒxsa, bd = ƒysa, bd = 0,

ƒsx, yd = x2
+ kxy + y2

k Z 0.k = 0

ƒsx, yd = x2
+ kxy + y2

ƒsx, yd = x4y4ƒsx, yd = x3y3

ƒsx, yd = x3y2ƒsx, yd = xy2

ƒsx, yd = 1 - x2y2ƒsx, yd = x2y2

z = ƒsx, yd

ƒxx ƒyy - ƒxy
2

ƒx = 9x2
- 9 and ƒy = 2y + 4

ƒx = 2x - 2 and ƒy = 2y - 4

ƒx = 2x - 4y and ƒy = 2y - 4x

sx 7 0, y 7 0d

ƒsx, yd = xy + 2x - ln x2y

Tsx, yd = x2
+ 2y2

- x.

x2
+ y2

= 1,
x2

+ y2
… 1.

L

b

a
s24 - 2x - x2d1>3 dx

a … b

L

b

a
s6 - x - x2d dx

a … b
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50. Find the point on the graph of nearest the
plane 

51. Find the point on the plane that is nearest the
origin.

52. Find the minimum distance from the point to the plane

53. Find three numbers whose sum is 9 and whose sum of squares is a
minimum.

54. Find three positive numbers whose sum is 3 and whose product is
a maximum.

55. Find the maximum value of where

56. Find the minimum distance from the cone to the
point 

57. Find the dimensions of the rectangular box of maximum volume
that can be inscribed inside the sphere 

58. Among all closed rectangular boxes of volume 27 cm3, what is
the smallest surface area?

59. You are to construct an open rectangular box from 12 ft2 of mate-
rial. What dimensions will result in a box of maximum volume?

60. Consider the function 
over the square and 

a. Show that ƒ has an absolute minimum along the line segment
in this square. What is the absolute minimum

value?

b. Find the absolute maximum value of ƒ over the square.

Extreme Values on Parametrized Curves To find the extreme val-
ues of a function ƒ(x, y) on a curve we treat ƒ as a
function of the single variable t and use the Chain Rule to find where
dƒ dt is zero. As in any other single-variable case, the extreme values
of ƒ are then found among the values at the

a. critical points (points where dƒ dt is zero or fails to exist), and

b. endpoints of the parameter domain.

Find the absolute maximum and minimum values of the following
functions on the given curves.

61. Functions:

a. b.

c.

Curves:

i) The semicircle 

ii) The quarter circle 

Use the parametric equations 

62. Functions:

a. b.

c.

Curves:

i) The semiellipse 

ii) The quarter ellipse 

Use the parametric equations x = 3 cos t, y = 2 sin t .

sx2>9d + s y2>4d = 1, x Ú 0, y Ú 0

sx2>9d + s y2>4d = 1, y Ú 0

hsx, yd = x2
+ 3y2

gsx, yd = xyƒsx, yd = 2x + 3y

x = 2 cos t, y = 2 sin t .

x2
+ y2

= 4, x Ú 0, y Ú 0

x2
+ y2

= 4, y Ú 0

hsx, yd = 2x2
+ y2

gsx, yd = xyƒsx, yd = x + y

>
>

x = xstd, y = ystd,

2x + 2y = 1

0 … y … 1.0 … x … 1
ƒsx, yd = x2

+ y2
+ 2xy - x - y + 1

x2
+ y2

+ z2
= 4.

s -6, 4, 0d.
z = 2x2

+ y2

x + y + z = 6.
s = xy + yz + xz

x + y - z = 2.
s2, -1, 1d

3x + 2y + z = 6

x + 2y - z = 0.
z = x2

+ y2
+ 10
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63. Function: 

Curves:

i) The line 

ii) The line segment 

iii) The line segment 

64. Functions:

a.

b.

Curves:

i) The line 

ii) The line segment 

65. Least squares and regression lines When we try to fit a line
to a set of numerical data points 

(Figure 14.48), we usually choose the line
that minimizes the sum of the squares of the vertical distances
from the points to the line. In theory, this means finding the val-
ues of m and b that minimize the value of the function

(1)

Show that the values of m and b that do this are

(2)

(3)

with all sums running from to Many scientific cal-
culators have these formulas built in, enabling you to find m and b
with only a few keystrokes after you have entered the data.

The line determined by these values of m and b
is called the least squares line, regression line, or trend line for
the data under study. Finding a least squares line lets you

1. summarize data with a simple expression,

2. predict values of y for other, experimentally untried values of x,

3. handle data analytically.

y = mx + b

k = n .k = 1

 b =

1
n aa yk - ma xkb , 

 m =

aa xkb aa ykb - na xk yk

aa xkb2

- na xk
2

 , 

w = smx1 + b - y1d2
+

Á
+ smxn + b - ynd2 .

sx2 , y2d, Á , sxn , ynd
sx1, y1d,y = mx + b

x = t, y = 2 - 2t, 0 … t … 1

x = t, y = 2 - 2t

gsx, yd = 1>sx2
+ y2d

ƒsx, yd = x2
+ y2

x = 2t, y = t + 1, 0 … t … 1

x = 2t, y = t + 1, -1 … t … 0

x = 2t, y = t + 1

ƒsx, yd = xy

y

x
0

P1(x1, y1)

P2(x2, y2)

Pn(xn, yn)

y � mx � b

FIGURE 14.48 To fit a line to
noncollinear points, we choose the line that
minimizes the sum of the squares of the
deviations.
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In Exercises 66–68, use Equations (2) and (3) to find the least squares
line for each set of data points. Then use the linear equation you obtain
to predict the value of y that would correspond to 

66. 67.

68. (0, 0), (1, 2), (2, 3)

COMPUTER EXPLORATIONS
In Exercises 69–74, you will explore functions to identify their local
extrema. Use a CAS to perform the following steps:

a. Plot the function over the given rectangle.

b. Plot some level curves in the rectangle.

c. Calculate the function’s first partial derivatives and use the CAS
equation solver to find the critical points. How do the critical
points relate to the level curves plotted in part (b)? Which critical
points, if any, appear to give a saddle point? Give reasons for
your answer.

s -1, 2d, s0, 1d, s3, -4ds -2, 0d, s0, 2d, s2, 3d
x = 4.

14.8 Lagrange Multipliers 829

d. Calculate the function’s second partial derivatives and find the
discriminant 

e. Using the max-min tests, classify the critical points found in part (c).
Are your findings consistent with your discussion in part (c)?

69.

70.

71.

72.

73.

74.

-2 … x … 2, -2 … y … 2

ƒsx, yd = e x5 ln sx2
+ y2d, sx, yd Z s0, 0d

0, sx, yd = s0, 0d 
,

-4 … x … 3, -2 … y … 2
ƒsx, yd = 5x6

+ 18x5
- 30x4

+ 30xy2
- 120x3,

-3>2 … y … 3>2ƒsx, yd = 2x4
+ y4

- 2x2
- 2y2

+ 3, -3>2 … x … 3>2,

-6 … y … 6
ƒsx, yd = x4

+ y2
- 8x2

- 6y + 16, -3 … x … 3,

ƒsx, yd = x3
- 3xy2

+ y2, -2 … x … 2, -2 … y … 2

ƒsx, yd = x2
+ y3

- 3xy, -5 … x … 5, -5 … y … 5

ƒxx ƒyy - ƒxy
2.

14.8 Lagrange Multipliers

Sometimes we need to find the extreme values of a function whose domain is constrained
to lie within some particular subset of the plane—a disk, for example, a closed triangular
region, or along a curve. In this section, we explore a powerful method for finding extreme
values of constrained functions: the method of Lagrange multipliers.

Constrained Maxima and Minima

We first consider a problem where a constrained minimum can be found by eliminating a
variable.

EXAMPLE 1 Find the point on the plane that is closest
to the origin.

Solution The problem asks us to find the minimum value of the function

subject to the constraint that

Since has a minimum value wherever the function

has a minimum value, we may solve the problem by finding the minimum value of ƒ(x, y, z)
subject to the constraint (thus avoiding square roots). If we regard x
and y as the independent variables in this equation and write z as

our problem reduces to one of finding the points (x, y) at which the function

hsx, yd = ƒsx, y, 2x + y - 5d = x2
+ y2

+ s2x + y - 5d2

z = 2x + y - 5,

2x + y - z - 5 = 0

ƒsx, y, zd = x2
+ y2

+ z2

ƒ OP
1

ƒ

2x + y - z - 5 = 0.

 = 2x2
+ y2

+ z2

 ƒ OP
1

ƒ = 2sx - 0d2
+ s y - 0d2

+ sz - 0d2

z - 5 = 02x + y -Psx, y, zd

HISTORICAL BIOGRAPHY

Joseph Louis Lagrange
(1736–1813)
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has its minimum value or values. Since the domain of h is the entire xy-plane, the First
Derivative Test of Section 14.7 tells us that any minima that h might have must occur at
points where

This leads to

and the solution

We may apply a geometric argument together with the Second Derivative Test to show that
these values minimize h. The z-coordinate of the corresponding point on the plane

is

Therefore, the point we seek is

The distance from P to the origin is 

Attempts to solve a constrained maximum or minimum problem by substitution, as
we might call the method of Example 1, do not always go smoothly. This is one of the rea-
sons for learning the new method of this section.

EXAMPLE 2 Find the points on the hyperbolic cylinder that are clos-
est to the origin.

Solution 1 The cylinder is shown in Figure 14.49. We seek the points on the cylinder
closest to the origin. These are the points whose coordinates minimize the value of the
function

Square of the distance

subject to the constraint that If we regard x and y as independent vari-
ables in the constraint equation, then

and the values of on the cylinder are given by the function

To find the points on the cylinder whose coordinates minimize ƒ, we look for the points in
the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

that is, at the point (0, 0). But there are no points on the cylinder where both x and y are
zero. What went wrong?

What happened was that the First Derivative Test found (as it should have) the point 
in the domain of h where h has a minimum value. We, on the other hand, want the points
on the cylinder where h has a minimum value. Although the domain of h is the entire 

hx = 4x = 0 and hy = 2y = 0,

hsx, yd = x2
+ y2

+ sx2
- 1d = 2x2

+ y2
- 1.

ƒsx, y, zd = x2
+ y2

+ z2

z2
= x2

- 1

x2
- z2

- 1 = 0 .

ƒsx, y, zd = x2
+ y2

+ z2

1 = 0x2
- z2

-

5>26 L 2.04.

Closest point: P a5
3

, 
5
6

, -
5
6
b.

z = 2 a5
3
b +

5
6

- 5 =  -
5
6

.

z = 2x + y - 5

x =
5
3

, y =
5
6

.

10x + 4y = 20, 4x + 4y = 10,

hx = 2x + 2s2x + y - 5ds2d = 0, hy = 2y + 2s2x + y - 5d = 0.

830 Chapter 14: Partial Derivatives

(1, 0, 0)

z

y

x

x2 � z2 � 1

(–1, 0, 0)

FIGURE 14.49 The hyperbolic cylinder
in Example 2.x2

- z2
- 1 = 0
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xy-plane, the domain from which we can select the first two coordinates of the points
(x, y, z) on the cylinder is restricted to the “shadow” of the cylinder on the xy-plane; it does
not include the band between the lines and (Figure 14.50).

We can avoid this problem if we treat y and z as independent variables (instead of x
and y) and express x in terms of y and z as

With this substitution, becomes

and we look for the points where k takes on its smallest value. The domain of k in the yz-
plane now matches the domain from which we select the y- and z-coordinates of the points
(x, y, z) on the cylinder. Hence, the points that minimize k in the plane will have corre-
sponding points on the cylinder. The smallest values of k occur where

or where This leads to

The corresponding points on the cylinder are We can see from the inequality

that the points give a minimum value for k. We can also see that the minimum
distance from the origin to a point on the cylinder is 1 unit.

Solution 2 Another way to find the points on the cylinder closest to the origin is to
imagine a small sphere centered at the origin expanding like a soap bubble until it just
touches the cylinder (Figure 14.51). At each point of contact, the cylinder and sphere have
the same tangent plane and normal line. Therefore, if the sphere and cylinder are repre-
sented as the level surfaces obtained by setting

equal to 0, then the gradients and will be parallel where the surfaces touch. At any
point of contact, we should therefore be able to find a scalar (“lambda”) such that

or

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three
scalar equations

For what values of will a point (x, y, z) whose coordinates satisfy these scalar equa-
tions also lie on the surface To answer this question, we use our knowl-
edge that no point on the surface has a zero x-coordinate to conclude that Hence,

only if

For the equation becomes If this equation is to be satisfied
as well, z must be zero. Since also (from the equation ), we conclude that the
points we seek all have coordinates of the form

sx, 0, 0d.

2y = 0y = 0
2z = -2z.2z = -2lzl = 1,

2 = 2l, or l = 1.

2x = 2lx
x Z 0.

x2
- z2

- 1 = 0?
l

2x = 2lx, 2y = 0, 2z = -2lz.

2xi + 2yj + 2zk = ls2xi - 2zkd.

§ƒ = l§g,

l

§g§ƒ

ƒsx, y, zd = x2
+ y2

+ z2
- a2 and gsx, y, zd = x2

- z2
- 1

s ;1, 0, 0d

ks y, zd = 1 + y2
+ 2z2

Ú 1

s ;1, 0, 0d.

x2
= z2

+ 1 = 1, x = ;1.

y = z = 0.

ky = 2y = 0 and kz = 4z = 0,

ks y, zd = sz2
+ 1d + y2

+ z2
= 1 + y2

+ 2z2

ƒsx, y, zd = x2
+ y2

+ z2

x2
= z2

+ 1.

x = 1x = -1

14.8 Lagrange Multipliers 831

On this part, On this part,

x � �z2 � 1

x

z

–11

y
x � –1x � 1

The hyperbolic cylinder x2 � z2 � 1

x � –�z2 � 1

FIGURE 14.50 The region in the xy-plane 
from which the first two coordinates of the
points (x, y, z) on the hyperbolic cylinder

are selected excludes the band
in the xy-plane (Example 2).-1 6 x 6 1

x2
- z2

= 1

z

y

x

x2 � y2 � z2 � a2 � 0

x2 � z2 � 1 � 0

FIGURE 14.51 A sphere expanding like a
soap bubble centered at the origin until it
just touches the hyperbolic cylinder

(Example 2).x2
- z2

- 1 = 0
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What points on the surface have coordinates of this form? The answer is the
points (x, 0, 0) for which

The points on the cylinder closest to the origin are the points 

The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the method of Lagrange multipliers. The method
says that the extreme values of a function ƒ(x, y, z) whose variables are subject to a con-
straint are to be found on the surface among the points where

for some scalar (called a Lagrange multiplier).
To explore the method further and see why it works, we first make the following ob-

servation, which we state as a theorem.

l

§ƒ = l§g

g = 0gsx, y, zd = 0

s ;1, 0, 0d.

x2
- s0d2

= 1, x2
= 1, or x = ;1.

x2
- z2

= 1

832 Chapter 14: Partial Derivatives

THEOREM 12—The Orthogonal Gradient Theorem Suppose that ƒ(x, y, z) is
differentiable in a region whose interior contains a smooth curve

If is a point on C where ƒ has a local maximum or minimum relative to its val-
ues on C, then is orthogonal to C at P0 .§ƒ

P0

C: rstd = gstdi + hstdj + kstdk.

Proof We show that is orthogonal to the curve’s velocity vector at The values of ƒ
on C are given by the composite ƒ(g(t), h(t), k(t)), whose derivative with respect to t is

At any point where ƒ has a local maximum or minimum relative to its values on the
curve, so

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of two
variables.

§ƒ # v = 0.

dƒ>dt = 0,
P0

dƒ
dt

=

0ƒ
0x  

dg
dt

+

0ƒ
0y  

dh
dt

+

0ƒ
0z  

dk
dt

= §ƒ # v.

P0 .§ƒ

COROLLARY OF THEOREM 12 At the points on a smooth curve
where a differentiable function ƒ(x, y) takes on its local

maxima and minima relative to its values on the curve, , where
v = dr>dt.

§ƒ # v = 0
rstd = gstdi + hstdj

Theorem 12 is the key to the method of Lagrange multipliers. Suppose that ƒ(x, y, z) and
g(x, y, z) are differentiable and that is a point on the surface where ƒ has a
local maximum or minimum value relative to its other values on the surface. We assume also
that at points on the surface Then ƒ takes on a local maximum or
minimum at relative to its values on every differentiable curve through on the surface

Therefore, is orthogonal to the velocity vector of every such differentiable
curve through So is moreover (because is orthogonal to the level surface 
as we saw in Section 14.5). Therefore, at is some scalar multiple of §g.lP0, §ƒ

g = 0,§g§g ,P0 .
§ƒgsx, y, zd = 0.

P0P0

gsx, y, zd = 0.§g Z 0

gsx, y, zd = 0P0
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Some care must be used in applying this method. An extreme value may not actually exist
(Exercise 41).

EXAMPLE 3 Find the greatest and smallest values that the function

takes on the ellipse (Figure 14.52)

Solution We want to find the extreme values of subject to the constraint

To do so, we first find the values of x, y, and for which

The gradient equation in Equations (1) gives

from which we find

so that or We now consider these two cases.

Case 1: If then But (0, 0) is not on the ellipse. Hence, 
Case 2: If then and Substituting this in the equation

gives

The function therefore takes on its extreme values on the ellipse at the four
points The extreme values are and 

The Geometry of the Solution The level curves of the function are the hyperbo-
las (Figure 14.53). The farther the hyperbolas lie from the origin, the larger the
absolute value of ƒ. We want to find the extreme values of ƒ(x, y), given that the point (x, y)
also lies on the ellipse Which hyperbolas intersecting the ellipse lie farthest
from the origin? The hyperbolas that just graze the ellipse, the ones that are tangent to it, are

x2
+ 4y2

= 8.

xy = c
ƒsx, yd = xy

xy = -2.xy = 2s ;2, 1d, s ;2, -1d.
ƒsx, yd = xy

s ;2yd2

8
+

y2

2
= 1, 4y2

+ 4y2
= 8 and y = ;1.

gsx, yd = 0
x = ;2y.l = ;2y Z 0,

y Z 0.x = y = 0.y = 0 ,

l = ;2.y = 0

y =
l
4

 x, x = ly, and y =
l
4

 slyd =
l2

4
 y,

yi + xj =
l
4

 xi + lyj,

§ƒ = l§g and gsx, yd = 0.

l

gsx, yd =
x2

8
+

y2

2
- 1 = 0.

ƒsx, yd = xy

x2

8
+

y2

2
= 1.

ƒsx, yd = xy

14.8 Lagrange Multipliers 833

The Method of Lagrange Multipliers
Suppose that and are differentiable and when

. To find the local maximum and minimum values of ƒ subject to
the constraint (if these exist), find the values of x, y, z, and that
simultaneously satisfy the equations

(1)

For functions of two independent variables, the condition is similar, but without
the variable z.

§ƒ = l§g and gsx, y, zd = 0.

lgsx, y, zd = 0
gsx, y, zd = 0

§g Z 0gsx, y, zdƒsx, y, zd

y

x
0 2�2

�2 �      � 1
x2

8
y2

2

FIGURE 14.52 Example 3 shows how to
find the largest and smallest values of the
product xy on this ellipse.

x

y
xy � –2

∇f � i � 2j
xy � 2

∇g �    i � j1
2

xy � –2xy � 2

0 1

1

FIGURE 14.53 When subjected to the
constraint 
the function takes on extreme
values at the four points These are
the points on the ellipse when (red) is a
scalar multiple of (blue) (Example 3).§g

§ƒ
s ;2, ;1d.

ƒsx, yd = xy
gsx, yd = x2>8 + y2>2 - 1 = 0,
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farthest. At these points, any vector normal to the hyperbola is normal to the ellipse, so
is a multiple of At the point (2, 1), for example,

At the point 

EXAMPLE 4 Find the maximum and minimum values of the function 
on the circle 

Solution We model this as a Lagrange multiplier problem with

and look for the values of x, y, and that satisfy the equations

The gradient equation in Equations (1) implies that and gives

These equations tell us, among other things, that x and y have the same sign. With these
values for x and y, the equation gives

so

Thus,

and has extreme values at 
By calculating the value of at the points we see that its maxi-

mum and minimum values on the circle are

The Geometry of the Solution The level curves of are the lines
(Figure 14.54). The farther the lines lie from the origin, the larger the ab-

solute value of ƒ. We want to find the extreme values of ƒ(x, y) given that the point (x, y)
also lies on the circle Which lines intersecting the circle lie farthest from
the origin? The lines tangent to the circle are farthest. At the points of tangency, any vector
normal to the line is normal to the circle, so the gradient is a multiple

of the gradient At the point (3 5, 4 5), for example,

§ƒ = 3i + 4j, §g =
6
5 i +

8
5 j, and §ƒ =

5
2

 §g.

>>§g = 2xi + 2yj.sl = ;5>2d
§ƒ = 3i + 4j

x2
+ y2

= 1 .

3x + 4y = c
ƒsx, yd = 3x + 4y

3 a35 b + 4 a4
5
b =

25
5

= 5 and 3 a- 3
5
b + 4 a- 4

5
b = -

25
5

= -5.

x2
+ y2

= 1
; s3>5, 4>5d,3x + 4y

sx, yd = ; s3>5, 4>5d.ƒsx, yd = 3x + 4y

x =
3

2l
= ;

3
5

, y =
2
l

= ;
4
5

,

9
4l2 +

4
l2 = 1, 9 + 16 = 4l2, 4l2

= 25, and l = ;
5
2

.

a 3
2l
b2

+ a2
l
b2

- 1 = 0,

gsx, yd = 0

x =
3

2l
, y =

2
l

.

l Z 0

 gsx, yd = 0: x2
+ y2

- 1 = 0.

 §ƒ = l§g: 3i + 4j = 2xli + 2ylj

l

ƒsx, yd = 3x + 4y, gsx, yd = x2
+ y2

- 1

x2
+ y2

= 1.3x + 4y
ƒsx, yd =

§ƒ = i - 2j, §g = -
1
2

 i + j, and §ƒ = -2§g.

s -2, 1d,

§ƒ = i + 2j, §g =
1
2

 i + j, and §ƒ = 2§g.

§g = sx>4di + yj.sl = ;2d§ƒ = yi + xj
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y

x

3x � 4y � 5

3x � 4y � –5

x2 � y2 � 1 ⎛
⎝

⎛
⎝

3
5

4
5

,

∇f � 3i � 4j �    ∇g5
2

∇g �    i �    j6
5

8
5

FIGURE 14.54 The function 
takes on its largest value on the

unit circle at
the point (3 5, 4 5) and its smallest value
at the point (Example 4). At
each of these points, is a scalar
multiple of The figure shows the
gradients at the first point but not the
second.

§g .
§ƒ

s -3>5, -4>5d
>>

gsx, yd = x2
+ y2

- 1 = 0
3x + 4y

ƒsx, yd =
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Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function ƒ(x, y, z)
whose variables are subject to two constraints. If the constraints are

and and are differentiable, with not parallel to we find the constrained local
maxima and minima of ƒ by introducing two Lagrange multipliers and (mu, pro-
nounced “mew”). That is, we locate the points P(x, y, z) where ƒ takes on its constrained
extreme values by finding the values of and that simultaneously satisfy the
equations

mx, y, z, l,

ml

§g2,§g1g2g1

g1sx, y, zd = 0 and g2sx, y, zd = 0

14.8 Lagrange Multipliers 835

C

g2 � 0

g1 � 0

∇f

∇g2

∇g1

FIGURE 14.55 The vectors and 
lie in a plane perpendicular to the curve C
because is normal to the surface

and is normal to the surface
g2 = 0.

§g2g1 = 0
§g1

§g2§g1

(2)§ƒ = l§g1 + m§g2, g1sx, y, zd = 0, g2sx, y, zd = 0

Equations (2) have a nice geometric interpretation. The surfaces and (usu-
ally) intersect in a smooth curve, say C (Figure 14.55). Along this curve we seek the points
where ƒ has local maximum and minimum values relative to its other values on the curve.
These are the points where is normal to C, as we saw in Theorem 12. But and 
are also normal to C at these points because C lies in the surfaces and 
Therefore, lies in the plane determined by and which means that

for some and Since the points we seek also lie in both surfaces,
their coordinates must satisfy the equations and which are
the remaining requirements in Equations (2).

EXAMPLE 5 The plane cuts the cylinder in an ellipse
(Figure 14.56). Find the points on the ellipse that lie closest to and farthest from the origin.

Solution We find the extreme values of

(the square of the distance from (x, y, z) to the origin) subject to the constraints

(3)

(4)

The gradient equation in Equations (2) then gives

or

(5)

The scalar equations in Equations (5) yield

(6)

Equations (6) are satisfied simultaneously if either and or and

If then solving Equations (3) and (4) simultaneously to find the corresponding
points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense when you
look at Figure 14.56.

z = 0,
x = y = z>s1 - ld.

l Z 1z = 0l = 1

 2y = 2ly + 2z Q s1 - ldy = z.

 2x = 2lx + 2z Q s1 - ldx = z, 

2x = 2lx + m, 2y = 2ly + m, 2z = m.

 2xi + 2yj + 2zk = s2lx + mdi + s2ly + mdj + mk

 2xi + 2yj + 2zk = ls2xi + 2yjd + msi + j + kd
 §ƒ = l§g1 + m§g2

g2sx, y, zd = x + y + z - 1 = 0.

g1sx, y, zd = x2
+ y2

- 1 = 0

ƒsx, y, zd = x2
+ y2

+ z2

x2
+ y2

= 1x + y + z = 1

g2sx, y, zd = 0,g1sx, y, zd = 0
m .l§ƒ = l§g1 + m§g2

§g2,§g1§ƒ
g2 = 0.g1 = 0

§g2§g1§ƒ

g2 = 0g1 = 0

Cylinder x2 � y2 � 1

Plane
x � y � z � 1

z

(0, 1, 0)
(1, 0, 0) y

x P1

P2

FIGURE 14.56 On the ellipse where the
plane and cylinder meet, we find the points
closest to and farthest from the origin.
(Example 5).
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If then Equations (3) and (4) give

The corresponding points on the ellipse are

Here we need to be careful, however. Although and both give local maxima of ƒ on
the ellipse, is farther from the origin than 

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on
the ellipse farthest from the origin is  P2.

P1.P2

P2P1

P1 = a22
2

, 
22
2

, 1 - 22b and P2 = a- 22
2

, -
22
2

, 1 + 22b.

 x = ;

22
2
  z = 1 < 22.

 2x2
= 1  z = 1 - 2x

 x2
+ x2

- 1 = 0       x + x + z - 1 = 0

x = y,
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Exercises 14.8

Two Independent Variables with One Constraint
1. Extrema on an ellipse Find the points on the ellipse

where has its extreme values.

2. Extrema on a circle Find the extreme values of 
subject to the constraint 

3. Maximum on a line Find the maximum value of 
on the line .

4. Extrema on a line Find the local extreme values of 
on the line 

5. Constrained minimum Find the points on the curve 
nearest the origin.

6. Constrained minimum Find the points on the curve 
nearest the origin.

7. Use the method of Lagrange multipliers to find

a. Minimum on a hyperbola The minimum value of 
subject to the constraints 

b. Maximum on a line The maximum value of xy, subject to
the constraint 

Comment on the geometry of each solution.

8. Extrema on a curve Find the points on the curve 
in the xy-plane that are nearest to and farthest from the

origin.

9. Minimum surface area with fixed volume Find the dimen-
sions of the closed right circular cylindrical can of smallest sur-
face area whose volume is 

10. Cylinder in a sphere Find the radius and height of the open
right circular cylinder of largest surface area that can be inscribed
in a sphere of radius a. What is the largest surface area?

11. Rectangle of greatest area in an ellipse Use the method
of Lagrange multipliers to find the dimensions of the rectangle
of greatest area that can be inscribed in the ellipse

with sides parallel to the coordinate axes.

12. Rectangle of longest perimeter in an ellipse Find the dimen-
sions of the rectangle of largest perimeter that can be inscribed in

x2>16 + y2>9 = 1

16p cm3.

y2
= 1

x2
+ xy +

x + y = 16.

xy = 16, x 7 0, y 7 0
x + y,

x2y = 2

xy2
= 54

x + y = 3.
ƒsx, yd = x2y

x + 3y = 1049 - x2
- y2

ƒsx, yd =
gsx, yd = x2

+ y2
- 10 = 0.

ƒsx, yd = xy

ƒsx, yd = xyx2
+ 2y2

= 1

the ellipse with sides parallel to the coordi-
nate axes. What is the largest perimeter?

13. Extrema on a circle Find the maximum and minimum values
of subject to the constraint 

14. Extrema on a circle Find the maximum and minimum values
of subject to the constraint 

15. Ant on a metal plate The temperature at a point (x, y) on a
metal plate is An ant on the plate
walks around the circle of radius 5 centered at the origin. What
are the highest and lowest temperatures encountered by the ant?

16. Cheapest storage tank Your firm has been asked to design a
storage tank for liquid petroleum gas. The customer’s specifica-
tions call for a cylindrical tank with hemispherical ends, and the
tank is to hold of gas. The customer also wants to use the
smallest amount of material possible in building the tank. What
radius and height do you recommend for the cylindrical portion
of the tank?

Three Independent Variables with One Constraint
17. Minimum distance to a point Find the point on the plane

closest to the point (1, 1, 1).

18. Maximum distance to a point Find the point on the sphere
farthest from the point 

19. Minimum distance to the origin Find the minimum distance
from the surface to the origin.

20. Minimum distance to the origin Find the point on the surface
nearest the origin.

21. Minimum distance to the origin Find the points on the surface
closest to the origin.

22. Minimum distance to the origin Find the point(s) on the sur-
face closest to the origin.

23. Extrema on a sphere Find the maximum and minimum values of

on the sphere x2
+ y2

+ z2
= 30.

ƒsx, y, zd = x - 2y + 5z

xyz = 1

z2
= xy + 4

z = xy + 1

x2
- y2

- z2
= 1

s1, -1, 1d.x2
+ y2

+ z2
= 4

x + 2y + 3z = 13

8000 m3

Tsx, yd = 4x2
- 4xy + y2.

x2
+ y2

= 4.3x - y + 6

x2
- 2x + y2

- 4y = 0.x2
+ y2

x2>a2
+ y2>b2

= 1

7001_ThomasET_ch14p765-853.qxd  10/30/09  7:42 AM  Page 836



24. Extrema on a sphere Find the points on the sphere
where has its

maximum and minimum values.

25. Minimizing a sum of squares Find three real numbers whose
sum is 9 and the sum of whose squares is as small as possible.

26. Maximizing a product Find the largest product the positive
numbers x, y, and z can have if 

27. Rectangular box of largest volume in a sphere Find the di-
mensions of the closed rectangular box with maximum volume
that can be inscribed in the unit sphere.

28. Box with vertex on a plane Find the volume of the largest closed
rectangular box in the first octant having three faces in the coordi-
nate planes and a vertex on the plane where

and 

29. Hottest point on a space probe A space probe in the shape of
the ellipsoid

enters Earth’s atmosphere and its surface begins to heat. After 1
hour, the temperature at the point (x, y, z) on the probe’s surface is

Find the hottest point on the probe’s surface.

30. Extreme temperatures on a sphere Suppose that the Celsius
temperature at the point (x, y, z) on the sphere 
is Locate the highest and lowest temperatures on
the sphere.

31. Maximizing a utility function: an example from economics
In economics, the usefulness or utility of amounts x and y of two
capital goods and is sometimes measured by a function
U(x, y). For example, and might be two chemicals a phar-
maceutical company needs to have on hand and U(x, y) the gain
from manufacturing a product whose synthesis requires different
amounts of the chemicals depending on the process used. If 
costs a dollars per kilogram, costs b dollars per kilogram, and
the total amount allocated for the purchase of and together
is c dollars, then the company’s managers want to maximize
U(x, y) given that Thus, they need to solve a typi-
cal Lagrange multiplier problem.

Suppose that

and that the equation simplifies to

Find the maximum value of U and the corresponding values of x
and y subject to this latter constraint.

32. Locating a radio telescope You are in charge of erecting a ra-
dio telescope on a newly discovered planet. To minimize interfer-
ence, you want to place it where the magnetic field of the planet is
weakest. The planet is spherical, with a radius of 6 units. Based
on a coordinate system whose origin is at the center of the planet,
the strength of the magnetic field is given by 

Where should you locate the radio tele-
scope?

Extreme Values Subject to Two Constraints
33. Maximize the function subject to the

constraints and y + z = 0.2x - y = 0
ƒsx, y, zd = x2

+ 2y - z2

6x - y2
+ xz + 60.

Msx, y, zd =

2x + y = 30.

ax + by = c

Usx, yd = xy + 2x

ax + by = c .

G2G1

G2

G1

G2G1

G2G1

T = 400xyz2 .
x2

+ y2
+ z2

= 1

Tsx, y, zd = 8x2
+ 4yz - 16z + 600 .

4x2
+ y2

+ 4z2
= 16

c 7 0.a 7 0, b 7 0,
x>a + y>b + z>c = 1,

x + y + z2
= 16.

ƒsx, y, zd = x + 2y + 3zx2
+ y2

+ z2
= 25

14.8 Lagrange Multipliers 837

34. Minimize the function subject to the
constraints and 

35. Minimum distance to the origin Find the point closest to the
origin on the line of intersection of the planes and

36. Maximum value on line of intersection Find the maximum
value that can have on the line of in-
tersection of the planes and 

37. Extrema on a curve of intersection Find the extreme values of
on the intersection of the plane with

the sphere 

38. a. Maximum on line of intersection Find the maximum value
of on the line of intersection of the two planes

and 

b. Give a geometric argument to support your claim that you
have found a maximum, and not a minimum, value of w.

39. Extrema on a circle of intersection Find the extreme values of
the function on the circle in which the plane

intersects the sphere 

40. Minimum distance to the origin Find the point closest to the
origin on the curve of intersection of the plane and
the cone 

Theory and Examples
41. The condition is not sufficient Although 

is a necessary condition for the occurrence of an extreme value of
ƒ(x, y) subject to the conditions and , it does
not in itself guarantee that one exists. As a case in point, try using
the method of Lagrange multipliers to find a maximum value of

subject to the constraint that The
method will identify the two points (4, 4) and as candi-
dates for the location of extreme values. Yet the sum has
no maximum value on the hyperbola The farther you go
from the origin on this hyperbola in the first quadrant, the larger
the sum becomes.

42. A least squares plane The plane is to be
“fitted” to the following points 

Find the values of A, B, and C that minimize

the sum of the squares of the deviations.

43. a. Maximum on a sphere Show that the maximum value of
on a sphere of radius r centered at the origin of a

Cartesian abc-coordinate system is 

b. Geometric and arithmetic means Using part (a), show
that for nonnegative numbers a, b, and c,

that is, the geometric mean of three nonnegative numbers is
less than or equal to their arithmetic mean.

44. Sum of products Let be n positive numbers. Find
the maximum of subject to the constraint ©i = 1

n  xi
2

= 1.©i = 1
n  ai xi

a1, a2 , Á , an

sabcd1>3
…

a + b + c
3

;

sr2>3d3.
a2b2c2

a

4

k = 1
sAxk + Byk + C - zkd2 ,

s0, 0, 0d, s0, 1, 1d, s1, 1, 1d, s1, 0, -1d.

sxk, yk, zkd:
z = Ax + By + C

ƒsx, yd = x + y

xy = 16.
sx + yd

s -4, -4d
xy = 16.ƒsx, yd = x + y

§g Z 0gsx, yd = 0

§ƒ = l§g§ƒ � l§g

z2
= 4x2

+ 4y2.
2y + 4z = 5

x2
+ y2

+ z2
= 4.y - x = 0

ƒsx, y, zd = xy + z2

x + y - z = 0.x + y + z = 40
w = xyz

x2
+ y2

+ z2
= 10.

z = 1ƒsx, y, zd = x2yz + 1

y + z = 0.2x - y = 0
ƒsx, y, zd = x2

+ 2y - z2

x + y = 6.
y + 2z = 12

x + 3y + 9z = 9.x + 2y + 3z = 6
ƒsx, y, zd = x2

+ y2
+ z2
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COMPUTER EXPLORATIONS
In Exercises 45–50, use a CAS to perform the following steps imple-
menting the method of Lagrange multipliers for finding constrained
extrema:

a. Form the function where ƒ is the func-
tion to optimize subject to the constraints and 

b. Determine all the first partial derivatives of h, including the par-
tials with respect to and and set them equal to 0.

c. Solve the system of equations found in part (b) for all the
unknowns, including and 

d. Evaluate ƒ at each of the solution points found in part (c) and se-
lect the extreme value subject to the constraints asked for in the
exercise.

45. Minimize subject to the constraints
and x2

+ z2
- 2 = 0.x2

+ y2
- 2 = 0

ƒsx, y, zd = xy + yz

l2.l1

l2 ,l1

g2 = 0.g1 = 0
h = ƒ - l1 g1 - l2 g2,

838 Chapter 14: Partial Derivatives

46. Minimize subject to the constraints
and 

47. Maximize subject to the constraints
and 

48. Minimize subject to the constraints
and 

49. Minimize subject to the
constraints and 

50. Determine the distance from the line to the parabola
(Hint: Let (x, y) be a point on the line and (w, z) a point

on the parabola. You want to minimize )sx - wd2
+ sy - zd2.

y2
= x.

y = x + 1

w - 1 = 0.
x + y - z +2x - y + z - w - 1 = 0

ƒsx, y, z, wd = x2
+ y2

+ z2
+ w2

x2
+ y2

- 1 = 0.x2
- xy + y2

- z2
- 1 = 0

ƒsx, y, zd = x2
+ y2

+ z2

4x2
+ 4y2

- z2
= 0.2y + 4z - 5 = 0

ƒsx, y, zd = x2
+ y2

+ z2

x - z = 0.x2
+ y2

- 1 = 0
ƒsx, y, zd = xyz

14.9 Taylor’s Formula for Two Variables

In this section we use Taylor’s formula to derive the Second Derivative Test for local ex-
treme values (Section 14.7) and the error formula for linearizations of functions of two in-
dependent variables (Section 14.6). The use of Taylor’s formula in these derivations leads
to an extension of the formula that provides polynomial approximations of all orders for
functions of two independent variables.

Derivation of the Second Derivative Test

Let ƒ(x, y) have continuous partial derivatives in an open region R containing a point P(a, b)
where (Figure 14.57). Let h and k be increments small enough to put the
point and the line segment joining it to P inside R. We parametrize the
segment PS as

If the Chain Rule gives

Since and are differentiable (they have continuous partial derivatives), is a
differentiable function of t and

Since F and are continuous on [0, 1] and is differentiable on (0, 1), we can apply
Taylor’s formula with and to obtain

(1)
 Fs1d = Fs0d + F¿s0d +

1
2

 F–scd

 Fs1d = Fs0d + F¿s0ds1 - 0d + F–scd 
s1 - 0d2

2

a = 0n = 2
F¿F¿

 = h2ƒxx + 2hkƒxy + k2ƒyy .

 F– =
0F¿

0x  
dx
dt

+
0F¿

0y  
dy
dt

=
0

0x shƒx + kƒyd # h +
0

0y shƒx + kƒyd # k

F¿ƒyƒx

F¿std = ƒx 
dx
dt

+ ƒy 
dy
dt

= hƒx + kƒy .

Fstd = ƒsa + th, b + tkd ,

x = a + th, y = b + tk, 0 … t … 1 .

Ssa + h, b + kd
ƒx = ƒy = 0

Part of open region R

(a � th, b � tk),
a typical point
on the segment

P(a, b)
t � 0

Parametrized
segment
in R

t � 1
S(a � h, b � k)

FIGURE 14.57 We begin the derivation
of the Second Derivative Test at P(a, b) by
parametrizing a typical line segment from
P to a point S nearby.

ƒxy = ƒyx
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for some c between 0 and 1. Writing Equation (1) in terms of ƒ gives

(2)

Since this reduces to

(3)

The presence of an extremum of ƒ at is determined by the sign of 
By Equation (3), this is the same as the sign of

Now, if the sign of Q(c) will be the same as the sign of Q(0) for suffi-
ciently small values of h and k. We can predict the sign of

(4)

from the signs of and at (a, b). Multiply both sides of Equation (4) by 
and rearrange the right-hand side to get

(5)

From Equation (5) we see that

1. If and at (a, b), then for all sufficiently small
nonzero values of h and k, and ƒ has a local maximum value at (a, b).

2. If and at (a, b), then for all sufficiently small
nonzero values of h and k, and ƒ has a local minimum value at (a, b).

3. If at (a, b), there are combinations of arbitrarily small nonzero val-
ues of h and k for which and other values for which Arbitrarily
close to the point on the surface there are points above

and points below so ƒ has a saddle point at (a, b).

4. If another test is needed. The possibility that Q(0) equals zero pre-
vents us from drawing conclusions about the sign of Q(c).

The Error Formula for Linear Approximations

We want to show that the difference E(x, y), between the values of a function ƒ(x, y), and
its linearization L(x, y) at satisfies the inequality

The function ƒ is assumed to have continuous second partial derivatives throughout an
open set containing a closed rectangular region R centered at The number M is an
upper bound for and on R.

The inequality we want comes from Equation (2). We substitute and for a and b,
and and for h and k, respectively, and rearrange the result as

+
1
2

 A sx - x0d2ƒxx + 2sx - x0ds y - y0dƒxy + s y - y0d2ƒyy B ` sx0 +csx-x0d, y0 +cs y-y0dd.
 ('''''''''''''''')'''''''''''''''''*

ƒsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d
('''''''''')'''''''''''*

y - y0x - x0

y0x0

ƒ ƒxy ƒƒ ƒxx ƒ , ƒ ƒyy ƒ ,
sx0 , y0d.

ƒ Esx, yd ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2.

sx0 , y0d

ƒxx ƒyy - ƒxy
2

= 0,

P0 ,P0

z = ƒsx, ydP0sa, b, ƒsa, bdd
Qs0d 6 0.Qs0d 7 0,

ƒxx ƒyy - ƒxy
2

6 0

Qs0d 7 0ƒxx ƒyy - ƒxy
2

7 0ƒxx 7 0

Qs0d 6 0ƒxx ƒyy - ƒxy
2

7 0ƒxx 6 0

ƒxx Qs0d = shƒxx + kƒxyd2
+ sƒxx ƒyy - ƒxy

2dk2.

ƒxxƒxx ƒyy - ƒxy
2ƒxx

Qs0d = h2ƒxxsa, bd + 2hkƒxysa, bd + k2ƒyysa, bd

Qs0d Z 0,

Qscd = sh2ƒxx + 2hkƒxy + k2ƒyyd ƒ sa + ch, b + ckd .

ƒsa, bd.b + kd -ƒsa + h, 
sa, bd

ƒsa + h, b + kd - ƒsa, bd =
1
2

 Ah2ƒxx + 2hkƒxy + k2ƒyy B `
sa + ch, b + ckd

.

ƒxsa, bd = ƒysa, bd = 0,

 +
1
2

 Ah2ƒxx + 2hkƒxy + k2ƒyy B `
sa + ch, b + ckd

.

 ƒsa + h, b + kd = ƒsa, bd + hƒxsa, bd + kƒysa, bd

14.9 Taylor’s Formula for Two Variables 839

linearization L(x, y)

error E(x, y)
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This equation reveals that

Hence, if M is an upper bound for the values of and on R,

Taylor’s Formula for Functions of Two Variables

The formulas derived earlier for and can be obtained by applying to ƒ(x, y) the oper-
ators

These are the first two instances of a more general formula,

(6)

which says that applying gives the same result as applying the operator

to ƒ(x, y) after expanding it by the Binomial Theorem.
If partial derivatives of ƒ through order are continuous throughout a rectangu-

lar region centered at (a, b), we may extend the Taylor formula for F(t) to

and take to obtain

When we replace the first n derivatives on the right of this last series by their equivalent
expressions from Equation (6) evaluated at and add the appropriate remainder term,
we arrive at the following formula.

t = 0

Fs1d = Fs0d + F¿s0d +

F–s0d
2!

+
Á

+

F snds0d
n!

+  remainder.

t = 1

Fstd = Fs0d + F¿s0dt +

F–s0d
2!

 t2
+

Á
+

F snds0d
n!

 t snd
+  remainder, 

n + 1

ah 
0

0x + k 
0

0y b
n

dn>dtn to Fstd

F sndstd =
dn

dtn Fstd = ah 
0

0x + k 
0

0y b
n

ƒsx, yd ,

ah 
0

0x + k 
0

0y b and ah 
0

0x + k 
0

0y b
2

= h2 
0

2

0x2 + 2hk 
0

2

0x 0y + k2 
0

2

0y2 .

F–F¿

 =
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2.

 ƒ E ƒ …
1
2

 A ƒ x - x0 ƒ
2 M + 2 ƒ x - x0 ƒ ƒ y - y0 ƒ M + ƒ y - y0 ƒ

2M B
ƒ ƒyy ƒƒ ƒxx ƒ , ƒ ƒxy ƒ ,

ƒ E ƒ …
1
2

 A ƒ x - x0 ƒ
2

ƒ ƒxx ƒ + 2 ƒ x - x0 ƒ ƒ y - y0 ƒ ƒ ƒxy ƒ + ƒ y - y0 ƒ
2

ƒ ƒyy ƒ B .

840 Chapter 14: Partial Derivatives

Taylor’s Formula for ƒ(x, y) at the Point (a, b)
Suppose ƒ(x, y) and its partial derivatives through order are continuous throughout an open rectangular region R cen-
tered at a point (a, b). Then, throughout R,

(7)+
1

sn + 1d!
 ah 

0

0x + k 
0

0y b
n + 1

ƒ `
sa + ch, b + ckd

.

+
1
3!

 sh3ƒxxx + 3h2kƒxxy + 3hk2ƒxyy + k3ƒyyyd ƒ sa, bd +
Á

+
1
n!

 ah 
0

0x + k 
0

0y b
n

ƒ `
sa, bd

ƒsa + h, b + kd = ƒsa, bd + shƒx + kƒyd ƒ sa, bd +
1
2!

 sh2ƒxx + 2hkƒxy + k2ƒyyd ƒ sa, bd

n + 1
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The first n derivative terms are evaluated at (a, b). The last term is evaluated at some point
on the line segment joining (a, b) and 

If and we treat h and k as independent variables (denoting them now
by x and y), then Equation (7) assumes the following form.

sa, bd = s0, 0d
sa + h, b + kd.sa + ch, b + ckd

14.9 Taylor’s Formula for Two Variables 841

Taylor’s Formula for ƒ(x, y) at the Origin

(8)`
scx, cyd

axn + 1 
0

n + 1 f

0xn + 1 + (n + 1)xny 
0

n + 1 f

0xn
0y

+
Á

+ yn + 1 
0

n + 1 f

0yn + 1 b+
1

sn + 1d!

axn 
0

n f

0xn + nxn - 1y 
0

n f

0xn - 1
0y

+
Á

+ yn 
0

n f

0yn b+
1
3!

 sx3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyyd +
Á

+
1
n!

ƒsx, yd = ƒs0, 0d + xƒx + yƒy +
1
2!

 sx2ƒxx + 2xyƒxy + y2ƒyyd

The first n derivative terms are evaluated at (0, 0). The last term is evaluated at a point on
the line segment joining the origin and (x, y).

Taylor’s formula provides polynomial approximations of two-variable functions. The
first n derivative terms give the polynomial; the last term gives the approximation error.
The first three terms of Taylor’s formula give the function’s linearization. To improve on
the linearization, we add higher-power terms.

EXAMPLE 1 Find a quadratic approximation to near the origin.
How accurate is the approximation if and 

Solution We take in Equation (8):

Calculating the values of the partial derivatives,

we have the result

or

The error in the approximation is

The third derivatives never exceed 1 in absolute value because they are products of sines
and cosines. Also, and Hence

(rounded up). The error will not exceed 0.00134 if and ƒ y ƒ … 0.1.ƒ x ƒ … 0.1

ƒ Esx, yd ƒ …
1
6

 ss0.1d3
+ 3s0.1d3

+ 3s0.1d3
+ s0.1d3d =

8
6

 s0.1d3
… 0.00134

ƒ y ƒ … 0.1.ƒ x ƒ … 0.1

Esx, yd =
1
6

 sx3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyyd ƒ scx, cyd .

sin x sin y L xy. sin x sin y L 0 + 0 + 0 +
1
2

 sx2s0d + 2xys1d + y2s0dd, 

 ƒys0, 0d = sin x cos y ƒ s0,0d = 0,  ƒyys0, 0d = -sin x sin y ƒ s0,0d = 0, 

 ƒxs0, 0d = cos x sin y ƒ s0,0d = 0,  ƒxys0, 0d = cos x cos y ƒ s0,0d = 1, 

 ƒs0, 0d = sin x sin y ƒ s0,0d = 0,  ƒxxs0, 0d = -sin x sin y ƒ s0,0d = 0, 

+
1
6

 sx3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyydscx, cyd.

ƒsx, yd = ƒs0, 0d + sxƒx + yƒyd +
1
2

 sx2ƒxx + 2xyƒxy + y2ƒyyd

n = 2

 ƒ y ƒ … 0.1? ƒ x ƒ … 0.1
ƒsx, yd = sin x sin y
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842 Chapter 14: Partial Derivatives

Exercises 14.9

Finding Quadratic and Cubic Approximations
In Exercises 1–10, use Taylor’s formula for ƒ(x, y) at the origin to find
quadratic and cubic approximations of ƒ near the origin.

1. 2.

3. 4.

5. 6.

7. 8. ƒsx, yd = cos sx2
+ y2dƒsx, yd = sin sx2

+ y2d

ƒsx, yd = ln s2x + y + 1dƒsx, yd = ex ln s1 + yd

ƒsx, yd = sin x cos yƒsx, yd = y sin x

ƒsx, yd = ex cos yƒsx, yd = xey

9. 10.

11. Use Taylor’s formula to find a quadratic approximation of
at the origin. Estimate the error in the ap-

proximation if and 

12. Use Taylor’s formula to find a quadratic approximation of 
at the origin. Estimate the error in the approximation if 
and ƒ y ƒ … 0.1.

ƒ x ƒ … 0.1
ex sin y

ƒ y ƒ … 0.1.ƒ x ƒ … 0.1
ƒsx, yd = cos x cos y

ƒsx, yd =

1
1 - x - y + xy

ƒsx, yd =

1
1 - x - y

14.10 Partial Derivatives with Constrained Variables

In finding partial derivatives of functions like we have assumed x and y to be
independent. In many applications, however, this is not the case. For example, the internal
energy U of a gas may be expressed as a function of pressure P, volume V,
and temperature T. If the individual molecules of the gas do not interact, however, P, V,
and T obey (and are constrained by) the ideal gas law

and fail to be independent. In this section we learn how to find partial derivatives in situa-
tions like this, which occur in economics, engineering, and physics.*

Decide Which Variables Are Dependent
and Which Are Independent

If the variables in a function are constrained by a relation like the one im-
posed on x, y, and z by the equation the geometric meanings and the numeri-
cal values of the partial derivatives of ƒ will depend on which variables are chosen to be
dependent and which are chosen to be independent. To see how this choice can affect the
outcome, we consider the calculation of when and 

EXAMPLE 1 Find if and 

Solution We are given two equations in the four unknowns x, y, z, and w. Like many
such systems, this one can be solved for two of the unknowns (the dependent variables) in
terms of the others (the independent variables). In being asked for we are told that
w is to be a dependent variable and x an independent variable. The possible choices for the
other variables come down to

In either case, we can express w explicitly in terms of the selected independent variables.
We do this by using the second equation to eliminate the remaining depend-
ent variable in the first equation.

z = x 2
+ y 2

Dependent Independent

w, z x, y

w, y x, z

0w>0x,

z = x2
+ y2.w = x2

+ y2
+ z2

0w>0x

z = x2
+ y2.w = x2

+ y2
+ z2

0w>0x

z = x2
+ y2,

w = ƒsx, y, zd

PV = nRT sn and R constantd,

U = ƒsP, V, Td

w = ƒsx, yd,

*This section is based on notes written for MIT by Arthur P. Mattuck.
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In the first case, the remaining dependent variable is z. We eliminate it from the first
equation by replacing it by The resulting expression for w is

and

(1)

This is the formula for when x and y are the independent variables.
In the second case, where the independent variables are x and z and the remaining de-

pendent variable is y, we eliminate the dependent variable y in the expression for w by re-
placing in the second equation by This gives

and

(2)

This is the formula for when x and z are the independent variables.
The formulas for in Equations (1) and (2) are genuinely different. We cannot

change either formula into the other by using the relation There is not just
one there are two, and we see that the original instruction to find was incom-
plete. Which we ask.

The geometric interpretations of Equations (1) and (2) help to explain why the equa-
tions differ. The function measures the square of the distance from the
point (x, y, z) to the origin. The condition says that the point (x, y, z) lies on
the paraboloid of revolution shown in Figure 14.58. What does it mean to calculate 
at a point P(x, y, z) that can move only on this surface? What is the value of when
the coordinates of P are, say, (1, 0, 1)?

If we take x and y to be independent, then we find by holding y fixed (at 
in this case) and letting x vary. Hence, P moves along the parabola in the xz-plane.
As P moves on this parabola, w, which is the square of the distance from P to the origin,
changes. We calculate in this case (our first solution above) to be

At the point P(1, 0, 1), the value of this derivative is

If we take x and z to be independent, then we find by holding z fixed while x
varies. Since the z-coordinate of P is 1, varying x moves P along a circle in the plane

As P moves along this circle, its distance from the origin remains constant, and w,
being the square of this distance, does not change. That is,

as we found in our second solution.

How to Find When the Variables in Are
Constrained by Another Equation

As we saw in Example 1, a typical routine for finding when the variables in the
function are related by another equation has three steps. These steps apply
to finding and as well.0w>0z0w>0y

w = ƒsx, y, zd
0w>0x

w = ƒsx, y, zd�w>�x

0w
0x = 0,

z = 1.

0w>0x

0w
0x = 2 + 4 + 0 = 6.

0w
0x = 2x + 4x3

+ 4xy2.

0w>0x

z = x2
y = 00w>0x

0w>0x
0w>0x

z = x2
+ y2

w = x2
+ y2

+ z2

0w>0x?
0w>0x0w>0x,

z = x2
+ y2.

0w>0x
0w>0x

0w
0x = 0.

w = x2
+ y2

+ z2
= x2

+ sz - x2d + z2
= z + z2

z - x2 .y2

0w>0x

0w
0x = 2x + 4x3

+ 4xy2.

 = x2
+ y2

+ x4
+ 2x2y2

+ y4

 w = x2
+ y2

+ z2
= x2

+ y2
+ sx2

+ y2d2

x2
+ y2 .

14.10 Partial Derivatives with Constrained Variables 843

y

x

0

(1, 0, 1)

1

P
1

z 5 x2, y 5 0

z 5 x2 1 y2

Circle x2 1 y2 5 1
in the plane z 5 1 

z

FIGURE 14.58 If P is constrained to 
lie on the paraboloid the
value of the partial derivative of

with respect to x at 
P depends on the direction of motion
(Example 1). (1) As x changes, with

P moves up or down the surface on
the parabola in the xz-plane with

(2) As x changes, 
with P moves on the circle

and 0w>0x = 0.x2
+ y2

= 1, z = 1,
z = 1,

0w>0x = 2x + 4x3.
z = x2

y = 0,

w = x2
+ y2

+ z2

z = x2
+ y2,
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If we cannot carry out Step 2 after deciding which variables are dependent, we differ-
entiate the equations as they are and try to solve for afterward. The next example
shows how this is done.

EXAMPLE 2 Find at the point if

and x and y are the independent variables.

Solution It is not convenient to eliminate z in the expression for w. We therefore differ-
entiate both equations implicitly with respect to x, treating x and y as independent vari-
ables and w and z as dependent variables. This gives

(3)

and

(4)

These equations may now be combined to express in terms of x, y, and z. We solve
Equation (4) for to get

and substitute into Equation (3) to get

The value of this derivative at is

Notation

To show what variables are assumed to be independent in calculating a derivative, we can
use the following notation:

a0ƒ
0y b x, t
 0ƒ>0y with y, x and t independent

a0w
0x b y
  0w>0x with x and y independent

a0w
0x b s2,-1,1d

= 2s2d +

2s -1ds1d
-1 + 3s1d2 = 4 +

-2
2

= 3.

sx, y, zd = s2, -1, 1d

0w
0x = 2x +

2yz

y + 3z2 .

0z
0x =

y

y + 3z2

0z>0x
0w>0x

3z2 
0z
0x - y + y 

0z
0x + 0 = 0.

0w
0x = 2x + 2z 

0z
0x

w = x2
+ y2

+ z2, z3
- xy + yz + y3

= 1,

sx, y, zd = s2, -1, 1d0w>0x

0w>0x

844 Chapter 14: Partial Derivatives

1. Decide which variables are to be dependent and which are to be independent.
(In practice, the decision is based on the physical or theoretical context of our
work. In the exercises at the end of this section, we say which variables are
which.)

2. Eliminate the other dependent variable(s) in the expression for w.

3. Differentiate as usual.

HISTORICAL BIOGRAPHY

Sonya Kovalevsky
(1850–1891)
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EXAMPLE 3 Find 

Solution With x, y, z independent, we have

Arrow Diagrams

In solving problems like the one in Example 3, it often helps to start with an arrow dia-
gram that shows how the variables and functions are related. If

and we are asked to find when x, y, and z are independent, the appropriate diagram
is one like this:

(5)

To avoid confusion between the independent and intermediate variables with the same
symbolic names in the diagram, it is helpful to rename the intermediate variables (so they
are seen as functions of the independent variables). Thus, let and de-
note the renamed intermediate variables. With this notation, the arrow diagram becomes

(6)

The diagram shows the independent variables on the left, the intermediate variables and
their relation to the independent variables in the middle, and the dependent variable on the
right. The function w now becomes

where

u = x, y = y, s = z, and t = x + y.

w = u2
+ y - s + sin t,

£x

y

z

≥  :  §u

y

s

t

¥  :  w

s = zu = x, y = y ,

£x

y

z

≥  : §x

y

z

t

¥  :  w

0w>0x

w = x2
+ y - z + sin t and x + y = t

 = 2x + cos sx + yd.

 a0w
0x b y, z

= 2x + 0 - 0 + cos sx + yd 
0

0x sx + yd

 t = x + y, w = x2
+ y - z + sin sx + yd

s0w>0xdy, z if w = x2
+ y - z + sin t and x + y = t.

14.10 Partial Derivatives with Constrained Variables 845

Independent Intermediate Dependent
variables variables and variable

relations

Independent Intermediate Dependent
variables variables variable

t = x + y
s = z
y = y
u = x

7001_ThomasET_ch14p765-853.qxd  10/30/09  7:42 AM  Page 845



To find we apply the four-variable form of the Chain Rule to w, guided by the
arrow diagram in Equation (6):

 = 2x + cos sx + yd .

 = 2u + cos t

 = s2uds1d + s1ds0d + s -1ds0d + scos tds1d

 
0w
0x =

0w
0u  

0u
0x +

0w
0y

 
0y
0x +

0w
0s  

0s
0x +

0w
0t  

0t
0x

0w>0x,

846 Chapter 14: Partial Derivatives

Exercises 14.10

Finding Partial Derivatives with Constrained Variables
In Exercises 1–3, begin by drawing a diagram that shows the rela-
tions among the variables.

1. If and find

a. b. c.

2. If and find

a. b. c.

d. e. f.

3. Let be the internal energy of a gas that obeys the
ideal gas law (n and R constant). Find

a. b.

4. Find

a. b.

at the point if

5. Find

a. b.

at the point if

6. Find at the point if and

7. Suppose that and as in polar coordi-
nates. Find

8. Suppose that

Show that the equations

0w
0x = 2x - 1 and 0w

0x = 2x - 2

w = x2
- y2

+ 4z + t and x + 2z + t = 25.

a0x
0r bu and a0r

0x b y
.

x = r cos u,x2
+ y2

= r2

y = uy.
x = u2

+ y2su, yd = A22, 1 B ,s0u>0ydx

w = x2y2
+ yz - z3 and x2

+ y2
+ z2

= 6.

sw, x, y, zd = s4, 2, 1, -1d

a0w
0y b z

a0w
0y b x

w = x2
+ y2

+ z2 and y sin z + z sin x = 0.

sx, y, zd = s0, 1, pd

a0w
0z b y

a0w
0x b y

a0U
0T
b

V
.a0U

0P
b

V

PV = nRT
U = ƒsP, V, Td

a0w
0t b y, z

.a0w
0t b x, z

a0w
0z b y, t

a0w
0z b x, y

a0w
0y b z, t

a0w
0y b x, z

x + y = t ,w = x2
+ y - z + sin t

a0w
0z b y

.a0w
0z b x

a0w
0y b z

z = x2
+ y2 ,w = x2

+ y2
+ z2

each give depending on which variables are chosen to be
dependent and which variables are chosen to be independent.
Identify the independent variables in each case.

Theory and Examples
9. Establish the fact, widely used in hydrodynamics, that if

then

(Hint: Express all the derivatives in terms of the formal partial de-
rivatives and )

10. If where show that

11. Suppose that the equation determines z as a differ-
entiable function of the independent variables x and y and that

Show that

12. Suppose that and determine z
and w as differentiable functions of the independent variables x
and y, and suppose that

Show that

and

a0w
0y b x

= -

0ƒ
0z  

0g
0y -

0ƒ
0y  

0g
0z

0ƒ
0z  

0g
0w -

0ƒ
0w 

0g
0z

 .

a0z
0x b y

= -

0ƒ
0x  

0g
0w -

0ƒ
0w 

0g
0x

0ƒ
0z  

0g
0w -

0ƒ
0w 

0g
0z

0ƒ
0z  

0g
0w -

0ƒ
0w 

0g
0z Z 0.

g sx, y, z, wd = 0ƒsx, y, z, wd = 0

a0z
0y b x

= -

0g>0y

0g>0z
 .

gz Z 0.

gsx, y, zd = 0

x 
0z
0x - y 

0z
0y = x .

u = xy,z = x + ƒsud,

0ƒ>0z.0ƒ>0x, 0ƒ>0y,

a0x
0y b z

 a0y
0z b x

 a0z
0x b y

= -1.

ƒsx, y, zd = 0,

0w>0x,

Substituting the original independent
variables and t = x + yu = x
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Chapter 14 Practice Exercises 847

Chapter 14 Questions to Guide Your Review

1. What is a real-valued function of two independent variables?
Three independent variables? Give examples.

2. What does it mean for sets in the plane or in space to be open?
Closed? Give examples. Give examples of sets that are neither
open nor closed.

3. How can you display the values of a function ƒ(x, y) of two inde-
pendent variables graphically? How do you do the same for a
function ƒ(x, y, z) of three independent variables?

4. What does it mean for a function ƒ(x, y) to have limit L as
What are the basic properties of limits of func-

tions of two independent variables?

5. When is a function of two (three) independent variables continu-
ous at a point in its domain? Give examples of functions that are
continuous at some points but not others.

6. What can be said about algebraic combinations and composites of
continuous functions?

7. Explain the two-path test for nonexistence of limits.

8. How are the partial derivatives and of a function
ƒ(x, y) defined? How are they interpreted and calculated?

9. How does the relation between first partial derivatives and conti-
nuity of functions of two independent variables differ from the re-
lation between first derivatives and continuity for real-valued
functions of a single independent variable? Give an example.

10. What is the Mixed Derivative Theorem for mixed second-order
partial derivatives? How can it help in calculating partial deriva-
tives of second and higher orders? Give examples.

11. What does it mean for a function ƒ(x, y) to be differentiable?
What does the Increment Theorem say about differentiability?

12. How can you sometimes decide from examining and that a
function ƒ(x, y) is differentiable? What is the relation between the
differentiability of ƒ and the continuity of ƒ at a point?

13. What is the general Chain Rule? What form does it take for func-
tions of two independent variables? Three independent variables?
Functions defined on surfaces? How do you diagram these differ-
ent forms? Give examples. What pattern enables one to remember
all the different forms?

ƒyƒx

0ƒ>0y0ƒ>0x

sx, yd : sx0, y0d?

14. What is the derivative of a function ƒ(x, y) at a point in the di-
rection of a unit vector u? What rate does it describe? What geo-
metric interpretation does it have? Give examples.

15. What is the gradient vector of a differentiable function ƒ(x, y)?
How is it related to the function’s directional derivatives? State
the analogous results for functions of three independent variables.

16. How do you find the tangent line at a point on a level curve of a
differentiable function ƒ(x, y)? How do you find the tangent plane
and normal line at a point on a level surface of a differentiable
function ƒ(x, y, z)? Give examples.

17. How can you use directional derivatives to estimate change?

18. How do you linearize a function ƒ(x, y) of two independent vari-
ables at a point Why might you want to do this? How do
you linearize a function of three independent variables?

19. What can you say about the accuracy of linear approximations of
functions of two (three) independent variables?

20. If (x, y) moves from to a point nearby,
how can you estimate the resulting change in the value of a differ-
entiable function ƒ(x, y)? Give an example.

21. How do you define local maxima, local minima, and saddle
points for a differentiable function ƒ(x, y)? Give examples.

22. What derivative tests are available for determining the local ex-
treme values of a function ƒ(x, y)? How do they enable you to nar-
row your search for these values? Give examples.

23. How do you find the extrema of a continuous function ƒ(x, y) on a
closed bounded region of the xy-plane? Give an example.

24. Describe the method of Lagrange multipliers and give examples.

25. How does Taylor’s formula for a function ƒ(x, y) generate polyno-
mial approximations and error estimates?

26. If where the variables x, y, and z are constrained
by an equation what is the meaning of the notation

How can an arrow diagram help you calculate this par-
tial derivative with constrained variables? Give examples.
s0w>0xdy?

gsx, y, zd = 0,
w = ƒsx, y, zd,

sx0 + dx, y0 + dydsx0, y0d

sx0, y0d?

P0

Chapter 14 Practice Exercises

Domain, Range, and Level Curves
In Exercises 1–4, find the domain and range of the given function and
identify its level curves. Sketch a typical level curve.

1. 2.

3. 4.

In Exercises 5–8, find the domain and range of the given function and
identify its level surfaces. Sketch a typical level surface.

5. 6. gsx, y, zd = x2
+ 4y2

+ 9z2ƒsx, y, zd = x2
+ y2

- z

gsx, yd = 2x2
- ygsx, yd = 1>xy

ƒsx, yd = ex + yƒsx, yd = 9x2
+ y2

7.

8.

Evaluating Limits
Find the limits in Exercises 9–14.

9. 10. lim
sx,yd: s0,0d

  
2 + y

x + cos ylim
sx,yd: sp, ln 2d

 ey cos x

ksx, y, zd =

1
x2

+ y2
+ z2

+ 1

hsx, y, zd =

1
x2

+ y2
+ z2
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11. 12.

13. 14.

By considering different paths of approach, show that the limits in Ex-
ercises 15 and 16 do not exist.

15. 16.

17. Continuous extension Let for
Is it possible to define ƒ(0, 0) in a way that

makes ƒ continuous at the origin? Why?

18. Continuous extension Let

Is ƒ continuous at the origin? Why?

Partial Derivatives
In Exercises 19–24, find the partial derivative of the function with
respect to each variable.

19.

20.

21.

22.

23. (the ideal gas law)

24.

Second-Order Partials
Find the second-order partial derivatives of the functions in Exercises
25–28.

25. 26.

27.

28.

Chain Rule Calculations
29. Find dw dt at if and 

30. Find dw dt at if 
and 

31. Find and when and if 

32. Find and when if 

and 

33. Find the value of the derivative of with
respect to t on the curve at t = 1 .x = cos t, y = sin t, z = cos 2t

ƒsx, y, zd = xy + yz + xz

x = 2eu cos y.ln21 + x2
- tan-1 x

w =u = y = 00w>0y0w>0u

x = r + sin s, y = rs.
w = sin s2x - yd, s = 0r = p0w>0s0w>0r

z = pt.y = t - 1 + ln t ,
x = 22t,w = xey

+ y sin z - cos z,t = 1>
ln st + 1d.

y =x = et,w = sin sxy + pd,t = 0>

ƒsx, yd = y2
- 3xy + cos y + 7ey

ƒsx, yd = x + xy - 5x3
+ ln sx2

+ 1d

gsx, yd = ex
+ y sin xgsx, yd = y +

x
y

ƒsr, l, T, wd =

1
2rl

 A
T
pw

Psn, R, T, Vd =

nRT
V

hsx, y, zd = sin s2px + y - 3zd

ƒsR1, R2, R3d =

1
R1

+

1
R2

+

1
R3

ƒsx, yd =

1
2

 ln sx2
+ y2d + tan-1  

y
x

gsr, ud = r cos u + r sin u

ƒsx, yd = L
sin sx - yd

ƒ x ƒ + ƒ y ƒ

, ƒ x ƒ + ƒ y ƒ Z 0

0, sx, yd = s0, 0d.

sx, yd Z s0, 0d .
ƒsx, yd = sx2

- y2d>sx2
+ y2d

lim
sx,yd : s0,0d

xy Z 0

 
x2

+ y2

xylim
sx,yd : s0,0d

y Z x2

 
y

x2
- y

lim
P: s1,-1,-1d

 tan-1 sx + y + zdlim
P: s1, -1, ed

 ln ƒ x + y + z ƒ

lim
sx,yd: s1,1d

 
x3y3

- 1

xy - 1
lim

sx,yd: s1,1d
 

x - y

x2
- y2
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34. Show that if is any differentiable function of s and if
then

Implicit Differentiation
Assuming that the equations in Exercises 35 and 36 define y as a dif-
ferentiable function of x, find the value of dy dx at point P.

35.

36.

Directional Derivatives
In Exercises 37–40, find the directions in which ƒ increases and 
decreases most rapidly at and find the derivative of ƒ in each 
direction. Also, find the derivative of ƒ at in the direction of the
vector v.

37.

38.

39.

40.

41. Derivative in velocity direction Find the derivative of
in the direction of the velocity vector of the helix

at 

42. Maximum directional derivative What is the largest value that
the directional derivative of can have at the point
(1, 1, 1)?

43. Directional derivatives with given values At the point (1, 2),
the function ƒ(x, y) has a derivative of 2 in the direction toward 
(2, 2) and a derivative of in the direction toward (1, 1).
a. Find and 

b. Find the derivative of ƒ at (1, 2) in the direction toward the
point (4, 6).

44. Which of the following statements are true if ƒ(x, y) is differen-
tiable at Give reasons for your answers.

a. If u is a unit vector, the derivative of ƒ at in the direc-
tion of u is 

b. The derivative of ƒ at in the direction of u is a vector.

c. The directional derivative of ƒ at has its greatest value
in the direction of 

d. At vector is normal to the curve

Gradients, Tangent Planes, and Normal Lines
In Exercises 45 and 46, sketch the surface together with

at the given points.

45.

46. y2
+ z2

= 4; s2, ;2, 0d, s2, 0, ;2d
x2

+ y + z2
= 0; s0, -1, ;1d, s0, 0, 0d

§ƒ
ƒsx, y, zd = c

ƒsx, yd = ƒsx0 , y0d.
§ƒsx0 , y0d ,

§ƒ .
sx0 , y0d

sx0 , y0d
sƒxsx0 , y0di + ƒysx0 , y0djd # u.

sx0 , y0d
sx0 , y0d ?

ƒys1, 2d .ƒxs1, 2d
-2

ƒsx, y, zd = xyz

t = p>3.

rstd = scos 3tdi + ssin 3tdj + 3tk

ƒsx, y, zd = xyz

v = i + j + k

ƒsx, y, zd = x2
+ 3xy - z2

+ 2y + z + 4, P0s0, 0, 0d,
v = 2i + 3j + 6k

ƒsx, y, zd = ln s2x + 3y + 6zd, P0s -1, -1, 1d,
ƒsx, yd = x2e-2y, P0s1, 0d, v = i + j

ƒsx, yd = cos x cos y, P0sp>4, p>4d, v = 3i + 4j

P0

P0

2xy + ex + y
- 2 = 0, Ps0, ln 2d

1 - x - y2
- sin xy = 0, Ps0, 1d

>

0w
0x - 5 

0w
0y = 0.

s = y + 5x ,
w = ƒssd
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In Exercises 47 and 48, find an equation for the plane tangent to the
level surface at the point Also, find parametric
equations for the line that is normal to the surface at 

47.

48.

In Exercises 49 and 50, find an equation for the plane tangent to the
surface at the given point.

49.

50.

In Exercises 51 and 52, find equations for the lines that are tangent
and normal to the level curve at the point Then sketch
the lines and level curve together with at 

51. 52.

Tangent Lines to Curves
In Exercises 53 and 54, find parametric equations for the line that is
tangent to the curve of intersection of the surfaces at the given point.

53. Surfaces:

Point:       (1, 1, 1 2)

54. Surfaces:

Point:       (1 2, 1, 1 2)

Linearizations
In Exercises 55 and 56, find the linearization L(x, y) of the function
ƒ(x, y) at the point Then find an upper bound for the magnitude of
the error E in the approximation over the rectangle R.

55.

56.

Find the linearizations of the functions in Exercises 57 and 58 at the
given points.

57. at (1, 0, 0) and (1, 1, 0)

58. at and 

Estimates and Sensitivity to Change
59. Measuring the volume of a pipeline You plan to calculate the

volume inside a stretch of pipeline that is about 36 in. in diameter
and 1 mile long. With which measurement should you be more
careful, the length or the diameter? Why?

60. Sensitivity to change Is more
sensitive to changes in x or to changes in y when it is near the
point (1, 2)? How do you know?

61. Change in an electrical circuit Suppose that the current I (am-
peres) in an electrical circuit is related to the voltage V (volts) and
the resistance R (ohms) by the equation If the voltage
drops from 24 to 23 volts and the resistance drops from 100 to
80 ohms, will I increase or decrease? By about how much? Is the
change in I more sensitive to change in the voltage or to change in
the resistance? How do you know?

I = V>R .

ƒsx, yd = x2
- xy + y2

- 3

p>4, 0dsp>4,s0, 0, p>4dƒsx, y, zd = 22 cos x sin s y + zd

ƒsx, y, zd = xy + 2yz - 3xz

R: ƒ x - 1 ƒ … 0.1, ƒ y - 1 ƒ … 0.2

ƒsx, yd = xy - 3y2
+ 2, P0s1, 1d

R: ` x -

p

4
` … 0.1, ` y -

p

4
` … 0.1

ƒsx, yd = sin x cos y, P0sp>4, p>4d
ƒsx, yd L Lsx, yd

P0 .

>>
x + y2

+ z = 2, y = 1

>
x2

+ 2y + 2z = 4, y = 1

y2

2
-

x2

2
=

3
2

, P0s1, 2dy - sin x = 1, P0sp, 1d

P0 .§ƒ
P0 .ƒsx, yd = c

z = 1>sx2
+ y2d, s1, 1, 1>2d

z = ln sx2
+ y2d, s0, 1, 0d

z = ƒsx, yd

x2
+ y2

+ z = 4, P0s1, 1, 2d
x2

- y - 5z = 0, P0s2, -1, 1d
P0 .

P0 .ƒsx, y, zd = c
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62. Maximum error in estimating the area of an ellipse If
and to the nearest millimeter, what should

you expect the maximum percentage error to be in the calculated
area of the ellipse 

63. Error in estimating a product Let and 
where u and are positive independent variables.

a. If u is measured with an error of 2% and with an error of 3%,
about what is the percentage error in the calculated value of y ?

b. Show that the percentage error in the calculated value of z is
less than the percentage error in the value of y.

64. Cardiac index To make different people comparable in studies
of cardiac output, researchers divide the measured cardiac output
by the body surface area to find the cardiac index C:

The body surface area B of a person with weight w and height h is
approximated by the formula

which gives B in square centimeters when w is measured in kilo-
grams and h in centimeters. You are about to calculate the cardiac
index of a person 180 cm tall, weighing 70 kg, with cardiac out-
put of Which will have a greater effect on the calcula-
tion, a 1-kg error in measuring the weight or a 1-cm error in
measuring the height?

Local Extrema
Test the functions in Exercises 65–70 for local maxima and minima
and saddle points. Find each function’s value at these points.

65.

66.

67.

68.

69.

70.

Absolute Extrema
In Exercises 71–78, find the absolute maximum and minimum values
of ƒ on the region R.

71.

R: The triangular region cut from the first quadrant by the line

72.

R: The rectangular region in the first quadrant bounded by the 
coordinate axes and the lines and 

73.

R: The square region enclosed by the lines and 

74.

R: The square region bounded by the coordinate axes and the lines
in the first quadrant

75.

R: The triangular region bounded below by the x-axis, above by
the line and on the right by the line x = 2y = x + 2,

ƒsx, yd = x2
- y2

- 2x + 4y

x = 2, y = 2

ƒsx, yd = 2x + 2y - x2
- y2

y = ;2x = ;2

ƒsx, yd = y2
- xy - 3y + 2x

y = 2x = 4

ƒsx, yd = x2
- y2

- 2x + 4y + 1

x + y = 4

ƒsx, yd = x2
+ xy + y2

- 3x + 3y

ƒsx, yd = x4
- 8x2

+ 3y2
- 6y

ƒsx, yd = x3
+ y3

+ 3x2
- 3y2

ƒsx, yd = x3
+ y3

- 3xy + 15

ƒsx, yd = 2x3
+ 3xy + 2y3

ƒsx, yd = 5x2
+ 4xy - 2y2

+ 4x - 4y

ƒsx, yd = x2
- xy + y2

+ 2x + 2y - 4

7 L>min.

B = 71.84w0.425h0.725 ,

C =

cardiac output

body surface area
.

y

y

z = u + y,y = uy

x2>a2
+ y2>b2

= 1?A = pab

b = 16 cma = 10 cm
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76.

R: The triangular region bounded below by the line 
above by the line and on the right by the line 

77.

R: The square region enclosed by the lines and 

78.

R: The square region enclosed by the lines and 

Lagrange Multipliers
79. Extrema on a circle Find the extreme values of 

on the circle 

80. Extrema on a circle Find the extreme values of on
the circle 

81. Extrema in a disk Find the extreme values of 
on the unit disk 

82. Extrema in a disk Find the extreme values of 
on the disk 

83. Extrema on a sphere Find the extreme values of 
on the unit sphere 

84. Minimum distance to origin Find the points on the surface
closest to the origin.

85. Minimizing cost of a box A closed rectangular box is to have
volume The cost of the material used in the box is

for top and bottom, for front and back,
and for the remaining sides. What dimensions mini-
mize the total cost of materials?

86. Least volume Find the plane that passes
through the point (2, 1, 2) and cuts off the least volume from the
first octant.

87. Extrema on curve of intersecting surfaces Find the extreme
values of on the curve of intersection of the
right circular cylinder and the hyperbolic cylinder

88. Minimum distance to origin on curve of intersecting plane
and cone Find the point closest to the origin on the curve of in-
tersection of the plane and the cone 

Partial Derivatives with Constrained Variables
In Exercises 89 and 90, begin by drawing a diagram that shows the
relations among the variables.

89. If and find

a. b. c.

90. Let be the internal energy of a gas that obeys the
ideal gas law (n and R constant). Find

a. b.

Theory and Examples
91. Let and Find

and and express your answers in terms of r and 

92. Let and Express and
in terms of and the constants a and b.fu , fy ,zy

zxy = ax - by.u = ax + by,z = ƒsu, yd,
u.0w>0y0w>0x

u = tan-1 sy>x).w = ƒsr, ud, r = 2x2
+ y2 ,

a0U
0V
b

T
.a0U

0T
b

P

PV = nRT
U = ƒsP, V, T d

a0w
0z b y

.a0w
0z b x

a0w
0y b z

z = x2
- y2w = x2eyz

2x2
+ 2y2.

z2
=x + y + z = 1

xz = 1.
x2

+ y2
= 1

ƒsx, y, zd = xs y + zd

x>a + y>b + z>c = 1

c cents>cm2
b cents>cm2a cents>cm2

V cm3.

x2
- zy = 4

x2
+ y2

+ z2
= 1.x - y + z

ƒsx, y, zd =

x2
+ y2

… 9.x2
+ y2

- 3x - xy
ƒsx, yd =

x2
+ y2

… 1.x2
+ 3y2

+ 2y
ƒsx, yd =

x2
+ y2

= 1.
ƒsx, yd = xy

x2
+ y2

= 1.x3
+ y2

ƒsx, yd =

y = ;1x = ;1

ƒsx, yd = x3
+ 3xy + y3

+ 1

y = ;1x = ;1

ƒsx, yd = x3
+ y3

+ 3x2
- 3y2

x = 2y = x,
y = -2,

ƒsx, yd = 4xy - x4
- y4

+ 16

850 Chapter 14: Partial Derivatives

93. If a and b are constants, and 
show that

94. Using the Chain Rule If 
and find and by the Chain Rule.

Then check your answer another way.

95. Angle between vectors The equations and
define u and as differentiable functions of 

x and y. Show that the angle between the vectors

is constant.

96. Polar coordinates and second derivatives Introducing polar
coordinates and changes ƒ(x, y) to

Find the value of at the point 
given that

at that point.

97. Normal line parallel to a plane Find the points on the surface

where the normal line is parallel to the yz-plane.

98. Tangent plane parallel to xy-plane Find the points on the sur-
face

where the tangent plane is parallel to the xy-plane.

99. When gradient is parallel to position vector Suppose that
is always parallel to the position vector

Show that for any a.

100. One-sided directional derivative in all directions, but no gra-
dient The one-sided directional derivative of ƒ at P
in the direction is the number

.

Show that the one-sided directional derivative of

at the origin equals 1 in any direction but that ƒ has no gradient
vector at the origin.

101. Normal line through origin Show that the line normal to the
surface at the point (1, 1, 1) passes through the origin.

102. Tangent plane and normal line

a. Sketch the surface 

b. Find a vector normal to the surface at Add the
vector to your sketch.

c. Find equations for the tangent plane and normal line at
s2, -3, 3d.

s2, -3, 3d.
x2

- y2
+ z2

= 4.

xy + z = 2

ƒsx, y, zd = 2x2
+ y2

+ z2

lim
s:0 +

 f (x0 + su1, y0 + su2, z0 + su3) - f (x0, y0, z0)
s

u = u1i + u2 j + u3k
(x0, y0, z0)

ƒs0, 0, ad = ƒs0, 0, -adxi + yj + zk.
§ƒsx, y, zd

xy + yz + zx - x - z2
= 0

sy + zd2
+ sz - xd2

= 16

0ƒ
0x =

0ƒ
0y =

0
2ƒ

0x2 =

0
2ƒ

0y2 = 1

sr, ud = s2, p>2d,0
2g>0u2gsr, ud.

y = r sin ux = r cos u

0u
0x  i +

0u
0y  j and 0y

0x  i +

0y
0y  j

yeu sin y - y = 0
eu cos y - x = 0

wswrz = 2rs, y = r - s,
 x = r + s,w = ln sx2

+ y2
+ 2zd, 

a 
0w
0y = b 

0w
0x .

ax + by,
u =w = u3

+ tanh u + cos u,
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Chapter 14 Additional and Advanced Exercises

Partial Derivatives
1. Function with saddle at the origin If you did Exercise 60 in

Section 14.2, you know that the function

(see the accompanying figure) is continuous at (0, 0). Find
and 

2. Finding a function from second partials Find a function
whose first partial derivatives are 

and and whose value at the point
(ln 2, 0) is ln 2.

3. A proof of Leibniz’s Rule Leibniz’s Rule says that if ƒ is con-
tinuous on [a, b] and if u(x) and (x) are differentiable functions
of x whose values lie in [a, b], then

Prove the rule by setting

and calculating dg dx with the Chain Rule.

4. Finding a function with constrained second partials Suppose
that ƒ is a twice-differentiable function of r, that

and that

Show that for some constants a and b,

5. Homogeneous functions A function ƒ(x, y) is homogeneous of
degree n (n a nonnegative integer) if for all t,
x, and y. For such a function (sufficiently differentiable), prove
that

a.

b. x2 a02ƒ

0x2 b + 2xy a 0
2ƒ

0x0y b + y2 a0
2ƒ

0y2 b = nsn - 1dƒ.

x 
0ƒ
0x + y 

0ƒ
0y = nƒsx, yd

ƒstx, tyd = t nƒsx, yd

ƒsrd =

a
r + b.

ƒxx + ƒyy + ƒzz = 0.

r = 2x2
+ y2

+ z2 ,

>
gsu, yd =

L

y

u
 ƒstd dt, u = usxd, y = ysxd

d
dxL

ysxd

usxd
 ƒstd dt = ƒsysxdd 

dy
dx

- ƒsusxdd 
du
dx

.

y

0w>0y = 2y - ex sin yex cos y
0w>0x = 1 +w = ƒsx, yd

z

y

x

ƒyxs0, 0d.ƒxys0, 0d

ƒsx, yd = L xy 
x2

- y2

x2
+ y2 , sx, yd Z s0, 0d

0, sx, yd = s0, 0d

6. Surface in polar coordinates Let

where r and are polar coordinates. Find

a. b. c.

Gradients and Tangents
7. Properties of position vectors Let and let

a. Show that 

b. Show that 

c. Find a function whose gradient equals r.

d. Show that 

e. Show that for any constant vector A.

8. Gradient orthogonal to tangent Suppose that a differentiable
function ƒ(x, y) has the constant value c along the differentiable
curve that is,

for all values of t. Differentiate both sides of this equation with re-
spect to t to show that is orthogonal to the curve’s tangent vec-
tor at every point on the curve.

9. Curve tangent to a surface Show that the curve

is tangent to the surface

at (0, 0, 1).

10. Curve tangent to a surface Show that the curve

is tangent to the surface

at s0, -1, 1d.
x3

+ y3
+ z3

- xyz = 0

rstd = at3

4
- 2b i + a4t - 3b j + cos st - 2dk

xz2
- yz + cos xy = 1

rstd = sln tdi + st ln tdj + tk

§ƒ

ƒsgstd, hstdd = c

x = gstd, y = hstd;

§sA # rd = A

r # dr = r dr.

§srnd = nrn - 2r.

§r = r>r.

r = ƒ r ƒ .
r = xi + yj + zk

z � f (r, �)

ƒusr, ud, r Z 0.ƒrs0, 0dlim
r:0

 ƒsr, ud
u

ƒsr, ud = L
sin 6r

6r
 , r Z 0

1, r = 0,
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Extreme Values
11. Extrema on a surface Show that the only possible maxima and

minima of z on the surface occur at
(0, 0) and (3, 3). Show that neither a maximum nor a minimum
occurs at (0, 0). Determine whether z has a maximum or a mini-
mum at (3, 3).

12. Maximum in closed first quadrant Find the maximum value
of in the closed first quadrant (includes the
nonnegative axes).

13. Minimum volume cut from first octant Find the minimum
volume for a region bounded by the planes 
and a plane tangent to the ellipsoid

at a point in the first octant.

14. Minimum distance from a line to a parabola in xy-plane By
minimizing the function 
subject to the constraints and find the mini-
mum distance in the xy-plane from the line to the
parabola 

Theory and Examples
15. Boundedness of first partials implies continuity Prove the

following theorem: If ƒ(x, y) is defined in an open region R of the
xy-plane and if and are bounded on R, then ƒ(x, y) is contin-
uous on R. (The assumption of boundedness is essential.)

16. Suppose that is a smooth curve in
the domain of a differentiable function ƒ(x, y, z). Describe the re-
lation between dƒ dt, and What can be said about

and v at interior points of the curve where ƒ has extreme val-
ues relative to its other values on the curve? Give reasons for your
answer.

17. Finding functions from partial derivatives Suppose that ƒ
and g are functions of x and y such that

and suppose that

Find ƒ(x, y) and g(x, y).

18. Rate of change of the rate of change We know that if ƒ(x, y) is
a function of two variables and if is a unit vector, then

is the rate of change of ƒ(x, y)
at (x, y) in the direction of u. Give a similar formula for the rate of
change of the rate of change of ƒ(x, y) at (x, y) in the direction u.

Du ƒsx, yd = ƒxsx, yda + ƒysx, ydb
u = ai + bj

0ƒ
0x = 0, ƒs1, 2d = gs1, 2d = 5 and ƒs0, 0d = 4.

0ƒ
0y =

0g
0x and 0ƒ

0x =

0g
0y ,

§ƒ
v = dr>dt.§ƒ ,>

rstd = gstdi + hstdj + kstdk

ƒyƒx

y2
= x.

y = x + 1
u = y2,y = x + 1

ƒsx, y, u, yd = sx - ud2
+ sy - yd2

x2

a2 +

y2

b2 +

z2

c2 = 1

x = 0, y = 0, z = 0

ƒsx, yd = 6xye-s2x + 3yd

z = x3
+ y3

- 9xy + 27

852 Chapter 14: Partial Derivatives

19. Path of a heat-seeking particle A heat-seeking particle has the
property that at any point (x, y) in the plane it moves in the direction
of maximum temperature increase. If the temperature at (x, y) is

find an equation for the path of a
heat-seeking particle at the point 

20. Velocity after a ricochet A particle traveling in a straight line
with constant velocity passes through the point 
(0, 0, 30) and hits the surface The particle rico-
chets off the surface, the angle of reflection being equal to the
angle of incidence. Assuming no loss of speed, what is the veloc-
ity of the particle after the ricochet? Simplify your answer.

21. Directional derivatives tangent to a surface Let S be the sur-
face that is the graph of Suppose that
the temperature in space at each point (x, y, z) is

a. Among all the possible directions tangential to the surface S
at the point (0, 0, 10), which direction will make the rate of
change of temperature at (0, 0, 10) a maximum?

b. Which direction tangential to S at the point (1, 1, 8) will make
the rate of change of temperature a maximum?

22. Drilling another borehole On a flat surface of land, geologists
drilled a borehole straight down and hit a mineral deposit at 1000 ft.
They drilled a second borehole 100 ft to the north of the first and
hit the mineral deposit at 950 ft. A third borehole 100 ft east of
the first borehole struck the mineral deposit at 1025 ft. The geolo-
gists have reasons to believe that the mineral deposit is in the
shape of a dome, and for the sake of economy, they would like to
find where the deposit is closest to the surface. Assuming the sur-
face to be the xy-plane, in what direction from the first borehole
would you suggest the geologists drill their fourth borehole?

The one-dimensional heat equation If w(x, t) represents the tem-
perature at position x at time t in a uniform wire with perfectly insu-
lated sides, then the partial derivatives and satisfy a differential
equation of the form

This equation is called the one-dimensional heat equation. The value
of the positive constant is determined by the material from which
the wire is made.

23. Find all solutions of the one-dimensional heat equation of the
form where r is a constant.

24. Find all solutions of the one-dimensional heat equation that have
the form and satisfy the conditions that 
and What happens to these solutions as t : q?wsL, td = 0.

ws0, td = 0w = ert sin kx

w = ert sin px,

c2

wxx =

1
c2 wt .

wtwxx

y2z + 4x + 14y + z.Tsx, y, zd = x2y +

ƒsx, yd = 10 - x2
- y2 .

z = 2x2
+ 3y2.

i + j - 5k

sp>4, 0d.
y = ƒsxdTsx, yd = -e-2y cos x,
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Chapter 14 Technology Application Projects

Mathematica Maple Module:
Plotting Surfaces
Efficiently generate plots of surfaces, contours, and level curves.

Exploring the Mathematics Behind Skateboarding: Analysis of the Directional Derivative
The path of a skateboarder is introduced, first on a level plane, then on a ramp, and finally on a paraboloid. Compute, plot, and analyze the
directional derivative in terms of the skateboarder.

Looking for Patterns and Applying the Method of Least Squares to Real Data
Fit a line to a set of numerical data points by choosing the line that minimizes the sum of the squares of the vertical distances from the points to
the line.

Lagrange Goes Skateboarding: How High Does He Go?
Revisit and analyze the skateboarders’ adventures for maximum and minimum heights from both a graphical and analytic perspective using
Lagrange multipliers.

/
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854

OVERVIEW In this chapter we consider the integral of a function of two variables ƒ(x, y)
over a region in the plane and the integral of a function of three variables ƒ(x, y, z) over 
a region in space. These multiple integrals are defined to be the limit of approximating
Riemann sums, much like the single-variable integrals presented in Chapter 5. We illus-
trate several applications of multiple integrals, including calculations of volumes, areas in
the plane, moments, and centers of mass.

15.1 Double and Iterated Integrals over Rectangles

In Chapter 5 we defined the definite integral of a continuous function ƒ(x) over an inter-
val [a, b] as a limit of Riemann sums. In this section we extend this idea to define the
double integral of a continuous function of two variables ƒ(x, y) over a bounded rectan-
gle R in the plane. In both cases the integrals are limits of approximating Riemann sums.
The Riemann sums for the integral of a single-variable function ƒ(x) are obtained by par-
titioning a finite interval into thin subintervals, multiplying the width of each subinterval
by the value of ƒ at a point inside that subinterval, and then adding together all the
products. A similar method of partitioning, multiplying, and summing is used to con-
struct double integrals.

Double Integrals

We begin our investigation of double integrals by considering the simplest type of planar
region, a rectangle. We consider a function ƒ(x, y) defined on a rectangular region R,

We subdivide R into small rectangles using a network of lines parallel to the x- and y-axes
(Figure 15.1). The lines divide R into n rectangular pieces, where the number of such pieces
n gets large as the width and height of each piece gets small. These rectangles form a
partition of R. A small rectangular piece of width and height has area 
If we number the small pieces partitioning R in some order, then their areas are given by
numbers where is the area of the kth small rectangle.

To form a Riemann sum over R, we choose a point in the kth small rectangle,
multiply the value of ƒ at that point by the area and add together the products:

Depending on how we pick in the kth small rectangle, we may get different values
for Sn.

sxk, ykd

Sn = a

n

k = 1
 ƒsxk, ykd ¢Ak .

¢Ak,
sxk, ykd

¢Ak¢A1, ¢A2, Á , ¢An,

¢A = ¢x¢y.¢y¢x

R: a … x … b, c … y … d.

ck

15
MULTIPLE INTEGRALS

x

y

0 a

c

b

d

R

�yk

�xk

�Ak

(xk, yk)

FIGURE 15.1 Rectangular grid
partitioning the region R into small
rectangles of area ¢Ak = ¢xk ¢yk.
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We are interested in what happens to these Riemann sums as the widths and heights of
all the small rectangles in the partition of R approach zero. The norm of a partition P,
written is the largest width or height of any rectangle in the partition. If 
then all the rectangles in the partition of R have width at most 0.1 and height at most 0.1.
Sometimes the Riemann sums converge as the norm of P goes to zero, written 
The resulting limit is then written as

As and the rectangles get narrow and short, their number n increases, so we can
also write this limit as

with the understanding that , and hence , as .
There are many choices involved in a limit of this kind. The collection of small rec-

tangles is determined by the grid of vertical and horizontal lines that determine a rectan-
gular partition of R. In each of the resulting small rectangles there is a choice of an arbi-
trary point at which ƒ is evaluated. These choices together determine a single
Riemann sum. To form a limit, we repeat the whole process again and again, choosing
partitions whose rectangle widths and heights both go to zero and whose number goes to
infinity.

When a limit of the sums exists, giving the same limiting value no matter what
choices are made, then the function ƒ is said to be integrable and the limit is called the
double integral of ƒ over R, written as

It can be shown that if ƒ(x, y) is a continuous function throughout R, then ƒ is integrable, as
in the single-variable case discussed in Chapter 5. Many discontinuous functions are also
integrable, including functions that are discontinuous only on a finite number of points or
smooth curves. We leave the proof of these facts to a more advanced text.

Double Integrals as Volumes

When ƒ(x, y) is a positive function over a rectangular region R in the xy-plane, we may in-
terpret the double integral of ƒ over R as the volume of the 3-dimensional solid region over
the xy-plane bounded below by R and above by the surface (Figure 15.2). Each
term in the sum is the volume of a vertical rectangular
box that approximates the volume of the portion of the solid that stands directly above the
base The sum thus approximates what we want to call the total volume of the
solid. We define this volume to be

where as 
As you might expect, this more general method of calculating volume agrees with

the methods in Chapter 6, but we do not prove this here. Figure 15.3 shows Riemann
sum approximations to the volume becoming more accurate as the number n of boxes
increases.

n : q .¢Ak : 0

Volume = lim
n: q

 Sn =

6
R

 ƒsx, yd dA,

Sn¢Ak.

Sn = g  ƒsxk, ykd¢Akƒsxk, ykd¢Ak

z = ƒsx, yd

6
R

 ƒsx, yd dA or 
6

R

 ƒsx, yd dx dy.

Sn

sxk, ykd

n : q¢Ak : 07P 7 : 0

lim
n: q

 a

n

k = 1
 ƒsxk, ykd ¢Ak ,

7P 7 : 0

lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
 ƒsxk, ykd ¢Ak .

7P 7 : 0.

7P 7 = 0.17P 7 ,

z

y
d

b

x
(xk, yk) ΔAk

z 5 f(x, y)

z

y
d

b

x
R

z 5 f(x, y)

f(xk, yk)

FIGURE 15.2 Approximating solids with
rectangular boxes leads us to define the
volumes of more general solids as double
integrals. The volume of the solid shown
here is the double integral of ƒ(x, y) over
the base region R.
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Fubini’s Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane over the rec-
tangular region in the xy-plane. If we apply the method of slic-
ing from Section 6.1, with slices perpendicular to the x-axis (Figure 15.4), then the volume is

(1)

where A(x) is the cross-sectional area at x. For each value of x, we may calculate A(x) as
the integral

(2)

which is the area under the curve in the plane of the cross-section at x. In
calculating A(x), x is held fixed and the integration takes place with respect to y. Combin-
ing Equations (1) and (2), we see that the volume of the entire solid is

(3)

If we just wanted to write a formula for the volume, without carrying out any of the
integrations, we could write

The expression on the right, called an iterated or repeated integral, says that the volume
is obtained by integrating with respect to y from to holding x
fixed, and then integrating the resulting expression in x with respect to x from to

The limits of integration 0 and 1 are associated with y, so they are placed on the in-
tegral closest to dy. The other limits of integration, 0 and 2, are associated with the vari-
able x, so they are placed on the outside integral symbol that is paired with dx.

x = 2.
x = 0

y = 1,y = 04 - x - y

Volume =

L

2

0
 
L

1

0
s4 - x - yd dy dx.

 = c7
2

 x -
x 2

2
d

0

2

= 5.

 =

L

x = 2

x = 0
 c4y - xy -

y 2

2
d

y = 0

y = 1

 dx =

L

x = 2

x = 0
 a7

2
- xb  dx

 Volume =

L

x = 2

x = 0
 Asxd dx =

L

x = 2

x = 0
 a
L

y = 1

y = 0
s4 - x - yddyb  dx

z = 4 - x - y

Asxd =

L

y = 1

y = 0
s4 - x - yd dy,

L

x = 2

x = 0
 Asxd dx,

R: 0 … x … 2, 0 … y … 1
z = 4 - x - y

856 Chapter 15: Multiple Integrals

(a) n � 16 (b) n � 64 (c) n � 256

FIGURE 15.3 As n increases, the Riemann sum approximations approach the total
volume of the solid shown in Figure 15.2.

y

z

x

x
1

2

4

z � 4 � x � y

A(x) �
 

          
(4 � x � y) dy

y � 1

y � 0

 ⌠
⌡

 

FIGURE 15.4 To obtain the cross-
sectional area A(x), we hold x fixed and
integrate with respect to y.
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What would have happened if we had calculated the volume by slicing with planes
perpendicular to the y-axis (Figure 15.5)? As a function of y, the typical cross-sectional
area is

(4)

The volume of the entire solid is therefore

in agreement with our earlier calculation.
Again, we may give a formula for the volume as an iterated integral by writing

The expression on the right says we can find the volume by integrating with re-
spect to x from to as in Equation (4) and integrating the result with respect to
y from to In this iterated integral, the order of integration is first x and then
y, the reverse of the order in Equation (3).

What do these two volume calculations with iterated integrals have to do with the
double integral

over the rectangle The answer is that both iterated integrals
give the value of the double integral. This is what we would reasonably expect, since the
double integral measures the volume of the same region as the two iterated integrals. A the-
orem published in 1907 by Guido Fubini says that the double integral of any continuous
function over a rectangle can be calculated as an iterated integral in either order of integra-
tion. (Fubini proved his theorem in greater generality, but this is what it says in our setting.)

R: 0 … x … 2, 0 … y … 1?

6
R

s4 - x - yd dA

y = 1.y = 0
x = 2x = 0

4 - x - y

Volume =

L

1

0
 
L

2

0
s4 - x - yd dx dy.

Volume =

L

y = 1

y = 0
 As yd dy =

L

y = 1

y = 0
s6 - 2yd dy = C6y - y2 D01 = 5,

As yd =

L

x = 2

x = 0
s4 - x - yd dx = c4x -

x2

2
- xy d

x = 0

x = 2

= 6 - 2y.

15.1 Double and Iterated Integrals over Rectangles 857

y

z

x

y
1

2

4

z � 4 � x � y

A(y) �
 

          
(4 � x � y) dx

x � 2

x � 0

 ⌠
⌡

 

FIGURE 15.5 To obtain the cross-sectional
area A(y), we hold y fixed and integrate
with respect to x.

THEOREM 1—Fubini’s Theorem (First Form) If ƒ(x, y) is continuous throughout
the rectangular region then

6
R

 ƒsx, yd dA =

L

d

c
 
L

b

a
 ƒsx, yd dx dy =

L

b

a
 
L

d

c
 ƒsx, yd dy dx.

c … y … d,R: a … x … b,

Fubini’s Theorem says that double integrals over rectangles can be calculated as iter-
ated integrals. Thus, we can evaluate a double integral by integrating with respect to one
variable at a time.

Fubini’s Theorem also says that we may calculate the double integral by integrating in
either order, a genuine convenience. When we calculate a volume by slicing, we may use
either planes perpendicular to the x-axis or planes perpendicular to the y-axis.

EXAMPLE 1 Calculate for

ƒsx, yd = 100 - 6x2y and R: 0 … x … 2, -1 … y … 1.

4R ƒsx, yd dA

HISTORICAL BIOGRAPHY

Guido Fubini
(1879–1943)
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Solution Figure 15.6 displays the volume beneath the surface. By Fubini’s Theorem,

Reversing the order of integration gives the same answer:

EXAMPLE 2 Find the volume of the region bounded above by the ellipitical paraboloid
and below by the rectangle .

Solution The surface and volume are shown in Figure 15.7. The volume is given by the
double integral

 =

L

1

0
 (20 + 2x2

+ 8) dx = c20x +
2
3

x3
+ 8x d

0

1

=
86
3

.

 =

L

1

0
 C10y + x2y + y3 D y = 0

y = 2
 dx

V =

6
R

 s10 + x2
+ 3y2d dA =

L

1

0
 
L

2

0
s10 + x2

+ 3y2d dy dx 

R: 0 … x … 1, 0 … y … 2z = 10 + x2
+ 3y2

 =

L

2

0
200 dx = 400.

 =

L

2

0
[s100 - 3x2d - s -100 - 3x2d] dx

 
L

2

0
 
L

1

-1
s100 - 6x2yd dy dx =

L

2

0
 C100y - 3x2y2 D y = -1

y = 1
 dx

 =

L

1

-1
s200 - 16yd dy = C200y - 8y2 D

-1
1

= 400.

 
6

R

 ƒsx, yd dA =

L

1

-1
 
L

2

0
s100 - 6x2yd dx dy =

L

1

-1
 C100x - 2x3y D x = 0

x = 2
  dy
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Exercises 15.1

Evaluating Iterated Integrals
In Exercises 1–12, evaluate the iterated integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.
L

1

0
 
L

2

1
 xyex dy dx

L

ln 2

0
 
L

ln 5

1
 e2x + y dy dx

L

4

1
 
L

4

0
 ax

2
+ 2yb  dx dy

L

1

0
 
L

1

0
 

y

1 + xy
 dx dy

L

3

0
 
L

0

-2
 (x2y - 2xy) dy dx

L

3

0
 
L

2

0
 (4 - y2) dy dx

L

1

0
 
L

1

0
 a1 -

x2
+ y2

2
b  dx dy

L

0

-1
 
L

1

-1
 (x + y + 1) dx dy

L

2

0
 
L

1

-1
 (x - y) dy dx

L

2

1
 
L

4

0
 2xy dy dx

11. 12.

Evaluating Double Integrals over Rectangles
In Exercises 13–20, evaluate the double integral over the given 
region R.

13.

14.

15.
6

R

 xy cos y dA,  R: -1 … x … 1, 0 … y … p

6
R

 a2x

y2 b  dA,  R: 0 … x … 4, 1 … y … 2

6
R

 s6y2
- 2xd dA,  R:  0 … x … 1, 0 … y … 2

L

2p

p

 
L

p

0
 (sin x + cos y) dx dy

L

2

-1
 
L

p/2

0
 y sin x dx dy

FIGURE 15.6 The double integral
gives the volume under this

surface over the rectangular region R
(Example 1).

4R ƒ(x, y) dA

1R
2

1

50

z

x

–1

z 5 100 2 6x2y

y

100

FIGURE 15.7 The double integral
gives the volume under this

surface over the rectangular region R
(Example 2).

4R ƒ(x, y) dA

y

x

z

R
2

10

1

z 5 10 1 x2 1 3y2
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15.2 Double Integrals over General Regions

In this section we define and evaluate double integrals over bounded regions in the plane
which are more general than rectangles. These double integrals are also evaluated as iterated
integrals, with the main practical problem being that of determining the limits of integration.
Since the region of integration may have boundaries other than line segments parallel to the
coordinate axes, the limits of integration often involve variables, not just constants.

Double Integrals over Bounded, Nonrectangular Regions

To define the double integral of a function ƒ(x, y) over a bounded, nonrectangular region
R, such as the one in Figure 15.8, we again begin by covering R with a grid of small rec-
tangular cells whose union contains all points of R. This time, however, we cannot exactly
fill R with a finite number of rectangles lying inside R, since its boundary is curved, and
some of the small rectangles in the grid lie partly outside R. A partition of R is formed by
taking the rectangles that lie completely inside it, not using any that are either partly or
completely outside. For commonly arising regions, more and more of R is included as the
norm of a partition (the largest width or height of any rectangle used) approaches zero.

Once we have a partition of R, we number the rectangles in some order from 1 to n
and let be the area of the kth rectangle. We then choose a point in the kth rec-
tangle and form the Riemann sum

As the norm of the partition forming goes to zero, the width and height of
each enclosed rectangle goes to zero and their number goes to infinity. If ƒ(x, y) is a con-
tinuous function, then these Riemann sums converge to a limiting value, not dependent on
any of the choices we made. This limit is called the double integral of ƒ(x, y) over R:

lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
 ƒsxk, ykd ¢Ak =

6
R

 ƒsx, yd dA.

7P 7 : 0,Sn

Sn = a

n

k = 1
 ƒsxk, ykd ¢Ak.

sxk, ykd¢Ak

15.2 Double Integrals over General Regions 859

16.

17.

18.

19.

20.

In Exercises 21 and 22, integrate ƒ over the given region.

21. Square over the square 

22. Rectangle over the rectangle 
0 … y … 1

0 … x … p,ƒ(x, y) = y cos xy

1 … x … 2, 1 … y … 2ƒ(x, y) = 1>(xy)

6
R

 
y

x2y2
+ 1

 dA,  R: 0 … x … 1, 0 … y … 1

6
R

 
xy3

x2
+ 1

 dA,  R: 0 … x … 1, 0 … y … 2

6
R

 xyexy2

 dA,  R: 0 … x … 2, 0 … y … 1

6
R

 ex - y dA,  R:  0 … x … ln 2, 0 … y … ln 2

6
R

 y sin (x + y) dA,  R: -p … x … 0, 0 … y … p
Volume Beneath a Surface 
23. Find the volume of the region bounded above by the paraboloid

and below by the square ,
.

24. Find the volume of the region bounded above by the ellipitical
paraboloid and below by the square

, .

25. Find the volume of the region bounded above by the plane
and below by the square ,

.

26. Find the volume of the region bounded above by the plane
and below by the rectangle , .

27. Find the volume of the region bounded above by the surface
and below by the rectangle ,

28. Find the volume of the region bounded above by the surface
and below by the rectangle ,

0 … y … 2.
R: 0 … x … 1z = 4 - y2

0 … y … p>4.
R: 0 … x … p>2z = 2 sin x cos y

0 … y … 2R: 0 … x … 4z = y>2
0 … y … 1

R: 0 … x … 1z = 2 - x - y

0 … y … 2R: 0 … x … 2
z = 16 - x2

- y2

-1 … y … 1
R: -1 … x … 1z = x2

+ y2

z = ƒ(x, y)

R

�xk

�yk

�Ak

(xk, yk)

FIGURE 15.8 A rectangular grid
partitioning a bounded nonrectangular
region into rectangular cells.

7001_ThomasET_ch15p854–918.qxd  10/30/09  7:57 AM  Page 859



The nature of the boundary of R introduces issues not found in integrals over an in-
terval. When R has a curved boundary, the n rectangles of a partition lie inside R but do
not cover all of R. In order for a partition to approximate R well, the parts of R covered
by small rectangles lying partly outside R must become negligible as the norm of the
partition approaches zero. This property of being nearly filled in by a partition of small
norm is satisfied by all the regions that we will encounter. There is no problem with
boundaries made from polygons, circles, ellipses, and from continuous graphs over an
interval, joined end to end. A curve with a “fractal” type of shape would be problem-
atic, but such curves arise rarely in most applications. A careful discussion of which
type of regions R can be used for computing double integrals is left to a more advanced
text.

Volumes

If ƒ(x, y) is positive and continuous over R, we define the volume of the solid region be-
tween R and the surface to be as before (Figure 15.9).

If R is a region like the one shown in the xy-plane in Figure 15.10, bounded “above”
and “below” by the curves and and on the sides by the lines

we may again calculate the volume by the method of slicing. We first calcu-
late the cross-sectional area

and then integrate A(x) from to to get the volume as an iterated integral:

(1)V =

L

b

a
 Asxd dx =

L

b

a
 
L

g2sxd

g1sxd
 ƒsx, yd dy dx.

x = bx = a

Asxd =

L

y = g2sxd

y = g1sxd
ƒsx, yd dy

x = a, x = b,
y = g1sxdy = g2sxd

4R ƒsx, yd dA,z = ƒsx, yd
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z

y

x

R

0

Volume 5 lim S f(xk, yk) DAk 5��
R  

 f (x, y) dA

DAk(xk, yk)

Height 5 f(xk, yk)

z 5 f(x, y)

FIGURE 15.9 We define the volumes of solids
with curved bases as a limit of approximating
rectangular boxes.

z

yx

0

R

x
a

b

R

y � g2(x)

y � g1(x)

z � f (x, y)

A(x)

FIGURE 15.10 The area of the vertical
slice shown here is A(x). To calculate the
volume of the solid, we integrate this area
from to 

L

b

a
 Asxd dx =

L

b

a
 
L

g2sxd

g1sxd
 ƒsx, yd dy dx.

x = b:x = a
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Similarly, if R is a region like the one shown in Figure 15.11, bounded by the curves
and and the lines and then the volume calculated by

slicing is given by the iterated integral

(2)

That the iterated integrals in Equations (1) and (2) both give the volume that we de-
fined to be the double integral of ƒ over R is a consequence of the following stronger form
of Fubini’s Theorem.

Volume =

L

d

c
 
L

h2s yd

h1s yd
 ƒsx, yd dx dy.

y = d,y = cx = h1s ydx = h2s yd

15.2 Double Integrals over General Regions 861

THEOREM 2—Fubini’s Theorem (Stronger Form) Let ƒ(x, y) be continuous on a
region R.

1. If R is defined by with and continuous
on [a, b], then

2. If R is defined by with and continuous
on [c, d ], then

6
R

 ƒsx, yd dA =

L

d

c
 
L

h2s yd

h1s yd
 ƒsx, yd dx dy.

h2h1c … y … d, h1syd … x … h2s  yd,

6
R

 ƒsx, yd dA =

L

b

a
 
L

g2sxd

g1sxd
 ƒsx, yd dy dx.

g2g1a … x … b, g1sxd … y … g2sxd,

EXAMPLE 1 Find the volume of the prism whose base is the triangle in the xy-plane
bounded by the x-axis and the lines and and whose top lies in the plane

Solution See Figure 15.12. For any x between 0 and 1, y may vary from to 
(Figure 15.12b). Hence,

When the order of integration is reversed (Figure 15.12c), the integral for the volume is

The two integrals are equal, as they should be.

 =

L

1

0
 a5

2
- 4y +

3
2

 y 2b  dy = c5
2

 y - 2y2
+

y3

2
d

y = 0

y = 1

= 1.

 =

L

1

0
 a3 -

1
2

- y - 3y +

y 2

2
+ y 2b  dy

 V =

L

1

0
 
L

1

y
s3 - x - yd dx dy =

L

1

0
 c3x -

x2

2
- xy d

x = y

x = 1

 dy

 =

L

1

0
 a3x -

3x2

2
b  dx = c3x2

2
-

x3

2
d

x = 0

x = 1

= 1.

 V =

L

1

0
 
L

x

0
s3 - x - yd dy dx =

L

1

0
 c3y - xy -

y 2

2
d

y = 0

y = x

 dx

y = xy = 0

z = ƒsx, yd = 3 - x - y.

x = 1y = x

z

y

y
d

c

x

z � f (x, y)
A(y)

x � h1( y)

x � h2( y)

FIGURE 15.11 The volume of the solid
shown here is

For a given solid, Theorem 2 says we can
calculate the volume as in Figure 15.10, or
in the way shown here. Both calculations
have the same result.

L

d

c
 As yd dy =

L

d

c
 
L

h2syd

h1syd
 ƒsx, yd dx dy.
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Although Fubini’s Theorem assures us that a double integral may be calculated as an
iterated integral in either order of integration, the value of one integral may be easier to
find than the value of the other. The next example shows how this can happen.

EXAMPLE 2 Calculate

where R is the triangle in the xy-plane bounded by the x-axis, the line and the line
x = 1.

y = x,

6
R

 
sin x

x  dA,

862 Chapter 15: Multiple Integrals

FIGURE 15.12 (a) Prism with a triangular base in the xy-plane. The volume of this prism is defined
as a double integral over R. To evaluate it as an iterated integral, we may integrate first with respect
to y and then with respect to x, or the other way around (Example 1). (b) Integration limits of

If we integrate first with respect to y, we integrate along a vertical line through R and then integrate
from left to right to include all the vertical lines in R. (c) Integration limits of

If we integrate first with respect to x, we integrate along a horizontal line through R and then inte-
grate from bottom to top to include all the horizontal lines in R.

L

y = 1

y = 0
 
L

x = 1

x = y
 ƒsx, yd dx dy.

L

x = 1

x = 0
 
L

y = x

y = 0
 ƒsx, yd dy dx.

(a)

y

z

x
R

(3, 0, 0)

(1, 0, 2)

(1, 0, 0) (1, 1, 0)

(1, 1, 1)

y 5 x

x 5 1

z 5 f(x, y) 5 3 2 x 2 y

(c)

y

x
0 1

R

x � 1

y � x

x � y

x � 1

(b)

y

x

R

0 1

y � x

y � x

x � 1

y � 0
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Solution The region of integration is shown in Figure 15.13. If we integrate first with re-
spect to y and then with respect to x, we find

If we reverse the order of integration and attempt to calculate

we run into a problem because cannot be expressed in terms of elemen-
tary functions (there is no simple antiderivative).

There is no general rule for predicting which order of integration will be the good one
in circumstances like these. If the order you first choose doesn’t work, try the other. Some-
times neither order will work, and then we need to use numerical approximations.

Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for many regions in
the plane. Regions that are more complicated, and for which this procedure fails, can often
be split up into pieces on which the procedure works.

Using Vertical Cross-sections When faced with evaluating integrating
first with respect to y and then with respect to x, do the following three steps:

1. Sketch. Sketch the region of integration and label the bounding curves (Figure 15.14a).

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the di-
rection of increasing y. Mark the y-values where L enters and leaves. These are the
y-limits of integration and are usually functions of x (instead of constants) (Figure
15.14b).

3. Find the x-limits of integration. Choose x-limits that include all the vertical lines
through R. The integral shown here (see Figure 15.14c) is

Using Horizontal Cross-sections To evaluate the same double integral as an iterated in-
tegral with the order of integration reversed, use horizontal lines instead of vertical lines in
Steps 2 and 3 (see Figure 15.15). The integral is

6
R

 ƒsx, yd dA =

L

1

0
 
L

21 - y 2

1 - y
 ƒsx, yd dx dy.

6
R

 ƒsx, yd dA =

L

x = 1

x = 0
 
L

y =21 - x2

y = 1 - x
 ƒsx, yd dy dx.

4R  ƒsx, yddA,

1sssin xd>xd dx

L

1

0
 
L

1

y
 
sin x

x  dx dy,

 = -cos s1d + 1 L 0.46.

 
L

1

0
 a
L

x

0
 
sin x

x  dyb  dx =

L

1

0
 ay 

sin x
x d

y = 0

y = xb  dx =

L

1

0
sin x dx
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R

x

y

0 1

1

x � 1

y � x

FIGURE 15.13 The region of integration
in Example 2.

x

y

0 1

R

1 x2 � y2 � 1

x � y � 1

x

y

0 1x

L

1
R

Leaves at
y � �1 � x2

Enters at
y � 1 � x

Leaves at
y � �1 � x2

Enters at
y � 1 � x

x

y

0 1x

L

1
R

Smallest x
is x � 0

Largest x
is x � 1

(a)

(b) 

(c)

FIGURE 15.14 Finding the limits of
integration when integrating first with
respect to y and then with respect to x. x

y

Leaves at
x � �1 � y2

Enters at
x � 1 � y

0 1

y

1
R

Smallest y
is y � 0

Largest y
is y � 1

FIGURE 15.15 Finding the limits of
integration when integrating first with
respect to x and then with respect to y.
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EXAMPLE 3 Sketch the region of integration for the integral

and write an equivalent integral with the order of integration reversed.

Solution The region of integration is given by the inequalities and
It is therefore the region bounded by the curves and between

and (Figure 15.16a).
To find limits for integrating in the reverse order, we imagine a horizontal line passing

from left to right through the region. It enters at and leaves at To 
include all such lines, we let y run from to (Figure 15.16b). The integral is

The common value of these integrals is 8.

Properties of Double Integrals

Like single integrals, double integrals of continuous functions have algebraic properties
that are useful in computations and applications.

L

4

0
 
L

2y

y>2 s4x + 2d dx dy.

y = 4y = 0
x = 2y.x = y>2

x = 2x = 0
y = 2xy = x20 … x … 2.

x2
… y … 2x

L

2

0
 
L

2x

x2
s4x + 2d dy dx
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0 2

(a)

4 (2, 4)

y

x

y 5 2x

y 5 x2

0 2

(b)

4 (2, 4)

y
2

y

x

x 5 �yx 5

FIGURE 15.16 Region of
integration for Example 3.

If ƒ(x, y) and g(x, y) are continuous on the bounded region R, then the following
properties hold.

1. Constant Multiple:

2. Sum and Difference: 

3. Domination:

(a)

(b)

4. Additivity:

if R is the union of two nonoverlapping regions and R2R1

6
R

 ƒsx, yd dA =

6
R1

 ƒsx, yd dA +

6
R2

 ƒsx, yd dA

6
R

 ƒsx, yd dA Ú

6
R

 gsx, yd dA if ƒsx, yd Ú gsx, yd on R

6
R

 ƒsx, yd dA Ú 0 if ƒsx, yd Ú 0 on R

6
R

sƒsx, yd ; gsx, ydd dA =

6
R

 ƒsx, yd dA ;

6
R

 gsx, yd dA

6
R

 cƒsx, yd dA = c
6

R

 ƒ (x, yd dA sany number cd

Property 4 assumes that the region of integration R is decomposed into nonoverlap-
ping regions and with boundaries consisting of a finite number of line segments or
smooth curves. Figure 15.17 illustrates an example of this property.

R2R1

0
x

y

R1

R2

R

R � R1 ∪ R2

 ⌠
⌡
⌠
⌡

  

R1

f (x, y) dA � ⌠
⌡
⌠
⌡

  f (x, y) dA �

R2

 ⌠
⌡
⌠
⌡

  f (x, y) dA

FIGURE 15.17 The Additivity Property
for rectangular regions holds for regions
bounded by smooth curves.
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The idea behind these properties is that integrals behave like sums. If the function 
ƒ(x, y) is replaced by its constant multiple cƒ(x, y), then a Riemann sum for ƒ

is replaced by a Riemann sum for cƒ

Taking limits as shows that and 
are equal. It follows that the constant multiple property carries over from sums to double 
integrals.

The other properties are also easy to verify for Riemann sums, and carry over to
double integrals for the same reason. While this discussion gives the idea, an actual
proof that these properties hold requires a more careful analysis of how Riemann sums
converge.

EXAMPLE 4 Find the volume of the wedgelike solid that lies beneath the surface 
and above the region R bounded by the curve , the line

, and the x-axis.

Solution Figure 15.18a shows the surface and the “wedgelike” solid whose volume we
want to calculate. Figure 15.18b shows the region of integration in the xy-plane. If we inte-
grate in the order dy dx (first with respect to y and then with respect to x), two integrations
will be required because y varies from to for and then
varies from to for So we choose to integrate in the
order dx dy, which requires only one double integral whose limits of integration are indi-
cated in Figure 15.18b. The volume is then calculated as the iterated integral:

=
20803
1680

L 12.4.= c191y
24

+

63y2

32
-

145y3

96
-

49y4

768
+

y5

20
+

y7

1344
d2

0

=

L

2

0
 c4( y + 2) -

( y + 2)3

3 # 64
-

( y + 2)y2

4
- 4y2

+

y6

3 # 64
+

y4

4
d  dy

=

L

2

0
 c16x -

x3

3
- xy2 d x = ( y + 2)>4

x = y2>4  dx

=

L

2

0
 
L

( y + 2)>4
y2>4  (16 - x2

- y2) dx dy

6
R

 (16 - x2
- y2) dA

0.5 … x … 1.y = 21xy = 4x - 2
0 … x … 0.5,y = 21xy = 0

y = 4x - 2
y = 22x16 - x2

- y2
z =

limn:q cSn = 4R cƒ dAc limn:q Sn = c4R ƒ dAn : q

a

n

k = 1
 cƒsxk, ykd ¢Ak = ca

n

k = 1
 ƒsxk, ykd ¢Ak = cSn .

Sn = a

n

k = 1
 ƒsxk, ykd ¢Ak

15.2 Double Integrals over General Regions 865

FIGURE 15.18 (a) The solid “wedgelike”
region whose volume is found in Example 4.
(b) The region of integration R showing
the order dx dy.

16

1

2 y

x

z

y 5 4x 2 2

z 5 16 2 x2 2 y2

y 5 2� x

(a)

(b)

0 10.5

(1, 2)2

x

y
y 5 4x 2 2

y 5 2�x

R

x 5
4
y2

x 5
4

y 1 2

Exercises 15.2

Sketching Regions of Integration
In Exercises 1–8, sketch the described regions of integration.
1.

2.

3.

4. 0 … y … 1, y … x … 2y

-2 … y … 2, y2
… x … 4

-1 … x … 2, x - 1 … y … x2

0 … x … 3, 0 … y … 2x

5.

6.

7.

8. 0 … y … 8, 1
4

 y … x … y1>3

0 … y … 1, 0 … x … sin-1 y

1 … x … e2, 0 … y … ln x

0 … x … 1, ex
… y … e
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866 Chapter 15: Multiple Integrals

Finding Limits of Integration
In Exercises 9–18, write an iterated integral for over the de-
scribed region R using (a) vertical cross-sections, (b) horizontal cross-
sections.

9. 10.

11. 12.

13. Bounded by and 

14. Bounded by and 

15. Bounded by and 

16. Bounded by and 

17. Bounded by and 

18. Bounded by and 

Finding Regions of Integration and Double Integrals
In Exercises 19–24, sketch the region of integration and evaluate the 
integral.

19. 20.

21. 22.

23. 24.

In Exercises 25–28, integrate ƒ over the given region.

25. Quadrilateral over the region in the first quad-
rant bounded by the lines 

26. Triangle over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

27. Triangle over the triangular region cut
from the first quadrant of the u -plane by the line 

28. Curved region over the region in the first
quadrant of the st-plane that lies above the curve from

to 

Each of Exercises 29–32 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.

t = 2t = 1
s = ln t

ƒss, td = es ln t

u + y = 1y

ƒsu, yd = y - 2u

ƒsx, yd = x2
+ y2

y = x, y = 2x, x = 1, and x = 2
ƒsx, yd = x>y

L

4

1
 
L

2x

0
 
3
2

 ey>2x dy dx
L

1

0
 
L

y2

0
3y3exy dx dy

L

2

1
 
L

y2

y
 dx dy

L

ln 8

1
 
L

ln y

0
 ex + y dx dy

L

p

0
 
L

sin x

0
 y dy dx

L

p

0
 
L

x

0
 x sin y dy dx

y = x + 2y = x2

x = 0y = 3 - 2x, y = x,

y = ln xy = 0, x = 0, y = 1,

x = ln 3y = e-x, y = 1,

y = 1y = tan x, x = 0,

x = 9y = 1x, y = 0,

x

y

y 5 1

x 5 2

y 5 ex

x

y

y 5 x2

y 5 3x

x

y

y 5 2x

x 5 3

x

y
y 5 x3

y 5 8

4R dA 29.

30.

31.

32.

Reversing the Order of Integration
In Exercises 33–46, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

In Exercises 47–56, sketch the region of integration, reverse the order
of integration, and evaluate the integral.

47. 48.

49. 50.

51. 52.

53.

54.

55. Square region where R is the region
bounded by the square 

56. Triangular region where R is the region bounded by
the lines and 

Volume Beneath a Surface 
57. Find the volume of the region bounded above by the paraboloid

and below by the triangle enclosed by the lines
and in the xy-plane.

58. Find the volume of the solid that is bounded above by the cylinder
and below by the region enclosed by the parabola

and the line in the xy-plane.y = xy = 2 - x2
z = x2

x + y = 2y = x, x = 0,
z = x2

+ y2

z = ƒ(x, y)

x + y = 2y = x, y = 2x,
4R xy dA

ƒ x ƒ + ƒ y ƒ = 1
4R s y - 2x2d dA

L

8

0
 
L

2

23 x
 

dy dx

y4
+ 1

L

1>16

0
 
L

1>2
y1>4  cos s16px5d dx dy

L

3

0
 
L

1

2x>3  e
y3

 dy dx
L

22ln 3

0
 
L

2ln 3

y>2  e x2

 dx dy

L

2

0
 
L

4 - x2

0
 

xe 2y

4 - y
 dy dx

L

1

0
 
L

1

y
 x 2e xy dx dy

L

2

0
 
L

2

x
2y2 sin xy dy dx

L

p

0
 
L

p

x
 
sin y

y  dy dx

L

13

0
 
L

tan-1 y

0
 2xy dx dy

L

3

0
 
L

ey

1
 (x + y) dx dy

L

p>6
0

 
L

1>2
sin x

 xy2 dy dx
L

e

1
 
L

ln x

0
 xy dy dx

L

2

0
 
L

24 - x2

-24 - x2
 6x dy dx

L

1

0
 
L

21 - y2

-21 - y2
 3y dx dy

L

2

0
 
L

4 - y2

0
 y dx dy

L

3>2
0

 
L

9 - 4x2

0
16x dy dx

L

ln 2

0
 
L

2

ey
 dx dy

L

1

0
 
L

ex

1
 dy dx

L

1

0
 
L

1 - x2

1 - x
 dy dx

L

1

0
 
L

2y

y
 dx dy

L

2

0
 
L

0

y - 2
 dx dy

L

1

0
 
L

4 - 2x

2
 dy dx

L

3>2
0

 
L

4 - 2u

1
 
4 - 2u

y2  dy du sthe uy-planed

L

p>3
-p>3  
L

sec t

0
3 cos t du dt sthe tu-planed

L

1

0
 
L

21 - s2

0
8t dt ds sthe st-planed

L

0

-2
 
L

-y

y

2 dp dy sthe py-planed
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59. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola and the line

while the top of the solid is bounded by the plane

60. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the cylinder and the plane

61. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the plane and the parabolic cylinder

62. Find the volume of the solid cut from the first octant by the 
surface 

63. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

64. Find the volume of the solid cut from the square column
by the planes and 

65. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

66. Find the volume of the solid bounded on the front and back by the
planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

In Exercises 67 and 68, sketch the region of integration and the solid
whose volume is given by the double integral.

67.

68.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.7. Evaluate the improper integrals
in Exercises 69–72 as iterated integrals.

69.

70.

71.

72.

Approximating Integrals with Finite Sums
In Exercises 73 and 74, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

6
R

 ƒsx, yd dA L a

n

k = 1
 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L

q

0
 
L

q

0
 xe-sx + 2yd dx dy

L

q

-q

  
L

q

-q

 
1

sx2
+ 1ds y2

+ 1d
 dx dy

L

1

-1
  
L

1>21 - x2

-1>21 - x2
 s2y + 1ddy dx

L

q

1
 
L

1

e-x
  

1
x3y

 dy dx

L

4

0
 
L

216 - y 2

-216 - y 2
 225 - x2

- y2 dx dy

L

3

0
 
L

2 - 2x>3
0

 a1 -

1
3

 x -

1
2

 yb  dy dx

z = 1 + y2,
y = ;sec x,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2
- y.

z = 4 - y2.
x = 3,

z + y = 3.
x2

+ y2
= 4,

z = x + 4.
y = 3x,

y = 4 - x2
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73. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectangle
lies within R)

74. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

Theory and Examples

75. Circular sector Integrate over the smaller
sector cut from the disk by the rays and

76. Unbounded region Integrate 
over the infinite rectangle 

77. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

78. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

79. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

80. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

81. Is it possible to evaluate the integral of a continuous function 
ƒ(x, y) over a rectangular region in the xy-plane and get different
answers depending on the order of integration? Give reasons for
your answer.

82 How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the trian-
gle with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your
answer.

83. Unbounded region Prove that

 = 4 a
L

q

0
 e-x2

 dxb2

.

 
L

q

-q

 
L

q

-q

 e-x 2
- y2

 dx dy = lim
b: q 

 
L

b

-b
  
L

b

-b
 e-x2

- y2

 dx dy

6
R

sx2
+ y2

- 9d dA?

6
R

s4 - x2
- 2y2d dA?

L

2

0
stan-1px - tan-1 xd dx.

V =

L

1

0
 
L

y

0
sx2

+ y2d dx dy +

L

2

1
 
L

2 - y

0
sx2

+ y2d dx dy.

z = x2
+ y2.

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2

- xds y - 1d2>3]
u = p>2.

u = p>6x2
+ y2

… 4
ƒsx, yd = 24 - x2

sxk, ykd>>y = 2,
>>x = 1,sx - 2d2

+ s y - 3d2
= 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y
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84. Improper double integral Evaluate the improper integral

COMPUTER EXPLORATIONS
Use a CAS double-integral evaluator to estimate the values of the inte-
grals in Exercises 85–88.

85. 86.

87. 88.
L

1

-1
  
L

21 - x2

0
321 - x2

- y2 dy dx
L

1

0
 
L

1

0
 tan-1 xy dy dx

L

1

0
 
L

1

0
 e-sx2

+ y2d dy dx
L

3

1
 
L

x

1
 
1
xy dy dx

L

1

0
 
L

3

0
 

x2

s y - 1d2>3 dy dx.
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Use a CAS double-integral evaluator to find the integrals in Exercises
89–94. Then reverse the order of integration and evaluate, again with a
CAS.

89. 90.

91. 92.

93. 94.
L

2

1
 
L

8

y3
 

1

2x2
+ y2

 dx dy
L

2

1
 
L

x2

0
 

1
x + y dy dx

L

2

0
 
L

4 - y2

0
 e xy dx dy

L

2

0
 
L

422y

y3
 sx2y - xy2d dx dy

L

3

0
 
L

9

x2
 x cos sy 2d dy dx

L

1

0
 
L

4

2y
 e x2

 dx dy

15.3 Area by Double Integration

In this section we show how to use double integrals to calculate the areas of bounded re-
gions in the plane, and to find the average value of a function of two variables.

Areas of Bounded Regions in the Plane

If we take in the definition of the double integral over a region R in the pre-
ceding section, the Riemann sums reduce to

(1)

This is simply the sum of the areas of the small rectangles in the partition of R, and ap-
proximates what we would like to call the area of R. As the norm of a partition of R ap-
proaches zero, the height and width of all rectangles in the partition approach zero, and the
coverage of R becomes increasingly complete (Figure 15.8). We define the area of R to be
the limit

. (2)lim
ƒ ƒP ƒ ƒ :0

 a

n

k = 1
 ¢Ak =

6
R

 dA

Sn = a

n

k = 1
 ƒsxk, ykd ¢Ak = a

n

k = 1
 ¢Ak .

ƒsx, yd = 1

DEFINITION The area of a closed, bounded plane region R is

A =

6
R

 dA.

As with the other definitions in this chapter, the definition here applies to a greater
variety of regions than does the earlier single-variable definition of area, but it agrees with
the earlier definition on regions to which they both apply. To evaluate the integral in the
definition of area, we integrate the constant function over R.

EXAMPLE 1 Find the area of the region R bounded by and in the first
quadrant.

y = x2y = x

ƒsx, yd = 1
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Solution We sketch the region (Figure 15.19), noting where the two curves intersect at
the origin and (1, 1), and calculate the area as

Notice that the single-variable integral obtained from evaluating the in-
side iterated integral, is the integral for the area between these two curves using the
method of Section 5.6.

EXAMPLE 2 Find the area of the region R enclosed by the parabola and the line

Solution If we divide R into the regions and shown in Figure 15.20a, we may cal-
culate the area as

On the other hand, reversing the order of integration (Figure 15.20b) gives

This second result, which requires only one integral, is simpler and is the only one we
would bother to write down in practice. The area is

Average Value

The average value of an integrable function of one variable on a closed interval is the inte-
gral of the function over the interval divided by the length of the interval. For an integrable
function of two variables defined on a bounded region in the plane, the average value is the
integral over the region divided by the area of the region. This can be visualized by think-
ing of the function as giving the height at one instant of some water sloshing around in a
tank whose vertical walls lie over the boundary of the region. The average height of the
water in the tank can be found by letting the water settle down to a constant height. The
height is then equal to the volume of water in the tank divided by the area of R. We are led
to define the average value of an integrable function ƒ over a region R as follows:

A =

L

2

-1
cy d

x2

x + 2

 dx =

L

2

-1
sx + 2 - x2d dx = cx2

2
+ 2x -

x3

3
d

-1

2

=
9
2

.

A =

L

2

-1
  
L

x + 2

x2
 dy dx.

A =

6
R1

 dA +

6
R2

 dA =

L

1

0
 
L

2y

-2y
 dx dy +

L

4

1
 
L

2y

y - 2
 dx dy.

R2R1

y = x + 2.
y = x2

sx - x2d dx,1
1

0

 =

L

1

0
sx - x2d dx = cx2

2
-

x3

3
d

0

1

=
1
6

.

 A =

L

1

0
 
L

x

x2
 dy dx =

L

1

0
cy d

x2

x

 dx
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(2, 4)

y

x
0

(a)

  dx dy

(–1, 1)

R1

R2

y 5 x 1 2

y 5 x 2

 ⌠
⌡  

⌠
⌡

  1

0

�y

–�y

  dx dy ⌠
⌡  

⌠
⌡

  4

1

�y

y – 2

(2, 4)

y

x
0

(b)

y 5 x 1 2

y 5 x2

   dy dx ⌠
⌡  

⌠
⌡

  2

–1

x 1 2

x2(–1, 1)

FIGURE 15.20 Calculating this area
takes (a) two double integrals if the first
integration is with respect to x, but (b) only
one if the first integration is with respect
to y (Example 2).

(1, 1)

0

y 5 x

y 5 x2

y 5 x 2

1

1

x

y

y 5 x 

FIGURE 15.19 The region in Example 1.

(3)Average value of ƒ over R =
1

area of R
 
6

R

 ƒ dA.

If ƒ is the temperature of a thin plate covering R, then the double integral of ƒ over R
divided by the area of R is the plate’s average temperature. If ƒ(x, y) is the distance from
the point (x, y) to a fixed point P, then the average value of ƒ over R is the average distance
of points in R from P.
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EXAMPLE 3 Find the average value of over the rectangle

Solution The value of the integral of ƒ over R is

The area of R is The average value of ƒ over R is 2>p.p.

 =

L

p

0
ssin x - 0d dx = -cos x d

0

p

= 1 + 1 = 2.

 
L

p

0
 
L

1

0
 x cos xy dy dx =

L

p

0
csin xy d

y = 0

y = 1

 dx

0 … y … 1.R: 0 … x … p,
ƒsx, yd = x cos xy
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Exercises 15.3

Area by Double Integrals
In Exercises 1–12, sketch the region bounded by the given lines and
curves. Then express the region’s area as an iterated double integral
and evaluate the integral.

1. The coordinate axes and the line 

2. The lines and 

3. The parabola and the line 

4. The parabola and the line 

5. The curve and the lines and 

6. The curves and and the line in the first
quadrant

7. The parabolas and 

8. The parabolas and 

9. The lines and 

10. The lines and and the curve 

11. The lines and 

12. The lines and and the curve 

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 13–18 give the areas
of regions in the xy-plane. Sketch each region, label each bounding
curve with its equation, and give the coordinates of the points where
the curves intersect. Then find the area of the region.

13. 14.

15. 16.

17.

18.
L

2

0
 
L

0

x2
- 4

 dy dx +

L

4

0
 
L

2x

0
 dy dx

L

0

-1
 
L

1 - x

-2x
 dy dx +

L

2

0
 
L

1 - x

-x>2  dy dx

L

2

-1
 
L

y + 2

y2
 dx dy

L

p>4
0

 
L

cos x

sin x
 dy dx

L

3

0
 
L

xs2 - xd

-x
 dy dx

L

6

0
 
L

2y

y2>3 dx dy

y = 1xy = -xy = x - 2

y = 3 - xy = 2x, y = x>2,

y = exy = 2y = 1 - x

y = 2y = x, y = x>3,

x = 2y2
- 2x = y2

- 1

x = 2y - y2x = y2

x = e,y = 2 ln xy = ln x

x = ln 2y = 0, x = 0,y = ex

y = -xx = y - y2

y = x + 2x = -y2

y = 4x = 0, y = 2x,

x + y = 2

Finding Average Values
19. Find the average value of over

a. the rectangle .

b. the rectangle .

20. Which do you think will be larger, the average value of
over the square or the aver-

age value of ƒ over the quarter circle in the first
quadrant? Calculate them to find out.

21. Find the average height of the paraboloid over the
square 

22. Find the average value of over the square

Theory and Examples

23. Bacterium population If 
represents the “population density” of a certain bacterium on the
xy-plane, where x and y are measured in centimeters, find the to-
tal population of bacteria within the rectangle and

24. Regional population If represents the
population density of a planar region on Earth, where x and y are
measured in miles, find the number of people in the region
bounded by the curves and 

25. Average temperature in Texas According to the Texas 
Almanac, Texas has 254 counties and a National Weather Ser-
vice station in each county. Assume that at time each of the
254 weather stations recorded the local temperature. Find a for-
mula that would give a reasonable approximation of the average
temperature in Texas at time Your answer should involve in-
formation that you would expect to be readily available in the
Texas Almanac.

26. If is a nonnegative continuous function over the closed
interval , show that the double integral definition of
area for the closed plane region bounded by the graph of ƒ, the
vertical lines and , and the x-axis agrees with the
definition for area beneath the curve in Section 5.3.

x = bx = a

a … x … b
y = ƒ(x)

t0.

t0,

x = 2y - y2.x = y2

ƒsx, yd = 100 sy + 1d
-2 … y … 0.

-5 … x … 5

ƒsx, yd = s10,000e yd>s1 + ƒ x ƒ>2d

ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.
ƒsx, yd = 1>sxyd

0 … x … 2, 0 … y … 2.
z = x2

+ y2

x2
+ y2

… 1
0 … x … 1, 0 … y … 1,ƒsx, yd = xy

0 … x … p, 0 … y … p>2
0 … x … p, 0 … y … p

ƒsx, yd = sin sx + yd

L
 x cos xy dy = sin xy + C
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15.4 Double Integrals in Polar Form

Integrals are sometimes easier to evaluate if we change to polar coordinates. This section
shows how to accomplish the change and how to evaluate integrals over regions whose
boundaries are given by polar equations.

Integrals in Polar Coordinates

When we defined the double integral of a function over a region R in the xy-plane, we be-
gan by cutting R into rectangles whose sides were parallel to the coordinate axes. These
were the natural shapes to use because their sides have either constant x-values or constant
y-values. In polar coordinates, the natural shape is a “polar rectangle” whose sides have
constant r- and 

Suppose that a function is defined over a region R that is bounded by the rays
and and by the continuous curves and Suppose also

that for every value of between and Then R lies in a fan-
shaped region Q defined by the inequalities and See Figure 15.21.a … u … b.0 … r … a

b.au0 … g1sud … g2sud … a
r = g2sud.r = g1sudu = bu = a

ƒsr, ud
u-values.

15.4 Double Integrals in Polar Form 871

0

R

Q

 u 5 b

 u 5 p
Dr

Dr

DAk

2Dr

3Dr

Du

(rk, uk)

r 5 g1(u)

a 1 2Du

a 1 Du

u 5 a

u 5 0

r 5 g2(u) r 5 a

FIGURE 15.21 The region R: is contained in the fan-
shaped region The partition of Q by circular arcs and rays
induces a partition of R.

Q: 0 … r … a, a … u … b.
 g1sud … r … g2sud, a … u … b,

We cover Q by a grid of circular arcs and rays. The arcs are cut from circles centered
at the origin, with radii where The rays are given by

where The arcs and rays partition Q into small patches called “polar
rectangles.”

We number the polar rectangles that lie inside R (the order does not matter), calling
their areas We let be any point in the polar rectangle whose
area is We then form the sum

If ƒ is continuous throughout R, this sum will approach a limit as we refine the grid to
make and go to zero. The limit is called the double integral of ƒ over R. In symbols,

lim
n: q

 Sn =

6
R

 ƒsr, ud dA.

¢u¢r

Sn = a

n

k = 1
 ƒsrk, ukd ¢Ak.

¢Ak.
srk, ukd¢A1, ¢A2, Á , ¢An.

¢u = sb - ad>m¿.

u = a, u = a + ¢u, u = a + 2¢u, Á , u = a + m¿¢u = b,

¢r = a>m.¢r, 2¢r, Á , m¢r,
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To evaluate this limit, we first have to write the sum in a way that expresses in
terms of and For convenience we choose to be the average of the radii of the in-
ner and outer arcs bounding the kth polar rectangle The radius of the inner arc
bounding is then (Figure 15.22). The radius of the outer arc is

The area of a wedge-shaped sector of a circle having radius r and angle is

as can be seen by multiplying the area of the circle, by the fraction of the cir-
cle’s area contained in the wedge. So the areas of the circular sectors subtended by these
arcs at the origin are

Therefore,

Combining this result with the sum defining gives

As and the values of and approach zero, these sums converge to the double
integral

A version of Fubini’s Theorem says that the limit approached by these sums can be evalu-
ated by repeated single integrations with respect to r and as

Finding Limits of Integration

The procedure for finding limits of integration in rectangular coordinates also works for
polar coordinates. To evaluate over a region R in polar coordinates, integrat-
ing first with respect to r and then with respect to take the following steps.

1. Sketch. Sketch the region and label the bounding curves (Figure 15.23a).

2. Find the r-limits of integration. Imagine a ray L from the origin cutting through R in
the direction of increasing r. Mark the r-values where L enters and leaves R. These are
the r-limits of integration. They usually depend on the angle that L makes with the
positive x-axis (Figure 15.23b).

3. Find the of integration. Find the smallest and largest that bound R.
These are the of integration (Figure 15.23c). The polar iterated integral is

6
R

 ƒsr, ud dA =

L

u=p>2
u=p>4  

L

r = 2

r =22 csc u

 ƒsr, ud r dr du.

u-limits
u-valuesu-limits

u

u,
4R ƒsr, ud dA

6
R

 ƒsr, ud dA =

L

u=b

u=a

 
L

r = g2sud

r = g1sud
 ƒsr, ud r dr du.

u

lim
n: q

 Sn =

6
R

 ƒsr, ud r dr du.

¢u¢rn : q

Sn = a

n

k = 1
 ƒsrk, ukdrk ¢r ¢u.

Sn

 =

¢u
2

 c ark +
¢r
2
b2

- ark -
¢r
2
b2 d =

¢u
2

 s2rk ¢rd = rk ¢r ¢u.

 ¢Ak = area of large sector - area of small sector

Inner radius:
1
2

 ark -
¢r
2
b2

 ¢u

Outer radius:
1
2

 ark +
¢r
2
b2

 ¢u.

u>2p,pr2,

A =
1
2

 u # r2,

u

rk + s¢r>2d.
rk - s¢r>2d¢Ak

¢Ak.
rk¢u .¢r

¢AkSn
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Small sector

Large sector

0

Du

Dr
rkDr

2
⎛
⎝

⎛
⎝rk 2

Dr
2

⎛
⎝

⎛
⎝rk 1

DAk

FIGURE 15.22 The observation that

leads to the formula ¢Ak = rk ¢r ¢u.

¢Ak = a area of

large sector
b - a area of

small sector
b

y

x
0

2
R

x2 1 y2 5 4

y 5 �2
�2 �2, �2

⎛
⎝

⎛
⎝

y

x
0

2
R

L

�

Enters at r � �2 csc �

Leaves at r � 2

r sin � � y � �2
or

r � �2 csc �

y

x
0

2
R

L

Largest � is .�
2

Smallest � is .�
4

y � x

�2

(a)

(b)

(c)

FIGURE 15.23 Finding the limits of
integration in polar coordinates.

7001_ThomasET_ch15p854–918.qxd  10/30/09  7:57 AM  Page 872



EXAMPLE 1 Find the limits of integration for integrating over the region R that
lies inside the cardioid and outside the circle 

Solution

1. We first sketch the region and label the bounding curves (Figure 15.24).

2. Next we find the r-limits of integration. A typical ray from the origin enters R where
and leaves where 

3. Finally we find the of integration. The rays from the origin that intersect R run
from to The integral is

If is the constant function whose value is 1, then the integral of ƒ over R is the
area of R.

ƒsr, ud

L

p>2
-p>2   
L

1 + cos u

1
 ƒsr, ud r dr du.

u = p>2.u = -p>2 u-limits

r = 1 + cos u.r = 1

r = 1.r = 1 + cos u

ƒsr, ud
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Area in Polar Coordinates
The area of a closed and bounded region R in the polar coordinate plane is

A =

6
R

 r dr du.

1 2

L

�

Enters
at
r � 1

Leaves at
r � 1 � cos �

r � 1 � cos �

y

x

� �
�
2

� � – �
2

FIGURE 15.24 Finding the limits of
integration in polar coordinates for the
region in Example 1.

This formula for area is consistent with all earlier formulas, although we do not prove
this fact.

EXAMPLE 2 Find the area enclosed by the lemniscate 

Solution We graph the lemniscate to determine the limits of integration (Figure 15.25) and
see from the symmetry of the region that the total area is 4 times the first-quadrant portion.

Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral into a polar integral has
two steps. First substitute and and replace dx dy by in the
Cartesian integral. Then supply polar limits of integration for the boundary of R. The
Cartesian integral then becomes

where G denotes the same region of integration now described in polar coordinates. This is
like the substitution method in Chapter 5 except that there are now two variables to substi-
tute for instead of one. Notice that the area differential dx dy is not replaced by but
by A more general discussion of changes of variables (substitutions) in multiple
integrals is given in Section 15.8.

r dr du.
dr du

6
R

 ƒsx, yd dx dy =

6
G

 ƒsr cos u, r sin ud r dr du,

r dr duy = r sin u,x = r cos u
4R ƒsx, yd dx dy

 = 4
L

p>4
0

2 cos 2u du = 4 sin 2u d
0

p>4
= 4.

 A = 4
L

p>4
0

 
L

24 cos 2u

0
 r dr du = 4

L

p>4
0

 cr2

2
d

r = 0

r =24 cos 2u

 du

r2
= 4 cos 2u.

Area Differential in Polar Coordinates

dA = r dr du

y

x

Enters at
r � 0

r2 � 4 cos 2�
– �

4

�
4

Leaves at
r � �4 cos 2�

FIGURE 15.25 To integrate over the 
shaded region, we run r from 0 to 

and from 0 to 
(Example 2).

p>4u24 cos 2u
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EXAMPLE 3 Evaluate

where R is the semicircular region bounded by the x-axis and the curve 
(Figure 15.26).

Solution In Cartesian coordinates, the integral in question is a nonelementary integral
and there is no direct way to integrate with respect to either x or y. Yet this integral
and others like it are important in mathematics—in statistics, for example—and we need
to find a way to evaluate it. Polar coordinates save the day. Substituting 

and replacing dy dx by enables us to evaluate the integral as

The r in the was just what we needed to integrate Without it, we would have
been unable to find an antiderivative for the first (innermost) iterated integral.

EXAMPLE 4 Evaluate the integral

Solution Integration with respect to y gives

an integral difficult to evaluate without tables.
Things go better if we change the original integral to polar coordinates. The region of

integration in Cartesian coordinates is given by the inequalites and
, which correspond to the interior of the unit quarter circle  in the

first quadrant. (See Figure 15.26, first quadrant.) Substituting the polar coordinates
and and replacing dx dy by in

the double integral, we get

Why is the polar coordinate transformation so effective here? One reason is that 
simplifies to . Another is that the limits of integration become constants.

EXAMPLE 5 Find the volume of the solid region bounded above by the paraboloid
and below by the unit circle in the xy-plane.

Solution The region of integration R is the unit circle which is described
in polar coordinates by The solid region is shown in Figure 15.27.
The volume is given by the double integral

r = 1, 0 … u … 2p.
x2

+ y2
= 1,

z = 9 - x2
- y2

r2
x2

+ y2

=

L

p>2
0

 cr4

4
d r = 1

r = 0
 du =

L

p>2
0

 
1
4

 du =
p
8

.

L

1

0 L

21 - x2

0
 (x2

+ y2) dy dx =

L

p>2
0 L

1

0
 (r2) r dr du

r dr du0 … r … 1,x = r cos u, y = r sin u, 0 … u … p>2
x2

+ y2
= 10 … x … 1

0 … y … 21 - x2

L

1

0
 ax2 21 - x2 +  

(1 - x2)3>2
3

b  dx,

L

1

0
 
L

21 - x2

0
 (x2

+ y2) dy dx.

er2

.r dr du

 =

L

p

0
 
1
2

 se - 1d du =
p
2

 se - 1d.

 
6

R

 ex2
+ y2

 dy dx =

L

p

0
 
L

1

0
 er2

 r dr du =

L

p

0
 c1

2
 er2 d

0

1

 du

r dr dur sin u

x = r cos u, y =

ex2
+ y2

y = 21 - x2

6
R

 ex2
+ y2

 dy dx,
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0 1

1

y

x
–1

r � 1

� � 0� � �

y � �1 � x2

FIGURE 15.26 The semicircular region
in Example 3 is the region

0 … r … 1, 0 … u … p.

FIGURE 15.27 The solid region in
Example 5.

2

2

–2

z

x

y

z 5 9 2 x2 2 y2

x2 1 y2 5 1

9
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EXAMPLE 6 Using polar integration, find the area of the region R in the xy-plane en-
closed by the circle above the line and below the line 

Solution A sketch of the region R is shown in Figure 15.28. First we note that the line
has slope so . Next we observe that the line inter-

sects the circle when or . Moreover, the radial line
from the origin through the point has slope giving its angle of in-
clination as . This information is shown in Figure 15.28.

Now, for the region R, as varies from to , the polar coordinate r varies from
the horizontal line to the circle . Substituting for y in the equa-
tion for the horizontal line, we have or which is the polar equation
of the line. The polar equation for the circle is So in polar coordinates, for

varies from to It follows that the iterated integral for
the area then gives

=
1
2

 a4p
3

+
1
13
b -

1
2
a4p

6
+ 13b =

p - 13
3

.

=
1
2

 C4u + cot uDp>3p>6

=

L

p>3
p>6  

1
2

 C4 - csc2 uD  du

=

L

p>3
p>6  c1

2
 r2 d r = 2

r = csc u
 du

6
R

 dA =

L

p>3
p>6 L

2

csc u
 r dr du

r = 2.r = csc up>6 … u … p>3, r
r = 2.

r = csc u,r sin u = 1,
r sin ux2

+ y2
= 4y = 1
p>3p>6u

u = p>6 1>13 = tan u,(13, 1)
x = 13x2

+ 1 = 4,x2
+ y2

= 4
y = 1u = p>313 = tan u,y = 13x

y = 13x.y = 1,x2
+ y2

+ 4,

=
17
4

 
L

2p

0
 du =

17p
2

.

=

L

2p

0
c9
2

 r2
-

1
4

 r4 d r = 1

r = 0
 du

=

L

2p

0 L

1

0
 s9r - r3d dr du

6
R

 s9 - x2
- y2d dA =

L

2p

0 L

1

0
 s9 - r2d r dr du
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FIGURE 15.28 The region R in 
Example 6.

x

y

y 5 1, or
r 5 csc u

2

2

1

0 1

y 5 �3x

x2 1 y2 5 4

(1, �3)

(�3, 1)

p
6

p
3

R

Exercises 15.4

Regions in Polar Coordinates
In Exercises 1–8, describe the given region in polar coordinates.

1. 2.

x

y

40

1

4

x

y

90

9

3. 4.

x

y

10

�3

x

y

1–1 0

1
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5. 6.

7. The region enclosed by the circle 

8. The region enclosed by the semicircle 

Evaluating Polar Integrals
In Exercises 9–22, change the Cartesian integral into an equivalent 
polar integral. Then evaluate the polar integral.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

21.

22.

In Exercises 23–26, sketch the region of integration and convert each
polar integral or sum of integrals to a Cartesian integral or sum of in-
tegrals. Do not evaluate the integrals.

23.

24.

25.

26.
L

4 csc u

0
 r7 dr du+

L

p>2
tan-1 43L

3 sec u

0
 r7 dr du

L

tan-1 43

0

L

p>4
0

 
L

2 sec u

0
 r5 sin2 u dr du

L

p>2
p>6  
L

csc u

1
 r2 cos u dr du

L

p>2
0

 
L

1

0
 r3 sin u cos u dr du

L

2

1
  
L

22x - x2

0
  

1
(x2

+ y2)2 dy dx

L

1

0
  
L

22 - x2

x
  sx + 2yd dy dx

L

1

-1
  
L

21 - y2

-21 - y2
 ln sx2

+ y2
+ 1d dx dy

L

ln 2

0
 
L

2sln 2d2
- y2

0
 e2x2

+ y2

 dx dy

L

1

-1
  
L

21 - x 2

-21 - x 2
 

2
s1 + x2

+ y2d2 dy dx

L

0

-1 
  
L

0

-21 - x2
 

2

1 + 2x 2
+ y2

 dy dx

L

2

22
 
L

y

24 - y 2
  dx dy

L

23

1
 
L

x

1
  dy dx

L

2

0
 
L

x

0
 y dy dx

L

6

0
 
L

y

0
 x dx dy

L

a

-a
  
L

2a2
- x2

-2a2
- x2

 dy dx
L

2

0
 
L

24 - y2

0
sx2

+ y2d dx dy

L

1

0
 
L

21 - y2

0
sx2

+ y2d dx dy
L

1

-1
  
L

21 - x2

0
dy dx

x2
+ y2

= 2y, y Ú 0.

x2
+ y2

= 2x.

x

y

0 1 2

2

2

x

y

10

1

2

2�3

Area in Polar Coordinates
27. Find the area of the region cut from the first quadrant by the curve

28. Cardioid overlapping a circle Find the area of the region that
lies inside the cardioid and outside the circle 

29. One leaf of a rose Find the area enclosed by one leaf of the rose

30. Snail shell Find the area of the region enclosed by the positive
x-axis and spiral The region looks like a
snail shell.

31. Cardioid in the first quadrant Find the area of the region cut
from the first quadrant by the cardioid 

32. Overlapping cardioids Find the area of the region common to
the interiors of the cardioids and 

Average values
In polar coordinates, the average value of a function over a region R
(Section 15.3) is given by

33. Average height of a hemisphere Find the average height of

the hemispherical surface above the disk
in the xy-plane.

34. Average height of a cone Find the average height of the (single)

cone above the disk in the xy-plane.

35. Average distance from interior of disk to center Find the
average distance from a point P(x, y) in the disk to
the origin.

36. Average distance squared from a point in a disk to a point in
its boundary Find the average value of the square of the dis-
tance from the point P(x, y) in the disk to the
boundary point A(1, 0).

Theory and Examples
37. Converting to a polar integral Integrate 

over the region 

38. Converting to a polar integral Integrate 
over the region 

39. Volume of noncircular right cylinder The region that lies in-
side the cardioid and outside the circle is
the base of a solid right cylinder. The top of the cylinder lies in the
plane Find the cylinder’s volume.

40. Volume of noncircular right cylinder The region enclosed by
the lemniscate is the base of a solid right cylinder

whose top is bounded by the sphere Find the
cylinder’s volume.

41. Converting to polar integrals

a. The usual way to evaluate the improper integral
is first to calculate its square:

Evaluate the last integral using polar coordinates and solve
the resulting equation for I.

I 2
= a
L

q

0
 e-x2

 dxb a
L

q

0
 e-y2

 dyb =

L

q

0
 
L

q

0
 e-sx2

+ y2d dx dy.

I = 1
q

0  e-x2

 dx

z = 22 - r2.

r2
= 2 cos 2u

z = x.

r = 1r = 1 + cos u

1 … x2
+ y2

… e2.[ln sx2
+ y2d]>sx2

+ y2d
ƒsx, yd =

1 … x2
+ y2

… e.[ln sx2
+ y2d]>2x2

+ y2

ƒsx, yd =

x2
+ y2

… 1

x2
+ y2

… a2

x2
+ y2

… a2z = 2x2
+ y2

x2
+ y2

… a2
z = 2a2

- x2
- y2

1
Area(R)

 
6
R

ƒ(r, u) r dr du.

r = 1 - cos u.r = 1 + cos u

r = 1 + sin u.

r = 4u>3, 0 … u … 2p.

r = 12 cos 3u.

r = 1.r = 1 + cos u

r = 2s2 - sin 2ud1>2.
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b. Evaluate

42. Converting to a polar integral Evaluate the integral

43. Existence Integrate the function 
over the disk Does the integral of ƒ(x, y) over
the disk exist? Give reasons for your answer.

44. Area formula in polar coordinates Use the double integral in
polar coordinates to derive the formula

for the area of the fan-shaped region between the origin and polar
curve 

45. Average distance to a given point inside a disk Let be a
point inside a circle of radius a and let h denote the distance from

to the center of the circle. Let d denote the distance from an 
arbitrary point P to Find the average value of over the re-
gion enclosed by the circle. (Hint: Simplify your work by placing
the center of the circle at the origin and on the x-axis.)P0

d2P0.
P0

P0

r = ƒsud, a … u … b.

A =

L

b

a

 
1
2

 r2 du

x2
+ y2

… 1
x2

+ y2
… 3>4 .

ƒsx, yd = 1>s1 - x2
- y2d

L

q

0
 
L

q

0
 

1
s1 + x2

+ y2d2 dx dy.

lim
x: q

 erf sxd = lim
x: q

 
L

x

0
  
2e-t2

2p  dt.
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46. Area Suppose that the area of a region in the polar coordinate
plane is

Sketch the region and find its area.

COMPUTER EXPLORATIONS
In Exercises 47–50, use a CAS to change the Cartesian integrals into
an equivalent polar integral and evaluate the polar integral. Perform
the following steps in each exercise.

a. Plot the Cartesian region of integration in the xy-plane.

b. Change each boundary curve of the Cartesian region in part (a)
to its polar representation by solving its Cartesian equation for r
and 

c. Using the results in part (b), plot the polar region of integra-
tion in the 

d. Change the integrand from Cartesian to polar coordinates. 
Determine the limits of integration from your plot in part (c)
and evaluate the polar integral using the CAS integration utility.

47. 48.

49. 50.
L

1

0
 
L

2 - y

y
2x + y dx dy

L

1

0
 
L

y>3
-y>3  

y

2x2
+ y2

 dx dy

L

1

0
 
L

x>2
0

 
x

x2
+ y2 dy dx

L

1

0
 
L

1

x
 

y

x2
+ y2 dy dx

ru-plane.

u.

A =

L

3p>4
p>4  
L

2 sin u

csc u

 r dr du.

15.5 Triple Integrals in Rectangular Coordinates

Just as double integrals allow us to deal with more general situations than could be han-
dled by single integrals, triple integrals enable us to solve still more general problems. We
use triple integrals to calculate the volumes of three-dimensional shapes and the average
value of a function over a three-dimensional region. Triple integrals also arise in the study
of vector fields and fluid flow in three dimensions, as we will see in Chapter 16.

Triple Integrals

If F(x, y, z) is a function defined on a closed, bounded region D in space, such as the re-
gion occupied by a solid ball or a lump of clay, then the integral of F over D may be de-
fined in the following way. We partition a rectangular boxlike region containing D into
rectangular cells by planes parallel to the coordinate axes (Figure 15.29). We number the
cells that lie completely inside D from 1 to n in some order, the kth cell having dimensions

by by and volume We choose a point in each
cell and form the sum

(1)

We are interested in what happens as D is partitioned by smaller and smaller cells, so
that and the norm of the partition the largest value among 
all approach zero. When a single limiting value is attained, no matter how the partitions
and points are chosen, we say that F is integrable over D. As before, it can besxk, yk, zkd

¢xk, ¢yk, ¢zk,7P 7 ,¢xk, ¢yk, ¢zk

Sn = a

n

k = 1
 Fsxk, yk, zkd ¢Vk.

sxk, yk, zkd¢Vk = ¢xk¢yk¢zk.¢zk¢yk¢xk

z

y
x

D

(xk, yk, zk)

�zk

�xk
�yk

FIGURE 15.29 Partitioning a solid with
rectangular cells of volume ¢Vk .
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shown that when F is continuous and the bounding surface of D is formed from finitely
many smooth surfaces joined together along finitely many smooth curves, then F is
integrable. As and the number of cells n goes to the sums approach a limit.
We call this limit the triple integral of F over D and write

The regions D over which continuous functions are integrable are those having “reason-
ably smooth” boundaries.

Volume of a Region in Space

If F is the constant function whose value is 1, then the sums in Equation (1) reduce to

As and approach zero, the cells become smaller and more numerous and
fill up more and more of D. We therefore define the volume of D to be the triple integral

lim
n: q

 a

n

k = 1
 ¢Vk =

9
D

 dV.

¢Vk¢zk¢xk, ¢yk,

Sn = a  Fsxk, yk, zkd ¢Vk = a1 #
¢Vk = a  ¢Vk .

lim
n: q

 Sn =

9
D

Fsx, y, zd dV or lim
ƒ ƒP ƒ ƒ :0

 Sn =

9
D

 Fsx, y, zd dx dy dz.

Snq ,7P 7 : 0
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DEFINITION The volume of a closed, bounded region D in space is

V =

9
D

 dV.

This definition is in agreement with our previous definitions of volume, although we omit
the verification of this fact. As we see in a moment, this integral enables us to calculate the
volumes of solids enclosed by curved surfaces.

Finding Limits of Integration in the Order dz dy dx

We evaluate a triple integral by applying a three-dimensional version of Fubini’s Theorem
(Section 15.2) to evaluate it by three repeated single integrations. As with double integrals,
there is a geometric procedure for finding the limits of integration for these single integrals.

To evaluate

over a region D, integrate first with respect to z, then with respect to y, and finally with 
respect to x. (You might choose a different order of integration, but the procedure is simi-
lar, as we illustrate in Example 2.)

1. Sketch. Sketch the region D along with its “shadow” R (vertical projection) in the 
xy-plane. Label the upper and lower bounding surfaces of D and the upper and lower
bounding curves of R.

9
D

 Fsx, y, zd dV
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2. Find the z-limits of integration. Draw a line M passing through a typical point (x, y) in
R parallel to the z-axis. As z increases, M enters D at and leaves at

These are the z-limits of integration.

3. Find the y-limits of integration. Draw a line L through (x, y) parallel to the y-axis. As y
increases, L enters R at and leaves at These are the y-limits of
integration.

y

x

D

R
b

a

M

L

x

z

(x, y)

Enters at
y 5 g1(x)

Leaves at
y 5 g2(x)

y = g2sxd.y = g1sxd

z

y

x

D

Rb

a

M

y 5 g2(x)
(x, y)

y 5 g1(x)

Leaves at
z 5 f2(x, y)

Enters at
z 5 f1(x, y)

z = ƒ2sx, yd.
z = ƒ1sx, yd

z

y

x

D

Rb

a

z 5 f2(x, y)

z 5 f1(x, y)

y 5 g2(x)

y 5 g1(x)
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4. Find the x-limits of integration. Choose x-limits that include all lines through R paral-
lel to the y-axis ( and in the preceding figure). These are the x-limits of
integration. The integral is

Follow similar procedures if you change the order of integration. The “shadow” of
region D lies in the plane of the last two variables with respect to which the iterated
integration takes place.

The preceding procedure applies whenever a solid region D is bounded above and be-
low by a surface, and when the “shadow” region R is bounded by a lower and upper curve.
It does not apply to regions with complicated holes through them, although sometimes
such regions can be subdivided into simpler regions for which the procedure does apply.

EXAMPLE 1 Find the volume of the region D enclosed by the surfaces 
and 

Solution The volume is

the integral of over D. To find the limits of integration for evaluating the in-
tegral, we first sketch the region. The surfaces (Figure 15.30) intersect on the elliptical
cylinder or The boundary of the region
R, the projection of D onto the xy-plane, is an ellipse with the same equation:

The “upper” boundary of R is the curve The lower
boundary is the curve 

Now we find the z-limits of integration. The line M passing through a typical point (x, y)
in R parallel to the z-axis enters D at and leaves at z = 8 - x2

- y2.z = x2
+ 3y2

y = -1s4 - x2d>2.
y = 1s4 - x2d>2.x2

+ 2y2
= 4.

x2
+ 2y2

= 4,  z 7 0.x2
+ 3y2

= 8 - x2
- y2

Fsx, y, zd = 1

V =

9
D

 dz dy dx,

8 - x2
- y2.z =

z = x2
+ 3y2

L

x = b

x = a
 
L

y = g2sxd

y = g1sxd
 
L

z = ƒ2sx, yd

z = ƒ1sx, yd
 Fsx, y, zd dz dy dx.

x = bx = a
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Leaves at
z 5 8 2 x2 2 y2 

(2, 0, 4)

(2, 0, 0)
x

z

yL

(–2, 0, 0)

R

x

D

(–2, 0, 4)

The curve of intersection

z 5 8 2 x2 2 y2

x2 1 2y2 5 4

Leaves at
y 5 �(4 2 x2)/ 2

z 5 x2 1 3y2

M

(x, y)

Enters at
z 5 x2 1 3y2

Enters at
y 5 –�(4 2 x2)/ 2

FIGURE 15.30 The volume of the region enclosed by two paraboloids,
calculated in Example 1.
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Next we find the y-limits of integration. The line L through (x, y) parallel to the y-axis
enters R at and leaves at 

Finally we find the x-limits of integration. As L sweeps across R, the value of x varies
from at to at (2, 0, 0). The volume of D is

In the next example, we project D onto the xz-plane instead of the xy-plane, to show
how to use a different order of integration.

EXAMPLE 2 Set up the limits of integration for evaluating the triple integral of a
function F(x, y, z) over the tetrahedron D with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0), and
(0, 1, 1). Use the order of integration dy dz dx.

Solution We sketch D along with its “shadow” R in the xz-plane (Figure 15.31). The up-
per (right-hand) bounding surface of D lies in the plane The lower (left-hand)
bounding surface lies in the plane The upper boundary of R is the line

The lower boundary is the line 
First we find the y-limits of integration. The line through a typical point (x, z) in R

parallel to the y-axis enters D at and leaves at 
Next we find the z-limits of integration. The line L through (x, z) parallel to the z-axis

enters R at and leaves at 
Finally we find the x-limits of integration. As L sweeps across R, the value of x varies

from to The integral is

EXAMPLE 3 Integrate over the tetrahedron D in Example 2 in the order 
dz dy dx, and then integrate in the order dy dz dx.

Solution First we find the z-limits of integration. A line M parallel to the z-axis through a
typical point (x, y) in the xy-plane “shadow” enters the tetrahedron at and exits
through the upper plane where (Figure 15.32).

Next we find the y-limits of integration. On the xy-plane, where the sloped side
of the tetrahedron crosses the plane along the line A line L through (x, y) parallel to
the y-axis enters the shadow in the xy-plane at and exits at (Figure 15.32).y = 1y = x

y = x.
z = 0,

z = y - x
z = 0

F(x, y, z) = 1

L

1

0
 
L

1 - x

0
 
L

1

x + z
 Fsx, y, zd dy dz dx.

x = 1.x = 0

z = 1 - x.z = 0

y = 1.y = x + z

z = 0.z = 1 - x.
y = x + z.

y = 1.

 = 8p22.

 =

L

2

-2
 c8 a4 - x 2

2
b3>2

-
8
3

 a4 - x 2

2
b3>2 d  dx =

422
3

 
L

2

-2
s4 - x 2d3>2 dx

 =

L

2

-2
 a2s8 - 2x 2dB

4 - x 2

2
-

8
3

 a4 - x 2

2
b3>2b  dx

 =

L

2

-2
 cs8 - 2x 2dy -

4
3

 y3 d
y = -2s4 - x2d>2
y =2s4 - x2d>2

 dx

 =

L

2

-2 
 
L

2s4 - x2d>2
-2s4 - x2d>2s8 - 2x2

- 4y2d dy dx

 =

L

2

-2 
 
L

2s4 - x2d>2
-2s4 - x2d>2   

L

8 - x2
- y2

x2
+ 3y2

 dz dy dx

 V =

9
D

 dz dy dx

x = 2s -2, 0, 0dx = -2

y = 2s4 - x2d>2.y = -2s4 - x2d>2
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After integration with the substitution x = 2 sin u

z

y

x

x

R

D

L

M

(0, 1, 0)

(1, 1, 0)
1

1

(x, z)

Line
x 1 z 5 1

(0, 1, 1)

y 5 1

y 5 x 1 z

Leaves at
y 5 1Enters at

y 5 x 1 z

FIGURE 15.31 Finding the limits of
integration for evaluating the triple integral
of a function defined over the tetrahedron
D (Examples 2 and 3).
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Finally we find the x-limits of integration. As the line L parallel to the y-axis in the
previous step sweeps out the shadow, the value of x varies from to at the
point (1, 1, 0) (see Figure 15.32). The integral is

For example, if we would find the volume of the tetrahedron to be

We get the same result by integrating with the order dy dz dx. From Example 2,

Average Value of a Function in Space

The average value of a function F over a region D in space is defined by the formula

(2)

For example, if then the average value of F over D is the
average distance of points in D from the origin. If F(x, y, z) is the temperature at (x, y, z) on
a solid that occupies a region D in space, then the average value of F over D is the average
temperature of the solid.

Fsx, y, zd = 2x2
+ y2

+ z2,

Average value of F over D =
1

volume of D
 
9
D

 F dV.

= -
1
6

 (1 - x)3 d1
0

=
1
6

.

=
1
2

 
L

1

0
 (1 - x)2 dx

=

L

1

0
 c(1 - x)2

-
1
2

 (1 - x)2 d  dx

=

L

1

0
 c(1 - x)z -

1
2

 z2 d z = 1 - x

z = 0
 dx

=

L

1

0
 
L

1 - x

0
 (1 - x - z) dz dx

V =

L

1

0
 
L

1 - x

0
 
L

1

x + z
 dy dz dx

 =
1
6

.

 = c1
2

 x -
1
2

 x 2
+

1
6

 x 3 d
0

1

 =

L

1

0
 a1

2
- x +

1
2

 x 2b  dx

 =

L

1

0
 c1

2
 y 2

- xy d
y = x

y = 1

 dx

 =

L

1

0
 
L

1

x
s y - xd dy dx

 V =

L

1

0
 
L

1

x
 
L

y - x

0
 dz dy dx

Fsx, y, zd = 1,

L

1

0
 
L

1

x
 
L

y - x

0
 Fsx, y, zd dz dy dx.

x = 1x = 0

882 Chapter 15: Multiple Integrals

z

y

x

x

R

D

M

L

(0, 1, 0)

(0, 1, 1)

(1, 1, 0)
1

(x, y)
y 5 1

0

y 5 x

z 5 y 2 x

FIGURE 15.32 The tetrahedron in
Example 3 showing how the limits of
integration are found for the order dz dy dx.
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EXAMPLE 4 Find the average value of throughout the cubical region
D bounded by the coordinate planes and the planes and in the first
octant.

Solution We sketch the cube with enough detail to show the limits of integration
(Figure 15.33). We then use Equation (2) to calculate the average value of F over the
cube.

The volume of the region D is The value of the integral of F over the
cube is

With these values, Equation (2) gives

In evaluating the integral, we chose the order dx dy dz, but any of the other five possible
orders would have done as well.

Properties of Triple Integrals

Triple integrals have the same algebraic properties as double and single integrals. Simply
replace the double integrals in the four properties given in Section 15.2, page 864, with
triple integrals.

Average value of
xyz over the cube

=
1

volume
 
9
cube

 xyz dV = a1
8
b s8d = 1.

 =

L

2

0
 cy2z d

y = 0

y = 2

 dz =

L

2

0
4z dz = c2z2 d

0

2

= 8.

 
L

2

0
 
L

2

0
 
L

2

0
 xyz dx dy dz =

L

2

0
 
L

2

0
 cx2

2
 yz d

x = 0

x = 2

 dy dz =

L

2

0
 
L

2

0
2yz dy dz

s2ds2ds2d = 8.

z = 2x = 2, y = 2,
Fsx, y, zd = xyz
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z

y

D

2

x

2

2

FIGURE 15.33 The region of integration
in Example 4.

Exercises 15.5

Triple Integrals in Different Iteration Orders
1. Evaluate the integral in Example 2 taking to find

the volume of the tetrahedron in the order dz dx dy.

2. Volume of rectangular solid Write six different iterated triple
integrals for the volume of the rectangular solid in the first octant
bounded by the coordinate planes and the planes 
and Evaluate one of the integrals.

3. Volume of tetrahedron Write six different iterated triple inte-
grals for the volume of the tetrahedron cut from the first octant by
the plane Evaluate one of the integrals.

4. Volume of solid Write six different iterated triple integrals for
the volume of the region in the first octant enclosed by the cylin-
der and the plane Evaluate one of the 
integrals.

5. Volume enclosed by paraboloids Let D be the region bounded
by the paraboloids and Write six
different triple iterated integrals for the volume of D. Evaluate
one of the integrals.

6. Volume inside paraboloid beneath a plane Let D be the region
bounded by the paraboloid and the plane 
Write triple iterated integrals in the order and 
that give the volume of D. Do not evaluate either integral.

dz dy dxdz dx dy
z = 2y.z = x2

+ y2

z = x2
+ y2.z = 8 - x2

- y2

y = 3.x2
+ z2

= 4

6x + 3y + 2z = 6.

z = 3.
x = 1, y = 2,

Fsx, y, zd = 1
Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 7–20.

7.

8. 9.

10. 11.

12.

13. 14.

15. 16.

17.

18.
L

1

0
 
L

2e

1
 
L

e

1
 ses ln r 

(ln t)2

t  dt dr ds srst-spaced

L

p

0
 
L

p

0
 
L

p

0
 cos su + y + wd du dy dw suyw-spaced

L

1

0
 
L

1 - x2

0
 
L

4 - x2
- y

3
 x dz dy dx

L

1

0
 
L

2 - x

0
 
L

2 - x - y

0
 dz dy dx

L

2

0
 
L

24 - y2

-24 - y2
  
L

2x + y

0
 dz dx dy

L

3

0
 
L

29 - x2

0
 
L

29 - x2

0
 dz dy dx

L

1

-1
  
L

1

0
  
L

2

0
sx + y + zd dy dx dz

L

p>6
0

 
L

1

0
 
L

3

-2
 y sin z dx dy dz

L

1

0
 
L

3 - 3x

0
 
L

3 - 3x - y

0
 dz dy dx

L

e

1
 
L

e2

1
 
L

e3

1
 

1
xyz dx dy dz

L

22

0
 
L

3y

0
 
L

8 - x2
- y2

x2
+ 3y2

 dz dx dy

L

1

0
 
L

1

0
 
L

1

0
sx2

+ y2
+ z2d dz dy dx
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19.

20.

Finding Equivalent Iterated Integrals
21. Here is the region of integration of the integral

Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx b. dy dx dz

c. dx dy dz d. dx dz dy

e. dz dx dy.

22. Here is the region of integration of the integral

Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx b. dy dx dz

c. dx dy dz d. dx dz dy

e. dz dx dy.

Finding Volumes Using Triple Integrals
Find the volumes of the regions in Exercises 23–36.

23. The region between the cylinder and the xy-plane that is
bounded by the planes  

z

x

y

x = 0, x = 1, y = -1, y = 1
z = y2

0

z

y

x
1

1

(1, –1, 0)

(1, –1, 1)

(0, –1, 1)

z � y2

L

1

0
 
L

0

-1 
  
L

y2

0
 dz dy dx.

11

1

(1, 1, 0)

y

x

z

Top:  y � z � 1

(–1, 1, 0)

Side:
y � x2

–1

L

1

-1
  
L

1

x2
  
L

1 - y

0
 dz dy dx.

L

7

0
 
L

2

0
 
L

24 - q2

0
 

q

r + 1
 dp dq dr spqr-spaced

L

p>4
0

 
L

ln sec y

0
 
L

2t

-q

 ex dx dt dy styx-spaced
24. The region in the first octant bounded by the coordinate planes

and the planes 

25. The region in the first octant bounded by the coordinate planes,
the plane and the cylinder 

26. The wedge cut from the cylinder by the planes
and 

27. The tetrahedron in the first octant bounded by the coordinate planes
and the plane passing through (1, 0, 0), (0, 2, 0), and (0, 0, 3)

28. The region in the first octant bounded by the coordinate planes,
the plane and the surface 

z

y

x

0 … x … 1
z = cos spx>2d,y = 1 - x,

z

y

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 3)

z

y

x

z = 0z = -y
x2

+ y2
= 1

z

y

x

x = 4 - y2y + z = 2,

z

y

x

x + z = 1, y + 2z = 2
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29. The region common to the interiors of the cylinders 
and one-eighth of which is shown in the accompa-
nying figure

30. The region in the first octant bounded by the coordinate planes
and the surface 

31. The region in the first octant bounded by the coordinate planes,
the plane and the cylinder 

32. The region cut from the cylinder by the plane 
and the plane 

y

x

z
x + z = 3

z = 0x2
+ y2

= 4

z

y

x

y2
+ 4z2

= 16x + y = 4,

z

y

x

z = 4 - x2
- y

z

y
x

x2 1 z2 5 1

x2 1 y2 5 1

x2
+ z2

= 1,
x2

+ y2
= 1

15.5 Triple Integrals in Rectangular Coordinates 885

33. The region between the planes and 
in the first octant

34. The finite region bounded by the planes 
and 

35. The region cut from the solid elliptical cylinder by
the xy-plane and the plane 

36. The region bounded in back by the plane on the front and
sides by the parabolic cylinder on the top by the pa-
raboloid and on the bottom by the xy-plane

Average Values
In Exercises 37–40, find the average value of F(x, y, z) over the given
region.

37. over the cube in the first octant bounded by
the coordinate planes and the planes and 

38. over the rectangular solid in the first
octant bounded by the coordinate planes and the planes

and 

39. over the cube in the first octant
bounded by the coordinate planes and the planes 
and 

40. over the cube in the first octant bounded by the
coordinate planes and the planes and 

Changing the Order of Integration
Evaluate the integrals in Exercises 41–44 by changing the order of 
integration in an appropriate way.

41.

42.

43.

44.

Theory and Examples
45. Finding an upper limit of an iterated integral Solve for a:

46. Ellipsoid For what value of c is the volume of the ellipsoid
equal to 

47. Minimizing a triple integral What domain D in space mini-
mizes the value of the integral

Give reasons for your answer.

48. Maximizing a triple integral What domain D in space maxi-
mizes the value of the integral

Give reasons for your answer.

9
D

s1 - x2
- y2

- z2d dV ?

9
D

s4x2
+ 4y2

+ z2
- 4d dV ?

8p?x2
+ sy>2d2

+ sz>cd2
= 1

L

1

0
 
L

4 - a - x2

0
 
L

4 - x2
- y

a
 dz dy dx =

4
15

.

L

2

0
 
L

4 - x2

0
 
L

x

0
 
sin 2z
4 - z

 dy dz dx

L

1

0
 
L

1

32z
  
L

ln 3

0
 
pe2x sin py2

y2  dx dy dz

L

1

0
 
L

1

0
 
L

1

x2
12xze zy2

 dy dx dz

L

4

0
 
L

1

0
 
L

2

2y
 
4 cos sx2d

22z
 dx dy dz

z = 2x = 2, y = 2,
Fsx, y, zd = xyz

z = 1
x = 1, y = 1,

Fsx, y, zd = x2
+ y2

+ z2

z = 2x = 1, y = 1,

Fsx, y, zd = x + y - z

z = 2x = 2, y = 2,
Fsx, y, zd = x2

+ 9

z = x2
+ y2,

x = 1 - y2,
x = 0,

z = x + 2
x2

+ 4y2
… 4

z = 0y = 8,
z = x, x + z = 8, z = y, 

z = 4
2x + 2y +x + y + 2z = 2
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COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS integration utility to evaluate the triple
integral of the given function over the specified solid region.

49. over the solid cylinder bounded by
and the planes and 

50. over the solid bounded below by the paraboloid
and above by the plane z = 1z = x2

+ y2
Fsx, y, zd = ƒ xyz ƒ

z = 1z = 0x2
+ y2

= 1
Fsx, y, zd = x2y2z

886 Chapter 15: Multiple Integrals

51. over the solid bounded below by

the cone and above by the plane 

52. over the solid sphere 
z2

… 1
x2

+ y2
+Fsx, y, zd = x4

+ y2
+ z2

z = 1z = 2x2
+ y2

Fsx, y, zd =

z

sx2
+ y2

+ z2d3>2

15.6 Moments and Centers of Mass

This section shows how to calculate the masses and moments of two- and three-
dimensional objects in Cartesian coordinates. Section 15.7 gives the calculations for cylin-
drical and spherical coordinates. The definitions and ideas are similar to the single-variable
case we studied in Section 6.6, but now we can consider more realistic situations.

Masses and First Moments

If is the density (mass per unit volume) of an object occupying a region D in space,
the integral of over D gives the mass of the object. To see why, imagine partitioning the ob-
ject into n mass elements like the one in Figure 15.34. The object’s mass is the limit

The first moment of a solid region D about a coordinate plane is defined as the triple in-
tegral over D of the distance from a point (x, y, z) in D to the plane multiplied by the density
of the solid at that point. For instance, the first moment about the yz-plane is the integral

The center of mass is found from the first moments. For instance, the x-coordinate of
the center of mass is .

For a two-dimensional object, such as a thin, flat plate, we calculate first moments
about the coordinate axes by simply dropping the z-coordinate. So the first moment about
the y-axis is the double integral over the region R forming the plate of the distance from
the axis multiplied by the density, or

Table 15.1 summarizes the formulas.

EXAMPLE 1 Find the center of mass of a solid of constant density bounded below 
by the disk in the plane and above by the paraboloid

(Figure 15.35).z = 4 - x2
- y2

z = 0R: x2
+ y2

… 4
d

My =

6
R

 xd(x, y) dA.

x = Myz>M

Myz =

9
D

 xdsx, y, zd dV.

M = lim
n: q

 a

n

k = 1
 ¢mk = lim

n: q

 a

n

k = 1
dsxk, yk, zkd ¢Vk =

9
D

dsx, y, zd dV.

d

dsx, y, zd

x

z

y

D
(xk, yk, zk)

�mk � �(xk, yk, zk) �Vk

FIGURE 15.34 To define an object’s
mass, we first imagine it to be partitioned
into a finite number of mass elements
¢mk.

z

y

x

0
R

c.m.

x2 � y2 � 4

z � 4 � x2 � y2

FIGURE 15.35 Finding the center of
mass of a solid (Example 1).
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TABLE 15.1 Mass and first moment formulas 

THREE-DIMENSIONAL SOLID

Mass:

First moments about the coordinate planes:

Center of mass:

TWO-DIMENSIONAL PLATE

Center of mass: x =

My

M
, y =

Mx

M

First moments: My =

6
R

 x d dA, Mx =

6
R

 y d dA

Mass: M =

6
R

d dA

x =

Myz

M
, y =

Mxz

M
, z =

Mxy

M

Myz =

9
D

 x d dV, Mxz =

9
D

 y d dV, Mxy =

9
D

 z d dV

M =

9
D

d dV

is the density at (x, y).d = dsx, yd

is the density at (x, y, z).d = dsx, y, zd

Solution By symmetry To find we first calculate

A similar calculation gives the mass

Therefore and the center of mass is  

When the density of a solid object or plate is constant (as in Example 1), the center of
mass is called the centroid of the object. To find a centroid, we set equal to 1 and pro-
ceed to find , , and as before, by dividing first moments by masses. These calculations
are also valid for two-dimensional objects.

EXAMPLE 2 Find the centroid of the region in the first quadrant that is bounded above
by the line and below by the parabola y = x2.y = x

zyx
d

sx, y, zd = s0, 0, 4>3d.z = sMxy>Md = 4>3

M =

6
R
L

4 - x2
- y2

0
d dz dy dx = 8pd.

 =
d
2

 
L

2p

0
 c- 1

6
 s4 - r 2d3 d

r = 0

r = 2

 du =
16d
3

 
L

2p

0
 du =

32pd
3

.

 =
d
2

 
L

2p

0
 
L

2

0
s4 - r 2d2 r dr du

 =
d
2

 
6

R

s4 - x 2
- y 2d2 dy dx

 Mxy =

6
R
L

z = 4 - x2
- y2

z = 0
 z d dz dy dx =

6
R

 cz2

2
d

z = 0

z = 4 - x2
- y2

d dy dx

z,x = y = 0.

Polar coordinates simplify the integration.
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Solution We sketch the region and include enough detail to determine the limits of inte-
gration (Figure 15.36). We then set equal to 1 and evaluate the appropriate formulas
from Table 15.1:

From these values of and we find

The centroid is the point (1 2, 2 5).

Moments of Inertia

An object’s first moments (Table 15.1) tell us about balance and about the torque the ob-
ject experiences about different axes in a gravitational field. If the object is a rotating
shaft, however, we are more likely to be interested in how much energy is stored in the
shaft or about how much energy is generated by a shaft rotating at a particular angular ve-
locity. This is where the second moment or moment of inertia comes in.

Think of partitioning the shaft into small blocks of mass and let denote the
distance from the kth block’s center of mass to the axis of rotation (Figure 15.37). If the
shaft rotates at a constant angular velocity of radians per second, the block’s
center of mass will trace its orbit at a linear speed of

The block’s kinetic energy will be approximately

The kinetic energy of the shaft will be approximately

The integral approached by these sums as the shaft is partitioned into smaller and smaller
blocks gives the shaft’s kinetic energy:

(1)

The factor

is the moment of inertia of the shaft about its axis of rotation, and we see from Equation (1)
that the shaft’s kinetic energy is

KEshaft =
1
2

 Iv2.

I =

L
 r2 dm

KEshaft =

L
 
1
2

 v2r2 dm =
1
2

 v2 
L

 r2 dm.

a  
1
2

 v2rk
2  ¢mk .

1
2

 ¢mkyk
2

=
1
2

 ¢mksrkvd2
=

1
2

 v2rk
2  ¢mk .

yk =
d
dt

 srkud = rk 
du
dt

= rkv.

v = du>dt

rk¢mk

>>
x =

My

M
=

1>12

1>6 =
1
2
 and y =

Mx

M
=

1>15

1>6 =
2
5 .

My,M, Mx,

 My =

L

1

0
 
L

x

x2
 x dy dx =

L

1

0
cxy d

y = x2

y = x

 dx =

L

1

0
sx 2

- x 3d dx = cx3

3
-

x4

4
d

0

1

=
1

12
.

 =

L

1

0
 ax 2

2
-

x 4

2
b  dx = cx 3

6
-

x 5

10
d

0

1

=
1

15

 Mx =

L

1

0
 
L

x

x2
 y dy dx =

L

1

0
 cy 2

2
d

y = x2

y = x

 dx

 M =

L

1

0
 
L

x

x2
1 dy dx =

L

1

0
cy d

y = x2

y = x

 dx =

L

1

0
sx - x2d dx = cx 2

2
-

x3

3
d

0

1

=
1
6

d
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(1, 1)

0 1

1

x

y

y 5 x2

y 5 x

FIGURE 15.36 The centroid of this
region is found in Example 2.

Axis of rotation

�

L

yk

Δmk
rk�

rk

FIGURE 15.37 To find an integral for the
amount of energy stored in a rotating shaft,
we first imagine the shaft to be partitioned
into small blocks. Each block has its own
kinetic energy. We add the contributions of
the individual blocks to find the kinetic
energy of the shaft.
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The moment of inertia of a shaft resembles in some ways the inertial mass of a loco-
motive. To start a locomotive with mass m moving at a linear velocity y, we need to pro-
vide a kinetic energy of To stop the locomotive we have to remove this
amount of energy. To start a shaft with moment of inertia I rotating at an angular velocity

we need to provide a kinetic energy of To stop the shaft we have to
take this amount of energy back out. The shaft’s moment of inertia is analogous to the lo-
comotive’s mass. What makes the locomotive hard to start or stop is its mass. What makes
the shaft hard to start or stop is its moment of inertia. The moment of inertia depends not
only on the mass of the shaft but also on its distribution. Mass that is farther away from the
axis of rotation contributes more to the moment of inertia.

We now derive a formula for the moment of inertia for a solid in space. If r(x, y, z) is
the distance from the point (x, y, z) in D to a line L, then the moment of inertia of the mass

about the line L (as in Figure 15.37) is approximately 
The moment of inertia about L of the entire object is

If L is the x-axis, then (Figure 15.38) and

Similarly, if L is the y-axis or z-axis we have

Table 15.2 summarizes the formulas for these moments of inertia (second moments 
because they invoke the squares of the distances). It shows the definition of the polar 
moment about the origin as well.

EXAMPLE 3 Find for the rectangular solid of constant density shown in 
Figure 15.39.

Solution The formula for gives

We can avoid some of the work of integration by observing that is an even
function of x, y, and z since is constant. The rectangular solid consists of eight symmetric
pieces, one in each octant. We can evaluate the integral on one of these pieces and then
multiply by 8 to get the total value.

 = 4ad ab3c
48

+
c3b
48
b =

abcd
12

 sb2
+ c2d =

M
12

 sb2
+ c2d.

 = 4ad
L

c>2
0

 ab3

24
+

z2b
2
b  dz

 = 4ad
L

c>2
0

 cy3

3
+ z2y d

y = 0

y = b>2
 dz

 Ix = 8
L

c>2
0

 
L

b>2
0

 
L

a>2
0

s y 2
+ z 2d d dx dy dz = 4ad

L

c>2
0

 
L

b>2
0

s y 2
+ z 2d dy dz

d

s y2
+ z2dd

Ix =

L

c>2
-c>2   
L

b>2
-b>2   
L

a>2
-a>2s y2

+ z2d d dx dy dz.

Ix

dIx, Iy, Iz

Iy =

9
D

sx2
+ z2d d(x, y, z) dV and Iz =

9
D

sx2
+ y2d d(x, y, z) dV.

Ix =

9
D

s y2
+ z2d d(x, y, z) dV.

r2
= y2

+ z2

IL = lim
n: q

 a

n

k = 1
 ¢Ik = lim

n: q

 a

n

k = 1
 r2sxk, yk, zkd dsxk, yk, zkd ¢Vk =

9
D

 r2d dV.

r2sxk, yk, zkd¢mk.
¢Ik =dsxk, yk, zkd¢Vk¢mk =

KE = s1>2dIv2.v,

KE = s1>2dmy2.
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FIGURE 15.38 Distances from dV to the
coordinate planes and axes.

z

y

x

x

y

x

y

z
x

dV

0

�y2 1 z2

�x2 1 z2

�x2 1 y2

b

a

c

Center of 
block

x

y

z

FIGURE 15.39 Finding and for
the block shown here. The origin lies at the
center of the block (Example 3).

IzIx, Iy,

M = abcd
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TABLE 15.2 Moments of inertia (second moments) formulas

THREE-DIMENSIONAL SOLID

About the x-axis:

About the y-axis:

About the z-axis:

About a line L:

TWO-DIMENSIONAL PLATE

About the x-axis:

About the y-axis:

About a line L:

About the origin 

(polar moment):

I0 =

6
sx2

+ y2d d dA = Ix + Iy

IL =

6
 r 2sx, yd d dA

Iy =

6
 x2 d dA

Ix =

6
 y2 d dA

 IL =

9
r2 d dV 

 Iz =

9
sx2

+ y2d d dV

 Iy =

9
sx2

+ z2d d dV

 Ix =

9
s y2

+ z2d d dV

d = d(x, y)

r (x, y) � distance from
(x, y) to L

r (x, y, z) � distance from the
point (x, y, z) to line L

d = d(x, y, z)

Similarly,

EXAMPLE 4 A thin plate covers the triangular region bounded by the x-axis and the
lines and in the first quadrant. The plate’s density at the point (x, y) is

Find the plate’s moments of inertia about the coordinate axes and
the origin.

Solution We sketch the plate and put in enough detail to determine the limits of integra-
tion for the integrals we have to evaluate (Figure 15.40). The moment of inertia about the
x-axis is

 = C8x5
+ 4x4 D01 = 12.

 =

L

1

0
 c2xy3

+
3
2

 y4
+ 2y3 d

y = 0

y = 2x

 dx =

L

1

0
(40x4

+ 16x3) dx

 Ix =

L

1

0
 
L

2x

0
y2dsx, yd dy dx =

L

1

0
 
L

2x

0
s6xy2

+ 6y3
+ 6y2d dy dx

6y + 6.dsx, yd = 6x +

y = 2xx = 1

Iy =
M
12

 sa2
+ c2d and Iz =

M
12

 sa2
+ b2d.

(1, 2)

0 1

2

x

y

y 5 2x

x 5 1

FIGURE 15.40 The triangular region
covered by the plate in Example 4.
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Similarly, the moment of inertia about the y-axis is

Notice that we integrate times density in calculating and times density to find 
Since we know and , we do not need to evaluate an integral to find ; we can use

the equation from Table 15.2 instead:

The moment of inertia also plays a role in determining how much a horizontal metal
beam will bend under a load. The stiffness of the beam is a constant times I, the moment of
inertia of a typical cross-section of the beam about the beam’s longitudinal axis. The
greater the value of I, the stiffer the beam and the less it will bend under a given load. That
is why we use I-beams instead of beams whose cross-sections are square. The flanges at
the top and bottom of the beam hold most of the beam’s mass away from the longitudinal
axis to increase the value of I (Figure 15.41).

I0 = 12 +
39
5 =

60 + 39
5 =

99
5 .

I0 = Ix + Iy

I0IyIx

Iy.x2Ixy2

Iy =

L

1

0
 
L

2x

0
 x2dsx, yd dy dx =

39
5 .
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Beam B

Beam A

Axis

Axis

FIGURE 15.41 The greater the polar
moment of inertia of the cross-section of a
beam about the beam’s longitudinal axis, the
stiffer the beam. Beams A and B have the
same cross-sectional area, but A is stiffer.

Exercises 15.6

Plates of Constant Density
1. Finding a center of mass Find the center of mass of a thin

plate of density bounded by the lines and
the parabola in the first quadrant.

2. Finding moments of inertia Find the moments of inertia
about the coordinate axes of a thin rectangular plate of constant
density bounded by the lines and in the first
quadrant.

3. Finding a centroid Find the centroid of the region in the first
quadrant bounded by the x-axis, the parabola and the
line 

4. Finding a centroid Find the centroid of the triangular region
cut from the first quadrant by the line 

5. Finding a centroid Find the centroid of the region cut from the
first quadrant by the circle 

6. Finding a centroid Find the centroid of the region between the
x-axis and the arch 

7. Finding moments of inertia Find the moment of inertia about
the x-axis of a thin plate of density bounded by the circle

Then use your result to find and for the plate.

8. Finding a moment of inertia Find the moment of inertia with
respect to the y-axis of a thin sheet of constant density 
bounded by the curve and the interval

of the x-axis.

9. The centroid of an infinite region Find the centroid of the in-
finite region in the second quadrant enclosed by the coordinate
axes and the curve (Use improper integrals in the mass-
moment formulas.)

y = ex.

p … x … 2p
y = ssin2 xd>x2

d = 1

I0Iyx2
+ y2

= 4.
d = 1

y = sin x, 0 … x … p.

x2
+ y2

= a2.

x + y = 3.

x + y = 4.
y2

= 2x,

y = 3x = 3d

y = 2 - x2
y = x,x = 0,d = 3

10. The first moment of an infinite plate Find the first moment
about the y-axis of a thin plate of density covering the
infinite region under the curve in the first quadrant.

Plates with Varying Density
11. Finding a moment of inertia Find the moment of inertia about

the x-axis of a thin plate bounded by the parabola and
the line if 

12. Finding mass Find the mass of a thin plate occupying the
smaller region cut from the ellipse by the
parabola if 

13. Finding a center of mass Find the center of mass of a thin tri-
angular plate bounded by the y-axis and the lines and

if 

14. Finding a center of mass and moment of inertia Find the
center of mass and moment of inertia about the x-axis of a thin
plate bounded by the curves and if the den-
sity at the point (x, y) is 

15. Center of mass, moment of inertia Find the center of mass
and the moment of inertia about the y-axis of a thin rectangular
plate cut from the first quadrant by the lines and if

16. Center of mass, moment of inertia Find the center of mass
and the moment of inertia about the y-axis of a thin plate bounded
by the line and the parabola if the density is

17. Center of mass, moment of inertia Find the center of mass
and the moment of inertia about the y-axis of a thin plate bounded
by the x-axis, the lines and the parabola if
dsx, yd = 7y + 1.

y = x2x = ;1,

dsx, yd = y + 1.
y = x2y = 1

y + 1.dsx, yd = x +

y = 1x = 6

dsx, yd = y + 1.
x = 2y - y2x = y2

dsx, yd = 6x + 3y + 3.y = 2 - x
y = x

dsx, yd = 5x.x = 4y2
x2

+ 4y2
= 12

dsx, yd = x + y.x + y = 0
x = y - y2

y = e-x2>2
dsx, yd = 1
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18. Center of mass, moment of inertia Find the center of mass
and the moment of inertia about the x-axis of a thin rectangular
plate bounded by the lines and if

19. Center of mass, moments of inertia Find the center of mass,
the moment of inertia about the coordinate axes, and the
polar moment of inertia of a thin triangular plate bounded by the
lines and if 

20. Center of mass, moments of inertia Repeat Exercise 19 for

Solids with Constant Density
21. Moments of inertia Find the moments of inertia of the rectan-

gular solid shown here with respect to its edges by calculating
and 

22. Moments of inertia The coordinate axes in the figure run
through the centroid of a solid wedge parallel to the labeled
edges. Find and if and 

23. Center of mass and moments of inertia A solid “trough” of
constant density is bounded below by the surface above
by the plane and on the ends by the planes and

Find the center of mass and the moments of inertia with
respect to the three axes.

24. Center of mass A solid of constant density is bounded below
by the plane on the sides by the elliptical cylinder

and above by the plane (see the ac-
companying figure).

a. Find and 

b. Evaluate the integral

using integral tables to carry out the final integration with respect
to x. Then divide by M to verify that z = 5>4.Mxy

Mxy =

L

2

-2
 
L

s1>2d24 - x2

-s1>2d24 - x2
 
L

2 - x

0
 z dz dy dx

y.x

z = 2 - xx2
+ 4y2

= 4,
z = 0,

x = -1.
x = 1z = 4,

z = 4y2,

z

y

x b

a

Centroid
at (0, 0, 0)

c b
3

a
2

c
3

c = 4.a = b = 6IzIx , Iy,

z

y

x

c

b

a

Iz.Ix, Iy,

dsx, yd = 3x2
+ 1.

dsx, yd = y + 1.y = 1y = x, y = -x,

sx>20d.dsx, yd = 1 +

y = 1x = 0, x = 20, y = -1,

25. a. Center of mass Find the center of mass of a solid of con-
stant density bounded below by the paraboloid 
and above by the plane 

b. Find the plane that divides the solid into two parts of equal
volume. This plane does not pass through the center of mass.

26. Moments A solid cube, 2 units on a side, is bounded by the
planes and Find the center of
mass and the moments of inertia about the coordinate axes.

27. Moment of inertia about a line A wedge like the one in Exer-
cise 22 has and Make a quick sketch to
check for yourself that the square of the distance from a typical
point (x, y, z) of the wedge to the line is

Then calculate the moment of inertia of the
wedge about L.

28. Moment of inertia about a line A wedge like the one in Exer-
cise 22 has and Make a quick sketch to
check for yourself that the square of the distance from a typical
point (x, y, z) of the wedge to the line is

Then calculate the moment of inertia of the
wedge about L.

Solids with Varying Density
In Exercises 29 and 30, find

a. the mass of the solid. b. the center of mass.

29. A solid region in the first octant is bounded by the coordinate
planes and the plane The density of the solid is

30. A solid in the first octant is bounded by the planes and 
and by the surfaces and (see the accompanying
figure). Its density function is a constant.

z

y

x

2

4

x 5 y2

(2, �2, 0)

z 5 4 2 x2

dsx, y, zd = kxy, k
x = y2z = 4 - x2

z = 0y = 0

dsx, y, zd = 2x.
x + y + z = 2.

r2
= sx - 4d2

+ y2.
L: x = 4, y = 0

c = 3.a = 4, b = 6,

r2
= s y - 6d2

+ z2.
L: z = 0, y = 6

c = 3.a = 4, b = 6,

y = 5.x = ;1, z = ;1, y = 3,

z = c

z = 4.
z = x2

+ y2

z

y

x

1

2

2

z � 2 � x

x � –2

x 2 � 4y2 � 4
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In Exercises 31 and 32, find

a. the mass of the solid. b. the center of mass.

c. the moments of inertia about the coordinate axes.

31. A solid cube in the first octant is bounded by the coordinate
planes and by the planes and The density of
the cube is 

32. A wedge like the one in Exercise 22 has dimensions 
and The density is Notice that if the
density is constant, the center of mass will be (0, 0, 0).

33. Mass Find the mass of the solid bounded by the planes

and the surface The
density of the solid is 

34. Mass Find the mass of the solid region bounded by the para-
bolic surfaces and if the
density of the solid is 

Theory and Examples
The Parallel Axis Theorem Let be a line through the center of
mass of a body of mass m and let L be a parallel line h units away from

The Parallel Axis Theorem says that the moments of inertia 
and of the body about and L satisfy the equation

(2)

As in the two-dimensional case, the theorem gives a quick way to
calculate one moment when the other moment and the mass are
known.

35. Proof of the Parallel Axis Theorem

a. Show that the first moment of a body in space about any
plane through the body’s center of mass is zero. (Hint: Place
the body’s center of mass at the origin and let the plane be
the yz-plane. What does the formula then tell
you?)

x = Myz >M

IL = Ic.m. + mh2.

Lc.m.IL

Ic.m.Lc.m..

Lc.m.

dsx, y, zd = 2x2
+ y2 .

z = 2x2
+ 2y2z = 16 - 2x2

- 2y2

dsx, y, zd = 2y + 5.
y = 2z.x + z = 1,  x - z = -1,  y = 0

dsx, y, zd = x + 1.c = 3.
a = 2, b = 6,

dsx, y, zd = x + y + z + 1.
z = 1.x = 1, y = 1,
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b. To prove the Parallel Axis Theorem, place the body with its
center of mass at the origin, with the line along the z-axis
and the line L perpendicular to the xy-plane at the point (h, 0, 0).
Let D be the region of space occupied by the body. Then, in
the notation of the figure,

Expand the integrand in this integral and complete the proof.

36. The moment of inertia about a diameter of a solid sphere of constant
density and radius a is where m is the mass of the sphere.
Find the moment of inertia about a line tangent to the sphere.

37. The moment of inertia of the solid in Exercise 21 about the z-axis
is 

a. Use Equation (2) to find the moment of inertia of the solid about
the line parallel to the z-axis through the solid’s center of mass.

b. Use Equation (2) and the result in part (a) to find the moment
of inertia of the solid about the line 

38. If and the moment of inertia of the solid wedge
in Exercise 22 about the x-axis is Find the moment of
inertia of the wedge about the line (the edge of
the wedge’s narrow end).

y = 4, z = -4>3Ix = 208.
c = 4,a = b = 6

x = 0, y = 2b.

Iz = abcsa2
+ b2d>3.

s2>5dma2,

IL =

9
D

ƒ v - hi ƒ
2 dm.

Lc.m.

z

x

y
c.m.

L

D

v 5 xi 1 yj

(x, y, z)

Lc.m.

hi

v 2 hi

(h, 0, 0)

15.7 Triple Integrals in Cylindrical and Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or
sphere, we can often simplify our work by using cylindrical or spherical coordinates,
which are introduced in this section. The procedure for transforming to these coordinates
and evaluating the resulting triple integrals is similar to the transformation to polar coordi-
nates in the plane studied in Section 15.4.

Integration in Cylindrical Coordinates

We obtain cylindrical coordinates for space by combining polar coordinates in the xy-plane
with the usual z-axis. This assigns to every point in space one or more coordinate triples of
the form as shown in Figure 15.42.sr, u, zd,

0

r
x

z

y
y

z

x

P(r, u, z)

u

FIGURE 15.42 The cylindrical
coordinates of a point in space are r, 
and z.

u,

DEFINITION Cylindrical coordinates represent a point P in space by ordered
triples in which

1. r and are polar coordinates for the vertical projection of P on the xy-plane

2. z is the rectangular vertical coordinate.

u

sr, u, zd
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The values of x, y, r, and in rectangular and cylindrical coordinates are related by the
usual equations.

u

894 Chapter 15: Multiple Integrals

Equations Relating Rectangular (x, y, z) and Cylindrical Coordinates

 r2
= x2

+ y2, tan u = y>x
 x = r cos u, y = r sin u, z = z,

sr, U, zd

z

y

x

0

a

r 5 a,
u and z vary

z 5 z0,
r and u vary

u 5 u0,
r and z vary

z0

u0

FIGURE 15.43 Constant-coordinate
equations in cylindrical coordinates
yield cylinders and planes.

Cylinder, radius 4, axis the z-axis

Plane containing the z-axis

Plane perpendicular to the z-axis

Volume Differential in Cylindrical
Coordinates

dV = dz r dr du

In cylindrical coordinates, the equation describes not just a circle in the xy-plane
but an entire cylinder about the z-axis (Figure 15.43). The z-axis is given by The
equation describes the plane that contains the z-axis and makes an angle with
the positive x-axis. And, just as in rectangular coordinates, the equation describes a
plane perpendicular to the z-axis.

Cylindrical coordinates are good for describing cylinders whose axes run along the 
z-axis and planes that either contain the z-axis or lie perpendicular to the z-axis. Surfaces
like these have equations of constant coordinate value:

When computing triple integrals over a region D in cylindrical coordinates, we parti-
tion the region into n small cylindrical wedges, rather than into rectangular boxes. In the
kth cylindrical wedge, and z change by and and the largest of these
numbers among all the cylindrical wedges is called the norm of the partition. We define
the triple integral as a limit of Riemann sums using these wedges. The volume of such a
cylindrical wedge is obtained by taking the area of its base in the and
multiplying by the height (Figure 15.44).

For a point in the center of the kth wedge, we calculated in polar coordi-
nates that So and a Riemann sum for ƒ over D
has the form

The triple integral of a function ƒ over D is obtained by taking a limit of such Riemann
sums with partitions whose norms approach zero:

.

Triple integrals in cylindrical coordinates are then evaluated as iterated integrals, as in the
following example.

EXAMPLE 1 Find the limits of integration in cylindrical coordinates for integrating a
function over the region D bounded below by the plane laterally by the
circular cylinder and above by the paraboloid 

Solution The base of D is also the region’s projection R on the xy-plane. The boundary
of R is the circle Its polar coordinate equation is

 r = 2 sin u.
 r2

- 2r sin u = 0

 x2
+ y2

- 2y + 1 = 1

 x2
+ s y - 1d2

= 1

x2
+ s y - 1d2

= 1.

z = x2
+ y2.x2

+ s y - 1d2
= 1,

z = 0,ƒsr, u, zd

lim
n: q

 Sn =

9
D

 ƒ dV =

9
D

 ƒ dz r dr du

Sn = a

n

k = 1
 ƒsrk, uk, zkd ¢zk rk ¢rk ¢uk.

¢Vk = ¢zk rk ¢rk ¢uk¢Ak = rk ¢rk ¢uk.
srk, uk, zkd

¢z
ru-plane¢Ak¢Vk

¢zk,¢rk, ¢uk,r, u

 z = 2.

 u =
p
3

 r = 4

z = z0

u0u = u0

r = 0.
r = a

Δz

r Δu
r Δr Δu

r

z

Δr

Δu

FIGURE 15.44 In cylindrical coordinates
the volume of the wedge is approximated
by the product ¢V = ¢z r ¢r ¢u.
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The region is sketched in Figure 15.45.
We find the limits of integration, starting with the z-limits. A line M through a typical

point in R parallel to the z-axis enters D at and leaves at 
Next we find the r-limits of integration. A ray L through from the origin enters

R at and leaves at 
Finally we find the of integration. As L sweeps across R, the angle it makes

with the positive x-axis runs from to The integral is

Example 1 illustrates a good procedure for finding limits of integration in cylindrical
coordinates. The procedure is summarized as follows.

How to Integrate in Cylindrical Coordinates

To evaluate

over a region D in space in cylindrical coordinates, integrating first with respect to z, then
with respect to r, and finally with respect to take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces and curves that bound D and R.

2. Find the z-limits of integration. Draw a line M through a typical point of R
parallel to the z-axis. As z increases, M enters D at and leaves at

These are the z-limits of integration.

y

z 5 g1(r, u)

x R

r 5 h2(u)

(r, u)

z 5 g2(r, u)

D

r 5 h1(u)

z

M

z = g2sr, ud.
z = g1sr, ud

sr, ud

y

x
R

r 5 h2(u)

D

r 5 h1(u) z 5 g1(r, u)

z 5 g2(r, u)

z

u,

9
D

 ƒsr, u, zd dV

9
D

 ƒsr, u, zd dV =

L

p

0
 
L

2 sin u

0
 
L

r2

0
 ƒsr, u, zd dz r dr du.

u = p.u = 0
uu-limits

r = 2 sin u.r = 0
sr, ud

z = x2
+ y2

= r2.z = 0sr, ud
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x

y

z

M D

2

R L

Cartesian: x2 1 (y 2 1)2 5 1
Polar:       r 5 2 sin u

(r, u)
u

Top
Cartesian:    z 5 x2 1 y2

Cylindrical: z 5 r2

FIGURE 15.45 Finding the limits of
integration for evaluating an integral in
cylindrical coordinates (Example 1).
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3. Find the r-limits of integration. Draw a ray L through from the origin. The ray
enters R at and leaves at These are the r-limits of integration.

4. Find the of integration. As L sweeps across R, the angle it makes with the posi-
tive x-axis runs from to These are the of integration. The integral is

EXAMPLE 2 Find the centroid of the solid enclosed by the cylinder
bounded above by the paraboloid and bounded below by the

xy-plane.

Solution We sketch the solid, bounded above by the paraboloid and below by the
plane (Figure 15.46). Its base R is the disk in the xy-plane.

The solid’s centroid lies on its axis of symmetry, here the z-axis. This makes
To find we divide the first moment by the mass M.

To find the limits of integration for the mass and moment integrals, we continue with
the four basic steps. We completed our initial sketch. The remaining steps give the limits
of integration.

The z-limits. A line M through a typical point in the base parallel to the z-axis
enters the solid at and leaves at 

The r-limits. A ray L through from the origin enters R at and leaves at

The As L sweeps over the base like a clock hand, the angle it makes with the
positive x-axis runs from to The value of is

The value of M is

 =

L

2p

0
 
L

2

0
 r3 dr du =

L

2p

0
 cr4

4
d

0

2

 du =

L

2p

0
4 du = 8p.

M =

L

2p

0
 
L

2

0
 
L

r2

0
 dz r dr du =

L

2p

0
 
L

2

0
cz d

0

r2

 r dr du

 =

L

2p

0
 
L

2

0
 
r5

2
 dr du =

L

2p

0
 c r6

12
d

0

2

 du =

L

2p

0
 
16
3

 du =
32p

3
.

 Mxy =

L

2p

0
 
L

2

0
 
L

r2

0
 z dz r dr du =

L

2p

0
 
L

2

0
 cz2

2
d

0

r2

 r dr du

Mxyu = 2p.u = 0
uu-limits.

r = 2.
r = 0sr, ud

z = r2.z = 0
sr, ud

Mxyz ,x = y = 0 .
sx, y, zd

0 … r … 2z = 0
z = r2

z = x2
+ y2,x2

+ y2
= 4,

sd = 1d

9
D

 ƒsr, u, zd dV =

L

u=b

u=a

 
L

r = h2sud

r = h1sud
 
L

z = g2sr, ud

z = g1sr, ud
 ƒsr, u, zd dz r dr du.

u-limitsu = b.u = a

uu-limits

L

u 5 a u 5 b

r 5 h2(u)

y

z 5 g1(r, u)

z 5 g2(r, u)

x

r 5 h1(u)

D

z
M

(r, u)

u

a b

R

r = h2sud.r = h1sud
sr, ud
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z

M4

L

x y

x2 1 y2 5 4
r 5 2

z 5 x2 1 y2

  5 r2

(r, u)

FIGURE 15.46 Example 2 shows how to
find the centroid of this solid.
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Therefore,

and the centroid is (0, 0, 4 3). Notice that the centroid lies outside the solid.

Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one distance, as shown 
in Figure 15.47. The first coordinate, is the point’s distance from the origin.
Unlike r, the variable is never negative. The second coordinate, is the angle makes
with the positive z-axis. It is required to lie in the interval The third coordinate is
the angle as measured in cylindrical coordinates.u

[0, p].
OP
1

f,r

r = ƒ OP
1

ƒ ,

>
z =

Mxy

M
=

32p
3

 
1

8p
=

4
3

,
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y

z

0

r

x

x

y

P(r, f, u)

z 5 r cos f

f

u

r

FIGURE 15.47 The spherical coordinates
and and their relation to x, y, z, and r.ur, f,

DEFINITION Spherical coordinates represent a point P in space by ordered
triples in which

1. is the distance from P to the origin.

2. is the angle makes with the positive z-axis 

3. is the angle from cylindrical coordinates s0 … u … 2pd.u

s0 … f … pd.OP
1

f

r

sr, f, ud

On maps of the Earth, is related to the meridian of a point on the Earth and to its
latitude, while is related to elevation above the Earth’s surface.

The equation describes the sphere of radius a centered at the origin (Figure
15.48). The equation describes a single cone whose vertex lies at the origin and
whose axis lies along the z-axis. (We broaden our interpretation to include the xy-plane as
the cone ) If is greater than the cone opens downward. The
equation describes the half-plane that contains the z-axis and makes an angle 
with the positive x-axis.

u0u = u0

f = f0p>2,f0f = p>2.

f = f0

r = a
r

fu

Equations Relating Spherical Coordinates to Cartesian
and Cylindrical Coordinates

(1)

r = 2x 2
+ y 2

+ z2
= 2r 2

+ z 2.

 z = r cos f, y = r sin u = r sin f sin u,

 r = r sin f, x = r cos u = r sin f cos u,

EXAMPLE 3 Find a spherical coordinate equation for the sphere 

Solution We use Equations (1) to substitute for x, y, and z:

Eqs. (1)

1

1

r 7 0 r = 2 cos f .

 r2
= 2r cos f

(''')'''*

 r2ssin2 f + cos2 fd = 2r cos f

(''')'''*

 r2 sin2 fscos2 u + sin2 ud + r2 cos2 f - 2r cos f + 1 = 1

 r2 sin2 f cos2 u + r2 sin2 f sin2 u + sr cos f - 1d2
= 1

 x2
+ y2

+ sz - 1d2
= 1

sz - 1d2
= 1.x2

+ y2
+

r 5 a, 
f and u vary

u 5 u0, 
r and f vary

x

y

P(a, f0, u0)
f0

z

f 5 f0, 
r and u vary

u0

FIGURE 15.48 Constant-coordinate
equations in spherical coordinates yield
spheres, single cones, and half-planes.
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The angle varies from 0 at the north pole of the sphere to at the south pole; the 
angle does not appear in the expression for reflecting the symmetry about the z-axis
(see Figure 15.49).

EXAMPLE 4 Find a spherical coordinate equation for the cone .

Solution 1 Use geometry. The cone is symmetric with respect to the z-axis and cuts the
first quadrant of the yz-plane along the line The angle between the cone and the
positive z-axis is therefore radians. The cone consists of the points whose spherical
coordinates have equal to so its equation is (See Figure 15.50.)

Solution 2 Use algebra. If we use Equations (1) to substitute for x, y, and z we obtain the
same result:

Spherical coordinates are useful for describing spheres centered at the origin, half-planes
hinged along the z-axis, and cones whose vertices lie at the origin and whose axes lie along
the z-axis. Surfaces like these have equations of constant coordinate value:

When computing triple integrals over a region D in spherical coordinates, we partition
the region into n spherical wedges. The size of the kth spherical wedge, which contains a
point is given by the changes and in and Such a spher-
ical wedge has one edge a circular arc of length another edge a circular arc of
length and thickness The spherical wedge closely approximates a cube
of these dimensions when and are all small (Figure 15.51). It can be shown
that the volume of this spherical wedge is for

a point chosen inside the wedge.
The corresponding Riemann sum for a function is

As the norm of a partition approaches zero, and the spherical wedges get smaller, the 
Riemann sums have a limit when ƒ is continuous:

In spherical coordinates, we have

To evaluate integrals in spherical coordinates, we usually integrate first with respect to 
The procedure for finding the limits of integration is as follows. We restrict our attention
to integrating over domains that are solids of revolution about the z-axis (or portions
thereof ) and for which the limits for and are constant.fu

r.

dV = r2 sin f dr df du.

lim
n: q

 Sn =

9
D

 ƒsr, f, ud dV =

9
D

 ƒsr, f, ud r2 sin f dr df du.

Sn = a

n

k = 1
 ƒsrk, fk, ukd rk

2 sin fk ¢rk ¢fk ¢uk .

ƒsr, f, ud
srk, fk, ukd

¢Vk = rk
2 sin fk ¢rk ¢fk ¢uk¢Vk

¢fk¢rk, ¢uk,
¢rk.rk sin fk ¢uk,

rk ¢fk,
f.r, u,¢fk¢rk, ¢uk,srk, fk, ukd,

 u =
p
3

.

 f =
p
3

 r = 4

 f =
p
4

.

 cos f = sin f

 r cos f = r sin f

 r cos f = 2r2 sin2 f

 z = 2x2
+ y2

f = p>4.p>4,f

p>4 z = y.

z = 2x2
+ y2

r,u

p>2f
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y

x

z

2

1

r

f

x2 1 y2 1 (z 2 1)2 5 1
r 5 2 cos f

FIGURE 15.49 The sphere in Example 3.

Sphere, radius 4, center at origin

Cone opening up from the origin, making an
angle of radians with the positive z-axisp>3
Half-plane, hinged along the z-axis, making an
angle of radians with the positive x-axisp>3

Volume Differential in Spherical
Coordinates

dV = r2 sin f dr df du

r sin f

r sin f Δu

Δr

u
u 1 Δu

rΔf

y

z

x

O
r

f

FIGURE 15.51 In spherical coordinates

 = r2 sin f dr df du.

 dV = dr # r df # r sin f du

Example 3

r 7 0, sin f Ú 0

0 … f … p

y

z

x

�
4

� �

�
4

� �

z � �x2 � y2 

FIGURE 15.50 The cone in Example 4.
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How to Integrate in Spherical Coordinates

To evaluate

over a region D in space in spherical coordinates, integrating first with respect to then
with respect to and finally with respect to take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces that bound D.

2. Find the of integration. Draw a ray M from the origin through D making an
angle with the positive z-axis. Also draw the projection of M on the xy-plane (call
the projection L). The ray L makes an angle with the positive x-axis. As increases,
M enters D at and leaves at These are the of
integration.

3. Find the of integration. For any given the angle that M makes with the 
z-axis runs from to These are the of integration.f -limitsf = fmax.f = fmin

fu,f-limits

x

y

z

R

D

L

θ

M

r 5 g2(f, u)

r 5 g1(f, u)

u 5 a
u 5 b

fmax

fmin
f

r-limitsr = g2sf, ud.r = g1sf, ud
ru

f

r-limits

x

yR

r 5 g1(f, u)

D

z

r 5 g2(f, u)

u,f,
r,

9
D

 ƒsr, f, ud dV
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4. Find the of integration. The ray L sweeps over R as runs from to These
are the of integration. The integral is

EXAMPLE 5 Find the volume of the “ice cream cone” D cut from the solid sphere
by the cone 

Solution The volume is the integral of 
over D.

To find the limits of integration for evaluating the integral, we begin by sketching D
and its projection R on the xy-plane (Figure 15.52).

The of integration. We draw a ray M from the origin through D making an an-
gle with the positive z-axis. We also draw L, the projection of M on the xy-plane, along
with the angle that L makes with the positive x-axis. Ray M enters D at and leaves
at 

The of integration. The cone makes an angle of with the posi-
tive z-axis. For any given the angle can run from to 

The of integration. The ray L sweeps over R as runs from 0 to The 
volume is

EXAMPLE 6 A solid of constant density occupies the region D in Example 5.
Find the solid’s moment of inertia about the z-axis.

Solution In rectangular coordinates, the moment is

In spherical coordinates, 
Hence,

For the region in Example 5, this becomes

 =
1
5 
L

2p

0
 a- 1

2
+ 1 +

1
24

-
1
3
b  du =

1
5 
L

2p

0
 

5
24

 du =
1

24
 s2pd =

p
12

.

 =
1
5 
L

2p

0
 
L

p>3
0

s1 - cos2 fd sin f df du =
1
5 
L

2p

0
 c-cos f +

cos3 f

3
d

0

p>3
 du

 Iz =

L

2p

0
 
L

p>3
0

 
L

1

0
r4 sin3 f dr df du =

L

2p

0
 
L

p>3
0

 cr5

5 d0
1

 sin3 f df du

Iz =

9
sr2 sin2 fd r2 sin f dr df du =

9
r4 sin3 f dr df du.

x2
+ y2

= sr sin f cos ud2
+ sr sin f sin ud2

= r2 sin2 f.

Iz =

9
sx2

+ y2d dV.

d = 1

 =

L

2p

0
 c- 1

3
 cos f d

0

p>3
 du =

L

2p

0
 a- 1

6
+

1
3
b  du =

1
6

 s2pd =
p
3

.

 =

L

2p

0
 
L

p>3
0

 cr3

3
d

0

1

 sin f df du =

L

2p

0
 
L

p>3
0

 
1
3

 sin f df du

 V =

9
D

r2 sin f dr df du =

L

2p

0
 
L

p>3
0

 
L

1

0
r2 sin f dr df du

2p.uu-limits
f = p>3.f = 0fu,

p>3f = p>3f-limits
r = 1.

r = 0u

f

r-limits

ƒsr, f, ud = 1V = 7D
r2 sin f dr df du,

f = p>3.r … 1

9
D

 ƒsr, f, ud dV =

L

u=b

u=a

 
L

f=fmax

f=fmin

 
L

r= g2sf, ud

r= g1sf, ud
 ƒsr, f, ud r2 sin f dr df du.

u-limits
b.auu-limits
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x y

z

R

L

M

D

u

Sphere r 5 1

Cone f 5 p
3

FIGURE 15.52 The ice cream cone in
Example 5.
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In the next section we offer a more general procedure for determining dV in cylindri-
cal and spherical coordinates. The results, of course, will be the same.

15.7 Triple Integrals in Cylindrical and Spherical Coordinates 901

Coordinate Conversion Formulas

CYLINDRICAL TO SPHERICAL TO SPHERICAL TO

RECTANGULAR RECTANGULAR CYLINDRICAL

Corresponding formulas for dV in triple integrals:

 = r2 sin f dr df du

 = dz r dr du

 dV = dx dy dz

 u = u z = r cos f z = z

 z = r cos f y = r sin f sin u y = r sin u

 r = r sin f x = r sin f cos u x = r cos u

Exercises 15.7

Evaluating Integrals in Cylindrical Coordinates
Evaluate the cylindrical coordinate integrals in Exercises 1–6.

1. 2.

3. 4.

5.

6.

Changing the Order of Integration in Cylindrical Coordinates
The integrals we have seen so far suggest that there are preferred or-
ders of integration for cylindrical coordinates, but other orders usually
work well and are occasionally easier to evaluate. Evaluate the inte-
grals in Exercises 7–10.

7. 8.

9.

10.

11. Let D be the region bounded below by the plane above by
the sphere and on the sides by the cylinder

Set up the triple integrals in cylindrical coordi-
nates that give the volume of D using the following orders of in-
tegration.

a. b. c.

12. Let D be the region bounded below by the cone 
and above by the paraboloid Set up the triplez = 2 - x2

- y2.
z = 2x2

+ y2

du dz drdr dz dudz dr du

x2
+ y2

= 1.
x2

+ y2
+ z2

= 4,
z = 0,

L

2

0
 
L

24 - r2

r - 2
 
L

2p

0
sr sin u + 1d r du dz dr

L

1

0
 
L

2z

0
 
L

2p

0
sr2 cos2 u + z2d r du dr dz

L

1

-1
 
L

2p

0
 
L

1 + cos u

0
4r dr du dz

L

2p

0
 
L

3

0
 
L

z>3
0

 r3 dr dz du

L

2p

0
 
L

1

0
 
L

1>2
-1>2sr2 sin2 u + z2d dz r dr du

L

2p

0
 
L

1

0
 
L

1>22 - r2

r
3 dz r dr du

L

p

0
 
L

u>p
0

 
L

324 - r2

-24 - r2
 z dz r dr du

L

2p

0
 
L

u>2p
0

 
L

3 + 24r2

0
 dz r dr du

L

2p

0
 
L

3

0
 
L

218 - r2

r2>3  dz r dr du
L

2p

0
 
L

1

0
 
L

22 - r2

r
 dz r dr du

integrals in cylindrical coordinates that give the volume of D us-
ing the following orders of integration.

a. b. c.

Finding Iterated Integrals in Cylindrical Coordinates
13. Give the limits of integration for evaluating the integral

as an iterated integral over the region that is bounded below by the
plane on the side by the cylinder and on top by
the paraboloid 

14. Convert the integral

to an equivalent integral in cylindrical coordinates and evaluate
the result.

In Exercises 15–20, set up the iterated integral for evaluating
over the given region D.

15. D is the right circular cylinder whose base is the circle 
in the xy-plane and whose top lies in the plane 

z

y

x

z � 4 � y

r � 2 sin �

z = 4 - y.
r = 2 sin u

7D ƒsr, u, zd dz r dr du

L

1

-1
 
L

21 - y2

0
 
L

x

0
sx2

+ y2d dz dx dy

z = 3r2.
r = cos u,z = 0,

9
 ƒsr, u, zd dz r dr du

du dz drdr dz dudz dr du
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16. D is the right circular cylinder whose base is the circle
and whose top lies in the plane 

17. D is the solid right cylinder whose base is the region in the 
xy-plane that lies inside the cardioid and outside
the circle and whose top lies in the plane 

18. D is the solid right cylinder whose base is the region between the
circles and and whose top lies in the plane

19. D is the prism whose base is the triangle in the xy-plane bounded
by the x-axis and the lines and and whose top lies in
the plane 

20. D is the prism whose base is the triangle in the xy-plane bounded
by the y-axis and the lines and and whose top lies in
the plane z = 2 - x.

y = 1y = x

y

z

x

2

1
y � x

z � 2 � y

z = 2 - y.
x = 1y = x

z

y

x

r � 2 cos �

r � cos �

z � 3 � y

z = 3 - y.
r = 2 cos ur = cos u

z

y

x

4

r � 1 � cos �

r � 1

z = 4.r = 1
r = 1 + cos u

x

r 5 3 cos u

y

z 5 5 2 x

z

z = 5 - x.r = 3 cos u

Evaluating Integrals in Spherical Coordinates
Evaluate the spherical coordinate integrals in Exercises 21–26.

21.

22.

23.

24.

25.

26.

Changing the Order of Integration in Spherical Coordinates
The previous integrals suggest there are preferred orders of integra-
tion for spherical coordinates, but other orders give the same value
and are occasionally easier to evaluate. Evaluate the integrals in Exer-
cises 27–30.

27.

28.

29.

30.

31. Let D be the region in Exercise 11. Set up the triple integrals in
spherical coordinates that give the volume of D using the follow-
ing orders of integration.

a. b.

32. Let D be the region bounded below by the cone 
and above by the plane Set up the triple integrals in spher-
ical coordinates that give the volume of D using the following or-
ders of integration.

a. b. df dr dudr df du

z = 1.
z = 2x2

+ y2

df dr dudr df du

L

p>2
p>6  
L

p/2

-p/2 
 
L

2

csc f

5r4 sin3 f dr du df

L

1

0
 
L

p

0
 
L

p>4
0

12r sin3 f df du dr

L

p>3
p>6  
L

2 csc f

csc f

 
L

2p

0
r2 sin f du dr df

L

2

0
 
L

0

-p

   
L

p>2
p>4 r

3 sin 2f df du dr

L

2p

0
 
L

p>4
0

 
L

sec f

0
sr cos fd r2 sin f dr df du

L

2p

0
 
L

p>3
0

 
L

2

sec f

3r2 sin f dr df du

L

3p>2
0

 
L

p

0
 
L

1

0
5r3 sin3 f dr df du

L

2p

0
 
L

p

0
 
L

s1 - cos fd>2
0

r2 sin f dr df du

L

2p

0
 
L

p>4
0

 
L

2

0
sr cos fd r2 sin f dr df du

L

p

0
 
L

p

0
 
L

2 sin f

0
r2 sin f dr df du

y

z

x

2

1

y � x

z � 2 � x
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Finding Iterated Integrals in Spherical Coordinates
In Exercises 33–38, (a) find the spherical coordinate limits for the in-
tegral that calculates the volume of the given solid and then (b) evalu-
ate the integral.

33. The solid between the sphere and the hemisphere

34. The solid bounded below by the hemisphere and
above by the cardioid of revolution 

35. The solid enclosed by the cardioid of revolution 

36. The upper portion cut from the solid in Exercise 35 by the 
xy-plane

37. The solid bounded below by the sphere and above by
the cone 

38. The solid bounded below by the xy-plane, on the sides by the
sphere and above by the cone 

Finding Triple Integrals
39. Set up triple integrals for the volume of the sphere in 

(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

40. Let D be the region in the first octant that is bounded below by
the cone and above by the sphere Express ther = 3.f = p>4

r = 2

yx

f 5
p
3

r 5 2

z

f = p>3r = 2,

yx

r 5 2 cos f

z 5 �x2 1 y2z

z = 2x2
+ y2

r = 2 cos f

r = 1 - cos f

yx

r 5 1
r 5 1 1 cos f

z

r = 1 + cos f

r = 1, z Ú 0,

yx 2 2

2 r 5 2r 5 cos f

z

r = 2, z Ú 0
r = cos f

15.7 Triple Integrals in Cylindrical and Spherical Coordinates 903

volume of D as an iterated triple integral in (a) cylindrical and 
(b) spherical coordinates. Then (c) find V.

41. Let D be the smaller cap cut from a solid ball of radius 2 units by
a plane 1 unit from the center of the sphere. Express the volume
of D as an iterated triple integral in (a) spherical, (b) cylindrical,
and (c) rectangular coordinates. Then (d) find the volume by eval-
uating one of the three triple integrals.

42. Express the moment of inertia of the solid hemisphere
as an iterated integral in (a) cylindri-

cal and (b) spherical coordinates. Then (c) find 

Volumes
Find the volumes of the solids in Exercises 43–48.

43. 44.

45. 46.

47. 48.

49. Sphere and cones Find the volume of the portion of the solid
sphere that lies between the cones and

50. Sphere and half-planes Find the volume of the region cut from
the solid sphere by the half-planes and in
the first octant.

51. Sphere and plane Find the volume of the smaller region cut
from the solid sphere by the plane 

52. Cone and planes Find the volume of the solid enclosed by the
cone between the planes and 

53. Cylinder and paraboloid Find the volume of the region
bounded below by the plane laterally by the cylinder

and above by the paraboloid z = x2
+ y2.x2

+ y2
= 1,

z = 0,

z = 2.z = 1z = 2x2
+ y2

z = 1.r … 2

u = p>6u = 0r … a

f = 2p>3.
f = p>3r … a

r 5 cos u

z 5 3�1 2 x2 2 y2

yx

zz

y
x

z � �1 � x2 � y2

r � sin �

z

yx

z � �x2 � y2

r � –3 cos �

z

y

x

r � 3 cos �

z � –y

z 5 2�1 2 r2

z 5 1 2 r

z

yx
11

21 21

z

yx

z � 4 � 4 (x2 � y2)

z � (x2 � y2)2 �1

Iz.
x2

+ y2
+ z2

… 1, z Ú 0,
Iz
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54. Cylinder and paraboloids Find the volume of the region bounded
below by the paraboloid laterally by the cylinder

and above by the paraboloid 

55. Cylinder and cones Find the volume of the solid cut from the
thick-walled cylinder by the cones 

56. Sphere and cylinder Find the volume of the region that lies in-
side the sphere and outside the cylinder

57. Cylinder and planes Find the volume of the region enclosed by
the cylinder and the planes and 

58. Cylinder and planes Find the volume of the region enclosed 
by the cylinder and the planes and

59. Region trapped by paraboloids Find the volume of the region
bounded above by the paraboloid and below by
the paraboloid 

60. Paraboloid and cylinder Find the volume of the region
bounded above by the paraboloid below by the
xy-plane, and lying outside the cylinder 

61. Cylinder and sphere Find the volume of the region cut from
the solid cylinder by the sphere 

62. Sphere and paraboloid Find the volume of the region bounded
above by the sphere and below by the parabo-
loid 

Average Values
63. Find the average value of the function over the re-

gion bounded by the cylinder between the planes 
and 

64. Find the average value of the function over the solid
ball bounded by the sphere (This is the sphere

)

65. Find the average value of the function over the
solid ball 

66. Find the average value of the function over
the solid upper ball 

Masses, Moments, and Centroids
67. Center of mass A solid of constant density is bounded below

by the plane above by the cone and on the
sides by the cylinder Find the center of mass.

68. Centroid Find the centroid of the region in the first octant that
is bounded above by the cone below by the plane

and on the sides by the cylinder and the
planes and 

69. Centroid Find the centroid of the solid in Exercise 38.

70. Centroid Find the centroid of the solid bounded above by the
sphere and below by the cone 

71. Centroid Find the centroid of the region that is bounded above
by the surface on the sides by the cylinder and
below by the xy-plane.

72. Centroid Find the centroid of the region cut from the solid ball
by the half-planes and 

r Ú 0.
u = p>3,u = -p>3, r Ú 0,r2

+ z2
… 1

r = 4,z = 2r,

f = p>4.r = a

y = 0.x = 0
x2

+ y2
= 4z = 0,

z = 2x2
+ y2,

r = 1.
z = r, r Ú 0,z = 0,

r … 1, 0 … f … p>2.
ƒsr, f, ud = r cos f

r … 1.
ƒsr, f, ud = r

x2
+ y2

+ z2
= 1.

r2
+ z2

= 1.
ƒsr, u, zd = r

z = 1.
z = -1r = 1

ƒsr, u, zd = r

z = x2
+ y2.

x2
+ y2

+ z2
= 2

z2
= 4.x2

+ y2
+x2

+ y2
… 1

x2
+ y2

= 1.
z = 9 - x2

- y2,

z = 4x2
+ 4y2.

z = 5 - x2
- y2

x + y + z = 4.
z = 0x2

+ y2
= 4

y + z = 4.z = 0x2
+ y2

= 4

x2
+ y2

= 1.
x2

+ y2
+ z2

= 2

;2x2
+ y2.

z =1 … x2
+ y2

… 2

x2
+ y2

+ 1.z =x2
+ y2

= 1,
z = x2

+ y2,
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73. Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius 1 and height 1 about an axis
through the vertex parallel to the base. (Take )

74. Moment of inertia of solid sphere Find the moment of inertia
of a solid sphere of radius a about a diameter. (Take )

75. Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius a and height h about its axis.
(Hint: Place the cone with its vertex at the origin and its axis
along the z-axis.)

76. Variable density A solid is bounded on the top by the parabo-
loid on the bottom by the plane and on the sides by
the cylinder Find the center of mass and the moment of in-
ertia about the z-axis if the density is

a. b.

77. Variable density A solid is bounded below by the cone
and above by the plane Find the center of

mass and the moment of inertia about the z-axis if the density is

a. b.

78. Variable density A solid ball is bounded by the sphere 
Find the moment of inertia about the z-axis if the density is

a. b.

79. Centroid of solid semiellipsoid Show that the centroid of the
solid semiellipsoid of revolution 
lies on the z-axis three-eighths of the way from the base to the top.
The special case gives a solid hemisphere. Thus, the cen-
troid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base to the top.

80. Centroid of solid cone Show that the centroid of a solid right
circular cone is one-fourth of the way from the base to the vertex.
(In general, the centroid of a solid cone or pyramid is one-fourth
of the way from the centroid of the base to the vertex.)

81. Density of center of a planet A planet is in the shape of a
sphere of radius R and total mass M with spherically symmetric
density distribution that increases linearly as one approaches its
center. What is the density at the center of this planet if the den-
sity at its edge (surface) is taken to be zero?

82. Mass of planet’s atmosphere A spherical planet of radius R has
an atmosphere whose density is where h is the altitude
above the surface of the planet, is the density at sea level, and c is
a positive constant. Find the mass of the planet’s atmosphere.

Theory and Examples
83. Vertical planes in cylindrical coordinates

a. Show that planes perpendicular to the x-axis have equations
of the form in cylindrical coordinates.

b. Show that planes perpendicular to the y-axis have equations
of the form 

84. (Continuation of Exercise 83. ) Find an equation of the form
in cylindrical coordinates for the plane 

85. Symmetry What symmetry will you find in a surface that has
an equation of the form in cylindrical coordinates? Give
reasons for your answer.

86. Symmetry What symmetry will you find in a surface that has
an equation of the form in spherical coordinates? Give
reasons for your answer.

r = ƒsfd

r = ƒszd

c Z 0.
ax + by = c,r = ƒsud

r = b csc u.

r = a sec u

m0

m = m0 e-ch,

h = a

sr2>a2d + sz2>h2d … 1, z Ú 0,

dsr, f, ud = r = r sin f.dsr, f, ud = r2

r = a.

dsr, u, zd = z2.dsr, u, zd = z

z = 1.z = 2x2
+ y2

dsr, u, zd = r.dsr, u, zd = z

r = 1.
z = 0,z = r2,

d = 1.

d = 1.
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15.8 Substitutions in Multiple Integrals

The goal of this section is to introduce you to the ideas involved in coordinate transforma-
tions. You will see how to evaluate multiple integrals by substitution in order to replace
complicated integrals by ones that are easier to evaluate. Substitutions accomplish this by
simplifying the integrand, the limits of integration, or both. A thorough discussion of mul-
tivariable transformations and substitutions, and the Jacobian, is best left to a more ad-
vanced course following a study of linear algebra.

Substitutions in Double Integrals

The polar coordinate substitution of Section 15.4 is a special case of a more general sub-
stitution method for double integrals, a method that pictures changes in variables as trans-
formations of regions.

Suppose that a region G in the uy-plane is transformed one-to-one into the region R in
the xy-plane by equations of the form

as suggested in Figure 15.53. We call R the image of G under the transformation, and G
the preimage of R. Any function ƒ(x, y) defined on R can be thought of as a function
ƒ(g(u, y), h(u, y)) defined on G as well. How is the integral of ƒ(x, y) over R related to the
integral of ƒ(g(u, y), h(u, y)) over G?

The answer is: If g, h, and ƒ have continuous partial derivatives and J(u, y) (to be dis-
cussed in a moment) is zero only at isolated points, if at all, then

(1)

The factor J(u, y), whose absolute value appears in Equation (1), is the Jacobian of
the coordinate transformation, named after German mathematician Carl Jacobi. It meas-
ures how much the transformation is expanding or contracting the area around a point in G
as G is transformed into R.

6
R

 ƒsx, yd dx dy =

6
G

 ƒsgsu, yd, hsu, ydd ƒ Jsu, yd ƒ du dy.

x = gsu, yd, y = hsu, yd,
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v

u
0

0

y

x

G

R

(u, v)

(x, y)

Cartesian uv-plane

x � g(u, v)
y � h(u, v)

Cartesian xy-plane

FIGURE 15.53 The equations
and allow us to

change an integral over a region R in the
xy-plane into an integral over a region G
in the -plane by using Equation (1).uy

y = hsu, ydx = gsu, yd

HISTORICAL BIOGRAPHY

Carl Gustav Jacob Jacobi
(1804–1851)

DEFINITION The Jacobian determinant or Jacobian of the coordinate
transformation is

(2)Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 =
0x
0u 

0y
0y

-

0y
0u 

0x
0y

 .

x = gsu, yd, y = hsu, yd

The Jacobian can also be denoted by

to help us remember how the determinant in Equation (2) is constructed from the partial
derivatives of x and y. The derivation of Equation (1) is intricate and properly belongs to a
course in advanced calculus. We do not give the derivation here.

EXAMPLE 1 Find the Jacobian for the polar coordinate transformation 
and use Equation (1) to write the Cartesian integral as a 

polar integral.
4R ƒ(x, y) dx dyy = r sin u,

x = r cos u,

Jsu, yd =

0sx, yd
0su, yd
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Solution Figure 15.54 shows how the equations transform the
rectangle into the quarter circle R bounded by 
in the first quadrant of the xy-plane.

For polar coordinates, we have r and in place of u and y. With and
the Jacobian is

Since we assume when integrating in polar coordinates, so that
Equation (1) gives

(3)

This is the same formula we derived independently using a geometric argument for polar
area in Section 15.4.

Notice that the integral on the right-hand side of Equation (3) is not the integral of
over a region in the polar coordinate plane. It is the integral of the prod-

uct of and r over a region G in the Cartesian 

Here is an example of a substitution in which the image of a rectangle under the coor-
dinate transformation is a trapezoid. Transformations like this one are called linear trans-
formations.

EXAMPLE 2 Evaluate

by applying the transformation

(4)

and integrating over an appropriate region in the uy-plane.

Solution We sketch the region R of integration in the xy-plane and identify its bound-
aries (Figure 15.55).

u =

2x - y
2

, y =

y
2

L

4

0
 
L

x = sy>2d + 1

x = y>2  
2x - y

2
 dx dy

ru-plane.ƒsr cos u, r sin ud
ƒsr cos u, r sin ud

 
6

R

 ƒsx, yd dx dy =

6
G

 ƒsr cos u, r sin ud r dr du.

ƒ J(r, u) ƒ = ƒ r ƒ = r,r Ú 0

Jsr, ud = 4 0x
0r

0x
0u

0y
0r

0y
0u

4 = ` cos u -r sin u

sin u r cos u
` = rscos2 u + sin2 ud = r.

y = r sin u,
x = r cos uu

x2
+ y2

= 1G: 0 … r … 1, 0 … u … p>2,
x = r cos u, y = r sin u
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�

r
0

0

1

y

x
1

1

R

G

R

Cartesian r�-plane

�
2

�
2

x � r cos �
y � r sin �

� �

� � 0

Cartesian xy-plane

FIGURE 15.54 The equations 
transform G into R.r cos u, y = r sin u

x =

v

u
0

y

x
01

2

G

1

4

R

v � 0

v � 2

u � 1u � 0

x � u � v
y � 2v

y � 0

y � 2x � 2

y � 4

y � 2x

FIGURE 15.55 The equations and transform G into
R. Reversing the transformation by the equations and

transforms R into G (Example 2).y = y>2
u = s2x - yd>2

y = 2yx = u + y
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To apply Equation (1), we need to find the corresponding uy-region G and the Jaco-
bian of the transformation. To find them, we first solve Equations (4) for x and y in terms
of u and y. From those equations it is easy to see that

(5)

We then find the boundaries of G by substituting these expressions into the equations for
the boundaries of R (Figure 15.55).

xy-equations for Corresponding uY-equations Simplified
the boundary of R for the boundary of G uY-equations

The Jacobian of the transformation (again from Equations (5)) is

We now have everything we need to apply Equation (1):

EXAMPLE 3 Evaluate

Solution We sketch the region R of integration in the xy-plane and identify its boundaries
(Figure 15.56). The integrand suggests the transformation and 
Routine algebra produces x and y as functions of u and y:

(6)

From Equations (6), we can find the boundaries of the uy-region G (Figure 15.56).

xy-equations for Corresponding uY-equations Simplified
the boundary of R for the boundary of G uY-equations

y = -2u
2u
3

+
y
3

= 0y = 0

y = u
u
3

-
y
3

= 0x = 0

u = 1au
3

-
y
3
b + a2u

3
+
y
3
b = 1x + y = 1

x =
u
3

-
y
3

, y =
2u
3

+
y
3

.

y = y - 2x.u = x + y

L

1

0
 
L

1 - x

0
2x + y s y - 2xd2 dy dx.

 =

L

2

0
 
L

1

0
suds2d du dy =

L

2

0
 cu2 d

0

1

 dy =

L

2

0
 dy = 2.

 
L

4

0
 
L

x = sy>2d + 1

x = y>2  
2x - y

2
 dx dy =

L

y= 2

y= 0
 
L

u = 1

u = 0
 u ƒ Jsu, yd ƒ du dy

Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 = 4 00u su + yd 0

0y
 su + yd

0

0u s2yd 0

0y
 s2yd

4 = ` 1 1

0 2
` = 2.

y = 22y = 4y = 4

y = 02y = 0y = 0

u = 1u + y = s2y>2d + 1 = y + 1x = s y>2d + 1

u = 0u + y = 2y>2 = yx = y>2

x = u + y, y = 2y.
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v

u
0

y

x
0 1

1

R

1

1G

v � –2u

v � u

u � 1

–2

x � y � 1
x � 0

y � 0

u
3

v
3

x � �

2u
3

v
3

y � �

FIGURE 15.56 The equations 
and 

transform G into R. Reversing the
transformation by the equations 
and transforms R into G
(Example 3).
y = y - 2x

u = x + y

y = s2u>3d + sy>3dsu>3d - sy>3d
x =
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The Jacobian of the transformation in Equations (6) is

Applying Equation (1), we evaluate the integral:

In the next example we illustrate a nonlinear transformation of coordinates resulting from
simplifying the form of the integrand. Like the polar coordinates’ transformation, nonlinear
transformations can map a straight line boundary of a region into a curved boundary (or vice
versa with the inverse transformation). In general, nonlinear transformations are more complex
to analyze than linear ones, and a complete treatment is left to a more advanced course.

EXAMPLE 4 Evaluate the integral

Solution The square root terms in the integrand suggest that we might simplify the inte-
gration by substituting and . Squaring these equations, we readily
have and which imply that and So we obtain
the transformation (in the same ordering of the variables as discussed before)

Let’s first see what happens to the integrand itself under this transformation. The Jacobian
of the transformation is

If G is the region of integration in the -plane, then by Equation (1) the transformed
double integral under the substitution is

The transformed integrand function is easier to integrate than the original one, so we
proceed to determine the limits of integration for the transformed integral.

The region of integration R of the original integral in the xy-plane is shown in Figure

15.57. From the substitution equations and we see that the image of 
the left-hand boundary for R is the vertical line segment in G
(see Figure 15.58). Likewise, the right-hand boundary of R maps to the horizontal
line segment in G. Finally, the horizontal top boundary of Ry = 2y = 1, 1 … u … 2,

y = x
u = 1, 2 Ú y Ú 1,xy = 1

y = 2y>x,u = 2xy

 
6

R

  A
y
x e1xy dx dy =

6
G

  yeu 
2u
y  du dy =

6
G

  2ueu du dy.

uy

Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 =
†
1
y

-u
y2

y u
†

=
2u
y .

x =
u
y and y = uy.

u2>y2
= x2.u2y2

= y2y2
= y>x,u2

= xy
y = 2y>xu = 2xy

L

2

1
 
L

y

1>y A
y
x e1xy dx dy.

=
1
9

 
L

1

0
 u1>2su3

+ 8u3d du =

L

1

0
 u7>2 du =

2
9

 u9/2 d
0

1

=
2
9

.

=

L

1

0
 
L

u

-2u
 u1>2 y2 a1

3
b  dy du =

1
3

 
L

1

0
 u1>2 c1

3
 y3 d

y= -2u

y= u

 du

 
L

1

0
 
L

1 - x

0
2x + y s y - 2xd2 dy dx =

L

u = 1

u = 0
 
L

y= u

y= -2u
 u1>2 y2

ƒ Jsu, yd ƒ dy du

Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 = 4 13 -
1
3

2
3

1
3

4 =
1
3

.
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FIGURE 15.57 The region of
integration R in Example 4.

1 20

1

2

x

y

R

xy 5 1

y 5 x

y 5 2

FIGURE 15.58 The boundaries of the
region G correspond to those of region R
in Figure 15.57. Notice as we move
counterclockwise around the region R, we
also move counterclockwise around the
region G. The inverse transformation
equations , produce
the region G from the region R.

y = 1y>xu = 1xy

1 20

1

2

G

y

u

uy � 2 ⇔ y � 2

y � 1 ⇔ y � x

u � 1 ⇔ xy � 1
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maps to in G. As we move counterclockwise around the boundary of
the region R, we also move counterclockwise around the boundary of G, as shown in
Figure 15.58. Knowing the region of integration G in the -plane, we can now write
equivalent iterated integrals:

Note the order of integration.

We now evaluate the transformed integral on the right-hand side,

Integrate by parts.

Substitutions in Triple Integrals

The cylindrical and spherical coordinate substitutions in Section 15.7 are special cases of a
substitution method that pictures changes of variables in triple integrals as transformations
of three-dimensional regions. The method is like the method for double integrals except
that now we work in three dimensions instead of two.

Suppose that a region G in uyw-space is transformed one-to-one into the region D in
xyz-space by differentiable equations of the form

as suggested in Figure 15.59. Then any function F(x, y, z) defined on D can be thought of
as a function

defined on G. If g, h, and k have continuous first partial derivatives, then the integral of
F(x, y, z) over D is related to the integral of H(u, y, w) over G by the equation

(7)
9
D

 Fsx, y, zd dx dy dz =

9
G

 Hsu, y, wd ƒ Jsu, y, wd ƒ du dy dw.

Fsgsu, y, wd, hsu, y, wd, ksu, y, wdd = Hsu, y, wd

x = gsu, y, wd, y = hsu, y, wd, z = ksu, y, wd,

= 2se2
- (e + e)d = 2e(e - 2).

= 2 C (2 - u)eu
+ eu Du = 2

u = 1

= 2 
L

2

1
 s2 - udeu du

= 2 
L

2

1
 s2eu

- ueud du

L

2

1
 
L

2>u
1

 2ueu dy du = 2 
L

2

1
 yueu Dy= 2>u

y= 1  du

L

2

1
 
L

y

1>y A
y
x e1xy dx dy =

L

2

1
 
L

2>u
1

 2ueu dy du.

uy

uy = 2, 1 … y … 2,
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w

G

u

z

D

x

y

x 5 g(u, y, w)
y 5 h(u, y, w)
z 5 k(u, y, w)

y

Cartesian uyw-space Cartesian xyz-space

FIGURE 15.59 The equations and
allow us to change an integral over a region D in Cartesian xyz-space into an
integral over a region G in Cartesian uyw-space using Equation (7).

z = ksu, y, wdx = gsu, y, wd, y = hsu, y, wd,
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The factor whose absolute value appears in this equation, is the Jacobian 
determinant

This determinant measures how much the volume near a point in G is being expanded or
contracted by the transformation from (u, y, w) to (x, y, z) coordinates. As in the two-
dimensional case, the derivation of the change-of-variable formula in Equation (7) is omitted.

For cylindrical coordinates, and z take the place of u, y, and w. The transforma-
tion from Cartesian to Cartesian xyz-space is given by the equations

(Figure 15.60). The Jacobian of the transformation is

The corresponding version of Equation (7) is

We can drop the absolute value signs whenever 
For spherical coordinates, and take the place of u, y, and w. The transformation

from Cartesian to Cartesian xyz-space is given by

(Figure 15.61). The Jacobian of the transformation (see Exercise 19) is

The corresponding version of Equation (7) is

9
D

 Fsx, y, zd dx dy dz =

9
G

 Hsr, f, ud ƒ r
2 sin f ƒ dr df du.

Jsr, f, ud = 6
0x
0r

0x
0f

0x
0u

0y
0r

0y
0f

0y
0u

0z
0r

0z
0f

0z
0u

6 = r2 sin f.

x = r sin f cos u, y = r sin f sin u, z = r cos f

rfu-space
ur, f,

r Ú 0.

9
D

 Fsx, y, zd dx dy dz =

9
G

 Hsr, u, zd ƒ r ƒ dr du dz.

 = r cos2 u + r sin2 u = r.

Jsr, u, zd = 6
0x
0r

0x
0u

0x
0z

0y
0r

0y
0u

0y
0z

0z
0r

0z
0u

0z
0z

6 = 3 cos u -r sin u 0

sin u   r cos u 0

0   0 1

3

x = r cos u, y = r sin u, z = z

ruz-space
r, u ,

Jsu, y, wd = 6
0x
0u

0x
0y

0x
0w

0y
0u

0y
0y

0y
0w

0z
0u

0z
0y

0z
0w

6 =

0sx, y, zd
0su, y, wd

.

Jsu, y, wd,
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z

D

x

y

Cartesian ruz-space

x 5 r cos u
y 5 r sin u
z 5 z

z 5 constant

r 5 constant

u 5 constant

Cartesian xyz-space

G

r

u

z

Cube with sides
parallel to the
coordinate axes

FIGURE 15.60 The equations
and 

transform the cube G into a cylindrical
wedge D.

z = zx = r cos u, y = r sin u,
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We can drop the absolute value signs because is never negative for 
Note that this is the same result we obtained in Section 15.7.

Here is an example of another substitution. Although we could evaluate the integral in
this example directly, we have chosen it to illustrate the substitution method in a simple
(and fairly intuitive) setting.

EXAMPLE 5 Evaluate

by applying the transformation

(8)

and integrating over an appropriate region in uyw-space.

Solution We sketch the region D of integration in xyz-space and identify its boundaries
(Figure 15.62). In this case, the bounding surfaces are planes.

To apply Equation (7), we need to find the corresponding uyw-region G and the Jaco-
bian of the transformation. To find them, we first solve Equations (8) for x, y, and z in
terms of u, y, and w. Routine algebra gives

(9)

We then find the boundaries of G by substituting these expressions into the equations for
the boundaries of D:

xyz-equations for Corresponding uYw-equations Simplified
the boundary of D for the boundary of G uYw-equations

w = 13w = 3z = 3

w = 03w = 0z = 0

y = 22y = 4y = 4

y = 02y = 0y = 0

u = 1u + y = s2y>2d + 1 = y + 1x = s y>2d + 1

u = 0u + y = 2y>2 = yx = y>2

x = u + y, y = 2y, z = 3w.

u = s2x - yd>2, y = y>2, w = z>3

L

3

0
 
L

4

0
 
L

x = sy>2d + 1

x = y>2  a2x - y
2

+
z
3
b  dx dy dz

0 … f … p.sin f
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x

y

Cartesian rfu-space

f

r Cartesian xyz-space

u

G

Cube with sides
parallel to the
coordinate axesu

x 5 r sin f cos u
y 5 r sin f sin u
z 5 r cos f

z

f

u 5 constant

(x, y, z) D

f 5 constant

r 5 constant

r

FIGURE 15.61 The equations and
transform the cube G into the spherical wedge D.z = r cos f

x = r sin f cos u, y = r sin f sin u,

Rear plane:

x 5    , or y 5 2x
y
2

Front plane:

x 5     1 1, or y 5 2x 2 2
y
2

1

D

3

y
4

x

z

x 5 u 1 y
y 5 2y
z 5 3w

2
y

u

1

G

w

1

FIGURE 15.62 The equations
and 

transform G into D. Reversing the
transformation by the equations

and 
transforms D into G (Example 5).

w = z>3u = s2x - yd>2, y = y>2,

z = 3wx = u + y, y = 2y,
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The Jacobian of the transformation, again from Equations (9), is

We now have everything we need to apply Equation (7):

 = 6 Cw + w2 D01 = 6s2d = 12.

 = 6
L

1

0
 
L

2

0
 a1

2
+ wb  dy dw = 6

L

1

0
 cy

2
+ yw d

0

2

 dw = 6
L

1

0
s1 + 2wd dw

 =

L

1

0
 
L

2

0
 
L

1

0
su + wds6d du dy dw = 6

L

1

0
 
L

2

0
 cu2

2
+ uw d

0

1

 dy dw

 =

L

1

0
 
L

2

0
 
L

1

0
su + wd ƒ Jsu, y, wd ƒ du dy dw

 
L

3

0
 
L

4

0
 
L

x = sy>2d + 1

x = y>2  a2x - y
2

+
z
3
b  dx dy dz

Jsu, y, wd = 6
0x
0u

0x
0y

0x
0w

0y
0u

0y
0y

0y
0w

0z
0u

0z
0y

0z
0w

6 = 3 1 1 0

0 2 0

0 0 3

3 = 6.
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Exercises 15.8

Jacobians and Transformed Regions in the Plane
1. a. Solve the system

for x and y in terms of u and . Then find the value of the 
Jacobian 

b. Find the image under the transformation 
of the triangular region with vertices (0, 0), (1, 1),

and in the xy-plane. Sketch the transformed region in
the uy-plane.

2. a. Solve the system

for x and y in terms of u and . Then find the value of the 
Jacobian 

b. Find the image under the transformation 
of the triangular region in the xy-plane bounded

by the lines and Sketch the trans-
formed region in the uy-plane.

3. a. Solve the system

for x and y in terms of u and y. Then find the value of the 
Jacobian 

b. Find the image under the transformation 
of the triangular region in the xy-plane boundedy = x + 4y

u = 3x + 2y,

0sx, yd>0su, yd.

u = 3x + 2y, y = x + 4y

x + 2y = 2.y = 0, y = x ,
y = x - y

u = x + 2y,

0sx, yd>0su, yd.
y

u = x + 2y, y = x - y

s1, -2d
y = 2x + y

u = x - y,

0sx, yd>0su, yd.
y

u = x - y, y = 2x + y

by the x-axis, the y-axis, and the line Sketch the
transformed region in the uy-plane.

4. a. Solve the system

for x and y in terms of u and y. Then find the value of the 
Jacobian 

b. Find the image under the transformation 
of the parallelogram R in the xy-plane with

boundaries and Sketch
the transformed region in the uy-plane.

Substitutions in Double Integrals
5. Evaluate the integral

from Example 1 directly by integration with respect to x and y to
confirm that its value is 2.

6. Use the transformation in Exercise 1 to evaluate the integral

for the region R in the first quadrant bounded by the lines
and y = x + 1.y = -2x + 4, y = -2x + 7, y = x - 2,

6
R

s2x2
- xy - y2d dx dy

L

4

0
 
L

x = s y>2d + 1

x = y>2  
2x - y

2
 dx dy

y = x + 1.x = -3, x = 0, y = x,
y = -x + y

u = 2x - 3y,

0sx, yd>0su, yd.

u = 2x - 3y, y = -x + y

x + y = 1.
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7. Use the transformation in Exercise 3 to evaluate the integral

for the region R in the first quadrant bounded by the lines
and 

8. Use the transformation and parallelogram R in Exercise 4 to eval-
uate the integral

9. Let R be the region in the first quadrant of the xy-plane bounded
by the hyperbolas and the lines 
Use the transformation with and 
to rewrite

as an integral over an appropriate region G in the uy-plane. Then
evaluate the uy-integral over G.

10. a. Find the Jacobian of the transformation and
sketch the region , in the uy-plane.

b. Then use Equation (1) to transform the integral

into an integral over G, and evaluate both integrals.

11. Polar moment of inertia of an elliptical plate A thin plate of
constant density covers the region bounded by the ellipse

in the xy-plane. Find the
first moment of the plate about the origin. (Hint: Use the transfor-
mation )

12. The area of an ellipse The area of the ellipse
can be found by integrating the function

over the region bounded by the ellipse in the xy-plane.
Evaluating the integral directly requires a trigonometric substitu-
tion. An easier way to evaluate the integral is to use the transfor-
mation and evaluate the transformed integral over
the disk in the uy-plane. Find the area this way.

13. Use the transformation in Exercise 2 to evaluate the integral

by first writing it as an integral over a region G in the uy-plane.

14. Use the transformation to evaluate the
integral

by first writing it as an integral over a region G in the uy-plane.

15. Use the transformation to evaluate the integral
sum

L

2

1
 
L

y

1>y (x
2

+ y2) dx dy +

L

4

2
 
L

4>y
y>4  (x2

+ y2) dx dy.

x = u>y, y = uy

L

2

0
 
L

sy + 4d>2
y>2  y3s2x - yde s2x - yd2

 dx dy

x = u + s1>2dy, y = y

L

2>3
0

 
L

2 - 2y

y
sx + 2yde sy - xd dx dy

G: u2
+ y2

… 1
x = au, y = by

ƒsx, yd = 1
x2>a2

+ y2>b2
= 1

pab

x = ar cos u, y = br sin u.

x2>a2
+ y2>b2

= 1,   a 7 0,   b 7 0,

L

2

1
 
L

2

1
 
y
x dy dx

G: 1 … u … 2, 1 … uy … 2
x = u, y = uy

6
R

 aA
y
x + 2xyb  dx dy

y 7 0u 7 0x = u>y, y = uy
y = x, y = 4x.xy = 1, xy = 9

6
R

2sx - yd dx dy.

- s1>4dx + 1.
y =y = - s3>2dx + 1,  y = - s3>2dx + 3,  y = - s1>4dx ,

6
R

s3x2
+ 14xy + 8y2d dx dy

16. Use the transformation to evaluate the in-
tegral

(Hint: Show that the image of the triangular region G with ver-
tices (0, 0), (1, 0), (1, 1) in the -plane is the region of integra-
tion R in the xy-plane defined by the limits of integration.)

Finding Jacobians
17. Find the Jacobian of the transformation

a.

b.

18. Find the Jacobian of the transformation

a.

b.

19. Evaluate the appropriate determinant to show that the Jacobian of
the transformation from Cartesian to Cartesian xyz-space
is 

20. Substitutions in single integrals How can substitutions in sin-
gle definite integrals be viewed as transformations of regions?
What is the Jacobian in such a case? Illustrate with an example.

Substitutions in Triple Integrals
21. Evaluate the integral in Example 5 by integrating with respect to

x, y, and z.

22. Volume of an ellipsoid Find the volume of the ellipsoid

(Hint: Let and Then find the volume of
an appropriate region in uyw-space.)

23. Evaluate

over the solid ellipsoid

(Hint: Let and Then integrate over an
appropriate region in uyw-space.)

24. Let D be the region in xyz-space defined by the inequalities

Evaluate

by applying the transformation

and integrating over an appropriate region G in uyw-space.

u = x, y = xy, w = 3z

9
D

sx2y + 3xyzd dx dy dz

1 … x … 2, 0 … xy … 2, 0 … z … 1.

z = cw .x = au, y = by,

x2

a2 +

y2

b2 +

z2

c2 … 1 .

9
ƒ xyz ƒ dx dy dz

z = cw.x = au, y = by,

x2

a2 +

y2

b2 +

z2

c2 = 1.

r2 sin f .
rfu-space

x = 2u - 1, y = 3y - 4, z = s1>2dsw - 4d.
x = u cos y, y = u sin y, z = w

0sx, y, zd>0su, y, wd
x = u sin y, y = u cos y.

x = u cos y, y = u sin y

0sx, yd>0su, yd

uy

L

1

0
 
L

211 - x

0
 2x2

+ y2 dy dx.

x = u2
- y2, y = 2uy
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25. Centroid of a solid semiellipsoid Assuming the result that the
centroid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base toward the top, show, by trans-
forming the appropriate integrals, that the center of mass of a
solid semiellipsoid 
lies on the z-axis three-eighths of the way from the base toward
the top. (You can do this without evaluating any of the integrals.)

z Ú 0,sx2>a2d + sy2>b2d + sz2>c2d … 1,

914 Chapter 15: Multiple Integrals

26. Cylindrical shells In Section 6.2, we learned how to find the
volume of a solid of revolution using the shell method; namely, if
the region between the curve and the x-axis from a to b

is revolved about the y-axis, the volume of the
resulting solid is Prove that finding volumes by
using triple integrals gives the same result. (Hint: Use cylindrical
coordinates with the roles of y and z changed.)

1
b

a  2pxƒsxd dx .
s0 6 a 6 bd

y = ƒsxd

Chapter 15 Questions to Guide Your Review

1. Define the double integral of a function of two variables over a
bounded region in the coordinate plane.

2. How are double integrals evaluated as iterated integrals? Does the
order of integration matter? How are the limits of integration de-
termined? Give examples.

3. How are double integrals used to calculate areas and average val-
ues. Give examples.

4. How can you change a double integral in rectangular coordinates
into a double integral in polar coordinates? Why might it be
worthwhile to do so? Give an example.

5. Define the triple integral of a function ƒ(x, y, z) over a bounded
region in space.

6. How are triple integrals in rectangular coordinates evaluated?
How are the limits of integration determined? Give an example.

7. How are double and triple integrals in rectangular coordinates
used to calculate volumes, average values, masses, moments, and
centers of mass? Give examples.

8. How are triple integrals defined in cylindrical and spherical coor-
dinates? Why might one prefer working in one of these coordinate
systems to working in rectangular coordinates?

9. How are triple integrals in cylindrical and spherical coordinates
evaluated? How are the limits of integration found? Give examples.

10. How are substitutions in double integrals pictured as transforma-
tions of two-dimensional regions? Give a sample calculation.

11. How are substitutions in triple integrals pictured as transforma-
tions of three-dimensional regions? Give a sample calculation.

Chapter 15 Practice Exercises

Evaluating Double Iterated Integrals
In Exercises 1–4, sketch the region of integration and evaluate the
double integral.

1. 2.

3. 4.

In Exercises 5–8, sketch the region of integration and write an equiva-
lent integral with the order of integration reversed. Then evaluate both
integrals.

5. 6.

7. 8.

Evaluate the integrals in Exercises 9–12.

9. 10.

11. 12.
L

1

0
 
L

1

23 y
 
2p sin px2

x2  dx dy
L

8

0
 
L

2

23 x
 

dy dx

y4
+ 1

L

2

0
 
L

1

y>2 ex2

 dx dy
L

1

0
 
L

2

2y
4 cos sx2d dx dy

L

2

0
 
L

4 - x2

0
2x dy dx

L

3>2
0

 
L

29 - 4y2

-29 - 4y2
 y dx dy

L

1

0
 
L

x

x2
2x dy dx

L

4

0
 
L

sy - 4d>2
-24 - y

 dx dy

L

1

0
 
L

2 -2y

2y
 xy dx dy

L

3>2
0

 
L

29 - 4t2

-29 - 4t2
 t ds dt

L

1

0
 
L

x3

0
 ey>x dy dx

L

10

1
 
L

1>y
0

 yexy dx dy

Areas and Volumes Using Double Integrals
13. Area between line and parabola Find the area of the region

enclosed by the line and the parabola in
the xy-plane.

14. Area bounded by lines and parabola Find the area of the “tri-
angular” region in the xy-plane that is bounded on the right by the
parabola on the left by the line and above by
the line 

15. Volume of the region under a paraboloid Find the volume
under the paraboloid above the triangle enclosed by
the lines and in the xy-plane.

16. Volume of the region under parabolic cylinder Find the vol-
ume under the parabolic cylinder above the region 
enclosed by the parabola and the line in the
xy-plane.

Average Values
Find the average value of over the regions in Exercises 17
and 18.

17. The square bounded by the lines in the first 
quadrant

18. The quarter circle in the first quadrantx2
+ y2

… 1

y = 1x = 1,

ƒsx, yd = xy

y = xy = 6 - x2
z = x2

x + y = 2y = x, x = 0,
z = x2

+ y2

y = 4.
x + y = 2,y = x2,

y = 4 - x2y = 2x + 4

7001_ThomasET_ch15p854–918.qxd  10/30/09  7:58 AM  Page 914



Chapter 15 Practice Exercises 915

Polar Coordinates
Evaluate the integrals in Exercises 19 and 20 by changing to polar
coordinates.

19.

20.

21. Integrating over lemniscate Integrate the function 
over the region enclosed by one loop of the

lemniscate 

22. Integrate over

a. Triangular region The triangle with vertices (0, 0), (1, 0), 

and 

b. First quadrant The first quadrant of the xy-plane.

Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 23–26.

23.

24.

25.

26.

Volumes and Average Values Using Triple Integrals
27. Volume Find the volume of the wedge-shaped region enclosed

on the side by the cylinder on
the top by the plane and below by the xy-plane.

28. Volume Find the volume of the solid that is bounded above by
the cylinder on the sides by the cylinder 

and below by the xy-plane.

x
x2 1 y2 5 4

y

z

z 5 4 2 x2

y2
= 4,

x2
+z = 4 - x2,

z

y
x

p
2

–
2

x 5 –cos y

z 5 –2x

p

z = -2x,
x = -cos y, -p>2 … y … p>2,

L

e

1
 
L

x

1
 
L

z

0
 
2y

z3  dy dz dx

L

1

0
 
L

x2

0
 
L

x + y

0
s2x - y - zd dz dy dx

L

ln 7

ln 6
 
L

ln 2

0
 
L

ln 5

ln 4
 e sx + y + zd dz dy dx

L

p

0
 
L

p

0
 
L

p

0
 cos sx + y + zd dx dy dz

A1, 23 B .
ƒsx, yd = 1>s1 + x2

+ y2d2

sx2
+ y2d2

- sx2
- y2d = 0.

1>s1 + x2
+ y2d2

ƒsx, yd =

L

1

-1
 
L

21 - y2

-21 - y2
 ln sx2

+ y2
+ 1d dx dy

L

1

-1
 
L

21 - x2

-21 - x2
 

2 dy dx

s1 + x2
+ y2d2

29. Average value Find the average value of 
over the rectangular solid in the first octant bounded

by the coordinate planes and the planes 

30. Average value Find the average value of over the solid sphere
(spherical coordinates).

Cylindrical and Spherical Coordinates
31. Cylindrical to rectangular coordinates Convert

to (a) rectangular coordinates with the order of integration 
dz dx dy and (b) spherical coordinates. Then (c) evaluate one of
the integrals.

32. Rectangular to cylindrical coordinates (a) Convert to cylin-
drical coordinates. Then (b) evaluate the new integral.

33. Rectangular to spherical coordinates (a) Convert to spherical
coordinates. Then (b) evaluate the new integral.

34. Rectangular, cylindrical, and spherical coordinates Write an
iterated triple integral for the integral of over
the region in the first octant bounded by the cone

the cylinder and the coordinate
planes in (a) rectangular coordinates, (b) cylindrical coordinates,
and (c) spherical coordinates. Then (d) find the integral of ƒ by
evaluating one of the triple integrals.

35. Cylindrical to rectangular coordinates Set up an integral in
rectangular coordinates equivalent to the integral

Arrange the order of integration to be z first, then y, then x.

36. Rectangular to cylindrical coordinates The volume of a solid is

a. Describe the solid by giving equations for the surfaces that
form its boundary.

b. Convert the integral to cylindrical coordinates but do not eval-
uate the integral.

37. Spherical versus cylindrical coordinates Triple integrals in-
volving spherical shapes do not always require spherical coordinates
for convenient evaluation. Some calculations may be accom-
plished more easily with cylindrical coordinates. As a case in
point, find the volume of the region bounded above by the sphere

and below by the plane by using 
(a) cylindrical coordinates and (b) spherical coordinates.

Masses and Moments
38. Finding in spherical coordinates Find the moment of inertia

about the z-axis of a solid of constant density that is
bounded above by the sphere and below by the cone

(spherical coordinates).f = p>3 r = 2
d = 1

Iz

z = 2x2
+ y2

+ z2
= 8

L

2

0
 
L

22x - x2

0
 
L

24 - x2
- y2

-24 - x2
- y2

 dz dy dx .

L

p>2
0

 
L

23

1
 
L

24 - r2

1
 r3ssin u cos udz2 dz dr du .

x2
+ y2

= 1,z = 2x2
+ y2 ,

ƒsx, y, zd = 6 + 4y

L

1

-1
 
L

21 - x2

-21 - x2
 
L

1

2x2
+ y2

 dz dy dx

L

1

0
 
L

21 - x2

-21 - x2
 
L

sx2
+ y2d

-sx2
+ y2d

21xy2 dz dy dx

L

2p

0
 
L

22

0
 
L

24 - r2

r
3 dz r dr du, r Ú 0

r … a
r

z = 1.y = 3,x = 1,
30xz 2x2

+ y
ƒsx, y, zd =
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39. Moment of inertia of a “thick” sphere Find the moment of in-
ertia of a solid of constant density bounded by two concentric
spheres of radii a and about a diameter.

40. Moment of inertia of an apple Find the moment of inertia
about the z-axis of a solid of density enclosed by the spher-
ical coordinate surface The solid is the red curve
rotated about the z-axis in the accompanying figure.

41. Centroid Find the centroid of the “triangular” region bounded
by the lines and the hyperbola in the xy-plane.

42. Centroid Find the centroid of the region between the parabola
and the line in the xy-plane.

43. Polar moment Find the polar moment of inertia about the ori-
gin of a thin triangular plate of constant density bounded
by the y-axis and the lines and in the xy-plane.

44. Polar moment Find the polar moment of inertia about the cen-
ter of a thin rectangular sheet of constant density bounded
by the lines

a. in the xy-plane

b. in the xy-plane.

(Hint: Find Then use the formula for to find and add the
two to find ).

45. Inertial moment Find the moment of inertia about the x-axis of
a thin plate of constant density covering the triangle with ver-
tices (0, 0), (3, 0), and (3, 2) in the xy-plane.

46. Plate with variable density Find the center of mass and the
moments of inertia about the coordinate axes of a thin plate

d

I0

IyIxIx.

x = ;a, y = ;b

x = ;2, y = ;1

d = 1

y = 4y = 2x
d = 3

x + 2y = 0x + y2
- 2y = 0

xy = 2x = 2, y = 2

z

y

x

r = 1 2 cos f

r = 1 - cos f .
d = 1

b sa 6 bd
d

916 Chapter 15: Multiple Integrals

bounded by the line and the parabola in the 
xy-plane if the density is 

47. Plate with variable density Find the mass and first moments
about the coordinate axes of a thin square plate bounded by the
lines in the xy-plane if the density is 

48. Triangles with same inertial moment Find the moment of in-
ertia about the x-axis of a thin triangular plate of constant density

whose base lies along the interval [0, b] on the x-axis and whose
vertex lies on the line above the x-axis. As you will see, it
does not matter where on the line this vertex lies. All such trian-
gles have the same moment of inertia about the x-axis.

49. Centroid Find the centroid of the region in the polar coordinate
plane defined by the inequalities 

50. Centroid Find the centroid of the region in the first quadrant
bounded by the rays and and the circles 
and 

51. a. Centroid Find the centroid of the region in the polar coordi-
nate plane that lies inside the cardioid and out-
side the circle 

b. Sketch the region and show the centroid in your sketch.

52. a. Centroid Find the centroid of the plane region defined by
the polar coordinate inequalities 

How does the centroid move as 

b. Sketch the region for and show the centroid in
your sketch.

Substitutions
53. Show that if and then

54. What relationship must hold between the constants a, b, and c to
make

(Hint: Let and where 
Then )ax2

+ 2bxy + cy2
= s2

+ t2.ac - b2.
sad - bgd2

=t = gx + dy,s = ax + by

L

q

-q

 
L

q

-q

 e-sax2
+ 2bxy + cy2d dx dy = 1?

L

q

0
 
L

x

0
 e-sx ƒsx - y, yd dy dx =

L

q

0
 
L

q

0
 e-ssu +yd ƒsu, yd du dy.

y = y,u = x - y

a = 5p>6
a: p- ?s0 6 a … pd.
-a … u … a 0 … r … a,

r = 1.
r = 1 + cos u

r = 3.
r = 1u = p>2u = 0

0 … r … 3, -p>3 … u … p>3.

y = h
d

x2
+ y2

+ 1>3.
dsx, yd =x = ;1, y = ;1

dsx, yd = x + 1 .
y = x2y = x

Chapter 15 Additional and Advanced Exercises

Volumes
1. Sand pile: double and triple integrals The base of a sand pile

covers the region in the xy-plane that is bounded by the parabola
and the line The height of the sand above the

point (x, y) is Express the volume of sand as (a) a double inte-
gral, (b) a triple integral. Then (c) find the volume.

2. Water in a hemispherical bowl A hemispherical bowl of ra-
dius 5 cm is filled with water to within 3 cm of the top. Find the
volume of water in the bowl.

x2.
y = x .x2

+ y = 6

3. Solid cylindrical region between two planes Find the volume
of the portion of the solid cylinder that lies between
the planes and 

4. Sphere and paraboloid Find the volume of the region bounded
above by the sphere and below by the parabo-
loid 

5. Two paraboloids Find the volume of the region bounded above
by the paraboloid and below by the paraboloid
z = 2x2

+ 2y2.
z = 3 - x2

- y2

z = x2
+ y2.

x2
+ y2

+ z2
= 2

x + y + z = 2.z = 0
x2

+ y2
… 1
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Chapter 15 Additional and Advanced Exercises 917

6. Spherical coordinates Find the volume of the region enclosed
by the spherical coordinate surface (see accompany-
ing figure).

7. Hole in sphere A circular cylindrical hole is bored through a
solid sphere, the axis of the hole being a diameter of the sphere.
The volume of the remaining solid is

a. Find the radius of the hole and the radius of the sphere.

b. Evaluate the integral.

8. Sphere and cylinder Find the volume of material cut from the
solid sphere by the cylinder 

9. Two paraboloids Find the volume of the region enclosed by the
surfaces and 

10. Cylinder and surface Find the volume of the region in
the first octant that lies between the cylinders and 
and that is bounded below by the xy-plane and above by the sur-
face 

Changing the Order of Integration
11. Evaluate the integral

(Hint: Use the relation

to form a double integral and evaluate the integral by changing
the order of integration.)

12. a. Polar coordinates Show, by changing to polar coordinates,
that

where and 

b. Rewrite the Cartesian integral with the order of integration 
reversed.

13. Reducing a double to a single integral By changing the order
of integration, show that the following double integral can be
reduced to a single integral:

L

x

0
 
L

u

0
 emsx - td ƒstd dt du =

L

x

0
sx - tdemsx - td ƒstd dt .

0 6 b 6 p>2.a 7 0

L

a sin b

0
 
L

2a2
- y2

y cot b
 ln sx2

+ y2d dx dy = a2b aln a -

1
2
b ,

e-ax
- e-bx

x =

L

b

a
 e-xy dy

L

q

0
 
e-ax

- e-bx

x  dx.

z = xy.

r = 2r = 1
z � xy

z = sx2
+ y2

+ 1d>2.z = x2
+ y2

r = 3 sin u.r2
+ z2

… 9

V = 2
L

2p

0
 
L

23

0
 
L

24 - z2

1
 r dr dz du.

z

x

y

r 5 2 sin f

r = 2 sin f

Similarly, it can be shown that

14. Transforming a double integral to obtain constant limits
Sometimes a multiple integral with variable limits can be changed
into one with constant limits. By changing the order of integra-
tion, show that

Masses and Moments
15. Minimizing polar inertia A thin plate of constant density is to

occupy the triangular region in the first quadrant of the xy-plane
having vertices (0, 0), (a, 0), and (a, 1 a). What value of a will
minimize the plate’s polar moment of inertia about the origin?

16. Polar inertia of triangular plate Find the polar moment of in-
ertia about the origin of a thin triangular plate of constant density

bounded by the y-axis and the lines and in
the xy-plane.

17. Mass and polar inertia of a counterweight The counterweight
of a flywheel of constant density 1 has the form of the smaller
segment cut from a circle of radius a by a chord at a distance b
from the center Find the mass of the counterweight and
its polar moment of inertia about the center of the wheel.

18. Centroid of boomerang Find the centroid of the boomerang-
shaped region between the parabolas and

in the xy-plane.

Theory and Examples
19. Evaluate

where a and b are positive numbers and

20. Show that

over the rectangle is

21. Suppose that can be written as a product
of a function of x and a function of y. Thenƒsx, yd = FsxdGsyd

ƒsx, yd

Fsx1, y1d - Fsx0, y1d - Fsx1, y0d + Fsx0, y0d.

x0 … x … x1, y0 … y … y1,

6
 
0

2Fsx, yd
0x 0y  dx dy

max sb2x2, a2y2d = eb2x2 if b2x2
Ú a2y2

a2y2 if b2x2
6 a2y2.

 

L

a

0
 
L

b

0
 emax sb2x2, a2y2d dy dx,

y2
= -2sx - 2d

y2
= -4sx - 1d

sb 6 ad.

y = 4y = 2xd = 3

>

 =

1
2

 
L

1

0
 
L

1

0
 gs ƒ x - y ƒ dƒsxdƒsyd dx dy.

 =

L

1

0
 ƒsyd a

L

1

y
 gsx - ydƒsxd dxb  dy

 
L

1

0
 ƒsxd a

L

x

0
 gsx - ydƒsyd dyb  dx

L

x

0
 
L

y

0
 
L

u

0
 emsx - td ƒstd dt du dy =

L

x

0
 
sx - td2

2
 emsx - td ƒstd dt.
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the integral of ƒ over the rectangle can
be evaluated as a product as well, by the formula

(1)

The argument is that

(i)

(ii)

(iii)

(iv)

a. Give reasons for steps (i) through (iv).

When it applies, Equation (1) can be a time-saver. Use it to evalu-
ate the following integrals.

b. c.

22. Let denote the derivative of in the
direction of the unit vector 

a. Finding average value Find the average value of over
the triangular region cut from the first quadrant by the line

b. Average value and centroid Show in general that the aver-
age value of over a region in the xy-plane is the value of

at the centroid of the region.

23. The value of The gamma function,

extends the factorial function from the nonnegative integers to
other real values. Of particular interest in the theory of differen-
tial equations is the number

(2)≠ a1
2
b =

L

q

0
 t s1>2d - 1 e-t dt =

L

q

0
 
e-t

2t
 dt.

≠sxd =

L

q

0
 t x - 1 e-t dt,

Ωs1/2d
Du ƒ

Du ƒ

x + y = 1.

Du ƒ

u = u1 i + u2 j.
ƒsx, yd = sx2

+ y2d>2Du ƒ

L

2

1
 
L

1

-1
 
x

y2 dx dy
L

ln 2

0
 
L

p>2
0

 ex cos y dy dx

 = a 
L

b

a
 Fsxd dxb

L

d

c
 Gs yd dy.

 =

L

d

c
 a 
L

b

a
 Fsxd dxbGs yd dy

 =

L

d

c
 aGs yd

L

b

a
 Fsxd dxb  dy

 
6

R

 ƒsx, yd dA =

L

d

c
 a 
L

b

a
 FsxdGs yd dxb  dy

6
R

 ƒsx, yd dA = a 
L

b

a
 Fsxd dxb a 

L

d

c
 Gs yd dyb .

R: a … x … b, c … y … d a. If you have not yet done Exercise 41 in Section 15.4, do it
now to show that

b. Substitute in Equation (2) to show that

24. Total electrical charge over circular plate The electrical
charge distribution on a circular plate of radius R meters is

(k a constant). Integrate 
over the plate to find the total charge Q.

25. A parabolic rain gauge A bowl is in the shape of the graph of
from to in. You plan to calibrate the

bowl to make it into a rain gauge. What height in the bowl would
correspond to 1 in. of rain? 3 in. of rain?

26. Water in a satellite dish A parabolic satellite dish is 2 m wide
and 1 2 m deep. Its axis of symmetry is tilted 30 degrees from the
vertical.

a. Set up, but do not evaluate, a triple integral in rectangular co-
ordinates that gives the amount of water the satellite dish will
hold. (Hint: Put your coordinate system so that the satellite
dish is in “standard position” and the plane of the water level
is slanted.) (Caution: The limits of integration are not “nice.”)

b. What would be the smallest tilt of the satellite dish so that it
holds no water?

27. An infinite half-cylinder Let D be the interior of the infinite
right circular half-cylinder of radius 1 with its single-end face sus-
pended 1 unit above the origin and its axis the ray from (0, 0, 1) to

Use cylindrical coordinates to evaluate

28. Hypervolume We have learned that is the length of the
interval on the number line (one-dimensional space),

is the area of region R in the xy-plane (two-dimensional

space), and is the volume of the region D in three-
dimensional space (xyz-space). We could continue: If Q is a region
in 4-space (xyzw-space), then is the “hypervolume” of Q.
Use your generalizing abilities and a Cartesian coordinate system
of 4-space to find the hypervolume inside the unit 3-dimensional
sphere x2

+ y2
+ z2

+ w2
= 1.

|Q 1 dV

7D 1 dV
4R 1 dA

[a, b]
1

b
a  1 dx

9
D

 zsr2
+ z2d-5>2 dV.

q.

>

z = 10z = 0z = x2
+ y2

sssr, ud = krs1 - sin ud coulomb>m2

≠s1>2d = 2I = 1p.
y = 1t

I =

L

q

0
 e-y2

 dy =

2p
2

.

918 Chapter 15: Multiple Integrals

Chapter 15 Technology Application Projects

Mathematica Maple Module:
Take Your Chances: Try the Monte Carlo Technique for Numerical Integration in Three Dimensions
Use the Monte Carlo technique to integrate numerically in three dimensions.

Means and Moments and Exploring New Plotting Techniques, Part II
Use the method of moments in a form that makes use of geometric symmetry as well as multiple integration.

/
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OVERVIEW In this chapter we extend the theory of integration to curves and surfaces in
space. The resulting theory of line and surface integrals gives powerful mathematical tools
for science and engineering. Line integrals are used to find the work done by a force in
moving an object along a path, and to find the mass of a curved wire with variable density.
Surface integrals are used to find the rate of flow of a fluid across a surface. We present
the fundamental theorems of vector integral calculus, and discuss their mathematical con-
sequences and physical applications. In the final analysis, the key theorems are shown as
generalized interpretations of the Fundamental Theorem of Calculus.

16.1 Line Integrals

To calculate the total mass of a wire lying along a curve in space, or to find the work done
by a variable force acting along such a curve, we need a more general notion of integral
than was defined in Chapter 5. We need to integrate over a curve C rather than over an in-
terval [a, b]. These more general integrals are called line integrals (although path integrals
might be more descriptive). We make our definitions for space curves, with curves in the
xy-plane being the special case with z-coordinate identically zero.

Suppose that ƒ(x, y, z) is a real-valued function we wish to integrate over the curve C
lying within the domain of ƒ and parametrized by .
The values of ƒ along the curve are given by the composite function ƒ(g(t), h(t), k(t)). We
are going to integrate this composite with respect to arc length from to To be-
gin, we first partition the curve C into a finite number n of subarcs (Figure 16.1). The typ-
ical subarc has length In each subarc we choose a point and form the sum

which is similar to a Riemann sum. Depending on how we partition the curve C and pick
in the kth subarc, we may get different values for Sn. If ƒ is continuous and the

functions g, h, and k have continuous first derivatives, then these sums approach a limit as
n increases and the lengths approach zero. This limit gives the following definition,
similar to that for a single integral. In the definition, we assume that the partition satisfies

as n : q .¢sk : 0

¢sk

sxk, yk, zkd

Sn = a

n

k = 1
ƒsxk, yk, zkd ¢sk ,

sxk, yk, zkd¢sk.

t = b.t = a

rstd = gstdi + hstdj + kstdk, a … t … b

919

16
INTEGRATION IN

VECTOR FIELDS

DEFINITION If ƒ is defined on a curve C given parametrically by 
then the line integral of ƒ over C is 

(1)

provided this limit exists.

LC
 ƒsx, y, zd ds = lim

n: q
a

n

k = 1
ƒsxk, yk, zkd ¢sk ,

g(t)i + h(t)j + k(t)k, a … t … b,
r(t) =

z

y

x

r(t)

t 5 b

t 5 a
(xk, yk, zk)

Dsk

FIGURE 16.1 The curve r(t) partitioned
into small arcs from to The
length of a typical subarc is ¢sk.

t = b.t = a
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If the curve C is smooth for (so is continuous and never 0) and the
function f is continuous on C, then the limit in Equation (1) can be shown to exist. We can
then apply the Fundamental Theorem of Calculus to differentiate the arc length equation,

to express ds in Equation (1) as and evaluate the integral of ƒ over C as

(2)

Notice that the integral on the right side of Equation (2) is just an ordinary (single) defi-
nite integral, as defined in Chapter 5, where we are integrating with respect to the parame-
ter t. The formula evaluates the line integral on the left side correctly no matter what
parametrization is used, as long as the parametrization is smooth. Note that the parameter t
defines a direction along the path. The starting point on C is the position and move-
ment along the path is in the direction of increasing t (see Figure 16.1).

rsad

LC
 ƒsx, y, zd ds =

L

b

a
 ƒsgstd, hstd, kstdd ƒ vstd ƒ  dt.

ds = ƒ vstd ƒ  dt

sstd =

L

t

a
 ƒ vstd ƒ  dt,

v = dr>dta … t … b

920 Chapter 16: Integration in Vector Fields

Eq. (3) of Section 13.3
with t0 = a

ds
dt

= ƒ v ƒ = A adx
dt
b2

+ ady

dt
b2

+ adz
dt
b2

How to Evaluate a Line Integral
To integrate a continuous function ƒ(x, y, z) over a curve C:

1. Find a smooth parametrization of C,

.

2. Evaluate the integral as

LC
 ƒsx, y, zd ds =

L

b

a
 ƒsgstd, hstd, kstdd ƒ vstd ƒ  dt.

rstd = gstdi + hstdj + kstdk,  a … t … b

FIGURE 16.2 The integration path in
Example 1.

If ƒ has the constant value 1, then the integral of ƒ over C gives the length of C from
to in Figure 16.1.

EXAMPLE 1 Integrate over the line segment C joining the
origin to the point (1, 1, 1) (Figure 16.2).

Solution We choose the simplest parametrization we can think of:

The components have continuous first derivatives and 

is never 0, so the parametrization is smooth. The integral of ƒ
over C is

 = 23
L

1

0
 s2t - 3t2d dt = 23 C t 2

- t3 D01 = 0.

 =

L

1

0
 st - 3t 2

+ td23 dt

 
LC

 ƒsx, y, zd ds =

L

1

0
 ƒst, t, td A23 B  dt

212
+ 12

+ 12
= 23

ƒ i + j + k ƒ =ƒ vstd ƒ =

rstd = t i + tj + tk,  0 … t … 1.

ƒsx, y, zd = x - 3y2
+ z

t = bt = a

z

x

C

(1, 1, 0)

(1, 1, 1)

y

Eq. (2)
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Additivity

Line integrals have the useful property that if a piecewise smooth curve C is made by join-
ing a finite number of smooth curves end to end (Section 13.1), then the in-
tegral of a function over C is the sum of the integrals over the curves that make it up:

(3)

EXAMPLE 2 Figure 16.3 shows another path from the origin to (1, 1, 1), the union of
line segments and Integrate over 

Solution We choose the simplest parametrizations for and we can find, calculating
the lengths of the velocity vectors as we go along:

With these parametrizations we find that

Notice three things about the integrations in Examples 1 and 2. First, as soon as the
components of the appropriate curve were substituted into the formula for ƒ, the integration
became a standard integration with respect to t. Second, the integral of ƒ over was
obtained by integrating ƒ over each section of the path and adding the results. Third, the in-
tegrals of ƒ over C and had different values.C1 ´ C2

C1 ´ C2

 = 22 ct 2

2
- t 3 d

0

1

+ ct 2

2
- 2t d

0

1

= -

22
2

-
3
2

.

 =

L

1

0
 st - 3t 2

+ 0d22 dt +

L

1

0
 s1 - 3 + tds1d dt

 =

L

1

0
 ƒst, t, 0d22 dt +

L

1

0
 ƒs1, 1, tds1d dt

 
LC1´C2

 ƒsx, y, zd ds =

LC1

 ƒsx, y, zd ds +

LC2

 ƒsx, y, zd ds

 C2: rstd = i + j + tk, 0 … t … 1; ƒ v ƒ = 202
+ 02

+ 12
= 1.

 C1: rstd = ti + tj, 0 … t … 1; ƒ v ƒ = 212
+ 12

= 22

C2C1

C1 ´ C2.ƒsx, y, zd = x - 3y2
+ zC2.C1

LC
 ƒ ds =

LC1

 ƒ ds +

LC2

 ƒ ds +
Á

+

LCn

 ƒ ds.

C1, C2, Á , Cn

16.1 Line Integrals 921

The value of the line integral along a path joining two points can change if you
change the path between them.

FIGURE 16.3 The path of integration in
Example 2. Eq. (3)

Eq. (2)

We investigate this third observation in Section 16.3.

Mass and Moment Calculations

We treat coil springs and wires as masses distributed along smooth curves in space. The
distribution is described by a continuous density function representing mass per
unit length. When a curve C is parametrized by 
then x, y, and z are functions of the parameter t, the density is the function 
and the arc length differential is given by

ds = A adx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

 dt.

zstdd,ystd,dsxstd,
a … t … b,rstd = xstdi + ystdj + zstdk,

dsx, y, zd

z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

C1

C2
y
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(See Section 13.3.) The spring’s or wire’s mass, center of mass, and moments are then cal-
culated with the formulas in Table 16.1, with the integrations in terms of the parameter t
over the interval [a, b]. For example, the formula for mass becomes

These formulas also apply to thin rods, and their derivations are similar to those in Section
6.6. Notice how alike the formulas are to those in Tables 15.1 and 15.2 for double and
triple integrals. The double integrals for planar regions, and the triple integrals for solids,
become line integrals for coil springs, wires, and thin rods.

M =

L

b

a
 dsxstd, ystd, zstdd A adx

dt
b2

+ ady
dt
b2

+ adz
dt
b2

 dt.

922 Chapter 16: Integration in Vector Fields

TABLE 16.1 Mass and moment formulas for coil springs, wires, and thin rods lying
along a smooth curve C in space

is the density at (x, y, z)

First moments about the coordinate planes:

Coordinates of the center of mass:

Moments of inertia about axes and other lines:

 rsx, y, zd = distance from the point sx, y, zd to line LIL =

LC
 r 2 d ds

Ix =

LC
 s y 2

+ z 2d d ds, Iy =

LC
 sx 2

+ z 2d d ds,    Iz =

LC
 sx 2

+ y 2d d ds,

x = Myz >M, y = Mxz >M, z = Mxy >M

Myz =

LC
 x d ds, Mxz =

LC
 y d ds, Mxy =

LC
 z d ds

d = d(x, y, z)Mass: M =

LC
 d ds

Notice that the element of mass dm is equal to in the table rather than as in
Table 15.1, and that the integrals are taken over the curve C.

EXAMPLE 3 A slender metal arch, denser at the bottom than top, lies along the semi-
circle in the yz-plane (Figure 16.4). Find the center of the arch’s mass
if the density at the point (x, y, z) on the arch is 

Solution We know that and because the arch lies in the yz-plane with its
mass distributed symmetrically about the z-axis. To find we parametrize the circle as

For this parametrization,

so ds = ƒ v ƒ dt = dt.

ƒ vstd ƒ = B a
dx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

= 2s0d2
+ s -sin td2

+ scos td2
= 1,

rstd = scos tdj + ssin tdk,  0 … t … p.

z ,
y = 0x = 0

dsx, y, zd = 2 - z.
y2

+ z2
= 1, z Ú 0,

d dVd ds

z

y
x

1

1

c.m.

y2 � z2 � 1, z � 0

–1

FIGURE 16.4 Example 3 shows how to
find the center of mass of a circular arch of
variable density.
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The formulas in Table 16.1 then give

With to the nearest hundredth, the center of mass is (0, 0, 0.57).

Line Integrals in the Plane

There is an interesting geometric interpretation for line integrals in the plane. If C is a
smooth curve in the xy-plane parametrized by we gener-
ate a cylindrical surface by moving a straight line along C orthogonal to the plane, holding
the line parallel to the z-axis, as in Section 12.6. If is a nonnegative continuous
function over a region in the plane containing the curve C, then the graph of ƒ is a surface
that lies above the plane. The cylinder cuts through this surface, forming a curve on it that
lies above the curve C and follows its winding nature. The part of the cylindrical surface
that lies beneath the surface curve and above the xy-plane is like a “winding wall” or
“fence” standing on the curve C and orthogonal to the plane. At any point (x, y) along the
curve, the height of the wall is We show the wall in Figure 16.5, where the “top” of
the wall is the curve lying on the surface (We do not display the surface
formed by the graph of ƒ in the figure, only the curve on it that is cut out by the cylinder.)
From the definition

where as we see that the line integral is the area of the wall
shown in the figure.

1C ƒ dsn : q ,¢sk : 0

LC
 ƒ ds =  lim

n: q

 a

n

k = 1
 ƒsxk, ykd ¢sk,

z = ƒsx, yd.
ƒsx, yd.

z = ƒsx, yd

rstd = xstdi + ystdj, a … t … b,

z

 z =

Mxy

M
=

8 - p
2

# 1
2p - 2

=
8 - p

4p - 4
L 0.57.

 =

L

p

0
s2 sin t - sin2 td dt =

8 - p
2

 Mxy =

LC
 zd ds =

LC
 zs2 - zd ds =

L

p

0
ssin tds2 - sin td dt

 M =

LC
 d ds =

LC
 s2 - zd ds =

L

p

0
s2 - sin td dt = 2p - 2

16.1 Line Integrals 923

FIGURE 16.5 The line integral 
gives the area of the portion of the
cylindrical surface or “wall” beneath
z = ƒsx, yd Ú 0.

1C ƒ ds

Exercises 16.1

Graphs of Vector Equations
Match the vector equations in Exercises 1–8 with the graphs (a)–(h)
given here.

a. b.

y

z

x

2

1

y

z

x

1

–1

c. d.

y

z

x

2

2

(2, 2, 2)

y

z

x

1 1

z

y

x

t � a

t � b

(x, y)

height f (x, y)

Plane curve CΔsk
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924 Chapter 16: Integration in Vector Fields

e. f.

g. h.

1.

2.

3.

4.

5.

6.

7.

8.

Evaluating Line Integrals over Space Curves

9. Evaluate where C is the straight-line segment
from (0, 1, 0) to (1, 0, 0).

10. Evaluate where C is the straight-line seg-
ment from (0, 1, 1) to (1, 0, 1).

11. Evaluate along the curve 

12. Evaluate along the curve 

13. Find the line integral of over the straight-
line segment from (1, 2, 3) to 

14. Find the line integral of over
the curve 

15. Integrate over the path from (0, 0, 0)
to (1, 1, 1) (see accompanying figure) given by

 C2: rstd = i + j + tk,  0 … t … 1

 C1: rstd = ti + t 2j,  0 … t … 1

ƒsx, y, zd = x + 1y - z2

rstd = ti + tj + tk, 1 … t … q.
ƒsx, y, zd = 23>sx2

+ y2
+ z2d

s0, -1, 1d.
ƒsx, y, zd = x + y + z

s4 sin tdj + 3tk, -2p … t … 2p.
rstd = s4 cos tdi +1C 2x2

+ y2 ds

t j + s2 - 2tdk, 0 … t … 1.
rstd = 2ti +1C sxy + y + zd ds

x = t, y = s1 - td, z = 1,
1C sx - y + z - 2d ds

x = t, y = s1 - td, z = 0,
1C sx + yd ds

rstd = s2 cos tdi + s2 sin tdk,  0 … t … p

rstd = st2
- 1dj + 2tk,  -1 … t … 1

rstd = t j + s2 - 2tdk,  0 … t … 1

rstd = ti + tj + tk,  0 … t … 2

rstd = ti,  -1 … t … 1

rstd = s2 cos tdi + s2 sin tdj,  0 … t … 2p

rstd = i + j + tk,  -1 … t … 1

rstd = ti + s1 - tdj,  0 … t … 1

y

z

x

2

2

–2

y

z

x

2

2

y

z

x

2

–2

–1

y

z

x

1
1

(1, 1, 1)

(1, 1, –1)

16. Integrate over the path from (0, 0, 0)
to (1, 1, 1) (see accompanying figure) given by

17. Integrate over the path

18. Integrate over the circle

Line Integrals over Plane Curves

19. Evaluate where C is

a. the straight-line segment from (0, 0) to (4, 2).

b. the parabolic curve from (0, 0) to (2, 4).

20. Evaluate where C is

a. the straight-line segment from (0, 0) to (1, 4).

b. is the line segment from (0, 0) to (1, 0) and is
the line segment from (1, 0) to (1, 2).

21. Find the line integral of along the curve

22. Find the line integral of along the curve

23. Evaluate , where C is the curve for 

24. Find the line integral of along the curve

25. Evaluate where C is given in the accompanying
figure.

x

y

y 5 x2

y 5 x

(0, 0)

(1, 1)
C

1C Ax + 2y B  ds

1>2 … t … 1.rstd = t3i + t4j,
ƒsx, yd = 2y>x

1 … t … 2.

x = t2, y = t3,
LC

 
x2

y4>3 ds

rstd = (cos t)i + (sin t)j, 0 … t … 2p.
ƒsx, yd = x - y + 3

-1 … t … 2.rstd = 4ti - 3tj,
ƒsx, yd = yex2

C2C1 ´ C2; C1

x = t, y = 4t,
1C 2x + 2y ds,

x = t, y = t2,

x = t, y = t>2,
1C x ds,

rstd = sa cos tdj + sa sin tdk,  0 … t … 2p.

ƒsx, y, zd = -2x2
+ z2

rstd = ti + tj + tk, 0 6 a … t … b.
ƒsx, y, zd = sx + y + zd>sx2

+ y2
+ z2d

 C3: rstd = ti + j + k,  0 … t … 1

 C2: rstd = tj + k,  0 … t … 1

 C1: rstd = tk,  0 … t … 1

ƒsx, y, zd = x + 1y - z2

z

y

x

(a)
(1, 1, 0)

(1, 1, 1)
(0, 0, 0)

z

y
x

(b)

(0, 0, 0)
(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

C1

C1

C2

C2

C3

The paths of integration for Exercises 15 and 16.
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26. Evaluate where C is given in the accompanying

figure.

In Exercises 27–30, integrate ƒ over the given curve.

27.

28. from (1, 1 2) to
(0, 0)

29. in the first quadrant from
(2, 0) to (0, 2)

30. in the first quadrant from
(0, 2) to 

31. Find the area of one side of the “winding wall” standing orthogo-
nally on the curve and beneath the curve on 

the surface 

32. Find the area of one side of the “wall” standing orthogonally on
the curve and beneath the curve on the
surface 

Masses and Moments
33. Mass of a wire Find the mass of a wire that lies along the curve

if the density is 

34. Center of mass of a curved wire A wire of density
lies along the curve 

Find its center of mass. Then sketch the curve
and center of mass together.

35. Mass of wire with variable density Find the mass of a thin
wire lying along the curve 

if the density is (a) and (b)

36. Center of mass of wire with variable density Find the center
of mass of a thin wire lying along the curve 

if the density is 

37. Moment of inertia of wire hoop A circular wire hoop of con-
stant density lies along the circle in the xy-plane.
Find the hoop’s moment of inertia about the z-axis.

38. Inertia of a slender rod A slender rod of constant density lies
along the line segment in the s2 - 2tdk, 0 … t … 1,rstd = tj +

x 2
+ y 2

= a 2d

d = 315 + t.s2>3dt3>2k, 0 … t … 2,
rstd = ti + 2tj +

d = 1.d = 3t0 … t … 1,
rstd = 22ti + 22tj + s4 - t2dk,

2tk, -1 … t … 1.
rstd = st2

- 1dj +dsx, y, zd = 152y + 2

d = s3>2dt.rstd = st2
- 1dj + 2tk, 0 … t … 1,

ƒsx, yd = 4 + 3x + 2y.
2x + 3y = 6, 0 … x … 6,

ƒsx, yd = x + 2y .

y = x2, 0 … x … 2,

s12, 12d
ƒsx, yd = x2

- y, C: x2
+ y2

= 4

ƒsx, yd = x + y, C: x2
+ y2

= 4

>ƒsx, yd = sx + y2d>21 + x2, C: y = x2>2
ƒsx, yd = x3>y, C: y = x2>2, 0 … x … 2

x

y

(0, 0)

(0, 1)

(1, 0)

(1, 1)

LC

 
1

x2
+ y2

+ 1
 ds

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 925

yz-plane. Find the moments of inertia of the rod about the three
coordinate axes.

39. Two springs of constant density A spring of constant density 
lies along the helix

a. Find .

b. Suppose that you have another spring of constant density 
that is twice as long as the spring in part (a) and lies along the
helix for Do you expect for the longer spring
to be the same as that for the shorter one, or should it be 
different? Check your prediction by calculating for the 
longer spring.

40. Wire of constant density A wire of constant density lies
along the curve

Find 

41. The arch in Example 3 Find for the arch in Example 3.

42. Center of mass and moments of inertia for wire with variable
density Find the center of mass and the moments of inertia
about the coordinate axes of a thin wire lying along the curve

if the density is .

COMPUTER EXPLORATIONS
In Exercises 43–46, use a CAS to perform the following steps to eval-
uate the line integrals.

a. Find for the path 

b. Express the integrand as a function of
the parameter t.

c. Evaluate using Equation (2) in the text.

43.

44.

45.

46.

0 … t … 2pt5>2k, 

ƒsx, y, zd = a1 +

9
4

 z1>3b1>4
; rstd = scos 2tdi + ssin 2tdj +

0 … t … 2p
ƒsx, y, zd = x1y - 3z2 ; rstd = scos 2tdi + ssin 2tdj + 5tk,

0 … t … 2

ƒsx, y, zd = 21 + x3
+ 5y3 ; rstd = ti +

1
3

 t 2j + 1tk, 

0 … t … 2
ƒsx, y, zd = 21 + 30x2

+ 10y ; rstd = ti + t 2j + 3t 2k, 
1C  ƒ ds

ƒsgstd, hstd, kstdd ƒ vstd ƒ

kstdk.
rstd = gstdi + hstdj +ds = ƒ vstd ƒ  dt

d = 1>st + 1d

rstd = ti +

222
3

 t3>2j +

t2

2
 k, 0 … t … 2,

Ix

z and Iz.

rstd = st cos tdi + st sin tdj + A222>3 B t3>2k, 0 … t … 1.

d = 1

Iz

Iz0 … t … 4p.

d

Iz

rstd = scos tdi + ssin tdj + tk, 0 … t … 2p.

d

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux

Gravitational and electric forces have both a direction and a magnitude. They are repre-
sented by a vector at each point in their domain, producing a vector field. In this section
we show how to compute the work done in moving an object through such a field by using
a line integral involving the vector field. We also discuss velocity fields, such as the vector
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field representing the velocity of a flowing fluid in its domain. A line integral can be used
to find the rate at which the fluid flows along or across a curve within the domain.

Vector Fields

Suppose a region in the plane or in space is occupied by a moving fluid, such as air or wa-
ter. The fluid is made up of a large number of particles, and at any instant of time, a parti-
cle has a velocity v. At different points of the region at a given (same) time, these veloci-
ties can vary. We can think of a velocity vector being attached to each point of the fluid
representing the velocity of a particle at that point. Such a fluid flow is an example of a
vector field. Figure 16.6 shows a velocity vector field obtained from air flowing around an
airfoil in a wind tunnel. Figure 16.7 shows a vector field of velocity vectors along the
streamlines of water moving through a contracting channel. Vector fields are also associ-
ated with forces such as gravitational attraction (Figure 16.8), and to magnetic fields, elec-
tric fields, and also purely mathematical fields.

Generally, a vector field is a function that assigns a vector to each point in its domain.
A vector field on a three-dimensional domain in space might have a formula like

The field is continuous if the component functions M, N, and P are continuous; it is
differentiable if each of the component functions is differentiable. The formula for a field
of two-dimensional vectors could look like

We encountered another type of vector field in Chapter 13. The tangent vectors T and
normal vectors N for a curve in space both form vector fields along the curve. Along a
curve r(t) they might have a component formula similar to the velocity field expression

If we attach the gradient vector of a scalar function ƒ(x, y, z) to each point of a
level surface of the function, we obtain a three-dimensional field on the surface. If we at-
tach the velocity vector to each point of a flowing fluid, we have a three-dimensional field
defined on a region in space. These and other fields are illustrated in Figures 16.9–16.15.
To sketch the fields, we picked a representative selection of domain points and drew the

¥ƒ

v(t) = ƒ(t)i + g(t)j + h(t)k.

Fsx, yd = Msx, ydi + Nsx, ydj.

Fsx, y, zd = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk.

926 Chapter 16: Integration in Vector Fields

FIGURE 16.7 Streamlines in a
contracting channel. The water speeds up
as the channel narrows and the velocity
vectors increase in length.

FIGURE 16.6 Velocity vectors of a flow
around an airfoil in a wind tunnel.

y

z

x

FIGURE 16.8 Vectors in a
gravitational field point toward
the center of mass that gives the
source of the field.

z

x

y

FIGURE 16.9 A surface, like a mesh net or parachute, in a vector
field representing water or wind flow velocity vectors. The arrows 
show the direction and their lengths indicate speed.
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16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 927

f (x, y, z) 5 c

FIGURE 16.10 The field of
gradient vectors on a
surface ƒsx, y, zd = c.

§ƒ

y

x

FIGURE 16.13 The flow of fluid 
in a long cylindrical pipe. The vectors

inside the cylinder that
have their bases in the xy-plane have
their tips on the paraboloid z = a2

- r2.

v = sa2
- r2dk

FIGURE 16.11 The radial field
of position vectors of points in

the plane. Notice the convention that an
arrow is drawn with its tail, not its head, at
the point where F is evaluated.

F = xi + yj

WIND SPEED, M/S

0 2 4 6 8 10 12 14 16+

FIGURE 16.15 NASA’s Seasat used radar to take 350,000 wind measurements
over the world’s oceans. The arrows show wind direction; their length and the color
contouring indicate speed. Notice the heavy storm south of Greenland.

x

y

FIGURE 16.12 A “spin” field of rotating
unit vectors

in the plane. The field is not defined at the
origin.

F = s -yi + xjd>sx2
+ y2d1>2

y

x
0

FIGURE 16.14 The
velocity vectors v(t) of a
projectile’s motion make a
vector field along the
trajectory.

z

y

x

x2 � y2 �  a2

z � a2 � r2

0

vectors attached to them. The arrows are drawn with their tails, not their heads, attached to
the points where the vector functions are evaluated.

Gradient Fields

The gradient vector of a differentiable scalar-valued function at a point gives the direction
of greatest increase of the function. An important type of vector field is formed by all the

7001_ThomasET_ch16p919-1006.qxd  10/30/09  8:13 AM  Page 927



gradient vectors of the function (see Section 14.5). We define the gradient field of a dif-
ferentiable function ƒ(x, y, z) to be the field of gradient vectors

At each point the gradient field gives a vector pointing in the direction of greatest
increase of ƒ, with magnitude being the value of the directional derivative in that direction.
The gradient field is not always a force field or a velocity field.

EXAMPLE 1 Suppose that the temperature T at each point (x, y, z) in a region of space
is given by

,

and that F(x, y, z) is defined to be the gradient of T. Find the vector field F.

Solution The gradient field F is the field At each point
in space, the vector field F gives the direction for which the increase in temperature is
greatest.

Line Integrals of Vector Fields

In Section 16.1 we defined the line integral of a scalar function over a path C.
We turn our attention now to the idea of a line integral of a vector field F along the curve
C.

Assume that the vector field has contin-
uous components, and that the curve C has a smooth parametrization 

As discussed in Section 16.1, the parametrization defines
a direction (or orientation) along C which we call the forward direction. At each point
along the path C, the tangent vector is a unit vector tangent to the path
and pointing in this forward direction. (The vector is the velocity vector tangent
to C at the point, as discussed in Sections 13.1 and 13.3.) Intuitively, the line integral of the
vector field is the line integral of the scalar tangential component of F along C. This tan-
gential component is given by the dot product

so we have the following formal definition, where in Equation (1) of Section
16.1.

ƒ = F # T

F # T = F # dr
ds

 ,

v = dr>dt
T = dr>ds = v> ƒ v ƒ

rstdhstd j + kstd k, a … t … b.
rstd = gstd i +

F = Msx, y, zd i + Nsx, y, zd j + Psx, y, zd k

ƒsx, y, zd

F = ¥T = -2xi - 2yj - 2zk.

T = 100 - x2
- y2

- z2

sx, y, zd,

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k.

928 Chapter 16: Integration in Vector Fields

DEFINITION Let F be a vector field with continuous components defined
along a smooth curve C parametrized by Then the line integral
of F along C is

LC
 F # T ds =

LC
 aF # dr

ds
b  ds =

LC
 F # dr .

rstd, a … t … b.

We evaluate line integrals of vector fields in a way similar to how we evaluate line in-
tegrals of scalar functions (Section 16.1).
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EXAMPLE 2 Evaluate where along the curve C

given by 

Solution We have

and

Thus,

Line Integrals With Respect to the xyz Coordinates

It is sometimes useful to write a line integral of a scalar function with respect to one of the
coordinates, such as This integral is not the same as the arc length line integral 

we defined in Section 16.1. To define the new integral for the scalar function
we specify a vector field over the curve C parametrized by

With this notation we have and
Then,

So we define the line integral of M over C with respect to the coordinate x as

In the same way, by defining or we obtain the integrals
and Expressing everything in terms of the parameter t, we have the fol-

lowing formulas for these integrals:
1C P dz.1C N dy

F = Psx, y, zdk,F = Nsx, y, zd j,

LC
 Msx, y, zd dx =

LC
 F # dr, where F = Msx, y, zd i.

F # dr = F # dr
dt

 dt = Msx, y, zdg¿std dt = Msx, y, zd dx.

dx = g¿std dt.
x = gstdrstd = gstdi + hstdj + kstdk, a … t … b.

F = Msx, y, zdiMsx, y, zd,
1C M ds

1C M dx.

 = c a3
2
b a2

5 t5>2b +
1
4

 t4 d1
0

=
17
20

 .

 =

L

1

0
 a2t3>2

+ t3
-

1
2

 t3>2b  dt

 
LC

 F # dr =

L

1

0
 Fsrstdd # dr

dt
 dt

dr
dt

= 2ti + j +
1

22t
 k.

Fsrstdd = 2t i + t3j - t2k

rstd = t2i + tj + 2t k, 0 … t … 1.

Fsx, y, zd = z i + xy j - y2k1C F # dr,

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 929

Evaluating the Line Integral of along

1. Express the vector field F in terms of the parametrized curve C as by
substituting the components of r into the scalar
components of F.

2. Find the derivative (velocity) vector 

3. Evaluate the line integral with respect to the parameter to obtain

LC
 F # dr =

L

b

a
 Fsrstdd # dr

dt
 dt .

t, a … t … b,

dr>dt .

Msx, y, zd, Nsx, y, zd, Psx, y, zd
x = gstd, y = hstd, z = kstd

Fsrstdd
C: r(t) � g(t)i � h(t)j � k(t)k

F � Mi � Nj � Pk
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It often happens that these line integrals occur in combination, and we abbreviate the nota-
tion by writing

EXAMPLE 3 Evaluate the line integral where C is the helix

Solution We express everything in terms of the parameter t, so 
and Then,

Work Done by a Force over a Curve in Space

Suppose that the vector field represents a
force throughout a region in space (it might be the force of gravity or an electromagnetic
force of some kind) and that

is a smooth curve in the region. The formula for the work done by the force in moving an
object along the curve is motivated by the same kind of reasoning we used in Chapter 6 to
derive the formula for the work done by a continuous force of magnitude
F(x) directed along an interval of the x-axis. For a curve C in space, we define the work
done by a continuous force field F to move an object along C from a point A to another
point B as follows.

We divide C into n subarcs with lengths starting at A and ending at B. We
choose any point in the subarc and let be the unit tangent
vector at the chosen point. The work done to move the object along the subarc 
is approximated by the tangential component of the force times the arclength

approximating the distance the object moves along the subarc (see Figure 16.16). ¢sk

Fsxk, yk, zkd
Pk - 1PkWk

Tsxk, yk, zkdPk - 1Pksxk, yk, zkd
¢sk,Pk - 1Pk

W = 1
b

a  F(x) dx

rstd = gstdi + hstdj + kstdk,  a … t … b,

F = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk

= p.

 = [0 + s0 + 1d + sp - 0d] - [0 + s0 + 1d + s0 - 0d]

 = c2 sin t + st sin t + cos td + a t
2

-
sin 2t

4
b d2p

0

 =

L

2p

0
 [2 cos t + t cos t + sin2 t] dt

 
LC

 -y dx + z dy + 2x dz =

L

2p

0
 [s -sin tds -sin td + t cos t + 2 cos t] dt

dy = cos t dt, dz = dt.dx = -sin t dt,z = t,
y = sin t,x = cos t,

(sin t)j + tk, 0 … t … 2p.rstd = (cos t)i +

1C -y dx + z dy + 2x dz,

LC
 Msx, y, zd dx +

LC
 Nsx, y, zd dy +

LC
 Psx, y, zd dz =

LC
 M dx + N dy + P dz.

930 Chapter 16: Integration in Vector Fields

(1)

(2)

(3) 
LC

 Psx, y, zd dz =

L

b

a
 Psgstd, hstd, kstdd k¿std dt

 
LC

 Nsx, y, zd dy =

L

b

a
 Nsgstd, hstd, kstdd h¿std dt

 
LC

 Msx, y, zd dx =

L

b

a
 Msgstd, hstd, kstdd g¿std dt

Pk21

Tk

Fk . Tk

Fk
Pk

(xk, yk, zk)

FIGURE 16.16 The work done along the
subarc shown here is approximately

where and
Tk = Tsxk, yk, zkd.

Fk = Fsxk, yk, zkdFk
# Tk ¢sk,
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The total work done in moving the object from point A to point B is then approximated by
summing the work done along each of the subarcs, so

For any subdivision of C into n subarcs, and for any choice of the points within
each subarc, as and these sums approach the line integral

.

This is just the line integral of F along C, which is defined to be the total work done.

LC
 F # T ds

¢sk : 0,n : q

sxk, yk, zkd

W L a

n

k = 1
 Wk L a

n

k = 1
 Fsxk, yk, zkd # Tsxk, yk, zkd ¢sk.

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 931

DEFINITION Let C be a smooth curve parametrized by and
F be a continuous force field over a region containing C. Then the work done in
moving an object from the point to the point along C is

(4)W =

LC
 F # T ds =

L

b

a
 Fsrstdd # dr

dt
 dt.

B = rsbdA = rsad

rstd, a … t … b,
T        

F

A

B t � b

t � a

FIGURE 16.17 The work done by a force
F is the line integral of the scalar
component over the smooth curve
from A to B.

F # T

The sign of the number we calculate with this integral depends on the direction in which
the curve is traversed. If we reverse the direction of motion, then we reverse the direction
of T in Figure 16.17 and change the sign of and its integral.

Using the notations we have presented, we can express the work integral in a variety of
ways, depending upon what seems most suitable or convenient for a particular discussion.
Table 16.2 shows five ways we can write the work integral in Equation (4).

F # T

TABLE 16.2 Different ways to write the work integral for over
the curve 

The definition

Vector differential form

Parametric vector evaluation

Parametric scalar evaluation

Scalar differential form =

LC
 M dx + N dy + P dz

 =

L

b

a
 aM 

dx
dt

+ N 
dy
dt

+ P 
dz
dt
b  dt

 =

L

b

a
 F # dr

dt
 dt

 =

LC
 F # dr

 W =

LC
 F # T ds

C : r(t) = g(t)i + h(t)j + k(t)k, a … t … b
F = Mi + Nj + Pk

EXAMPLE 4 Find the work done by the force field
along the curve from (0, 0, 0) to (1, 1, 1)

(Figure 16.18).

Solution First we evaluate F on the curve 

.

0
(')'*

 = st2
- t2di + st3

- t4dj + st - t6dk

 F = s y - x2di + sz - y2dj + sx - z2dk

rstd:

ti + t2j + t3k, 0 … t … 1,rstd =sx - z2dk
F = s y - x2di + sz - y2dj +

Substitute 
.z = t3y = t2,

x = t,

y

z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

r(t) � ti � t2j � t3k

FIGURE 16.18 The curve in Example 4.
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Then we find dr dt,

.

Finally, we find and integrate from to 

so,

EXAMPLE 5 Find the work done by the force field  in moving an 
object along the curve C parametrized by 

Solution We begin by writing F along C as a function of t,

Next we compute dr dt,

We then calculate the dot product,

The work done is the line integral

Flow Integrals and Circulation for Velocity Fields

Suppose that F represents the velocity field of a fluid flowing through a region in space (a
tidal basin or the turbine chamber of a hydroelectric generator, for example). Under these
circumstances, the integral of along a curve in the region gives the fluid’s flow along
the curve.

F # T

L

b

a
 F(r(t)) # dr

dt
 dt =

L

1

0
 2t3 dt =

t4

2
d1

0
=

1
2

.

F(r(t)) # dr
dt

= -p sin (pt) cos (pt) + 2t3
+ p sin (pt) cos(pt) = 2t3.

dr
dt

= -p sin (pt) i + 2tj + p cos (pt) k.

> Fsrstdd = cos (pt) i + t2j + sin (pt) k.

0 … t … 1.r(t) = cos (pt) i + t2j + sin (pt) k,
F = xi + yj + zk

 = c25 t 5
-

2
6

 t 6
+

3
4

 t 4
-

3
9

 t 9 d
0

1

=
29
60

.

 Work =

L

1

0
 s2t 4

- 2t 5
+ 3t 3

- 3t 8d dt

 = st3
- t4ds2td + st - t6ds3t2d = 2t4

- 2t5
+ 3t3

- 3t8

 F # dr
dt

= [st3
- t4dj + st - t6dk] # si + 2tj + 3t2kd

t = 1:t = 0F # dr>dt

dr
dt

=
d
dt

 sti + t2j + t3kd = i + 2tj + 3t2k

>
932 Chapter 16: Integration in Vector Fields

DEFINITIONS If r(t) parametrizes a smooth curve C in the domain of a continu-
ous velocity field F, the flow along the curve from is

(5)

The integral in this case is called a flow integral. If the curve starts and ends at the
same point, so that , the flow is called the circulation around the curve.A = B

Flow =

LC
 F # T ds.

A = r(a) to B = r(b)
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The direction we travel along C matters. If we reverse the direction, then T is replaced
by and the sign of the integral changes. We evaluate flow integrals the same way we
evaluate work integrals.

EXAMPLE 6 A fluid’s velocity field is Find the flow along the helix

Solution We evaluate F on the curve,

.

and then find dr dt:

Then we integrate from to 

so,

EXAMPLE 7 Find the circulation of the field around the circle
(Figure 16.19).

Solution On the circle, and

Then

gives

As Figure 16.19 suggests, a fluid with this velocity field is circulating counterclockwise
around the circle.

Flux Across a Simple Plane Curve

A curve in the xy-plane is simple if it does not cross itself (Figure 16.20). When a curve
starts and ends at the same point, it is a closed curve or loop. To find the rate at which a fluid
is entering or leaving a region enclosed by a smooth simple closed curve C in the xy-plane,

 = ct -
sin2 t

2
d

0

2p

= 2p.

 Circulation =

L

2p

0
 F #  

dr
dt

 dt =

L

2p

0
 s1 - sin t cos td dt

-sin t cos t + sin2 t + cos2 tF #  
dr
dt

=

dr
dt

= s -sin tdi + scos tdj.

F = sx - ydi + xj = scos t - sin tdi + scos tdj,

ssin tdj, 0 … t … 2prstd = scos tdi +

F = sx - ydi + xj

 = ccos2 t
2

+ t sin t d
0

p>2
= a0 +

p
2
b - a1

2
+ 0b =

p
2

-
1
2

.

 Flow =

L

t = b

t = a
 F #  

dr
dt

 dt =

L

p>2
0

 s -sin t cos t + t cos t + sin td dt

 = -sin t cos t + t cos t + sin t

 F #  
dr
dt

= scos tds -sin td + stdscos td + ssin tds1d

t =
p
2

:t = 0F # sdr>dtd

dr
dt

= s -sin tdi + scos tdj + k.

>
Substitute x = cos t, z = t, y = sin tF = xi + zj + yk = scos tdi + tj + ssin tdk

ssin tdj + tk, 0 … t … p>2.rstd = scos tdi +

F = xi + zj + yk.

-T

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 933

x

y

FIGURE 16.19 The vector field F and
curve in Example 7.r(t)

Simple,
closed

Not simple,
closed

Simple,
not closed

Not simple,
not closed

FIGURE 16.20 Distinguishing curves that
are simple or closed. Closed curves are also
called loops.

(''')'''*

1
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we calculate the line integral over C of the scalar component of the fluid’s velocity
field in the direction of the curve’s outward-pointing normal vector. The value of this inte-
gral is the flux of F across C. Flux is Latin for flow, but many flux calculations involve no
motion at all. If F were an electric field or a magnetic field, for instance, the integral of

would still be called the flux of the field across C.F # n

F # n,

934 Chapter 16: Integration in Vector Fields

DEFINITION If C is a smooth simple closed curve in the domain of a contin-
uous vector field in the plane, and if n is the outward-
pointing unit normal vector on C, the flux of F across C is

(6)Flux of F across C =

LC
 F # n ds.

F = Msx, ydi + Nsx, ydj

T

z

y

x
k

C

T

z

y

x
k

C

For clockwise motion,
k � T points outward.

For counterclockwise
motion, T � k points
outward.

k � T

T � k

FIGURE 16.21 To find an outward 
unit normal vector for a smooth simple
curve C in the xy-plane that is traversed
counterclockwise as t increases, we take

For clockwise motion, we 
take n = k * T.
n = T * k.

�

Notice the difference between flux and circulation. The flux of F across C is the line
integral with respect to arc length of the scalar component of F in the direction of the
outward normal. The circulation of F around C is the line integral with respect to arc
length of the scalar component of F in the direction of the unit tangent vector. Flux
is the integral of the normal component of F; circulation is the integral of the tangential
component of F.

To evaluate the integral for flux in Equation (6), we begin with a smooth parametrization

that traces the curve C exactly once as t increases from a to b. We can find the outward
unit normal vector n by crossing the curve’s unit tangent vector T with the vector k. But
which order do we choose, or Which one points outward? It depends on
which way C is traversed as t increases. If the motion is clockwise, points outward;
if the motion is counterclockwise, points outward (Figure 16.21). The usual choice
is the choice that assumes counterclockwise motion. Thus, although the value
of the integral in Equation (6) does not depend on which way C is traversed, the formulas
we are about to derive for computing n and evaluating the integral assume counterclock-
wise motion.

In terms of components,

If then

Hence,

We put a directed circle on the last integral as a reminder that the integration around
the closed curve C is to be in the counterclockwise direction. To evaluate this integral, we
express M, dy, N, and dx in terms of the parameter t and integrate from to We
do not need to know n or ds explicitly to find the flux.

t = b.t = a

~

LC
 F # n ds =

LC
 aM 

dy
ds

- N 
dx
ds
b  ds =

F
C

 M dy - N dx.

F # n = Msx, yd 
dy
ds

- Nsx, yd 
dx
ds

.

F = Msx, ydi + Nsx, ydj,

n = T * k = adx
ds

 i +

dy
ds

 jb * k =

dy
ds

 i -
dx
ds

 j.

n = T * k,
T * k

k * T
k * T?T * k

x = gstd,  y = hstd,  a … t … b, 

F # T,

F # n,
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EXAMPLE 8 Find the flux of across the circle in the
xy-plane. (The vector field and curve were shown previously in Figure 16.19.)

Solution The parametrization traces the circle
counterclockwise exactly once. We can therefore use this parametrization in Equation (7).
With

we find

Eq. (7)

The flux of F across the circle is Since the answer is positive, the net flow across the
curve is outward. A net inward flow would have given a negative flux.

p.

 =

L

2p

0
 cos2 t dt =

L

2p

0
 
1 + cos 2t

2
 dt = c t

2
+

sin 2t
4
d

0

2p

= p.

 Flux =

LC
 M dy - N dx =

L

2p

0
 scos2 t - sin t cos t + cos t sin td dt

 N = x = cos t,   dx = dscos td = -sin t dt, 

 M = x - y = cos t - sin t,   dy = dssin td = cos t dt

rstd = scos tdi + ssin tdj, 0 … t … 2p,

x2
+ y2

= 1F = sx - ydi + xj

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 935

Calculating Flux Across a Smooth Closed Plane Curve

(7)

The integral can be evaluated from any smooth parametrization 
that traces C counterclockwise exactly once.a … t … b,

x = gstd, y = hstd, 

sFlux of F = Mi + Nj across Cd =

F
C

 M dy - N dx

Exercises 16.2

Vector Fields
Find the gradient fields of the functions in Exercises 1–4.

1.

2.

3.

4.

5. Give a formula for the vector field in
the plane that has the property that F points toward the origin with
magnitude inversely proportional to the square of the distance
from (x, y) to the origin. (The field is not defined at (0, 0).)

6. Give a formula for the vector field in
the plane that has the properties that at (0, 0) and that at
any other point (a, b), F is tangent to the circle 

and points in the clockwise direction with magnitude

Line Integrals of Vector Fields
In Exercises 7–12, find the line integrals of F from (0, 0, 0) to
(1, 1, 1) over each of the following paths in the accompanying figure.

ƒ F ƒ = 2a2
+ b2.

a2
+ b2

x 2
+ y 2

=

F = 0
F = Msx, ydi + Nsx, ydj

F = Msx, ydi + Nsx, ydj
gsx, y, zd = xy + yz + xz

gsx, y, zd = ez
- ln sx2

+ y2d
ƒsx, y, zd = ln2x2

+ y2
+ z2

ƒsx, y, zd = sx2
+ y2

+ z2d-1>2

a. The straight-line path 

b. The curved path 

c. The path consisting of the line segment from (0, 0, 0)
to (1, 1, 0) followed by the segment from (1, 1, 0) to (1, 1, 1)

7. 8.

9. 10.

11.

12.

z

y

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)C1

C2

C3

C4

F = s y + zdi + sz + xdj + sx + ydk
F = s3x2

- 3xdi + 3zj + k

F = xyi + yzj + xzkF = 1zi - 2xj + 1yk

F = [1>sx2
+ 1d]jF = 3yi + 2xj + 4zk

C3 ´ C4

rstd = ti + t2j + t4k,  0 … t … 1C2:

rstd = ti + tj + tk,  0 … t … 1C1:
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Line Integrals with Respect to x, y, and z
In Exercises 13–16, find the line integrals along the given path C.

13. , where C: for 

14. , where C: for 

15. , where C is given in the accompanying figure.

16. , where C is given in the accompanying figure.

17. Along the curve evaluate each
of the following integrals.

a.

b.

c.

18. Along the curve 
evaluate each of the following integrals.

a. b. c.

Work
In Exercises 19–22, find the work done by F over the curve in the
direction of increasing t.

19.

20.

21.

22.
rstd = ssin tdi + scos tdj + st>6dk,  0 … t … 2p
F = 6zi + y2j + 12xk 

rstd = ssin tdi + scos tdj + tk,  0 … t … 2p
F = zi + xj + yk 

rstd = scos tdi + ssin tdj + st>6dk,  0 … t … 2p
F = 2yi + 3xj + sx + ydk 
rstd = ti + t2j + tk,  0 … t … 1

F = xyi + yj - yzk

LC
 xyz dz

LC
 xz dy

LC
 xz dx

r(t) = (cos t)i + (sin t)j - (cos t)k, 0 … t … p,
LC

 (x + y - z) dz

LC
 (x + y - z) dy

LC
 (x + y - z) dx

r(t) = ti - j + t2k, 0 … t … 1,

x

y

(0, 0)

(0, 3) (1, 3)
C

y 5 3x

LC
 2x + y dx

x

y

(0, 0) (3, 0)

(3, 3)

C

LC
 (x2

+ y2) dy

1 … t … 2x = t, y = t2,
LC

 
x
y dy

0 … t … 3x = t, y = 2t + 1,
LC

 (x - y) dx

936 Chapter 16: Integration in Vector Fields

Line Integrals in the Plane

23. Evaluate along the curve from
to (2, 4).

24. Evaluate counterclockwise around
the triangle with vertices (0, 0), (1, 0), and (0, 1).

25. Evaluate for the vector field along the

curve from (4, 2) to 

26. Evaluate for the vector field counter-
clockwise along the unit circle from (1, 0) to (0, 1).

Work, Circulation, and Flux in the Plane
27. Work Find the work done by the force 

over the straight line from (1, 1) to (2, 3).

28. Work Find the work done by the gradient of 
counterclockwise around the circle from (2, 0) to
itself.

29. Circulation and flux Find the circulation and flux of the fields

around and across each of the following curves.

a. The circle 

b. The ellipse 

30. Flux across a circle Find the flux of the fields

across the circle

In Exercises 31–34, find the circulation and flux of the field F around
and across the closed semicircular path that consists of the semicircu-
lar arch followed by the
line segment 

31. 32.

33. 34.

35. Flow integrals Find the flow of the velocity field 
along each of the following paths from (1, 0)

to in the xy-plane.

a. The upper half of the circle 

b. The line segment from (1, 0) to 

c. The line segment from (1, 0) to followed by the line
segment from to 

36. Flux across a triangle Find the flux of the field F in Exercise
35 outward across the triangle with vertices (1, 0), (0, 1), 

37. Find the flow of the velocity field along each of
the following paths from (0, 0) to (2, 4).

a. b.

c. Use any path from (0, 0) to (2, 4) different from parts (a) 
and (b).

x

y

(0, 0)

(2, 4)

2

y 5 x2

x

y

(0, 0)

(2, 4)

2

y 5 2x

F = y2i + 2xyj

s -1, 0d.

s -1, 0ds0, -1d
s0, -1d
s -1, 0d

x2
+ y2

= 1

s -1, 0d
sx2

+ y2djsx + ydi -

F =

F = -y2i + x2jF = -yi + xj

F = x2i + y2jF = xi + yj

r2std = ti, -a … t … a.
r1std = sa cos tdi + sa sin tdj, 0 … t … p,

rstd = sa cos tdi + sa sin tdj,  0 … t … 2p.

F1 = 2xi - 3yj and F2 = 2xi + sx - ydj

rstd = scos tdi + s4 sin tdj,  0 … t … 2p

rstd = scos tdi + ssin tdj,  0 … t … 2p

F1 = xi + yj and F2 = -yi + xj

x2
+ y2

= 4
ƒsx, yd = sx + yd2

F = xyi + sy - xdj

x2
+ y2

= 1
F = yi - xj1C F # dr

s1, -1d .x = y2

F = x2i - yj1C F # T ds

1C sx - yd dx + sx + yd dy

s -1, 1d
y = x2

1C  xy dx + sx + yd dy
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38. Find the circulation of the field around each
of the following closed paths.

a.

b.

c. Use any closed path  different from parts (a) and (b).

Vector Fields in the Plane
39. Spin field Draw the spin field

(see Figure 16.12) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle

40. Radial field Draw the radial field

(see Figure 16.11) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle

41. A field of tangent vectors

a. Find a field in the xy-plane with the
property that at any point G is a vector of

magnitude tangent to the circle 
and pointing in the counterclockwise direction.

(The field is undefined at (0, 0).)

b. How is G related to the spin field F in Figure 16.12?

42. A field of tangent vectors

a. Find a field in the xy-plane with the
property that at any point G is a unit vector
tangent to the circle and pointing in the
clockwise direction.

b. How is G related to the spin field F in Figure 16.12?

x2
+ y2

= a2
+ b2

sa, bd Z s0, 0d,
G = Psx, ydi + Qsx, ydj

a2
+ b2

x2
+ y2

=2a2
+ b2

sa, bd Z s0, 0d,
G = Psx, ydi + Qsx, ydj

x2
+ y2

= 1.

F = xi + yj

x2
+ y2

= 4.

F = -

y

2x2
+ y2

 i +

x

2x2
+ y2

 j

x

y

x2 1 y2 5 4

x

y

(1, 1)

(1, –1)

(–1, 1)

(–1, –1)

F = yi + (x + 2y)j

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 937

43. Unit vectors pointing toward the origin Find a field 
in the xy-plane with the property that at each

point F is a unit vector pointing toward the origin.
(The field is undefined at (0, 0).)

44. Two “central” fields Find a field in
the xy-plane with the property that at each point 
F points toward the origin and is (a) the distance from (x, y)
to the origin, (b) inversely proportional to the distance from (x, y)
to the origin. (The field is undefined at (0, 0).)

45. Work and area Suppose that ƒ(t) is differentiable and positive
for Let C be the path 
and Is there any relation between the value of the work
integral

and the area of the region bounded by the t-axis, the graph of ƒ,
and the lines and Give reasons for your answer.

46. Work done by a radial force with constant magnitude A par-
ticle moves along the smooth curve from (a, ƒ(a)) to
(b, ƒ(b)). The force moving the particle has constant magnitude k
and always points away from the origin. Show that the work done
by the force is

Flow Integrals in Space
In Exercises 47–50, F is the velocity field of a fluid flowing through a
region in space. Find the flow along the given curve in the direction of
increasing t.

47.

48.

49.

50.

51. Circulation Find the circulation of 
around the closed path consisting of the following three curves
traversed in the direction of increasing t.

y

z

x

(1, 0, 0) (0, 1, 0)

0, 1,

C1 C2

C3

⎛
⎝

⎛
⎝

�
2

 C3: rstd = ti + s1 - tdj,  0 … t … 1

 C2: rstd = j + sp>2ds1 - tdk,  0 … t … 1

 C1: rstd = scos tdi + ssin tdj + tk, 0 … t … p>2

F = 2xi + 2zj + 2yk

0 … t … 2prstd = s -2 cos tdi + s2 sin tdj + 2tk,  
F = -yi + xj + 2k

rstd = scos tdi + ssin tdk,  0 … t … p

F = sx - zdi + xk 
rstd = 3tj + 4tk,  0 … t … 1
F = x2i + yzj + y2k 
rstd = ti + t2j + k,  0 … t … 2
F = -4xyi + 8yj + 2k 

LC
 F # T ds = k C sb2

+ sƒsbdd2d1>2
- sa2

+ sƒsadd2d1>2 D .

y = ƒsxd

t = b?t = a

LC
 F # dr

F = yi.
a … t … b,rstd = ti + ƒstdj,a … t … b.

ƒ F ƒ

sx, yd Z s0, 0d,
F = Msx, ydi + Nsx, ydj

sx, yd Z s0, 0d,
Msx, ydi + Nsx, ydj

F =
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52. Zero circulation Let C be the ellipse in which the plane
meets the cylinder Show, with-

out evaluating either line integral directly, that the circulation of
the field around C in either direction is zero.

53. Flow along a curve The field is the
velocity field of a flow in space. Find the flow from (0, 0, 0) to
(1, 1, 1) along the curve of intersection of the cylinder and
the plane (Hint: Use as the parameter.)

54. Flow of a gradient field Find the flow of the field 

a. Once around the curve C in Exercise 52, clockwise as viewed
from above

b. Along the line segment from (1, 1, 1) to s2, 1, -1d.

F = §sxy2z3d:

y

z

x

(1, 1, 1)

y � x2

z � x

t = xz = x .
y = x2

F = xyi + yj - yzk

F = xi + yj + zk

x2
+ y2

= 12.2x + 3y - z = 0

938 Chapter 16: Integration in Vector Fields

COMPUTER EXPLORATIONS
In Exercises 55–60, use a CAS to perform the following steps for
finding the work done by force F over the given path:

a. Find dr for the path 

b. Evaluate the force F along the path.

c. Evaluate 

55.

56.

57.

58.

59.

60.

0 … t … 2ps2 sin2 t - 1dk, 
F = sx2ydi +

1
3

 x3j + xyk; rstd = scos tdi + ssin tdj +

rstd = ssin tdi + scos tdj + ssin 2tdk, -p>2 … t … p>2F = s2y + sin xdi + sz2
+ s1>3dcos ydj + x4 k; 

1 … t … 4
F = 2xyi - y2j + zex k; rstd = - ti + 1tj + 3tk, 
0 … t … 2p

rstd = (2 cos t)i + (3 sin t)j + k, sz + xy cos xyzdk; 
F = s y + yz cos xyzdi + sx2

+ xz cos xyzdj +

0 … t … p

F =

3
1 + x2 i +

2
1 + y2 j; rstd = scos tdi + ssin tdj, 

0 … t … 2p
F = xy6 i + 3xsxy5

+ 2dj; rstd = s2 cos tdi + ssin tdj, 
LC

 F # dr.

rstd = gstdi + hstdj + kstdk.

16.3 Path Independence, Conservative Fields, and Potential Functions

A gravitational field G is a vector field that represents the effect of gravity at a point in
space due to the presence of a massive object. The gravitational force on a body of mass m
placed in the field is given by F mG. Similarly, an electric field E is a vector field in
space that represents the effect of electric forces on a charged particle placed within it. The
force on a body of charge q placed in the field is given by F qE. In gravitational and elec-
tric fields, the amount of work it takes to move a mass or charge from one point to another
depends on the initial and final positions of the object—not on which path is taken between
these positions. In this section we study vector fields with this property and the calculation
of work integrals associated with them.

Path Independence

If A and B are two points in an open region D in space, the line integral of F along C from
A to B for a field F defined on D usually depends on the path C taken, as we saw in Sec-
tion 16.1. For some special fields, however, the integral’s value is the same for all paths
from A to B.

=

=

DEFINITIONS Let F be a vector field defined on an open region D in space,
and suppose that for any two points A and B in D the line integral along
a path C from A to B in D is the same over all paths from A to B. Then the integral

is path independent in D and the field F is conservative on D.1C F # dr

1C F # dr

The word conservative comes from physics, where it refers to fields in which the principle
of conservation of energy holds. When a line integral is independent of the path C from 
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16.3 Path Independence, Conservative Fields, and Potential Functions 939

point A to point B, we sometimes represent the integral by the symbol rather than the

usual line integral symbol . This substitution helps us remember the path-independence 

property.
Under differentiability conditions normally met in practice, we will show that a field

F is conservative if and only if it is the gradient field of a scalar function ƒ—that is, if and
only if for some ƒ. The function ƒ then has a special name. F = §ƒ

1C

1
B

A

DEFINITION If F is a vector field defined on D and for some scalar
function ƒ on D, then ƒ is called a potential function for F.

F = §ƒ

A gravitational potential is a scalar function whose gradient field is a gravitational field,
an electric potential is a scalar function whose gradient field is an electric field, and so on.
As we will see, once we have found a potential function ƒ for a field F, we can evaluate all
the line integrals in the domain of F over any path between A and B by

(1)

If you think of for functions of several variables as being something like the deriv-
ative for functions of a single variable, then you see that Equation (1) is the vector cal-
culus analogue of the Fundamental Theorem of Calculus formula

Conservative fields have other remarkable properties. For example, saying that F is
conservative on D is equivalent to saying that the integral of F around every closed path in
D is zero. Certain conditions on the curves, fields, and domains must be satisfied for
Equation (1) to be valid. We discuss these conditions next.

Assumptions on Curves, Vector Fields, and Domains

In order for the computations and results we derive below to be valid, we must assume cer-
tain properties for the curves, surfaces, domains, and vector fields we consider. We give
these assumptions in the statements of theorems, and they also apply to the examples and
exercises unless otherwise stated.

The curves we consider are piecewise smooth. Such curves are made up of finitely
many smooth pieces connected end to end, as discussed in Section 13.1. We will treat vec-
tor fields F whose components have continuous first partial derivatives.

The domains D we consider are open regions in space, so every point in D is the cen-
ter of an open ball that lies entirely in D (see Section 13.1). We also assume D to be conn-
ected. For an open region, this means that any two points in D can be joined by a smooth
curve that lies in the region. Finally, we assume D is simply connected, which means that
every loop in D can be contracted to a point in D without ever leaving D. The plane with a
disk removed is a two-dimensional region that is not simply connected; a loop in the plane
that goes around the disk cannot be contracted to a point without going into the “hole” left
by the removed disk (see Figure 16.22c). Similarly, if we remove a line from space, the re-
maining region D is not simply connected. A curve encircling the line cannot be shrunk to
a point while remaining inside D.

L

b

a
 ƒ¿sxd dx = ƒsbd - ƒsad.

ƒ¿

§ƒ

L

B

A
 F # dr =

L

B

A
 §ƒ # dr = ƒsBd - ƒsAd.
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940 Chapter 16: Integration in Vector Fields

THEOREM 1—Fundamental Theorem of Line Integrals Let C be a smooth curve
joining the point A to the point B in the plane or in space and parametrized by
r(t). Let ƒ be a differentiable function with a continuous gradient vector F
on a domain D containing C. Then

LC
 F # dr = ƒ(B) - ƒ(A).

= ¥ƒ

Connectivity and simple connectivity are not the same, and neither property implies
the other. Think of connected regions as being in “one piece” and simply connected re-
gions as not having any “loop-catching holes.” All of space itself is both connected and
simply connected. Figure 16.22 illustrates some of these properties.

Caution Some of the results in this chapter can fail to hold if applied to situations where
the conditions we’ve imposed do not hold. In particular, the component test for conservative
fields, given later in this section, is not valid on domains that are not simply connected (see
Example 5).

Line Integrals in Conservative Fields

Gradient fields F are obtained by differentiating a scalar function ƒ. A theorem analogous
to the Fundamental Theorem of Calculus gives a way to evaluate the line integrals of
gradient fields.

Like the Fundamental Theorem, Theorem 1 gives a way to evaluate line integrals with-
out having to take limits of Riemann sums or finding the line integral by the procedure
used in Section 16.2. Before proving Theorem 1, we give an example.

EXAMPLE 1 Suppose the force field F is the gradient of the function

Find the work done by F in moving an object along a smooth curve C joining (1, 0, 0) to
(0, 0, 2) that does not pass through the origin.

Solution An application of Theorem 1 shows that the work done by F along any smooth
curve C joining the two points and not passing through the origin is

The gravitational force due to a planet, and the electric force associated with a
charged particle, can both be modeled by the field F given in Example 1 up to a constant
that depends on the units of measurement.

Proof of Theorem 1 Suppose that A and B are two points in region D and that
is a smooth curve in D joining A to B. C: rstd = gstdi + hstdj + kstdk, a … t … b,

LC
 F # dr = ƒ(0, 0, 2) - ƒ(1, 0, 0) = -

1
4

- (-1) =  
3
4

.

ƒ(x, y, z) = -
1

x2
+ y2

+ z2 .

= ¥ƒ

y

x

(a)

Simply connected

(b)

Simply connected

z

y

x

y

x

C1

(c)

Not simply connected

z

y

x

C2

(d)

Not simply connected

FIGURE 16.22 Four connected regions.
In (a) and (b), the regions are simply
connected. In (c) and (d), the regions are
not simply connected because the curves

and cannot be contracted to a point
inside the regions containing them.

C2C1
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We use the abbreviated form for the parametrization of the curve.
Along the curve, ƒ is a differentiable function of t and

Therefore,

So we see from Theorem 1 that the line integral of a gradient field F is straight-
forward to compute once we know the function ƒ. Many important vector fields arising in
applications are indeed gradient fields. The next result, which follows from Theorem 1,
shows that any conservative field is of this type.

= ¥ƒ

 = ƒsgstd, hstd, kstdd d
a

b

= ƒsBd - ƒsAd.

r(a) = A, r(b) = B 
LC

 F # dr =

L

t = b

t = a
 F # dr

dt
 dt =

L

b

a
 
dƒ
dt

 dt

 = §ƒ # adx
dt

 i +

dy
dt

 j +
dz
dt

 kb = §ƒ # dr
dt

= F # dr
dt

.

 
dƒ
dt

=

0ƒ
0x  

dx
dt

+

0ƒ
0y  

dy
dt

+

0ƒ
0z  

dz
dt

r(t) = xi + yj + zk

16.3 Path Independence, Conservative Fields, and Potential Functions 941

Chain Rule in Section 14.4 
with
z = kstd

y = hstd,x = gstd,

Because F = §ƒ

THEOREM 2—Conservative Fields are Gradient Fields Let 
be a vector field whose components are continuous throughout an open connected
region D in space. Then F is conservative if and only if F is a gradient field 
for a differentiable function ƒ.

¥ƒ

F = Mi + Nj + Pk

Theorem 2 says that F if and only if for any two points A and B in the region D,
the value of line integral is independent of the path C joining A to B in D.

Proof of Theorem 2 If F is a gradient field, then F for a differentiable function ƒ,
and Theorem 1 shows that The value of the line integral does
not depend on C, but only on its endpoints A and B. So the line integral is path independ-
ent and F satisfies the definition of a conservative field.

On the other hand, suppose that F is a conservative vector field. We want to find a
function ƒ on D satisfying . First, pick a point A in D and set For any
other point B in D define to equal where C is any smooth path in D from A
to B. The value of does not depend on the choice of C, since F is conservative. To show
that we need to demonstrate that , and 

Suppose that B has coordinates (x, y, z). By definition, the value of the function ƒ at
a nearby point located at is , where is any path from A to . We 

take a path from A to B formed by first traveling along to arrive at 
and then traveling along the line segment L from to B (Figure 16.23). When is
close to B, the segment L lies in D and, since the value is independent of the path
from A to B,

Differentiating, we have

0

0x ƒ(x, y, z) =
0

0x a 
LC0

 F # dr +

LL
 F # drb .

ƒ(x, y, z) =

LC0

 F # dr +

LL
 F # dr.

ƒ(B)
B0B0

B0C0C = C0 h  L

B0C01C0
 F # dr(x0, y, z)B0

0ƒ>0z = P.0ƒ>0x = M, 0ƒ>0y = N§ƒ = F
ƒ(B)

1C F # dr,ƒ(B)
ƒ(A) = 0.§ƒ = F

1C F
# dr = ƒ(B) - ƒ(A).

= ¥ƒ

1C F
# dr

= ¥ƒ

z

y

x

B
L

A

D

B0

x0

x

C0
(x0, y, z)

(x, y, z)

FIGURE 16.23 The function 
in the proof of Theorem 2 is computed
by a line integral 

from A to , plus a line integral 
along a line segment L parallel to the 
x-axis and joining to B located at 
(x, y, z). The value of ƒ at A is ƒ(A) = 0.

B0

1L F # drB0

1C0
 F # dr = ƒ(B0)

ƒ(x, y, z)
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Only the last term on the right depends on x, so

Now parametrize L as Then ,
and Substitution gives

by the Fundamental Theorem of Calculus. The partial derivatives and
follow similarly, showing that

EXAMPLE 2 Find the work done by the conservative field

where

along any smooth curve C joining the point A to B

Solution With we have

A very useful property of line integrals in conservative fields comes into play when the
path of integration is a closed curve, or loop. We often use the notation for integration
around a closed path (discussed with more detail in the next section).

D
C

 = -24 + 27 = 3.

 = s1ds6ds -4d - s -1ds3ds9d

 = xyz ƒ s1,6, -4d - xyz ƒ s-1,3,9d

 = ƒsBd - ƒsAd

 
LC

 F # dr =

L

B

A
 §ƒ # dr

ƒsx, y, zd = xyz,

s1, 6, -4d.s -1, 3, 9d

ƒ(x, y, z) = xyz,F = yzi + xzj + xyk = §ƒ,

F = §ƒ.0ƒ>0z = P
0ƒ>0y = N

0

0x ƒ(x, y, z) =
0

0x 
L

x

x0

 M(t, y, z) dt = M(x, y, z)

1L F # dr = 1
x

x0
 M(t, y, z) dt.

F # dr>dt = Mdr>dt = i,r(t) = ti + yj + zk, x0 … t … x.

0

0x ƒ(x, y, z) =
0

0x 
LL

 F # dr.
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and path 
independence
F = §ƒ

Theorem  1

THEOREM 3—Loop Property of Conservative Fields The following statements
are equivalent.

1. around every loop (that is, closed curve C) in D.

2. The field F is conservative on D.

D
C

 F # dr = 0

Proof that Part 1 Part 2 We want to show that for any two points A and B in D, the
integral of has the same value over any two paths and from A to B. We reverse
the direction on to make a path from B to A (Figure 16.24). Together, and 
make a closed loop C, and by assumption,

Thus, the integrals over and give the same value. Note that the definition of 
shows that changing the direction along a curve reverses the sign of the line integral.

F # drC2C1

LC1

 F # dr -

LC2

 F # dr =

LC1

 F # dr +

L-C2

 F # dr =

LC
 F # dr = 0.

-C2C1-C2C2

C2C1F # dr
Q

A

B

A

B

C1
C1

C2

–C2

FIGURE 16.24 If we have two paths from
A to B, one of them can be reversed to
make a loop.
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Proof that Part 2 Part 1 We want to show that the integral of is zero over any
closed loop C. We pick two points A and B on C and use them to break C into two pieces:

from A to B followed by from B back to A (Figure 16.25). Then

The following diagram summarizes the results of Theorems 2 and 3.

Theorem 2 Theorem 3

Two questions arise:

1. How do we know whether a given vector field F is conservative?

2. If F is in fact conservative, how do we find a potential function ƒ (so that )?

Finding Potentials for Conservative Fields

The test for a vector field being conservative involves the equivalence of certain partial 
derivatives of the field components.

F = §ƒ

F = §ƒ on D 3 F conservative 3

F
C

F # dr = 0
on D

over any loop in D

F
C

 F # dr =

LC1

 F # dr +

LC2

 F # dr =

L

B

A
 F # dr -

L

B

A
 F # dr = 0.

C2C1

F # drQ

16.3 Path Independence, Conservative Fields, and Potential Functions 943

Mixed Derivative Theorem,
Section 14.3

A

B

A

B

C2

C1

–C2

C1

FIGURE 16.25 If A and B lie on a loop,
we can reverse part of the loop to make
two paths from A to B.

Component Test for Conservative Fields
Let be a field on a connected and
simply connected domain whose component functions have continuous first partial
derivatives. Then, F is conservative if and only if

(2)
0P
0y =

0N
0z ,  0M

0z =
0P
0x ,  and 0N

0x =
0M
0y .

F = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk

Proof that Equations (2) hold if F is conservative There is a potential function ƒ such
that

Hence,

The others in Equations (2) are proved similarly.

The second half of the proof, that Equations (2) imply that F is conservative, is a con-
sequence of Stokes’ Theorem, taken up in Section 16.7, and requires our assumption that
the domain of F be simply connected.

 =
0

0z a0ƒ
0y b =

0N
0z .

 =

0
2ƒ

0z 0y

 
0P
0y =

0

0y a0ƒ
0z b =

0
2ƒ

0y 0z

F = Mi + Nj + Pk =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k.
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Once we know that F is conservative, we usually want to find a potential function for F.
This requires solving the equation or

for ƒ. We accomplish this by integrating the three equations

as illustrated in the next example.

EXAMPLE 3 Show that is con-
servative over its natural domain and find a potential function for it.

Solution The natural domain of F is all of space, which is connected and simply con-
nected. We apply the test in Equations (2) to

and calculate

The partial derivatives are continuous, so these equalities tell us that F is conservative, so
there is a function ƒ with (Theorem 2).

We find ƒ by integrating the equations

(3)

We integrate the first equation with respect to x, holding y and z fixed, to get

We write the constant of integration as a function of y and z because its value may depend
on y and z, though not on x. We then calculate from this equation and match it with
the expression for in Equations (3). This gives

so Therefore, g is a function of z alone, and

We now calculate from this equation and match it to the formula for in Equa-
tions (3). This gives

so

hszd =
z2

2
+ C.

xy +
dh
dz

= xy + z, or dh
dz

= z,

0ƒ>0z0ƒ>0z

ƒsx, y, zd = ex cos y + xyz + hszd.

0g>0y = 0.

-ex sin y + xz +

0g
0y = xz - ex sin y,

0ƒ>0y
0ƒ>0y

ƒsx, y, zd = ex cos y + xyz + gsy, zd.

0ƒ
0x = ex cos y + yz,  0ƒ

0y = xz - ex sin y,  0ƒ
0z = xy + z .

§ƒ = F

0P
0y = x =

0N
0z ,  0M

0z = y =
0P
0x ,  0N

0x = -ex sin y + z =
0M
0y .

M = ex cos y + yz,  N = xz - ex sin y,  P = xy + z

F = sex cos y + yzdi + sxz - ex sin ydj + sxy + zdk

0ƒ
0x = M,  0ƒ

0y = N,  0ƒ
0z = P,

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k = Mi + Nj + Pk

§ƒ = F
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Hence,

We have infinitely many potential functions of F, one for each value of C.

EXAMPLE 4 Show that is not conservative.

Solution We apply the component test in Equations (2) and find immediately that

The two are unequal, so F is not conservative. No further testing is required.

EXAMPLE 5 Show that the vector field

satisfies the equations in the Component Test, but is not conservative over its natural do-
main. Explain why this is possible.

Solution We have and If we apply the
Component Test, we find

So it may appear that the field F passes the Component Test. However, the test assumes
that the domain of F is simply connected, which is not the case. Since cannot
equal zero, the natural domain is the complement of the z-axis and contains loops that can-
not be contracted to a point. One such loop is the unit circle C in the xy-plane. The circle is
parametrized by This loop wraps around the z-axis
and cannot be contracted to a point while staying within the complement of the z-axis.

To show that F is not conservative, we compute the line integral around the
loop C. First we write the field in terms of the parameter t:

Next we find and then calculate the line integral as

Since the line integral of F around the loop C is not zero, the field F is not conservative, by
Theorem 3.

Example 5 shows that the Component Test does not apply when the domain of the field
is not simply connected. However, if we change the domain in the example so that it is re-
stricted to the ball of radius 1 centered at the point (2, 2, 2), or to any similar ball-shaped re-
gion which does not contain a piece of the z-axis, then this new domain D is simply connected.
Now the partial derivative Equations (2), as well as all the assumptions of the Component
Test, are satisfied. In this new situation, the field F in Example 5 is conservative on D.

F
C

 F # dr =

F
C

 F # dr
dt

 dt =

L

2p

0
 Asin2 t + cos2 t B  dt = 2p.

dr>dt = (-sin t)i + (cos t)j,

F =

-y

x2
+ y2 i +

x
x2

+ y2 j =
-sin t

sin2
 t + cos2

 t
 i +

cos t
sin2

 t + cos2
 t
 j = (-sin t)i + (cos t)j.

D
C

 F # dr

r(t) = (cos t)i + (sin t)j, 0 … t … 2p.

x2
+ y2

0P
0y = 0 =

0N
0z ,    0P

0x = 0 =
0M
0z ,    and    0M

0y =

y2
- x2

(x2
+ y2)2 =

0N
0x .

P = 0.M = -y>(x2
+ y2), N = x>(x2

+ y2),

F =

-y

x2
+ y2 i +

x
x2

+ y2 j + 0k

0P
0y =

0

0y scos zd = 0,  0N
0z =

0

0z s -zd = -1.

F = s2x - 3di - zj + scos zdk

ƒsx, y, zd = ex cos y + xyz +
z2

2
+ C.

16.3 Path Independence, Conservative Fields, and Potential Functions 945
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Just as we must be careful with a function when determining if it satisfies a property
throughout its domain (like continuity or the intermediate value property), so must we also
be careful with a vector field in determining the properties it may or may not have over its
assigned domain.

Exact Differential Forms

It is often convenient to express work and circulation integrals in the differential form

discussed in Section 16.2. Such line integrals are relatively easy to evaluate if
is the total differential of a function ƒ and C is any path joining the

two points from A to B. For then

is conservative.

Theorem 1

Thus,

just as with differentiable functions of a single variable.

L

B

A
 df = ƒsBd - ƒsAd,

= ƒsBd - ƒsAd.

§ƒ=

L

B

A
 §ƒ # dr

 
LC

 M dx + N dy + P dz =

LC
  

0ƒ
0x  dx +

0ƒ
0y  dy +

0ƒ
0z  dz

M dx + N dy + P dz

LC
 M dx + N dy + P dz
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DEFINITIONS Any expression 
is a differential form. A differential form is exact on a domain D in space if

for some scalar function ƒ throughout D.

M dx + N dy + P dz =

0f
0x dx +

0ƒ
0y  dy +

0ƒ
0z  dz = dƒ

Msx, y, zd dx + Nsx, y, zd dy + Psx, y, zd dz

Component Test for Exactness of 
The differential form is exact on a connected and simply
connected domain if and only if

This is equivalent to saying that the field is conservative.F = Mi + Nj + Pk

0P
0y =

0N
0z ,  0M

0z =
0P
0x ,  and 0N

0x =
0M
0y .

M dx + N dy + P dz
M dx + N dy + P dz

Notice that if on D, then is the gra-
dient field of ƒ on D. Conversely, if then the form is exact.
The test for the form’s being exact is therefore the same as the test for F being conservative.

M dx + N dy + P dzF = §ƒ,
F = Mi + Nj + PkM dx + N dy + P dz = dƒ
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Exercises 16.3

Testing for Conservative Fields
Which fields in Exercises 1–6 are conservative, and which are not?

1.

2.

3.

4.

5.

6.

Finding Potential Functions
In Exercises 7–12, find a potential function ƒ for the field F.

7. F = 2xi + 3yj + 4zk

F = sex cos ydi - sex sin ydj + zk

F = sz + ydi + zj + sy + xdk
F = -yi + xj

F = yi + sx + zdj - yk

F = s y sin zdi + sx sin zdj + sxy cos zdk
F = yzi + xzj + xyk

8.

9.

10.

11.

12.

a y

21 - y2 z2
+

1
z bk

F =

y

1 + x2 y2 i + a x

1 + x2 y2 +

z

21 - y2 z2
b j +

asec2sx + yd +

y

y2
+ z2 b j +

z
y2

+ z2 k

F = sln x + sec2sx + yddi +

F = s y sin zdi + sx sin zdj + sxy cos zdk

F = ey + 2zsi + xj + 2xkd

F = s y + zdi + sx + zdj + sx + ydk

EXAMPLE 6 Show that is exact and evaluate the integral

over any path from (1, 1, 1) to 

Solution We let and apply the Test for Exactness:

These equalities tell us that is exact, so

for some function ƒ, and the integral’s value is 
We find ƒ up to a constant by integrating the equations

(4)

From the first equation we get

The second equation tells us that

Hence, g is a function of z alone, and

The third of Equations (4) tells us that

Therefore,

The value of the line integral is independent of the path taken from (1, 1, 1) to (2, 3, ,
and equals

ƒs2, 3, -1d - ƒs1, 1, 1d = 2 + C - s5 + Cd = -3.

-1)

ƒsx, y, zd = xy + 4z + C.

0ƒ
0z = 0 +

dh
dz

= 4,  or hszd = 4z + C.

ƒsx, y, zd = xy + hszd.

0ƒ
0y = x +

0g
0y = x,    or    

0g
0y = 0.

ƒsx, y, zd = xy + gsy, zd.

0ƒ
0x = y,  0ƒ

0y = x,  0ƒ
0z = 4.

ƒs2, 3, -1d - ƒs1, 1, 1d.

y dx + x dy + 4 dz = dƒ

y dx + x dy + 4 dz

0P
0y = 0 =

0N
0z ,  0M

0z = 0 =
0P
0x ,  0N

0x = 1 =
0M
0y .

M = y, N = x, P = 4

s2, 3, -1d.

L

s2,3, -1d

s1,1,1d
y dx + x dy + 4 dz

y dx + x dy + 4 dz
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Exact Differential Forms
In Exercises 13–17, show that the differential forms in the integrals
are exact. Then evaluate the integrals.

13.

14.

15.

16.

17.

Finding Potential Functions to Evaluate Line Integrals
Although they are not defined on all of space the fields associated
with Exercises 18–22 are simply connected and the Component Test
can be used to show they are conservative. Find a potential function
for each field and evaluate the integrals as in Example 6.

18.

19.

20.

21.

22.

Applications and Examples
23. Revisiting Example 6 Evaluate the integral

from Example 6 by finding parametric equations for the line seg-
ment from (1, 1, 1) to and evaluating the line integral
of along the segment. Since F is conservative,
the integral is independent of the path.

24. Evaluate

along the line segment C joining (0, 0, 0) to (0, 3, 4).

Independence of path Show that the values of the integrals in
Exercises 25 and 26 do not depend on the path taken from A to B.

25.

26.

In Exercises 27 and 28, find a potential function for F.

27.

28. F = se x ln ydi + ae x

y + sin zb j + s y cos zdk

F =

2x
y  i + a1 - x2

y2 b j,  {(x, y): y 7 0}

L

B

A
 
x dx + y dy + z dz

2x2
+ y2

+ z2

L

B

A
 z2 dx + 2y dy + 2xz dz

LC
 x2 dx + yz dy + s y2>2d dz

F = yi + xj + 4k
s2, 3, -1d

L

s2,3, -1d

s1,1,1d
 y dx + x dy + 4 dz

L

s2,2,2d

s-1, -1, -1d
 
2x dx + 2y dy + 2z dz

x2
+ y2

+ z2

L

s2,2,2d

s1,1,1d
 
1
y  dx + a1z -

x

y2 b  dy -

y

z2 dz

L

s2,1,1d

s1,2,1d
 s2x ln y - yzd dx + ax2

y - xzb  dy - xy dz

L

s1,2,3d

s1,1,1d
 3x2 dx +

z2

y  dy + 2z ln y dz

L

s1,p>2,2d

s0,2,1d
 2 cos y dx + a1y - 2x sin yb  dy +

1
z  dz

R3,

L

s0,1,1d

s1,0,0d
 sin y cos x dx + cos y sin x dy + dz

L

s3,3,1d

s0,0,0d
 2x dx - y2 dy -

4
1 + z2 dz

L

s1,2,3d

s0,0,0d
 2xy dx + sx2

- z2d dy - 2yz dz

L

s3,5,0d

s1,1,2d
 yz dx + xz dy + xy dz

L

s2,3, -6d

s0,0,0d
 2x dx + 2y dy + 2z dz
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29. Work along different paths Find the work done by 
over the following paths from

(1, 0, 0) to (1, 0, 1).

a. The line segment 

b. The helix 

c. The x-axis from (1, 0, 0) to (0, 0, 0) followed by the parabola
from (0, 0, 0) to (1, 0, 1)

30. Work along different paths Find the work done by 
over the following

paths from (1, 0, 1) to 

a. The line segment 

b. The line segment from (1, 0, 1) to the origin followed by the
line segment from the origin to 

c. The line segment from (1, 0, 1) to (1, 0, 0), followed by the
x-axis from (1, 0, 0) to the origin, followed by the parabola

from there to 

z

y

x

(1, 0, 1)

(1, 0, 0)

(0, 0, 0)

1

⎛
⎝

⎛
⎝

p
21,    , 0

y 5    x2p
2

s1, p>2, 0dy = px2>2, z = 0

z

y

x

(1, 0, 1)

(0, 0, 0)

1

1 ⎛
⎝

⎛
⎝

p
2

p
21,    , 0

s1, p>2, 0d

z

y

x

(1, 0, 1)

1

⎛
⎝

⎛
⎝

p
2

p
21,    , 01

x = 1, y = pt>2, z = 1 - t, 0 … t … 1

s1, p>2, 0d.
e yzi + sxze yz

+ z cos ydj + sxye yz
+ sin ydk

F =

z

y

x

(1, 0, 1)

(0, 0, 0)

1

(1, 0, 0)

z 5 x2

z = x2, y = 0

rstd = scos tdi + ssin tdj + st>2pdk, 0 … t … 2p

x = 1, y = 0, 0 … z … 1

sx2
+ ydi + s y2

+ xdj + zezk
F =
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31. Evaluating a work integral two ways Let and let
C be the path in the xy-plane from to (1, 1) that consists
of the line segment from to (0, 0) followed by the line
segment from (0, 0) to (1, 1). Evaluate in two ways.

a. Find parametrizations for the segments that make up C and
evaluate the integral.

b. Use as a potential function for F.

32. Integral along different paths Evaluate the line integral
along the following paths C in the

xy-plane.

a. The parabola from (1, 0) to (0, 1)

b. The line segment from to (1, 0)

c. The x-axis from to (1, 0)

d. The astroid 
counterclockwise from (1, 0) back to (1, 0)

33. a. Exact differential form How are the constants a, b, and c
related if the following differential form is exact?

b. Gradient field For what values of b and c will

be a gradient field?

F = s y2
+ 2czxdi + ysbx + czdj + s y2

+ cx2dk

say2
+ 2czxd dx + ysbx + czd dy + say2

+ cx2d dz

x

y

(0, 1)

(0, –1)

(1, 0)(–1, 0)

rstd = scos3 tdi + ssin3 tdj, 0 … t … 2p,

s -1, 0d
s -1, pd

y = sx - 1d2

 sin y dy1C 2x cos y dx - x2

ƒsx, yd = x3y2

1C F # dr
s -1, 1d

s -1, 1d
F = §sx3y2d
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16.4 Green’s Theorem in the Plane

If F is a conservative field, then we know F for a differentiable function ƒ, and we
can calculate the line integral of F over any path C joining point A to B as

In this section we derive a method for computing a work or flux
integral over a closed curve C in the plane when the field F is not conservative. This
method, known as Green’s Theorem, allows us to convert the line integral into a double in-
tegral over the region enclosed by C.

The discussion is given in terms of velocity fields of fluid flows (a fluid is a liquid or
a gas) because they are easy to visualize. However, Green’s Theorem applies to any vector
field, independent of any particular interpretation of the field, provided the assumptions of
the theorem are satisfied. We introduce two new ideas for Green’s Theorem: divergence
and circulation density around an axis perpendicular to the plane.

Divergence

Suppose that is the velocity field of a fluid flowing in the
plane and that the first partial derivatives of M and N are continuous at each point of a
region R. Let (x, y) be a point in R and let A be a small rectangle with one corner at (x, y)
that, along with its interior, lies entirely in R. The sides of the rectangle, parallel to the 
coordinate axes, have lengths of and Assume that the components M and N do not¢y.¢x

Fsx, yd = Msx, ydi + Nsx, ydj

1C F # dr = ƒ(B) - ƒ(A).

= ¥ƒ

34. Gradient of a line integral Suppose that is a conser-
vative vector field and

Show that 

35. Path of least work You have been asked to find the path along
which a force field F will perform the least work in moving a par-
ticle between two locations. A quick calculation on your part
shows F to be conservative. How should you respond? Give rea-
sons for your answer.

36. A revealing experiment By experiment, you find that a force
field F performs only half as much work in moving an object
along path from A to B as it does in moving the object along
path from A to B. What can you conclude about F? Give rea-
sons for your answer.

37. Work by a constant force Show that the work done by a con-
stant force field in moving a particle along
any path from A to B is 

38. Gravitational field

a. Find a potential function for the gravitational field

b. Let and be points at distance and from the origin.
Show that the work done by the gravitational field in part (a)
in moving a particle from to is

GmM a 1
s2

-

1
s1
b .

P2P1

s2s1P2P1

(G, m, and M are constantsd.

F = -GmM 
xi + yj + zk

sx2
+ y2

+ z2d3>2

W = F # AB
1

.
F = ai + bj + ck

C2

C1

§g = F.

gsx, y, zd =

L

sx,y,zd

s0,0,0d
 F # dr.

F = §ƒ
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(x, y � Δy) (x � Δx, y � Δy)

(x � Δx, y)(x, y)

F(x, y)

F · (–j) � 0

F · j � 0

F · (–i) � 0

F · i � 0

A

Δx

Δy

FIGURE 16.26 The rate at which the fluid leaves the rectangular region A across
the bottom edge in the direction of the outward normal is approximately

which is negative for the vector field F shown here. To
approximate the flow rate at the point (x, y), we calculate the (approximate) flow
rates across each edge in the directions of the red arrows, sum these rates, and then
divide the sum by the area of A. Taking the limit as and gives the
flow rate per unit area.

¢y : 0¢x : 0

F(x, y) # (- j) ¢x,
- j

change sign throughout a small region containing the rectangle A. The rate at which fluid
leaves the rectangle across the bottom edge is approximately (Figure 16.26)

This is the scalar component of the velocity at (x, y) in the direction of the outward normal
times the length of the segment. If the velocity is in meters per second, for example, the
flow rate will be in meters per second times meters or square meters per second. The rates
at which the fluid crosses the other three sides in the directions of their outward normals
can be estimated in a similar way. The flow rates may be positive or negative depending on
the signs of the components of F. We approximate the net flow rate across the rectangular
boundary of A by summing the flow rates across the four edges as defined by the follow-
ing dot products.

Fluid Flow Rates: Top:

Bottom:

Right:

Left:

Summing opposite pairs gives

Adding these last two equations gives the net effect of the flow rates, or the

We now divide by to estimate the total flux per unit area or flux density for the
rectangle:

Flux across rectangle boundary
rectangle area

L a0M
0x +

0N
0y b .

¢x¢y

Flux across rectangle boundary L a0M
0x +

0N
0y b¢x¢y.

Top and bottom: sNsx, y + ¢yd - Nsx, ydd¢x L a0N
0y  ¢yb¢x

Right and left: sMsx + ¢x, yd - Msx, ydd¢y L a0M
0x  ¢xb¢y.

Fsx, yd # s - id ¢y = -Msx, yd¢y.

Fsx + ¢x, yd # i ¢y = Msx + ¢x, yd¢y

Fsx, yd # s - jd ¢x = -Nsx, yd¢x

Fsx, y + ¢yd # j ¢x = Nsx, y + ¢yd¢x

Fsx, yd # s - jd ¢x = -Nsx, yd¢x.
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Finally, we let and approach zero to define the flux density of F at the point (x, y).
In mathematics, we call the flux density the divergence of F. The symbol for it is div F,
pronounced “divergence of F” or “div F.”

¢y¢x

16.4 Green’s Theorem in the Plane 951

A gas is compressible, unlike a liquid, and the divergence of its velocity field meas-
ures to what extent it is expanding or compressing at each point. Intuitively, if a gas is ex-
panding at the point the lines of flow would diverge there (hence the name) and,
since the gas would be flowing out of a small rectangle about , the divergence of F
at would be positive. If the gas were compressing instead of expanding, the diver-
gence would be negative (Figure 16.27).

EXAMPLE 1 The following vector fields represent the velocity of a gas flowing in 
the xy-plane. Find the divergence of each vector field and interpret its physical meaning.
Figure 16.28 displays the vector fields.

sx0, y0d
sx0, y0d

sx0, y0),

DEFINITION The divergence (flux density) of a vector field at
the point (x, y) is

(1)div F =
0M
0x +

0N
0y .

F = Mi + Nj

Source: div F (x0, y0) . 0

Sink: div F (x0, y0) , 0

A gas expanding
at the point (x0, y0).

A gas compressing
at the point (x0, y0).

FIGURE 16.27 If a gas is expanding at a
point the lines of flow have
positive divergence; if the gas is
compressing, the divergence is negative.

sx0, y0d,

y

x

(a) (b)

y

x

y

x

(c)

y

x

(d)

FIGURE 16.28 Velocity fields of a gas flowing in the plane (Example 1).

(a) Uniform expansion or compression:

(b) Uniform rotation:

(c) Shearing flow:

(d) Whirlpool effect: F(x, y) =

-y

x2
+ y2 i +

x
x2

+ y2 j

F(x, y) = yi

F(x, y) = -cyi + cxj

F(x, y) = cxi + cyj
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Solution

(a) If the gas is undergoing uniform expan-

sion; if , it is undergoing uniform compression.

(b) The gas is neither expanding nor compressing.

(c) The gas is neither expanding nor compressing. 

(d) Again,

the divergence is zero at all points in the domain of the velocity field.

Cases (b), (c), and (d) of Figure 16.28 are plausible models for the two-dimensional
flow of a liquid. In fluid dynamics, when the velocity field of a flowing liquid always has
divergence equal to zero, as in those cases, the liquid is said to be incompressible.

Spin Around an Axis: The k-Component of Curl

The second idea we need for Green’s Theorem has to do with measuring how a floating
paddle wheel, with axis perpendicular to the plane, spins at a point in a fluid flowing in a
plane region. This idea gives some sense of how the fluid is circulating around axes located
at different points and perpendicular to the region. Physicists sometimes refer to this as the
circulation density of a vector field F at a point. To obtain it, we return to the velocity field

and consider the rectangle A in Figure 16.29 (where we assume both components of F are
positive).

Fsx, yd = Msx, ydi + Nsx, ydj

div F =
0

0x a -y

x2
+ y2 b +

0

0y a x
x2

+ y2 b =

2xy

(x2
+ y2)2 -

2xy

(x2
+ y2)2 = 0:

div F =
0

0x ( y) = 0:

div F =
0

0x (-cy) +
0

0y (cx) = 0:

c 6 0

c 7 0,div F =
0

0x (cx) +
0

0y (cy) = 2c:

952 Chapter 16: Integration in Vector Fields

(x, y � Δy) (x � Δx, y � Δy)

(x � Δx, y)(x, y)

F(x, y)

F · i � 0

F · (–i) � 0

F · j � 0

F · (– j) � 0 A

Δx

Δy

FIGURE 16.29 The rate at which a fluid flows along the bottom edge 
of a rectangular region A in the direction i is approximately ,
which is positive for the vector field F shown here. To approximate the rate
of circulation at the point (x, y), we calculate the (approximate) flow rates
along each edge in the directions of the red arrows, sum these rates, and then
divide the sum by the area of A. Taking the limit as and 
gives the rate of the circulation per unit area.

¢y : 0¢x : 0

F(x, y) # i ¢x

The circulation rate of F around the boundary of A is the sum of flow rates along the
sides in the tangential direction. For the bottom edge, the flow rate is approximately

Fsx, yd # i ¢x = Msx, yd¢x.
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This is the scalar component of the velocity F(x, y) in the tangent direction i times the
length of the segment. The flow rates may be positive or negative depending on the compo-
nents of F. We approximate the net circulation rate around the rectangular boundary of A by
summing the flow rates along the four edges as defined by the following dot products.

We sum opposite pairs to get

Top and bottom:

Right and left:

Adding these last two equations gives the net circulation relative to the counterclockwise
orientation, and dividing by gives an estimate of the circulation density for the rec-
tangle:

We let and approach zero to define the circulation density of F at the point
(x, y).

If we see a counterclockwise rotation looking downward onto the xy-plane from the
tip of the unit k vector, then the circulation density is positive (Figure 16.30). The value of
the circulation density is the k-component of a more general circulation vector field we
define in Section 16.7, called the curl of the vector field F. For Green’s Theorem, we need
only this k-component.

¢y¢x

Circulation around rectangle
rectangle area

 L
0N
0x -

0M
0y .

¢x¢y

sNsx + ¢x, yd - Nsx, ydd¢y L a0N
0x  ¢xb¢y.

- sMsx, y + ¢yd - Msx, ydd¢x L - a0M
0y  ¢yb¢x

Top: Fsx, y + ¢yd # s - id ¢x = -Msx, y + ¢yd¢x

Bottom: Fsx, yd # i ¢x = Msx, yd¢x

Right: Fsx + ¢x, yd # j ¢y = Nsx + ¢x, yd¢y

Left: Fsx, yd # s - jd ¢y = -Nsx, yd¢y.

16.4 Green’s Theorem in the Plane 953

DEFINITION The circulation density of a vector field at the
point (x, y) is the scalar expression

(2)

This expression is also called the k-component of the curl, denoted by (curl F) .# k

0N
0x -

0M
0y .

F = Mi + Nj

k

k

Vertical axis

Vertical axis

(x0, y0)

(x0, y0)

Curl F (x0, y0) . k � 0
Counterclockwise circulation

Curl F (x0, y0) . k � 0
Clockwise circulation

FIGURE 16.30 In the flow of an
incompressible fluid over a plane region,
the k-component of the curl measures the
rate of the fluid’s rotation at a point. The 
k-component of the curl is positive at
points where the rotation is
counterclockwise and negative where the
rotation is clockwise.

If water is moving about a region in the xy-plane in a thin layer, then the k-component
of the curl at a point gives a way to measure how fast and in what direction a small
paddle wheel spins if it is put into the water at with its axis perpendicular to the
plane, parallel to k (Figure 16.30).

EXAMPLE 2 Find the circulation density, and interpret what it means, for each vector
field in Example 1.

Solution

(a) Uniform expansion: (curl F) The gas is not circulating

at very small scales.

# k =
0

0x (cy) -
0

0y (cx) = 0.

sx0, y0d
sx0, y0d
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(b) Rotation: The constant circulation density

indicates rotation at every point. If , the rotation is counterclockwise; if 

the rotation is clockwise.

(c) Shear: (curl F) The circulation density is constant and negative,

so a paddle wheel floating in water undergoing such a shearing flow spins clockwise.
The rate of rotation is the same at each point. The average effect of the fluid flow is to
push fluid clockwise around each of the small circles shown in Figure 16.31.

(d) Whirlpool:

The circulation density is 0 at every point away from the origin (where the vector field
is undefined and the whirlpool effect is taking place), and the gas is not circulating at
any point for which the vector field is defined.

Two Forms for Green’s Theorem

In one form, Green’s Theorem says that under suitable conditions the outward flux of a
vector field across a simple closed curve in the plane equals the double integral of the di-
vergence of the field over the region enclosed by the curve. Recall the formulas for flux in
Equations (3) and (4) in Section 16.2 and that a curve is simple if it does not cross itself.

scurl Fd # k =
0

0x a x
 x2

+ y2 b -
0

0y a -y

 x2
+ y2 b =

y2
- x2

(x2
+ y2)2 -

y2
- x2

(x2
+ y2)2 = 0.

# k = -
0

0y (y) = -1.

c 6 0,c 7 0

(curl F) # k =
0

0x (cx) -
0

0y (-cy) = 2c.
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THEOREM 4—Green’s Theorem (Flux-Divergence or Normal Form) Let C be a
piecewise smooth, simple closed curve enclosing a region R in the plane. Let
F be a vector field with M and N having continuous first partial
derivatives in an open region containing R. Then the outward flux of F across C
equals the double integral of div F over the region R enclosed by C.

(3)

Outward flux Divergence integral

F
C 

 F # n ds =

F
C 

 M dy - N dx =

6
R

 a0M
0x +

0N
0y b  dx dy

= M i + N j

y

x

FIGURE 16.31 A shearing flow pushes
the fluid clockwise around each point
(Example 2c).

We introduced the notation in Section 16.3 for integration around a closed curve.

We elaborate further on the notation here. A simple closed curve C can be traversed in two
possible directions. The curve is traversed counterclockwise, and said to be positively ori-
ented, if the region it encloses is always to the left of an object as it moves along the path.
Otherwise it is traversed clockwise and negatively oriented. The line integral of a vector
field F along C reverses sign if we change the orientation. We use the notation

for the line integral when the simple closed curve C is traversed counterclockwise, with its
positive orientation.

A second form of Green’s Theorem says that the counterclockwise circulation of a
vector field around a simple closed curve is the double integral of the k-component of the
curl of the field over the region enclosed by the curve. Recall the defining Equation (2) for
circulation in Section 16.2.

F
C

 F(x, y) # dr

DC
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16.4 Green’s Theorem in the Plane 955

THEOREM 5—Green’s Theorem (Circulation-Curl or Tangential Form) Let C be
a piecewise smooth, simple closed curve enclosing a region R in the plane. Let
F be a vector field with M and N having continuous first partial
derivatives in an open region containing R. Then the counterclockwise circu-
lation of F around C equals the double integral of over R.

(4)

Counterclockwise circulation Curl integral

F
C 

 F # T ds =

F
C 

 M dx + N dy =

6
R

 a0N
0x -

0M
0y b  dx dy

scurl Fd # k

= M i + N j

The two forms of Green’s Theorem are equivalent. Applying Equation (3) to the field
gives Equation (4), and applying Equation (4) to gives

Equation (3).
Both forms of Green’s Theorem can be viewed as two-dimensional generalizations of

the Net Change Theorem in Section 5.4. The outward flux of F across C, defined by the
line integral on the left-hand side of Equation (3), is the integral of its rate of change (flux
density) over the region R enclosed by C, which is the double integral on the right-hand
side of Equation (3). Likewise, the counterclockwise circulation of F around C, defined by
the line integral on the left-hand side of Equation (4), is the integral of its rate of change
(circulation density) over the region R enclosed by C, which is the double integral on the
right-hand side of Equation (4).

EXAMPLE 3 Verify both forms of Green’s Theorem for the vector field

and the region R bounded by the unit circle

Solution Evaluating F(r(t)) and differentiating components, we have

The two sides of Equation (3) are

 =

6
R

 dx dy = area inside the unit circle = p.

 
6

R

 a0M
0x +

0N
0y b  dx dy =

6
R

 s1 + 0d dx dy

 =

L

2p

0
 cos2 t dt = p

 
F
C 

 M dy - N dx =

L

t = 2p

t = 0
 scos t - sin tdscos t dtd - scos tds -sin t dtd

0M
0x = 1, 0M

0y = -1, 0N
0x = 1, 0N

0y = 0.

dy = dssin td = cos t dt, N = cos t,

 M = cos t - sin t, dx = dscos td = -sin t dt, 

C: rstd = scos tdi + ssin tdj, 0 … t … 2p.

Fsx, yd = sx - ydi + xj

G2 = -Ni + MjG1 = Ni - Mj
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The two sides of Equation (4) are

Figure 16.32 displays the vector field and circulation around C.

Using Green’s Theorem to Evaluate Line Integrals

If we construct a closed curve C by piecing together a number of different curves end to
end, the process of evaluating a line integral over C can be lengthy because there are so
many different integrals to evaluate. If C bounds a region R to which Green’s Theorem ap-
plies, however, we can use Green’s Theorem to change the line integral around C into one
double integral over R.

EXAMPLE 4 Evaluate the line integral

where C is the square cut from the first quadrant by the lines and 

Solution We can use either form of Green’s Theorem to change the line integral into a
double integral over the square.

1. With the Normal Form Equation (3): Taking and C and R as the
square’s boundary and interior gives

2. With the Tangential Form Equation (4): Taking and gives the same
result:

EXAMPLE 5 Calculate the outward flux of the vector field across
the square bounded by the lines and y = ;1.x = ;1

Fsx, yd = xi + y2j

F
C 

-y2 dx + xy dy =

6
R

 s y - s -2ydd dx dy =
3
2

.

N = xyM = -y2

 =

L

1

0
 c3xy d

x = 0

x = 1

 dy =

L

1

0
 3y dy =

3
2

 y2 d
0

1

=
3
2

.

 
F
C 

 xy dy - y2 dx =

6
R

 sy + 2yd dx dy =

L

1

0
 
L

1

0
 3y dx dy

M = xy, N = y2,

y = 1.x = 1

F
C 

 xy dy - y2 dx,

 
6

R

 a0N
0x -

0M
dy
b  dx dy =

6
R

 s1 - s -1dd dx dy = 2
6

R

 dx dy = 2p.

 =

L

2p

0
 s -sin t cos t + 1d dt = 2p

 
F
C 

 M dx + N dy =

L

t = 2p

t = 0
 scos t - sin tds -sin t dtd + scos tdscos t dtd
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y

x

T

T

FIGURE 16.32 The vector field in
Example 3 has a counterclockwise
circulation of around the unit circle.2p
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16.4 Green’s Theorem in the Plane 957

Solution Calculating the flux with a line integral would take four integrations, one for
each side of the square. With Green’s Theorem, we can change the line integral to one
double integral. With C the square, and R the square’s interior, we have

Proof of Green’s Theorem for Special Regions

Let C be a smooth simple closed curve in the xy-plane with the property that lines parallel
to the axes cut it at no more than two points. Let R be the region enclosed by C and suppose
that M, N, and their first partial derivatives are continuous at every point of some open re-
gion containing C and R. We want to prove the circulation-curl form of Green’s Theorem,

(5)

Figure 16.33 shows C made up of two directed parts:

For any x between a and b, we can integrate with respect to y from to
and obtain

We can then integrate this with respect to x from a to b:

Therefore

(6)

Equation (6) is half the result we need for Equation (5). We derive the other half by integrating
first with respect to x and then with respect to y, as suggested by Figure 16.34. 0N>0x

F
C 

 M dx =

6
R

 a- 0M
0y b  dx dy.

 = -

F
C 

 M dx.

 = -

LC2

 M dx -

LC1

 M dx

 = -

L

a

b
 Msx, ƒ2sxdd dx -

L

b

a
 Msx, ƒ1sxdd dx

 
L

b

a
 
L

ƒ2sxd

ƒ1sxd
 
0M
0y  dy dx =

L

b

a
 [Msx, ƒ2sxdd - Msx, ƒ1sxdd] dx

L

ƒ2sxd

ƒ1sxd
 
0M
0y  dy = Msx, yd d

y = ƒ1sxd

y = ƒ2sxd

= Msx, ƒ2sxdd - Msx, ƒ1sxdd.

y = ƒ2sxd
y = ƒ1sxd0M>0y

C1: y = ƒ1sxd, a … x … b, C2: y = ƒ2sxd, b Ú x Ú a.

F
C 

 M dx + N dy =

6
R

 a0N
0x -

0M
0y b  dx dy.

 =

L

1

-1
 s2 + 4yd dy = c2y + 2y2 d

-1

1

= 4.

 =

L

1

-1
 
L

1

-1
 s1 + 2yd dx dy =

L

1

-1
 cx + 2xy d

x = -1

x = 1

 dy

 =

6
R

 a0M
0x +

0N
0y b  dx dy

 Flux =

F
C 

 F # n ds =

F
C 

 M dy - N dx

M = x, N = y2,

x

y

a0 x b

R

P2(x, f2(x))
C2:  y 5 f2(x)

C1:  y 5 f1(x)
P1(x, f1(x))

FIGURE 16.33 The boundary curve C is
made up of the graph of and

the graph of y = ƒ2sxd.C2,
y = ƒ1sxd,C1,

R

x

y

c

0

y

d

C'2:  x 5 g2(y)

C'1:  x 5 g1(y)

Q2(g2( y), y)
Q1(g1( y), y)

FIGURE 16.34 The boundary curve C is
made up of the graph of 
and the graph of x = g2syd.C2

œ ,
x = g1syd,C1

œ ,

Green’s Theorem
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This shows the curve C of Figure 16.33 decomposed into the two directed parts
and The result of this double inte-

gration is

(7)

Summing Equations (6) and (7) gives Equation (5). This concludes the proof.

Green’s Theorem also holds for more general regions, such as those shown in
Figures 16.35 and 16.36, but we will not prove this result here. Notice that the region in Figure
16.36 is not simply connected. The curves and on its boundary are oriented so that the
region R is always on the left-hand side as the curves are traversed in the directions shown.
With this convention, Green’s Theorem is valid for regions that are not simply connected.

While we stated the theorem in the xy-plane, Green’s Theorem applies to any region R
contained in a plane bounded by a curve C in space. We will see how to express the double
integral over R for this more general form of Green’s Theorem in Section 16.7.

ChC1

F
C 

 N dy =

6
R

 
0N
0x  dx dy.

C œ

2: x = g2s yd, c … y … d.d Ú y Ú cC œ

1: x = g1s yd, 
y

x
0

R

(a)

C

y

x
0

R

(b)

C

a b

a

b

FIGURE 16.35 Other regions to which
Green’s Theorem applies. x

y

h 1

R

Ch

C1

0

FIGURE 16.36 Green’s Theorem may be
applied to the annular region R by summing
the line integrals along the boundaries 
and in the directions shown.Ch

C1

Exercises 16.4

Verifying Green’s Theorem
In Exercises 1–4, verify the conclusion of Green’s Theorem by evaluating
both sides of Equations (3) and (4) for the field Take the
domains of integration in each case to be the disk 
and its bounding circle 

1. 2.

3. 4.

Circulation and Flux
In Exercises 5–14, use Green’s Theorem to find the counterclockwise
circulation and outward flux for the field F and curve C.

5.

C: The square bounded by 

6.

C: The square bounded by 

7.

C: The triangle bounded by and 

8.

C: The triangle bounded by and y = xy = 0, x = 1 ,

F = sx + ydi - sx2
+ y2dj

y = xy = 0, x = 3 ,

F = s y2
- x2di + sx2

+ y2dj

x = 0, x = 1, y = 0, y = 1

F = sx2
+ 4ydi + sx + y2dj

x = 0, x = 1, y = 0, y = 1

F = sx - ydi + sy - xdj

F = -x2yi + xy2jF = 2xi - 3yj

F = yiF = -yi + xj

C: r = sa cos tdi + sa sin tdj, 0 … t … 2p.
R: x2

+ y2 …  a2
F = Mi + Nj.

9. 10.

11. 12.

C

1–1

–1

x

1

y

x2 1 y2 5 1

x

y

y 5 x2 2 x 

y 5 x

(0, 0)

(2, 2)C

F =

x

1 + y2 i + A tan-1 y B jF = x3y2 i +

1
2

 x4y j

x

y

x2 1 2y2 5 2C

2–2

–1

1

x

y

y 5 x2

x 5 y2

(0, 0)

(1, 1)

C

F = (x + 3y)i + (2x - y)jF = (xy + y2)i + (x - y)j
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16.4 Green’s Theorem in the Plane 959

The reason is that by Equation (3), run backward,

Use the Green’s Theorem area formula given above to find the areas of
the regions enclosed by the curves in Exercises 25–28.

25. The circle 

26. The ellipse 

27. The astroid 

28. One arch of the cycloid 

29. Let C be the boundary of a region on which Green’s Theorem
holds. Use Green’s Theorem to calculate

a.

b.

30. Integral dependent only on area Show that the value of

around any square depends only on the area of the square and not
on its location in the plane.

31. What is special about the integral

Give reasons for your answer.

32. What is special about the integral

Give reasons for your answer.

33. Area as a line integral Show that if R is a region in the plane
bounded by a piecewise smooth, simple closed curve C, then

34. Definite integral as a line integral Suppose that a nonnegative
function has a continuous first derivative on [a, b]. Let C
be the boundary of the region in the xy-plane that is bounded
below by the x-axis, above by the graph of ƒ, and on the sides by
the lines and Show that

L

b

a
 ƒsxd dx = -

F
C 

 y dx.

x = b.x = a

y = ƒsxd

Area of R =

F
C 

 x dy = -

F
C 

 y dx.

F
C 

- y3 dy + x3 dx?

F
C 

 4x3y dx + x4 dy?

F
C 

 xy2 dx + sx2y + 2xd dy

F
C 

 ky dx + hx dy sk and h constantsd.

F
C 

 ƒsxd dx + gsyd dy

x = t - sin t,  y = 1 - cos t

rstd = scos3 tdi + ssin3 tdj,  0 … t … 2p

rstd = sa cos tdi + sb sin tdj,  0 … t … 2p

rstd = sa cos tdi + sa sin tdj,  0 … t … 2p

 =

F
C 

 
1
2

 x dy -

1
2

 y dx.

 Area of R =

6
R

 dy dx =

6
R

 a1
2

+

1
2
b  dy dx

Green’s Theorem Area Formula

Area of R =

1
2F

C 

 x dy - y dx

13.

C: The right-hand loop of the lemniscate 

14.

C: The boundary of the region defined by the polar coordinate
inequalities 

15. Find the counterclockwise circulation and outward flux of the
field around and over the boundary of the region
enclosed by the curves and in the first quadrant.

16. Find the counterclockwise circulation and the outward flux of the
field around and over the square cut
from the first quadrant by the lines and 

17. Find the outward flux of the field

across the cardioid 

18. Find the counterclockwise circulation of 
around the boundary of the region that is bounded above

by the curve and below by the curve 

Work
In Exercises 19 and 20, find the work done by F in moving a particle
once counterclockwise around the given curve.

19.

C: The boundary of the “triangular” region in the first quadrant
enclosed by the x-axis, the line and the curve 

20.

C: The circle 

Using Green’s Theorem
Apply Green’s Theorem to evaluate the integrals in Exercises 21–24.

21.

C: The triangle bounded by 

22.

C: The boundary of 

23.

C: The circle 

24.

C: Any simple closed curve in the plane for which Green’s
Theorem holds

Calculating Area with Green’s Theorem If a simple closed curve
C in the plane and the region R it encloses satisfy the hypotheses of
Green’s Theorem, the area of R is given by

F
C 

 s2x + y2d dx + s2xy + 3yd dy

sx - 2d2
+ sy - 3d2

= 4

F
C 

 s6y + xd dx + s y + 2xd dy

0 … x … p, 0 … y … sin x

F
C 

 s3y dx + 2x dyd

x = 0, x + y = 1, y = 0

F
C 

 sy2 dx + x2 dyd

sx - 2d2
+ s y - 2d2

= 4

F = s4x - 2ydi + s2x - 4ydj
y = x3x = 1,

F = 2xy3i + 4x2y2j

y = x4
+ 1.y = 3 - x2

sex>ydj
F = s y + ex ln ydi +

r = as1 + cos ud, a 7 0.

F = a3xy -

x

1 + y2 b i + sex
+ tan-1 ydj

y = p>2.x = p>2F = s -sin ydi + sx cos ydj

y = xy = x2
F = xyi + y2j

1 … r … 2, 0 … u … p

F = atan-1 
y
x b i + ln sx2

+ y2dj

r2
= cos 2u

F = sx + ex sin ydi + sx + ex cos ydj
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35. Area and the centroid Let A be the area and the x-coordinate
of the centroid of a region R that is bounded by a piecewise
smooth, simple closed curve C in the xy-plane. Show that

36. Moment of inertia Let be the moment of inertia about the
y-axis of the region in Exercise 35. Show that

37. Green’s Theorem and Laplace’s equation Assuming that all
the necessary derivatives exist and are continuous, show that if
ƒ(x, y) satisfies the Laplace equation

then

for all closed curves C to which Green’s Theorem applies. (The
converse is also true: If the line integral is always zero, then ƒ satis-
fies the Laplace equation.)

38. Maximizing work Among all smooth, simple closed curves in
the plane, oriented counterclockwise, find the one along which
the work done by

is greatest. (Hint: Where is positive?)

39. Regions with many holes Green’s Theorem holds for a region
R with any finite number of holes as long as the bounding curves
are smooth, simple, and closed and we integrate over each com-
ponent of the boundary in the direction that keeps R on our imme-
diate left as we go along (see accompanying figure).

scurl Fd # k

F = a1
4

 x2y +

1
3

 y3b i + xj

F
C 

 
0ƒ
0y  dx -

0ƒ
0x  dy = 0

0
2ƒ

0x2 +

0
2ƒ

0y2 = 0,

1
3

 
F
C 

 x3 dy = -

F
C 

 x2y dx =

1
4

 
F
C 

 x3 dy - x2y dx = Iy .

Iy

1
2

 
F
C 

 x2 dy = -

F
C 

 xy dx =

1
3

 
F
C 

 x2 dy - xy dx = Ax.

x a. Let and let C be the circle
Evaluate the flux integral

b. Let K be an arbitrary smooth, simple closed curve in the
plane that does not pass through (0, 0). Use Green’s Theorem
to show that

has two possible values, depending on whether (0, 0) lies 
inside K or outside K.

40. Bendixson’s criterion The streamlines of a planar fluid flow
are the smooth curves traced by the fluid’s individual particles.
The vectors of the flow’s velocity field
are the tangent vectors of the streamlines. Show that if the flow
takes place over a simply connected region R (no holes or miss-
ing points) and that if throughout R, then none of
the streamlines in R is closed. In other words, no particle of
fluid ever has a closed trajectory in R. The criterion 
is called Bendixson’s criterion for the nonexistence of closed
trajectories.

41. Establish Equation (7) to finish the proof of the special case of
Green’s Theorem.

42. Curl component of conservative fields Can anything be said
about the curl component of a conservative two-dimensional vec-
tor field? Give reasons for your answer.

COMPUTER EXPLORATIONS
In Exercises 43–46, use a CAS and Green’s Theorem to find the coun-
terclockwise circulation of the field F around the simple closed curve
C. Perform the following CAS steps.

a. Plot C in the xy-plane.

b. Determine the integrand for the curl
form of Green’s Theorem.

c. Determine the (double integral) limits of integration from your
plot in part (a) and evaluate the curl integral for the circulation.

43. The ellipse 

44. The ellipse 

45.

C: The boundary of the region defined by (below)
and (above)

46.

C: The triangle with vertices (0, 0), (2, 0), and (0, 4)

F = xe y i + (4x2 ln y)j, 
y = 2

y = 1 + x4

F = x-1ey i + sey ln x + 2xdj, 

x2

4
+

y2

9
= 1F = s2x3

- y3di + sx3
+ y3dj, C:

x2
+ 4y2

= 4F = s2x - ydi + sx + 3ydj, C:

s0N>0xd - s0M>0yd

Mx + Ny Z 0

Mx + Ny Z 0

F = Msx, ydi + Nsx, ydj

F
K 

§ƒ # n ds

F
C 

 §ƒ # n ds.

x2
+ y2

= a2.
ƒsx, yd = ln sx2

+ y2d
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16.5 Surfaces and Area

We have defined curves in the plane in three different ways:

Explicit form:

Implicit form:

Parametric vector form:

We have analogous definitions of surfaces in space:

Explicit form:

Implicit form:

There is also a parametric form for surfaces that gives the position of a point on the sur-
face as a vector function of two variables. We discuss this new form in this section and ap-
ply the form to obtain the area of a surface as a double integral. Double integral formulas
for areas of surfaces given in implicit and explicit forms are then obtained as special cases
of the more general parametric formula.

Parametrizations of Surfaces

Suppose

(1)

is a continuous vector function that is defined on a region R in the uy-plane and one-to-
one on the interior of R (Figure 16.37). We call the range of r the surface S defined or
traced by r. Equation (1) together with the domain R constitute a parametrization of
the surface. The variables u and y are the parameters, and R is the parameter domain.
To simplify our discussion, we take R to be a rectangle defined by inequalities of the form

The requirement that r be one-to-one on the interior of R ensures
that S does not cross itself. Notice that Equation (1) is the vector equivalent of three
parametric equations:

EXAMPLE 1 Find a parametrization of the cone

Solution Here, cylindrical coordinates provide a parametrization. A typical point (x, y, z) 
on the cone (Figure 16.38) has and with

and Taking and in Equation (1) gives the parame-
trization

The parametrization is one-to-one on the interior of the domain R, though not on the
boundary tip of its cone where r

EXAMPLE 2 Find a parametrization of the sphere 

Solution Spherical coordinates provide what we need. A typical point (x, y, z) on
the sphere (Figure 16.39) has and z = a cos f,y = a sin f sin u,x = a sin f cos u,

x2
+ y2

+ z2
= a2.

= 0.

rsr, ud = sr cos udi + sr sin udj + rk,  0 … r … 1,  0 … u … 2p.

y = uu = r0 … u … 2p.0 … r … 1
z = 2x2

+ y2
= r,x = r cos u, y = r sin u,

z = 2x2
+ y2,  0 … z … 1.

x = ƒsu, yd,  y = gsu, yd,  z = hsu, yd.

a … u … b, c … y … d.

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk

Fsx, y, zd = 0.

z = ƒsx, yd

rstd = ƒstdi + gstdj,  a … t … b.

Fsx, yd = 0

y = ƒsxd

16.5 Surfaces and Area 961

y

0
u

R

z

x

y

Parametrization

S P

u � constant

y � constant
(u, y)

Curve y � constant

Curve u � constant

r(u, y) � f (u, y)i � g(u, y)j � h(u, y)k,
Position vector to surface point

FIGURE 16.37 A parametrized surface S
expressed as a vector function of two
variables defined on a region R.

z

x y
r

1

(x, y, z) �
(r cos �, r sin �, r)

�

r(r, �) � (r cos �)i
� (r sin �) j � rk

Cone:
z � �x2 � y2

  � r

FIGURE 16.38 The cone in Example 1
can be parametrized using cylindrical
coordinates.
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Taking and in Equation (1) gives the parame-
trization

Again, the parametrization is one-to-one on the interior of the domain R, though not on its
boundary “poles” where 

EXAMPLE 3 Find a parametrization of the cylinder

Solution In cylindrical coordinates, a point (x, y, z) has and
For points on the cylinder (Figure 16.40), the equation is the

same as the polar equation for the cylinder’s base in the xy-plane:

or

A typical point on the cylinder therefore has

Taking and in Equation (1) gives the one-to-one parametrization

Surface Area

Our goal is to find a double integral for calculating the area of a curved surface S based on
the parametrization

We need S to be smooth for the construction we are about to carry out. The definition of
smoothness involves the partial derivatives of r with respect to u and y:

 ry =
0r
0y

=

0ƒ
0y

 i +

0g
0y

 j +
0h
0y

 k.

 ru =
0r
0u =

0ƒ
0u i +

0g
0u j +

0h
0u k

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk,   a … u … b,  c … y … d.

rsu, zd = s3 sin 2udi + s6 sin2 udj + zk,   0 … u … p,  0 … z … 5.

y = zu = u

 z = z.

 y = r sin u = 6 sin2 u

 x = r cos u = 6 sin u cos u = 3 sin 2u

r = 6 sin u,  0 … u … p.

 r2
- 6r sin u = 0

 x2
+ s y2

- 6y + 9d = 9

x2
+ s y - 3d2

= 9z = z.
x = r cos u, y = r sin u,

x2
+ sy - 3d2

= 9, 0 … z … 5.

f = 0 or f = p.

 0 … u … 2p.0 … f … p,

rsf, ud = sa sin f cos udi + sa sin f sin udj + sa cos fdk,

y = uu = f0 … u … 2p.0 … f … p,

962 Chapter 16: Integration in Vector Fields

z

x
y

a a

a

r(f, u)

f

u

(x, y, z) 5 (a sin f cos u, a sin f sin u, a cos f)

FIGURE 16.39 The sphere in Example 2
can be parametrized using spherical
coordinates.

y = r sin u
x2

+ y2
= r2,

z

x

y

z

r � 6 sin �

�
(x, y, z)
�(3 sin 2�, 6 sin2 �, z)

r(�, z)

Cylinder: x2 � ( y � 3)2 � 9
or
r � 6 sin �

FIGURE 16.40 The cylinder in Example
3 can be parametrized using cylindrical
coordinates.

DEFINITION A parametrized surface 
is smooth if and are continuous and is never zero on the interior of
the parameter domain.

ru * ryryru

hsu, ydkrsu, yd = ƒsu, ydi + gsu, ydj +

The condition that is never the zero vector in the definition of smoothness
means that the two vectors and are nonzero and never lie along the same line, so they
always determine a plane tangent to the surface. We relax this condition on the boundary
of the domain, but this does not affect the area computations.

ryru

ru * ry
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Now consider a small rectangle in R with sides on the lines 
, and (Figure 16.41). Each side of maps to a curve on the sur-

face S, and together these four curves bound a “curved patch element” In the nota-
tion of the figure, the side maps to curve the side maps to and their
common vertex maps to P0.su0, y0d

C2,u = u0C1,y = y0

¢suy.
¢Auyy = y0 + ¢yy = y0

u = u0 + ¢u,u = u0,¢Auy

16.5 Surfaces and Area 963

 

0
u

z

x

y

Parametrization

d

c

a b

R

S

u0 u0 � Δu

ΔAuy

y0 � Δy

y0
u � u0 � Δu

y � y0 � ΔyΔ�uy

P0C1: y � y0 C2: u � u0

y

FIGURE 16.41 A rectangular area element in the uy-plane maps onto a curved
patch element on S.¢suy

¢Auy

Figure 16.42 shows an enlarged view of The partial derivative vector 
is tangent to at Likewise, is tangent to at The cross product 
is normal to the surface at (Here is where we begin to use the assumption that S is
smooth. We want to be sure that )

We next approximate the surface patch element by the parallelogram on the tan-
gent plane whose sides are determined by the vectors and (Figure 16.43). The
area of this parallelogram is

(2)

A partition of the region R in the uy-plane by rectangular regions induces a partition
of the surface S into surface patch elements We define the area of each surface patch
element to be the parallelogram area in Equation (2) and sum these areas together to
obtain an approximation of the surface area of S:

(3)

As and approach zero independently, the number of area elements n tends to 
and the continuity of and guarantees that the sum in Equation (3) approaches the

double integral This double integral over the region R defines the
area of the surface S.

1
d

c  1
b

a  ƒ ru * ry ƒ  du dy.

ryru

q¢y¢u

a
n

ƒ ru * ry ƒ  ¢u ¢y.

¢suy

¢suy.
¢Auy

ƒ ¢uru * ¢yry ƒ = ƒ ru * ry ƒ  ¢u ¢y.

¢yry¢uru

¢suy

ru * ry Z 0.
P0.

ru * ryP0.C2rysu0, y0dP0.C1

rusu0, y0d¢suy.

yx

z

ru 3 ry

ru

ryP0

C1: y 5 y0

Δsuy

C2: u 5 u0

FIGURE 16.42 A magnified view of a
surface patch element ¢suy.

yx

z

Δuru

ΔyryP0

C1 Δsuy

C2

FIGURE 16.43 The area of the
parallelogram determined by the vectors

and is defined to be the area of
the surface patch element ¢suy.

¢yry¢uru

DEFINITION The area of the smooth surface

is

(4)A =

6
R

ƒ ru * ry ƒ  dA =

L

d

c
 
L

b

a
 ƒ ru * ry ƒ  du dy.

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk,  a … u … b,  c … y … d
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We can abbreviate the integral in Equation (4) by writing for The
surface area differential is analogous to the arc length differential ds in Section 13.3.ds

ƒ ru * ry ƒ  du dy.ds

964 Chapter 16: Integration in Vector Fields

Surface Area Differential for a Parametrized Surface

(5)

Surface area Differential formula
differential for surface area

ds = ƒ ru * ry ƒ  du dy  
6

S

 ds

EXAMPLE 4 Find the surface area of the cone in Example 1 (Figure 16.38).

Solution In Example 1, we found the parametrization

To apply Equation (4), we first find 

r

Thus, The area of the cone is

EXAMPLE 5 Find the surface area of a sphere of radius a.

Solution We use the parametrization from Example 2:

For we get

Thus,

 = a22sin2 f = a2 sin f,

 = 2a4 sin4 f + a4 sin2 f cos2 f = 2a4 sin2 f ssin2 f + cos2 fd

 ƒ rf * ru ƒ = 2a4 sin4 f cos2 u + a4 sin4 f sin2 u + a4 sin2 f cos2 f

 = sa2 sin2 f cos udi + sa2 sin2 f sin udj + sa2 sin f cos fdk.

 rf * ru = 3 i j k

a cos f cos u a cos f sin u -a sin f

-a sin f sin u a sin f cos u 0

3
rf * ru,

 0 … u … 2p.0 … f … p,

rsf, ud = sa sin f cos udi + sa sin f sin udj + sa cos fdk,

 =

L

2p

0
 
L

1

0
 22 r  dr du =

L

2p

0
 
22
2

 du =

22
2

 s2pd = p22 units squared.

 A =

L

2p

0
 
L

1

0
 ƒ rr * ru ƒ  dr du

ƒ rr * ru ƒ = 2r2 cos2 u + r2 sin2 u + r2
= 22r2

= 22r.

(''')'''*

 = - sr cos udi - sr sin udj + sr cos2 u + r sin2 udk.

 rr * ru = 3 i j k

cos u sin u 1

-r sin u r cos u 0

3
rr * ru :

rsr, ud = sr cos udi + sr sin udj + rk,  0 … r … 1,  0 … u … 2p.

Eq. (4) with u = r, y = u
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since for Therefore, the area of the sphere is

This agrees with the well-known formula for the surface area of a sphere.

EXAMPLE 6 Let S be the “football” surface formed by rotating the curve 
around the z-axis (see Figure 16.44). Find a parametrization

for S and compute its surface area.

Solution Example 2 suggests finding a parametrization of S based on its rotation
around the z-axis. If we rotate a point (x, 0, z) on the curve about 
the z-axis, we obtain a circle at height z above the xy-plane that is centered on 
the z-axis and has radius (see Figure 16.44). The point sweeps out the 
circle through an angle of rotation We let (x, y, z) be an arbitrary 
point on this circle, and define the parameters and Then we have

and giving a parametriza-
tion for S as

Next we use Equation (5) to find the surface area of S. Differentiation of the parame-
trization gives

and

Computing the cross product we have

Taking the magnitude of the cross product gives

for

From Equation (4) the surface area is given by the integral

A =

L

2p

0
 
L

p>2
-p>2  cos u 21 + sin2 u du dy.

-

p

2
… u …

p

2
cos u Ú 0= cos u 21 + sin2 u.

= 2cos2 u (1 + sin2 u)

ƒ ru * ry ƒ = 2cos2 u (cos2 y + sin2 y) + sin2 u cos2 u

= -cos u cos y i - cos u sin y j - (sin u cos u cos2 y + cos u sin u sin2 y)k.

ru * ry = 3 i j k

-sin u cos y -sin u sin y 1

-cos u sin y cos u cos y 0

3
ry = -cos u sin y i + cos u cos y j

ru = -sin u cos y i - sin u sin y j + k

r(u, y) = cos u cos y i + cos u sin y j + u k,  -
p
2

… u …
p
2

,  0 … y … 2p.

z = uy = r sin u = cos u sin y,x = r cos u = cos u cos y, 
y = u.u = z

u, 0 … u … 2p.
r = cos z

x = cos z, y = 0

y = 0, -p>2 … z … p>2 x = cos z,

 =

L

2p

0
 c-a2 cos f d

0

p

 du =

L

2p

0
 2a2 du = 4pa2  units squared.

 A =

L

2p

0
 
L

p

0
 a2 sin f df du

0 … f … p.sin f Ú 0
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u

(x, y, z)

p
2

p
2

–

r 5 cos z is the
radius of a circle
at height z

x 5 cos z , y 5 0

y

z

x
11

FIGURE 16.44 The “football” surface in
Example 6 obtained by rotating the curve

about the z-axis.x = cos z
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To evaluate the integral, we substitute and Since
the surface S is symmetric across the xy-plane, we need only  integrate with respect to w
from 0 to 1, and multiply the result by 2. In summary, we have

Integral Table Formula 35

Implicit Surfaces

Surfaces are often presented as level sets of a function, described by an equation such as

for some constant c. Such a level surface does not come with an explicit parametrization,
and is called an implicitly defined surface. Implicit surfaces arise, for example, as equipo-
tential surfaces in electric or gravitational fields. Figure 16.45 shows a piece of such a sur-
face. It may be difficult to find explicit formulas for the functions ƒ, g, and h that describe
the surface in the form We now show how to
compute the surface area differential for implicit surfaces.

Figure 16.45 shows a piece of an implicit surface S that lies above its “shadow” region
R in the plane beneath it. The surface is defined by the equation and p is a
unit vector normal to the plane region R. We assume that the surface is smooth (F is dif-
ferentiable and is nonzero and continuous on S) and that , so the surface
never folds back over itself.

Assume that the normal vector p is the unit vector k, so the region R in Figure 16.45
lies in the xy-plane. By assumption, we then have on S. An
advanced calculus theorem called the Implicit Function Theorem implies that S is then the
graph of a differentiable function z � h(x, y), although the function h(x, y) is not explicitly
known. Define the parameters u and by and . Then and

(6)

gives a parametrization of the surface S. We use Equation (4) to find the area of S.
Calculating the partial derivatives of r, we find

Applying the Chain Rule for implicit differentiation (see Equation (2) in Section 14.4) to
, where and , we obtain the partial derivatives

Substitution of these derivatives into the derivatives of r gives

ru = i -

Fx

Fz
k  and  ry = j -

Fy

Fz
k.

0h
0u = -

Fx

Fz
  and  0h

0y
= -

Fy

Fz
.

z = h(u, y)x = u, y = y,F(x, y, z) = c

ru = i +
0h
0u k  and  ry = j +

0h
0y

k.

r(u, y) = ui + yj + h(u, y)k

z = h(u, y)y = yu = xy

¥F # p = ¥F # k = Fz Z 0

¥F # p Z 0¥F

F(x, y, z) = c

ds
r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k.

F(x, y, z) = c,

= 2p C22 + ln A1 + 22 B D .
=

L

2p

0
 2 c1

2
 22 +

1
2

 ln A1 + 22 B d  dy.
= 2 
L

2p

0
 cw

2
 21 + w2

+
1
2

 ln aw + 21 + w2b d1
0
 dy

A = 2 
L

2p

0
 
L

1

0
 21 + w2 dw dy

-1 … w … 1.dw = cos u du,w = sin u

966 Chapter 16: Integration in Vector Fields

R

S

The vertical projection
or “shadow” of S on a
coordinate plane

Surface F(x, y,  z) � c

p

FIGURE 16.45 As we soon see, the area
of a surface S in space can be calculated by
evaluating a related double integral over
the vertical projection or “shadow” of S on
a coordinate plane. The unit vector p is
normal to the plane.
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16.5 Surfaces and Area 967

From a routine calculation of the cross product we find

Therefore, the surface area differential is given by

We obtain similar calculations if instead the vector p j is normal to the xz-plane
when on S, or if p i is normal to the yz-plane when on S. Combining
these results with Equation (4) then gives the following general formula.

Fx Z 0=Fy Z 0
=

u = x and y = yds = ƒ ru * ry ƒ  du dy =

ƒ ¥F ƒ

ƒ ¥F # p ƒ

dx dy.

 =
¥F

¥F # p
.

 =
¥F
Fz

=
¥F

¥F # k

 =
1
Fz

(Fx i +  Fyj +  Fzk)

 ru * ry =

Fx

Fz
i +

Fy

Fz
j + k

Formula for the Surface Area of an Implicit Surface
The area of the surface over a closed and bounded plane region R is

(7)

where is normal to R and § F # p Z 0.p = i, j, or k

Surface area =

6
R

 
ƒ §F ƒ

ƒ §F # p ƒ

 dA,

Fsx, y, zd = c

Thus, the area is the double integral over R of the magnitude of divided by the
magnitude of the scalar component of normal to R.

We reached Equation (7) under the assumption that throughout R and that
is continuous. Whenever the integral exists, however, we define its value to be the area

of the portion of the surface that lies over R. (Recall that the projection is
assumed to be one-to-one.)

EXAMPLE 7 Find the area of the surface cut from the bottom of the paraboloid
by the plane 

Solution We sketch the surface S and the region R below it in the xy-plane (Figure 16.46).
The surface S is part of the level surface and R is the disk

in the xy-plane. To get a unit vector normal to the plane of R, we can take

At any point (x, y, z) on the surface, we have

 ƒ §F # p ƒ = ƒ §F # k ƒ = ƒ -1 ƒ = 1.

 = 24x2
+ 4y2

+ 1

 ƒ §F ƒ = 2s2xd2
+ s2yd2

+ s -1d2

 §F = 2xi + 2yj - k

 Fsx, y, zd = x2
+ y2

- z

p = k.
x2

+ y2
… 4

Fsx, y, zd = x2
+ y2

- z = 0,

z = 4.x2
+ y2

- z = 0

Fsx, y, zd = c
§F

§F # p Z 0
§F

§F

y

z

x

4

S

R
0

z � x2 � y2

x2 � y2 � 4

FIGURE 16.46 The area of this parabolic
surface is calculated in Example 7.

p = k

Fz Z 0
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In the region Therefore,

Eq. (7)

Polar coordinates

Example 7 illustrates how to find the surface area for a function over a 
region R in the xy-plane. Actually, the surface area differential can be obtained in two
ways, and we show this in the next example.

EXAMPLE 8 Derive the surface area differential of the surface over a
region R in the xy-plane (a) parametrically using Equation (5), and (b) implicitly, as in
Equation (7).

Solution

(a) We parametrize the surface by taking and over R. This
gives the parametrization

Computing the partial derivatives gives and 

Then Substituting for u and then gives
the surface area differential

(b) We define the implicit function Since (x, y) belongs to the re-
gion R, the unit normal to the plane of R is . Then so that

and The sur-
face area differential is again given by

The surface area differential derived in Example 8 gives the following formula for calcu-
lating the surface area of the graph of a function defined explicitly as z = ƒ(x, y).

ds = 2ƒx 
2

+ ƒy 
2

+ 1 dx dy.

ƒ ¥F ƒ > ƒ ¥F # p ƒ = ƒ ¥F ƒ.ƒ ¥F ƒ = 2ƒx 
2

+ ƒy 
2

+ 1,ƒ ¥F # p ƒ = ƒ -1 ƒ = 1,

¥F = ƒx i + ƒy j - kp = k
F(x, y, z) = ƒ(x, y) - z.

ds = 2ƒx 
2

+ ƒy 
2

+ 1 dx dy.

yƒ ru * ry ƒ du dy = 2ƒu 
2

+ ƒy 
2

+ 1 du dy.

3 i j k

1 0 ƒu

0 1 ƒy

3ru * ry = -ƒu i - ƒyj + k.

ru + i + ƒu k, ry = j + fy k

r(u, y) = ui + yj + ƒ(u, y)k

z = ƒ(x, y)x = u, y = y,

z = ƒ(x, y)ds

z = ƒ(x, y)

 =

L

2p

0
 

1
12

 s173>2
- 1d du =

p
6

 A17217 - 1 B .
 =

L

2p

0
 c 1

12
 s4r2

+ 1d3>2 d
0

2

 du

 =

L

2p

0
 
L

2

0
 24r2

+ 1 r dr du

 =  
6

x2
+y2

…4 

24x2
+ 4y2

+ 1 dx dy

 Surface area =

6
R

 
ƒ §F ƒ

ƒ §F # p ƒ

 dA

R, dA = dx dy.

Formula for the Surface Area of a Graph 
For a graph over a region R in the xy-plane, the surface area formula is

(8)A =

6
R

 2ƒx 
2

+ ƒy 
2

+ 1 dx dy.

z = ƒ(x, y)
z = ƒ(x, y)
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Exercises 16.5

Finding Parametrizations
In Exercises 1–16, find a parametrization of the surface. (There are
many correct ways to do these, so your answers may not be the same
as those in the back of the book.)

1. The paraboloid 

2. The paraboloid 

3. Cone frustum The first-octant portion of the cone 
between the planes and 

4. Cone frustum The portion of the cone 
between the planes and 

5. Spherical cap The cap cut from the sphere 
by the cone 

6. Spherical cap The portion of the sphere in
the first octant between the xy-plane and the cone 

7. Spherical band The portion of the sphere 

between the planes and 

8. Spherical cap The upper portion cut from the sphere
by the plane 

9. Parabolic cylinder between planes The surface cut from the
parabolic cylinder by the planes and

10. Parabolic cylinder between planes The surface cut from the
parabolic cylinder by the planes , and 

11. Circular cylinder band The portion of the cylinder 
between the planes and 

12. Circular cylinder band The portion of the cylinder 
above the xy-plane between the planes and 

13. Tilted plane inside cylinder The portion of the plane 

a. Inside the cylinder 

b. Inside the cylinder 

14. Tilted plane inside cylinder The portion of the plane

a. Inside the cylinder 

b. Inside the cylinder 

15. Circular cylinder band The portion of the cylinder 
between the planes and 

16. Circular cylinder band The portion of the cylinder 
between the planes and 

Surface Area of Parametrized Surfaces
In Exercises 17–26, use a parametrization to express the area of the
surface as a double integral. Then evaluate the integral. (There are
many correct ways to set up the integrals, so your integrals may not be
the same as those in the back of the book. They should have the same
values, however.)

17. Tilted plane inside cylinder The portion of the plane
inside the cylinder x2

+ y2
= 1y + 2z = 2

x = 10x = 0sz - 5d2
= 25

y2
+

y = 3y = 0z2
= 4

sx - 2d2
+

y2
+ z2

= 2

x2
+ z2

= 3

x - y + 2z = 2

y2
+ z2

= 9

x2
+ y2

= 9

z = 1
x + y +

y = 2y = -2
x2

+ z2
= 4

x = 3x = 0
y2

+ z2
= 9

y = 2z = 0, z = 3y = x2

z = 0
x = 2,x = 0,z = 4 - y2

z = -2x2
+ y2

+ z2
= 8

z = -23>2z = 23>2
x2

+ y2
+ z2

= 3

z = 2x2
+ y2

x2
+ y2

+ z2
= 4

z = 2x2
+ y2

x2
+ y2

+ z2
= 9

z = 4z = 2
z = 22x2

+ y2

z = 3z = 02x2
+ y2>2 z =

z = 9 - x2
- y2, z Ú 0

z = x2
+ y2, z … 4

18. Plane inside cylinder The portion of the plane inside
the cylinder 

19. Cone frustum The portion of the cone 
between the planes and 

20. Cone frustum The portion of the cone 
between the planes and 

21. Circular cylinder band The portion of the cylinder 
between the planes and 

22. Circular cylinder band The portion of the cylinder 
between the planes and 

23. Parabolic cap The cap cut from the paraboloid 

by the cone 

24. Parabolic band The portion of the paraboloid 
between the planes and 

25. Sawed-off sphere The lower portion cut from the sphere
by the cone 

26. Spherical band The portion of the sphere 

between the planes and 

Planes Tangent to Parametrized Surfaces
The tangent plane at a point on a
parametrized surface is the
plane through normal to the vector the cross
product of the tangent vectors and In Exer-
cises 27–30, find an equation for the plane tangent to the surface at 
Then find a Cartesian equation for the surface and sketch the surface and
tangent plane together.

27. Cone The cone 
at the point corresponding to

28. Hemisphere The hemisphere surface 
at

the point corresponding to 

29. Circular cylinder The circular cylinder 
at the point 

corresponding to (See Example 3.)

30. Parabolic cylinder The parabolic cylinder surface 
at the point

corresponding to 

More Parametrizations of Surfaces
31. a. A torus of revolution (doughnut) is obtained by rotating a circle

C in the xz-plane about the z-axis in space. (See the accompa-
nying figure.) If C has radius and center (R, 0, 0), show
that a parametrization of the torus is

where and are the angles in the
figure.

0 … y … 2p0 … u … 2p

+ ssR + r cos udsin ydj + sr sin udk,

 rsu, yd = ssR + r cos udcos ydi

r 7 0

sx, yd = s1, 2dP0s1, 2, -1d
xi + yj - x2k, - q 6 x 6 q , - q 6 y 6 q ,

rsx, yd =

su, zd = sp>3, 0d
P0 A323>2, 9>2, 0 Bs6 sin2 udj + zk, 0 … u … p,

rsu, zd = s3 sin 2udi +
sp>6, p>4d

sf, ud =P0 A22, 22, 223 B+ s4 sin f sin udj + s4 cos fdk, 0 … f … p>2, 0 … u … 2p,
rsf, ud = s4 sin f cos udi

sr, ud = s2, p>4d
P0 A22, 22, 2 B0 … u … 2p

rsr, ud = sr cos udi + sr sin udj + rk, r Ú 0,

P0.
rysu0, y0d at P0.rusu0, y0d

rusu0, y0d * rysu0, y0d,P0

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk
P0sƒsu0, y0d, gsu0, y0d, hsu0, y0dd

z = 23z = -1

x2
+ y2

+ z2
= 4

z = 2x2
+ y2x2

+ y2
+ z2

= 2

z = 4z = 1
z = x2

+ y2

z = 2x2
+ y2

z = 2 - x2
- y2

y = 1y = -110
x2

+ z2
=

z = 4z = 1
x2

+ y2
= 1

z = 4>3z = 1
z = 2x2

+ y2>3
z = 6z = 2

z = 22x2
+ y2

x2
+ y2

= 4
z = -x
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b. Show that the surface area of the torus is 

32. Parametrization of a surface of revolution Suppose that the
parametrized curve C: (ƒ(u), g(u)) is revolved about the x-axis,
where for 

a. Show that

is a parametrization of the resulting surface of revolution,
where is the angle from the xy-plane to the point
r(u, y) on the surface. (See the accompanying figure.) Notice
that ƒ(u) measures distance along the axis of revolution and
g(u) measures distance from the axis of revolution.

b. Find a parametrization for the surface obtained by revolving
the curve about the x-axis.

33. a. Parametrization of an ellipsoid The parametrization
gives the ellipse

. Using the angles and in spherical
coordinates, show that

is a parametrization of the ellipsoid 

b. Write an integral for the surface area of the ellipsoid, but do
not evaluate the integral.

sz2>c2d = 1.
sx2>a2d + s y2>b2d +

rsu, fd = sa cos u cos fdi + sb sin u cos fdj + sc sin fdk

fusy2>b2d = 1sx2>a2d +

0 … u … 2py = b sin u,x = a cos u,

x = y2, y Ú 0,

y

x

z

C

( f (u), g(u), 0)

g(u)

r(u, y)

f (u)

y

0 … y … 2p

rsu, yd = ƒsudi + sgsudcos ydj + sgsudsin ydk

a … u … b.gsud 7 0

x

z

0

C

ur

R

z

u
y

x

y

r(u, y)

A = 4p2Rr.

970 Chapter 16: Integration in Vector Fields

34. Hyperboloid of one sheet

a. Find a parametrization for the hyperboloid of one sheet
in terms of the angle associated with the

circle and the hyperbolic parameter u associ-
ated with the hyperbolic function (Hint:

.)

b. Generalize the result in part (a) to the hyperboloid

35. (Continuation of Exercise 34.) Find a Cartesian equation for the
plane tangent to the hyperboloid at the point

where 

36. Hyperboloid of two sheets Find a parametrization of the hy-
perboloid of two sheets 

Surface Area for Implicit and Explicit Forms
37. Find the area of the surface cut from the paraboloid 

by the plane 

38. Find the area of the band cut from the paraboloid 
by the planes and 

39. Find the area of the region cut from the plane 
by the cylinder whose walls are and 

40. Find the area of the portion of the surface that lies
above the triangle bounded by the lines and

in the xy-plane.

41. Find the area of the surface that lies above the
triangle bounded by the lines and in the xy-
plane.

42. Find the area of the cap cut from the sphere by

the cone 

43. Find the area of the ellipse cut from the plane (c a con-
stant) by the cylinder 

44. Find the area of the upper portion of the cylinder 
that lies between the planes and 

45. Find the area of the portion of the paraboloid 
that lies above the ring in the yz-plane.

46. Find the area of the surface cut from the paraboloid 
by the plane 

47. Find the area of the surface above
the square in the xy-plane.

48. Find the area of the surface above the
square in the xy-plane.

Find the area of the surfaces in Exercises 49–54.

49. The surface cut from the bottom of the paraboloid 
by the plane 

50. The surface cut from the “nose” of the paraboloid 
by the yz-plane

51. The portion of the cone that lies over the region
between the circle and the ellipse 
in the xy-plane. (Hint: Use formulas from geometry to find the
area of the region.)

52. The triangle cut from the plane by the bound-
ing planes of the first octant. Calculate the area three ways, using
different explicit forms.

53. The surface in the first octant cut from the cylinder 
by the planes and y = 16>3x = 1

y = s2>3dz3>2

2x + 6y + 3z = 6

9x2
+ 4y2

= 36x2
+ y2

= 1
z = 2x2

+ y2

y2
- z2

x = 1 -

z = 3
z = x2

+ y2

R: 0 … x … 1, 0 … y … 1,
2x3>2

+ 2y3>2
- 3z = 0

R: 1 … x … 2, 0 … y … 1,
x2

- 2 ln x + 215y - z = 0

y = 0.
2x2

+ y + z2
=

1 … y2
+ z2

… 4
x = 4 - y2

- z2

y = ;1>2.x = ;1>2 x2
+ z2

= 1

x2
+ y2

= 1.
z = cx

z = 2x2
+ y2.

x2
+ y2

+ z2
= 2

y = 3xx = 2, y = 0,
x2

- 2y - 2z = 0

y = x
x = 23, y = 0,
x2

- 2z = 0

x = 2 - y2.x = y2
x + 2y + 2z = 5

z = 6.z = 20
x2

+ y2
- z =

z = 2.0
x2

+ y2
- z =

sz2>c2d - sx2>a2d - sy2>b2d = 1.

x0
2

+ y0
2

= 25.sx0, y0, 0d,
x2

+ y2
- z2

= 25

sx2>a2d + sy2>b2d - sz2>c2d = 1.

cos h2u - sin h2u = 1
r2

- z2
= 1.

x2
+ y2

= r2
ux2

+ y2
- z2

= 1
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54. The portion of the plane that lies above the region cut
from the first quadrant of the xz-plane by the parabola

55. Use the parametrization

and Equation (5) to derive a formula for d associated with the
explicit form 

56. Let S be the surface obtained by rotating the smooth curve
, about the x-axis, where 

a. Show that the vector function

is a parametrization of S, where is the angle of rotation
around the x-axis (see the accompanying figure).

u

r(x, u) = x i + ƒ(x) cos u j + ƒ(x) sin uk

ƒ(x) Ú 0.y = ƒ(x), a … x … b

y = ƒ(x, z).
s

r(x, z) = xi + ƒ(x, z)j + zk

x = 4 - z2

y + z = 4

16.6 Surface Integrals 971

b. Use Equation (4) to show that the surface area of this surface
of revolution is given by

A =

L

b

a
 2pƒ(x)21 + [ƒ¿(x)]2 dx.

y

x

z

0

(x, y, z)

z u

f (x)

16.6 Surface Integrals

To compute quantities such as the flow of liquid across a curved membrane or the upward
force on a falling parachute, we need to integrate a function over a curved surface in space.
This concept of a surface integral is an extension of the idea of a line integral for integrat-
ing over a curve.

Surface Integrals

Suppose that we have an electrical charge distributed over a surface S, and that the func-
tion G(x, y, z) gives the charge density (charge per unit area) at each point on S. Then we
can calculate the total charge on S as an integral in the following way.

Assume, as in Section 16.5, that the surface S is defined parametrically on a region R
in the uy-plane,

In Figure 16.47, we see how a subdivision of R (considered as a rectangle for simplicity)
divides the surface S into corresponding curved surface elements, or patches, of area

As we did for the subdivisions when defining double integrals in Section 15.2, we
number the surface element patches in some order with their areas given by

To form a Riemann sum over S, we choose a point in the
kth patch, multiply the value of the function G at that point by the area , and add to-
gether the products:

Depending on how we pick in the kth patch, we may get different values for
this Riemann sum. Then we take the limit as the number of surface patches increases,
their areas shrink to zero, and both and This limit, whenever it exists
independent of all choices made, defines the surface integral of G over the surface 
S as

(1)
6

S

 G(x, y, z) ds = lim
n: q

a

n

k = 1
G(xk, yk, zk) ¢sk.

¢y: 0.¢u : 0

(xk, yk, zk)

a

n

k = 1
 G(xk, yk, zk) ¢sk.

¢sk

(xk, yk, zk)¢s1, ¢s2, Á , ¢sn.

¢suy L ƒ ru * ry ƒ  du dy.

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k,  (u, y) H R.

yx

z

Δuru

ΔyryPk

Δsk 5 Δsuy

(xk, yk, zk)

FIGURE 16.47 The area of the patch
is the area of the tangent

parallelogram determined by the vectors
and . The point lies

on the surface patch, beneath the
parallelogram shown here.

(xk, yk, zk)¢y ry¢u ru

¢sk
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Notice the analogy with the definition of the double integral (Section 15.2) and with the
line integral (Section 16.1). If S is a piecewise smooth surface, and G is continuous over S,
then the surface integral defined by Equation (1) can be shown to exist.

The formula for evaluating the surface integral depends on the manner in which S is
described, parametrically, implicitly or explicitly, as discussed in Section 16.5.

972 Chapter 16: Integration in Vector Fields

Formulas for a Surface Integral

1. For a smooth surface S defined parametrically as 
, and a continuous function G(x, y, z) defined

on S, the surface integral of G over S is given by the double integral 
over R,

(2)

2. For a surface S given implicitly by F(x, y, z) � c, where F is a continuously
differentiable function, with S lying above its closed and bounded shadow
region R in the coordinate plane beneath it, the surface integral of the
continuous function G over S is given by the double integral over R,

(3)

where p is a unit vector normal to R and 

3. For a surface S given explicitly as the graph of where ƒ is a
continuously differentiable function over a region R in the xy-plane, the
surface integral of the continuous function G over S is given by the double
integral over R,

(4)
6

S

 G(x, y, z) ds =

6
R

 G(x, y, ƒ(x, y)) 2ƒx 2 + ƒy 2 + 1 dx dy.

z = ƒ(x, y),

¥F # p Z 0.

6
S

 G(x, y, z) ds =

6
R

 G(x, y, z) 
ƒ ¥F ƒ

ƒ ¥F # p ƒ

 dA,

6
S

 G(x, y, z) ds =

6
R

 G(ƒ(u, y), g(u, y), h(u, y)) ƒ ru * ry ƒ  du dy.

g(u, y)j + h(u, y)k, (u, y) H R
r(u, y) = ƒ(u, y)i +

The surface integral in Equation (1) takes on different meanings in different applica-
tions. If G has the constant value 1, the integral gives the area of S. If G gives the mass
density of a thin shell of material modeled by S, the integral gives the mass of the shell. If
G gives the charge density of a thin shell, then the integral gives the total charge.

EXAMPLE 1 Integrate over the cone 

Solution Using Equation (2) and the calculations from Example 4 in Section 16.5, we have

and

 =

22
4

 
L

2p

0
 cos2 u du =

22
4

 cu
2

+
1
4

 sin 2u d
0

2p

=

p22
4

.

 = 22
L

2p

0
 
L

1

0
 r3 cos2 u dr du

6
S

 x2 ds =

L

2p

0
 
L

1

0
 Ar2 cos2 u B A22r B  dr du

ƒ rr * ru ƒ = 22r

z = 2x2
+ y2, 0 … z … 1.Gsx, y, zd = x2

x = r cos u

7001_ThomasET_ch16p919-1006.qxd  10/30/09  8:14 AM  Page 972



Surface integrals behave like other double integrals, the integral of the sum of two func-
tions being the sum of their integrals and so on. The domain Additivity Property takes the form

When S is partitioned by smooth curves into a finite number of smooth patches with
nonoverlapping interiors (i.e., if S is piecewise smooth), then the integral over S is the sum
of the integrals over the patches. Thus, the integral of a function over the surface of a cube
is the sum of the integrals over the faces of the cube. We integrate over a turtle shell of
welded plates by integrating over one plate at a time and adding the results.

EXAMPLE 2 Integrate over the surface of the cube cut from the first
octant by the planes and (Figure 16.48).

Solution We integrate xyz over each of the six sides and add the results. Since on
the sides that lie in the coordinate planes, the integral over the surface of the cube reduces to

Side A is the surface over the square region 
in the xy-plane. For this surface and region,

and

Symmetry tells us that the integrals of xyz over sides B and C are also 1 4. Hence,

EXAMPLE 3 Integrate over the “football” surface S
formed by rotating the curve around the z-axis.

Solution The surface is displayed in Figure 16.44, and in Example 6 of Section 16.5 we
found the parametrization

,

where represents the angle of rotation from the xz-plane about the z-axis. Substituting
this parametrization into the expression for G gives

The surface area differential for the parametrization was found to be (Example 6, Section
16.5)

ds = cos u 21 + sin2 u du dy.

21 - x2
- y2

= 21 - (cos2 u)(cos2 y + sin2 y) = 21 - cos2 u = ƒ sin u ƒ.

y

x = cos u cos y,  y = cos u sin y,  z = u,  -
p
2

… u …
p
2

  and  0 … y … 2p

x = cos z, y = 0, -p>2 … z … p>2,
G sx, y, zd = 21 - x2

- y2

6
Cube
surface

 xyz ds =
1
4

+
1
4

+
1
4

=
3
4

.

>
6

Side A 

 xyz ds =

6
Rxy 

 xy dx dy =

L

1

0
 
L

1

0
 xy dx dy =

L

1

0
 
y
2

 dy =
1
4

.

 xyz = xys1d = xy

 ds =

ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA =
1
1

 dx dy = dx dy

 p = k, §ƒ = k, ƒ §ƒ ƒ = 1,  ƒ §ƒ # p ƒ = ƒ k # k ƒ = 1

0 … y … 1,
Rxy: 0 … x … 1, ƒsx, y, zd = z = 1

6
Cube

surface 

 xyz ds =

6
Side A 

 xyz ds +

6
Side B 

 xyz ds +

6
Side C 

 xyz ds.

xyz = 0

z = 1x = 1, y = 1,
G sx, y, zd = xyz

6
S

 G ds =

6
S1

 G ds +

6
S2

 G ds +
Á

+

6
Sn

 G ds.

16.6 Surface Integrals 973

1

1

1

0

z

y

x
Side B

Side C

Side A

FIGURE 16.48 The cube in Example 2.
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These calculations give the surface integral

Orientation

We call a smooth surface S orientable or two-sided if it is possible to define a field n of
unit normal vectors on S that varies continuously with position. Any patch or subportion of
an orientable surface is orientable. Spheres and other smooth closed surfaces in space
(smooth surfaces that enclose solids) are orientable. By convention, we choose n on a
closed surface to point outward.

Once n has been chosen, we say that we have oriented the surface, and we call the
surface together with its normal field an oriented surface. The vector n at any point is
called the positive direction at that point (Figure 16.49).

The Möbius band in Figure 16.50 is not orientable. No matter where you start to con-
struct a continuous unit normal field (shown as the shaft of a thumbtack in the figure),
moving the vector continuously around the surface in the manner shown will return it to
the starting point with a direction opposite to the one it had when it started out. The vector
at that point cannot point both ways and yet it must if the field is to be continuous. We con-
clude that no such field exists.

Surface Integral for Flux

Suppose that F is a continuous vector field defined over an oriented surface S and that n is
the chosen unit normal field on the surface. We call the integral of over S the flux of
F across S in the positive direction. Thus, the flux is the integral over S of the scalar com-
ponent of F in the direction of n.

F # n

= 2p # 2
3

 w3>2 d2
1

=
4p
3

 A222 - 1 B .
=

L

2p

0
 
L

2

1
 2w dw dy

= 2 
L

2p

0
 
L

p>2
0

 sin u cos u 21 + sin2 u du dy

6
S

 21 - x2
- y2 ds =

L

2p

0
 
L

p>2
-p>2  ƒ sin u ƒ cos u 21 + sin2 u du dy
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When 
When u = p>2, w = 2.

u = 0, w = 1.
dw = 2 sin u cos u du
w = 1 + sin2 u,

n Positive
direction

FIGURE 16.49 Smooth closed surfaces
in space are orientable. The outward unit
normal vector defines the positive
direction at each point.

d c

a b
Start

Finish
d b

ca

FIGURE 16.50 To make a Möbius band,
take a rectangular strip of paper abcd, give
the end bc a single twist, and paste the
ends of the strip together to match a with c
and b with d. The Möbius band is a
nonorientable or one-sided surface.

DEFINITION The flux of a three-dimensional vector field F across an oriented
surface S in the direction of n is

(5)Flux =

6
S

 F # n ds.

The definition is analogous to the flux of a two-dimensional field F across a plane
curve C. In the plane (Section 16.2), the flux is

the integral of the scalar component of F normal to the curve.
If F is the velocity field of a three-dimensional fluid flow, the flux of F across S is the

net rate at which fluid is crossing S in the chosen positive direction. We discuss such flows
in more detail in Section 16.7.

LC 
 F # n ds,
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EXAMPLE 4 Find the flux of through the parabolic cylinder
, in the direction n indicated in Figure 16.51.

Solution On the surface we have and so we automatically have the
parametrization The cross product of
tangent vectors is

The unit normal vectors pointing outward from the surface as indicated in Figure 16.51 are

On the surface, so the vector field there is

Thus,

The flux of F outward through the surface is

If S is part of a level surface then n may be taken to be one of the two
fields

(6)

depending on which one gives the preferred direction. The corresponding flux is

Eqs. (6) and (3)

(7) =

6
R

 F #
; §g

ƒ §g # p ƒ

 dA.

 =

6
R

 aF #
; §g

ƒ §g ƒ

b  
ƒ §g ƒ

ƒ §g # p ƒ

 dA

 Flux =

6
S

 F # n ds

n = ;

§g

ƒ §g ƒ

,

gsx, y, zd = c,

 =
1
4

 s9d -
1
4

 s1d = 2.

 =

L

4

0
 
1
2

 sz - 1d dz =
1
4

 sz - 1d2 d
0

4

 =

L

4

0
 
L

1

0
 s2x3z - xd dx dz =

L

4

0
 c1

2
 x4z -

1
2

 x2 d
x = 0

x = 1

 dz

 =

L

4

0
 
L

1

0
 

2x3z - x

24x2
+ 1
24x2

+ 1 dx dz

 
6

S

 F # n ds =

L

4

0
 
L

1

0
 

2x3z - x

24x2
+ 1

 ƒ rx * rz ƒ  dx dz

 =
2x3z - x

24x 2
+ 1

.

 F # n =
1

24x2
+ 1

 ssx2zds2xd + sxds -1d + s -z2ds0dd

F = yzi + xj - z2k = x2zi + xj - z2k.

y = x2,

n =

rx * rz

ƒ rx * rz ƒ

=

2x i - j

24x2
+ 1

.

rx * rz = 3 i j k

1 2x 0

0 0 1

3 = 2x i - j.

rsx, zd = x i + x2j + zk, 0 … x … 1, 0 … z … 4.
z = z,x = x, y = x2,

0 … x … 1, 0 … z … 4y = x2,
F = yzi + xj - z2k
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z

x

y

n

1

1

4

(1, 0, 4) y � x2

FIGURE 16.51 Finding the flux through
the surface of a parabolic cylinder
(Example 4).
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EXAMPLE 5 Find the flux of outward through the surface S cut from
the cylinder by the planes and 

Solution The outward normal field on S (Figure 16.52) may be calculated from the gradi-
ent of to be

With we also have

We can drop the absolute value bars because on S.
The value of on the surface is

The surface projects onto the shadow region , which is the rectangle in the xy-plane
shown in Figure 16.52. Therefore, the flux of F outward through S is

Moments and Masses of Thin Shells

Thin shells of material like bowls, metal drums, and domes are modeled with surfaces.
Their moments and masses are calculated with the formulas in Table 16.3. The derivations
are similar to those in Section 6.6. The formulas are like those for line integrals in Table 16.1,
Section 16.1.

6
S

 F # n ds =

6
S

 szd a1z  dAb =

6
Rxy

 dA = areasRxyd = 2.

Rxy

 = z.
 = y 2z + z 3

= zs y 2
+ z 2d

 F # n = syzj + z2kd # s yj + zkd

F # n
z Ú 0

ds =

ƒ §g ƒ

ƒ §g # k ƒ

 dA =
2

ƒ 2z ƒ

 dA =
1
z  dA.

p = k,

n = +

§g

ƒ §g ƒ

=

2yj + 2zk

24y2
+ 4z2

=

2yj + 2zk

221
= yj + zk.

gsx, y, zd = y2
+ z2

x = 1.x = 0y2
+ z2

= 1, z Ú 0,
F = yzj + z2k
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(1, 1, 0)
x

y

z

n

1

(1, –1, 0)

Rxy

y2 1 z2 5 1

S

FIGURE 16.52 Calculating the flux of a
vector field outward through the surface S.
The area of the shadow region is 2
(Example 5).

Rxy

TABLE 16.3 Mass and moment formulas for very thin shells

Mass:

First moments about the coordinate planes:

Coordinates of center of mass:

Moments of inertia about coordinate axes:

rsx, y, zd = distance from point sx, y, zd to line LIL =

6
S

 r 2d ds

Iz =

6
S

 sx2
+ y 2d d ds,Ix =

6
S

 s y2
+ z2d d ds,  Iy =

6
S

 sx 2
+ z 2d d ds,  

x = Myz >M,  y = Mxz >M,  z = Mxy >M

Myz =

6
S

 x d ds,  Mxz =

6
S

 y d ds,  Mxy =

6
S

 z d ds

M =

6
S

 d ds  mass per unit aread = dsx, y, zd = density at sx, y, zd as

y2
+ z2

= 1 on S
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16.6 Surface Integrals 977

EXAMPLE 6 Find the center of mass of a thin hemispherical shell of radius a and con-
stant density 

Solution We model the shell with the hemisphere

(Figure 16.53). The symmetry of the surface about the z-axis tells us that It re-
mains only to find from the formula 

The mass of the shell is

To evaluate the integral for we take and calculate

Then

The shell’s center of mass is the point (0, 0, a 2).

EXAMPLE 7 Find the center of mass of a thin shell of density cut from the

cone by the planes and (Figure 16.54).

Solution The symmetry of the surface about the z-axis tells us that We find
Working as in Example 4 of Section 16.5, we have

and

Therefore,

,= 2p22 ln 2

 = 22
L

2p

0
 C ln r D12 du = 22

L

2p

0
 ln 2 du

 M =

6
S

 d ds =

L

2p

0
 
L

2

1
 
1
r222r dr du

ƒ rr * ru ƒ = 22r.

rsr, ud = (r cos u)i + (r sin u)j + rk,  1 … r … 2,  0 … u … 2p,

z = Mxy >M.
x = y = 0 .

z = 2z = 1z = 2x2
+ y2

d = 1>z2

>
 z =

Mxy

M
=
pa3d

2pa2d
=

a
2

.

 Mxy =

6
S

 zd ds = d
6

R

 z 
a
z  dA = da

6
R

 dA = daspa2d = dpa3

 ds =

ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA =
a
z  dA.

 ƒ §ƒ # p ƒ = ƒ §ƒ # k ƒ = ƒ 2z ƒ = 2z

 ƒ §ƒ ƒ = ƒ 2xi + 2yj + 2zk ƒ = 22x2
+ y2

+ z2
= 2a

p = kMxy,

d = constantM =

6
S

 d ds = d
6

S

 ds = sddsarea of Sd = 2pa2d.

z = Mxy >M.z
x = y = 0.

ƒsx, y, zd = x2
+ y2

+ z2
= a2,  z Ú 0

d.
z

x2 1 y2 1 z2 5 a2

0, 0,⎛ ⎛a

y

x2 1 y2 5 a2

a

x

R
a

⎝ ⎝2

S

FIGURE 16.53 The center of mass of a
thin hemispherical shell of constant density
lies on the axis of symmetry halfway from
the base to the top (Example 6).

y

z

x

1

2
z � �x2 � y2

FIGURE 16.54 The cone frustum formed
when the cone is cut by
the planes and (Example 7).z = 2z = 1

z = 2x2
+ y2
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The shell’s center of mass is the point (0, 0, 1 ln 2).>
 z =

Mxy

M
=

2p22

2p22 ln 2
=

1
ln 2

.

= 22
L

2p

0
 du = 2p22,

= 22
L

2p

0
 
L

2

1
 dr du

 Mxy =

6
S

 dz ds =

L

2p

0
 
L

2

1
 
1
r2 r22r dr du
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Exercises 16.6

Surface Integrals
In Exercises 1–8, integrate the given function over the given surface.

1. Parabolic cylinder over the parabolic cylinder

2. Circular cylinder over the cylindrical surface

3. Sphere over the unit sphere 

4. Hemisphere over the hemisphere 

5. Portion of plane over the portion of the plane
that lies above the square 

in the xy-plane

6. Cone over the cone 

7. Parabolic dome over the parabolic
dome 

8. Spherical cap over the part of the sphere
that lies above the cone 

9. Integrate over the surface of the cube cut
from the first octant by the planes 

10. Integrate over the surface of the wedge in the
first octant bounded by the coordinate planes and the planes

and 

11. Integrate over the surface of the rectangular
solid cut from the first octant by the planes and

12. Integrate over the surface of the rectangular
solid bounded by the planes and 

13. Integrate over the portion of the plane
that lies in the first octant.

14. Integrate over the surface cut from the
parabolic cylinder by the planes 
and 

15. Integrate over the portion of the graph of
above the triangle in the xy-plane having vertices 

(0, 0, 0), (1, 1, 0), and (0, 1, 0). (See accompanying figure.)
z = x + y2

G(x, y, z) = z - x

z = 0.
x = 1,x = 0,y2

+ 4z = 16
Gsx, y, zd = x2y2

+ 4

2x + 2y + z = 2
Gsx, y, zd = x + y + z

z = ;c.x = ;a, y = ;b,
Gsx, y, zd = xyz

z = c.
x = a, y = b,

Gsx, y, zd = xyz

y + z = 1.x = 2

Gsx, y, zd = y + z

x = a, y = a, z = a.
Gsx, y, zd = x + y + z

z = 2x2
+ y2x2

+ y2
+ z2

= 4
Hsx, y, zd = yz,

z = 1 - x2
- y2, z Ú 0
Hsx, y, zd = x225 - 4z,

0 … z … 1
z = 2x2

+ y2,Fsx, y, zd = z - x,

0 … y … 1,
0 … x … 1, x + y + z = 4

Fsx, y, zd = z,

z2
= a2, z Ú 0

x2
+ y2

+Gsx, y, zd = z2,

x2
+ y2

+ z2
= 1Gsx, y, zd = x2,

y2
+ z2

= 4, z Ú 0, 1 … x … 4
Gsx, y, zd = z,

y = x2, 0 … x … 2, 0 … z … 3
Gsx, y, zd = x,

16. Integrate over the surface given by

17. Integrate over the triangular surface with vertices
(1, 0, 0), (0, 2, 0), and (0, 1, 1).

18. Integrate over the portion of the plane
in the first octant between and (see the

accompanying figure).
z = 1z = 0x + y = 1

G(x, y, z) = x - y - z

z

y

x (1, 0, 0)

(0, 1, 1)

(0, 2, 0)

1

G(x, y, z) = xyz

z = x2
+ y  for  0 … x … 1,  -1 … y … 1.

G(x, y, z) = x

z

x

y

z � x � y2

(1, 1, 0)

(0, 1, 0)

(0, 0, 0)

(0, 1, 1)

(1, 1, 2)

1

1

1
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Finding Flux Across a Surface
In Exercises 19–28, use a parametrization to find the flux 
across the surface in the given direction.

19. Parabolic cylinder outward (normal away
from the x-axis) through the surface cut from the parabolic cylin-
der by the planes and 

20. Parabolic cylinder outward (normal away from
the yz-plane) through the surface cut from the parabolic cylinder

by the planes and 

21. Sphere across the portion of the sphere 
in the first octant in the direction away from the origin

22. Sphere across the sphere 
in the direction away from the origin

23. Plane upward across the portion of
the plane that lies above the square

in the xy-plane

24. Cylinder outward through the portion of the
cylinder cut by the planes and 

25. Cone outward (normal away from the z-axis)
through the cone 

26. Cone outward (normal away from the

z-axis) through the cone 

27. Cone frustum outward (normal away

from the z-axis) through the portion of the cone 
between the planes and 

28. Paraboloid outward (normal away from
the z-axis) through the surface cut from the bottom of the parabo-
loid by the plane 

In Exercises 29 and 30, find the flux of the field F across the portion
of the given surface in the specified direction.

29.

S: rectangular surface
direction k

30.

S: rectangular surface
direction 

In Exercises 31–36, find the flux of the field F across the portion of
the sphere in the first octant in the direction away
from the origin.

31.

32. Fsx, y, zd = -yi + xj

Fsx, y, zd = zk

x2
+ y2

+ z2
= a2

- j
y = 0,  -1 … x … 2,  2 … z … 7,

Fsx, y, zd = yx2i - 2j + xzk

z = 0,  0 … x … 2,  0 … y … 3,

Fsx, y, zd = - i + 2j + 3k

z = 1z = x2
+ y2

F = 4xi + 4yj + 2k

z = 2z = 1
z = 2x2

+ y2

F = -xi - yj + z2k

z = 22x2
+ y2, 0 … z … 2

F = y2i + xzj - k

z = 2x2
+ y2, 0 … z … 1

F = xyi - zk

z = az = 0x2
+ y2

= 1
F = xi + yj + zk

0 … x … a, 0 … y … a ,
x + y + z = 2a

F = 2xyi + 2yzj + 2xzk

z2
= a2x2

+ y2
+F = xi + yj + zk

z2
= a2

x2
+ y2

+F = zk

z = 2z = 0y = x2, -1 … x … 1 ,

F = x2j - xzk

z = 0x = 0, x = 1 ,z = 4 - y2

F = z2i + xj - 3zk

4S F # n ds

z

y

x

(1, 0, 1)

(0, 1, 1)

1

1

1
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33.

34.

35.

36.

37. Find the flux of the field outward
through the surface cut from the parabolic cylinder 
by the planes and 

38. Find the flux of the field outward
(away from the z-axis) through the surface cut from the bottom of
the paraboloid by the plane 

39. Let S be the portion of the cylinder in the first octant that
projects parallel to the x-axis onto the rectangle 

in the yz-plane (see the accompanying figure). Let n
be the unit vector normal to S that points away from the yz-plane.
Find the flux of the field across S
in the direction of n.

40. Let S be the portion of the cylinder in the first octant
whose projection parallel to the y-axis onto the xz-plane is the rec-
tangle Let n be the unit vector nor-
mal to S that points away from the xz-plane. Find the flux of

through S in the direction of n.

41. Find the outward flux of the field 
across the surface of the cube cut from the first octant by the
planes 

42. Find the outward flux of the field across the
surface of the upper cap cut from the solid sphere

by the plane 

Moments and Masses
43. Centroid Find the centroid of the portion of the sphere

that lies in the first octant.

44. Centroid Find the centroid of the surface cut from the cylinder
by the planes and (resembles

the surface in Example 5).

45. Thin shell of constant density Find the center of mass and the
moment of inertia about the z-axis of a thin shell of constant den-
sity cut from the cone by the planes 
and 

46. Conical surface of constant density Find the moment of iner-
tia about the z-axis of a thin shell of constant density cut from
the cone by the circular cylinder

(see the accompanying figure).x2
+ y2

= 2x
4x2

+ 4y2
- z2

= 0, z Ú 0,
d

z = 2.
z = 1x2

+ y2
- z2

= 0d

x = 3x = 0y2
+ z2

= 9, z Ú 0,

x2
+ y2

+ z2
= a2

z = 3.x2
+ y2

+ z2
… 25

F = xzi + yzj + k

x = a, y = a, z = a.

F = 2xyi + 2yzj + 2xzk

F = 2yj + zk

Rxz: 1 … x … e, 0 … z … 1.

y = ln x

z

yx

1

1

2
Sy � e x

Ryz

Fsx, y, zd = -2i + 2yj + zk

0 … z … 1
Ryz: 1 … y … 2,

y = ex

z = 1.z = x2
+ y2

Fsx, y, zd = 4xi + 4yj + 2k

z = 0.x = 0, x = 1,
z = 4 - y2

Fsx, y, zd = z2i + xj - 3zk

Fsx, y, zd =

xi + yj + zk

2x 2
+ y 2

+ z 2

Fsx, y, zd = xi + yj + zk

Fsx, y, zd = zxi + zyj + z2k

Fsx, y, zd = yi - xj + k
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16.7 Stokes’ Theorem

As we saw in Section 16.4, the circulation density or curl component of a two-dimensional
field at a point (x, y) is described by the scalar quantity 
In three dimensions, circulation is described with a vector.

Suppose that F is the velocity field of a fluid flowing in space. Particles near the point
(x, y, z) in the fluid tend to rotate around an axis through (x, y, z) that is parallel to a certain
vector we are about to define. This vector points in the direction for which the rotation is
counterclockwise when viewed looking down onto the plane of the circulation from the tip
of the arrow representing the vector. This is the direction your right-hand thumb points
when your fingers curl around the axis of rotation in the way consistent with the rotating
motion of the particles in the fluid (see Figure 16.55). The length of the vector measures
the rate of rotation. The vector is called the curl vector and for the vector field

it is defined to be

(1)

This information is a consequence of Stokes’ Theorem, the generalization to space of the
circulation-curl form of Green’s Theorem and the subject of this section.

Notice that is consistent with our definition in Sec-
tion 16.4 when The formula for curl F in Equation (1) is often
written using the symbolic operator

(2)

(The symbol is pronounced “del.”) The curl of F is 

 = curl F.

 = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x b j + a0N

0x -
0M
0y bk

 § * F = 4 i j k

0

0x
0

0y
0

0z

M N P

4
§ * F :§

§ = i 
0

0x + j 
0

0y + k 
0

0z .

F = Msx, ydi + Nsx, ydj.
scurl Fd # k = s0N>0x - 0M>0yd

curl F = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x b j + a0N

0x -
0M
0y bk.

F = Mi + Nj + Pk

s0N>0x - 0M>0yd.F = Mi + Nj

980 Chapter 16: Integration in Vector Fields

z

y

x 2

4x2 � 4y2 � z2 � 0

z � 0

x2 � y2 � 2x
or

r � 2 cos �

47. Spherical shells

a. Find the moment of inertia about a diameter of a thin 
spherical shell of radius a and constant density (Work with
a hemispherical shell and double the result.)

b. Use the Parallel Axis Theorem (Exercises 15.6) and the result
in part (a) to find the moment of inertia about a line tangent
to the shell.

48. Conical Surface Find the centroid of the lateral surface of a
solid cone of base radius a and height h (cone surface minus the
base).

d.

Curl F

(x, y, z)

FIGURE 16.55 The circulation vector 
at a point (x, y, z) in a plane in a three-
dimensional fluid flow. Notice its right-hand
relation to the rotating particles in the fluid.
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EXAMPLE 1 Find the curl of 

Solution We use Equation (3) and the determinant form, so

As we will see, the operator has a number of other applications. For instance, when
applied to a scalar function ƒ(x, y, z), it gives the gradient of ƒ:

It is sometimes read as “del ƒ” as well as “grad ƒ.”

Stokes’ Theorem

Stokes’ Theorem generalizes Green’s Theorem to three dimensions. The circulation-curl
form of Green’s Theorem relates the counterclockwise circulation of a vector field around
a simple closed curve C in the xy-plane to a double integral over the plane region R en-
closed by C. Stokes’ Theorem relates the circulation of a vector field around the boundary
C of an oriented surface S in space (Figure 16.56) to a surface integral over the surface S.
We require that the surface be piecewise smooth, which means that it is a finite union of
smooth surfaces joining along smooth curves.

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k.

§

 = x(1 - ez)i - ( y + 1)j + ezk

 = sx - xezdi - s y + 1dj + sez
- 0dk

 + a 0

0x sxezd -
0

0y sx2
- zdbk

 = a 0

0y sxyd -
0

0z sxezdb i - a 0

0x sxyd -
0

0z sx2
- zdb j

 = 4 i j k

0

0x
0

0y
0

0z

x2
- z xez xy

4
 curl F = § * F

F = sx2
- zdi + xezj + xyk.

16.7 Stokes’ Theorem 981

(3)curl F = § * F

nS

C

FIGURE 16.56 The orientation of the
bounding curve C gives it a right-handed
relation to the normal field n. If the thumb
of a right hand points along n, the fingers
curl in the direction of C.

THEOREM 6—Stokes’ Theorem Let S be a piecewise smooth oriented surface
having a piecewise smooth boundary curve C. Let  be a
vector field whose components have continuous first partial derivatives on an
open region containing S. Then the circulation of F around C in the direction
counterclockwise with respect to the surface’s unit normal vector n equals the
integral of over S.

(4)

Counterclockwise Curl integral
circulation

F
C 

 F # dr =

6
S

 § * F # n ds

§ * F # n

F = Mi + Nj + Pk
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Notice from Equation (4) that if two different oriented surfaces and have the
same boundary C, their curl integrals are equal:

Both curl integrals equal the counterclockwise circulation integral on the left side of Equa-
tion (4) as long as the unit normal vectors and correctly orient the surfaces.

If C is a curve in the xy-plane, oriented counterclockwise, and R is the region in the
xy-plane bounded by C, then and

Under these conditions, Stokes’ equation becomes

which is the circulation-curl form of the equation in Green’s Theorem. Conversely, by
reversing these steps we can rewrite the circulation-curl form of Green’s Theorem for
two-dimensional fields in del notation as

(5)

See Figure 16.57.

EXAMPLE 2 Evaluate Equation (4) for the hemisphere 
its bounding circle and the field 

Solution The hemisphere looks much like the surface in Figure 16.56 with the bounding
circle C in the xy-plane (see Figure 16.58). We calculate the counterclockwise circulation
around C (as viewed from above) using the parametrization 

For the curl integral of F, we have

 § * F # n ds = -
2z
3

 
3
z  dA = -2 dA

 ds =
3
z  dA

 n =

xi + yj + zk

2x2
+ y2

+ z2
=

xi + yj + zk
3

 = s0 - 0di + s0 - 0dj + s -1 - 1dk = -2k

 § * F = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x b j + a0N

0x -
0M
0y bk

 
F
C 

 F # dr =

L

2p

0
-9 du = -18p.

 F # dr = -9 sin2 u du - 9 cos2 u du = -9 du

 F = yi - xj = s3 sin udi - s3 cos udj

 dr = s -3 sin u dudi + s3 cos u dudj

s3 sin udj, 0 … u … 2p:
rsud = s3 cos udi +

F = yi - xj.C: x2
+ y2

= 9, z = 0,
S: x2

+ y2
+ z2

= 9, z Ú 0,

F
C 

 F # dr =

6
R

 § * F # k dA.

F
C 

 F # dr =

6
R

 a0N
0x -

0M
0y b  dx dy,

s§ * Fd # n = s§ * Fd # k = a0N
0x -

0M
0y b .

ds = dx dy

n2n1

6
S1

 § * F # n1 ds =

6
S2

 § * F # n2 ds.

S2S1
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Circulation

Curl

Curl

k

n

S

R

Circulation

Green:

Stokes:

FIGURE 16.57 Comparison of Green’s
Theorem and Stokes’ Theorem.

Outer unit normal

Section 16.6, Example 6,
with a = 3

y

z

x

n
x2 1 y2 1 z2 5 9

C: x2 1 y2 5 9

k
y

z

x

FIGURE 16.58 A hemisphere and a disk,
each with boundary C (Examples 2 and 3).
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and

The circulation around the circle equals the integral of the curl over the hemisphere, as it
should.

The surface integral in Stokes’ Theorem can be computed using any surface having
boundary curve C, provided the surface is properly oriented and lies within the domain of
the field F. The next example illustrates this fact for the circulation around the curve C in
Example 2.

EXAMPLE 3 Calculate the circulation around the bounding circle C in Example 2 us-
ing the disk of radius 3 centered at the origin in the xy-plane as the surface S (instead of
the hemisphere). See Figure 16.58.

Solution As in Example 2, For the surface being the described disk in
the xy-plane, we have the normal vector so that

and

a simpler calculation than before.

EXAMPLE 4 Find the circulation of the field around the
curve C in which the plane meets the cone counterclockwise as
viewed from above (Figure 16.59).

Solution Stokes’ Theorem enables us to find the circulation by integrating over the sur-
face of the cone. Traversing C in the counterclockwise direction viewed from above corre-
sponds to taking the inner normal n to the cone, the normal with a positive k-component.

We parametrize the cone as

We then have

Section 16.5, Example 4

Section 16.5, Example 4

Example 1

Accordingly,

 =
1

22
 a4 cos u + r sin 2u + 1b

 § * F # n =
1

22
 a4 cos u + 2r cos u sin u + 1b

x = r cos u = -4i - 2r cos uj + k.

 § * F = -4i - 2xj + k

 ds = r22 dr du

 =
1

22
 Q- scos udi - ssin udj + kb

 n =

rr * ru
ƒ rr * ru ƒ

=

- sr cos udi - sr sin udj + rk

r22

rsr, ud = sr cos udi + sr sin udj + rk,  0 … r … 2,  0 … u … 2p.

z = 2x2
+ y2 ,z = 2

F = sx2
- ydi + 4zj + x2k

6
S

 § * F # n ds =

6
x2

+y2
…9 

-2 dA = -18p,

§ * F # n ds = -2k # k dA = -2 dA

n = k
§ * F = -2k.

6
S

 § * F # n ds =

6
x2

+y2
…9 

-2 dA = -18p.
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y

z

x

n

S: r(t) � (r cos �)i � (r sin �) j � rk

C: x2 � y2 � 4,  z � 2

FIGURE 16.59 The curve C and cone S
in Example 4.
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and the circulation is

EXAMPLE 5 The cone used in Example 4 is not the easiest surface to use for calculat-
ing the circulation around the bounding circle C lying in the plane If instead we use
the flat disk of radius 3 centered on the z-axis and lying in the plane , then the nor-
mal vector to the surface S is . Just as in the computation for Example 4, we still
have However, now we get so that

The shadow is the disk of radius 2 in the xy-plane.

This result agrees with the circulation value found in Example 4.

Paddle Wheel Interpretation of 

Suppose that F is the velocity field of a fluid moving in a region R in space containing the
closed curve C. Then

is the circulation of the fluid around C. By Stokes’Theorem, the circulation is equal to the
flux of through any suitably oriented surface S with boundary C:

Suppose we fix a point Q in the region R and a direction u at Q. Take C to be a circle of radius 
with center at Q, whose plane is normal to u. If is continuous at Q, the average
value of the u-component of over the circular disk S bounded by C approaches the
u-component of at Q as the radius 

If we apply Stokes’Theorem and replace the surface integral by a line integral over C, we get

(6)

The left-hand side of Equation (6) has its maximum value when u is the direction of
When is small, the limit on the right-hand side of Equation (6) is approximately

which is the circulation around C divided by the area of the disk (circulation density).
Suppose that a small paddle wheel of radius is introduced into the fluid at Q, with its
axle directed along u (Figure 16.60). The circulation of the fluid around C affects the rate

r

1
pr2
F
C 

 F # dr,

r§ * F.

s§ * F # udQ = lim
r:0

 
1
pr2
F
C 

 F # dr.

s§ * F # udQ = lim
r:0

 
1
pr2
6

S

 § * F # u ds.

r: 0:§ * F
§ * F

§ * F
r,

F
C 

 F # dr =

6
S

 § * F # n ds.

§ * F

F
C 

 F # dr

§ * F

6
S

 § * F # n ds =

6
x2

+y2
…4 

1 dA = 4p.

§ * F # n = 1,§ * F = -4i - 2xj + k.
n = k

z = 3
z = 3.

 =

L

2p

0
 
L

2

0
 

1

22
 a4 cos u + r sin 2u + 1b Ar22 dr du B = 4p.

 
F
C 

 F # dr =

6
S

 § * F # n ds
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Stokes’ Theorem, Eq. (4)

Q

Curl F

FIGURE 16.60 The paddle wheel
interpretation of curl F.

7001_ThomasET_ch16p919-1006.qxd  10/30/09  8:14 AM  Page 984



of spin of the paddle wheel. The wheel spins fastest when the circulation integral is maxi-
mized; therefore it spins fastest when the axle of the paddle wheel points in the direction
of .

EXAMPLE 6 A fluid of constant density rotates around the z-axis with velocity
where is a positive constant called the angular velocity of the rota-

tion (Figure 16.61). Find and relate it to the circulation density.

Solution With we find the curl

By Stokes’Theorem, the circulation of F around a circle C of radius bounding a disk S in
a plane normal to say the xy-plane, is

Thus solving this last equation for , we have

consistent with Equation (6) when 

EXAMPLE 7 Use Stokes’ Theorem to evaluate if and
C is the boundary of the portion of the plane in the first octant, traversed
counterclockwise as viewed from above (Figure 16.62).

Solution The plane is the level surface of the function 
The unit normal vector

is consistent with the counterclockwise motion around C. To apply Stokes’Theorem, we find

On the plane, z equals so

and

The surface area element is

ds =

ƒ §ƒ ƒ

ƒ §ƒ # k ƒ

 dA =

26
1

 dx dy.

§ * F # n =
1

26
 a7x + 3y - 6 + yb =

1

26
 a7x + 4y - 6b .

§ * F = sx - 3s2 - 2x - yddj + yk = s7x + 3y - 6dj + yk

2 - 2x - y,

curl F = § * F = 4 i j k

0

0x
0

0y
0

0z

xz xy 3xz

4 = sx - 3zdj + yk.

n =

§ƒ

ƒ §ƒ ƒ

=

s2i + j + kd
ƒ 2i + j + k ƒ

=
1

26
 a2i + j + kb

y + z.
ƒsx, y, zd = 2x +ƒsx, y, zd = 2

2x + y + z = 2
F = xzi + xyj + 3xzk1C F # dr,

u = k.

s§ * Fd # k = 2v =
1
pr2
F
C 

 F # dr,

2v

F
C 

 F # dr =

6
S

 § * F # n ds =

6
S

 2vk # k dx dy = s2vdspr2d.

§ * F ,
r

 = s0 - 0di + s0 - 0dj + sv - s -vddk = 2vk.

 § * F = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x b j + a0N

0x -
0M
0y bk

F = -vyi + vxj,

§ * F
vF = vs -yi + xjd,

§ * F
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y

z

x

R(1, 0, 0)

(0, 2, 0)

(0, 0, 2)

C

n

2x 1 y 1 z 5 2

y 5 2 2 2x

FIGURE 16.62 The planar surface in
Example 7.

x

y

r

0

z

 P(x, y, z)

v

P(x, y, 0)

F 5 v(–yi 1 xj)

FIGURE 16.61 A steady rotational flow
parallel to the xy-plane, with constant
angular velocity in the positive
(counterclockwise) direction (Example 6).

v
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The circulation is

EXAMPLE 8 Let the surface S be the ellipitical paraboloid lying beneath
the plane (Figure 16.63). We define the orientation of S by taking the inner normal
vector n to the surface, which is the normal having a positive k-component. Find the flux
of the curl across S in the direction n for the vector field 

Solution We use Stokes’Theorem to calculate the curl integral by finding the equivalent
counterclockwise circulation of F around the curve of intersection C of the paraboloid

and the plane as shown in Figure 16.63. Note that the orientation of
S is consistent with traversing C in a counterclockwise direction around the z-axis. The
curve C is the ellipse in the plane We can parametrize the ellipse by

for so C is given by

To compute the circulation integral we evaluate F along C and find the velocity
vector :

and

.

Then,

Therefore the flux of the curl across S in the direction n for the field F is

Proof of Stokes’ Theorem for Polyhedral Surfaces

Let S be a polyhedral surface consisting of a finite number of plane regions or faces. (See 
Figure 16.64 for examples.) We apply Green’s Theorem to each separate face of S. There
are two types of faces:

1. Those that are surrounded on all sides by other faces.

2. Those that have one or more edges that are not adjacent to other faces.

6
S

 § * F # n ds = -p.

= -
1
2

 
L

2p

0
 dt = -p.

=

L

2p

0
 a-

1
2

 sin2 t -
1
2

 cos2 tb  dt

F
C

 F # dr =

L

2p

0
 F(r(t)) # dr

dt
 dt

dr
dt

= - (sin t)i +
1
2

 (cos t)j

F(r(t)) =
1
2

 (sin t)i - (cos t)j + (cos t)k

dr>dt
D

C
 F # dr,

r(t) = (cos t)i +
1
2

 (sin t)j + k,    0 … t … 2p.

0 … t … 2p,x = cos t, y =
1
2 sin t, z = 1

z = 1.x2
+ 4y2

= 1

z = 1,z = x2
+ 4y2

F = yi - xzj + xz2k.§ * F

z = 1
z = x2

+ 4y2

 =

L

1

0
 
L

2 - 2x

0
 s7x + 4y - 6d dy dx = -1.

 =

L

1

0
 
L

2 - 2x

0
 

1

26
 a7x + 4y - 6b26 dy dx

 
F
C 

 F # dr =

6
S

 § * F # n ds
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z

y
x

C: x2 1 4y2 5 1

z 5 x2 1 4y2

n

FIGURE 16.63 The portion of the
ellipitical paraboloid in Example 8,
showing its curve of intersection C with
the plane and its inner normal
orientation by n.

z = 1

A

B C

D

E

(a)

FIGURE 16.64 (a) Part of a polyhedral
surface. (b) Other polyhedral surfaces.

Stokes’ Theorem, Eq. (4)

(b)
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The boundary of S consists of those edges of the type 2 faces that are not adjacent to
other faces. In Figure 16.64a, the triangles EAB, BCE, and CDE represent a part of S, with
ABCD part of the boundary We apply a generalized tangential form of Green’s Theo-
rem to the three triangles of Figure 16.64a in turn and add the results to get

(7)

In the generalized form, the line integral of F around the curve enclosing the plane region
R normal to n equals the double integral of (curl F) . n over R.

The three line integrals on the left-hand side of Equation (7) combine into a single
line integral taken around the periphery ABCDE because the integrals along interior seg-
ments cancel in pairs. For example, the integral along segment BE in triangle ABE is oppo-
site in sign to the integral along the same segment in triangle EBC. The same holds for
segment CE. Hence, Equation (7) reduces to

When we apply the generalized form of Green’s Theorem to all the faces and add the re-
sults, we get

This is Stokes’ Theorem for the polyhedral surface S in Figure 16.64a. More general poly-
hedral surfaces are shown in Figure 16.64b and the proof can be extended to them. Gen-
eral smooth surfaces can be obtained as limits of polyhedral surfaces.

Stokes’ Theorem for Surfaces with Holes

Stokes’Theorem holds for an oriented surface S that has one or more holes (Figure 16.65).
The surface integral over S of the normal component of equals the sum of the line
integrals around all the boundary curves of the tangential component of F, where the
curves are to be traced in the direction induced by the orientation of S. For such surfaces
the theorem is unchanged, but C is considered as a union of simple closed curves.

An Important Identity

The following identity arises frequently in mathematics and the physical sciences.

§ * F

F
¢ 

F # dr =

6
S

 § * F # n ds.

 
F

ABCDE

F # dr =

6
ABCDE 

 § * F # n ds.

£
F

EAB

+

F
BCE

+

F
CDE

≥F # dr = £
6

EAB 

 +

6
BCE 

+

6
CDE 

 ≥§ * F # n ds.

¢.

¢
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S

n

FIGURE 16.65 Stokes’ Theorem also
holds for oriented surfaces with holes.

(8)curl grad ƒ = 0 or § * §f = 0

This identity holds for any function ƒ(x, y, z) whose second partial derivatives are con-
tinuous. The proof goes like this:

If the second partial derivatives are continuous, the mixed second derivatives in parenthe-
ses are equal (Theorem 2, Section 14.3) and the vector is zero.

§ * §ƒ = 5 i j k

0

0x
0

0y
0

0z

0ƒ
0x

0ƒ
0y

0ƒ
0z

5 = sƒzy - ƒyzdi - sƒzx - ƒxzdj + sƒyx - ƒxydk.
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988 Chapter 16: Integration in Vector Fields

Conservative Fields and Stokes’ Theorem

In Section 16.3, we found that a field F being conservative in an open region D in space is
equivalent to the integral of F around every closed loop in D being zero. This, in turn, is
equivalent in simply connected open regions to saying that (which gives a test
for determining if F is conservative for such regions).

§ * F = 0

THEOREM 7—Curl Related to the Closed-Loop Property If at
every point of a simply connected open region D in space, then on any piecewise-
smooth closed path C in D,

F
C 

 F # dr = 0.

§ * F = 0F = 0

Sketch of a Proof Theorem 7 can be proved in two steps. The first step is for simple
closed curves (loops that do not cross themselves), like the one in Figure 16.66a. A theorem
from topology, a branch of advanced mathematics, states that every smooth simple closed
curve C in a simply connected open region D is the boundary of a smooth two-sided sur-
face S that also lies in D. Hence, by Stokes’ Theorem,

The second step is for curves that cross themselves, like the one in Figure 16.66b. The
idea is to break these into simple loops spanned by orientable surfaces, apply Stokes’ The-
orem one loop at a time, and add the results.

The following diagram summarizes the results for conservative fields defined on con-
nected, simply connected open regions.

F
C 

 F # dr =

6
S

 § * F # n ds = 0.

(b)

FIGURE 16.66 (a) In a simply connected
open region in space, a simple closed
curve C is the boundary of a smooth
surface S. (b) Smooth curves that cross
themselves can be divided into loops to
which Stokes’ Theorem applies.

Theorem 2,
Section 16.3

Theorem 7
Domain's simple
connectivity and
Stokes' Theorem

over any closed
path in D

F � ∇f on DF conservative on D

∇ � F � 0 throughout D
EC 

F • dr � 0

Vector identity (Eq. 8)
(continuous second
partial derivatives)

Theorem 3,
Section 16.3

(a)

S
C

Exercises 16.7

Using Stokes’ Theorem to Find Line Integrals
In Exercises 1–6, use the surface integral in Stokes’Theorem to calcu-
late the circulation of the field F around the curve C in the indicated
direction.

1.

C: The ellipse in the xy-plane, counterclockwise
when viewed from above

4x2
+ y2

= 4

F = x2i + 2xj + z2k

2.

C: The circle in the xy-plane, counterclockwise
when viewed from above

3.

C: The boundary of the triangle cut from the plane 
by the first octant, counterclockwise when viewed from above

z = 1x + y +

F = yi + xzj + x2k

x2
+ y2

= 9

F = 2yi + 3xj - z2k
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4.

C: The boundary of the triangle cut from the plane 
by the first octant, counterclockwise when viewed from above

5.

C: The square bounded by the lines and in the
xy-plane, counterclockwise when viewed from above

6.
C: The intersection of the cylinder and the hemi-
sphere , counterclockwise when viewed
from above

Flux of the Curl
7. Let n be the outer unit normal of the elliptical shell

and let

Find the value of

(Hint: One parametrization of the ellipse at the base of the shell is
)

8. Let n be the outer unit normal (normal away from the origin) of
the parabolic shell

and let

Find the value of

9. Let S be the cylinder together with
its top, Let Use
Stokes’ Theorem to find the flux of outward through S.

10. Evaluate

where S is the hemisphere 

11. Flux of curl F Show that

has the same value for all oriented surfaces S that span C and that
induce the same positive direction on C.

12. Let F be a differentiable vector field defined on a region contain-
ing a smooth closed oriented surface S and its interior. Let n be
the unit normal vector field on S. Suppose that S is the union of
two surfaces and joined along a smooth simple closed curve
C. Can anything be said about

Give reasons for your answer.

6
S

 § * F # n ds?

S2S1

6
S

 § * F # n ds

x2
+ y2

+ z2
= 1, z Ú 0.

6
S

 § * s yid # n ds,

§ * F
F = -yi + xj + x2k.x2

+ y2
… a2,  z = h.

x2
+ y2

= a2, 0 … z … h,

6
S

 § * F # n ds.

F = a-z +

1
2 + x

b i + stan-1 ydj + ax +

1
4 + z

bk.

S: 4x2
+ y + z2

= 4,  y Ú 0,

x = 3 cos t, y = 2 sin t, 0 … t … 2p.

6
S

 § * F # n ds.

F = yi + x2j + sx2
+ y4d3>2 sin e2xyz k.

S: 4x2
+ 9y2

+ 36z2
= 36,  z Ú 0,

x2
+ y2

+ z2
= 16, z Ú 0

x2
+ y2

= 4
F = x2y3i + j + zk

y = ;1x = ;1

F = s y2
+ z2di + sx2

+ y2dj + sx2
+ y2dk

x + y + z = 1

F = sy2
+ z2di + sx2

+ z2dj + sx2
+ y2dk
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Stokes’ Theorem for Parametrized Surfaces
In Exercises 13–18, use the surface integral in Stokes’Theorem to cal-
culate the flux of the curl of the field F across the surface S in the di-
rection of the outward unit normal n.

13.

14.

15.

16.

17.

18.

Theory and Examples
19. Zero circulation Use the identity (Equation (8)

in the text) and Stokes’ Theorem to show that the circulations of
the following fields around the boundary of any smooth ori-
entable surface in space are zero.

a. b.
c. d.

20. Zero circulation Let Show
that the clockwise circulation of the field around the cir-
cle in the xy-plane is zero

a. by taking and 
integrating over the circle.

b. by applying Stokes’ Theorem.

21. Let C be a simple closed smooth curve in the plane
oriented as shown here. Show that

depends only on the area of the region enclosed by C and not on
the position or shape of C.

22. Show that if then § * F = 0.F = xi + yj + zk,

y

z

O a

x

C

1

1

2
2x 1 2y 1 z 5 2

F
C 

 2y dx + 3z dy - x dz

2x + 2y + z = 2 ,

F # dr
r = sa cos tdi + sa sin tdj, 0 … t … 2p,

x2
+ y2

= a2
F = §ƒ

ƒsx, y, zd = sx2
+ y2

+ z2d-1>2.
F = §ƒF = § * sxi + yj + zkd
F = §sxy2z3dF = 2xi + 2yj + 2zk

§ * §ƒ = 0

0 … f … p>2,  0 … u … 2p
S: rsf, ud = s2 sin f cos udi + s2 sin f sin udj + s2 cos fdk,

F = y2i + z2j + xk

0 … f … p>2,  0 … u … 2pA23 cos f Bk,  

S: rsf, ud = A23 sin f cos u B i + A23 sin f sin u B j +

F = 3yi + s5 - 2xdj + sz2
- 2dk

0 … r … 5, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + s5 - rdk,  
F = sx - ydi + s y - zdj + sz - xdk
0 … r … 1, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + rk,  
F = x2yi + 2y3zj + 3zk

0 … r … 3, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + s9 - r2dk,  
F = sy - zdi + sz - xdj + sx + zdk
0 … r … 2, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + s4 - r2dk,  
F = 2zi + 3xj + 5yk
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16.8 The Divergence Theorem and a Unified Theory

The divergence form of Green’s Theorem in the plane states that the net outward flux of a
vector field across a simple closed curve can be calculated by integrating the divergence of
the field over the region enclosed by the curve. The corresponding theorem in three di-
mensions, called the Divergence Theorem, states that the net outward flux of a vector field
across a closed surface in space can be calculated by integrating the divergence of the field
over the region enclosed by the surface. In this section we prove the Divergence Theorem
and show how it simplifies the calculation of flux. We also derive Gauss’s law for flux in
an electric field and the continuity equation of hydrodynamics. Finally, we unify the chap-
ter’s vector integral theorems into a single fundamental theorem.

Divergence in Three Dimensions

The divergence of a vector field is the scalar
function

(1)

The symbol “div F” is read as “divergence of F” or “div F.” The notation is read “del
dot F.”

Div F has the same physical interpretation in three dimensions that it does in two. If F
is the velocity field of a flowing gas, the value of div F at a point (x, y, z) is the rate at
which the gas is compressing or expanding at (x, y, z). The divergence is the flux per unit
volume or flux density at the point.

EXAMPLE 1 The following vector fields represent the velocity of a gas flowing in space.
Find the divergence of each vector field and interpret its physical meaning. Figure 16.67
displays the vector fields.

(a) Expansion: 

(b) Compression: F(x, y, z) = -xi - yj - zk

F(x, y, z) = xi + yj + zk

§
# F

div F = §
# F =

0M
0x +

0N
0y +

0P
0z .

F = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk

990 Chapter 16: Integration in Vector Fields

23. Find a vector field with twice-differentiable components whose
curl is or prove that no such field exists.

24. Does Stokes’ Theorem say anything special about circulation in a
field whose curl is zero? Give reasons for your answer.

25. Let R be a region in the xy-plane that is bounded by a piecewise
smooth simple closed curve C and suppose that the moments of
inertia of R about the x- and y-axes are known to be and 
Evaluate the integral

where in terms of and Iy.Ixr = 2x2
+ y2,

F
C 

 §sr4d # n ds,

Iy.Ix

xi + yj + zk
26. Zero curl, yet field not conservative Show that the curl of

is zero but that

is not zero if C is the circle in the xy-plane. (Theo-
rem 7 does not apply here because the domain of F is not simply
connected. The field F is not defined along the z-axis so there is
no way to contract C to a point without leaving the domain of F.)

x2
+ y2

= 1

F
C 

 F # dr

F =

-y

x2
+ y2 i +

x

x2
+ y2 j + zk
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Solution

(a) The gas is undergoing uniform expansion at all

points.

(b) The gas is undergoing uniform com-

pression at all points.

(c) The gas is neither expanding nor compressing at any

point.

(d) Again, the divergence is zero at all points in the domain of the ve-

locity field, so the gas is neither expanding nor compressing at any point.

Divergence Theorem

The Divergence Theorem says that under suitable conditions, the outward flux of a vector
field across a closed surface equals the triple integral of the divergence of the field over
the region enclosed by the surface.

div F =
0

0y  (z) = 0:

div F =
0

0x  (-y) +
0

0y  (x) = 0:

div F =
0

0x  (-x) +
0

0y  (-y) +
0

0z  (-z) = -3:

div F =
0

0x  (x) +
0

0y  (y) +
0

0z  (z) = 3:

16.8 The Divergence Theorem and a Unified Theory 991

z

y

(a)

x

z

y

(b)

x

z

y

(c)

x

z

y

(d)

x

FIGURE 16.67 Velocity fields of a gas flowing in space (Example 1).

(c) Rotation about z-axis: 

(d) Shearing along horizontal planes: F(x, y, z) = zj

F(x, y, z) = -yi + xj
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EXAMPLE 2 Evaluate both sides of Equation (2) for the expanding vector field
over the sphere (Figure 16.68).

Solution The outer unit normal to S, calculated from the gradient of 
is

Hence,

.

Therefore,

The divergence of F is

so

EXAMPLE 3 Find the flux of outward through the surface of the
cube cut from the first octant by the planes and 

Solution Instead of calculating the flux as a sum of six separate integrals, one for each
face of the cube, we can calculate the flux by integrating the divergence

over the cube’s interior:

The Divergence Theorem

Routine integration =

L

1

0
 
L

1

0
 
L

1

0
 sx + y + zd dx dy dz =

3
2

.

 Flux =

6
Cube

surface

 F # n ds =

9
Cube

interior

 §
# F dV

§
# F =

0

0x sxyd +
0

0y s yzd +
0

0z sxzd = y + z + x

z = 1.x = 1, y = 1,
F = xyi + yzj + xzk

9
D

 §
# F dV =

9
D

 3 dV = 3 a4
3

 pa3b = 4pa3.

§
# F =

0

0x sxd +
0

0y s yd +
0

0z szd = 3,

6
S

 F # n ds =

6
S

 a ds = a
6

S

 ds = as4pa2d = 4pa3.

F # n ds =

x2
+ y2

+ z2

a  ds =
a2

a  ds = a ds

n =

2sxi + yj + zkd

24sx2
+ y2

+ z2d
=

xi + yj + zk
a .

y2
+ z2

- a2,
ƒsx, y, zd = x2

+

x2
+ y2

+ z2
= a2F = xi + yj + zk
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THEOREM 8—Divergence Theorem Let F be a vector field whose components
have continuous first partial derivatives, and let S be a piecewise smooth oriented
closed surface. The flux of F across S in the direction of the surface’s outward
unit normal field n equals the integral of over the region D enclosed by the
surface:

(2)

Outward Divergence
flux integral

6
S

 F # n ds =

9
D

§
# F dV.

¥
# F

on Sx2
+ y2

+ z2
= a2

Area of S

is .4pa2

y

z

x

FIGURE 16.68 A uniformly expanding
vector field and a sphere (Example 2).
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Proof of the Divergence Theorem for Special Regions

To prove the Divergence Theorem, we take the components of F to have continuous first
partial derivatives. We first assume that D is a convex region with no holes or bubbles,
such as a solid ball, cube, or ellipsoid, and that S is a piecewise smooth surface. In addi-
tion, we assume that any line perpendicular to the xy-plane at an interior point of the
region that is the projection of D on the xy-plane intersects the surface S in exactly two
points, producing surfaces

with We make similar assumptions about the projection of D onto the other coor-
dinate planes. See Figure 16.69.

The components of the unit normal vector are the cosines of
the angles and that n makes with i, j, and k (Figure 16.70). This is true because all
the vectors involved are unit vectors. We have

.

Thus,

and

In component form, the Divergence Theorem states that

We prove the theorem by proving the three following equalities:

(3)

(4)

(5)

Proof of Equation (5) We prove Equation (5) by converting the surface integral on the
left to a double integral over the projection of D on the xy-plane (Figure 16.71). The
surface S consists of an upper part whose equation is and a lower part 
whose equation is On the outer normal n has a positive k-component and

cos g ds = dx dy because ds =
dA

ƒ cos g ƒ

=

dx dy
cos g.

S2,z = ƒ1sx, yd.
S1z = ƒ2sx, ydS2

Rxy

6
S

 P cos g ds =

9

 

D

0P
0z  dx dy dz

6
S

 N cos b ds =

9

 

D

0N
0y  dx dy dz

6
S

 M cos a ds =

9

 

D

0M
0x  dx dy dz

6
S

 sM cos a + N cos b + P cos gd ds =

9
D

a0M
0x +

0N
0y +

0P
0z b  dx dy dz.

F # n = M cos a + N cos b + P cos g.

n = scos adi + scos b dj + scos gdk

 n3 = n # k = ƒ n ƒ ƒ k ƒ cos g = cos g

 n2 = n # j = ƒ n ƒ ƒ j ƒ cos b = cos b

 n1 = n # i = ƒ n ƒ ƒ i ƒ  cos a = cos a

ga, b,
n = n1i + n2j + n3k

ƒ1 … ƒ2.

 S2: z = ƒ2sx, yd, sx, yd in Rxy,

 S1: z = ƒ1sx, yd, sx, yd in Rxy

Rxy
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y

z

x

D

Rxy

S2

S1

RyzRxz

FIGURE 16.69 We prove the Divergence
Theorem for the kind of three-dimensional
region shown here.

y

z

x

n

k

j
i

n3

n2n1

�

�

�

(n1, n2, n3)

FIGURE 16.70 The components of n are
the cosines of the angles and that it
makes with i, j, and k.

ga, b,

div FF # n
(''')'''*('''''')''''''*

y

z

x

O n

d�

d�

n
D z � f2(x, y)

S2

S1

z � f1(x, y)

dA � dx dy

Rxy

FIGURE 16.71 The region D enclosed by
the surfaces and projects vertically
onto in the xy-plane.Rxy

S2S1
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See Figure 16.72. On the outer normal n has a negative k-component and

Therefore,

This proves Equation (5). The proofs for Equations (3) and (4) follow the same pattern; or
just permute in order, and get those results from Equation (5).
This proves the Divergence Theorem for these special regions.

Divergence Theorem for Other Regions

The Divergence Theorem can be extended to regions that can be partitioned into a finite
number of simple regions of the type just discussed and to regions that can be defined as
limits of simpler regions in certain ways. For an example of one step in such a splitting
process, suppose that D is the region between two concentric spheres and that F has con-
tinuously differentiable components throughout D and on the bounding surfaces. Split D
by an equatorial plane and apply the Divergence Theorem to each half separately. The bot-
tom half, is shown in Figure 16.73. The surface that bounds consists of an outer
hemisphere, a plane washer-shaped base, and an inner hemisphere. The Divergence Theo-
rem says that

(6)

The unit normal that points outward from points away from the origin along the
outer surface, equals k along the flat base, and points toward the origin along the inner
surface. Next apply the Divergence Theorem to and its surface (Figure 16.74):

(7)

As we follow over pointing outward from we see that equals along the
washer-shaped base in the xy-plane, points away from the origin on the outer sphere, and
points toward the origin on the inner sphere. When we add Equations (6) and (7), the inte-
grals over the flat base cancel because of the opposite signs of and We thus arrive at
the result

with D the region between the spheres, S the boundary of D consisting of two spheres, and
n the unit normal to S directed outward from D.

6
S

 F # n ds =

9
D

 § # F dV,

n2.n1

-kn2D2 ,S2 ,n2

6
S2

 F # n2 ds2 =

9
D2

 § # F dV2 .

S2D2,

D1n1

6
S1

 F # n1 ds1 =

9
D1

 § # F dV1 .

D1S1D1,

x, y, z; M, N, P; a, b, g,

 =

6
Rxy

 c
L

ƒ2sx,yd

ƒ1sx,yd
 
0P
0z  dz d  dx dy =

9
D

 
0P
0z  dz dx dy.

 =

6
Rxy

 [Psx, y, ƒ2sx, ydd - Psx, y, ƒ1sx, ydd] dx dy

 =

6
Rxy

 Psx, y, ƒ2sx, ydd dx dy -

6
Rxy

 Psx, y, ƒ1sx, ydd dx dy

 
6

S

 P cos g ds =

6
S2

P cos g ds +

6
S1

 P cos g ds

cos g ds = -dx dy.

S1,
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n
k

n

k

Here g is acute, so
ds 5 dx dy/cos g.

Here g is obtuse, 
so ds 5 –dx dy/cos g.

g

g

dx
dy

FIGURE 16.72 An enlarged view of the
area patches in Figure 16.71. The relations

come from Eq. (7) in
Section 16.5.
ds = ;dx dy>cos g

z

x

y

k

O

n1D1

FIGURE 16.73 The lower half of the
solid region between two concentric
spheres.

z

x

y

D2

n2

–k

FIGURE 16.74 The upper half of the
solid region between two concentric
spheres.
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EXAMPLE 4 Find the net outward flux of the field

across the boundary of the region (Figure 16.75).

Solution The flux can be calculated by integrating over D. We have

and

Similarly,

Hence,

and

� div F

So the integral of over D is zero and the net outward flux across the boundary of
D is zero. There is more to learn from this example, though. The flux leaving D across the
inner sphere is the negative of the flux leaving D across the outer sphere (because 
the sum of these fluxes is zero). Hence, the flux of F across in the direction away from
the origin equals the flux of F across in the direction away from the origin. Thus, the
flux of F across a sphere centered at the origin is independent of the radius of the sphere.
What is this flux?

To find it, we evaluate the flux integral directly. The outward unit normal on the
sphere of radius a is

Hence, on the sphere,

and

The outward flux of F across any sphere centered at the origin is 4p.

6
Sa

 F # n ds =
1
a2
6
Sa

 ds =
1
a2 s4pa2d = 4p.

F # n =

xi + yj + zk

a3
#
xi + yj + zk

a =

x2
+ y2

+ z2

a4 =
a2

a4 =
1
a2

n =

xi + yj + zk

2x2
+ y2

+ z2
=

xi + yj + zk
a .

Sb

Sa

SbSa

§
# F

§
# F

9
D

 § # F dV = 0.

div F =
3
r3 -

3
r5 sx2

+ y2
+ z2d =

3
r3 -

3r2

r5 = 0

0N
0y =

1
r3 -

3y2

r5 and 0P
0z =

1
r3 -

3z2

r5 .

0M
0x =

0

0x sxr-3d = r-3
- 3xr-4 

0r

0x =
1
r3 -

3x2

r5 .

0r

0x =
1
2

 sx2
+ y2

+ z2d-1>2s2xd =
x
r

§
# F

D: 0 6 a2
… x2

+ y2
+ z2

… b2

F =

xi + yj + zk

r3 ,  r = 2x2
+ y2

+ z2
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y

z

x

Sb

Sa

FIGURE 16.75 Two concentric spheres in
an expanding vector field.
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Gauss’s Law: One of the Four Great Laws
of Electromagnetic Theory

There is still more to be learned from Example 4. In electromagnetic theory, the electric
field created by a point charge q located at the origin is

where is a physical constant, r is the position vector of the point (x, y, z), and

In the notation of Example 4,

The calculations in Example 4 show that the outward flux of E across any sphere cen-
tered at the origin is but this result is not confined to spheres. The outward flux of E
across any closed surface S that encloses the origin (and to which the Divergence Theorem
applies) is also To see why, we have only to imagine a large sphere centered at the
origin and enclosing the surface S (see Figure 16.76). Since

when the integral of over the region D between S and is zero. Hence, by
the Divergence Theorem,

and the flux of E across S in the direction away from the origin must be the same as the
flux of E across in the direction away from the origin, which is This statement,
called Gauss’s Law, also applies to charge distributions that are more general than the one
assumed here, as you will see in nearly any physics text.

Continuity Equation of Hydrodynamics

Let D be a region in space bounded by a closed oriented surface S. If v(x, y, z) is the veloc-
ity field of a fluid flowing smoothly through is the fluid’s density at
(x, y, z) at time t, and then the continuity equation of hydrodynamics states that

If the functions involved have continuous first partial derivatives, the equation evolves nat-
urally from the Divergence Theorem, as we now see.

First, the integral

is the rate at which mass leaves D across S (leaves because n is the outer normal). To see
why, consider a patch of area on the surface (Figure 16.77). In a short time interval 
the volume of fluid that flows across the patch is approximately equal to the volume of
a cylinder with base area and height where v is a velocity vector rooted at a
point of the patch:

¢V L v # n ¢s ¢t.

sv¢td # n,¢s

¢V
¢t,¢s

6
S

 F # n ds

§
# F +

0d
0t = 0.

F = dv,
D, d = dst, x, y, zd

Gauss’s Law: 
6

S

 E # n ds =

q
P0

q>P0.Sa

6
Boundary

of D

 E # n ds = 0,

Sa§
# Er 7 0,

§
# E = §

#
q

4pP0
 F =

q
4pP0

§
# F = 0

Saq>P0.

q>P0,

E =

q
4pP0

 F.

r = ƒ r ƒ = 2x2
+ y2

+ z2.

P0

Esx, y, zd =
1

4pP0
 

q

ƒ r ƒ
2 a r

ƒ r ƒ

b =

q
4pP0

 
r

ƒ r ƒ
3 =

q
4pP0

 
xi + yj + zk

r3 ,
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z

x

y

Sphere Sa

S

FIGURE 16.76 A sphere Sa surrounding
another surface S. The tops of the surfaces
are removed for visualization.

n

S

h � (v Δ t) . n
v Δ t

  �Δ

FIGURE 16.77 The fluid that flows
upward through the patch in a short
time fills a “cylinder” whose volume 
is approximately 
v # n ¢s ¢t.

base * height =

¢t
¢s
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The mass of this volume of fluid is about

so the rate at which mass is flowing out of D across the patch is about

This leads to the approximation

as an estimate of the average rate at which mass flows across S. Finally, letting 
and gives the instantaneous rate at which mass leaves D across S as

which for our particular flow is

Now let B be a solid sphere centered at a point Q in the flow. The average value of
over B is

It is a consequence of the continuity of the divergence that actually takes on this
value at some point P in B. Thus,

. (8)

The last term of the equation describes decrease in mass per unit volume.
Now let the radius of B approach zero while the center Q stays fixed. The left side of

Equation (8) converges to the right side to The equality of these two
limits is the continuity equation

The continuity equation “explains” The divergence of F at a point is the rate at
which the density of the fluid is decreasing there. The Divergence Theorem

now says that the net decrease in density of the fluid in region D is accounted for by the
mass transported across the surface S. So, the theorem is a statement about conservation of
mass (Exercise 31).

6
S

 F # n ds =

9
D

 § # F dV

§
# F:

§
# F = -

0d
0t .

s -0d>0tdQ.s§
# FdQ,

 =
rate at which mass leaves B across its surface S

volume of B

 s§
# FdP =

1
volume of B

 
9
B

 § # F dV =

6
S

 F # n ds

volume of B

§
# F

1
volume of B

 
9
B

 § # F dV.

§
# F

dm
dt

=

6
S

 F # n ds.

dm
dt

=

6
S

 dv # n ds,

¢t : 0
¢s: 0

a¢m

¢t
L adv # n ¢s

¢m
¢t

L dv # n ¢s.

¢m L dv # n ¢s ¢t,
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998 Chapter 16: Integration in Vector Fields

Unifying the Integral Theorems

If we think of a two-dimensional field as a three-dimensional
field whose k-component is zero, then and the normal form
of Green’s Theorem can be written as

Similarly, so the tangential form of Green’s Theorem
can be written as

With the equations of Green’s Theorem now in del notation, we can see their relationships
to the equations in Stokes’ Theorem and the Divergence Theorem.

F
C 

 F # dr =

6
R

 a0N
0x -

0M
0y b  dx dy =

6
R

 § * F # k dA.

§ * F # k = s0N>0xd - s0M>0yd,

F
C 

 F # n ds =

6
R

 a0M
0x +

0N
0y b  dx dy =

6
R

 § # F dA.

§
# F = s0M>0xd + s0N>0yd

F = Msx, ydi + Nsx, ydj

Green’s Theorem and Its Generalization to Three Dimensions

Normal form of Green’s Theorem:

Divergence Theorem:

Tangential form of Green’s Theorem:

Stokes’Theorem:
F
C 

 F # dr =

6
S

 § * F # n ds

F
C 

 F # dr =

6
R

 § * F # k dA

6
S

 F # n ds =

9
D

 § # F dV

F
C 

 F # n ds =

6
R

 § # F dA

Notice how Stokes’ Theorem generalizes the tangential (curl) form of Green’s Theo-
rem from a flat surface in the plane to a surface in three-dimensional space. In each case,
the integral of the normal component of curl F over the interior of the surface equals the
circulation of F around the boundary.

Likewise, the Divergence Theorem generalizes the normal (flux) form of Green’s The-
orem from a two-dimensional region in the plane to a three-dimensional region in space.
In each case, the integral of over the interior of the region equals the total flux of the
field across the boundary.

There is still more to be learned here. All these results can be thought of as forms of a
single fundamental theorem. Think back to the Fundamental Theorem of Calculus in Sec-
tion 5.4. It says that if ƒ(x) is differentiable on (a, b) and continuous on [a, b], then

If we let throughout [a, b], then If we define the unit vector
field n normal to the boundary of [a, b] to be i at b and at a (Figure 16.78), then

 = total outward flux of F across the boundary of [a, b].

 = Fsbd # n + Fsad # n

 ƒsbd - ƒsad = ƒsbdi # sid + ƒsadi # s - id

- i
sdƒ>dxd = §

# F.F = ƒsxdi
L

b

a
 
dƒ
dx

 dx = ƒsbd - ƒsad.

§
# F

x
a b

n � –i n � i

FIGURE 16.78 The outward unit
normals at the boundary of [a, b] in one-
dimensional space.
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Exercises 16.8

Calculating Divergence
In Exercises 1–4, find the divergence of the field.

1. The spin field in Figure 16.12

2. The radial field in Figure 16.11

3. The gravitational field in Figure 16.8 and Exercise 38a in Section
16.3

4. The velocity field in Figure 16.13

Calculating Flux Using the Divergence Theorem
In Exercises 5–16, use the Divergence Theorem to find the outward
flux of F across the boundary of the region D.

5. Cube

D: The cube bounded by the planes and

6.

a. Cube D: The cube cut from the first octant by the planes
and 

b. Cube D: The cube bounded by the planes 
and 

c. Cylindrical can D: The region cut from the solid cylinder
by the planes and

7. Cylinder and paraboloid

D: The region inside the solid cylinder between the
plane and the paraboloid 

8. Sphere

D: The solid sphere x2
+ y2

+ z2
… 4

F = x2i + xzj + 3zk

z = x2
+ y2z = 0

x2
+ y2

… 4

F = yi + xyj - zk

z = 1
z = 0x2

+ y2
… 4

z = ;1y = ;1,
x = ;1,

z = 1x = 1, y = 1 ,

F = x2i + y2j + z2k

z = ;1
x = ;1,  y = ;1,

F = s y - xdi + sz - ydj + s y - xdk

9. Portion of sphere

D: The region cut from the first octant by the sphere 

10. Cylindrical can

D: The region cut from the first octant by the cylinder 
and the plane 

11. Wedge

D: The wedge cut from the first octant by the plane 
and the elliptical cylinder 

12. Sphere

D: The solid sphere 

13. Thick sphere

D: The region 

14. Thick sphere

D: The region 

15. Thick sphere

D: The solid region between the spheres and

16. Thick cylinder

D: The thick-walled cylinder 1 … x2
+ y2

… 2,  -1 … z … 2

z2x 2
+ y 2 k

F = ln sx 2
+ y 2di - a2z

x  tan-1 
y
x b j +

x2
+ y2

+ z2
= 2

x2
+ y2

+ z2
= 1

s5z3
+ e y cos zdk

F = s5x3
+ 12xy2di + s y3

+ ey sin zdj +

1 … x2
+ y2

+ z2
… 4

F = sxi + yj + zkd>2x2
+ y2

+ z2

1 … x2
+ y2

+ z2
… 2

F = 2x2
+ y2

+ z2 sxi + yj + zkd

x2
+ y2

+ z2
… a2

F = x3i + y3j + z3k

4x2
+ y2

= 16
y + z = 4

F = 2xzi - xyj - z2k

z = 34
x2

+ y2
=

F = s6x2
+ 2xydi + s2y + x2zdj + 4x2y3k

z2
= 4

x2
+ y2

+

F = x2i - 2xyj + 3xzk

The Fundamental Theorem now says that

The Fundamental Theorem of Calculus, the normal form of Green’s Theorem, and the Di-
vergence Theorem all say that the integral of the differential operator operating on a
field F over a region equals the sum of the normal field components over the boundary of
the region. (Here we are interpreting the line integral in Green’s Theorem and the surface
integral in the Divergence Theorem as “sums” over the boundary.)

Stokes’ Theorem and the tangential form of Green’s Theorem say that, when things
are properly oriented, the integral of the normal component of the curl operating on a field
equals the sum of the tangential field components on the boundary of the surface.

The beauty of these interpretations is the observance of a single unifying principle,
which we might state as follows.

§
#

Fsbd # n + Fsad # n =

3
[a,b] 

 § # F dx.

A Unifying Fundamental Theorem
The integral of a differential operator acting on a field over a region equals the
sum of the field components appropriate to the operator over the boundary of the
region.
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1000 Chapter 16: Integration in Vector Fields

Properties of Curl and Divergence
17. div (curl G ) is zero

a. Show that if the necessary partial derivatives of the compo-
nents of the field are continuous, then

b. What, if anything, can you conclude about the flux of the field
across a closed surface? Give reasons for your answer.

18. Let and be differentiable vector fields and let a and b be ar-
bitrary real constants. Verify the following identities.

a.

b.

c.

19. Let F be a differentiable vector field and let g(x, y, z) be a differ-
entiable scalar function. Verify the following identities.

a.

b.

20. If is a differentiable vector field, we define
the notation to mean

For differentiable vector fields and verify the following
identities.

a.

b.

Theory and Examples
21. Let F be a field whose components have continuous first partial

derivatives throughout a portion of space containing a region D
bounded by a smooth closed surface S. If can any
bound be placed on the size of

Give reasons for your answer.

22. The base of the closed cubelike surface shown here is the unit
square in the xy-plane. The four sides lie in the planes 

and The top is an arbitrary smooth
surface whose identity is unknown. Let 
and suppose the outward flux of F through Side A is 1 and through
Side B is Can you conclude anything about the outward flux
through the top? Give reasons for your answer.

z

x

y

(1, 1, 0)

1

1

Top

Side B
Side A

-3.

F = xi - 2yj + sz + 3dk
y = 1.y = 0,x = 1,x = 0,

9
D

 § # F dV ?

ƒ F ƒ … 1,

F2 * s§ * F1d
§sF1

# F2d = sF1
#
§dF2 + sF2

#
§dF1 + F1 * s§ * F2d +

s§
# F1dF2

s§
# F2dF1 -§ * sF1 * F2d = sF2

#
§dF1 - sF1

#
§dF2 +

F2,F1

M 
0

0x + N 
0

0y + P 
0

0z .

F #
§

F = Mi + Nj + Pk

§ * sgFd = g§ * F + §g * F

§
# sgFd = g§

# F + §g # F

§
# sF1 * F2d = F2

#
§ * F1 - F1

#
§ * F2

§ * saF1 + bF2d = a§ * F1 + b§ * F2

§
# saF1 + bF2d = a§

# F1 + b§
# F2

F2F1

§ * G

§
#
§ * G = 0.

G = Mi + Nj + Pk

23. a. Show that the outward flux of the position vector field 
through a smooth closed surface S is three times

the volume of the region enclosed by the surface.

b. Let n be the outward unit normal vector field on S. Show that it
is not possible for F to be orthogonal to n at every point of S.

24. Maximum flux Among all rectangular solids defined by the in-
equalities find the one for
which the total flux of out-
ward through the six sides is greatest. What is the greatest flux?

25. Volume of a solid region Let and suppose
that the surface S and region D satisfy the hypotheses of the Diver-
gence Theorem. Show that the volume of D is given by the formula

26. Outward flux of a constant field Show that the outward flux
of a constant vector field across any closed surface to
which the Divergence Theorem applies is zero.

27. Harmonic functions A function ƒ(x, y, z) is said to be harmonic
in a region D in space if it satisfies the Laplace equation

throughout D.

a. Suppose that ƒ is harmonic throughout a bounded region D
enclosed by a smooth surface S and that n is the chosen unit
normal vector on S. Show that the integral over S of 
the derivative of ƒ in the direction of n, is zero.

b. Show that if ƒ is harmonic on D, then

28. Outward flux of a gradient field Let S be the surface of the
portion of the solid sphere that lies in the
first octant and let Calculate

( is the derivative of ƒ in the direction of outward normal n.)

29. Green’s first formula Suppose that ƒ and g are scalar functions
with continuous first- and second-order partial derivatives
throughout a region D that is bounded by a closed piecewise
smooth surface S. Show that

(9)

Equation (9) is Green’s first formula. (Hint: Apply the Diver-
gence Theorem to the field )

30. Green’s second formula (Continuation of Exercise 29. ) Inter-
change ƒ and g in Equation (9) to obtain a similar formula. Then
subtract this formula from Equation (9) to show that

(10)

This equation is Green’s second formula.

6
S

 sƒ §g - g§ƒd # n ds =

9
D

 sƒ §2g - g§
2ƒd dV.

F = ƒ §g.

6
S

 ƒ §g # n ds =

9
D

 sƒ § 2g + §ƒ #
§gd dV.

§ƒ # n

6
S

 §ƒ # n ds.

ƒsx, y, zd = ln2x2
+ y2

+ z2.
x2

+ y2
+ z2

… a2

6
S

 ƒ §ƒ # n ds =

9
D

 ƒ §ƒ ƒ
2 dV.

§ƒ # n,

§
2ƒ = §

#
§ƒ =

0
2ƒ

0x2 +

0
2ƒ

0y2 +

0
2ƒ

0z2 = 0

F = C

Volume of D =

1
3

 
6

S

 F # n ds.

F = xi + yj + zk

F = s -x2
- 4xydi - 6yzj + 12zk

0 … x … a, 0 … y … b, 0 … z … 1,

xi + yj + zk
F =
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31. Conservation of mass Let v(t, x, y, z) be a continuously differ-
entiable vector field over the region D in space and let p(t, x, y, z) be
a continuously differentiable scalar function. The variable t repre-
sents the time domain. The Law of Conservation of Mass asserts
that

where S is the surface enclosing D.

a. Give a physical interpretation of the conservation of mass law
if v is a velocity flow field and p represents the density of the
fluid at point (x, y, z) at time t.

b. Use the Divergence Theorem and Leibniz’s Rule,

to show that the Law of Conservation of Mass is equivalent to
the continuity equation,

§
# pv +

0p
0t = 0.

d
dt

 
9
D

 pst, x, y, zd dV =

9
D

 
0p
0t  dV,

d
dt

 
9
D

 pst, x, y, zd dV = -

6
S

 pv # n ds,

Chapter 16 Practice Exercises 1001

(In the first term the variable t is held fixed, and in the
second term it is assumed that the point (x, y, z) in D is
held fixed.)

32. The heat diffusion equation Let T(t, x, y, z) be a function with
continuous second derivatives giving the temperature at time t at
the point (x, y, z) of a solid occupying a region D in space. If the
solid’s heat capacity and mass density are denoted by the con-
stants c and respectively, the quantity is called the solid’s
heat energy per unit volume.

a. Explain why points in the direction of heat flow.

b. Let denote the energy flux vector. (Here the constant
k is called the conductivity.) Assuming the Law of Conserva-
tion of Mass with and in Exercise 31,
derive the diffusion (heat) equation

where is the diffusivity constant. (Notice
that if T(t, x) represents the temperature at time t at position x
in a uniform conducting rod with perfectly insulated sides, then

and the diffusion equation reduces to the one-
dimensional heat equation in Chapter 14’s Additional Exercises.)
§

2T = 0
2T>0x2

K = k>scrd 7 0

0T
0t = K §

2T,

crT = p-k§T = v

-k§T

- §T

crTr,

0p>0t ,
§

# pv,

Chapter 16 Questions to Guide Your Review

1. What are line integrals? How are they evaluated? Give examples.

2. How can you use line integrals to find the centers of mass of
springs? Explain.

3. What is a vector field? A gradient field? Give examples.

4. How do you calculate the work done by a force in moving a parti-
cle along a curve? Give an example.

5. What are flow, circulation, and flux?

6. What is special about path independent fields?

7. How can you tell when a field is conservative?

8. What is a potential function? Show by example how to find a po-
tential function for a conservative field.

9. What is a differential form? What does it mean for such a form to
be exact? How do you test for exactness? Give examples.

10. What is the divergence of a vector field? How can you interpret it?

11. What is the curl of a vector field? How can you interpret it?

12. What is Green’s Theorem? How can you interpret it?

13. How do you calculate the area of a parametrized surface in space?
Of an implicitly defined surface ? Of the surface
which is the graph of ? Give examples.

14. How do you integrate a function over a parametrized surface in
space? Of surfaces that are defined implicitly or in explicit form?
What can you calculate with surface integrals? Give examples.

15. What is an oriented surface? How do you calculate the flux of a
three-dimensional vector field across an oriented surface? Give
an example.

16. What is Stokes’ Theorem? How can you interpret it?

17. Summarize the chapter’s results on conservative fields.

18. What is the Divergence Theorem? How can you interpret it?

19. How does the Divergence Theorem generalize Green’s Theorem?

20. How does Stokes’ Theorem generalize Green’s Theorem?

21. How can Green’s Theorem, Stokes’ Theorem, and the Divergence
Theorem be thought of as forms of a single fundamental theorem?

z = ƒ(x, y)
F(x, y, z) = 0

Chapter 16 Practice Exercises

Evaluating Line Integrals
1. The accompanying figure shows two polygonal paths in space join-

ing the origin to the point (1, 1, 1). Integrate 
over each path.3y2

- 2z + 3
ƒsx, y, zd = 2x -

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 1

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 2
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2. The accompanying figure shows three polygonal paths joining the
origin to the point (1, 1, 1). Integrate 
over each path.

3. Integrate over the circle

4. Integrate over the involute curve

Evaluate the integrals in Exercises 5 and 6.

5.

6.

7. Integrate around the
circle cut from the sphere by the plane

clockwise as viewed from above.

8. Integrate around the circle cut
from the sphere by the plane 

Evaluate the integrals in Exercises 9 and 10.

9.

C is the square cut from the first quadrant by the lines 
and 

10.

C is the circle 

Finding and Evaluating Surface Integrals
11. Area of an elliptical region Find the area of the elliptical re-

gion cut from the plane by the cylinder

12. Area of a parabolic cap Find the area of the cap cut from the
paraboloid by the plane 

13. Area of a spherical cap Find the area of the cap cut from the
top of the sphere by the plane z = 22>2.x2

+ y2
+ z2

= 1

x = 1.y2
+ z2

= 3x

x2
+ y2

= 1.
x + y + z = 1

x2
+ y2

= 4.
LC

 y2 dx + x2 dy

y = p>2 .
x = p>2

LC
 8x sin y dx - 8y cos x dy

x = 2.x2
+ y2

+ z2
= 9

F = 3x2yi + sx3
+ 1dj + 9z2k

z = -1,
x2

+ y2
+ z2

= 5
F = - s y sin zdi + sx sin zdj + sxy cos zdk

L

s10,3,3d

s1,1,1d
 dx - A

z
y dy - A

y
z  dz

L

s4,-3,0d

s-1,1,1d
 
dx + dy + dz

2x + y + z

rstd = scos t + t sin tdi + ssin t - t cos tdj,  0 … t … 23.

ƒsx, y, zd = 2x2
+ y2

rstd = sa cos tdj + sa sin tdk,  0 … t … 2p.

ƒsx, y, zd = 2x2
+ z2

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

(1, 0, 0)

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

z

y

x

(0, 0, 0)
(1, 1, 1)

(0, 1, 1)
(0, 0, 1) C6

C5 C7

C2

C1 C3 C3
C4

ƒsx, y, zd = x2
+ y - z

1002 Chapter 16: Integration in Vector Fields

14. a. Hemisphere cut by cylinder Find the area of the surface cut
from the hemisphere by the cylin-
der 

b. Find the area of the portion of the cylinder that lies inside the
hemisphere. (Hint: Project onto the xz-plane. Or evaluate the
integral where h is the altitude of the cylinder and ds
is the element of arc length on the circle in the
xy-plane.)

15. Area of a triangle Find the area of the triangle in which the
plane intersects the
first octant. Check your answer with an appropriate vector calcu-
lation.

16. Parabolic cylinder cut by planes Integrate

a.

b.

over the surface cut from the parabolic cylinder by
the planes and 

17. Circular cylinder cut by planes Integrate 
over the portion of the cylinder that

lies in the first octant between the planes and and
above the plane 

18. Area of Wyoming The state of Wyoming is bounded by the
meridians and west longitude and by the circles
41° and 45° north latitude. Assuming that Earth is a sphere of ra-
dius find the area of Wyoming.

Parametrized Surfaces
Find parametrizations for the surfaces in Exercises 19–24. (There are
many ways to do these, so your answers may not be the same as those
in the back of the book.)

19. Spherical band The portion of the sphere 
between the planes and 

20. Parabolic cap The portion of the paraboloid 
above the plane 

21. Cone The cone 

22. Plane above square The portion of the plane 
that lies above the square in the first

quadrant
0 … x … 2, 0 … y … 212

4x + 2y + 4z =

z = 1 + 2x2
+ y2, z … 3

z = -2
z = - sx2

+ y2d>2
z = 323z = -3

x2
+ y2

+ z2
= 36

R = 3959 mi,

104°3¿111°3¿

z = 3.
x = 1x = 0

y2
+ z2

= 25x4ysy2
+ z2d

gsx, y, zd =
z = 0.x = 0, x = 3 ,

y2
- z = 1

gsx, y, zd =

z

24y2
+ 1

gsx, y, zd =

yz

24y2
+ 1

sx>ad + sy>bd + sz>cd = 1 sa, b, c 7 0d

z

x

yCylinder r 5 2 cos u

Hemisphere

z 5 �4 2 r2

x2
+ y2

= 2x
1h ds,

x2
+ y2

= 2x.
x2

+ y2
+ z2

= 4, z Ú 0,
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Chapter 16 Practice Exercises 1003

23. Portion of paraboloid The portion of the paraboloid 
that lies above the xy-plane

24. Portion of hemisphere The portion of the hemisphere 
in the first octant

25. Surface area Find the area of the surface

26. Surface integral Integrate over the sur-
face in Exercise 25.

27. Area of a helicoid Find the surface area of the helicoid

in the accompanying figure.

28. Surface integral Evaluate the integral 
where S is the helicoid in Exercise 27.

Conservative Fields
Which of the fields in Exercises 29–32 are conservative, and which
are not?

29.

30.

31.

32.

Find potential functions for the fields in Exercises 33 and 34.

33.

34.

Work and Circulation
In Exercises 35 and 36, find the work done by each field along the
paths from (0, 0, 0) to (1, 1, 1) in Exercise 1.

35. 36.

37. Finding work in two ways Find the work done by

over the plane curve from the point
(1, 0) to the point in two ways:

a. By using the parametrization of the curve to evaluate the
work integral.

b. By evaluating a potential function for F.

se2p, 0d
rstd = set cos tdi + set sin tdj

F =

xi + yj

sx2
+ y2d3>2

F = 2xyi + x2j + kF = 2xyi + j + x2k

F = sz cos xzdi + eyj + sx cos xzdk
F = 2i + s2y + zdj + sy + 1dk

F = si + zj + ykd>sx + yzd
F = xeyi + yezj + zexk

F = sxi + yj + zkd>sx2
+ y2

+ z2d3>2
F = xi + yj + zk

4S 2x2
+ y2

+ 1 ds,

y

z

x

(1, 0, 0)

(1, 0, 2p)

2p

rsr, ud = (r cos u)i + (r sin u)j + uk,  0 … u … 2p,  0 … r … 1,

ƒsx, y, zd = xy - z2

0 … y … 1.0 … u … 1,  

rsu, yd = su + ydi + su - ydj + yk, 

z2
= 10, y Ú 0,

x2
+ y2

+

y … 2,2sx2
+ z2d, 

y = 38. Flow along different paths Find the flow of the field 

a. once around the ellipse C in which the plane 
intersects the cylinder clockwise as viewed
from the positive y-axis.

b. along the curved boundary of the helicoid in Exercise 27 from
(1, 0, 0) to 

In Exercises 39 and 40, use the surface integral in Stokes’ Theorem to
find the circulation of the field F around the curve C in the indicated
direction.

39. Circulation around an ellipse

C: The ellipse in which the plane meets the
cylinder counterclockwise as viewed from above

40. Circulation around a circle

C: The circle in which the plane meets the sphere
counterclockwise as viewed from above

Masses and Moments
41. Wire with different densities Find the mass of a thin wire

lying along the curve 
if the density at t is (a) and (b)

42. Wire with variable density Find the center of mass of a thin wire
lying along the curve if
the density at t is 

43. Wire with variable density Find the center of mass and the
moments of inertia about the coordinate axes of a thin wire lying
along the curve

if the density at t is 

44. Center of mass of an arch A slender metal arch lies along the
semicircle in the xy-plane. The density at the
point (x, y) on the arch is Find the center of
mass.

45. Wire with constant density A wire of constant density 
lies along the curve 

Find and 

46. Helical wire with constant density Find the mass and center of
mass of a wire of constant density that lies along the helix

47. Inertia and center of mass of a shell Find and the center of
mass of a thin shell of density cut from the upper
portion of the sphere by the plane 

48. Moment of inertia of a cube Find the moment of inertia about
the z-axis of the surface of the cube cut from the first octant by
the planes and if the density is 

Flux Across a Plane Curve or Surface
Use Green’s Theorem to find the counterclockwise circulation and
outward flux for the fields and curves in Exercises 49 and 50.

49. Square

C: The square bounded by x = 0, x = 1, y = 0, y = 1

F = s2xy + xdi + sxy - ydj

d = 1.z = 1x = 1, y = 1,

z = 3.x2
+ y2

+ z2
= 25

dsx, y, zd = z
Iz

rstd = s2 sin tdi + s2 cos tdj + 3tk, 0 … t … 2p.
d

Iz.zln 2.t …

0 …rstd = set cos tdi + set sin tdj + et k,
d = 1

dsx, yd = 2a - y.
y = 2a2

- x2

d = 1>st + 1d .

rstd = ti +

222
3

 t3>2j +

t2

2
 k,  0 … t … 2,

d = 325 + t.
rstd = ti + 2tj + s2>3dt3>2k, 0 … t … 2,

d = 1.d = 3t0 … t … 1,
rstd = 22ti + 22tj + s4 - t2dk,

x2
+ y2

+ z2
= 4,

z = -y

s4y2
- zdk

F = sx2
+ ydi + sx + ydj +

x2
+ y2

= 1,
2x + 6y - 3z = 6

F = y2i - yj + 3z2k

s1, 0, 2pd.

x2
+ z2

= 25,
x + y + z = 1

§sx2zeyd
F =
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50. Triangle

C: The triangle made by the lines and 

51. Zero line integral Show that

for any closed curve C to which Green’s Theorem applies.

52. a. Outward flux and area Show that the outward flux of the
position vector field across any closed curve to
which Green’s Theorem applies is twice the area of the region
enclosed by the curve.

b. Let n be the outward unit normal vector to a closed curve to
which Green’s Theorem applies. Show that it is not possible
for to be orthogonal to n at every point of C.

In Exercises 53–56, find the outward flux of F across the boundary
of D.

53. Cube

D: The cube cut from the first octant by the planes 

54. Spherical cap

D: The entire surface of the upper cap cut from the solid sphere
by the plane z = 3x2

+ y2
+ z2

… 25

F = xzi + yzj + k

z = 1
x = 1, y = 1, 

F = 2xyi + 2yzj + 2xzk

F = xi + yj

F = xi + yj

F
C 

 ln x sin y dy -

cos y
x  dx = 0

x = 1y = 0, y = x ,

F = sy - 6x2di + sx + y2dj

1004 Chapter 16: Integration in Vector Fields

55. Spherical cap

D: The upper region cut from the solid sphere 
by the paraboloid 

56. Cone and cylinder

D: The region in the first octant bounded by the cone

the cylinder and the coordinate
planes

57. Hemisphere, cylinder, and plane Let S be the surface that is
bounded on the left by the hemisphere 
in the middle by the cylinder and on
the right by the plane Find the flux of 
outward across S.

58. Cylinder and planes Find the outward flux of the field
across the surface of the solid in the first

octant that is bounded by the cylinder and the
planes and 

59. Cylindrical can Use the Divergence Theorem to find the flux
of outward through the surface of the re-
gion enclosed by the cylinder and the planes 
and 

60. Hemisphere Find the flux of upward across the
hemisphere (a) with the Divergence
Theorem and (b) by evaluating the flux integral directly.

x2
+ y2

+ z2
= a2, z Ú 0

F = s3z + 1dk
z = -1.

z = 1x2
+ y2

= 1
F = xy2i + x2yj + yk

z = 0.y = 2z, x = 0,
x2

+ 4y2
= 16

F = 3xz2i + yj - z3k

F = yi + zj + xky = a.
x2

+ z2
= a2, 0 … y … a,

x2
+ y2

+ z2
= a2, y … 0,

x2
+ y2

= 1,z = 2x2
+ y2,

F = s6x + ydi - sx + zdj + 4yzk

z = x2
+ y2z2

… 2
x2

+ y2
+

F = -2xi - 3yj + zk

Chapter 16 Additional and Advanced Exercises

Finding Areas with Green’s Theorem
Use the Green’s Theorem area formula in Exercises 16.4 to find the
areas of the regions enclosed by the curves in Exercises 1–4.

1. The limaçon 

2. The deltoid 

y

x
0 3

t … 2p0 …

y = 2 sin t - sin 2t,x = 2 cos t + cos 2t,

y

x
0 1

t … 2p0 …

y = 2 sin t - sin 2t,x = 2 cos t - cos 2t,

3. The eight curve (one loop)

4. The teardrop 

y

x
0

b

2a

x = 2a cos t - a sin 2t, y = b sin t, 0 … t … 2p

y

x

1

21

x = s1>2d sin 2t, y = sin t, 0 … t … p
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Chapter 16 Additional and Advanced Exercises 1005

Theory and Applications

5. a. Give an example of a vector field F (x, y, z) that has value 0 at
only one point and such that curl F is nonzero everywhere. Be
sure to identify the point and compute the curl.

b. Give an example of a vector field F (x, y, z) that has value 0
on precisely one line and such that curl F is nonzero every-
where. Be sure to identify the line and compute the curl.

c. Give an example of a vector field F (x, y, z) that has value 0
on a surface and such that curl F is nonzero everywhere. Be
sure to identify the surface and compute the curl.

6. Find all points (a, b, c) on the sphere where
the vector field is normal to the sur-
face and 

7. Find the mass of a spherical shell of radius R such that at each
point (x, y, z) on the surface the mass density is its dis-
tance to some fixed point (a, b, c) of the surface.

8. Find the mass of a helicoid

if the density function is 

See Practice Exercise 27 for a figure.

9. Among all rectangular regions find the
one for which the total outward flux of 
across the four sides is least. What is the least flux?

10. Find an equation for the plane through the origin such that the cir-
culation of the flow field around the circle of
intersection of the plane with the sphere is a
maximum.

11. A string lies along the circle from (2, 0) to (0, 2) in
the first quadrant. The density of the string is .

a. Partition the string into a finite number of subarcs to show
that the work done by gravity to move the string straight down
to the x-axis is given by

where g is the gravitational constant.

b. Find the total work done by evaluating the line integral in
part (a).

c. Show that the total work done equals the work required to
move the string’s center of mass straight down to the
x-axis.

12. A thin sheet lies along the portion of the plane in
the first octant. The density of the sheet is 

a. Partition the sheet into a finite number of subpieces to show
that the work done by gravity to move the sheet straight down
to the xy-plane is given by

where g is the gravitational constant.

b. Find the total work done by evaluating the surface integral in
part (a).

c. Show that the total work done equals the work required to
move the sheet’s center of mass straight down to the
xy-plane.

sx, y, zd

Work = lim
n: q

 a

n

k = 1
 g xk yk zk ¢sk =

6
S

 g xyz ds,

d sx, y, zd = xy.
x + y + z = 1

sx, yd

Work = lim
n: q

 a

n

k = 1
 g xk yk

2
¢sk =

LC
 g xy2 ds,

r sx, yd = xy
x2

+ y2
= 4

x2
+ y2

+ z2
= 4

F = zi + xj + yk

F = sx2
+ 4xydi - 6yj

0 … x … a, 0 … y … b,

22x 2
+ y 2.

dsx, y, zd =0 … r … 1, 0 … u … 2p,

rsr, ud = sr cos udi + sr sin udj + uk,

dsx, y, zd

Fsa, b, cd Z 0.
F = yz2i + xz2j + 2xyzk

x2
+ y2

+ z2
= R2

13. Archimedes’ principle If an object such as a ball is placed in a
liquid, it will either sink to the bottom, float, or sink a certain dis-
tance and remain suspended in the liquid. Suppose a fluid has
constant weight density w and that the fluid’s surface coincides
with the plane A spherical ball remains suspended in the
fluid and occupies the region 

a. Show that the surface integral giving the magnitude of the 
total force on the ball due to the fluid’s pressure is

b. Since the ball is not moving, it is being held up by the buoy-
ant force of the liquid. Show that the magnitude of the buoy-
ant force on the sphere is

where n is the outer unit normal at (x, y, z). This illustrates
Archimedes’ principle that the magnitude of the buoyant force
on a submerged solid equals the weight of the displaced fluid.

c. Use the Divergence Theorem to find the magnitude of the
buoyant force in part (b).

14. Fluid force on a curved surface A cone in the shape of the sur-
face is filled with a liquid of con-
stant weight density w. Assuming the xy-plane is “ground level,”
show that the total force on the portion of the cone from to

due to liquid pressure is the surface integral

Evaluate the integral.

15. Faraday’s Law If E(t, x, y, z) and B(t, x, y, z) represent the elec-
tric and magnetic fields at point (x, y, z) at time t, a basic principle
of electromagnetic theory says that In this
expression is computed with t held fixed and is
calculated with (x, y, z) fixed. Use Stokes’ Theorem to derive
Faraday’s Law,

where C represents a wire loop through which current flows
counterclockwise with respect to the surface’s unit normal n, giv-
ing rise to the voltage

around C. The surface integral on the right side of the equation is
called the magnetic flux, and S is any oriented surface with
boundary C.

16. Let

be the gravitational force field defined for Use Gauss’s
Law in Section 16.8 to show that there is no continuously differ-
entiable vector field H satisfying F = § * H.

r Z 0.

F = -

GmM

ƒ r ƒ
3  r

F
C 

E # dr

F
C 

E # dr = -

0

0t 6
S

 B # n ds,

0B>0t§ * E
§ * E = -0B>0t.

F =

6
S

 ws2 - zd ds.

z = 2
z = 1

z = 2x2
+ y2, 0 … z … 2

Buoyant force =

6
S

 wsz - 4dk # n ds,

Force = lim
n: q a

n

k = 1
ws4 - zkd ¢sk =

6
S

 ws4 - zd ds.

x2
+ y2

+ sz - 2d2
… 1.

z = 4.
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17. If ƒ(x, y, z) and g(x, y, z) are continuously differentiable scalar
functions defined over the oriented surface S with boundary curve
C, prove that

18. Suppose that and over a re-
gion D enclosed by the oriented surface S with outward unit nor-
mal n and that on S. Prove that through-
out D.

19. Prove or disprove that if and then 

20. Let S be an oriented surface parametrized by r(u, y). Define the
notation so that is a vector normal to thedSdS = ru du * ry dy

F = 0.§ * F = 0,§
# F = 0

F1 = F2F1
# n = F2

# n

§ * F1 = § * F2§
# F1 = §

# F2

6
S

 s§ƒ * §gd # n ds =

F
C 

 ƒ §g # dr.

1006 Chapter 16: Integration in Vector Fields

surface. Also, the magnitude is the element of sur-
face area (by Equation 5 in Section 16.5). Derive the identity

where

21. Show that the volume V of a region D in space enclosed by the
oriented surface S with outward normal n satisfies the identity

where r is the position vector of the point (x, y, z) in D.

V =

1
3

 
6

S

 r # n ds,

E = ƒ ru ƒ
2,  F = ru

# ry ,  and G = ƒ ry ƒ
2.

ds = sEG - F2d1>2 du dy

ds = ƒ dS ƒ

Chapter 16 Technology Application Projects

Mathematica Maple Module:
Work in Conservative and Nonconservative Force Fields
Explore integration over vector fields and experiment with conservative and nonconservative force functions along different paths in the field.

How Can You Visualize Green’s Theorem?
Explore integration over vector fields and use parametrizations to compute line integrals. Both forms of Green’s Theorem are explored.

Visualizing and Interpreting the Divergence Theorem
Verify the Divergence Theorem by formulating and evaluating certain divergence and surface integrals.

/
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OVERVIEW In this chapter we extend our study of differential equations to those of second
order. Second-order differential equations arise in many applications in the sciences and
engineering. For instance, they can be applied to the study of vibrating springs and electric
circuits. You will learn how to solve such differential equations by several methods in this
chapter.

17-1

SECOND-ORDER

DIFFERENTIAL EQUATIONS

C h a p t e r

17

Second-Order Linear Equations

An equation of the form

(1)

which is linear in y and its derivatives, is called a second-order linear differential equa-
tion. We assume that the functions , and are continuous throughout some open
interval I. If is identically zero on I, the equation is said to be homogeneous; other-
wise it is called nonhomogeneous. Therefore, the form of a second-order linear homoge-
neous differential equation is

(2)

We also assume that is never zero for any .
Two fundamental results are important to solving Equation (2). The first of these says

that if we know two solutions and of the linear homogeneous equation, then any
linear combination is also a solution for any constants and .c2c1y = c1y1 + c2y2

y2y1

x H IP(x)

P(x)y– + Q(x)y¿ + R(x)y = 0.

G(x)
GP, Q, R

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = G(x),

17.1

THEOREM 1—The Superposition Principle If and are two solutions
to the linear homogeneous equation (2), then for any constants and , the
function

is also a solution to Equation (2).

y(x) = c1y1(x) + c2y2(x)

c2c1

y2(x)y1(x)
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Proof Substituting y into Equation (2), we have

144442444443 144442444443
is a solution � 0, is a solution

Therefore, is a solution of Equation (2).

Theorem 1 immediately establishes the following facts concerning solutions to the
linear homogeneous equation.

1. A sum of two solutions to Equation (2) is also a solution. (Choose 
.)

2. A constant multiple of any solution to Equation (2) is also a solution. (Choose
and .)

3. The trivial solution is always a solution to the linear homogeneous equa-
tion. (Choose .)

The second fundamental result about solutions to the linear homogeneous equation
concerns its general solution or solution containing all solutions. This result says that
there are two solutions and such that any solution is some linear combination of them
for suitable values of the constants and . However, not just any pair of solutions will
do. The solutions must be linearly independent, which means that neither nor is a
constant multiple of the other. For example, the functions and are
linearly independent, whereas and are not (so they are linearly de-
pendent). These results on linear independence and the following theorem are proved in
more advanced courses.

g(x) = 7x2ƒ(x) = x2
g(x) = xexƒ(x) = ex

y2y1

c2c1

y2y1

c1 = c2 = 0
y(x) K 0

c2 = 0c1 = k
y1ky1

c2 = 1
c1 =y1 + y2

y = c1y1 + c2y2

= c1(0) + c2(0) = 0.

y2= 0,  y1

(P(x)y2– + Q(x)y2¿ + R(x)y2)c2(P(x)y1– + Q(x)y1¿ + R(x)y1) += c1

= P(x)(c1y1– + c2 y2–) + Q(x)(c1y1¿ + c2 y2¿) + R(x)(c1y1 + c2 y2)

= P(x)(c1y1 + c2 y2)– + Q(x)(c1y1 + c2 y2)¿ + R(x)(c1y1 + c2 y2)

P(x)y– + Q(x)y¿ + R(x)y

17-2 Chapter 17: Second-Order Differential Equations

THEOREM 2 If and are continuous over the open interval I and is
never zero on I, then the linear homogeneous equation (2) has two linearly
independent solutions and on I. Moreover, if and are any two linearly
independent solutions of Equation (2), then the general solution is given by

where and are arbitrary constants.c2c1

y(x) = c1y1(x) + c2 y2(x),

y2y1y2y1

P(x)RP, Q,

We now turn our attention to finding two linearly independent solutions to the special
case of Equation (2), where and are constant functions.

Constant-Coefficient Homogeneous Equations

Suppose we wish to solve the second-order homogeneous differential equation

(3)ay– + by¿ + cy = 0,

RP, Q,
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where a, b, and c are constants. To solve Equation (3), we seek a function which when
multiplied by a constant and added to a constant times its first derivative plus a constant
times its second derivative sums identically to zero. One function that behaves this way is
the exponential function , when r is a constant. Two differentiations of this expo-
nential function give and , which are just constant multiples of the
original exponential. If we substitute into Equation (3), we obtain

Since the exponential function is never zero, we can divide this last equation through by
. Thus, is a solution to Equation (3) if and only if r is a solution to the algebraic

equation
y = erxerx

ar2erx
+ brerx

+ cerx
= 0.

y = erx
y– = r2erxy¿ = rerx

y = erx

17.1 Second-Order Linear Equations 17-3

(4)ar2
+ br + c = 0.

Equation (4) is called the auxiliary equation (or characteristic equation) of the differen-
tial equation . The auxiliary equation is a quadratic equation with
roots

and

There are three cases to consider which depend on the value of the discriminant 

Case 1: In this case the auxiliary equation has two real and unequal roots
and . Then and are two linearly independent solutions to Equation

(3) because is not a constant multiple of (see Exercise 61). From Theorem 2 we
conclude the following result.

er1 xer2 x
y2 = er2 xy1 = er1 xr2r1

b2 � 4ac>0.

b2
- 4ac.

r2 =

-b - 2b2
- 4ac

2a
.r1 =

-b + 2b2
- 4ac

2a

ay– + by¿ + cy = 0

THEOREM 3 If and are two real and unequal roots to the auxiliary
equation , then

is the general solution to .ay– + by¿ + cy = 0

y = c1e
r1 x

+ c2e
r2 x

ar2
+ br + c = 0

r2r1

EXAMPLE 1 Find the general solution of the differential equation

Solution Substitution of into the differential equation yields the auxiliary
equation

which factors as

The roots are and Thus, the general solution is

y = c1e
3x

+ c2e
-2x.

r2 = -2.r1 = 3

(r - 3)(r + 2) = 0.

r2
- r - 6 = 0,

y = erx

y– - y¿ - 6y = 0.
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Case 2: In this case To simplify the notation, let
. Then we have one solution with . Since multiplication

of by a constant fails to produce a second linearly independent solution, suppose we try
multiplying by a function instead. The simplest such function would be , so let’s
see if is also a solution. Substituting into the differential equation gives

The first term is zero because ; the second term is zero because solves the
auxiliary equation. The functions and are linearly independent (see
Exercise 62). From Theorem 2 we conclude the following result.

y2 = xerxy1 = erx
rr = -b>2a

 = 0(erx) + (0)xerx
= 0.

 = (2ar + b)erx
+ (ar2

+ br + c)xerx

ay2– + by2¿ + cy2 = a(2rerx
+ r2xerx) + b(erx

+ rxerx) + cxerx

y2y2 = xerx
u(x) = x

erx
2ar + b = 0y1 = erxr = -b>2a

r1 = r2 = -b>2a.b2 � 4ac � 0.

17-4 Chapter 17: Second-Order Differential Equations

THEOREM 4 If r is the only (repeated) real root to the auxiliary equation
, then

is the general solution to .ay– + by¿ + cy = 0

y = c1e
rx

+ c2 xerx

ar2
+ br + c = 0

EXAMPLE 2 Find the general solution to

Solution The auxiliary equation is

which factors into

Thus, is a double root. Therefore, the general solution is

Case 3: In this case the auxiliary equation has two complex roots
and , where and are real numbers and . (These real

numbers are and .) These two complex roots then give
rise to two linearly independent solutions

and

(The expressions involving the sine and cosine terms follow from Euler’s identity in Sec-
tion 9.9.) However, the solutions and are complex valued rather than real valued.
Nevertheless, because of the superposition principle (Theorem 1), we can obtain from
them the two real-valued solutions

and

The functions and are linearly independent (see Exercise 63). From Theorem 2 we
conclude the following result.

y4y3

y4 =
1
2i

 y1 -
1
2i

 y2 = eax sin bx.y3 =
1
2

 y1 +
1
2

 y2 = eaxcos bx

y2y1

y2 = e (a- ib)x
= eax(cos bx - i sin bx).y1 = e (a+ ib)x

= eax(cos bx + i sin bx)

b = 24ac - b2>2aa = -b>2a

i2
= -1bar2 = a - ibr1 = a + ib

b2�4ac<0.

y = c1e
-2x

+ c2 xe-2x.

r = -2

(r + 2)2
= 0.

r2
+ 4r + 4 = 0,

y– + 4y¿ + 4y = 0.
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EXAMPLE 3 Find the general solution to the differential equation

Solution The auxiliary equation is

The roots are the complex pair or and 
Thus, and give the general solution

Initial Value and Boundary Value Problems

To determine a unique solution to a first-order linear differential equation, it was sufficient
to specify the value of the solution at a single point. Since the general solution to a second-
order equation contains two arbitrary constants, it is necessary to specify two conditions.
One way of doing this is to specify the value of the solution function and the value of its
derivative at a single point: and . These conditions are called initial
conditions. The following result is proved in more advanced texts and guarantees the exis-
tence of a unique solution for both homogeneous and nonhomogeneous second-order
linear initial value problems.

y¿(x0) = y1y(x0) = y0

y = e2x(c1 cos x + c2 sin x).

b = 1a = 2
r2 = 2 - i.r1 = 2 + ir = (4 ; 216 - 20)>2

r2
- 4r + 5 = 0.

y– - 4y¿ + 5y = 0.

17.1 Second-Order Linear Equations 17-5

THEOREM 5 If and are two complex roots to the
auxiliary equation , then

is the general solution to ay– + by¿ + cy = 0.

y = eax(c1 cos bx + c2 sin bx)

ar2
+ br + c = 0

r2 = a - ibr1 = a + ib

THEOREM 6 If and are continuous throughout an open interval I,
then there exists one and only one function satisfying both the differential
equation

on the interval I, and the initial conditions

and

at the specified point .x0 H I

y¿(x0) = y1y(x0) = y0

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = G(x)

y(x)
GP, Q, R,

It is important to realize that any real values can be assigned to and and Theorem 6
applies. Here is an example of an initial value problem for a homogeneous equation.

y1y0
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EXAMPLE 4 Find the particular solution to the initial value problem

Solution The auxiliary equation is

.

The repeated real root is giving the general solution

Then,

From the initial conditions we have

Thus, and The unique solution satisfying the initial conditions is

The solution curve is shown in Figure 17.1.

Another approach to determine the values of the two arbitrary constants in the general
solution to a second-order differential equation is to specify the values of the solution
function at two different points in the interval I. That is, we solve the differential equation
subject to the boundary values

and ,

where and both belong to I. Here again the values for and can be any real
numbers. The differential equation together with specified boundary values is called a
boundary value problem. Unlike the result stated in Theorem 6, boundary value prob-
lems do not always possess a solution or more than one solution may exist (see Exercise
65). These problems are studied in more advanced texts, but here is an example for which
there is a unique solution.

EXAMPLE 5 Solve the boundary value problem

.

Solution The auxiliary equation is , which has the complex roots .
The general solution to the differential equation is

.

The boundary conditions are satisfied if

.

It follows that and . The solution to the boundary value problem is

.y = 2 sin 2x

c2 = 2c1 = 0

y ap
12
b = c1 cos ap

6
b + c2 sin ap

6
b = 1

 y(0) = c1
#  1 + c2

#  0 = 0

y = c1 cos 2x + c2 sin 2x

r = ;2ir2
+ 4 = 0

y– + 4y = 0,    y(0) = 0,  y ap
12
b = 1

y2y1x2x1

y(x2) = y2y(x1) = y1

y = ex
- 2xex.

c2 = -2.c1 = 1

1 = c1 + c2
# 0  and  -1 = c1 + c2

# 1.

y¿ = c1e
x

+ c2(x + 1)ex.

y = c1e
x

+ c2 xex.

r = 1,

r2
- 2r + 1 = (r - 1)2

= 0

y– - 2y¿ + y = 0,  y(0) = 1, y¿(0) = -1.
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–4 –3 –2 –1 0 1

–6

–8

–4

–2

y

x

y = ex – 2xex

FIGURE 17.1 Particular solution curve
for Example 4.
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EXERCISES 17.1

In Exercises 1–30, find the general solution of the given equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–40, find the unique solution of the second-order
initial value problem.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40. 9
d2y

dx2 - 12
dy

dx
+ 4y = 0, y(0) = -1, 

dy

dx
(0) = 1

4
d2y

dx2 + 12
dy

dx
+ 9y = 0, y(0) = 2, 

dy

dx
(0) = 1

4y– - 4y¿ + y = 0, y(0) = 4, y¿(0) = 4

y– - 4y¿ + 4y = 0, y(0) = 1, y¿(0) = 0

y– + 4y¿ + 4y = 0, y(0) = 0, y¿(0) = 1

y– + 8y = 0, y(0) = -1, y¿(0) = 2

12y– + 5y¿ - 2y = 0, y(0) = 1, y¿(0) = -1

y– + 12y = 0, y(0) = 0, y¿(0) = 1

y– + 16y = 0, y(0) = 2, y¿(0) = -2

y– + 6y¿ + 5y = 0, y(0) = 0, y¿(0) = 3

9
d2y

dx2 - 12
dy

dx
+ 4y = 09

d2y

dx2 + 6
dy

dx
+ y = 0

4
d2y

dx2 - 4
dy

dx
+ y = 04

d2y

dx2 + 4
dy

dx
+ y = 0

4
d2y

dx2 - 12
dy

dx
+ 9y = 0

d2y

dx2 + 6
dy

dx
+ 9y = 0

d2y

dx2 - 6
dy

dx
+ 9y = 0

d2y

dx2 + 4
dy

dx
+ 4y = 0

y– + 8y¿ + 16y = 0y– = 0

4y– - 4y¿ + 13y = 0y– + 4y¿ + 9y = 0

y– - 2y¿ + 3y = 0y– + 2y¿ + 4y = 0

y– + 16y = 0y– - 2y¿ + 5y = 0

y– + y = 0y– + 25y = 0

y– + 4y¿ + 5y = 0y– + 9y = 0

3y– - 20y¿ + 12y = 08y– - 10y¿ - 3y = 0

9y– - y = 02y– - y¿ - 3y = 0

y– - 64y = 0y– - 4y = 0

y– - 9y = 0y– + 3y¿ - 4y = 0

3y– - y¿ = 0y– - y¿ - 12y = 0

In Exercises 41–55, find the general solution.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

In Exercises 56–60, solve the initial value problem.

56.

57.

58.

59.

60.

61. Prove that the two solution functions in Theorem 3 are linearly in-
dependent.

62. Prove that the two solution functions in Theorem 4 are linearly in-
dependent.

63. Prove that the two solution functions in Theorem 5 are linearly in-
dependent.

64. Prove that if and are linearly independent solutions to the
homogeneous equation (2), then the functions and

are also linearly independent solutions.

65. a. Show that there is no solution to the boundary value problem

b. Show that there are infinitely many solutions to the boundary
value problem

66. Show that if a, b, and c are positive constants, then all solutions of
the homogeneous differential equation

approach zero as x : q .

ay– + by¿ + cy = 0

y– + 4y = 0, y(0) = 0, y(p) = 0.

y– + 4y = 0, y(0) = 0, y(p) = 1.

y4 = y1 - y2

y3 = y1 + y2

y2y1

4y– + 4y¿ + 5y = 0, y(p) = 1, y¿(p) = 0

3y– + y¿ - 14y = 0, y(0) = 2, y¿(0) = -1

4y– - 4y¿ + y = 0, y(0) = -1, y¿(0) = 2

y– + 2y¿ + y = 0, y(0) = 1, y¿(0) = 1

y– - 2y¿ + 2y = 0, y(0) = 0, y¿(0) = 2

6y– - 5y¿ - 4y = 0

4y– + 16y¿ + 52y = 09y– + 24y¿ + 16y = 0

6y– - 5y¿ - 6y = 016y– - 24y¿ + 9y = 0

y– + 4y¿ + 6y = 04y– + 4y¿ + 5y = 0

6y– + 13y¿ - 5y = 025y– + 10y¿ + y = 0

y– + 2y¿ + 2y = 04y– + 20y = 0

9y– + 12y¿ + 4y = 04y– + 4y¿ + y = 0

6y– - y¿ - y = 0y– - 2y¿ - 3y = 0
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Nonhomogeneous Linear Equations

In this section we study two methods for solving second-order linear nonhomogeneous
differential equations with constant coefficients. These are the methods of undetermined
coefficients and variation of parameters. We begin by considering the form of the general
solution.

Form of the General Solution

Suppose we wish to solve the nonhomogeneous equation

(1)

where a, b, and c are constants and G is continuous over some open interval I. Let
be the general solution to the associated complementary equation

(2)

(We learned how to find in Section 17.1.) Now suppose we could somehow come up
with a particular function that solves the nonhomogeneous equation (1). Then the sum

(3)

also solves the nonhomogeneous equation (1) because

Moreover, if is the general solution to the nonhomogeneous equation (1), it must
have the form of Equation (3). The reason for this last statement follows from the observa-
tion that for any function satisfying Equation (1), we have

Thus, is the general solution to the homogeneous equation (2). We have
established the following result.

yc = y - yp

 = G(x) - G(x) = 0.

 = (ay– + by¿ + cy) - (ayp– + byp¿ + cyp)

a(y - yp)– + b(y - yp)¿ + c(y - yp)

yp

y = y(x)

 = G(x).

 = 0 + G(x)

 = (ayc– + byc¿ + cyc) + (ayp– + byp¿ + cyp)

a(yc + yp)– + b(yc + yp)¿ + c(yc + yp)

y = yc + yp

yp

yc

ay– + by¿ + cy = 0.

yc = c1y1 + c2y2

ay– + by¿ + cy = G(x),

17.2

solves Eq. (2) and solves Eq. (1)ypyc

THEOREM 7 The general solution to the nonhomogeneous differen-
tial equation (1) has the form

,

where the complementary solution is the general solution to the associated
homogeneous equation (2) and is any particular solution to the nonhomoge-
neous equation (1).

yp

yc

y = yc + yp

y = y(x)
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The Method of Undetermined Coefficients

This method for finding a particular solution to the nonhomogeneous equation (1) ap-
plies to special cases for which is a sum of terms of various polynomials multi-
plying an exponential with possibly sine or cosine factors. That is, is a sum of terms
of the following forms:

For instance, and represent functions in this category.
(Essentially these are functions solving homogeneous linear differential equations with
constant coefficients, but the equations may be of order higher than two.) We now present
several examples illustrating the method.

EXAMPLE 1 Solve the nonhomogeneous equation 

Solution The auxiliary equation for the complementary equation is

It has the roots and giving the complementary solution

.

Now is a polynomial of degree 2. It would be reasonable to assume that a
particular solution to the given nonhomogeneous equation is also a polynomial of degree 2
because if y is a polynomial of degree 2, then is also a polynomial of de-
gree 2. So we seek a particular solution of the form

We need to determine the unknown coefficients A, B, and C. When we substitute the poly-
nomial and its derivatives into the given nonhomogeneous equation, we obtain

or, collecting terms with like powers of x,

This last equation holds for all values of x if its two sides are identical polynomials of
degree 2. Thus, we equate corresponding powers of x to get

and

These equations imply in turn that A � , B � , and C � Substituting these
values into the quadratic expression for our particular solution gives

By Theorem 7, the general solution to the nonhomogeneous equation is

1
3

 x2
-

4
9

 x +
5

27
.+c1e

- x
+ c2e

3xy = yc + yp =

yp =
1
3

 x2
-

4
9

 x +
5

27
.

5>27.-4>91>3
2A - 2B - 3C = 1.-4A - 3B = 0,-3A = -1,

-3Ax2
+ (-4A - 3B)x + (2A - 2B - 3C) = 1 - x2.

2A - 2(2Ax + B) - 3(Ax2
+ Bx + C) = 1 - x2

yp

yp = Ax2
+ Bx + C.

y– - 2y¿ - 3y

G(x) = 1 - x2

yc = c1e
- x

+ c2e
3x

r = 3r = -1

r2
- 2r - 3 = (r + 1)(r - 3) = 0.

y– - 2y¿ - 3y = 0

y– - 2y¿ - 3y = 1 - x2.

5ex
- sin 2x1 - x, e2x, xex, cos x,

p3(x)eax sin bx.p2(x)eax cos bx,p1(x)erx,

G(x)
p(x)G(x)

yp
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EXAMPLE 2 Find a particular solution of 

Solution If we try to find a particular solution of the form

and substitute the derivatives of in the given equation, we find that A must satisfy the
equation

for all values of x. Since this requires A to equal both 2 and 0 at the same time, we con-
clude that the nonhomogeneous differential equation has no solution of the form .

It turns out that the required form is the sum

.

The result of substituting the derivatives of this new trial solution into the differential
equation is

or

.

This last equation must be an identity. Equating the coefficients for like terms on each side
then gives

and .

Simultaneous solution of these two equations gives and . Our particular
solution is

.

EXAMPLE 3 Find a particular solution of .

Solution If we substitute

and its derivatives in the differential equation, we find that

or

.

However, the exponential function is never zero. The trouble can be traced to the fact that
is already a solution of the related homogeneous equation

.

The auxiliary equation is

which has as a root. So we would expect to become zero when substituted into
the left-hand side of the differential equation.

The appropriate way to modify the trial solution in this case is to multiply by x.
Thus, our new trial solution is

.yp = Axex

Aex

Aexr = 1

r2
- 3r + 2 = (r - 1)(r - 2) = 0,

y– - 3y¿ + 2y = 0

y = ex

0 = 5ex

Aex
- 3Aex

+ 2Aex
= 5ex

yp = Aex

y– - 3y¿ + 2y = 5ex

yp = cos x - sin x

B = 1A = -1

A + B = 0B - A = 2

(B - A) sin x - (A + B) cos x = 2 sin x

-A sin x - B cos x - (A cos x - B sin x) = 2 sin x

yp = A sin x + B cos x

A sin x
-

-A sin x + A cos x = 2 sin x

yp

yp = A sin x

y– - y¿ = 2 sin x.

17-10 Chapter 17: Second-Order Differential Equations
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The result of substituting the derivatives of this new candidate into the differential equation is

or

.

Thus, gives our sought-after particular solution

.

EXAMPLE 4 Find a particular solution of .

Solution The auxiliary equation for the complementary equation

has as a repeated root. The appropriate choice for in this case is neither nor
because the complementary solution contains both of those terms already. Thus, we

choose a term containing the next higher power of x as a factor. When we substitute

and its derivatives in the given differential equation, we get

or

.

Thus, , and the particular solution is

.

When we wish to find a particular solution of Equation (1) and the function is the
sum of two or more terms, we choose a trial function for each term in and add them.

EXAMPLE 5 Find the general solution to .

Solution We first check the auxiliary equation

.

Its roots are and . Therefore, the complementary solution to the associated ho-
mogeneous equation is

.

We now seek a particular solution . That is, we seek a function that will produce
when substituted into the left-hand side of the given differential equation.

One part of is to produce , the other .
Since any function of the form is a solution of the associated homogeneous equa-

tion, we choose our trial solution to be the sum

,

including where we might otherwise have included only . When the derivatives of 
are substituted into the differential equation, the resulting equation is

- (Axex
+ Aex

- 2B sin 2x + 2C cos 2x) = 5ex
- sin 2x

(Axex
+ 2Aex

- 4B cos 2x - 4C sin 2x)

ypexxex

yp = Axex
+ B cos 2x + C sin 2x

yp

c1e
x

-sin 2x5exyp

5ex
- sin 2x

yp

yc = c1e
x

+ c2

r = 0r = 1

r2
- r = 0

y– - y¿ = 5ex
- sin 2x

G(x)
G(x)

yp =
1
2

 x2e3x

A = 1>2
2Ae3x

= e3x

(9Ax2e3x
+ 12Axe3x

+ 2Ae3x) - 6(3Ax2e3x
+ 2Axe3x) + 9Ax2e3x

= e3x

yp = Ax2e3x

Axe3x
Ae3xypr = 3

r2
- 6r + 9 = (r - 3)2

= 0

y– - 6y¿ + 9y = e3x

yp = -5xex

A = -5

-Aex
= 5ex

(Axex
+ 2Aex) - 3(Axex

+ Aex) + 2Axex
= 5ex
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or

.

This equation will hold if

or and Our particular solution is

.

The general solution to the differential equation is

.

You may find the following table helpful in solving the problems at the end of this
section.

+ 5xex
-

1
10

 cos 2x +
1
5 sin 2xc1e

x
+ c2y = yc + yp =

yp = 5xex
-

1
10

 cos 2x +
1
5 sin 2x

C = 1>5.B = -1>10,A = 5,

2B - 4C = -1,4B + 2C = 0,A = 5,

Aex
- (4B + 2C ) cos 2x + (2B - 4C ) sin 2x = 5ex

- sin 2x
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TABLE 17.1 The method of undetermined coefficients for selected equations
of the form

.

If has a term Then include this
that is a constant expression in the
multiple of . . . And if trial function for 

r is not a root of
the auxiliary equation

r is a single root of the
auxiliary equation

r is a double root of the
auxiliary equation

sin kx, cos kx ki is not a root of
the auxiliary equation

0 is not a root of the
auxiliary equation

0 is a single root of the
auxiliary equation

0 is a double root of the
auxiliary equation

Dx4
+ Ex3

+ Fx2

Dx3
+ Ex2

+ Fx

Dx2
+ Ex + Fpx2

+ qx + m

B cos kx + C sin kx

Ax2erx

Axerx

Aerxerx

yp.

G(x)

ay– + by¿ + cy = G(x)

The Method of Variation of Parameters

This is a general method for finding a particular solution of the nonhomogeneous equation
(1) once the general solution of the associated homogeneous equation is known. The
method consists of replacing the constants and in the complementary solution by
functions and and requiring (in a way to be explained) that they2 = y2(x)y1 = y1(x)

c2c1
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resulting expression satisfy the nonhomogeneous equation (1). There are two functions to
be determined, and requiring that Equation (1) be satisfied is only one condition. As a sec-
ond condition, we also require that

. (4)

Then we have

If we substitute these expressions into the left-hand side of Equation (1), we obtain

The first two parenthetical terms are zero since and are solutions of the associated
homogeneous equation (2). So the nonhomogeneous equation (1) is satisfied if, in addition
to Equation (4), we require that

. (5)

Equations (4) and (5) can be solved together as a pair

for the unknown functions and . The usual procedure for solving this simple system
is to use the method of determinants (also known as Cramer’s Rule), which will be demon-
strated in the examples to follow. Once the derivative functions and are known, the
two functions and can be found by integration. Here is a summary
of the method.

y2 = y2(x)y1 = y1(x)
y2¿y1¿

y2¿y1¿

y1¿y1¿ + y2¿y2¿ =

G(x)
a

 y1¿y1 + y2¿y2 = 0,

a(y1¿y1¿ + y2¿y2¿) = G(x)

y2y1

+ a(y1¿y1¿ + y2¿y2¿) = G(x).y1(ay1– + by1¿ + cy1) + y2(ay2– + by2¿ + cy2)

y– = y1y1– + y2y2– + y1¿y1¿ + y2¿y2¿.

 y¿ = y1y1¿ + y2y2¿,

 y = y1y1 + y2y2,

y1¿y1 + y2¿y2 = 0

17.2 Nonhomogeneous Linear Equations 17-13

Variation of Parameters Procedure

To use the method of variation of parameters to find a particular solution to the
nonhomogeneous equation

,

we can work directly with Equations (4) and (5). It is not necessary to rederive
them. The steps are as follows.

1. Solve the associated homogeneous equation

to find the functions and .
2. Solve the equations

simultaneously for the derivative functions and .
3. Integrate and to find the functions and .
4. Write down the particular solution to nonhomogeneous equation (1) as

.yp = y1y1 + y2y2

y2 = y2(x)y1 = y1(x)y2¿y1¿

y2¿y1¿

y1¿y1¿ + y2¿y2¿ =

G(x)
a

 y1¿y1 + y2¿y2 = 0,

y2y1

ay– + by¿ + cy = 0

ay– + by¿ + cy = G(x)
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EXAMPLE 6 Find the general solution to the equation

Solution The solution of the homogeneous equation

is given by

.

Since and , the conditions to be satisfied in Equations (4) and
(5) are

Solution of this system gives

Likewise,

After integrating and we have

,

and

.

Note that we have omitted the constants of integration in determining and . They
would merely be absorbed into the arbitrary constants in the complementary solution.

Substituting and into the expression for in Step 4 gives

The general solution is

.y = c1 cos x + c2 sin x - (cos x) ln ƒ sec x + tan x ƒ

 = (-cos x) ln ƒ sec x + tan x ƒ.

yp = [- ln ƒ sec x + tan x ƒ + sin x] cos x + (-cos x) sin x

ypy2y1

y2y1

y2(x) =

L
sin x dx = -cos x

 = - ln ƒ sec x + tan x ƒ + sin x

 = -

L
(sec x - cos x) dx

y1(x) =

L

-sin2 x
 cos x  dx

y2¿,y1¿

y2¿ =

`  cos x 0

-sin x tan x
`

`  cos x  sin x

-sin x  cos x
`

= sin x.

y1¿ =

` 0  sin x

tan x  cos x
`

`   cos x  sin x

-sin x  cos x
`

=
- tan x sin x

cos2 x + sin2 x
=

-sin2 x
 cos x .

a = 1-y1¿ sin x + y2¿ cos x = tan x.

 y1¿ cos x + y2¿ sin x = 0,

y2(x) = sin xy1(x) = cos x

yc = c1 cos x + c2 sin x

y– + y = 0

y– + y = tan x.

17-14 Chapter 17: Second-Order Differential Equations
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EXAMPLE 7 Solve the nonhomogeneous equation

.

Solution The auxiliary equation is

giving the complementary solution

The conditions to be satisfied in Equations (4) and (5) are

Solving the above system for and gives

Likewise,

Integrating to obtain the parameter functions, we have

and

Therefore,

The general solution to the differential equation is

where the term in has been absorbed into the term in the complementary
solution.

c2e
xyp(1>27)ex

y = c1e
-2x

+ c2e
x

-
1
9

 xex
+

1
6

 x2ex,

 =
1
27

 ex
-

1
9

 xex
+

1
6

 x2ex.

yp = c(1 - 3x)e3x

27
de-2x

+ ax2

6
bex

y2(x) =

L

x
3

 dx =
x2

6
.

 =
1
27

(1 - 3x)e3x,

 = -
1
3
axe3x

3
-

L

e3x

3
 dxb

y1(x) =

L
-  

1
3

 xe3x dx

y2¿ =

` e - 2x 0

-2e - 2x xex `
3e-x =

xe-x

3e-x =
x
3

.

y1¿ =

` 0 ex

xex ex `
` e - 2x ex

-2e - 2x ex `
=

-xe2x

3e - x = -  
1
3

 xe3x.

y2¿y1¿

a = 1-2y1¿e - 2x
+ y2¿ex

= xex.

 y1¿e - 2x
+ y2¿ex

= 0,

yc = c1e
- 2x

+ c2e
x.

r2
+ r - 2 = (r + 2)(r - 1) = 0

y– + y¿ - 2y = xex
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EXERCISES 17.2

Solve the equations in Exercises 1–16 by the method of undetermined
coefficients.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

13. 14.

15. 16.

Solve the equations in Exercises 17–28 by variation of parameters.

17.

18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

In each of Exercises 29–32, the given differential equation has a par-
ticular solution of the form given. Determine the coefficients in 
Then solve the differential equation.

29.

30.

31.

32.

In Exercises 33–36, solve the given differential equations (a) by
variation of parameters and (b) by the method of undetermined
coefficients.

33. 34.

35. 36.
d2y

dx2 - 9
dy

dx
= 9e9x

d2y

dx2 - 4
dy

dx
- 5y = ex

+ 4

d2y

dx2 - 4
dy

dx
+ 4y = 2e2x

d2y

dx2 -

dy

dx
= ex

+ e-x

y– + y¿ - 2y = xex, yp = Ax2ex
+ Bxex

y– + y = 2 cos x + sin x, yp = Ax cos x + Bx sin x

y– - y¿ = cos x + sin x, yp = A cos x + B sin x

y– - 5y¿ = xe5x, yp = Ax2e5x
+ Bxe5x

yp.yp

d2y

dx2 -

dy

dx
= ex cos x, x 7 0

d2y

dx2 + y = sec x,  -

p

2
6 x 6

p

2

y– - y¿ = 2xy– + 4y¿ + 5y = 10

y– - y = sin xy– - y = ex

y– - y = xy– + 2y¿ + y = e-x

y– + 2y¿ + y = exy– + y = sin x

y– + y = tan x,  -

p

2
6 x 6

p

2

y– + y¿ = x

d2y

dx2 + 7
dy

dx
= 42x2

+ 5x + 1
d2y

dx2 - 3
dy

dx
= e3x

- 12x

d2y

dx2 -

dy

dx
= -8x + 3

d2y

dx2 + 5
dy

dx
= 15x2

y– + 3y¿ + 2y = e-x
+ e-2x

- x

y– - y¿ - 6y = e-x
- 7 cos x

y– + 2y¿ + y = 6 sin 2xy– - y = ex
+ x2

y– + y = 2x + 3exy– - y¿ - 2y = 20 cos x

y– + y = e2xy– + y = cos 3x

y– + 2y¿ + y = x2y– - y¿ = sin x

y– - 3y¿ - 10y = 2x - 3y– - 3y¿ - 10y = -3

Solve the differential equations in Exercises 37–46. Some of the equa-
tions can be solved by the method of undetermined coefficients, but
others cannot.

37.

38.

39. 40.

41. 42.

43. 44.

45.

46.

The method of undetermined coefficients can sometimes be used to
solve first-order ordinary differential equations. Use the method to
solve the equations in Exercises 47–50.

47. 48.

49. 50.

Solve the differential equations in Exercises 51 and 52 subject to the
given initial conditions.

51.

52.

In Exercises 53–58, verify that the given function is a particular solu-
tion to the specified nonhomogeneous equation. Find the general solu-
tion and evaluate its arbitrary constants to find the unique solution sat-
isfying the equation and the given initial conditions.

53.

54.

55.

56.

57.

58.

In Exercises 59 and 60, two linearly independent solutions and 
are given to the associated homogeneous equation of the variable-
coefficient nonhomogeneous equation. Use the method of variation of
parameters to find a particular solution to the nonhomogeneous equa-
tion. Assume in each exercise.

59.

60. x2y– + xy¿ - y = x, y1 = x - 1, y2 = x

x2y– + 2xy¿ - 2y = x2, y1 = x - 2, y2 = x

x 7 0

y2y1

yp = xex ln x,  y(1) = e, y¿(1) = 0

y– - 2y¿ + y = x-1ex, x 7 0,

y– - 2y¿ + y = 2ex,  yp = x2ex,  y(0) = 1, y¿(0) = 0

y– - y¿ - 2y = 1 - 2x,  yp = x - 1,  y(0) = 0, y¿(0) = 1

yp = 2ex cos x,  y(0) = 0, y¿(0) = 1

1
2

y– + y¿ + y = 4ex(cos x - sin x),

y– + y = x, yp = 2 sin x + x,  y(0) = 0, y¿(0) = 0

y– + y¿ = x, yp =

x2

2
- x,  y(0) = 0, y¿(0) = 0

d2y

dx2 + y = e2x; y(0) = 0, y¿(0) =

2
5

d2y

dx2 + y = sec2 x, -

p

2
6 x 6

p

2
; y (0) = y¿(0) = 1

y¿ + y = sin xy¿ - 3y = 5e3x

y¿ + 4y = xy¿ - 3y = ex

y– - 3y¿ + 2y = ex
- e2x

y– + y = sec x tan x, -

p

2
6 x 6

p

2

y– + 9y = 9x - cos xy– + 2y¿ = x2
- ex

y– + 4y¿ + 5y = x + 2y– - y¿ = x3

y– + 4y = sin xy– - 8y¿ = e8x

y– + y = csc x, 0 6 x 6 p

y– + y = cot x, 0 6 x 6 p
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17.3 Applications 17-17

Applications

In this section we apply second-order differential equations to the study of vibrating
springs and electric circuits.

Vibrations

A spring has its upper end fastened to a rigid support, as shown in Figure 17.2. An object
of mass m is suspended from the spring and stretches it a length s when the spring comes
to rest in an equilibrium position. According to Hooke’s Law (Section 6.5), the tension
force in the spring is , where k is the spring constant. The force due to gravity pulling
down on the spring is , and equilibrium requires that

(1)

Suppose that the object is pulled down an additional amount beyond the equilibrium po-
sition and then released. We want to study the object’s motion, that is, the vertical position
of its center of mass at any future time.

Let y, with positive direction downward, denote the displacement position of the ob-
ject away from the equilibrium position at any time t after the motion has started.
Then the forces acting on the object are (see Figure 17.3)

the propulsion force due to gravity,

the restoring force of the spring’s tension,

a frictional force assumed proportional to velocity.

The frictional force tends to retard the motion of the object. The resultant of these forces is
, and by Newton’s second law , we must then have

.

By Equation (1), , so this last equation becomes

(2)

subject to the initial conditions and . (Here we use the prime notation
to denote differentiation with respect to time t.)

You might expect that the motion predicted by Equation (2) will be oscillatory about
the equilibrium position and eventually damp to zero because of the retarding fric-
tional force. This is indeed the case, and we will show how the constants m, , and k deter-
mine the nature of the damping. You will also see that if there is no friction (so ),
then the object will simply oscillate indefinitely.

Simple Harmonic Motion

Suppose first that there is no retarding frictional force. Then and there is no damp-
ing. If we substitute to simplify our calculations, then the second-order equa-
tion (2) becomes

with and .y¿(0) = 0y(0) = y0y– + v2y = 0,

v = 2k>m d = 0

d = 0
d

y = 0

y¿(0) = 0y(0) = y0

m
d2y

dt2 + d
dy
dt

+ ky = 0,

mg - ks = 0

m
d2y

dt2 = mg - ks - ky - d
dy
dt

F = maF = Fp - Fs - Fr

Fr = d
dy
dt

,

Fs = k(s + y),

Fp = mg,

y = 0

y0

ks = mg.

mg
ks

17.3

y

y � 0

s

mass m
at equilibrium

FIGURE 17.2 Mass m
stretches a spring by
length s to the equilibrium
position at y = 0.

y

y � 0

y

y0

s

Fs Fr

Fp

a position
after release

start
position

FIGURE 17.3 The propulsion
force (weight) pulls the mass
downward, but the spring
restoring force and frictional
force pull the mass upward.
The motion starts at with
the mass vibrating up and down.

y = y0

Fr

Fs

Fp
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The auxiliary equation is

having the imaginary roots . The general solution to the differential equation in
(2) is

(3)

To fit the initial conditions, we compute

and then substitute the conditions. This yields and . The particular solution

(4)

describes the motion of the object. Equation (4) represents simple harmonic motion of
amplitude and period .

The general solution given by Equation (3) can be combined into a single term by
using the trigonometric identity

.

To apply the identity, we take (see Figure 17.4)

and ,

where

and

Then the general solution in Equation (3) can be written in the alternative form

(5)

Here C and may be taken as two new arbitrary constants, replacing the two constants 
and . Equation (5) represents simple harmonic motion of amplitude C and period

. The angle is called the phase angle, and may be interpreted as its
initial value. A graph of the simple harmonic motion represented by Equation (5) is given
in Figure 17.5.

fvt + fT = 2p>vc2

c1f

y = C sin (vt + f).

f = tan-1 
c1
c2

.C = 2c1 2 + c2 2

c2 = C cos fc1 = C sin f

 sin (vt + f) = cos vt sin f + sin vt cos f

T = 2p>vy0

y = y0 cos vt

c2 = 0c1 = y0

y¿ = -c1v sin vt + c2v cos vt

y = c1 cos vt + c2 sin vt.

r = ;vi

r2
+ v2

= 0,
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�

c2

c1

C = �c1
2 + c2

2

FIGURE 17.4 and
.c2 = C cos f

c1 = C sin f

y

t

–C

C

0

C sin �

y = C sin(�t + �)

T = 2�
�

Period

FIGURE 17.5 Simple harmonic motion of amplitude C
and period T with initial phase angle (Equation 5).f
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Damped Motion

Assume now that there is friction in the spring system, so . If we substitute
and , then the differential equation (2) is

(6)

The auxiliary equation is

with roots . Three cases now present themselves, depending upon
the relative sizes of b and .

Case 1: . The double root of the auxiliary equation is real and equals . The
general solution to Equation (6) is

.

This situation of motion is called critical damping and is not oscillatory. Figure 17.6a
shows an example of this kind of damped motion.

Case 2: . The roots of the auxiliary equation are real and unequal, given by

and . The general solution to Equation (6)
is given by

.

Here again the motion is not oscillatory and both and are negative. Thus y approaches
zero as time goes on. This motion is referred to as overdamping (see Figure 17.6b).

Case 3: . The roots to the auxiliary equation are complex and given by
. The general solution to Equation (6) is given by

This situation, called underdamping, represents damped oscillatory motion. It is analo-
gous to simple harmonic motion of period except that the amplitude
is not constant but damped by the factor . Therefore, the motion tends to zero as t
increases, so the vibrations tend to die out as time goes on. Notice that the period

is larger than the period in the friction-free system.
Moreover, the larger the value of in the exponential damping factor, the more
quickly the vibrations tend to become unnoticeable. A curve illustrating underdamped mo-
tion is shown in Figure 17.6c.

b = d>2m
T0 = 2p>vT = 2p>2v2

- b2

e - bt
T = 2p>2v2

- b2

y = e - bt Ac1 cos2v2
- b2 t + c2 sin2v2

- b2 t B .
r = -b ; i2v2

- b2
b<V

r2r1

y = c1e A- b +2b2
-v2Bt

+ c2e A- b -2b2
-v2Bt

r2 = -b - 2b2
- v2r1 = -b + 2b2

- v2

b>V

y = (c1 + c2t)e
-vt

r = vb � V

v

r = -b ; 2b2
- v2

r2
+ 2br + v2

= 0,

y– + 2by¿ + v2y = 0.

2b = d>mv = 2k>m d Z 0
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y

t

y

t

y

t

(a) Critical damping (b) Overdamping (c) Underdamping

y = (1 + t)e–t y = 2e–2t – e–t y = e–t sin (5t + �/4)
0 0 0

FIGURE 17.6 Three examples of damped vibratory motion for a spring system with
friction, so d Z 0.
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An external force can also be added to the spring system modeled by Equation
(2). The forcing function may represent an external disturbance on the system. For in-
stance, if the equation models an automobile suspension system, the forcing function
might represent periodic bumps or potholes in the road affecting the performance of the
suspension system; or it might represent the effects of winds when modeling the vertical
motion of a suspension bridge. Inclusion of a forcing function results in the second-order
nonhomogeneous equation

(7)

We leave the study of such spring systems to a more advanced course.

Electric Circuits

The basic quantity in electricity is the charge q (analogous to the idea of mass). In an elec-
tric field we use the flow of charge, or current , as we might use velocity in a
gravitational field. There are many similarities between motion in a gravitational field and
the flow of electrons (the carriers of charge) in an electric field.

Consider the electric circuit shown in Figure 17.7. It consists of four components:
voltage source, resistor, inductor, and capacitor. Think of electrical flow as being like a
fluid flow, where the voltage source is the pump and the resistor, inductor, and capacitor
tend to block the flow. A battery or generator is an example of a source, producing a volt-
age that causes the current to flow through the circuit when the switch is closed. An elec-
tric light bulb or appliance would provide resistance. The inductance is due to a magnetic
field that opposes any change in the current as it flows through a coil. The capacitance is
normally created by two metal plates that alternate charges and thus reverse the current
flow. The following symbols specify the quantities relevant to the circuit:

q: charge at a cross section of a conductor measured in coulombs (abbreviated c);

I: current or rate of change of charge dq/dt (flow of electrons) at a cross section of a
conductor measured in amperes (abbreviated A);

E: electric (potential) source measured in volts (abbreviated V);

V: difference in potential between two points along the conductor measured in volts (V).

I = dq>dt

m
d2y

dt2 + d
dy
dt

+ ky = F(t).

F(t)

17-20 Chapter 17: Second-Order Differential Equations

R, Resistor

C, Capacitor

L, InductorE
Voltage

source

FIGURE 17.7 An electric circuit.

Ohm observed that the current I flowing through a resistor, caused by a potential dif-
ference across it, is (approximately) proportional to the potential difference (voltage drop).
He named his constant of proportionality and called R the resistance. So Ohm’s law is

I =
1
R

 V.

1>R
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17.3 Applications 17-21

Linear Second-Order Constant-Coefficient Models

Mechanical System Electrical System

y: displacement q: charge
: velocity : current
: acceleration : change in current

m: mass L: inductance
: damping constant R: resistance

k: spring constant 1 C: where C is the capacitance
F(t): forcing function E(t): voltage source

>d

q–y–

q¿y¿

Lq– + Rq¿ +
1
C

 q = E(t)my– + dy¿ + ky = F(t)

EXERCISES 17.3

1. A 16-lb weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 lb ft.
The resistance in the spring–mass system is numerically equal to
the instantaneous velocity. At the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft sec. Write an initial value problem that
models the given situation.

>
t = 0

> 2. An 8-lb weight stretches a spring 4 ft. The spring–mass system re-
sides in a medium offering a resistance to the motion that is nu-
merically equal to 1.5 times the instantaneous velocity. If the
weight is released at a position 2 ft above its equilibrium position
with a downward velocity of 3 ft sec, write an initial value prob-
lem modeling the given situation.

>

Similarly, it is known from physics that the voltage drops across an inductor and a ca-
pacitor are

and

where L is the inductance and C is the capacitance (with q the charge on the capacitor).
The German physicist Gustav R. Kirchhoff (1824–1887) formulated the law that the

sum of the voltage drops in a closed circuit is equal to the supplied voltage . Symboli-
cally, this says that

Since , Kirchhoff’s law becomes

(8)

The second-order differential equation (8), which models an electric circuit, has exactly
the same form as Equation (7) modeling vibratory motion. Both models can be solved
using the methods developed in Section 17.2.

Summary

The following chart summarizes our analogies for the physics of motion of an object in a
spring system versus the flow of charged particles in an electrical circuit.

L 
d2q

dt2 + R 
dq
dt

+
1
C

 q = E(t).

I = dq>dt

RI + L 
dI
dt

+

q
C

= E(t).

E(t)

q
C

,L 
dI
dt
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3. A 20-lb weight is hung on an 18-in. spring and stretches it 6 in.
The weight is pulled down 5 in. and 5 lb are added to the weight. If
the weight is now released with a downward velocity of in. sec,
write an initial value problem modeling the vertical displacement.

4. A 10-lb weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is lb
times the instantaneous velocity y in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
formulate an initial value problem modeling the behavior of the
spring–mass system.

5. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present and a voltage of cos t is applied. In this circuit
the voltage drop across the resistor is 4 times the instantaneous
change in the charge, the voltage drop across the capacitor is 
10 times the charge, and the voltage drop across the inductor is
2 times the instantaneous change in the current. Write an initial
value problem to model the circuit.

6. An inductor of 2 henrys is connected in series with a resistor
of 12 ohms, a capacitor of 1 16 farad, and a 300 volt battery.
Initially, the charge on the capacitor is zero and the current is
zero. Formulate an initial value problem modeling this electrical
circuit.

Mechanical units in the British and metric systems may be helpful
in doing the following problems.

Unit British System MKS System

Distance Feet (ft) Meters (m)
Mass Slugs Kilograms (kg)
Time Seconds (sec) Seconds (sec)
Force Pounds (lb) Newtons (N)
g(earth) 32 ft sec2 9.81 m sec2

7. A 16-lb weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 1 lb ft.
The resistance in the spring–mass system is numerically equal to
the instantaneous velocity. At the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a
downward velocity of 2 ft sec. At the end of sec, determine
whether the mass is above or below the equilibrium position and
by what distance.

8. An 8-lb weight stretches a spring 4 ft. The spring–mass system
resides in a medium offering a resistance to the motion equal to
1.5 times the instantaneous velocity. If the weight is released at a
position 2 ft above its equilibrium position with a downward
velocity of 3 ft sec, find its position relative to the equilibrium
position 2 sec later.

9. A 20-lb weight is hung on an 18-in. spring stretching it 6 in. The
weight is pulled down 5 in. and 5 lb are added to the weight. If the
weight is now released with a downward velocity of in. sec,
find the position of mass relative to the equilibrium in terms of 
and valid for any time .t Ú 0

y0

>y0

>

p>
t = 0

>

>>

>

Estd = 20

20>1g

>y0

10. A mass of 1 slug is attached to a spring whose constant is 25 4
lb ft. Initially the mass is released 1 ft above the equilibrium posi-
tion with a downward velocity of 3 ft sec, and the subsequent
motion takes place in a medium that offers a damping force nu-
merically equal to 3 times the instantaneous velocity. An external
force ƒ(t) is driving the system, but assume that initially .
Formulate and solve an initial value problem that models the
given system. Interpret your results.

11. A 10-lb weight is suspended by a spring that is stretched 2 in. by
the weight. Assume a resistance whose magnitude is lb
times the instantaneous velocity in feet per second. If the weight
is pulled down 3 in. below its equilibrium position and released,
find the time required to reach the equilibrium position for the
first time.

12. A weight stretches a spring 6 in. It is set in motion at a point 2 in. be-
low its equilibrium position with a downward velocity of 2 in. sec.

a. When does the weight return to its starting position?

b. When does it reach its highest point?

c. Show that the maximum velocity is in. sec.

13. A weight of 10 lb stretches a spring 10 in. The weight is drawn
down 2 in. below its equilibrium position and given an initial ve-
locity of 4 in. sec. An identical spring has a different weight at-
tached to it. This second weight is drawn down from its equilib-
rium position a distance equal to the amplitude of the first motion
and then given an initial velocity of 2 ft sec. If the amplitude of
the second motion is twice that of the first, what weight is at-
tached to the second spring?

14. A weight stretches one spring 3 in. and a second weight stretches
another spring 9 in. If both weights are simultaneously pulled
down 1 in. below their respective equilibrium positions and then
released, find the first time after when their velocities are
equal.

15. A weight of 16 lb stretches a spring 4 ft. The weight is pulled
down 5 ft below the equilibrium position and then released. What
initial velocity given to the weight would have the effect of
doubling the amplitude of the vibration?

16. A mass weighing 8 lb stretches a spring 3 in. The spring–mass sys-
tem resides in a medium with a damping constant of 2 lb-sec ft. If
the mass is released from its equilibrium position with a velocity
of 4 in. sec in the downward direction, find the time required for
the mass to return to its equilibrium position for the first time.

17. A weight suspended from a spring executes damped vibrations with
a period of 2 sec. If the damping factor decreases by 90% in 10 sec,
find the acceleration of the weight when it is 3 in. below its equilib-
rium position and is moving upward with a speed of 2 ft sec.

18. A 10-lb weight stretches a spring 2 ft. If the weight is pulled down
6 in. below its equilibrium position and released, find the highest
point reached by the weight. Assume the spring–mass system re-
sides in a medium offering a resistance of lb times the in-
stantaneous velocity in feet per second.

10>1g

>

>
>

y0

t = 0

>

>

>212g + 1

>

40>1g

ƒ(t) K 0

>> >
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17.4 Euler Equations 17-23

19. An LRC circuit is set up with an inductance of 1 5 henry, a resist-
ance of 1 ohm, and a capacitance of 5 6 farad. Assuming the initial
charge is 2 coulombs and the initial current is 4 amperes, find the
solution function describing the charge on the capacitor at any time.
What is the charge on the capacitor after a long period of time?

20. An (open) electrical circuit consists of an inductor, a resistor, and
a capacitor. There is an initial charge of 2 coulombs on the capac-
itor. At the instant the circuit is closed, a current of 3 amperes is
present but no external voltage is being applied. In this circuit the
voltage drops at three points are numerically related as follows:
across the capacitor, 10 times the charge; across the resistor, 4
times the instantaneous change in the charge; and across the in-
ductor, 2 times the instantaneous change in the current. Find the
charge on the capacitor as a function of time.

21. A 16-lb weight stretches a spring 4 ft. This spring–mass system is
in a medium with a damping constant of 4.5 lb-sec ft, and an ex-
ternal force given by (in pounds) is being ap-
plied. What is the solution function describing the position of the
mass at any time if the mass is released from 2 ft below the equi-
librium position with an initial velocity of 4 ft sec downward?

22. A 10-kg mass is attached to a spring having a spring constant of
140 N m. The mass is started in motion from the equilibrium po-
sition with an initial velocity of 1 m sec in the upward direction
and with an applied external force given by sin t (in new-
tons). The mass is in a viscous medium with a coefficient of re-
sistance equal to 90 N-sec m. Formulate an initial value problem
that models the given system; solve the model and interpret the
results.

23. A 2-kg mass is attached to the lower end of a coil spring sus-
pended from the ceiling. The mass comes to rest in its equilibrium

>
ƒ(t) = 5

>>
>

ƒ(t) = 4 + e - 2t
>

> > position thereby stretching the spring 1.96 m. The mass is in a
viscous medium that offers a resistance in newtons numerically
equal to 4 times the instantaneous velocity measured in meters
per second. The mass is then pulled down 2 m below its equilib-
rium position and released with a downward velocity of 3 m sec.
At this same instant an external force given by cos t (in
newtons) is applied to the system. At the end of sec determine
if the mass is above or below its equilibrium position and by how
much.

24. An 8-lb weight stretches a spring 4 ft. The spring–mass system re-
sides in a medium offering a resistance to the motion equal to 1.5
times the instantaneous velocity, and an external force given by

(in pounds) is being applied. If the weight is re-
leased at a position 2 ft above its equilibrium position with down-
ward velocity of 3 ft sec, find its position relative to the equilib-
rium after 2 sec have elapsed.

25. Suppose henrys, ohms, farads,
volts, coulombs, and . For-

mulate and solve an initial value problem that models the given
LRC circuit. Interpret your results.

26. A series circuit consisting of an inductor, a resistor, and a capaci-
tor is open. There is an initial charge of 2 coulombs on the capac-
itor, and 3 amperes of current is present in the circuit at the instant
the circuit is closed. A voltage given by is ap-
plied. In this circuit the voltage drops are numerically equal to the
following: across the resistor to 4 times the instantaneous change
in the charge, across the capacitor to 10 times the charge, and
across the inductor to 2 times the instantaneous change in the cur-
rent. Find the charge on the capacitor as a function of time. Deter-
mine the charge on the capacitor and the current at time .t = 10

E(t) = 20 cos t

q¿(0) = i(0) = 0q(0) = 10E = 100
C = 1>500R = 10L = 10

>
ƒ(t) = 6 + e - t

p

ƒ(t) = 20
>

Euler Equations

In Section 17.1 we introduced the second-order linear homogeneous differential equation

and showed how to solve this equation when the coefficients P, Q, and R are constants. If
the coefficients are not constant, we cannot generally solve this differential equation in
terms of elementary functions we have studied in calculus. In this section you will learn
how to solve the equation when the coefficients have the special forms

and ,

where a, b, and c are constants. These special types of equations are called Euler equa-
tions, in honor of Leonhard Euler who studied them and showed how to solve them. Such
equations arise in the study of mechanical vibrations.

The General Solution of Euler Equations

Consider the Euler equation

, (1)x 7 0.ax2y– + bxy¿ + cy = 0

R(x) = cQ(x) = bx,P(x) = ax2,

P(x)y–(x) + Q(x)y¿(x) + R(x)y(x) = 0

17.4
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To solve Equation (1), we first make the change of variables

and .

We next use the chain rule to find the derivatives and :

and

Substituting these two derivatives into the left-hand side of Equation (1), we find

Therefore, the substitutions give us the second-order linear differential equation with con-
stant coefficients

(2)

We can solve Equation (2) using the method of Section 17.1. That is, we find the roots to
the associated auxiliary equation

(3)

to find the general solution for After finding we can determine from the
substitution 

EXAMPLE 1 Find the general solution of the equation .

Solution This is an Euler equation with , , and . The auxiliary equa-
tion (3) for is

,

with roots and . The solution for is given by

.

Substituting gives the general solution for :

.

EXAMPLE 2 Solve the Euler equation .

Solution Since , , and , the auxiliary equation (3) for is

.

The auxiliary equation has the double root giving

.

Substituting into this expression gives the general solution

.y(x) = c1e
3 ln x

+ c2 ln x e3 ln x
= c1 x3

+ c2 x3 ln x

z = ln x

Y(z) = c1e
3z

+ c2 ze3z

r = 3

r2
+ (-5 - 1)r + 9 = (r - 3)2

= 0

Y(z)c = 9b = -5a = 1

x2y– - 5xy¿ + 9y = 0

y(x) = c1e
-2 ln x

+ c2e
ln x

= c1 x-2
+ c2 x

y(x)z = ln x

Y(z) = c1e
- 2z

+ c2e
z

Y(z)r = 1r = -2

r2
+ (2 - 1)r - 2 = (r - 1)(r + 2) = 0

Y(z)
c = -2b = 2a = 1

x2y– + 2xy¿ - 2y = 0

z = ln x.
y(x)Y(z),Y(z).

ar2
+ (b - a)r + c = 0

aY –(z) + (b - a)Y ¿(z) + cY(z) = 0.

 = aY –(z) + (b - a)Y ¿(z) + cY(z).

ax2y– + bxy¿ + cy = ax2 a-
1
x2 Y ¿(z) +

1
x2 Y –(z)b + bx a1x Y ¿(z)b + cY(z)

y–(x) =
d
dx

y¿(x) =
d
dx

Y ¿(z)
1
x = -

1
x2 Y ¿(z) +

1
x Y –(z)

dz
dx

= -
1
x2 Y ¿(z) +

1
x2 Y –(z).

y¿(x) =
d
dx

Y(z) =
d
dz

Y(z)
dz
dx

= Y ¿(z)
1
x

y–(x)y¿(x)

y(x) = Y(z)z = ln x
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EXAMPLE 3 Find the particular solution to that satisfies the
initial conditions and .

Solution Here , , and substituted into the auxiliary equation (3)
gives

.

The roots are and giving the solution

.

Substituting into this expression gives

.

From the initial condition , we see that and

.

To fit the second initial condition, we need the derivative

.

Since , we immediately obtain . Therefore, the particular solution satis-
fying both initial conditions is

.

Since , the solution satisfies

.

A graph of the solution is shown in Figure 17.8.

-
x2

8
… y(x) …

x2

8

-1 … sin (8 ln x) … 1

y(x) =
1
8

 x2 sin (8 ln x)

c2 = 1>8y¿(1) = 1

y¿(x) = c2 A8x cos (8 ln x) + 2x sin (8 ln x) B
y(x) = c2 x

2 sin (8 ln x)

c1 = 0y(1) = 0

y(x) = e2 ln x Ac1 cos (8 ln x) + c2 sin (8 ln x) B
z = ln x

Y(z) = e2z(c1 cos 8z + c2 sin 8z)

r = 2 - 8ir = 2 + 8i

r2
- 4r + 68 = 0

c = 68b = -3a = 1

y¿(1) = 1y(1) = 0
x2y– - 3xy¿ + 68y = 0

17.4 Euler Equations 17-25

20 4 6 8 10

–5

–10

5

10

y

x

y =  sin (8 lnx)x2

8

FIGURE 17.8 Graph of the solution to
Example 3.

EXERCISES 17.4

In Exercises 1–24, find the general solution to the given Euler
equation. Assume throughout.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. 4x2y– + y = 0x2y– + xy¿ = 0

x2y– - 3xy¿ + 9y = 0x2y– + 3xy¿ + y = 0

4x2y– - 4xy¿ + 5y = 04x2y– + 8xy¿ + 5y = 0

x2y– - 5xy¿ + 10y = 0x2y– + 3xy¿ + 10y = 0

x2y– + 7xy¿ + 13y = 0x2y– - xy¿ + 5y = 0

x2y– - xy¿ + 2y = 0x2y– - xy¿ + y = 0

x2y– + 6xy¿ + 4y = 03x2y– + 4xy¿ = 0

2x2y– + 7xy¿ + 2y = 0x2y– - 5xy¿ + 8y = 0

x2y– + xy¿ - y = 0x2y– - 6y = 0

x2y– + xy¿ - 4y = 0x2y– + 2xy¿ - 2y = 0

x 7 0
21.

22.

23.

24.

In Exercises 25–30, solve the given initial value problem.

25.

26.

27.

28.

29.

30. x2y– + 3xy¿ + 5y = 0,  y(1) = 1, y¿(1) = 0

x2y– - xy¿ + 2y = 0,  y(1) = -1, y¿(1) = 1

x2y– + 7xy¿ + 9y = 0,  y(1) = 1, y¿(1) = 0

x2y– - xy¿ + y = 0,  y(1) = 1, y¿(1) = 1

6x2y– + 7xy¿ - 2y = 0,  y(1) = 0, y¿(1) = 1

x2y– + 3xy¿ - 3y = 0,  y(1) = 1, y¿(1) = -1

4x2y– - 16xy¿ + 25y = 0

16x2y– + 56xy¿ + 25y = 0

16x2y– - 8xy¿ + 9y = 0

9x2y– + 15xy¿ + y = 0
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Power-Series Solutions

In this section we extend our study of second-order linear homogeneous equations with
variable coefficients. With the Euler equations in Section 17.4, the power of the variable x
in the nonconstant coefficient had to match the order of the derivative with which it was
paired: with , with , and with . Here we drop that requirement so we
can solve more general equations.

Method of Solution

The power-series method for solving a second-order homogeneous differential equation
consists of finding the coefficients of a power series

(1)

which solves the equation. To apply the method we substitute the series and its derivatives
into the differential equation to determine the coefficients The technique for
finding the coefficients is similar to that used in the method of undetermined coefficients
presented in Section 17.2.

In our first example we demonstrate the method in the setting of a simple equation
whose general solution we already know. This is to help you become more comfortable
with solutions expressed in series form.

EXAMPLE 1 Solve the equation by the power-series method.

Solution We assume the series solution takes the form of

and calculate the derivatives

and

Substitution of these forms into the second-order equation gives us

Next, we equate the coefficients of each power of x to zero as summarized in the following
table.

Power of x Coefficient Equation

or

or

or

or

or

or cn = -
1

n(n - 1)
 cn - 2= 0n(n - 1)cn + cn - 2xn - 2

ooo

c6 = -
1

6 # 5
 c4= 06(5)c6 + c4x4

c5 = -
1

5 # 4
 c3= 05(4)c5 + c3x3

c4 = -
1

4 # 3
 c2= 04(3)c4 + c2x2

c3 = -
1

3 # 2
 c1= 03(2)c3 + c1x1

c2 = -
1
2

 c0= 02(1)c2 + c0x0

a

q

n = 2
 n(n - 1)cn xn - 2

+ a

q

n = 0
 cn xn

= 0.

y– = a

q

n = 2
 n(n - 1)cnxn - 2.y¿ = a

q

n = 1
 ncn xn - 1

y = a

q

n = 0
 cnxn

y– + y = 0

c0, c1, c2, Á .

y(x) = a

q

n = 0
 cn xn

= c0 + c1x + c2x2
+

Á

yx0 (=1)y¿x1y–x2

17.5
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From the table we notice that the coefficients with even indices ( )
are related to each other and the coefficients with odd indices ( ) are also inter-
related. We treat each group in turn.

Even indices: Here , so the power is . From the last line of the table, we have

or

From this recursive relation we find

Odd indices: Here , so the power is . Substituting this into the last
line of the table yields

or

Thus,

Writing the power series by grouping its even and odd powers together and substitut-
ing for the coefficients yields

.

From Table 9.1 in Section 9.10, we see that the first series on the right-hand side of the last
equation represents the cosine function and the second series represents the sine. Thus, the
general solution to is

.y = c0 cos x + c1 sin x

y– + y = 0

 = c0a

q

k = 0
 
(-1)k

(2k)!
x2k

+ c1a

q

k = 0
 

(-1)k

(2k + 1)!
x2k + 1

 = a

q

k = 0
 c2kx2k

+ a

q

k = 0
 c2k + 1x2k + 1

y = a

q

n = 0
 cnxn

 =

(-1)k

(2k + 1)!
 c1.

c2k + 1 = c- 1
(2k + 1)(2k)

d c- 1
(2k - 1)(2k - 2)

d Á c- 1
5(4)
d c- 1

3(2)
dc1

c2k + 1 = -
1

(2k + 1)(2k)
 c2k - 1.

(2k + 1)(2k)c2k + 1 + c2k - 1 = 0

x2k - 1n = 2k + 1

 =

(-1)k

(2k)!
 c0.

c2k = c- 1
2k(2k - 1)

d c- 1
(2k - 2)(2k - 3)

d Á c- 1
4(3)
d c- 1

2
dc0

c2k = -
1

2k(2k - 1)
 c2k - 2.

2k(2k - 1)c2k + c2k - 2 = 0

x2k - 2n = 2k

n = 2k + 1
n = 2k, k = 1, 2, 3, Á
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EXAMPLE 2 Find the general solution to .

Solution We assume the series solution form

and calculate the derivatives

and .

Substitution of these forms into the second-order equation yields

.

We equate the coefficients of each power of x to zero as summarized in the following table.

Power of x Coefficient Equation

or

or

or

or

or

or

From the table notice that the coefficients with even indices are interrelated and the coeffi-
cients with odd indices are also interrelated.

Even indices: Here so the power is From the last line in the table,
we have

From this recurrence relation we obtain

Odd indices: Here so the power is From the last line in the table,
we have

From this recurrence relation we obtain

 =

(-1)k

(3)(5) Á (2k + 1)
 c1.

 c2k + 1 = a-
1

2k + 1
b a-

1
2k - 1

b Á a-
1
5
b a-

1
3
bc1

c2k + 1 = -
1

2k + 1
 c2k - 1.

x2k - 1.n = 2k - 1,

 =

(-1)k

(2)(4)(6) Á (2k)
 c0.

 c2k = a-
1
2k
b a-

1
2k - 2

b Á a-
1
6
b a-

1
4
b a-

1
2
bc0

c2k = -
1
2k

 c2k - 2.

x2k - 2.n = 2k - 2,

cn + 2 = -
1

n + 2
 cn(n + 2)(n + 1)cn + 2 + (n + 1)cn = 0xn

ooo

c6 = -
1
6 c46(5)c6 + 4c4 + c4 = 0x4

c5 = -
1
5 c35(4)c5 + 3c3 + c3 = 0x3

c4 = -
1
4 c24(3)c4 + 2c2 + c2 = 0x2

c3 = -
1
3 c13(2)c3 + c1 + c1 = 0x1

c2 = -
1
2 c02(1)c2 + c0 = 0x0

a

q

n = 2
 n(n - 1)cn xn - 2

+ a

q

n = 1
 ncn xn

+ a

q

n = 0
 cnxn

= 0

y– = a

q

 n = 2
n(n - 1)cnxn - 2y¿ = a

q

n = 1
 ncn xn - 1

y = a

q

n = 0
 cn xn

y– + xy¿ + y = 0
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Writing the power series by grouping its even and odd powers and substituting for the
coefficients yields

EXAMPLE 3 Find the general solution to

Solution Notice that the leading coefficient is zero when Thus, we assume the
solution interval Substitution of the series form

and its derivatives gives us

Next, we equate the coefficients of each power of x to zero as summarized in the following
table.

Power of x Coefficient Equation

or

or

or

or

or

Again we notice that the coefficients with even indices are interrelated and those with odd
indices are interrelated.

Even indices: Here so the power is From the right-hand column and
last line of the table, we get

 = (k + 1)c0.

 = a2k + 2
2k

b a 2k
2k - 2

b a2k - 2
2k - 4

b Á
6
4
a4

2
bc0

 c2k =
2k + 2

2k
c2k - 2

x2k.n = 2k - 2,

cn + 2 =
n + 4
n + 2

cn(n + 2)(n + 1)cn + 2 - (n + 4)(n + 1)cn = 0

(n + 2)(n + 1)cn + 2 - [n(n - 1) + 6n + 4]cn = 0xn

ooo

c5 =
7
5 c35(4)c5 - 3(2)c3 - 6(3)c3 - 4c3 = 0x3

c4 =
6
4 c24(3)c4 - 2(1)c2 - 6(2)c2 - 4c2 = 0x2

c3 =
5
3 c13(2)c3 - 6(1)c1 - 4c1 = 0x1

c2 =
4
2 c02(1)c2 - 4c0 = 0x0

a

q

n = 2
 n(n - 1)cn xn - 2

- a

q

n = 2
 n(n - 1)cn xn

- 6a

q

n = 1
 ncn xn

- 4a

q

n = 0
 cn xn

= 0.

(1 - x2)a

q

n = 2
 n(n - 1)cn xn - 2

- 6a

q

n = 1
 ncn xn

- 4a

q

n = 0
 cn xn

= 0,

y = a

q

n = 0
 cn xn

I: -1 6 x 6 1.
x = ;1.

|x| 6 1.(1 - x2)y– - 6xy¿ - 4y = 0,

 = c0a

q

k = 0
  

(-1)k

(2)(4) Á (2k)
x2k

+ c1a

q

k = 0
  

(-1)k

(3)(5) Á (2k + 1)
x2k + 1.

 y = a

q

k = 0
 c2k x2k

+ a

q

k = 0
 c2k + 1x2k + 1
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Odd indices: Here so the power is The right-hand column and last
line of the table gives us

The general solution is

EXAMPLE 4 Find the general solution to 

Solution Assuming that

substitution into the differential equation gives us

We next determine the coefficients, listing them in the following table.

Power of x Coefficient Equation

or

or

or

or

or

or cn + 2 =
2n - 1

(n + 2)(n + 1)
 cn(n + 2)(n + 1)cn + 2 - (2n - 1)cn = 0xn

ooo

c6 =
7

6 # 5
 c46(5)c6 - 8c4 + c4 = 0x4

c5 =
5

5 # 4
 c35(4)c5 - 6c3 + c3 = 0x3

c4 =
3

4 # 3
 c24(3)c4 - 4c2 + c2 = 0x2

c3 =
1

3 # 2
 c13(2)c3 - 2c1 + c1 = 0x1

c2 = -
1
2

 c02(1)c2 + c0 = 0x0

a

q

n = 2
 n(n - 1)cn xn - 2

- 2a

q

n = 1
 ncn xn

+ a

q

n = 0
 cn xn

= 0.

y = a

q

n = 0
 cn xn,

y– - 2xy¿ + y = 0.

 = c0a

q

k = 0
 (k + 1)x2k

+ c1a

q

k = 0
 
2k + 3

3
x2k + 1.

 = a

q

k = 0
 c2k x2k

+ a

q

k = 0
 c2k + 1x2k + 1

 y = a

q

n = 0
 cn xn

 =
2k + 3

3
 c1.

 = a2k + 3
2k + 1

b a2k + 1
2k - 1

b a2k - 1
2k - 3

b Á
7
5 a53 bc1

c2k + 1 =
2k + 3
2k + 1

c2k - 1

x2k + 1.n = 2k - 1,
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From the recursive relation

we write out the first few terms of each series for the general solution:

 + c1 ax +
1
3!

 x3
+

5
5!

 x5
+

45
7!

 x7
+

Á b .

 y = c0 a1 -
1
2

x2
-

3
4!

x4
-

21
6!

x6
-

Á b

cn + 2 =
2n - 1

(n + 2)(n + 1)
 cn,
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EXERCISES 17.5

In Exercises 1–18, use power series to find the general solution of the
differential equation.

1.

2.

3.

4.

5.

6.

7.

8. (1 - x2)y– - 4xy¿ + 6y = 0

(1 + x)y– - y = 0

y– - xy¿ + y = 0

x2y– - 2xy¿ + 2y = 0

y– - 3y¿ + 2y = 0

y– + 4y = 0

y– + 2y¿ + y = 0

y– + 2y¿ = 0

9.

10.

11.

12.

13.

14.

15.

16.

17.

18. x2y– - 4xy¿ + 6y = 0

y– - xy¿ + 3y = 0

(1 - x2)y– - xy¿ + 4y = 0

y– - 2xy¿ + 3y = 0

y– - 2xy¿ + 4y = 0

(x2
- 1)y– + 4xy¿ + 2y = 0

xy– - (x + 2)y¿ + 2y = 0

(x2
- 1)y– - 6y = 0

y– + y¿ - x2y = 0

(x2
- 1)y– + 2xy¿ - 2y = 0
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AP-1

A.1 Real Numbers and the Real Line

This section reviews real numbers, inequalities, intervals, and absolute values.

Real Numbers

Much of calculus is based on properties of the real number system. Real numbers are
numbers that can be expressed as decimals, such as

The dots in each case indicate that the sequence of decimal digits goes on forever. Every
conceivable decimal expansion represents a real number, although some numbers have two
representations. For instance, the infinite decimals and represent the
same real number 1. A similar statement holds for any number with an infinite tail of 9’s.

The real numbers can be represented geometrically as points on a number line called
the real line.

The symbol denotes either the real number system or, equivalently, the real line.
The properties of the real number system fall into three categories: algebraic proper-

ties, order properties, and completeness. The algebraic properties say that the real num-
bers can be added, subtracted, multiplied, and divided (except by 0) to produce more real
numbers under the usual rules of arithmetic. You can never divide by 0.

The order properties of real numbers are given in Appendix 6. The useful rules at the
left can be derived from them, where the symbol means “implies.”

Notice the rules for multiplying an inequality by a number. Multiplying by a positive
number preserves the inequality; multiplying by a negative number reverses the inequality.
Also, reciprocation reverses the inequality for numbers of the same sign. For example,

but and 
The completeness property of the real number system is deeper and harder to define

precisely. However, the property is essential to the idea of a limit (Chapter 2). Roughly speak-
ing, it says that there are enough real numbers to “complete” the real number line, in the sense
that there are no “holes” or “gaps” in it. Many theorems of calculus would fail if the real
number system were not complete. The topic is best saved for a more advanced course, but
Appendix 6 hints about what is involved and how the real numbers are constructed.

1>2 7 1>5.-2 7 -52 6 5

Q

�

–2 –1 0 1 2 3 � 43
4

1
3

– �2

1.000 Á.999 Á

Á

 22 = 1.4142 Á

 
1
3

= 0.33333 Á

 -
3
4

= -0.75000 Á

APPENDICES

Rules for inequalities

If a, b, and c are real numbers, then:

1.

2.

3.

4.
Special case: 

5.

6. If a and b are both positive or both

negative, then a 6 b Q  
1
b

6
1
a

a 7 0 Q  
1
a 7 0

a 6 b Q  -b 6 -a
a 6 b and c 6 0 Q  bc 6 ac

a 6 b and c 7 0 Q  ac 6 bc

a 6 b Q  a - c 6 b - c

a 6 b Q  a + c 6 b + c
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AP-2 Appendices

We distinguish three special subsets of real numbers.

1. The natural numbers, namely 1, 2, 3, 4

2. The integers, namely 

3. The rational numbers, namely the numbers that can be expressed in the form of a
fraction , where m and n are integers and Examples are

The rational numbers are precisely the real numbers with decimal expansions that are
either

(a) terminating (ending in an infinite string of zeros), for example,

(b) eventually repeating (ending with a block of digits that repeats over and over), for
example

A terminating decimal expansion is a special type of repeating decimal, since the ending
zeros repeat.

The set of rational numbers has all the algebraic and order properties of the real num-
bers but lacks the completeness property. For example, there is no rational number whose
square is 2; there is a “hole” in the rational line where should be.

Real numbers that are not rational are called irrational numbers. They are charac-
terized by having nonterminating and nonrepeating decimal expansions. Examples are

and . Since every decimal expansion represents a real number, it should
be clear that there are infinitely many irrational numbers. Both rational and irrational num-
bers are found arbitrarily close to any point on the real line.

Set notation is very useful for specifying a particular subset of real numbers. A set is a
collection of objects, and these objects are the elements of the set. If S is a set, the notation

means that a is an element of S, and means that a is not an element of S. If S
and T are sets, then is their union and consists of all elements belonging either to S
or T (or to both S and T ). The intersection consists of all elements belonging to
both S and T. The empty set is the set that contains no elements. For example, the inter-
section of the rational numbers and the irrational numbers is the empty set.

Some sets can be described by listing their elements in braces. For instance, the set A
consisting of the natural numbers (or positive integers) less than 6 can be expressed as

The entire set of integers is written as

Another way to describe a set is to enclose in braces a rule that generates all the ele-
ments of the set. For instance, the set

is the set of positive integers less than 6.

A = 5x ƒ x is an integer and 0 6 x 6 66

50, ;1, ;2, ;3, Á 6 .

A = 51, 2, 3, 4, 56 .

¤

S ¨ T
S ´ T

a x Sa H S

log10 3p, 22, 23 5 ,

22

The bar indicates the block
of repeating digits.

23
11

= 2.090909 Á = 2.09

3
4

= 0.75000 Á = 0.75 or

1
3

, -
4
9

=
-4
9

=
4

-9
, 200

13
, and 57 =

57
1

.

n Z 0.m>n
 0, ;1, ;2, ;3, Á

, Á
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Appendix 1 Real Numbers and the Real Line AP-3

Intervals

A subset of the real line is called an interval if it contains at least two numbers and con-
tains all the real numbers lying between any two of its elements. For example, the set of all
real numbers x such that is an interval, as is the set of all x such that 
The set of all nonzero real numbers is not an interval; since 0 is absent, the set fails to con-
tain every real number between and 1 (for example).

Geometrically, intervals correspond to rays and line segments on the real line, along
with the real line itself. Intervals of numbers corresponding to line segments are finite in-
tervals; intervals corresponding to rays and the real line are infinite intervals.

A finite interval is said to be closed if it contains both of its endpoints, half-open if it
contains one endpoint but not the other, and open if it contains neither endpoint. The end-
points are also called boundary points; they make up the interval’s boundary. The remain-
ing points of the interval are interior points and together comprise the interval’s interior.
Infinite intervals are closed if they contain a finite endpoint, and open otherwise. The en-
tire real line is an infinite interval that is both open and closed. Table A.1 summarizes
the various types of intervals.

�

-1

-2 … x … 5.x 7 6

TABLE A.1 Types of intervals

Notation Set description Type Picture

(a, b) Open

[a, b] Closed

[a, b) Half-open

(a, b] Half-open

Open

Closed

Open

Closed

(set of all real Both open
numbers) and closed
�s - q , q d

5x ƒ x … b6s - q , b]

5x ƒ x 6 b6s - q , bd

5x ƒ x Ú a6[a, q d

5x ƒ x 7 a6sa, q d

5x ƒ a 6 x … b6
5x ƒ a … x 6 b6
5x ƒ a … x … b6
5x ƒ a 6 x 6 b6

a b

a b

a b

a

a

b

b

b

a

Solving Inequalities

The process of finding the interval or intervals of numbers that satisfy an inequality in x is
called solving the inequality.

EXAMPLE 1 Solve the following inequalities and show their solution sets on the real line.

(a) (b) (c)
6

x - 1
Ú 5-

x
3

6 2x + 12x - 1 6 x + 3
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AP-4 Appendices

Solution

(a)

Add 1 to both sides.

Subtract x from both sides.

The solution set is the open interval (Figure A.1a).

(b)

Multiply both sides by 3.

Add x to both sides.

Subtract 3 from both sides.

Divide by 7.

The solution set is the open interval (Figure A.1b).

(c) The inequality can hold only if because otherwise 
is undefined or negative. Therefore, is positive and the inequality will be pre-
served if we multiply both sides by and we have

Multiply both sides by 

Add 5 to both sides.

Or 

The solution set is the half-open interval (1, ] (Figure A.1c).

Absolute Value

The absolute value of a number x, denoted by is defined by the formula

EXAMPLE 2

Geometrically, the absolute value of x is the distance from x to 0 on the real number
line. Since distances are always positive or 0, we see that for every real number x,
and if and only if Also,

on the real line (Figure A.2).
Since the symbol always denotes the nonnegative square root of a, an alternate

definition of is

It is important to remember that Do not write unless you already
know that 

The absolute value has the following properties. (You are asked to prove these proper-
ties in the exercises.)

a Ú 0.
2a2

= a2a2
= ƒ a ƒ .

ƒ x ƒ = 2x2 .

ƒ x ƒ

2a

ƒ x - y ƒ = the distance between x and y

x = 0.ƒ x ƒ = 0
ƒ x ƒ Ú 0

ƒ 3 ƒ = 3, ƒ 0 ƒ = 0, ƒ -5 ƒ = - s -5d = 5, ƒ - ƒ a ƒ ƒ = ƒ a ƒ

ƒ x ƒ = e x, x Ú 0 

-x, x 6 0.

ƒ x ƒ ,

11>5
x …

11
5

. 
11
5 Ú x .

 11 Ú 5x

sx - 1d . 6 Ú 5x - 5

 
6

x - 1
Ú 5

sx - 1d ,
sx - 1d

6>sx - 1dx 7 1,6>sx - 1d Ú 5

s -3>7, q d

 -
3
7 6 x

 -3 6 7x

 0 6 7x + 3

 -x 6 6x + 3

 -
x
3

6 2x + 1

s - q , 4d
 x 6 4

 2x 6 x + 4

 2x - 1 6 x + 3

FIGURE A.1 Solution sets for the
inequalities in Example 1.

0

0

0 1

1

1 4

(a)

–3
7

(b)

11
5

(c)

x

x

x

�–5� � 5 �3�

�4 � 1� � �1 � 4 � � 3

–5 0 3

1 4

FIGURE A.2 Absolute values give
distances between points on the number
line.
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Appendix 1 Real Numbers and the Real Line AP-5

Note that For example, whereas If a and b
differ in sign, then is less than In all other cases, equals

Absolute value bars in expressions like work like parentheses: We do
the arithmetic inside before taking the absolute value.

EXAMPLE 3

The inequality says that the distance from x to 0 is less than the positive num-
ber a. This means that x must lie between and a, as we can see from Figure A.3.

The statements in the table are all consequences of the definition of absolute value
and are often helpful when solving equations or inequalities involving absolute values.

The symbol is often used by mathematicians to denote the “if and only if ” logical
relationship. It also means “implies and is implied by.”

EXAMPLE 4 Solve the equation 

Solution By Property 5, so there are two possibilities:

Equivalent equations without absolute values

Solve as usual.

The solutions of  are  and  

EXAMPLE 5 Solve the inequality 

Solution We have

Property 6

Subtract 5.

Multiply by 

Take reciprocals. 3
1
3

6 x 6
1
2

.

-

1
2

. 3 3 7
1
x 7 2

 3 -6 6 -
2
x 6 -4

 ̀ 5 -
2
x ` 6 1 3 -1 6 5 -

2
x 6 1

` 5 -
2
x ` 6 1.

x = -2.x = 5ƒ 2x - 3 ƒ = 7

 x = 5   x = -2

 2x = 10   2x = -4

 2x - 3 = 7   2x - 3 = -7

2x - 3 = ;7,

ƒ 2x - 3 ƒ = 7.

3

-a
ƒ x ƒ 6 a

  ƒ -3 - 5 ƒ = ƒ -8 ƒ = 8 = ƒ -3 ƒ + ƒ -5 ƒ

 ƒ 3 + 5 ƒ = ƒ 8 ƒ = ƒ 3 ƒ + ƒ 5 ƒ

 ƒ -3 + 5 ƒ = ƒ 2 ƒ = 2 6 ƒ -3 ƒ + ƒ 5 ƒ = 8

ƒ -3 + 5 ƒƒ a ƒ + ƒ b ƒ .
ƒ a + b ƒƒ a ƒ + ƒ b ƒ .ƒ a + b ƒ

- ƒ 3 ƒ = -3.ƒ -3 ƒ = 3,ƒ -a ƒ Z - ƒ a ƒ .

FIGURE A.3 means x lies
between and a.-a

ƒ x ƒ 6 a

Absolute Value Properties

1. A number and its additive inverse or negative have
the same absolute value.

2. The absolute value of a product is the product of
the absolute values.

3.

4. The triangle inequality. The absolute value of the
sum of two numbers is less than or equal to the
sum of their absolute values.

ƒ a + b ƒ … ƒ a ƒ + ƒ b ƒ

The absolute value of a quotient is the quotient
of the absolute values.

` a
b
` =

ƒ a ƒ

ƒ b ƒ

ƒ ab ƒ = ƒ a ƒ ƒ b ƒ

ƒ -a ƒ = ƒ a ƒ

–a 0 ax

aa

�x�

Absolute values and intervals

If a is any positive number, then

5.

6.

7.

8.

9. ƒ x ƒ Ú a 3  x Ú a or x … -a

ƒ x ƒ … a 3  -a … x … a

ƒ x ƒ 7 a 3  x 7 a or x 6 -a

ƒ x ƒ 6 a 3  -a 6 x 6 a

ƒ x ƒ = a 3  x = ;a
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AP-6 Appendices

Notice how the various rules for inequalities were used here. Multiplying by a negative
number reverses the inequality. So does taking reciprocals in an inequality in which both
sides are positive. The original inequality holds if and only if The so-
lution set is the open interval ( ,  ).1>21>3 s1>3d 6 x 6 s1>2d .

Exercises A.1

1. Express as a repeating decimal, using a bar to indicate the re-
peating digits. What are the decimal representations of ? ?

? ?

2. If which of the following statements about x are nec-
essarily true, and which are not necessarily true?

a. b.

c. d.

e. f.

g. h.

In Exercises 3–6, solve the inequalities and show the solution sets on
the real line.

3. 4.

5. 6.

Solve the equations in Exercises 7–9.

7. 8. 9.

Solve the inequalities in Exercises 10–17, expressing the solution sets
as intervals or unions of intervals. Also, show each solution set on the
real line.

10. 11. 12.

13. 14. 15.

16. 17. ` r + 1
2
` Ú 1ƒ 1 - x ƒ 7 1

ƒ 2s ƒ Ú 4` 3 -

1
x ` 6

1
2

` z
5

- 1 ` … 1

ƒ 3y - 7 ƒ 6 4ƒ t - 1 ƒ … 3ƒ x ƒ 6 2

ƒ 8 - 3s ƒ =

9
2ƒ 2t + 5 ƒ = 4ƒ y ƒ = 3

4
5

 sx - 2d 6

1
3

 sx - 6d2x -

1
2

Ú 7x +

7
6

5x - 3 … 7 - 3x-2x 7 4

-6 6 -x 6 -2-6 6 -x 6 2

ƒ x - 4 ƒ 6 21 6

6
x 6 3

1
6

6

1
x 6

1
2

1 6

x
2

6 3

0 6 x - 2 6 40 6 x 6 4

2 6 x 6 6,

9>98>9 3>92>91>9 Solve the inequalities in Exercises 18–21. Express the solution sets as
intervals or unions of intervals and show them on the real line. Use the
result as appropriate.

18. 19.

20. 21.

22. Do not fall into the trap of thinking For what real
numbers a is this equation true? For what real numbers is it false?

23. Solve the equation 

24. A proof of the triangle inequality Give the reason justifying
each of the numbered steps in the following proof of the triangle
inequality.

(1)

(2)

(3)

(4)

25. Prove that for any numbers a and b.

26. If and what can you say about x?

27. Graph the inequality 

28. For any number a, prove that 

29. Let a be any positive number. Prove that if and only if
or 

30. a. If b is any nonzero real number, prove that 

b. Prove that ` a
b
` =

ƒ a ƒ

ƒ b ƒ

 for any numbers a and b Z 0.

ƒ 1>b ƒ = 1> ƒ b ƒ .

x 6 -a .x 7 a
ƒ x ƒ 7 a

ƒ -a ƒ = ƒ a ƒ .

ƒ x ƒ + ƒ y ƒ … 1.

x 7 -1>2,ƒ x ƒ … 3

ƒ ab ƒ = ƒ a ƒ ƒ b ƒ

 ƒ a + b ƒ … ƒ a ƒ + ƒ b ƒ

 = s ƒ a ƒ + ƒ b ƒ d2

 = ƒ a ƒ
2

+ 2 ƒ a ƒ ƒ b ƒ + ƒ b ƒ
2

 … a2
+ 2 ƒ a ƒ ƒ b ƒ + b2

 = a2
+ 2ab + b2

 ƒ a + b ƒ
2

= sa + bd2

ƒ x - 1 ƒ = 1 - x .

ƒ -a ƒ = a .

x2
- x 6 0sx - 1d2

6 4

4 6 x2
6 9x2

6 2

2a2
= ƒ a ƒ

A.2 Mathematical Induction

Many formulas, like

can be shown to hold for every positive integer n by applying an axiom called the
mathematical induction principle. A proof that uses this axiom is called a proof by mathe-
matical induction or a proof by induction.

The steps in proving a formula by induction are the following:

1. Check that the formula holds for 

2. Prove that if the formula holds for any positive integer then it also holds for the
next integer, n = k + 1.

n = k,

n = 1.

1 + 2 +
Á

+ n =

nsn + 1d
2

,
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Appendix 2 Mathematical Induction AP-7

The induction axiom says that once these steps are completed, the formula holds for all
positive integers n. By Step 1 it holds for By Step 2 it holds for and there-
fore by Step 2 also for and by Step 2 again for and so on. If the first
domino falls, and the kth domino always knocks over the when it falls, all the
dominoes fall.

From another point of view, suppose we have a sequence of statements S1,
one for each positive integer. Suppose we can show that assuming any one

of the statements to be true implies that the next statement in line is true. Suppose that we
can also show that is true. Then we may conclude that the statements are true from on.

EXAMPLE 1 Use mathematical induction to prove that for every positive integer n,

Solution We accomplish the proof by carrying out the two steps above.

1. The formula holds for because

2. If the formula holds for does it also hold for The answer is yes, as
we now show. If

then

The last expression in this string of equalities is the expression for

The mathematical induction principle now guarantees the original formula for all pos-
itive integers n.

In Example 4 of Section 5.2 we gave another proof for the formula giving the sum of
the first n integers. However, proof by mathematical induction is more general. It can be
used to find the sums of the squares and cubes of the first n integers (Exercises 9 and 10).
Here is another example.

EXAMPLE 2 Show by mathematical induction that for all positive integers n,

Solution We accomplish the proof by carrying out the two steps of mathematical induction.

1. The formula holds for because

1
21 = 1 -

1
21 .

n = 1

1
21 +

1
22 +

Á
+

1
2n = 1 -

1
2n .

n = sk + 1d .
nsn + 1d>2

 =

sk + 1dsk + 2d
2

=

sk + 1dssk + 1d + 1d
2

.

 1 + 2 +
Á

+ k + sk + 1d =

ksk + 1d
2

+ sk + 1d =
k2

+ k + 2k + 2
2

1 + 2 +
Á

+ k =

ksk + 1d
2

,

n = k + 1?n = k ,

1 =

1s1 + 1d
2

.

n = 1

1 + 2 +
Á

+ n =

nsn + 1d
2

.

S1S1

S2, Á , Sn, Á ,

sk + 1dst
n = 4,n = 3,

n = 2,n = 1.
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AP-8 Appendices

2. If

then

Thus, the original formula holds for whenever it holds for 

With these steps verified, the mathematical induction principle now guarantees the
formula for every positive integer n.

Other Starting Integers

Instead of starting at some induction arguments start at another integer. The steps
for such an argument are as follows.

1. Check that the formula holds for (the first appropriate integer).

2. Prove that if the formula holds for any integer then it also holds for

Once these steps are completed, the mathematical induction principle guarantees the for-
mula for all 

EXAMPLE 3 Show that if n is large enough.

Solution How large is large enough? We experiment:

n 1 2 3 4 5 6 7

n! 1 2 6 24 120 720 5040

3n 3 9 27 81 243 729 2187

It looks as if for To be sure, we apply mathematical induction. We take
in Step 1 and complete Step 2.

Suppose for some Then

Thus, for 

The mathematical induction principle now guarantees  for all  

Proof of the Derivative Sum Rule for Sums of Finitely Many
Functions

We prove the statement

d
dx

 su1 + u2 +
Á

+ und =

du1

dx
+

du2

dx
+

Á
+

dun

dx

n Ú 7.n! Ú 3n

k! 7 3k implies sk + 1d! 7 3k + 1 .

k Ú 7,

sk + 1d! = sk + 1dsk!d 7 sk + 1d3k
7 7 # 3k

7 3k + 1 .

k Ú 7.k! 7 3k
n1 = 7

n Ú 7.n! 7 3n

n! 7 3n

n Ú n1 .

n = sk + 1d .
n = k Ú n1 ,

n = n1

n = 1

n = k .n = sk + 1d

 = 1 -
2

2k + 1 +
1

2k + 1 = 1 -
1

2k + 1 .

 
1
21 +

1
22 +

Á
+

1
2k +

1
2k + 1 = 1 -

1
2k +

1
2k + 1 = 1 -

1 # 2
2k # 2

+
1

2k + 1

1
21 +

1
22 +

Á
+

1
2k = 1 -

1
2k ,
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Appendix 2 Mathematical Induction AP-9

by mathematical induction. The statement is true for as was proved in Section 3.3.
This is Step 1 of the induction proof.

Step 2 is to show that if the statement is true for any positive integer where
then it is also true for So suppose that

(1)

Then

Eq. (1)

With these steps verified, the mathematical induction principle now guarantees the
Sum Rule for every integer n Ú 2.

 =

du1

dx
+

du2

dx
+

Á
+

duk

dx
+

duk + 1

dx
.

 =
d
dx

 su1 + u2 +
Á

+ ukd +

duk + 1

dx

d
dx

 (u1 + u2 +
Á

+ uk + uk + 1)

d
dx

 su1 + u2 +
Á

+ ukd =

du1

dx
+

du2

dx
+

Á
+

duk

dx
. 

n = k + 1.k Ú n0 = 2,
n = k ,

n = 2,

(++++)++++*

Call the function
defined by this sum u.

()*

Call this
function y.

Sum Rule for 
d
dx

 su + yd

Exercises A.2

1. Assuming that the triangle inequality holds
for any two numbers a and b, show that

for any n numbers.

2. Show that if then

for every positive integer n.

3. Use the Product Rule, and the fact that

to show that for every positive inte-

ger n.

4. Suppose that a function ƒ(x) has the property that 
for any two positive numbers and Show that

for the product of any n positive numbers 

5. Show that

for all positive integers n.

2
31 +

2
32 +

Á
+

2
3n = 1 -

1
3n

x1, x2, Á , xn .

ƒsx1 x2 
Á

 xnd = ƒsx1d + ƒsx2d +
Á

+ ƒsxnd

x2 .x1ƒsx1d + ƒsx2d
ƒsx1 x2d =

d
dx

 sxnd = nxn - 1d
dx

 sxd = 1

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

,

1 + r + r2
+

Á
+ rn

=

1 - rn + 1

1 - r

r Z 1,

ƒ x1 + x2 +
Á

+ xn ƒ … ƒ x1 ƒ + ƒ x2 ƒ +
Á

+ ƒ xn ƒ

ƒ a + b ƒ … ƒ a ƒ + ƒ b ƒ 6. Show that if n is large enough.

7. Show that if n is large enough.

8. Show that for 

9. Sums of squares Show that the sum of the squares of the first n
positive integers is

10. Sums of cubes Show that the sum of the cubes of the first n
positive integers is 

11. Rules for finite sums Show that the following finite sum rules
hold for every positive integer n. (See Section 5.2.)

a.

b.

c. (any number c)

d. (if has the constant value c)

12. Show that for every positive integer n and every real
number x.

ƒ x n
ƒ = ƒ x ƒ

n

aka

n

k = 1
 ak = n # c

a

n

k = 1
 cak = c #

a

n

k = 1
 ak

a

n

k = 1
sak - bkd = a

n

k = 1
 ak - a

n

k = 1
 bk

a

n

k = 1
sak + bkd = a

n

k = 1
 ak + a

n

k = 1
 bk

snsn + 1d>2d2 .

n an +

1
2
b sn + 1d

3
.

n Ú -3.2n
Ú 1>8

2n
7 n2

n! 7 n3
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A.3 Lines, Circles, and Parabolas

This section reviews coordinates, lines, distance, circles, and parabolas in the plane. The
notion of increment is also discussed.

Cartesian Coordinates in the Plane

In Appendix 1 we identified the points on the line with real numbers by assigning them
coordinates. Points in the plane can be identified with ordered pairs of real numbers. To
begin, we draw two perpendicular coordinate lines that intersect at the 0-point of each
line. These lines are called coordinate axes in the plane. On the horizontal x-axis, num-
bers are denoted by x and increase to the right. On the vertical y-axis, numbers are de-
noted by y and increase upward (Figure A.4). Thus “upward” and “to the right” are posi-
tive directions, whereas “downward” and “to the left” are considered as negative. The
origin O, also labeled 0, of the coordinate system is the point in the plane where x and y
are both zero.

If P is any point in the plane, it can be located by exactly one ordered pair of real num-
bers in the following way. Draw lines through P perpendicular to the two coordinate axes.
These lines intersect the axes at points with coordinates a and b (Figure A.4). The ordered
pair (a, b) is assigned to the point P and is called its coordinate pair. The first number a is
the x-coordinate (or abscissa) of P; the second number b is the y-coordinate (or
ordinate) of P. The x-coordinate of every point on the y-axis is 0. The y-coordinate of
every point on the x-axis is 0. The origin is the point (0, 0).

Starting with an ordered pair (a, b), we can reverse the process and arrive at a corre-
sponding point P in the plane. Often we identify P with the ordered pair and write P(a, b).
We sometimes also refer to “the point (a, b)” and it will be clear from the context when
(a, b) refers to a point in the plane and not to an open interval on the real line. Several
points labeled by their coordinates are shown in Figure A.5.

This coordinate system is called the rectangular coordinate system or Cartesian
coordinate system (after the sixteenth-century French mathematician René Descartes).
The coordinate axes of this coordinate or Cartesian plane divide the plane into four regions
called quadrants, numbered counterclockwise as shown in Figure A.5.

The graph of an equation or inequality in the variables x and y is the set of all points
P(x, y) in the plane whose coordinates satisfy the equation or inequality. When we plot data
in the coordinate plane or graph formulas whose variables have different units of measure,
we do not need to use the same scale on the two axes. If we plot time vs. thrust for a rocket
motor, for example, there is no reason to place the mark that shows 1 sec on the time axis
the same distance from the origin as the mark that shows 1 lb on the thrust axis.

Usually when we graph functions whose variables do not represent physical measure-
ments and when we draw figures in the coordinate plane to study their geometry and
trigonometry, we try to make the scales on the axes identical. A vertical unit of distance
then looks the same as a horizontal unit. As on a surveyor’s map or a scale drawing, line
segments that are supposed to have the same length will look as if they do and angles that
are supposed to be congruent will look congruent.

Computer displays and calculator displays are another matter. The vertical and hori-
zontal scales on machine-generated graphs usually differ, and there are corresponding dis-
tortions in distances, slopes, and angles. Circles may look like ellipses, rectangles may
look like squares, right angles may appear to be acute or obtuse, and so on. We discuss
these displays and distortions in greater detail in Section 1.4.

Increments and Straight Lines

When a particle moves from one point in the plane to another, the net changes in its coor-
dinates are called increments. They are calculated by subtracting the coordinates of the

Positive x-axis
Negative y-axis

Negative x-axis Origin

Positive y-axis

P(a, b)

0 1–1–2–3 2 3a

y

1

–1

–2

–3

2

3

b

x

FIGURE A.4 Cartesian coordinates in the
plane are based on two perpendicular axes
intersecting at the origin.

HISTORICAL BIOGRAPHY

René Descartes
(1596–1650)

FIGURE A.5 Points labeled in the 
xy-coordinate or Cartesian plane. The
points on the axes all have coordinate pairs
but are usually labeled with single real
numbers, (so (1, 0) on the x-axis is labeled
as 1). Notice the coordinate sign patterns
of the quadrants.

x

y

Second
quadrant
  (�, �)

First
quadrant
  (�, �)

Third
quadrant
  (�, �)

Fourth
quadrant
  (�, �)

10–1–2 2

(0, 0)
(1, 0)

(2, 1)

(1, 3)

(1, –2)

(–2, –1)

(–2, 1)
1

–1

–2

2

3
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Appendix 3 Lines, Circles, and Parabolas AP-11

starting point from the coordinates of the ending point. If x changes from to the
increment in x is

EXAMPLE 1 In going from the point to the point B(2, 5) the increments in
the x- and y-coordinates are

From C(5, 6) to D(5, 1) the coordinate increments are

See Figure A.6.

Given two points and in the plane, we call the increments
and the run and the rise, respectively, between and 

Two such points always determine a unique straight line (usually called simply a line)
passing through them both. We call the line 

Any nonvertical line in the plane has the property that the ratio

has the same value for every choice of the two points and on the line
(Figure A.7). This is because the ratios of corresponding sides for similar triangles are
equal.

P2sx2, y2dP1sx1, y1d

m =
rise
run =

¢y

¢x
=

y2 - y1
x2 - x1

P1 P2 .

P2 .P1¢y = y2 - y1¢x = x2 - x1

P2sx2, y2dP1sx1, y1d

¢x = 5 - 5 = 0, ¢y = 1 - 6 = -5.

¢x = 2 - 4 = -2, ¢y = 5 - s -3d = 8.

As4, -3d

¢x = x2 - x1 .

x2 ,x1

�y � 8

�x � –2

A(4, –3)
(2, –3)

�y � –5,
�x � 0

D(5, 1)

C(5, 6)

B (2, 5)

1 2 3 4 50

1

2

3

4

5

6

–1

–2

–3

y

x

FIGURE A.6 Coordinate increments may
be positive, negative, or zero (Example 1).

FIGURE A.7 Triangles and
are similar, so the ratio of their

sides has the same value for any two
points on the line. This common value is
the line’s slope.

P1¿Q¿P2¿

P1 QP2

P1�

P2(x2, y2)

�x�

�x
(run)

P1(x1, y1)

Q(x2, y1)

�y
(rise) �y�

P2
�

0

Q�

L

x

y

DEFINITION The constant ratio

is the slope of the nonvertical line P1 P2 .

m =
rise
run =

¢y

¢x
=

y2 - y1
x2 - x1

The slope tells us the direction (uphill, downhill) and steepness of a line. A line with
positive slope rises uphill to the right; one with negative slope falls downhill to the right
(Figure A.8). The greater the absolute value of the slope, the more rapid the rise or fall.
The slope of a vertical line is undefined. Since the run is zero for a vertical line, we
cannot form the slope ratio m.

The direction and steepness of a line can also be measured with an angle. The angle
of inclination of a line that crosses the x-axis is the smallest counterclockwise angle from
the x-axis to the line (Figure A.9). The inclination of a horizontal line is 0°. The inclination
of a vertical line is 90°. If (the Greek letter phi) is the inclination of a line, then

The relationship between the slope m of a nonvertical line and the line’s angle of incli-
nation is shown in Figure A.10:

Straight lines have relatively simple equations. All points on the vertical line through
the point a on the x-axis have x-coordinates equal to a. Thus, is an equation for the
vertical line. Similarly, is an equation for the horizontal line meeting the y-axis at b.
(See Figure A.11.)

We can write an equation for a nonvertical straight line L if we know its slope m and
the coordinates of one point on it. If P(x, y) is any other point on L, then we canP1sx1, y1d

y = b
x = a

m = tan f .

f

0 … f 6 180°.
f

¢x
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use the two points and P to compute the slope,

so that

y - y1 = msx - x1d, or y = y1 + msx - x1d .

m =

y - y1
x - x1

P1

FIGURE A.8 The slope of is

That is, y increases 8 units every time 
x increases 3 units. The slope of is

That is, y decreases 3 units every time 
x increases 4 units.

m =

¢y

¢x
=

2 - 5
4 - 0

=

-3
4

.

L2

m =

¢y

¢ x
=

6 - s -2d
3 - 0

=

8
3

.

L1

x

y

P2(4, 2)

P1(0, 5)
P4(3, 6)

P3(0, –2)

10
–1

1

2

3

4

6

2 3 4 5 6

L2

L1

FIGURE A.10 The slope of a nonvertical
line is the tangent of its angle of inclination.

x

y

P1

P2 L

�y

�x

�y
�x

m � � tan �

�

The equation

is the point-slope equation of the line that passes through the point and
has slope m.

sx1, y1d

y = y1 + msx - x1d

EXAMPLE 2 Write an equation for the line through the point (2, 3) with slope 

Solution We substitute and into the point-slope equation
and obtain

When so the line intersects the y-axis at  

EXAMPLE 3 Write an equation for the line through and (3, 4).

Solution The line’s slope is

We can use this slope with either of the two given points in the point-slope equation:

With With 

Same result

Either way, is an equation for the line (Figure A.12).y = x + 1

y = x + 1y = x + 1

y = 4 + x - 3y = -1 + x + 2

y = 4 + 1 # sx - 3dy = -1 + 1 # sx - s -2dd

xx1 , y1c � x3, 4cxx1 , y1c � x�2, �1c

m =
-1 - 4
-2 - 3

=
-5
-5

= 1.

s -2, -1d

y = 6.x = 0, y = 6

y = 3 -
3
2

 (x - 2), or y = -
3
2

 x + 6.

m = -3>2x1 = 2, y1 = 3,

-3>2.

FIGURE A.9 Angles of inclination are
measured counterclockwise from the
x-axis.

this

not this

this

not this

x x

FIGURE A.11 The standard equations for
the vertical and horizontal lines through 
(2, 3) are and y = 3.x = 2

x

y

0

1

2

3

4

5

6

1 2 3 4

Along this line,
x � 2

Along this line,
y � 3

(2, 3)
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Appendix 3 Lines, Circles, and Parabolass AP-13

The y-coordinate of the point where a nonvertical line intersects the y-axis is called the
y-intercept of the line. Similarly, the x-intercept of a nonhorizontal line is the x-coordinate
of the point where it crosses the x-axis (Figure A.13). A line with slope m and y-intercept
b passes through the point (0, b), so it has equation

y = b + msx - 0d, or, more simply, y = mx + b .

x

y

4

0–2 1 2 3
–1

(–2, –1)

(3, 4)

y � x � 1

FIGURE A.12 The line in Example 3.

FIGURE A.13 Line L has x-intercept
a and y-intercept b.

FIGURE A.14 is similar to
Hence is also the upper angle

in From the sides of we
read tan f1 = a>h .

¢CDB ,¢CDB .
f1¢CDB .
¢ADC

x

y

b

0 a

L

x

y

0 A D Ba

Slope m1 Slope m2

C

L2
L1

h
�1

�2
�1

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�x2 – x1�

P(x1, y1)

�y2 – y1�

C(x2, y1)

Q(x2, y2)
�x2 – x1�

2 � �y2 – y1�
2d � �

(x2 – x1)
2 � (y2 – y1)

2� �

This distance is

x

y

0 x1

y1

y2

x2

FIGURE A.15 To calculate the distance between
and apply the Pythagorean

theorem to triangle PCQ.
Qsx2 , y2d ,Psx1 , y1d

The equation

is called the slope-intercept equation of the line with slope m and y-intercept b.

y = mx + b

Lines with equations of the form have y-intercept 0 and so pass through the ori-
gin. Equations of lines are called linear equations.

The equation

is called the general linear equation in x and y because its graph always represents a line
and every line has an equation in this form (including lines with undefined slope).

Parallel and Perpendicular Lines

Lines that are parallel have equal angles of inclination, so they have the same slope (if they
are not vertical). Conversely, lines with equal slopes have equal angles of inclination and
so are parallel.

If two nonvertical lines and are perpendicular, their slopes and satisfy
so each slope is the negative reciprocal of the other:

To see this, notice by inspecting similar triangles in Figure A.14 that and
Hence, 

Distance and Circles in the Plane

The distance between points in the plane is calculated with a formula that comes from the
Pythagorean theorem (Figure A.15).

m1 m2 = sa>hds -h>ad = -1.m2 = -h>a .
m1 = a>h ,

m1 = -
1

m2
, m2 = -

1
m1

.

m1 m2 = -1,
m2m1L2L1

Ax + By = C sA and B not both 0d

y = mx
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EXAMPLE 4

(a) The distance between and Q(3, 4) is

(b) The distance from the origin to P(x, y) is

By definition, a circle of radius a is the set of all points P(x, y) whose distance from
some center C(h, k) equals a (Figure A.16). From the distance formula, P lies on the circle
if and only if

so

2sx - hd2
+ s y - kd2

= a ,

2sx - 0d2
+ s y - 0d2

= 2x2
+ y2 .

2s3 - s -1dd2
+ s4 - 2d2

= 2s4d2
+ s2d2

= 220 = 24 # 5 = 225.

Ps -1, 2d

FIGURE A.16 A circle of radius a in
the xy-plane, with center at (h, k).

Distance Formula for Points in the Plane

The distance between and is

d = 2s¢xd2
+ s¢yd2

= 2sx2 - x1d2
+ s y2 - y1d2 .

Qsx2 , y2dPsx1 , y1d

(1)(x - h)2
+ (y - k)2

= a2.

(x � h)2 � (y � k)2 � a2

C(h, k)

a

P(x, y)

0
x

y

Equation (1) is the standard equation of a circle with center (h, k) and radius a. The circle
of radius and centered at the origin is the unit circle with equation

EXAMPLE 5

(a) The standard equation for the circle of radius 2 centered at (3, 4) is

(b) The circle

has and The center is the point and the

radius is 

If an equation for a circle is not in standard form, we can find the circle’s center and
radius by first converting the equation to standard form. The algebraic technique for doing
so is completing the square.

EXAMPLE 6 Find the center and radius of the circle

x2
+ y2

+ 4x - 6y - 3 = 0.

a = 23.

sh, kd = s1, -5da = 23.h = 1, k = -5,

sx - 1d2
+ s y + 5d2

= 3

sx - 3d2
+ s y - 4d2

= 22
= 4.

x2
+ y2

= 1.

a = 1
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Solution We convert the equation to standard form by completing the squares in x and y:

Start with the given equation.

The center is and the radius is  

The points (x, y) satisfying the inequality

make up the interior region of the circle with center (h, k) and radius a (Figure A.17). The
circle’s exterior consists of the points (x, y) satisfying

Parabolas

The geometric definition and properties of general parabolas are reviewed in Section 11.6.
Here we look at parabolas arising as the graphs of equations of the form  

EXAMPLE 7 Consider the equation Some points whose coordinates satisfy this

equation are and These points (and all oth-

ers satisfying the equation) make up a smooth curve called a parabola (Figure A.18).

The graph of an equation of the form

is a parabola whose axis (axis of symmetry) is the y-axis. The parabola’s vertex (point
where the parabola and axis cross) lies at the origin. The parabola opens upward if 
and downward if The larger the value of the narrower the parabola (Figure A.19).

Generally, the graph of is a shifted and scaled version of the
parabola We discuss shifting and scaling of graphs in more detail in Section 1.2.y = x2 .

y = ax2
+ bx + c

ƒ a ƒ ,a 6 0.
a 7 0

y = ax2

s -2, 4d .s0, 0d, s1, 1d, a3
2

, 
9
4
b , s -1, 1d, s2, 4d ,

y = x2 .

y = ax 2
+ bx + c .

sx - hd2
+ s y - kd2

7 a2 .

sx - hd2
+ s y - kd2

6 a2

a = 4.s -2, 3d

sx + 2d2
+ s y - 3d2

= 16

sx2
+ 4x + 4d + s y2

- 6y + 9d = 3 + 4 + 9

3 + a4
2
b2

+ a-6
2
b2

ax2
+ 4x + a4

2
b2b + ay2

- 6y + a-6
2
b2b =

 sx2
+ 4xd + s y2

- 6yd = 3

 x2
+ y2

+ 4x - 6y - 3 = 0

FIGURE A.18 The parabola 
(Example 7).

y = x 2

0 1 2–1–2

1

4
(–2, 4)

(–1, 1) (1, 1)

(2, 4)

⎛
⎝

⎛
⎝

3
2

9
4

,

x

y

y � x2

The Graph of 

The graph of the equation is a parabola. The parab-
ola opens upward if and downward if The axis is the line

(2)

The vertex of the parabola is the point where the axis and parabola intersect. Its
x-coordinate is its y-coordinate is found by substituting 
in the parabola’s equation.

x = -b>2ax = -b>2a ;

x = -
b

2a
.

a 6 0.a 7 0
y = ax2

+ bx + c, a Z 0,

y � ax2 � bx � c, a � 0

Gather terms. Move the con-
stant to the right-hand side.

Add the square of half the
coefficient of x to each side of
the equation. Do the same for y.
The parenthetical expressions on
the left-hand side are now perfect
squares.

Write each quadratic as a squared
linear expression.

FIGURE A.17 The interior and exterior of
the circle sx - hd2

+ s y - kd2
= a 2 .

Exterior: (x � h)2 � (y � k)2 � a2

Interior: (x � h)2 � (y � k)2 	 a2

(h, k)

a

0 h
x

y

k

On: (x � h)2 � (y � k)2 � a2
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Notice that if then we have , which is an equation for a line. The
axis, given by Equation (2), can be found by completing the square.

EXAMPLE 8 Graph the equation 

Solution Comparing the equation with we see that

Since the parabola opens downward. From Equation (2) the axis is the vertical
line

When we have

The vertex is 
The x-intercepts are where 

We plot some points, sketch the axis, and use the direction of opening to complete the
graph in Figure A.20.

 x = 2, x = -4

 sx - 2dsx + 4d = 0

 x2
+ 2x - 8 = 0

 -
1
2

 x2
- x + 4 = 0

y = 0:
s -1, 9>2d .

y = -
1
2

 s -1d2
- s -1d + 4 =

9
2

.

x = -1,

x = -
b

2a
= -

s -1d
2s -1>2d

= -1.

a 6 0,

a = -
1
2

, b = -1, c = 4.

y = ax2
+ bx + c

y = -
1
2

 x2
- x + 4.

y = bx + ca = 0,

FIGURE A.20 The parabola in Example 8.

Intercepts at
x � –4 and x � 2

Point symmetric
with y-intercept

Vertex is ⎛
⎝

⎛
⎝

9
2

–1,

Intercept at y � 4

(0, 4)(–2, 4)

0

1

2

3

1–2–3

A
xi

s:
 x

 �
 –

1

x

y

y � x2 � x � 4– 1
2

FIGURE A.19 Besides determining the
direction in which the parabola 
opens, the number a is a scaling factor. The
parabola widens as a approaches zero and
narrows as becomes large.ƒ a ƒ

y = ax2

A
xi

s 
of

sy
m

m
et

ry

Vertex at
origin

 –1

 1

–4 –3 –2 2 3 4

y � –x2

y � – x2

6

y �
x2

10

y �
x2

2

y � 2x2

x

y

Exercises A.3

Distance, Slopes, and Lines
In Exercises 1 and 2, a particle moves from A to B in the coordinate
plane. Find the increments and in the particle’s coordinates.
Also find the distance from A to B.

1. 2.

Describe the graphs of the equations in Exercises 3 and 4.

3. 4. x2
+ y2

… 3x2
+ y2

= 1

As -3.2, -2d,  Bs -8.1, -2dAs -3, 2d, Bs -1, -2d

¢y¢x

Plot the points in Exercises 5 and 6 and find the slope (if any) of the
line they determine. Also find the common slope (if any) of the lines
perpendicular to line AB.

5. 6.

In Exercises 7 and 8, find an equation for (a) the vertical line and
(b) the horizontal line through the given point.

7. 8. A0, -22 Bs -1, 4>3d

As2, 3d, Bs -1, 3dAs -1, 2d, Bs -2, -1d
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Appendix 3 Lines, Circles, and Parabolas AP-17

In Exercises 9–15, write an equation for each line described.

9. Passes through with slope 

10. Passes through (3, 4) and 

11. Has slope and y-intercept 6

12. Passes through and has slope 0

13. Has y-intercept 4 and x-intercept 

14. Passes through and is parallel to the line 

15. Passes through and is perpendicular to the line

In Exercises 16 and 17, find the line’s x- and y-intercepts and use this
information to graph the line.

16. 17.

18. Is there anything special about the relationship between the lines
and Give rea-

sons for your answer.

19. A particle starts at and its coordinates change by incre-
ments Find its new position.

20. The coordinates of a particle change by and as it
moves from A(x, y) to Find x and y.

Circles
In Exercises 21–23, find an equation for the circle with the given center
C(h, k) and radius a. Then sketch the circle in the xy-plane. Include the
circle’s center in your sketch. Also, label the circle’s x- and y-intercepts,
if any, with their coordinate pairs.

21. 22.

23.

Graph the circles whose equations are given in Exercises 24–26. 
Label each circle’s center and intercepts (if any) with their coordinate
pairs.

24.

25. 26.

Parabolas
Graph the parabolas in Exercises 27–30. Label the vertex, axis, and
intercepts in each case.

27. 28.

29. 30.

Inequalities
Describe the regions defined by the inequalities and pairs of inequali-
ties in Exercises 31–34.

31. 32.

33.

34.

35. Write an inequality that describes the points that lie inside 
the circle with center and radius 

36. Write a pair of inequalities that describe the points that lie inside
or on the circle with center (0, 0) and radius and on or to the
right of the vertical line through (1, 0).

22,

26.s -2, 1d

x2
+ y2

+ 6y 6 0, y 7 -3

x2
+ y2

7 1, x2
+ y2

6 4

sx - 1d2
+ y 2

… 4x2
+ y2

7 7

y =

1
2

 x2
+ x + 4y = -x2

- 6x - 5

y = -x2
+ 4xy = x2

- 2x - 3

x2
+ y2

- 4x + 4y = 0x2
+ y2

- 3y - 4 = 0

x2
+ y2

+ 4x - 4y + 4 = 0

C A -23, -2 B , a = 2

Cs -1, 5d, a = 210Cs0, 2d, a = 2

Bs3, -3d .
¢y = 6¢x = 5

¢x = 5, ¢y = -6.
As -2, 3d

Bx - Ay = C2 sA Z 0, B Z 0d?Ax + By = C1

22x - 23y = 263x + 4y = 12

6x - 3y = 5.
(4, 10)

2x + 5y = 15s5, -1d
-1

s -12, -9d
-5>4

s -2, 5d
-1s -1, 1d

Theory and Examples
In Exercises 37–40, graph the two equations and find the points at
which the graphs intersect.

37. 38.

39.

40.

41. Insulation By measuring slopes in the figure, estimate the tem-
perature change in degrees per inch for (a) the gypsum wallboard;
(b) the fiberglass insulation; (c) the wood sheathing.

x2
+ y2

= 1, sx - 1d2
+ y2

= 1

y = -x2, y = 2x2
- 1

y - x = 1, y = x 2y = 2x, x2
+ y2

= 1

The temperature changes in the wall in Exercises 41 and 42.

Te
m

pe
ra

tu
re

 (
°F

)

0°

10°

20°

30°

40°

50°

60°

70°

80°

Distance through wall (inches)

0 1 2 3 4 5 6 7

Gypsum wallboard
Sheathing

Siding

Air outside
at 0°F

Fiberglass
between studs

Air
inside
room
at 72° F

42. Insulation According to the figure in Exercise 41, which of the
materials is the best insulator? The poorest? Explain.

43. Pressure under water The pressure p experienced by a diver
under water is related to the diver’s depth d by an equation of the
form (k a constant). At the surface, the pressure is 1
atmosphere. The pressure at 100 meters is about 10.94 atmos-
pheres. Find the pressure at 50 meters.

44. Reflected light A ray of light comes in along the line 
from the second quadrant and reflects off the x-axis (see the ac-
companying figure). The angle of incidence is equal to the angle
of reflection. Write an equation for the line along which the de-
parting light travels.

x + y = 1

p = kd + 1

Angle of
incidence

Angle of
reflection

x � y � 1

1

0 1
x

y

The path of the light ray in Exercise 44. Angles of incidence
and reflection are measured from the perpendicular.
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45. Fahrenheit vs. Celsius In the FC-plane, sketch the graph of the
equation

linking Fahrenheit and Celsius temperatures. On the same graph
sketch the line Is there a temperature at which a Celsius
thermometer gives the same numerical reading as a Fahrenheit
thermometer? If so, find it.

46. The Mt. Washington Cog Railway Civil engineers calculate
the slope of roadbed as the ratio of the distance it rises or falls to
the distance it runs horizontally. They call this ratio the grade of the
roadbed, usually written as a percentage. Along the coast, com-
mercial railroad grades are usually less than 2%. In the moun-
tains, they may go as high as 4%. Highway grades are usually less
than 5%.

The steepest part of the Mt. Washington Cog Railway in New
Hampshire has an exceptional 37.1% grade. Along this part of the
track, the seats in the front of the car are 14 ft above those in the
rear. About how far apart are the front and rear rows of seats?

C = F .

C =

5
9

 sF - 32d

A.4 Proofs of Limit Theorems

This appendix proves Theorem 1, Parts 2–5, and Theorem 4 from Section 2.2.

47. By calculating the lengths of its sides, show that the triangle with
vertices at the points A(1, 2), B(5, 5), and is isosceles
but not equilateral.

48. Show that the triangle with vertices A(0, 0), and C(2, 0)
is equilateral.

49. Show that the points B(1, 3), and are vertices
of a square, and find the fourth vertex.

50. Three different parallelograms have vertices at (2, 0),
and (2, 3). Sketch them and find the coordinates of the fourth ver-
tex of each.

51. For what value of k is the line perpendicular to the
line For what value of k are the lines parallel?

52. Midpoint of a line segment Show that the point with coordi-
nates

is the midpoint of the line segment joining to Qsx2 , y2d .Psx1 , y1d

ax1 + x2

2
,  

y1 + y2

2
b

4x + y = 1?
2x + ky = 3

s -1, 1d ,

Cs -3, 2dAs2, -1d ,

B A1, 23 B ,
Cs4, -2d

We proved the Sum Rule in Section 2.3 and the Power and Root Rules are proved in
more advanced texts. We obtain the Difference Rule by replacing and

in the Sum Rule. The Constant Multiple Rule is the special case of the
Product Rule. This leaves only the Product and Quotient Rules.

Proof of the Limit Product Rule We show that for any there exists a such
that for all x in the intersection D of the domains of ƒ and g,

0 6 ƒ x - c ƒ 6 d Q  ƒ ƒsxdgsxd - LM ƒ 6 P .

d 7 0P 7 0

gsxd = kM by -M
gsxd by -gsxd

THEOREM 1—Limit Laws If L, M, c, and k are real numbers and

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule:

4. Product Rule:

5. Quotient Rule:

6. Power Rule: n a positive integer

7. Root Rule: n a positive integer

(If n is even, we assume that )lim
x:c

 ƒ(x) = L 7 0.

lim
x:c

 2n ƒ(x) = 2n L = L1/n,

lim
x:c

 [ƒ(x)]n
= Ln,

lim
x:c

 
ƒsxd
gsxd

=
L
M

 ,    M Z 0

lim
x:c

 sƒsxd # gsxdd = L # M

lim
x:c

 sk # ƒsxdd = k # L

lim
x:c

 sƒsxd - gsxdd = L - M

lim
x:c

 sƒsxd + gsxdd = L + M

lim
x:c

 ƒsxd = L  and  lim
x:c

 gsxd = M, then
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Suppose then that is a positive number, and write ƒ(x) and g(x) as

Multiply these expressions together and subtract LM:

(1)

Since ƒ and g have limits L and M as there exist positive numbers and 
such that for all x in D

.

(2)

If we take to be the smallest numbers through the inequalities on the right-hand
side of the Implications (2) will hold simultaneously for Therefore, for
all x in implies

Values from (2)

This completes the proof of the Limit Product Rule.

Proof of the Limit Quotient Rule We show that We can then
conclude that

by the Limit Product Rule.
Let be given. To show that we need to show that there

exists a such that for all x

Since there exists a positive number such that for all x

(3)

For any numbers A and B it can be shown that �
from which it follows that With and

this becomes

ƒ  ƒ gsxd ƒ - ƒ M ƒ  ƒ … ƒ gsxd - M ƒ ,

B = M ,
A = gsxdƒ  ƒ A ƒ - ƒ B ƒ  ƒ … ƒ A - B ƒ .ƒ A - B ƒ ,

ƒ B ƒ - ƒ A ƒƒ A ƒ - ƒ B ƒ … ƒ A - B ƒ  and 

0 6 ƒ x - c ƒ 6 d1 Q  ƒ gsxd - M ƒ 6
M
2

.

d1ƒ M ƒ 7 0,

0 6 ƒ x - c ƒ 6 d Q  ` 1
gsxd

-
1
M
` 6 P .

d 7 0
lim
 x:cs1>gsxdd = 1>M ,P 7 0

lim
x:c

 
ƒsxd
gsxd

= lim
x:c
aƒsxd # 1

gsxd
b = lim

x:c
 ƒsxd # lim

x:c
 

1
g(x)

= L # 1
M

=
L
M

lim
 x:cs1>gsxdd = 1>M.

 6
P

3
+

P

3
+ A

P

3A
P

3
= P .

 … s1 + ƒ L ƒ d ƒ gsxd - M ƒ + s1 + ƒ M ƒ d ƒ ƒsxd - L ƒ + ƒ ƒsxd - L ƒ ƒ gsxd - M ƒ

 … ƒ L ƒ ƒ gsxd - M ƒ + ƒ M ƒ ƒ ƒsxd - L ƒ + ƒ ƒsxd - L ƒ ƒ gsxd - M ƒ

 ƒ ƒsxd # gsxd - LM ƒ

D, 0 6 ƒ x - c ƒ 6 d

0 6 ƒ x - c ƒ 6 d .
d4 ,d1d

0 6 ƒ x - c ƒ 6 d1 Q  ƒ ƒsxd - L ƒ 6 2P>3
0 6 ƒ x - c ƒ 6 d2 Q  ƒ gsxd - M ƒ 6 2P>3
0 6 ƒ x - c ƒ 6 d3 Q  ƒ ƒsxd - L ƒ 6 P>s3s1 + ƒ M ƒ dd
0 6 ƒ x - c ƒ 6 d4 Q  ƒ gsxd - M ƒ 6 P>s3s1 + ƒ L ƒ dd

d4d1, d2, d3 ,x : c ,

 = Lsgsxd - Md + Msƒsxd - Ld + sƒsxd - Ldsgsxd - Md .

+ sƒsxd - Ldsgsxd - Md - LM

 = LM + Lsgsxd - Md + Msƒsxd - Ld
ƒsxd # gsxd - LM = sL + sƒsxd - LddsM + sgsxd - Mdd - LM

ƒsxd = L + sƒsxd - Ld,    gsxd = M + sgsxd - Md .

P

Triangle inequality applied
to Eq. (1)
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which can be combined with the inequality on the right in Implication (3) to get, in turn,

(4)

Therefore, implies that

Inequality (4) (5)

Since there exists a number such that for all x

(6)

If we take to be the smaller of and the conclusions in (5) and (6) both hold for all x
such that Combining these conclusions gives

This concludes the proof of the Limit Quotient Rule.

0 6 ƒ x - c ƒ 6 d Q  ` 1
gsxd

-
1
M
` 6 P .

0 6 ƒ x - c ƒ 6 d .
d2 ,d1d

0 6 ƒ x - c ƒ 6 d2 Q  ƒ M - gsxd ƒ 6
P

2
 ƒ M ƒ

2 .

d2 7 0s1>2d ƒ M ƒ
2
P 7 0,

 6
1

ƒ M ƒ

# 2
ƒ M ƒ

#
ƒ M - gsxd ƒ .

 ̀
1

gsxd
-

1
M
` = `M - gsxd

Mgsxd
` …

1
ƒ M ƒ

# 1
ƒ gsxd ƒ

#
ƒ M - gsxd ƒ

0 6 ƒ x - c ƒ 6 d1

 
1

ƒ gsxd ƒ

6
2

ƒ M ƒ

6
3

ƒ gsxd ƒ

 .

 ƒ M ƒ 6 2 ƒ gsxd ƒ 6 3 ƒ M ƒ

 
ƒ M ƒ

2
6 ƒ gsxd ƒ 6

3 ƒ M ƒ

2

 -
ƒ M ƒ

2
6 ƒ gsxd ƒ - ƒ M ƒ 6

ƒ M ƒ

2

  ƒ ƒ gsxd ƒ - ƒ M ƒ ƒ 6

ƒ M ƒ

2

THEOREM 4—The Sandwich Theorem Suppose that for
all x in some open interval I containing c, except possibly at itself.
Suppose also that Then lim

 x:c ƒsxd = L .L .lim
 x:c gsxd = lim

 x:c hsxd =

x = c
gsxd … ƒsxd … hsxd

Proof for Right-Hand Limits Suppose Then for any
there exists a such that for all x the interval is contained in I

and the inequality implies

These inequalities combine with the inequality to give

Therefore, for all x, the inequality  implies  ƒ ƒsxd - L ƒ 6 P .c 6 x 6 c + d

 - P 6 ƒsxd - L 6 P .

 L - P 6 ƒsxd 6 L + P, 

 L - P 6 gsxd … ƒsxd … hsxd 6 L + P, 

gsxd … ƒsxd … hsxd

L - P 6 gsxd 6 L + P and L - P 6 hsxd 6 L + P.

c 6 x 6 c + dd 7 0P 7 0
lim
 x:c+ gsxd = lim

 x:c+ hsxd = L .
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A.5 Commonly Occurring Limits

This appendix verifies limits (4)–(6) in Theorem 5 of Section 10.1.

Limit 4: If We need to show that to each there corresponds

an integer N so large that for all n greater than N. Since while 
there exists an integer N for which In other words,

(1)ƒ xN
ƒ = ƒ x ƒ

N
6 P .

P
1>N

7 ƒ x ƒ .
ƒ x ƒ 6 1,P

1>n : 1,ƒ xn
ƒ 6 P

P 7 0ƒ x ƒ 6 1, lim
n: ˆ

 xn
= 0

c f(c) g( f(c))

�f �f �g �g � �

f g

g 
 f

FIGURE A.21 The diagram for a proof that the composite of two continuous functions
is continuous.

Proof for Left-Hand Limits Suppose Then for any
there exists a such that for all x the interval is contained in I

and the inequality implies

We conclude as before that for all  implies  

Proof for Two-Sided Limits If then g(x) and h(x) both
approach L as and as so and Hence

exists and equals L.lim
 x:c ƒsxd

lim
 x:c- ƒsxd = L .lim

 x:c+ ƒsxd = Lx : c- ;x : c+

lim
 x:c gsxd = lim

 x:c hsxd = L ,

ƒ ƒsxd - L ƒ 6 P.x, c - d 6 x 6 c

L - P 6 gsxd 6 L + P and L - P 6 hsxd 6 L + P.

c - d 6 x 6 cd 7 0P 7 0
lim
 x:c- gsxd = lim

 x:c- hsxd = L .

Exercises A.4

1. Suppose that functions and have limits 
and respectively, as Show that their sum has limit

Use mathematical induction (Appendix 2) to gen-
eralize this result to the sum of any finite number of functions.

2. Use mathematical induction and the Limit Product Rule in Theo-
rem 1 to show that if functions have limits

as then

3. Use the fact that and the result of Exercise 2 to
show that for any integer 

4. Limits of polynomials Use the fact that for any
number k together with the results of Exercises 1 and 3 to show
that for any polynomial function

ƒsxd = an xn
+ an - 1 xn - 1

+
Á

+ a1 x + a0 .

lim
 x:c ƒsxd = ƒscd

lim
 x:cskd = k

n 7 1.lim
 x:c xn

= cn
lim
 x:c x = c

lim
x:c

 ƒ1sxd # ƒ2sxd # Á # ƒnsxd = L1
# L2

# Á # Ln .

x : c ,L1, L2, Á , Ln

ƒ1sxd, ƒ2sxd, Á , ƒnsxd

L1 + L2 + L3 .
x : c .L3 ,

L1, L2 ,ƒ3sxdƒ1sxd, ƒ2sxd, 5. Limits of rational functions Use Theorem 1 and the result of
Exercise 4 to show that if ƒ(x) and g(x) are polynomial functions
and then

6. Composites of continuous functions Figure A.21 gives the di-
agram for a proof that the composite of two continuous functions
is continuous. Reconstruct the proof from the diagram. The state-
ment to be proved is this: If ƒ is continuous at and g is con-
tinuous at ƒ(c), then is continuous at c.

Assume that c is an interior point of the domain of ƒ and that
ƒ(c) is an interior point of the domain of g. This will make the
limits involved two-sided. (The arguments for the cases that in-
volve one-sided limits are similar.)

g � ƒ
x = c

lim
x:c

 
ƒsxd
gsxd

=

ƒscd
gscd

.

gscd Z 0,
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This is the integer we seek because, if then

(2)

Combining (1) and (2) produces for all  concluding the proof.

Limit 5: For any number Let

Then

as we can see by the following application of l’Hôpital’s Rule, in which we differentiate
with respect to n:

Apply Theorem 3, Section 10.1, with to conclude that

Limit 6: For any number Since

all we need to show is that We can then apply the Sandwich Theorem for
Sequences (Section 10.1, Theorem 2) to conclude that 

The first step in showing that is to choose an integer so that
By Limit 4, just proved, we then have We then restrict our

attention to values of For these values of n, we can write

Thus,

Now, the constant does not change as n increases. Thus the Sandwich Theorem
tells us that because s ƒ x ƒ>Mdn : 0.ƒ x ƒ

n>n! : 0
M M>M!

0 …

ƒ x ƒ
n

n!
…

M M

M!
 a ƒ x ƒ

M
bn

.

…

ƒ x ƒ
n

M!M n - M =

ƒ x ƒ
nM M

M!M n =
M M

M!
 a ƒ x ƒ

M
bn

.

sn - Md factors
('''''')''''''*

ƒ x ƒ
n

n!
=

ƒ x ƒ
n

1 # 2 # Á # M # sM + 1d # sM + 2d # Á # n

n 7 M .
s ƒ x ƒ >Mdn : 0.s ƒ x ƒ>Md 6 1.

M 7 ƒ x ƒ ,ƒ x ƒ
n>n! : 0

xn>n! : 0.
ƒ x ƒ

n>n! : 0.

-

ƒ x ƒ
n

n!
…

xn

n!
…

ƒ x ƒ
n

n!
,

x, lim
n: ˆ

 
xn

n!
� 0

a1 +
x
n b

n

= an = e ln an : e x .

ƒsxd = ex

 = lim
n: q

 

a 1
1 + x>n b # a- x

n2 b
-1/n2 = lim

n: q

 
x

1 + x/n
= x .

 lim
n: q

 n ln a1 +
x
n b = lim

n: q

 
lns1 + x>nd

1/n

ln an = ln a1 +
x
n b

n

= n ln a1 +
x
n b : x ,

an = a1 +
x
n b

n

.

x, lim
n: ˆ

a1 �
x
n b

n

� ex

n 7 N ,ƒ x n
ƒ 6 P

ƒ xn
ƒ 6 ƒ xN

ƒ  for all n 7 N .

ƒ x ƒ 6 1,
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A.6 Theory of the Real Numbers

A rigorous development of calculus is based on properties of the real numbers. Many results
about functions, derivatives, and integrals would be false if stated for functions defined only
on the rational numbers. In this appendix we briefly examine some basic concepts of the
theory of the reals that hint at what might be learned in a deeper, more theoretical study of
calculus.

Three types of properties make the real numbers what they are. These are the
algebraic, order, and completeness properties. The algebraic properties involve addition
and multiplication, subtraction and division. They apply to rational or complex numbers as
well as to the reals.

The structure of numbers is built around a set with addition and multiplication opera-
tions. The following properties are required of addition and multiplication.

A1 for all a, b, c.

A2 for all a, b.

A3 There is a number called “0” such that for all a.

A4 For each number a, there is a b such that 

M1 for all a, b, c.

M2 for all a, b.

M3 There is a number called “1” such that for all a.

M4 For each nonzero a, there is a b such that 

D for all a, b, c.

A1 and M1 are associative laws, A2 and M2 are commutativity laws, A3 and M3 are
identity laws, and D is the distributive law. Sets that have these algebraic properties are
examples of fields, and are studied in depth in the area of theoretical mathematics called
abstract algebra.

The order properties allow us to compare the size of any two numbers. The order
properties are

O1 For any a and b, either or or both.

O2 If and then 

O3 If and then 

O4 If then 

O5 If and then 

O3 is the transitivity law, and O4 and O5 relate ordering to addition and multiplication.
We can order the reals, the integers, and the rational numbers, but we cannot order the

complex numbers. There is no reasonable way to decide whether a number like 
is bigger or smaller than zero. A field in which the size of any two elements can be com-
pared as above is called an ordered field. Both the rational numbers and the real numbers
are ordered fields, and there are many others.

We can think of real numbers geometrically, lining them up as points on a line. The
completeness property says that the real numbers correspond to all points on the line,
with no “holes” or “gaps.” The rationals, in contrast, omit points such as and and
the integers even leave out fractions like 1 2. The reals, having the completeness property,
omit no points.

What exactly do we mean by this vague idea of missing holes? To answer this we must
give a more precise description of completeness. A number M is an upper bound for a set
of numbers if all numbers in the set are smaller than or equal to M. M is a least upper
bound if it is the smallest upper bound. For example, is an upper bound for theM = 2

> p ,22

i = 2-1

ac … bc .0 … ca … b

a + c … b + c .a … b

a … c .b … ca … b

a = b .b … aa … b

b … aa … b

asb + cd = ab + bc

ab = 1.

a # 1 = a

ab = ba

asbcd = sabdc
a + b = 0.

a + 0 = a

a + b = b + a

a + sb + cd = sa + bd + c
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negative numbers. So is showing that 2 is not a least upper bound. The least upper
bound for the set of negative numbers is We define a complete ordered field to be
one in which every nonempty set bounded above has a least upper bound.

If we work with just the rational numbers, the set of numbers less than is
bounded, but it does not have a rational least upper bound, since any rational upper bound
M can be replaced by a slightly smaller rational number that is still larger than So the
rationals are not complete. In the real numbers, a set that is bounded above always has a
least upper bound. The reals are a complete ordered field.

The completeness property is at the heart of many results in calculus. One example
occurs when searching for a maximum value for a function on a closed interval [a, b], as in
Section 4.1. The function has a maximum value on [0, 1] at the point x satis-
fying or If we limited our consideration to functions defined
only on rational numbers, we would have to conclude that the function has no maximum,
since is irrational (Figure A.22). The Extreme Value Theorem (Section 4.1), which
implies that continuous functions on closed intervals [a, b] have a maximum value, is not
true for functions defined only on the rationals.

The Intermediate Value Theorem implies that a continuous function ƒ on an interval
[a, b] with and must be zero somewhere in [a, b]. The function values
cannot jump from negative to positive without there being some point x in [a, b] where

The Intermediate Value Theorem also relies on the completeness of the real
numbers and is false for continuous functions defined only on the rationals. The function

has and but if we consider ƒ only on the rational
numbers, it never equals zero. The only value of x for which is an
irrational number.

We have captured the desired properties of the reals by saying that the real numbers
are a complete ordered field. But we’re not quite finished. Greek mathematicians in the
school of Pythagoras tried to impose another property on the numbers of the real line, the
condition that all numbers are ratios of integers. They learned that their effort was doomed
when they discovered irrational numbers such as How do we know that our efforts to
specify the real numbers are not also flawed, for some unseen reason? The artist Escher
drew optical illusions of spiral staircases that went up and up until they rejoined them-
selves at the bottom. An engineer trying to build such a staircase would find that no struc-
ture realized the plans the architect had drawn. Could it be that our design for the reals
contains some subtle contradiction, and that no construction of such a number system can
be made?

We resolve this issue by giving a specific description of the real numbers and verify-
ing that the algebraic, order, and completeness properties are satisfied in this model. This
is called a construction of the reals, and just as stairs can be built with wood, stone, or
steel, there are several approaches to constructing the reals. One construction treats the
reals as all the infinite decimals,

In this approach a real number is an integer a followed by a sequence of decimal digits
each between 0 and 9. This sequence may stop, or repeat in a periodic

pattern, or keep going forever with no pattern. In this form, and
represent three familiar real numbers. The real meaning of the dots

following these digits requires development of the theory of sequences and series,
as in Chapter 10. Each real number is constructed as the limit of a sequence of rational
numbers given by its finite decimal approximations. An infinite decimal is then the same
as a series

This decimal construction of the real numbers is not entirely straightforward. It’s easy
enough to check that it gives numbers that satisfy the completeness and order properties,

a +

d1

10
+

d2

100
+

Á .

“ Á ”
3.1415926535898 Á

2.00, 0.3333333 Á

d1, d2, d3, Á ,

a.d1d2d3d4 Á

12.

x = 21>3,ƒsxd = 0
ƒs1d = 2,ƒs0d = -1ƒsxd = 3x2

- 1

ƒsxd = 0.

ƒsbd 7 0ƒsad 6 0

11>3
x = 11>3.1 - 3x2

= 0,
y = x - x3

22.

22

M = 0.
M = 1,

0.1 0.3 0.5 0.7 0.9 1

0.1

0.3

0.5

�1/3

y � x � x3

y

x

FIGURE A.22 The maximum value of
on [0, 1] occurs at the

irrational number x = 21>3.
y = x - x3
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but verifying the algebraic properties is rather involved. Even adding or multiplying two
numbers requires an infinite number of operations. Making sense of division requires a
careful argument involving limits of rational approximations to infinite decimals.

A different approach was taken by Richard Dedekind (1831–1916), a German mathe-
matician, who gave the first rigorous construction of the real numbers in 1872. Given any
real number x, we can divide the rational numbers into two sets: those less than or equal to
x and those greater. Dedekind cleverly reversed this reasoning and defined a real number
to be a division of the rational numbers into two such sets. This seems like a strange ap-
proach, but such indirect methods of constructing new structures from old are common in
theoretical mathematics.

These and other approaches can be used to construct a system of numbers having the
desired algebraic, order, and completeness properties. A final issue that arises is whether
all the constructions give the same thing. Is it possible that different constructions result in
different number systems satisfying all the required properties? If yes, which of these is
the real numbers? Fortunately, the answer turns out to be no. The reals are the only number
system satisfying the algebraic, order, and completeness properties.

Confusion about the nature of the numbers and about limits caused considerable con-
troversy in the early development of calculus. Calculus pioneers such as Newton, Leibniz,
and their successors, when looking at what happens to the difference quotient

as each of and approach zero, talked about the resulting derivative being a quotient
of two infinitely small quantities. These “infinitesimals,” written dx and dy, were thought
to be some new kind of number, smaller than any fixed number but not zero. Similarly, a
definite integral was thought of as a sum of an infinite number of infinitesimals

as x varied over a closed interval. While the approximating difference quotients 
were understood much as today, it was the quotient of infinitesimal quantities, rather than
a limit, that was thought to encapsulate the meaning of the derivative. This way of think-
ing led to logical difficulties, as attempted definitions and manipulations of infinitesi-
mals ran into contradictions and inconsistencies. The more concrete and computable dif-
ference quotients did not cause such trouble, but they were thought of merely as useful
calculation tools. Difference quotients were used to work out the numerical value of the
derivative and to derive general formulas for calculation, but were not considered to be at
the heart of the question of what the derivative actually was. Today we realize that the
logical problems associated with infinitesimals can be avoided by defining the derivative
to be the limit of its approximating difference quotients. The ambiguities of the old ap-
proach are no longer present, and in the standard theory of calculus, infinitesimals are
neither needed nor used.

A.7 Complex Numbers

Complex numbers are expressions of the form where a and b are real numbers and
i is a symbol for Unfortunately, the words “real” and “imaginary” have connotations
that somehow place in a less favorable position in our minds than As a matter of
fact, a good deal of imagination, in the sense of inventiveness, has been required to con-
struct the real number system, which forms the basis of the calculus (see Appendix A.6). In
this appendix we review the various stages of this invention. The further invention of a
complex number system is then presented.

12.1-1
1-1.

a + ib ,

¢y>¢x

ƒsxd # dx

¢x¢y

¢y

¢x
=

ƒsx + ¢xd - ƒsxd
¢x
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The Development of the Real Numbers

The earliest stage of number development was the recognition of the counting numbers
, which we now call the natural numbers or the positive integers. Certain

simple arithmetical operations can be performed with these numbers without getting out-
side the system. That is, the system of positive integers is closed under the operations of
addition and multiplication. By this we mean that if m and n are any positive integers,
then

(1)

are also positive integers. Given the two positive integers on the left side of either equation
in (1), we can find the corresponding positive integer on the right side. More than this, we
can sometimes specify the positive integers m and p and find a positive integer n such that

For instance, can be solved when the only numbers we know are
the positive integers. But the equation cannot be solved unless the number
system is enlarged.

The number zero and the negative integers were invented to solve equations like
In a civilization that recognizes all the integers

(2)

an educated person can always find the missing integer that solves the equation
when given the other two integers in the equation.

Suppose our educated people also know how to multiply any two of the integers in
the list (2). If, in Equations (1), they are given m and q, they discover that sometimes
they can find n and sometimes they cannot. Using their imagination, they may be
inspired to invent still more numbers and introduce fractions, which are just ordered
pairs m n of integers m and n. The number zero has special properties that may bother
them for a while, but they ultimately discover that it is handy to have all ratios of inte-
gers m n, excluding only those having zero in the denominator. This system, called the
set of rational numbers, is now rich enough for them to perform the rational opera-
tions of arithmetic:

1. (a) addition 2. (a) multiplication
(b) subtraction (b) division

on any two numbers in the system, except that they cannot divide by zero because it is
meaningless.

The geometry of the unit square (Figure A.23) and the Pythagorean theorem showed
that they could construct a geometric line segment that, in terms of some basic unit of
length, has length equal to Thus they could solve the equation

by a geometric construction. But then they discovered that the line segment representing
is an incommensurable quantity. This means that cannot be expressed as the ratio

of two integer multiples of some unit of length. That is, our educated people could not find
a rational number solution of the equation 

There is no rational number whose square is 2. To see why, suppose that there were
such a rational number. Then we could find integers p and q with no common factor other
than 1, and such that

(3)

Since p and q are integers, p must be even; otherwise its product with itself would be odd.
In symbols, where is an integer. This leads to which says q must be
even, say where is an integer. This makes 2 a factor of both p and q, contrary
to our choice of p and q as integers with no common factor other than 1. Hence there is no
rational number whose square is 2.

q1q = 2q1 ,
2p1

2
= q2p1p = 2p1 ,

p2
= 2q2 .

x2
= 2.

2222

x2
= 2

22.

>
>

m + n = p

Á , -3, -2, -1, 0, 1, 2, 3, Á ,

7 + n = 3.

7 + n = 3
3 + n = 7m + n = p .

m + n = p and mn = q

1, 2, 3, Á

1

1
�2

FIGURE A.23 With a straightedge and
compass, it is possible to construct a 
segment of irrational length.
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Although our educated people could not find a rational solution of the equation
they could get a sequence of rational numbers

(4)

whose squares form a sequence

(5)

that converges to 2 as its limit. This time their imagination suggested that they needed
the concept of a limit of a sequence of rational numbers. If we accept the fact that an
increasing sequence that is bounded from above always approaches a limit (Theorem 6,
Section 10.1) and observe that the sequence in (4) has these properties, then we want it
to have a limit L. This would also mean, from (5), that and hence L is not one
of our rational numbers. If to the rational numbers we further add the limits of all
bounded increasing sequences of rational numbers, we arrive at the system of all “real”
numbers. The word real is placed in quotes because there is nothing that is either “more
real” or “less real” about this system than there is about any other mathematical
system.

The Complex Numbers

Imagination was called upon at many stages during the development of the real number
system. In fact, the art of invention was needed at least three times in constructing the
systems we have discussed so far:

1. The first invented system: the set of all integers as constructed from the counting
numbers.

2. The second invented system: the set of rational numbers m n as constructed from the
integers.

3. The third invented system: the set of all real numbers x as constructed from the
rational numbers.

These invented systems form a hierarchy in which each system contains the previous
system. Each system is also richer than its predecessor in that it permits additional opera-
tions to be performed without going outside the system:

1. In the system of all integers, we can solve all equations of the form

(6)

where a can be any integer.

2. In the system of all rational numbers, we can solve all equations of the form

(7)

provided a and b are rational numbers and 

3. In the system of all real numbers, we can solve all of Equations (6) and (7) and, in ad-
dition, all quadratic equations

(8)

You are probably familiar with the formula that gives the solutions of Equation (8),
namely,

(9)x =

-b ; 2b2
- 4ac

2a
,

ax2
+ bx + c = 0 having a Z 0 and b2

- 4ac Ú 0.

a Z 0.

ax + b = 0,

x + a = 0,

>

L2
= 2,

1
1

, 49
25

, 1681
841

, 
57,121
28,561

, Á ,

1
1

, 7
5, 41

29
, 239

169
, Á ,

x2
= 2,
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and are familiar with the further fact that when the discriminant, is negative,
the solutions in Equation (9) do not belong to any of the systems discussed above. In fact,
the very simple quadratic equation

is impossible to solve if the only number systems that can be used are the three invented
systems mentioned so far.

Thus we come to the fourth invented system, the set of all complex numbers
We could dispense entirely with the symbol i and use the ordered pair notation (a, b).
Since, under algebraic operations, the numbers a and b are treated somewhat differently,
it is essential to keep the order straight. We therefore might say that the complex num-
ber system consists of the set of all ordered pairs of real numbers (a, b), together with
the rules by which they are to be equated, added, multiplied, and so on, listed below. We
will use both the (a, b) notation and the notation in the discussion that follows.
We call a the real part and b the imaginary part of the complex number (a, b).

We make the following definitions.

Equality
Two complex numbers (a, b)

if and only if and (c, d) are equal if and only 
and if and 

Addition
The sum of the two complex
numbers (a, b) and (c, d) is the
complex number .

Multiplication

The product of two complex
numbers (a, b) and (c, d) is the
complex number 

The product of a real number c
and the complex number (a, b) is
the complex number (ac, bc).

The set of all complex numbers (a, b) in which the second number b is zero has all the
properties of the set of real numbers a. For example, addition and multiplication of (a, 0)
and (c, 0) give

which are numbers of the same type with imaginary part equal to zero. Also, if we multi-
ply a “real number” (a, 0) and the complex number (c, d), we get

In particular, the complex number (0, 0) plays the role of zero in the complex number
system, and the complex number (1, 0) plays the role of unity or one.

The number pair (0, 1), which has real part equal to zero and imaginary part equal to
one, has the property that its square,

has real part equal to minus one and imaginary part equal to zero. Therefore, in the system
of complex numbers (a, b) there is a number whose square can be added to

to produce that is,

s0, 1d2
+ s1, 0d = s0, 0d .

zero = s0, 0d ,unity = s1, 0d
x = s0, 1d

s0, 1ds0, 1d = s -1, 0d ,

sa, 0d # sc, dd = sac, add = asc, dd .

 sa, 0d # sc, 0d = sac, 0d, 

 sa, 0d + sc, 0d = sa + c, 0d, 

csa + ibd = ac + isbcd
sac - bd, ad + bcd.

= sac - bdd + isad + bcd
sa + ibdsc + idd

sa + c, b + dd
= sa + cd + isb + dd
sa + ibd + sc + idd

b = d .a = cb = d .a = c

a + ib = c + id

a + ib

a + ib .

x2
+ 1 = 0

b2
- 4ac ,

7001_ThomasET_App_pAP1-40.qxd  10/30/09  9:07 AM  Page 28



Appendix 7 Complex Numbers AP-29

The equation

therefore has a solution in this new number system.
You are probably more familiar with the notation than you are with the nota-

tion (a, b). And since the laws of algebra for the ordered pairs enable us to write

while (1, 0) behaves like unity and (0, 1) behaves like a square root of minus one, we need
not hesitate to write in place of (a, b). The i associated with b is like a tracer element
that tags the imaginary part of We can pass at will from the realm of ordered pairs
(a, b) to the realm of expressions and conversely. But there is nothing less “real”
about the symbol than there is about the symbol once we have
learned the laws of algebra in the complex number system of ordered pairs (a, b).

To reduce any rational combination of complex numbers to a single complex number,
we apply the laws of elementary algebra, replacing wherever it appears by Of
course, we cannot divide by the complex number But if 
then we may carry out a division as follows:

The result is a complex number with

and since 
The number that is used as multiplier to clear the i from the denominator is

called the complex conjugate of It is customary to use (read “z bar”) to denote
the complex conjugate of z; thus

Multiplying the numerator and denominator of the fraction by the com-
plex conjugate of the denominator will always replace the denominator by a real number.

EXAMPLE 1 We give some illustrations of the arithmetic operations with complex
numbers.

(a)

(b)

(c)

(d)

Argand Diagrams

There are two geometric representations of the complex number 

1. as the point P(x, y) in the xy-plane

2. as the vector from the origin to P.OP§

z = x + iy :

 =
6 + 22i

40
=

3
20

+
11
20

 i

 =
12 + 4i + 18i + 6i2

36 + 12i - 12i - 4i2

 
2 + 3i
6 - 2i

=
2 + 3i
6 - 2i

 
6 + 2i
6 + 2i

 = 12 - 4i + 18i - 6i 2
= 12 + 14i + 6 = 18 + 14i

 s2 + 3ids6 - 2id = s2ds6d + s2ds -2id + s3ids6d + s3ids -2id
s2 + 3id - s6 - 2id = s2 - 6d + s3 - s -2ddi = -4 + 5i

s2 + 3id + s6 - 2id = s2 + 6d + s3 - 2di = 8 + i

sc + idd>sa + ibd

z = a + ib, z = a - ib.

za + ib .
a - ib

a + ib = sa, bd Z s0, 0d .a2
+ b2

Z 0,

x =
ac + bd
a2

+ b2 , y =
ad - bc
a2

+ b2 ,

x + iy

c + id
a + ib

=

sc + iddsa - ibd
sa + ibdsa - ibd

=

sac + bdd + isad - bcd
a2

+ b2 .

a + ib Z 0,s0, 0d = 0 + i0.
-1.i2

s1, 0d = 1,s0, 1d = i
a + ib ,

a + ib .
a + ib

sa, bd = sa, 0d + s0, bd = as1, 0d + bs0, 1d ,

a + ib
x = s0, 1d

x2
+ 1 = 0
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In each representation, the x-axis is called the real axis and the y-axis is the imaginary
axis. Both representations are Argand diagrams for (Figure A.24).

In terms of the polar coordinates of x and y, we have

and

(10)

We define the absolute value of a complex number to be the length r of a vector
from the origin to P(x, y). We denote the absolute value by vertical bars; thus,

If we always choose the polar coordinates r and so that r is nonnegative, then

The polar angle is called the argument of z and is written Of course, any
integer multiple of may be added to to produce another appropriate angle.

The following equation gives a useful formula connecting a complex number z, its
conjugate and its absolute value namely,

Euler’s Formula

The identity

called Euler’s formula, enables us to rewrite Equation (10) as

This formula, in turn, leads to the following rules for calculating products, quotients, powers,
and roots of complex numbers. It also leads to Argand diagrams for Since

is what we get from Equation (10) by taking we can say that is
represented by a unit vector that makes an angle with the positive x-axis, as shown in
Figure A.25.

u

eiur = 1,cos u + i sin u

eiu .

z = reiu .

eiu
= cos u + i sin u ,

z # z = ƒ z ƒ
2 .

ƒ z ƒ ,z ,

u2p
u = arg z .u

r = ƒ x + iy ƒ .

u

ƒ x + iy ƒ = 2x2
+ y2 .

OP§
x + iy

z = x + iy = rscos u + i sin ud .

x = r cos u, y = r sin u ,

x + iy

x

y

O

r
y

x

P(x, y)

�

FIGURE A.24 This Argand diagram 
represents both as a point
P(x, y) and as a vector OP§ .

z = x + iy

x x

y y

�� � arg z
r � 1

O O

ei� � cos � � i sin � ei� � cos � � i sin �

(cos �, sin �)

(a) (b)

FIGURE A.25 Argand diagrams for (a) as a
vector and (b) as a point.

eiu
= cos u + i sin u

Products

To multiply two complex numbers, we multiply their absolute values and add their angles. Let

(11)z1 = r1 eiu1, z2 = r2 eiu2 ,
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so that

Then

and hence

(12)

Thus, the product of two complex numbers is represented by a vector whose length is the
product of the lengths of the two factors and whose argument is the sum of their arguments
(Figure A.26). In particular, from Equation (12) a vector may be rotated counterclockwise
through an angle by multiplying it by Multiplication by i rotates 90°, by rotates
180°, by rotates 270°, and so on.

EXAMPLE 2 Let We plot these complex numbers in an
Argand diagram (Figure A.27) from which we read off the polar representations

Then

The notation exp (A) stands for 

Quotients

Suppose in Equation (11). Then

Hence

That is, we divide lengths and subtract angles for the quotient of complex numbers.

EXAMPLE 3 Let and as in Example 2. Then

 L 0.183 + 0.683i .

 
1 + i

23 - i
=

22eip>4
2e-ip>6 =

22
2

 e5pi>12
L 0.707 acos 

5p
12

+ i sin 
5p
12
b

z2 = 23 - i ,z1 = 1 + i

` z1
z2
` =

r1
r2

=

ƒ z1 ƒ

ƒ z2 ƒ

 and arg az1
z2
b = u1 - u2 = arg z1 - arg z2.

z1
z2

=

r1 eiu1

r2 eiu2
=

r1
r2

 eisu1 -u2d .

r2 Z 0

eA .

 = 222 acos 
p
12

+ i sin 
p
12
b L 2.73 + 0.73i .

 z1 z2 = 222 exp aip
4

-
ip
6
b = 222 exp aip

12
b

z1 = 22e ip>4, z2 = 2e-ip>6 .

z1 = 1 + i, z2 = 23 - i .

- i
-1eiu .u

arg sz1 z2d = u1 + u2 = arg z1 + arg z2 .

ƒ z1 z2 ƒ = r1 r2 = ƒ z1 ƒ
#
ƒ z2 ƒ

z1 z2 = r1 eiu1 # r2 eiu2
= r1 r2 eisu1 +u2d

ƒ z1 ƒ = r1, arg z1 = u1; ƒ z2 ƒ = r2, arg z2 = u2 .

x

y

O

�1

�2

�1

z1z2

r1r2

r2 r1

z1

z2

FIGURE A.26 When and are 
multiplied, and
arg sz1 z2d = u1 + u2 .

ƒ z1 z2 ƒ = r1
# r2

z2z1

0

1

–1

x

y

�2

�3 � 1

1 � �3  

2�2

2
1

z1z2

z1 � 1 � i

z2 � �3 � i

�
4 �

12
�
6

–

FIGURE A.27 To multiply two complex
numbers, multiply their absolute values
and add their arguments.
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Powers

If n is a positive integer, we may apply the product formulas in Equation (12) to find

With we obtain

(13)

The length is raised to the nth power and the angle is multiplied by n.
If we take in Equation (13), we obtain De Moivre’s Theorem.r = 1

u = arg zr = ƒ z ƒ

 = rneinu .

 zn
= sreiudn

= rneisu+u+
Á

+ud

z = reiu ,

zn
= z # z # Á # z .

De Moivre’s Theorem

(14)scos u + i sin udn
= cos nu + i sin nu .

If we expand the left side of De Moivre’s equation above by the Binomial Theorem
and reduce it to the form we obtain formulas for and as polynomials
of degree n in and 

EXAMPLE 4 If in Equation (14), we have

The left side of this equation expands to

The real part of this must equal and the imaginary part must equal Therefore,

Roots

If is a complex number different from zero and n is a positive integer, then there
are precisely n different complex numbers that are nth roots of z. To see
why, let be an nth root of so that

or

Then

is the real, positive nth root of r. For the argument, although we cannot say that and
must be equal, we can say that they may differ only by an integer multiple of That

is,

Therefore,

a =

u
n + k 

2p
n .

na = u + 2kp,    k = 0, ;1, ;2, Á .

2p .u

na

r = 2n r

rneina
= reiu .

wn
= z

z = reiu ,w = reia
w0, w1, Á , wn - 1 ,

z = reiu

 sin 3u = 3 cos2 u sin u - sin3 u .

 cos 3u = cos3 u - 3 cos u sin2 u, 

sin 3u .cos 3u

cos3 u + 3i cos2 u sin u - 3 cos u sin2 u - i sin3 u .

scos u + i sin ud3
= cos 3u + i sin 3u .

n = 3

sin u .cos u

sin nucos nua + ib ,

n factors

n summands
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Hence, all the nth roots of are given byz = reiu

(15)2n reiu
= 2n r exp i aun + k 

2p
n b ,    k = 0, ;1, ;2, Á .

x

y

O

r

w2

w1

w0

2�
3

2�
3

2�
3

r1/3

z � rei�

�

�
3

FIGURE A.28 The three cube roots of
z = reiu .

2

x

y

–16

w0

w3w2

w1

�
4

�
2

�
2

�
2

�
2

FIGURE A.29 The four fourth roots 
of -16.

There might appear to be infinitely many different answers corresponding to the
infinitely many possible values of k, but gives the same answer as in
Equation (15). Thus, we need only take n consecutive values for k to obtain all the
different nth roots of z. For convenience, we take

All the nth roots of lie on a circle centered at the origin and having radius equal to
the real, positive nth root of r. One of them has argument The others are uni-
formly spaced around the circle, each being separated from its neighbors by an angle equal
to Figure A.28 illustrates the placement of the three cube roots, of the
complex number 

EXAMPLE 5 Find the four fourth roots of 

Solution As our first step, we plot the number in an Argand diagram (Figure
A.29) and determine its polar representation Here, and 
One of the fourth roots of is We obtain others by successive additions of

to the argument of this first one. Hence,

and the four roots are

The Fundamental Theorem of Algebra

One might say that the invention of is all well and good and leads to a number sys-
tem that is richer than the real number system alone; but where will this process end? Are
we also going to invent still more systems so as to obtain and so on? But it
turns out this is not necessary. These numbers are already expressible in terms of the com-
plex number system In fact, the Fundamental Theorem of Algebra says that with
the introduction of the complex numbers we now have enough numbers to factor every
polynomial into a product of linear factors and so enough numbers to solve every possible
polynomial equation.

a + ib .

41-1, 61-1,

2-1

 w3 = 2 ccos 
7p
4

+ i sin 
7p
4
d = 22s1 - id .

 w2 = 2 ccos 
5p
4

+ i sin 
5p
4
d = 22s -1 - id

 w1 = 2 ccos 
3p
4

+ i sin 
3p
4
d = 22s -1 + id

 w0 = 2 ccos 
p
4

+ i sin 
p
4
d = 22s1 + id

24 16 exp ip = 2 exp i ap
4

, 
3p
4

, 
5p
4

, 
7p
4
b ,

2p>4 = p>2 2eip>4 .16eip
u = p .z = -16, r = +16,reiu .

-16

-16.

z = reiu .
w0, w1, w2 ,2p>n .

a = u>n .
reiu

k = 0, 1, 2, Á , n - 1.

k = mk = n + m
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The Fundamental Theorem of Algebra
Every polynomial equation of the form

in which the coefficients are any complex numbers, whose degree n
is greater than or equal to one, and whose leading coefficient is not zero, has
exactly n roots in the complex number system, provided each multiple root of
multiplicity m is counted as m roots.

an

a0, a1, Á , an

an zn
+ an - 1 zn - 1

+
Á

+ a1 z + a0 = 0,

A proof of this theorem can be found in almost any text on the theory of functions of a
complex variable.

Exercises A.7

Operations with Complex Numbers
1. How computers multiply complex numbers Find 

a. b.

c.

(This is how complex numbers are multiplied by computers.)

2. Solve the following equations for the real numbers, x and y.

a.

b.

c.

Graphing and Geometry
3. How may the following complex numbers be obtained from

geometrically? Sketch.

a. b.

c. d. 1 z

4. Show that the distance between the two points and in an
Argand diagram is 

In Exercises 5–10, graph the points that satisfy the given
conditions.

5. a. b. c.

6. 7.

8. 9.

10.

Express the complex numbers in Exercises 11–14 in the form 
with and Draw an Argand diagram for each
calculation.

11. 12.

13. 14. s2 + 3ids1 - 2id1 + i23

1 - i23

1 + i
1 - iA1 + 2-3 B2

-p 6 u … p .r Ú 0
reiu ,

ƒ z + 1 ƒ Ú ƒ z ƒ

ƒ z + i ƒ = ƒ z - 1 ƒƒ z + 1 ƒ = ƒ z - 1 ƒ

ƒ z + 1 ƒ = 1ƒ z - 1 ƒ = 2

ƒ z ƒ 7 2ƒ z ƒ 6 2ƒ z ƒ = 2

z = x + iy

ƒ z1 - z2 ƒ .
z2z1

>-z

s -zdz

z = x + iy

s3 - 2idsx + iyd = 2sx - 2iyd + 2i - 1

a1 + i
1 - i

b2

+

1
x + iy

= 1 + i

s3 + 4id2
- 2sx - iyd = x + iy

s -1, -2d # s2, 1d
s2, -1d # s -2, 3ds2, 3d # s4, -2d

= sac - bd, ad + bcd .
sa, bd # sc, dd

Powers and Roots
Use De Moivre’s Theorem to express the trigonometric functions in
Exercises 15 and 16 in terms of and 

15. 16.

17. Find the three cube roots of 1.

18. Find the two square roots of i.

19. Find the three cube roots of 

20. Find the six sixth roots of 64.

21. Find the four solutions of the equation 

22. Find the six solutions of the equation 

23. Find all solutions of the equation 

24. Solve the equation 

Theory and Examples
25. Complex numbers and vectors in the plane Show with an

Argand diagram that the law for adding complex numbers is the
same as the parallelogram law for adding vectors.

26. Complex arithmetic with conjugates Show that the conjugate
of the sum (product, or quotient) of two complex numbers, and

, is the same as the sum (product, or quotient) of their
conjugates.

27. Complex roots of polynomials with real coefficients come in
complex-conjugate pairs

a. Extend the results of Exercise 26 to show that if

is a polynomial with real coefficients 

b. If z is a root of the equation where ƒ(z) is a 
polynomial with real coefficients as in part (a), show that 
the conjugate is also a root of the equation. (Hint: Let

then both u and y are zero. Use the fact
that )

28. Absolute value of a conjugate Show that 

29. When If z and are equal, what can you say about the
location of the point z in the complex plane?

zz = z
ƒ z ƒ = ƒ z ƒ .

ƒszd = ƒszd = u - iy .
ƒszd = u + iy = 0;

z

ƒszd = 0,

a0, Á , an .

ƒszd = an zn
+ an - 1 zn - 1

+
Á

+ a1 z + a0

ƒszd = ƒszd

z2

z1

x4
+ 1 = 0.

x4
+ 4x2

+ 16 = 0.

z6
+ 2z3

+ 2 = 0.

z4
- 2z2

+ 4 = 0.

-8i .

sin 4ucos 4u

sin u .cos u
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M

M'

u

v''

90˚

v

v'

O u � v

�

�

FIGURE A.30 As explained in the text, u * v = ƒ u ƒ v– .

30. Real and imaginary parts Let Re(z) denote the real part of z
and Im(z) the imaginary part. Show that the following relations
hold for any complex numbers and 

a.

b. z - z = 2iImszd

z + z = 2Reszd
z2 .z, z1 ,

c.

d.

e. ƒ z1 + z2 ƒ … ƒ z1 ƒ + ƒ z2 ƒ

ƒ z1 + z2 ƒ
2

= ƒ z1 ƒ
2

+ ƒ z2 ƒ
2

+ 2Resz1z2d
ƒ Reszd ƒ … ƒ z ƒ

A.8 The Distributive Law for Vector Cross Products

In this appendix we prove the Distributive Law

,

which is Property 2 in Section 12.4.

Proof To derive the Distributive Law, we construct a new way. We draw u and v
from the common point O and construct a plane M perpendicular to u at O (Figure A.30).
We then project v orthogonally onto M, yielding a vector with length We rotate

about u in the positive sense to produce a vector Finally, we multiply by the
length of u. The resulting vector is equal to since has the same direction as

by its construction (Figure A.30) and

ƒ u ƒ ƒ v– ƒ = ƒ u ƒ ƒ v¿ ƒ = ƒ u ƒ ƒ v ƒ sin u = ƒ u * v ƒ .

u * v
v–u * vƒ u ƒv–

v–v– .v¿ 90°
ƒ v ƒsin u .v¿

u * v

u * sv + wd = u * v + u * w

Now each of these three operations, namely,

1. projection onto M

2. rotation about u through 90°

3. multiplication by the scalar 

when applied to a triangle whose plane is not parallel to u, will produce another triangle. If
we start with the triangle whose sides are v, w, and (Figure A.31) and apply these
three steps, we successively obtain the following:

1. A triangle whose sides are and satisfying the vector equation

2. A triangle whose sides are and satisfying the vector equation

v– + w– = sv + wd–

sv + wd–v–, w– ,

v¿ + w¿ = sv + wd¿

sv + wd¿v¿, w¿ ,

v + w

ƒ u ƒ
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(the double prime on each vector has the same meaning as in Figure A.30)

THEOREM 2—The Mixed Derivative Theorem If ƒ(x, y) and its partial deriv-
atives and are defined throughout an open region containing a
point (a, b) and are all continuous at (a, b), then

ƒxysa, bd = ƒyxsa, bd .

ƒyxƒx, ƒy, ƒxy ,

3. A triangle whose sides are and satisfying the vector equa-
tion

Substituting and 
from our discussion above into this last equation gives

which is the law we wanted to establish.

A.9 The Mixed Derivative Theorem and the Increment Theorem

This appendix derives the Mixed Derivative Theorem (Theorem 2, Section 14.3) and the
Increment Theorem for Functions of Two Variables (Theorem 3, Section 14.3). Euler first
published the Mixed Derivative Theorem in 1734, in a series of papers he wrote on hydro-
dynamics.

u * v + u * w = u * sv + wd ,

ƒ u ƒ sv + wd– = u * sv + wdƒ u ƒ w– = u * w,ƒ u ƒ v– = u * v,

ƒ u ƒ v– + ƒ u ƒ w– = ƒ u ƒ sv + wd– .

ƒ u ƒ sv + wd–ƒ u ƒ v–, ƒ u ƒ w– ,

M

uw

v

v'w'

(v � w)'

v � w

FIGURE A.31 The vectors, and their
projections onto a plane perpendicular to u.

v, w, v + w ,

Proof The equality of and can be established by four applications of
the Mean Value Theorem (Theorem 4, Section 4.2). By hypothesis, the point (a, b) lies in
the interior of a rectangle R in the xy-plane on which and are all defined.
We let h and k be the numbers such that the point also lies in R, and we
consider the difference

(1)

where

(2)Fsxd = ƒsx, b + kd - ƒsx, bd .

¢ = Fsa + hd - Fsad ,

sa + h, b + kd
ƒyxƒ, ƒx, ƒy, ƒxy ,

ƒyxsa, bdƒxysa, bd
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We apply the Mean Value Theorem to F, which is continuous because it is differentiable.
Then Equation (1) becomes

(3)

where lies between a and From Equation (2),

so Equation (3) becomes

(4)

Now we apply the Mean Value Theorem to the function and have

or

for some between b and By substituting this into Equation (4), we get

(5)

for some point in the rectangle whose vertices are the four points (a, b),
and (See Figure A.32.)

By substituting from Equation (2) into Equation (1), we may also write

(6)

where

(7)

The Mean Value Theorem applied to Equation (6) now gives

(8)

for some between b and By Equation (7),

(9)

Substituting from Equation (9) into Equation (8) gives

Finally, we apply the Mean Value Theorem to the expression in brackets and get

(10)

for some between a and 
Together, Equations (5) and (10) show that

(11)

where and both lie in the rectangle (Figure A.32). Equation (11) is
not quite the result we want, since it says only that has the same value at that

has at The numbers h and k in our discussion, however, may be made as
small as we wish. The hypothesis that and are both continuous at (a, b) means that

and where each of as
both Hence, if we let h and  we have  

The equality of and can be proved with hypotheses weaker than the
ones we assumed. For example, it is enough for and to exist in R and for to be
continuous at (a, b). Then will exist at (a, b) and equal at that point.ƒxyƒyx

ƒxyƒyƒ, ƒx ,
ƒyxsa, bdƒxysa, bd

ƒxysa, bd = ƒyxsa, bd .k : 0,h, k : 0.
P1, P2 : 0ƒyxsc2, d2d = ƒyxsa, bd + P2 ,ƒxysc1, d1d = ƒxysa, bd + P1

ƒyxƒxy

sc2, d2d .ƒyx

sc1, d1dƒxy

R¿sc2, d2dsc1, d1d

ƒxysc1, d1d = ƒyxsc2, d2d ,

a + h .c2

¢ = khƒyxsc2, d2d

¢ = k[ƒysa + h, d2d - ƒysa, d2d] .

f¿s yd = ƒysa + h, yd - ƒysa, yd .

b + k .d2

¢ = kf¿sd2d

fs yd = ƒsa + h, yd - ƒsa, yd .

 = fsb + kd - fsbd, 
 = [ƒsa + h, b + kd - ƒsa, b + kd] - [ƒsa + h, bd - ƒsa, bd]

 ¢ = ƒsa + h, b + kd - ƒsa + h, bd - ƒsa, b + kd + ƒsa, bd

sa, b + kd .sa + h, bd, sa + h, b + kd ,
R¿sc1, d1d

¢ = hkƒxysc1, d1d

b + k .d1

ƒxsc1, b + kd - ƒxsc1, bd = kƒxysc1, d1d

gsb + kd - gsbd = kg¿sd1d ,

gs yd = fxsc1, yd

¢ = h[ƒxsc1, b + kd - ƒxsc1, bd] .

F¿sxd = ƒxsx, b + kd - ƒxsx, bd ,

a + h .c1

¢ = hF¿sc1d ,

x

y

R

0

h

k R'

(a, b)

FIGURE A.32 The key to proving
is that no matter how

small is, and take on equal
values somewhere inside (although not
necessarily at the same point).

R¿

fyxfxyR¿

fxysa, bd = fyxsa, bd
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Proof We work within a rectangle T centered at and lying within R, and we
assume that and are already so small that the line segment joining A to

and the line segment joining B to lie in the interior
of T (Figure A.33).

We may think of as the sum of two increments, where

is the change in the value of ƒ from A to B and

is the change in the value of ƒ from B to C (Figure A.34).
On the closed interval of x-values joining to the function 

is a differentiable (and hence continuous) function of x, with derivative

By the Mean Value Theorem (Theorem 4, Section 4.2), there is an x-value c between 
and at which

or

or

(12)

Similarly, is a differentiable (and hence continuous) function
of y on the closed y-interval joining and with derivative

Hence, there is a y-value d between and at which

or

or

(13)¢z2 = ƒysx0 + ¢x, dd ¢y .

ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 + ¢x, yd = ƒysx0 + ¢x, dd ¢y

Gs y0 + ¢yd - Gs y0d = G¿sdd ¢y

y0 + ¢yy0

G¿s yd = ƒysx0 + ¢x, yd .

y0 + ¢y ,y0

Gs yd = ƒsx0 + ¢x, yd

¢z1 = ƒxsc, y0d ¢x .

ƒsx0 + ¢x, y0d - ƒsx0, y0d = fxsc, y0d ¢x

Fsx0 + ¢xd - Fsx0d = F¿scd ¢x

x0 + ¢x
x0

F¿sxd = fxsx, y0d .

Fsxd = ƒsx, y0dx0 + ¢x ,x0

¢z2 = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 + ¢x, y0d

¢z1 = ƒsx0 + ¢x, y0d - ƒsx0, y0d

¢z = ¢z1 + ¢z2¢z

Csx0 + ¢x, y0 + ¢ydBsx0 + ¢x, y0d
¢y¢x

Asx0, y0d

THEOREM 3—The Increment Theorem for Functions of Two Variables Suppose
that the first partial derivatives of are defined throughout an open region
R containing the point and that and are continuous at Then
the change

in the value of ƒ that results from moving from to another point
in R satisfies an equation of the form

in which each of as both ¢x, ¢y : 0.P1, P2 : 0

¢z = ƒxsx0, y0d ¢x + ƒysx0, y0d ¢y + P1¢x + P2¢y

sx0 + ¢x, y0 + ¢yd
sx0, y0d

¢z = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0, y0d

sx0, y0d .ƒyfxsx0, y0d
ƒsx, yd

T

C(x0 � �x, y0 � �y)

B(x0 � �x, y0)

A(x0, y0)

FIGURE A.33 The rectangular region T in
the proof of the Increment Theorem. The
figure is drawn for and positive, but
either increment might be zero or negative.

¢y¢x
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Now, as both and we know that and Therefore, since 
and are continuous at the quantities

(14)

both approach zero as both and 
Finally,

From Eq. (14)

where both and as both and which is what we set out to prove.

Analogous results hold for functions of any finite number of independent variables.
Suppose that the first partial derivatives of are defined throughout an open
region containing the point and that and are continuous at 
Then

(15) = ƒx¢x + ƒy¢y + ƒz¢z + P1¢x + P2¢y + P3¢z, 

 ¢w = ƒsx0 + ¢x, y0 + ¢y, z0 + ¢zd - ƒsx0, y0, z0d

sx0, y0, z0d .ƒzƒx, ƒy ,sx0, y0, z0d
w = ƒsx, y, zd

¢y : 0,¢xP2 : 0P1

 = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y, 

 = [ƒxsx0, y0d + P1]¢x + [ƒysx0, y0d + P2]¢y

 = ƒxsc, y0d¢x + ƒysx0 + ¢x, dd¢y

 ¢z = ¢z1 + ¢z2

¢y : 0.¢x

 P2 = ƒysx0 + ¢x, dd - ƒysx0, y0d
 P1 = ƒxsc, y0d - ƒxsx0, y0d, 

sx0, y0d ,fy
fxd : y0 .c : x0¢y : 0,¢x

From Eqs.
(12) and (13)

y

z

x

Q

P''

P'

Q'

S

B

0

y0

P0

y0 � �y

(x0 � �x, y0) C(x0 � �x, y0 � �y)

A(x0, y0)

z � f (x, y)

�z 1

�z 2

�z

FIGURE A.34 Part of the surface near The
points and have the same height above the xy-plane. The
change in z is The change

shown as is caused by changing x from to while
holding y equal to Then, with x held equal to 

is the change in z caused by changing from which is represented by
The total change in z is the sum of and ¢z2 .¢z1Q¿S.

y0 + ¢y ,y0

¢z2 = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 + ¢x, y0d

x0 + ¢x ,y0 .
x0 + ¢xx0P–Q = P¿Q¿ ,

¢z1 = ƒsx0 + ¢x, y0d - ƒsx0, y0d ,

¢z = P¿S .
z0 = ƒsx0, y0dP–P0, P¿,

P0sx0, y0, ƒsx0, y0dd .z = ƒsx, yd
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AP-40 Appendices

where as and 
The partial derivatives in Equation (15) are to be evaluated at the point

Equation (15) can be proved by treating as the sum of three increments,

(16)

(17)

(18)

and applying the Mean Value Theorem to each of these separately. Two coordinates remain
constant and only one varies in each of these partial increments In Equa-
tion (17), for example, only y varies, since x is held equal to and z is held equal to

Since is a continuous function of y with a derivative it is subject
to the Mean Value Theorem, and we have

for some between and y0 + ¢y .y0y1

¢w2 = ƒysx0 + ¢x, y1, z0d ¢y

ƒy ,ƒsx0 + ¢x, y, z0dz0 .
x0 + ¢x

¢w1, ¢w2, ¢w3 .

 ¢w3 = ƒsx0 + ¢x, y0 + ¢y, z0 + ¢zd - ƒsx0 + ¢x, y0 + ¢y, z0d ,

 ¢w2 = ƒsx0 + ¢x, y0 + ¢y, z0d - ƒsx0 + ¢x, y0, z0d
 ¢w1 = ƒsx0 + ¢x, y0, z0d - ƒsx0, y0, z0d

¢w
sx0, y0, z0d .

ƒx, ƒy, ƒz

¢z : 0.¢x, ¢y ,P1, P2, P3 : 0
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29. (a)

(b)

31. (a)

(b)

33. (a) (b) 35. Yes
37. Symmetric about the origin 39. Symmetric about the origin

41. Symmetric about the y-axis 43. Symmetric about the origin

45. No symmetry

47. Even 49. Even 51. Odd 53. Even
55. Neither 57. Neither 59. 61.
63.
65. (a) h (b) ƒ (c) g 67. (a)
71. C = 5s2 + 12 ) h

s -2, 0d ´ s4, q d
V = x(14 - 2x)(22 - 2x)

s = 2.4t = 180

0
–1

1

–2

–3

–4

–5

2 3

y = –x3/2

x

y

1

–1

1–1 2–2

1/8
–1/8

x3
––
8

y =

x

y

–2 2

2

4–4 0

4

y = √⏐x⏐

x

y

1

–1

1 2

–1–2

2

–2

y = – 1
x

x

y

–2 2

–2

2 y = –x3

x

y

-1 6 x … 00 … x 6 1

ƒsxd = •
1
2 x, -2 … x … 0

-2x + 2, 0 6 x … 1

-1, 1 6 x … 3

ƒsxd = •
-x, -1 … x 6 0

1, 0 6 x … 1

-
1
2 x +

3
2, 1 6 x 6 3

ƒsxd = d 2, 0 … x 6 1

0, 1 … x 6 2

2, 2 … x 6 3

0, 3 … x … 4

ƒsxd = e x, 0 … x … 1

-x + 2, 1 6 x … 2CHAPTER 1

Section 1.1, pp. 11–13
1. 3.
5.
7. (a) Not a function of x because some values of x have two 

values of y
(b) A function of x because for every x there is only one possible y

9. 11.

13.

15. 17.

19.

21.
23. (a) For each positive value of (b) For each value of 

x, there are two values of y. there are two values of y.

25. 27.

–2 1

4 y = x2+ 2x

x

y

y = 4 – x2

1

1

⎧ 
⎨ 
⎩

20

x

2 – x,   1 < x ≤ 2

0 ≤ x ≤ 1
f (x) =

x

y

y2 = x2

x

y

–1 1

1

–1

⏐y⏐ = x

x

y

0 2 4 6

2

–2

–4

4

x Z 0,
(- q , -5) ´ (-5, -3] ´ [3, 5) ´ (5, q )

–4 –3 –2 –1 1 2 3 4

–2

1

2

t

y

F(t) = t
| t |

s - q , 0d ´ s0, q d

–5 –4 –3 –2 –1 1 2 3 4 5

–2
–1

1
2
3
4

x

y

g(x) = √ |x|

–4 –2 2 4

–4

–2

2

4

6

x

y

f (x) = 5 – 2x

s - q , q ds - q , q d

L =

220x2
- 20x + 25
4

x =

d

23
, A = 2d2, V =

d3

323
A =

23
4

 x2, p = 3x

D: (- q , 3) ´ (3, q ), R: (- q , 0) ´ (0, q )
D: [-2, q d, R: [0, q dD: s - q , q d, R: [1, q d

A-1

ANSWERS TO ODD-NUMBERED EXERCISES

Dec. - q 6 x 6 q

and
0 6 x 6 q

Inc. - q 6 x 6 0

Inc. - q 6 x 6 q

inc. 0 … x 6 q

Dec. - q 6 x … 0;

Dec. 0 … x 6 qDec. 0 … x 6 q
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Section 1.2, pp. 19–22
1.

3.

5. (a) 2 (b) 22 (c) (d) (e) 5

(f) (g) (h)

7. 9.

11. (a) (b) (c) (d)

(e) (f)

13.

(a)
(b)

(c)

(d) x

(e) x

(f) x

15. (a) 1 (b) 2 (c) (d) 0 (e) (f) 0

17. (a) , 

(b)
(c)

19.

21. (a) (b)
23. (a) Position 4 (b) Position 1 (c) Position 2

(d) Position 3
25. 27.

29. 31.

7

–7

y = 2x – 7

y = 2x

x

y

7/2

1

1 4–0.81

2

0.9

y = √x + 0.81

y = √x

x

y

y = 2xy = 2x + 0.81

0

1

–1

1–1

–2

–2
x

y
y + 1 = (x + 1)3

y = x3

0

x2 + y2 = 49

(x + 2)2 + (y + 3)2 = 49

(–2, –3)
x

y

y + 1 = sx + 1d3sx + 2d2
+ s y + 3d2

= 49

y = - sx - 4d2y = - sx + 7d2

g (x) =

2x
x - 1

Rƒ � g = [0, 1) ´ (1, q ), Rg � ƒ = (0, q )
Dƒ � g = (- q ,-1] ´ (0, q ), Dg � ƒ = (-1, q )

g (ƒ(x)) =

1

2x + 1
ƒ(g(x)) = A

1
x + 1

-1-2

1
x

1
x

1 +

1
x

1
x - 1

x
x - 1

x
x - 1

2x2
- 52x - 5x2

3x + 63xx + 2
2x - 72xx - 7

( ƒ � g) (x)ƒ(x)g (x)

h ( j (ƒ(x)))g (h ( ƒ(x)))

j ( j (x))g (g (x))j (g (x))ƒ(g (x))

C
5x + 1
4x + 1

13 - 3x

x4
- 6x2

+ 6x + 10-2

x2
+ 10x + 22x2

+ 2

Rg>ƒ : y Ú 1/2Dg>ƒ : - q 6 x 6 q ,
Rƒ>g : 0 6 y … 2,Dƒ>g : - q 6 x 6 q ,Rg : y Ú 1,

Rƒ : y = 2,Dg : - q 6 x 6 q ,Dƒ : - q 6 x 6 q ,

Rƒ # g : y Ú 0Rƒ + g : y Ú 1,Dƒ + g = Dƒ # g = Dg,Rg : y Ú 0,
Rƒ : - q 6 y 6 q ,Dg : x Ú 1,Dƒ : - q 6 x 6 q ,

33. 35.

37. 39.

41. 43.

45. 47.

49. 51.

53.

55. (a) (b)

1

10 2

–1

x

y

y = f (x) – 1

1

10

2

3

2 3 4

y = f (x) + 2

x

y

D : [0, 2], R : [-1, 0]D : [0, 2], R : [2, 3]

–1 1 2–2

1

2

3

4

5

0
x

y

y =       + 11
x2

–1 1

1

2

3

4

2 30

1 –––––––
(x – 1)2y =

x

y

0

2

1

3

1

2 3–3 –2 –1

y =    + 2 x
1

x

y

0

1

–1

1 2 3

–2

1 
–––––
x – 2

4

2

x

y

y =

0 1–1 2 3

–2

–1

1

(1, –1)

y = √x – 1  – 1
3

x

y

0
–1

1
1

2–2 –1
x

y

y = 1 – x2/3
0 1

1

–1–2–3
x

y

y = (x + 1)2/3

0 1

1

2 5

2

3

y = 1 + √x – 1

(1, 1)

x

y

2

20 4 6–2

4

y = ⏐x – 2⏐

x

y

0

2

–4
x

y

y = √x + 4

0

1

–1

–1 2

2

1

y – 1 = 1
x – 1

y – 1 = 1
x – 1

y = 1
x

y = 1
x

x

y

y - 1 =

1
x - 1

A-2 Chapter 1: Answers to Odd-Numbered Exercises

7001_ThomasET_OddAnsCh1-7  11/3/09  2:56 PM  Page 2



(c) (d)

(e) (f) D : [1, 3], R : [0, 1]

(g) (h)

57. 59. 61.

63. 65.

67. 69.

71. 73.

–4 –3 –2 –1 1 2 3 4

–4

–3

–2

–1

1

2

3

4

x

y

y = –√x
3

–4 –3 –2 –1 2 3 4
x

y

–4

1

2

3

4

–1

y =      – 1 
2x
1

–3 –2 –1 1 2 3 4 5

1

2

3

4

5

x

y

y = (x – 1)3 + 2–2 –1 1 2 3 4

–4

–3

–2

–1

1

2

x

y

y = –√2x + 1

y = 1 - 27x3y = B4 -

x2

4

y = 24x + 1y =

1
2

+

1
2x2y = 3x2

- 3

1

10–1

2

y = – f (x + 1) + 1

x

y

1

0

2

–1–2
x

y

y = f (–x)

D : [-1, 1], R : [0, 1]D : [-2, 0], R : [0, 1]

1

10

2

2 3

y = f (x – 1)

x

y

1

0

2

y = f (x + 2)

–1–2
x

y

D : [-2, 0], R : [0, 1]

1

10 2

–1

x

y

y = – f (x)

1

10

2

2 3

y = 2 f (x)

x

y

D : [0, 2], R : [-1, 0]D : [0, 2], R : [0, 2] 75. 77.

79. 81.

83. Center: 

The major axis is the line segment between and (0, 3).

85. (a) Odd (b) Odd (c) Odd (d) Even (e) Even
(f) Even (g) Even (h) Even (i) Odd

Section 1.3, pp. 28–30

1. (a) (b) 3. 8.4 in.

5. 0

0 0 1

1 0

0 0 UND

UND UND 0

1 UND

UND UND 1

7.

9.

11. sin x = -

1

25
, cos x = -

2

25

sin x = -

28
3

, tan x = -28

cos x = -4>5, tan x = -3>4
22-

2

23
csc u

-22-2-1sec u

-1
1

23
cot u

-123tan u

-

1

22
-

1
2

-1cos u

1

22
-

23
2

sin u

3p>4p>2-2p>3-pu

55p
9

 m8p m

–10 –8 –6 –4 –2 2
–2

6

8

10

x

y

 +               = 1
(x + 4)2

16
(y – 3)2

9

s -8, 3d

s -4, 3d
sx + 4d2

16
+

s  y - 3d2

9
= 1

–2 –1 2 3

–4

1

x

y

= 1
(x – 1)2

2

(y + 2)2

3
+

–2 –1 1 2

1

2

3

4

x

y

 +               = 1
(y – 2)2

3
x2

1

–6 –4 –2 2 4 6

–6

–4

–2

2

4

6

x

y

+         = 1 
25
x2

9
y2

–2 –1 1 2

–1

2

3

x

y

y = |x2 – 1|

Chapter 1: Answers to Odd-Numbered Exercises A-3
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13. Period 15. Period 2

17. Period 6 19. Period 

21. Period 23. Period symmetric about
the origin

25. Period 4, symmetric about 29.
the y-axis

39. 41. 43. 45.

47. 49. 51.

53. 59. 63. a = 1.46427 L 2.65
p

6
, 
p

2
, 

5p
6

, 
3p
2

p

3
, 

2p
3

, 
4p
3

, 
5p
3

2 - 23
4

2 + 22
4

22 + 26
4

26 + 22
4

-cos x-cos x

1

–1

y = ⎣sin x⎦ y = sin x

π
x

y

π–π–2 π2
1

–1

2–2–3 –1 31

π t—
2

s = sec

t

s

R : y = -1, 0, 1
D : s - q , q d,

1

–1

0

2

–2

s = cot 2t

t

s

π
2

π
2

ππ– –

1

0

2

π
4

π
4

4
π3

4
π7

y = sin  x –       + 1 ⎞⎠⎞⎠

π
4

–
x

y

p>2,2p

1

–1

0 π
2

π
2

π2π x

y

y = cos  x – ⎞⎠⎞⎠

1

–1

3 60

y = –sin π
3
x

x

y

2p

1

1

–1

20

y = cos πx

x

y

1

–1

y = sin 2x

π
2

π x

y

p 65. 67.

Section 1.4, p. 34
1. d 3. d
5. by 7. by 

9. by 11. by 

13. by 15. by [0, 10]

17. by 19. by [0, 3]

–4 –3 –2 –1 1 2 3 4

0.5

1.0

2.0

2.5

3.0

x

y

f (x) = x2 + 2
x2 + 1

y = x + 3
x + 2

–10 –8 –6 –4 2 4 6 8 10

–8
–6
–4
–2

4
6
8

x

y

[-4, 4][-10, 10][-10, 10]

–5 –4 –3 –2 –1 1 2 3 4 5

2
3
4
5
6
7
8
9

10

x

y

y = |x2 – 1|

–4 –2 2 4 6 8 10

–4

–2

2

8

10

x

y

y = 5x2/5 – 2x

[-3, 3][-5, 10][-2, 8]

–2 –1 1 2 4 5 6
–1

1

2

3

4

x

y

y = 2x – 3x2/3

–5 –4 –2 –1 1 2 3 4 5

–5
–4

1
2
3
4
5

x

y

f (x) = x√9 – x2

[-5, 4][-2, 6][-6, 6][-3, 3]

–2 1 2 3 4 5 6

–250

–200

–150

–100

–50

50

x

y
f (x) = x5 – 5x4 + 10

–2 –1 1 3 4

–10

10

20

30

40

x

y
f (x) = x4 – 4x3 + 15

[-250, 50][-3, 6][-15, 40][-3, 5]

–1 31 5

π
3

π
1

π
1

t

y

–

y = –    sin         +π
2

π
1⎞⎠ ⎞⎠

π
2
t

1

–1

–3

y = 2sin (x + π) – 1

x

y

π
2 2

π3
2
π5π

2
–

 C = 0, D =

1
pC = -p, D = -1

A = -

2
p, B = 4,A = 2, B = 2p,

A-4 Chapter 1: Answers to Odd-Numbered Exercises
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21. by 23. by 

25. by 27. by

29. by 31.

33. 35.

–6 –2 2 4 6

–2.0

0.5

1.0

1.5

2.0

x

y

f (x) = sin 2x + cos 3x

–2 –1 1 2 3

–4

–3

–2

–1

1

2

3

4

x

y f (x) = –tan 2x

–4 –2 –1 2

1

2

x

y

(x + 1)2 + (y – 2)2 = 9

–0.2 –0.1 0.1 0.2

–0.2

0.1

0.2

x

y y = x +      sin 30x1
10

[-0.25, 0.25]

c- p
15

, 
p

15
d

–300 300

–1.0

–0.5

1.0

x

y

y = cos (  )x
50

–0.02 0.02

0.5

1.0

x

y

y = sin 250x

[-1.25, 1.25][-1.25, 1.25]

[-100p, 100p]c- p
125

, 
p

125
d

–5 5 10

–6
–4
–2

4
6

x

y

f (x) = 6x2 – 15x + 6
4x2 – 10x

–10–8 –6 –4 2 4 6 8 10

–8
–6
–4
–2

2
4
6
8

x

y

f (x) = x – 1
x2 – x – 6

[-6, 6][-6, 10][-6, 6][-10, 10] 37. 39.

Section 1.5, pp. 39–40
1. 3.

5. 7.

9.

11. 13. 15. 5 17. 19. 4
21. ; R:
23. ; R: 
25. 27. 29. After 19 years

31. (a) (b) About 38 days later

33. years, or when interest is paid
35. 248

L 2.815 * 1014
L 11.433

A(t) = 6.6 a1
2
b t>14

x L -0.6309x L 2.3219
1 6 y 6 qD: - q 6 t 6 q

0 6 y 6 1>2D: - q 6 x 6 q

142341>2
= 2161>4

= 2

–4 –3 –2 –1 1 2 3 4

–5

–4

–3

–2

–1

2

3

x

y

y � 1 � e –x y � 1 � ex

–4 –3 –2 –1 1 2 3 4

–2

1

2

3

4

5

x

y

y � 2–x � 1 y � 2x � 1

–4 –3 –2 –1 10 2 3 4

1

2

3

4

5

x

y

y � exy �
ex
1

–4 –3 –2 –1 1 2 3 4

–5
–4
–3
–2
–1

1
2
3
4
5

y � 2–t

y � –2t

t

y

–4 –3 –2 –1 10 2 3 4

1

2

3

4

5

6

x

y

y � 3–x

y � 4x

y � 2x

y � (1�5)x

1 2 3 4–4 –3 –2 –1
–1

1

2

4

5

6

7

–5 5

–2

3

8

x

y

y = x ⎣x⎦

2 3 4 5 6

–4

–3

–2

–1

1

2

3

4

x

y

y =    
x – 3

1

Chapter 1: Answers to Odd-Numbered Exercises A-5

7001_ThomasET_OddAnsCh1-7  11/3/09  2:56 PM  Page 5



Section 1.6, pp. 50–52
1. One-to-one 3. Not one-to-one 5. One-to-one
7. Not one-to-one 9. One-to-one

11. D: (0, 1] R: 13. D: R: 

15. D: R: 17. (a) Symmetric about the 
line 

19. 21.

23.

25. D: R: 

27. D: 
R: 

29. D: R: 

31.

R: 

33.
R: 

35. (a)

(b) The graph of is the line through the origin with slope 1 m.

37. (a)

(b) The graph of is a line parallel to the
graph of ƒ. The graphs of ƒ and lie on opposite sides of
the line and are equidistant from that line.

(c) Their graphs will be parallel to one another and lie on oppo-
site sides of the line equidistant from that line.

39. (a) (b) (c)

(d) (e) (f)
1
2

 s3 ln 3 - ln 2dln 3 +

1
2

 ln 2
2
3

 ln 3

- ln 22 sln 2 - ln 3dln 3 - 2 ln 2

y = x

y = x
ƒ -1
ƒ -1ƒ -1sxd = x - b .

x

y

1–1–2 2

–2

–1

1

2

y = x + 1

y = x – 1

y = x

ƒ -1sxd = x - 1

>ƒ -1

ƒ -1sxd =

1
m x

- q 6 y … 1
ƒ 

-1(x) = 1 - 2x + 1; D: -1 … x 6 q ;

- q 6 y 6 q , y Z 2

ƒ 
-1(x) =

2x + 3
x - 1

; D: - q 6 x 6 q , x Z 1;

y 7 0x 7 0;ƒ -1sxd =

1

2x
;

y 6 q- q 6

- q 6 x 6 q ;ƒ -1sxd = 52x - 1;

- q 6 y 6 q- q 6 x 6 q ;ƒ -1sxd = 25 x ;

ƒ -1sxd = 2x - 1

ƒ -1sxd = 23 x + 1ƒ -1sxd = 2x - 1

x

y

1

0 1

y = √1 – x2

0 ≤ x ≤ 1

3 6

3

6

x

y

y = f (x)

y = f –1(x)

y = x

y = x
[0, 3][0, 6]

y = f (x)

y = x
y = f –1(x)

�
2

�
2

–

�
2

–

�
2

–1

1

1

1
x

y

y = f (x)

y = x
y = f –1(x)

1

1
x

y

[-p>2, p>2][-1, 1][0, q d

A-6 Chapter 1: Answers to Odd-Numbered Exercises

41. (a) ln 5 (b) (c)

43. (a) 7.2 (b) (c)

45. (a) 1 (b) 1 (c)

47. 49. 51.

53. (a) (b) (c)

55. (a) (b) (c)

57.

59. (a) 7 (b) (c) 75 (d) 2 (e) 0.5 (f)

61. (a) (b) (c) 63. (a) (b) 3 (c) 2

65. (a) (b) (c)

67. (a) (b)

69. Yes, g(x) is also one-to-one.

71. Yes, is also one-to-one.

73. (a) (b)

75. (a) (b)

(c) (d)

(e) (f)

79. (a) (b) 36 hours

81. years

Practice Exercises, pp. 53–55

1. 3.

5. Origin 7. Neither 9. Even 11. Even
13. Odd 15. Neither
17. (a) Even (b) Odd (c) Odd (d) Even (e) Even
19. (a) Domain: all reals (b) Range: 
21. (a) Domain: (b) Range: [0, 4]
23. (a) Domain: all reals (b) Range: 
25. (a) Domain: all reals (b) Range: 
27. (a) Domain: (b) Range: all reals
29. (a) Increasing (b) Neither (c) Decreasing

(d) Increasing
31. (a) Domain: (b) Range: [0, 2]

33.

35. (a) 1 (b) (c)

(d)

37. (a)
(b) Domain domain 
(c) Range range sg � ƒd: [0, 2]sƒ � gd: s - q , 2] ,

sg � ƒd: [-2, 2]sƒ � gd: [-2, q d ,
sƒ � gdsxd = -x, x Ú -2, sg � ƒdsxd = 24 - x2

1

21>1x + 2 + 2

x, x Z 0
1

22.5
= A

2
5

ƒsxd = e1 - x, 0 … x 6 1

2 - x, 1 … x … 2

[-4, 4]

s3, q d
[-3, 1]
s -3, q d

[-4, 4]
[-2, q d

x = tan u, y = tan2 uA = pr2, C = 2pr, A =

C2

4p

L 44.081

Amount = 8 a1
2
b t>12

y = exy = ln (-x)

y = ln (x - 2) - 4y = 3 + ln (x + 1)

y = ln (x - 1)y = ln x - 3

ƒ -1(x) = log1.1 a x
50 - x

bƒ -1(x) = log2 a x
100 - x

b
ƒ � g

p>2p

-p>3p>4-p>6
ln 3
ln 2

sin xx22x

-122

4 sln xd2

t =

ln .4
ln .2

t = -

ln 2
k

t = -10 ln 3

k = 1000 ln ak = s1>10d ln 2k = ln 2

y = 2xex
+ 1e5t

+ 40e2t + 4

-x2
- y2

x
y

1
x2

ln st2dln sx - 3d
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39.

41. Replace the portion for with mirror image of the portion
for to make the new graph symmetric with respect to the
y-axis.

43. Reflects the portion for across the x-axis
45. Reflects the portion for across the x-axis
47. Adds the mirror image of the portion for to make the new

graph symmetric with respect to the y-axis

49. (a) (b)

(c) (d) (e)

(f)
51. 53.

55. Period 57. Period 2p

–1

1

2

–1 2 3 41–2–3–4
x

y

1

2x2
y = + 1

–2

–1

1

–1 21–2
x

y

y = –√ 2
x1 +

y = g (5x)

y = 5g (x)y = -g (x)y = g (-x)

y = g Qx +

2
3R - 2y = g (x - 3) +

1
2

x 7 0
y 6 0
y 6 0

y

x

 y = x 

 y = x 

 y = ⎥ x⎥ 

x 7 0
x 6 0

–1

–3 2–4
x

y

2

–1

1–2 –1 2–4
x

y 63. (a) (b)

65. 67. (b)
69. (a) Domain: (b) Domain: 
71. (a) Domain: (b) Domain: 
73. and domain: 

and domain: 
and domain: 

and domain: 

79. (a) (b)

81. (a) No (b) Yes

83. (a)

(b)

Additional and Advanced Exercises, pp. 55–57
1. Yes. For instance: and or 

and or and 
3. If ƒ(x) is odd, then is not odd. Nor is g(x) even,

unless for all x. If ƒ is even, then is
also even.

5.

19. (a) Domain: all reals. Range: If , then ; if ,
then . (b) Domain: range: all reals

21. (a) (b) After 4.5 years

23. After years. (If the bank only pays interest

at the end of the year, it will take 16 years.)
25. 27.

CHAPTER 2

Section 2.1, pp. 63–65
1. (a) 19 (b) 1

3. (a) (b) 5. 1

7. (a) 4 (b)
9. (a) 2 (b)

11. (a) 12 (b)
13. (a) (b) y = -9x - 2-9

y = 12x - 16
y = 2x - 7
y = 4x - 7

-

323
p-

4
p

1>2x = 2, x = 1

ln (10>3)

ln 1.08
L 15.6439

y = 100,000 - 10000x, 0 … x … 10
(c, q ),(- q , d )

a 6 0(d, q )a 7 0

–1

1

– 1–
2

⏐x⏐ + ⏐y⏐ = 1 + x

x

y

gsxd = ƒsxd - 2ƒsxd = 0
gsxd = ƒsxd - 2

gsxd = ln x .ƒsxd = exgsxd = x>2,
ƒsxd = 2xgsxd = 1>x ,ƒsxd = 1>x

x

y

1–1–2 2

1

–1

–2

2 y = x3

y = x1/3

ƒ(g(x)) = A23 x B3 = x, g(ƒ(x)) = 23 x3
= x

D: [-1, 1] R: [-1, 1]D: (- q , q ) R: c-p
2

, 
p

2
d

- q 6 x 6 q .(g � g)(x) = -x4
+ 8x2

- 12
x 7 1;(ƒ � ƒ)(x) = ln (ln x)

x 7 0;(g � ƒ)(x) = 4 - (ln x)2
-2 6 x 6 2;(ƒ � g)(x) = ln (4 - x2)

0 … x … 4-3 … x … 3
x 7 0- q 6 x 6 q

4pL  16.98 m

c =

a
sin A

a =

b
tan B

Chapter 2: Answers to Odd-Numbered Exercises A-7

59.

61. (a) (b) a = 223>3  c = 423>3a = 1  b = 23

–1

1

2

–2

x

y

π
3

y = 2cos  x – ⎞⎠⎞⎠

π
3 6

π5
3
π4

6
π11π

6
–

1

1

–1

2

y = sin   xπ

x

y

0

–1

1
y = cos 2x

π
2 2

π3π π2
x

y
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15. Your estimates may not completely agree with these.
(a)

The appropriate units are m sec.

(b) or 180 km h

17. (a)

(b)
(c)

19. (a) 0.414213, 0.449489, (b)

(c) 0.5 (d) 0.5

21. (a) 15 mph, 3.3 mph, 10 mph (b) 10 mph, 0 mph, 4 mph
(c) 20 mph when 

Section 2.2, pp. 73–76
1. (a) Does not exist. As x approaches 1 from the right, g(x)

approaches 0. As x approaches 1 from the left, g(x)
approaches 1. There is no single number L that all the values
g(x) get arbitrarily close to as 

(b) 1 (c) 0 (d) 1 2
3. (a) True (b) True (c) False (d) False

(e) False (f) True (g) True
5. As x approaches 0 from the left, approaches As x ap-

proaches 0 from the right, approaches 1. There is no single
number L that the function values all get arbitrarily close to as

7. Nothing can be said. 9. No; no; no 11. 13.
15. 5 8 17. 27 19. 16 21. 3 2 23. 1 10 25.
27. 3 2 29. 31. 33. 4 3 35. 1 6 37. 4
39. 1 2 41. 3 2 43. 45. 1 47. 49.
51. (a) Quotient Rule (b) Difference and Power Rules

(c) Sum and Constant Multiple Rules
53. (a) (b) (c) (d) 5 7
55. (a) 4 (b) (c) (d)

57. 2 59. 3 61. 63.
65. (a) The limit is 1.
67. (a)

(c) lim
 x: -3

 ƒsxd = -6

ƒsxd = sx2
- 9d>sx + 3d

251>s227d
-7>3-12-21
>-1-20-10

24 - p1>3-1>>
>>-1-1>2> -7>>> -8-9

x : 0.

x> ƒ x ƒ

-1.x> ƒ x ƒ

>
x : 1.

t = 3.5 hr

gsxd = 1xs21 + h - 1d>h
L  $42,000/year
L  $56,000/year

Pr
of

it 
(1

00
0s

)

01

100

0
02 03 042000

200

Year

x

y

>L  50 m>sec

>
69. (a)

(c)

71. (a)

(c)

73. (a)

75. (a)

77. the limit is 0 at , and 1 at .
79. 7 81. (a) 5 (b) 5 83. (a) 0 (b) 0

Section 2.3, pp. 82–85
1.

3.

5.

7. 9. 11. 13.
15. 17.
19. 21.

23.

25.

27.

29. 31. L = -3,  d = 0.01a1
2

-

c
m, 

c
m +

1
2
b ,  d =

c
m

a2 -

0.03
m , 2 +

0.03
m b , d =

0.03
m

s215, 217d, d = 217 - 4 L 0.12

s -24.5, -23.5d, d = 24.5 - 2 L 0.12

s10>3, 5d, d = 2>3s3, 15d, d = 5
s -0.19, 0.21d, d = 0.19s3.99, 4.01d, d = 0.01

d = 0.36d = 25 - 2d = 7>16d = 0.1

4/9 4/7
((

1/2
xd = 1>18

–7/2 –1/2
( (

–3
xd = 1>2

1 7
( (

5
xd = 2

c = 1, -1c = 0c = 0, 1, -1;

lim
 x:1

 ƒsxd L 0.36788

ƒsxd = x1>s1 - xd

lim
 u:0

 gsud = 1

gsud = ssin ud>u
lim

 x: -1
 ƒsxd = 2

ƒsxd = sx2
- 1d>s ƒ x ƒ -  1d

lim
 x: -6

 Gsxd = -1>8 = -0.125

Gsxd = sx + 6d>sx2
+ 4x - 12d

A-8 Chapter 2: Answers to Odd-Numbered Exercises

1.1 1.01 1.001 1.0001

1.04880 1.004987 1.0004998 1.0000499

0.4880 0.4987 0.4998 0.499s21 + h - 1d>h
21 + h

1 + h

1.00001 1.000001

1.000005 1.0000005

0.5 0.5

43 46 49 50

PQ4PQ3PQ2PQ1

x
ƒ(x) -6.000001-6.00001-6.0001-6.001-6.01-6.1

-3.000001-3.00001-3.0001-3.001-3.01-3.1

x
ƒ(x) -5.999999-5.99999-5.9999-5.999-5.99-5.9

-2.999999-2.99999-2.9999-2.999-2.99-2.9

x
G(x) - .1250015- .1250156- .1251564- .126582

-5.9999-5.999-5.99-5.9

- .1250000- .1250001
-5.999999-5.99999

x
G(x) - .124998- .124984- .124843- .123456

-6.0001-6.001-6.01-6.1

- .124999- .124999
-6.000001-6.00001

x
ƒ(x) 2.1 2.01 2.001 2.0001 2.00001 2.000001

-1.000001-1.00001-1.0001-1.001-1.01-1.1

x
ƒ(x) 1.9 1.99 1.999 1.9999 1.99999 1.999999

- .999999- .99999- .9999- .999- .99- .9

.1 .01 .001 .0001 .00001 .000001

.998334 .999983 .999999 .999999 .999999 .999999gsud
u

.998334 .999983 .999999 .999999 .999999 .999999gsud
- .000001- .00001- .0001- .001- .01- .1u

x .9 .99 .999 .9999 .99999 .999999
ƒ(x) .348678 .366032 .367695 .367861 .367877 .367879

x 1.1 1.01 1.001 1.0001 1.00001 1.000001
ƒ(x) .385543 .369711 .368063 .367897 .367881 .367878
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33. 35.
55. [3.384, 3.387]. To be safe, the left endpoint was rounded up and

the right endpoint rounded down.
59. The limit does not exist as x approaches 3.

Section 2.4, pp. 90–92
1. (a) True (b) True (c) False (d) True (e) True

(f) True (g) False (h) False (i) False (j) False
(k) True (l) False

3. (a) 2, 1 (b) No, 

(c) 3, 3 (d) Yes, 3
5. (a) No (b) Yes, 0 (c) No
7. (a) (b) 1, 1 (c) Yes, 1

9. (a) and 
(b) (c) (d)

11. 13. 1 15. 17. (a) 1 (b)
19. (a) 1 (b) 2 3 21. 1 23. 3 4 25. 2 27. 1 2
29. 2 31. 0 33. 1 35. 1 2 37. 0 39. 3 8

41. 3 47.

51. (a) 400 (b) 399 (c) The limit does not exist.

Section 2.5, pp. 101–103
1. No; discontinuous at not defined at 
3. Continuous 5. (a) Yes (b) Yes (c) Yes (d) Yes
7. (a) No (b) No 9. 0 11. 1, nonremovable; 0, removable

13. All x except 15. All x except 
17. All x 19. All x except 
21. All x except any integer
23. All x except an odd integer
25. All 27. All x 29. All x
31. 0; continuous at 33. 1; continuous at 
35. ; continuous at 37. 1; continuous at 
39. 41. 43. 45.
47. 71.
73. 75. 77.

Section 2.6, pp. 114–116
1. (a) 0 (b) (c) 2 (d) Does not exist (e)

(f) (g) Does not exist (h) (i) 01q

-1-2

x L 0.7391x L 3.5156x L 1.7549
x L 1.8794, -1.5321, -0.3473a = 5>2, b = -1>2 a = -2, 3a = 4>3ƒs1d = 3>2gs3d = 6

x = 0t = 022>2
y = 1x = p

x Ú -3>2np>2, n
np>2, n

x = 0
x = 3, x = 1x = 2

x = 2x = 2;

d = P
2, lim

 x:5+

2x - 5 = 0

>>
>>> -12>2523

1

1

2

2

⎧ 
⎪ 
⎨ 
⎪ 
⎩

1,

2,

0
x

y

y =
√1 – x2  , 0 ≤ x < 1

1 ≤ x < 2

x = 2

x = 0x = 2s0, 1d ´ s1, 2d
y = 2D : 0 … x … 2, R : 0 6 y … 1

1

–1

1–1

⎧ 
⎨ 
⎩0,

x

y

y =
x3,   x ≠ 1

x = 1

lim
 x:2+

 ƒsxd Z lim
 x:2-

 ƒsxd

L = 4,  d = 0.75L = 4,  d = 0.05 3. (a) (b) 5. (a) 1 2 (b) 1 2 7. (a)
(b) 9. 0 11. 13. (a) 2 5 (b) 2 5

15. (a) 0 (b) 0 17. (a) 7 (b) 7 19. (a) 0 (b) 0
21. (a) (b) 23. 2 25. 27. 0 29. 1
31. 33. 1 35. 37. 39. 41.
43. 45. (a) (b) 47. 49. 51.
53. (a) (b) (c) (d)
55. (a) (b) (c) 0 (d) 3 2
57. (a) (b) 1 4 (c) 1 4 (d) 1 4 (e) It will be 
59. (a) (b)
61. (a) (b) (c) (d)
63. 65.

67. 69. Here is one possibility.

71. Here is one possibility. 73. Here is one possibility.

75. Here is one possibility. 79. At most one

81. 0 83. 85.
93. (a) For every positive real number B there exists a

corresponding number such that for all x

x0 - d 6 x 6 x0  Q   ƒsxd 7 B .

d 7 0

5>2-3>4

0

1

–1

h(x) =      ,  x ≠ 0x
|x |

x

y

1

3

2

1

0 2 3

4

5

4 5
x

y

f (x) = 1
(x – 2)21–1

0

y = f (x)

x

y

1–1 2 3 4–2–3

(1, 2)

(0, 0)

–4

(–1, –2)

3
2
1

–2
–3

x

y

0–3

1.5

–2

y = x + 3
x + 2

y = 1
x + 2

x

y

x = –2

y = 1

5

–5

1–1 2–2

10

–10

–3–4 0

x = –2

y = 1
2x + 4

x

y

5

–5

1–1 2 3 4–2

10

–10

x = 1

y = 1
x – 1

x

y

qqqq

q- q

- q .>>>- q

>q- q

q- q- qq

- qqq- qqq

- q- qq1>2q

q-2>3-2>3
>>-1-5>3 -5>3>>-3-3

Chapter 2: Answers to Odd-Numbered Exercises A-9
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(b) For every negative real number there exists a
corresponding number such that for all x

(c) For every negative real number there exists a
corresponding number such that for all x

99. 101.

103. 105.

107.

109. At at 

Practice Exercises, pp. 117–119
1. At so 

continuous at 

At so 

However, so ƒ is discontinuous at
The discontinuity can be removed by

redefining ƒ(0) to be 0.
At and so

does not exist. The function is discontinuous at
and the discontinuity is not removable.

y

x

1

–1

10

y = f(x)

–1

x = 1,

lim
 x:1

 ƒsxdlim
 x:1+

 ƒsxd = 1,lim
 x:1-

 ƒsxd = -1x = 1:

x = 0.
ƒs0d Z 0,

lim
 x:0

 ƒsxd = 0.lim
 x:0-

 ƒsxd = lim
 x:0+

 ƒsxd = 0,x = 0:

x = -1lim
 x: -1

 ƒsxd = 1 = ƒs -1d ;

lim
 x: -1-

 ƒsxd = lim
 x: -1+

 ƒsxd = 1,x = -1:

- q : 0q : q ,

1

–1
1–1

2

3

–2

–3

2 3–2–3
x

y

y = x2/3 + 1

x1/3

1

–1

1–1

2

–2

2–2

x = –2

x = 2

x

y

√4 – x2
y = x

1

–1

1–1

y = x

y = x2 – 1
x

y = – 1
x

x

y

–3 1 3 4 5

–2

1

0

2

4

5

6

x

y

y = x + 1

y = = x + 1 –x2 – 4 3
x – 1 x – 1

–3 10 2 3 4 5

–2

2

3

4

5

6

x

y

(2, 4)

y = = x + 1 +x2

x – 1
1

x – 1
y = x + 1

x0 - d 6 x 6 x0  Q   ƒsxd 6 -B .

d 7 0
-B

x0 6 x 6 x0 + d  Q   ƒsxd 6 -B .

d 7 0
-B 3. (a) (b) 49 (c) 0 (d) 1 (e) 1 (f) 7

(g) (h) 5. 4

7. (a) (b) (c) and 

(d)

9. (a) Does not exist (b) 0

11. 13. 2x 15. 17. 19. 21. 1

23. 4 25. 27. 0 29. 2 31. 0

33. No in both cases, because does not exist, and

does not exist.

35. Yes, ƒ does have a continuous extension, to with 

37. No 41. 43. 0 45. 47. 0 49. 1 51. 1
53. 55. (a) (b) (c)

Additional and Advanced Exercises, pp. 119–121
3. 0; the left-hand limit was needed because the function is

undefined for 5. within 5°F
13. (a) B (b) A (c) A (d) A
21. (a)

(b) does not exist, ç

25. 0 27. 1 29. 4 31. 33.

CHAPTER 3

Section 3.1, pp. 125–126
1. 3.
5. 7.

9.

11.
13. m = -2, y - 3 = -2sx - 3d

m = 4, y - 5 = 4sx - 2d

–8

–2

y = x3
y = 12x + 16

(–2, –8)

x

y

y = 12x + 16

1

1 2 3 4

2

3

4

0

y = 2√x

(1, 2)

y = x + 1

x

y

1

1–1 2–2–3

y = 4 – x2

2

3

4

5

(–1, 3)

0

y = 2x + 5

x

y

y = x + 1y = 2x + 5
P1: m1 = 5>2, P2: m2 = -1>2P1: m1 = 1, P2: m2 = 5

y = x,  y = -xy = 2x

lim
 a: -1+

 r-sad = 1.lim
 a:0

 r-sad

lim
 a:0

 r+sad = 0.5, lim
 a: -1+

r+sad = 1

65 6 t 6 75;y 7 c .

x = -4x = 1x = 3-p>2
- q2>5

ƒ(1) = 4>3.
a = 1

lim
 x: -1

 ƒsxd
lim

 x:1
 ƒsxd

- q

2>p2>3-

1
4

1
2

s0, q d
s0, q ds - q , 0d[0, q ds - q , + q d

-

1
7

-7

-21

A-10 Chapter 3: Answers to Odd-Numbered Exercises
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15.

17.

19. 21. 23.
25. 27. 19.6 m sec
29. 33. Yes 35. Yes 37. (a) Nowhere
39. (a) At 41. (a) Nowhere 43. (a) At 
45. (a) At 

Section 3.2, pp. 131–135

1. 3.

5. 7. 9.

11. 13. 15.

17. 19. 6

21. 23. 25. 27. b 29. d

31. (a) 33.
(b)

35. (a) i) ii)
iii) iv)

(b) 7.3 at 12 P.M., at 6 P.M.

(c)

37. Since 

while 

does not exist and is not dif-

ferentiable at 

39. Since while 

does not exist and is not differentiable at 
41. Since is not continuous at is not differentiable 

at x = 0.
x = 0, ƒ(x)ƒ(x)

x = 1.ƒ(x)

lim
h:0-

 
f (1 + h) - f (1)

h
=

1
2

, ƒ¿(1) = lim
h:0

 

f (1 + h) - f (1)

h

lim
h:0+

 
f (1 + h) - f (1)

h
= 2

x = 0.

ƒ(x)ƒ¿(0) = lim
h:0

 
f (0 + h) - f (0)

h

lim
h:0-

 
f (0 + h) - f (0)

h
= 0,

lim
h:0+

 
f (0 + h) - f (0)

h
= 1

420

–9

6 12108

y =
dT––
 dt

–3

–6

–12

9

6

3

t (hrs)

Slope

(ºF/hr)

-11 °F>hr°F>hr
-3.7 °F>hr0 °F>hr
2.9 °F>hr1.5 °F>hr

2

62

3

84

4

1

0
x

y'

f ' on (–4, 6)

–2–4–6–8
–0.7 84

–3.3

85 86 87 88

3.2

0.6
1

x

y'x = 0, 1, 4

-1
sx - 1d2

-1
sx + 2d21>8

-4

sx - 2d2x - 2
, y - 4 = -

1
2

 sx - 6d

3t2
- 2t, 51 -

9
x2, 0

-1

2sq + 1d2q + 1

1
s2t + 1d26x23

223u
, 

3

223
, 

1
2

, 
3

222

-

2
t3, 2, -

1
4

, -
2

323
-2x, 6, 0, -2

x = 0
x = 1x = 0

6p
>y = - sx + 1d, y = - sx - 3d

s -2,-5dm = -1>4m = -10

m =

1
4

, y - 2 =

1
4

 sx - 4d

m = 12, y - 8 = 12st - 2d 43. (a) (b) None (c) None
45. (a) (b) None (c)
47. (a) (b) (c) None

Section 3.3, pp. 143–145

1.

3.

5.

7.

9.

11.

13.

15. 17.

19. 21.

23. 25.

27. 29.

31. 33.

35. 37. 39.

41.

43.

for 

45.

47.

49.

51.

53. (a) 13 (b) (c) (d) 20

55. (a) (b) at (0, 1)

(c)

57. 59.

61. (2, 4) 63. (0, 0), (4, 2) 65. (a) (c) (2, 6)

67. 50 69.

71. P¿sxd = nan xn - 1
+ sn - 1dan - 1x

n - 2
+

Á
+ 2a2 x + a1

a = -3

y = 2x + 2

a = 1, b = 1, c = 0y = 4x, y = 2

y = 8x - 15, y = 8x + 17

m = -4y = -

x
8

+

5
4

7>25-7

dw
dz

= 6ze2z(1 + z), 
d2w

dz2 = 6e2z(1 + 4z + 2z2)

dw
dz

= -z-2
- 1, 

d2w

dz2 = 2z-3

dr
du

= 3u-4, 
d2r

du2 = -12u-5

y¿ = 2x - 7x-2, y– = 2 + 14x-3

n Ú 4y (n)
= 0

y¿ = 3x2
+ 4x - 8, y– = 6x + 4, y‡ = 6,

0 for n Ú 5y snd
=

y¿ = 2x3
- 3x - 1, y– = 6x2

- 3, y‡ = 12x, y s4d
= 12,

dr
ds

=

ses
- es

s2y¿ =

2

7x5>7 - exe - 1ds
dt

= 3t1>2
y¿ =

9
4

 x5>4
- 2e-2xy¿ = 3x2ex

+ x3ex

y¿ = -2e-x
+ 3e3xy¿ =

-4x3
- 3x2

+ 1
sx2

- 1d2sx2
+ x + 1d2

y¿ = -

1
x2 + 2x-3>2ƒ¿ssd =

1

2ss2s + 1d2

dy
dt

=

t2
- 2t - 1

s1 + t2d2g¿sxd =

x2
+ x + 4

sx + 0.5d2

y¿ =

-19
s3x - 2d2y¿ = 3x2

+ 10x + 2 -

1
x2

y¿ = -5x4
+ 12x2

- 2x - 3

dr
ds

=

-2
3s3 +

5
2s2, 

d2r

ds2 =

2
s4 -

5
s3

dy

dx
= 12x - 10 + 10x-3, 

d2y

dx2 = 12 - 30x-4

dw
dz

= -

6
z3 +

1
z2, 

d2w

dz2 =

18
z4 -

2
z3

dy

dx
= 4x2

- 1 + 2ex, 
d2y

dx2 = 8x + 2ex

ds
dt

= 15t2
- 15t4, 

d2s

dt2 = 30t - 60t3

dy

dx
= -2x, 

d2y

dx2 = -2

x = 0-1 … x 6 0, 0 6 x … 2
x = 0-3 … x 6 0, 0 6 x … 3

-3 … x … 2
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73. The Product Rule is then the Constant Multiple Rule, so the 
latter is a special case of the Product Rule.

75. (a)

(b)

(c)

77.

Section 3.4, pp. 152–155
1. (a) m, m sec

(b) 3 m sec, 1 m sec; 

(c) Changes direction at sec
3. (a)

(b) 3 m sec, 12 m sec; 
(c) No change in direction

5. (a)
(b) 45 m sec, ( ) m sec; 
(c) No change in direction

7. (a)

(b) (c) 6 m

9. 11.

13. (a)
(b) (c)

15. (a) (b)
(c) (d)

17. (a) 190 ft sec (b) 2 sec (c) 8 sec, 0 ft sec
(d) 10.8 sec, 90 ft sec (e) 2.8 sec
(f) Greatest acceleration happens 2 sec after launch
(g) Constant acceleration between 2 and 10.8 sec,

19. (a) 280 cm sec (b) 560 cm sec, 

(c) 29.75 flashes sec
21.

23. (a) $110 machine (b) $80 (c) $79.90

25. (a) (b)

(c)

27. (a)

(b) The largest value of is 0 m h when and

the smallest value of is when t = 0.-1 m>hdy

dt

t = 12>dy

dt

dy

dt
=

t
12

- 1

b¿s10d = -104 bacteria>h
b¿s5d = 0 bacteria>hb¿s0d = 104 bacteria>h

>
C = position, A = velocity, B = acceleration

>
980 cm>sec2>>4

7
 sec ,

-32 ft>sec2

> >>

31 420 6 75 9 108

a =
dy––
 dt

–1
–2
–3
–4

4
3
2
1

t

a

3

t (sec)
20 4 6 8 10

⎪y⎪ (m/sec)

Speed

3 … t … 6t = 2, t = 7
y L -107.0 ft>sect L 3.3 sec

y = -32t, ƒ y ƒ = 32t ft>sec, a = -32 ft>sec2

gs = 0.75 m>sec2Mars: L  7.5 sec, Jupiter: L  1.2 sec

ys2d = 3 m>sec

as1d = -6 m>sec2, as3d = 6 m>sec2

140 m>sec2, s4>25d m>sec2>1>5>-20 m, -5 m>sec

6 m>sec2, -12 m>sec2>>-9 m, -3 m>sec
t = 3>2

2 m>sec22 m>sec2,>>
>-1-2

dP
dV

= -

nRT

sV - nbd2 +

2an2

V 3

u1¿u2
Á un

Á
+

u1 u2
Á un - 2un - 1¿un +

d
dx

 su1
Á und = u1 u2

Á un - 1un¿ +

u1¿u2 u3 u4

u1 u2¿u3 u4 +

d
dx

 su1 u2 u3 u4d = u1 u2 u3 u4¿ + u1 u2 u3¿u4 +

d
dx

 suywd = uyw¿ + uy¿w + u¿yw

(c)

29.

31.

(a) when
(b) when the object moves up;

when the object moves down.
(c) The object changes direction at
(d) The object speeds up on (6.25, 12.5] and slows down on 

[0, 6.25).
(e) The object is moving fastest at the endpoints and

when it is traveling 200 ft sec. It’s moving slowest
at when the speed is 0.

(f) When the object is from the origin
and farthest away.

33.

(a) when

(b) when the object

moves left; when or

the object moves right.

(c) The object changes direction at

(d) The object speeds up on

and slows down on c0, 
6 - 215

3
b ´ a2, 

6 + 215
3

b .

a6 - 215
3

, 2b ´ a6 + 215
3

, 4 d
t =

6 ; 215
3

 sec .

6 + 215
3

6 t … 4 Q

0 … t 6

6 - 215
3

y 7 0

6 - 215
3

6 t 6

6 + 215
3

Qy 6 0

t =

6 ; 215
3

 secy = 0

4

–10

–5

5

10

t

s

ds
dt

= 3t2 – 12t + 7
d2s

dt2
= 6t – 12

s = t3 – 6t2 + 7t

s = 625 mt = 6.25
t = 6.25

>t = 12.5
t = 0

t = 6.25 sec .
6.25 6 t … 12.5 Q

y 6 06.25 Q0 … t 6y 7 0
t = 6.25 secy = 0

12

–200

200

400

600

t

s

ds
dt

= 200 – 32t

d2s

dt2
= –32

s = 200t – 16t2

t = 25 sec D =

6250
9

 m

12
–1

1

2

3

4

5

6

t

y

y = 6 21 – t
12

t
12

dy
dt

= – 1
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(e) The object is moving fastest at and when it is

moving 7 units sec and slowest at

(f) When the object is at position

units and farthest from the origin.

Section 3.5, pp. 159–162
1. 3.

5. 7. 9. 0

11. 13. 15.

17.

19. 21. 23.

25.

27. 29.

31.

33. (a) (b)
35.

37.

39. Yes, at 41. No

43.

45. (a) (b)

47. 0 49. 51. 53. 0-113>2
y = 4 - 23y = -x + p>2 + 2

1

–1

x

y

y = tan x

(�/4, 1)

(–�/4, –1)

�/2�/4–�/4–�/2

2
�y = 2x + – 1

2
�y = 2x – + 1

a- p
4

, -1b ; ap
4

, 1b
x = p

1

2

√2

0
x

y
y = sec x

(–�/3, 2)

�/4, √2

�/2�/4–�/3–�/2

2√3�
3

y = –2√3x – + 2
√2�

4
y = √2x – + √2

1

–1
2

x

y

y = x

y = sin x

�/2–�/2–� 3�/2–3�/2

y = –x – �

(3�/2, –1)y = –1

2 sec3 x - sec x2 csc3 x - csc x

q3 cos q - q2 sin q - q cos q - sin q

(q2
- 1)2

sec2 qsec2 q

sec u csc u stan u - cot ud = sec2 u - csc2 u

-u su cos u + 2 sin ud-2 csc t cot t
s1 - csc td2sec2 t + e-t

3x2 sin x cos x + x3 cos2 x - x3 sin2 x

x2 cos x4 tan x sec x - csc2 x
-csc2 x

s1 + cot xd2

sin x sec2 x + sin x-csc x cot x -

2

2x

2x cos x - x2 sin x-10 - 3 sin x

s L -6.303t =

6 + 215
3

t =

6 ; 215
3

 sec .>
t = 4t = 0 55.

57. 59. sin x
61. (a) i) 10 cm ii) 5 cm iii)

(b) i) 0 cm sec ii)

iii)

Section 3.6, pp. 167–170
1. 3. 5.
7.

9. With

11. With

13. With 

15. With

17. With

19.

21.

23. 25. 27.

29.

31. 33.

35. 37.

39. 41.

43. 45.

47. 49.

51. 53.

55.

57.

59. 61. -2 cos scos s2t - 5dd ssin s2t - 5dd
-3t6 (t2

+ 4)

(t3
- 4t)4

dy

dt
= -2p sin (pt - 1) # cos (pt - 1) # ecos2 (pt - 1)

10t10 tan9 t sec2 t + 10t9 tan10 t

8 sin s2td
s1 + cos 2td52p sin spt - 2d cos spt - 2d

2ue-u2

 sin Ae-u2 Ba t + 2

2st + 1d3>2 b  cos a t

2t + 1
b

-2 sin su2d sin 2u + 2u cos s2ud cos su2d2 sin u

(1 + cos u)2

x sec x tan x + sec x
217 + x sec x

2x sec2 s22xd + tan s22xd

a5
2

 x2
- 3x + 3b  e5x>2(1 - x)e-x

+ 3e3x

s4x + 3d3s4x + 7d
sx + 1d4s3x - 2d6

-

1

x3 a4 -

1
2x2 b

2

2x sin4 x + 4x2 sin3 x cos x + cos-2 x + 2x cos-3 x sin x

csc u

cot u + csc u
4
p scos 3t - sin 5td-

1

223 - t

y = eu, u = 5 - 7x, 
dy

dx
= -7e (5 - 7x)

y = eu, u = -5x, 
dy

dx
= -5e-5x

3 sin2 x scos xd

u = sin x, y = u3 : 
dy

dx
=

dy

du
 
du
dx

= 3u2 cos x =

ssec u tan udssec2 xd = sec stan xd tan stan xd sec2 x

u = tan x, y = sec u : 
dy

dx
=

dy

du
 
du
dx

 =

4u3 # ax
4

+ 1 +

1
x2 b = 4 ax2

8
+ x -

1
x b

3 ax
4

+ 1 +

1
x2 b

u = ssx2>8d + x - s1>xdd, y = u4 : 
dy

dx
=

dy

du
 
du

dx
=

-7u-8 # a- 1
7
b = a1 -

x
7
b-8

u = s1 - sx>7dd, y = u-7 : 
dy

dx
=

dy

du
 
du
dx

 =

10s2x + 1d4

u = s2x + 1d, y = u5 : 
dy

dx
=

dy

du
 
du
dx

= 5u4 # 2 =

10 sec2 s10x - 5d
-sin ssin xd cos x3 cos s3x + 1d12x3

-512 L -7.1 cm>sec

-513 L -8.7 cm>sec> -512 L -7.1 cm
c = 9

-22 m>sec, 22 m>sec, 22 m>sec2, 22 m>sec3
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63.

65. 67.

69. 71.

73. 75.

77. 79. 81. 83. 0 85.
87. (a) (b) (c) (d) (e)

(f) (g) (h) 89. 5
91. (a) 1 (b) 1 93.
95. (a) (b)
97. It multiplies the velocity, acceleration, and jerk by 2, 4, and 8,

respectively.

99.

Section 3.7, pp. 174–175

1. 3.

5. 7. 9.

11. 13.

15. 17. 19.

21.

23.

25.

27. 29.

31. (a) (b)

33. (a) (b)

35. (a) (b)

37. (a) (b)

39. (a) (b)

41. Points: and Slope:

43. at at

45.

-2d : m = -

27
8

s3,

s -3, 2d : m = -

27
8

; s -3, -2d : m =

27
8

; s3, 2d : m =

27
8

;

a23
4

, 
1
2
ba23

4
, 
23
2
b ,  m = 23m = -1

-2s27, 0d ,s - 27, 0d

y = -

x
2p

+

1
2p

y = 2px - 2p

y =

2
p x -

2
p +

p

2
y = -

p

2
 x + p

y = -

7
6

 x -

7
6

y =

6
7

 x +

6
7

y = -

1
3

 x +

8
3

y = 3x + 6

y = -

4
7

 x +

29
7

y =

7
4

 x -

1
2

s -2, 1d : m = -1, s -2, -1d : m = 1-2

y¿ =

2y

2y + 1
, y– =

1

2s2y + 1d3

dy

dx
=

xex2

+ 1
y , 

d2y

dx2 =

(2x2y2
+ y2

- 2x)ex2

- x2e2x2

- 1

y3

y¿ = -  
x
y, y– =

-y2
- x2

y3

-r
u

-

2r

2u

2e2x
- cos (x + 3y)

3 cos (x + 3y)

-y2

y sin a1y b - cos a1y b + xy

-cos2 sxyd - y
x

cos2 y
1

y sx + 1d2

-2x3
+ 3x2y - xy2

+ x

x2y - x3
+ y

1 - 2y

2x + 2y - 1

-2xy - y2

x2
+ 2xy

ys6d =

2
5

 m>sec, as6d = -

4
125

 m>sec2

p>2y = px + 2 - p

y = 1 - 4x
-5>s3217d5>3222>24

-137>615 - 8p2p + 52>3 -5-p>45>22(2x2
+ 1) ex2

16 (2x + 1)2 (5x + 1)2 csc2 s3x - 1d cot s3x - 1d

6
x3 a1 +

1
x b a1 +

2
x b3 (2t2

- 5)3 (18t2
- 5)

6 tan (sin3 t) sec2 (sin3 t) sin2 t cos t-

t sin st2d

21 + cos st2d

a1 + tan4 a t
12
b b2 atan3 a t

12
bsec2 a t

12
b b 47.

53.

Section 3.8, pp. 184–185

1. (a) 3. (a)

(b) (b)

(c) 2, 1 2 (c)
5. (b)

(c) Slope of ƒ at (1, 1) : 3; slope of g at (1, 1): 1 3; slope of ƒ at
3; slope of g at 1 3

(d) is tangent to at is tangent to

at .

7. 1 9 9. 3 11. 1 x 13. 2 t 15. 17.

19. 3 x 21. 23. 25.

27. 29. 31.

33. 35. 37.

39.

41.

43.

45.

47.

49.

51.
x2x2

+ 1

sx + 1d2>3  c1
x

+

x

x2
+ 1

-

2
3sx + 1d

d

u + 5
u cos u

 c 1
u + 5

-

1
u

+ tan u d
tst + 1dst + 2d c1t +

1
t + 1

+

1
t + 2

d = 3t2
+ 6t + 2

2u + 3 ssin ud a 1
2su + 3d

+ cot ub

a1
2
b
A

t
t + 1

 a1t -

1
t + 1

b =

1

22t st + 1d3>2

a1
2
b2xsx + 1d a1x +

1
x + 1

b =

2x + 1

22xsx + 1d

10x

x2
+ 1

+

1
2s1 - xd

tan sln ud
u

2
t s1 - ln td2-

3x + 2
2xsx + 1d

2 cos sln ud1
x ln x

1
xs1 + ln xd2

1 - ln t

t2x3 ln x2 sln td + sln td2>
1
u + 1

-1>x>>>
x = 0y = 23 x

x = 0; x = 0y = x3y = 0
>s -1, -1d :s -1, -1d :

>

x

y

1–1–2 2

1

–1

–2

2 y = x3

y = x1/3

-4, -1>4>

x

y

0

5

5
4

5 5
4

y = f –1(x) = –

y = f (x) = –4x + 5

x
4 4

5+x

y

–3/2 0

3

3

–3/2

y = f –1(x) =

y = f (x) = 2x + 3

x
2 2

3–

ƒ -1sxd = -

x
4

+

5
4

ƒ -1sxd =

x
2

-

3
2

dy

dx
= -

y3
+ 2xy

x2
+ 3xy2,  dx

dy
= -

x2
+ 3xy2

y3
+ 2xy

,  dx
dy

=

1
dy>dx

s3, -1d
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53. 55.

57. 59. 61.

63. 65. 67.

69. 71. 73. 75.

77. 79.

81. 83.

85. 87. 89.

91. 93.

95.

Section 3.9, pp. 191–192
1. (a) (b) (c)
3. (a) (b) (c)
5. (a) (b) (c)
7. (a) (b) (c)

9. 11. 13. 15. 17.

19. 0 21. 23.

25. 27.

29. 31. 33.

35. 37. 39. 0

41.
47. (a) Defined; there is an angle whose tangent is 2.

(b) Not defined; there is no angle whose cosine is 2.
49. (a) Not defined; no angle has secant 0.

(b) Not defined; no angle has sine
59. (a) Domain: all real numbers except those having the form

where k is an integer; range:

(b) Domain: range:
61. (a) Domain: range:

(b) Domain: range:
63. The graphs are identical.

Section 3.10, pp. 197–201

1. 3. 10 5. 7.

9. 11. (a) (b)

13. (a) (b)

(c)
dV
dt

= pr2 
dh
dt

+ 2phr 
dr
dt

dV
dt

= 2phr 
dr
dt

dV
dt

= pr2 
dh
dt

-135 m3>min-180 m2>min31>13

-3>2-6
dA
dt

= 2pr 
dr
dt

-1 … y … 1-1 … x … 1;
0 … y … p- q 6 x 6 q ;
- q 6 y 6 q- q 6 x 6 q ;

-p>2 6 y 6 p>2.
p

2
+ kp

22.

sin-1 x

-2s2

21 - s2

-et

ƒ et
ƒ2setd2

- 1
=

-1

2e2t
- 1

1
stan-1 x)(1 + x2d

-1

22t s1 + td
-1

21 - t2

-2x

sx2
+ 1d2x4

+ 2x2

1

ƒ 2s + 1 ƒ2s2
+ s

22

21 - 2t2

-2x

21 - x4

p>2p>2p>2-1>231>22

2p>3p>63p>4 p>63p>4p>3 -p>3p>4-p>6 p>6-p>3p>4

sx ln xd aln x2

x b
ssin xdxsln sin x + x cot xds2tdt aln t

2
+

1
2
b

sx + 1dx a x
x + 1

+ lnsx + 1db1
t

1
t  slog2 3d3log2 t

1
ln 5

sin slog7 ud +

1
ln 7

 cos slog7 ud

-2
sx + 1dsx - 1d

2sln rd
rsln 2dsln 4d

3
x ln 4

1
u ln 2

px sp- 1da ln 5

22s
b52s

2x ln x
dy

dx
=

y2
- xy ln y

x2
- xy ln x

yey cos x

1 - yey sin x

ecos ts1 - t sin td1>s1 + eud1 - t
t

-2 tan u
1
3B

3 xsx - 2d
x2

+ 1
 a1

x
+

1
x - 2

-

2x

x2
+ 1
b 15. (a) 1 volt sec (b) amp sec

(c)

(d) ohms sec, R is increasing.

17. (a)

(b) (c)

19. (a)

(b)

(c)

21. (a) increasing (b) 0 cm sec, constant

(c) decreasing

23. (a) (b) (c)
25. 20 ft sec

27. (a) (b)

29. (a) (b)

(c)

31. 1 ft min, 33. 11 ft sec
35. Increasing at 466 1681 L min2

37. 39.

41.

43. (a)

(b)

(c)

Section 3.11, pp. 210–212
1. 3. 5.

7. 2x 9. 11. 13.

15. Also, so This
means the linearization at is

17. (a) 1.01 (b) 1.003

19. 21.

23. 25.

27.

29.

31. 33. 35.

37. 39. (a) .41 (b) .4 (c) .01

41. (a) .231 (b) .2 (c) .031

-1

2e-2x
- 1

 dx

2xex2

1 + e2x2 dx
2x

1 + x2 dx
1

2 2x
# e2x dx

3

2x
 scsc s1 - 22xd cot s1 - 22xdd dx

(4x2) sec2 ax3

3
b  dx

5

22x
 cos s52xd dx

1 - y

32y + x
 dx

2 - 2x2

s1 + x2d2 dxa3x2
-

3

22x
b  dx

Lsxd = 1 + kx .x = 0
ƒ¿s0d = k .ƒ¿sxd = k s1 + xdk - 1 ,ƒs0d = 1.

1 - x
1

12
 x +

4
3

- x - 5

L(x) = x - pLsxd = 2Lsxd = 10x - 13

du1>dt = 1>6 rad>sec, du2>dt = -1>6 rad>sec

du1>dt = 8>65 rad>sec, du2>dt = -8>65 rad>sec

-32>213 L -8.875 ft>sec

5
72p

 in.>min, 
10
3

 in2>min

-1500 ft>sec-5 m>sec
>> >40p ft2>min>

dr
dt

= -

5
288p

 m>min

r = 226y - y2 m
-1

24p
 m>min

dr
dt

= 14.92 cm>min
dh
dt

= 11.19 cm>min

> -1 rad>sec-59.5 ft2>sec-12 ft>sec

-14>13 cm>sec ,

>14 cm2>sec ,

dA
dt

=

1
2

 ab cos u 
du
dt

+

1
2

 b sin u 
da
dt

+

1
2

 a sin u 
db
dt

dA
dt

=

1
2

 ab cos u 
du
dt

+

1
2

 b sin u 
da
dt

dA
dt

=

1
2

 ab cos u 
du
dt

dx
dt

= -

y
x 

dy

dt
ds
dt

=

x

2x2
+ y2

 
dx
dt

+

y

2x2
+ y2

 
dy

dt

ds
dt

=

x

2x2
+ y2

 
dx
dt

>3>2
dR
dt

=

1
I

 adV
dt

-

V
I

 
dI
dt
b
>-

1
3

>

Chapter 3: Answers to Odd-Numbered Exercises A-15
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43. (a) (b) (c) 45.
47. 49.
51. (a) (b) 2% 53.

55. (a) 2% (b) 4% 57. 59. 3%

61. The ratio equals 37.87, so a change in the acceleration of gravity
on the moon has about 38 times the effect that a change of the
same magnitude has on Earth.

65. (a)
(b) 

Practice Exercises, pp. 213–218
1. 3.
5.
7.

9. 11.

13.

15.

17. 19.

21.

23.

25. 27.

29. 31. 33.

35. 37. 39.

41. 43. 45.

47. 49. 51.

53. 55.

57. 59.

61. 63. 65.

67. 69. 71.

73. 75. 77. 79.

81.
dr
ds

= s2r - 1dstan 2sd

dp

dq
=

6q - 4p

3p2
+ 4q

-  
2e-tan-1x

1 + x2y>x-1>2

1
2y sx + 1d2-

y
x

-3x2
- 4y + 2

4x - 4y1>3

-

y + 2

x + 3
-1

1 - z

2z2
- 1

+ sec-1 z

tan-1std +

t

1 + t2 -

1
2t

-1

21 - x2 cos-1 x

-

1

21 - u2
sx + 2dx + 2slnsx + 2d + 1d

18x2.6
-8-tsln 8d2

sln 2dx

2 sin u cos u

sin2 u
= 2 cot uxe4x

-2e-x>5
-9 c 5x + cos 2x

s5x2
+ sin 2xd5>2 d322x + 1

-2 sin u

scos u - 1d2

-1

2x2 a1 +

1
x b

1>2
1 - x

sx + 1d3

- st + 1d
8t3

8x3 sin s2x2d cos s2x2d + 2x sin2 s2x2d-10x csc2 sx2d

1
2

 x1>2 sec s2xd2 C16 tan s2xd2
- x-2 D

x csc a2x b + csc a2x b  cot a2x b

cos 22u

22u

u cos u + sin u

22u sin u

5ssec td ssec t + tan td5

8 cos3 s1 - 2td sin s1 - 2td

2 sec2 x tan x
1

22t A1 + 2t B2
3su2

+ sec u + 1d2 s2u + sec u tan ud
2sx + 1ds2x2

+ 4x + 1d
3xsx - 2d5x4

- 0.25x + 0.25

–1 –0.5 0 0.5 1

0.4

1.4

1

0.8

x

y

y = (ln 2)x + 1

y = 2x

–3 –2 –1 0 1 2 3

1

2

3

x

y

y = (ln 2)x + 1

y = 2x

L(x) = x ln 2 + 1 L 0.69x + 1

1
3

%

dV L 565.5 in30.08p m2
dV = 2pr0 h drdS = 12x0 dx

dV = 4pr0
2 dr1>15-2>5-1>3

83. (a) (b)

85. (a) 7 (b) (c) (d) (e) 12 (f)
(g)

87. 0 89. 91. 93.

95. (a) 97. (a)

(b) Yes (c) Yes

(b) Yes (c) No

99. and 101. and (2, 0)

103. (a) (3, 11) (b) (0, 20), (1, 7)

105.

107. 109. 4

111. Tangent: normal:

113. Tangent: normal:

115. Tangent: normal:

117. m not defined

119.

121.

123. (a) 0, 0 (b)
125. 127. 129. 4 131. 1

133. To make g continuous at the origin, define 

135.

137. 5 cst + 1dst - 1d
st - 2dst + 3d

d5 c 1
t + 1

+

1
t - 1

-

1
t - 2

-

1
t + 3

d

2sx2
+ 1d

2cos 2x
 c 2x

 x2
+ 1

+ tan 2x d
g(0) = 1.

1>2-1
1700 rabbits, L1400 rabbits

y

2

x
41–1 6

(6, 1)

(4, 3)3 y = f (x)

(–1, 2)

B = graph of ƒ, A = graph of ƒ¿

s1, 1d: m = -

1
2

; s1, -1d: 

y =

4
5

 x -

11
5

y = -

5
4

 x + 6,

y = -

1
2

 x +

7
2

y = 2x - 4,

y = 4x - 2y = -

1
4

 x +

9
4

,

1
4

y

1

x

–1 y = – – – 1x  – 

y = –
8
� + 11 –

2

1
2

x +

y = tan x

–�/2 –�/4 �/4 �/2

(�/4, 1)

(–�/4, –1)
8
�

s -2, 16d ,

s -1, 27da3
2

, -
1
4
ba5

2
, 

9
4
b

y

1

x
10 2

x,       0 ≤ x ≤ 1
2 – x, 1 < x ≤ 2

y =
y

x
1–1

–1

1

0

f (x) =      x2, –1 ≤ x < 0
             –x2,   0 ≤ x < 1

-2
s2t + 1d2-

1
2

322e23>2
4

 cos Ae23>2 B
3>4 9>21>45>12-2

d2y

dx2 =

-2xy2
- 1

x4y3

d2y

dx2 =

-2xy3
- 2x4

y5

A-16 Chapter 3: Answers to Odd-Numbered Exercises
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139.

141. (a) (b)

(c)

(d)

143. 145. 0.02 ohm sec 147. 22 m sec

149. (a) (b)

151. (a) or 600 m sec (b)

153. (a)

(b)

155. 157.

159. (a) 4% (b) 8% (c) 12%

Additional and Advanced Exercises, pp. 218–220
1. (a)

(b)

3. (a) (b)

5.

7. (a) 0.09y (b) Increasing at 1% per year

h = -4, k =

9
2

, a =

525
2

b = cos a, c = sin aa = 1, b = 0, c = -

1
2

cos u sin u + sin u cos u; sin 2u = 2 sin u cos u

sin 2u =2 cos u s -sin ud - 2 sin u scos ud;
-2 sin 2u =cos 2u = cos2 u - sin2 u;

cos2 u - sin2 u

2 cos 2u = -2 sin2 u + 2 cos2 u; cos 2u =cos u s2 cos ud;
2 cos 2u = 2 sin u s -sin ud +sin 2u = 2 sin u cos u;

dS =

prh0

2r2
+ h 2

0

 dhLsxd = 1.5x + 0.5

y

x
0

y = sec x

√2

–�/4 �/2–�/2

–�/4, √2

y = –√2x + √2  4 – � /4

⎛                ⎞⎝                ⎠

⎛        ⎞⎝        ⎠

Lsxd = - 22x +

22s4 - pd
4

y

1

x

–1

�/4–�/4

y = tan x

(–�/4, –1)

y = 2x + (� – 2)/2

Lsxd = 2x +

p - 2
2

18
p  rpm>3

5
 km>sec

-

125
144p

 ft>minr =

2
5

 h

>>-40 m2>sec

dr
dt

= -

r
2r + h

 
dh
dt

dS
dt

= s4pr + 2phd 
dr
dt

+ 2pr 
dh
dt

dS
dt

= 2pr 
dh
dt

dS
dt

= s4pr + 2phd 
dr
dt

1

2u
 ssin ud

2
u aln sin u

2
+ u cot ub 9. Answers will vary. Here is one possibility.

11. (a) 2 sec, 64 ft sec (b) 12.31 sec, 393.85 ft

15. (a) (b)

17. (a) 19. is even

23. is defined but not continuous at is defined and
continuous at

27. (a) 0.8156 ft (b) 0.00613 sec
(c) It will lose about 8.83 min day.

CHAPTER 4

Section 4.1, pp. 227–230
1. Absolute minimum at absolute maximum at 
3. Absolute maximum at no absolute minimum
5. Absolute minimum at absolute maximum at 
7. No absolute minimum; no absolute maximum
9. Absolute maximum at (0, 5) 11. (c) 13. (d)

15. Absolute minimum at 17. Absolute maximum at 
no absolute no absolute 

maximum minimum

19. Absolute maximum at absolute minimum at

1

1–1

2

3

2
x

y

Abs
max

y = x2 – 1
–1 ≤ x ≤ 2

(2, 3)

(0, –1) Abs
min

–1
1–1

–2

–3

–4

–5

–6

–7

2 3–2 0
x

y

(–2, –19/3)
Abs
min

Abs
max

(3, –3)

y = x – 52
3

–2 ≤ x ≤ 3

3

–3

x

y

��/2 2�3�/2

x = 3p>2 x = p>2;

y

1

–1

x
1 2

y = g(x)

y

2

1

x
–1 1 2

f (x) = ⎪x⎪

x = 2;x = 0;

x = cx = a ;
x = c ;

x = bx = c2 ;

>
x = 0.

x = 0; k¿h¿

ƒ odd Q ƒ¿a =

3
4

, b =

9
4

m = -1, b = pm = -

b
p

>

y

0
t

Chapter 4: Answers to Odd-Numbered Exercises A-17

21. Absolute maximum: 
absolute minimum: -19>3-3; 23. Absolute maximum: 3;

absolute minimum: -1
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37. Absolute maximum is 39. Absolute maximum value 
absolute is 

minimum is at absolute minimum value
is 1 at local maxi-
mum at 

41. Increasing on (0, 8), decreasing on absolute maximum:
16 at absolute minimum: 0 at 

43. Increasing on absolute maximum: 1 at 
absolute minimum: at 

45.
47.
49.
51. and 
53. Minimum value is 1 at 

55. Local maximum at local minimum at 

57. Minimum value is 0 at and x = 1.x = -1

a 4
3

, -
41
27
bs -2, 17d ;

x = 2.
x = 4x = 0

x = 1
x = 1, x = 4
x = 3

u = -32-8
u = 1;s -32, 1d ;

x = 0x = 8;
s -1, 0d ;

21 53 4

0.25
0.5

0.75

1

1.25

1.5

y

x

Abs min at (1, 1)

Abs max at
4
1⎛

⎝
⎛
⎝+ ln 4 4,

f(x) = x
1 + ln x 

–2–3 –1 2 31

–4

–3

–2

–1

2

1

x

y Absolute
maximum
 

e
1⎛

⎝
⎛
⎝1, 

(–1, –e)
Absolute
minimum

(1>2, 2 - ln 2).
x = 1;x = -1.

-e
(1>4) + ln 4 at x = 4;1>e at x = 1;

1

–1

1–1 2 30
t

y

(3, –1)

Abs
min

Abs
max

(0, 2)

y = 2 – ⎪t⎪
–1 ≤ t ≤ 3

1.0

0

1.2

0.8
0.6
0.4
0.2

x

y

�/3 �/2 2�/3

y = csc x
�/3 ≤ x ≤ 2�/3

(�/2, 1)
Abs
min

Abs max

 �/3, 2/√3⎞⎠⎞⎠

Abs max

 2�/3, 2/√3⎞⎠⎞⎠

1

–1

�

y

(�/2, 1) Abs max

�/2–�/2 5�/6

y = sin �, –�/2 ≤ � ≤ 5�/6
(–�/2, –1)

Abs min

1

–1

1–1 0
x

y

(–2, 0)
Abs
min

y = √4 – x2

–2 ≤ x ≤ 1

(0, 2) Abs max

1

–1
1–1 2 3 4 5 6 7 8

2

x

y

(8, 2) 
Abs
max

(–1, –1)
Abs min

y = 
3√x

–1 ≤ x ≤ 8

–1

10

–2

–3

–4

x

y

(0.5, –4)
Abs min

y = – , 0.5 ≤ x ≤ 21
x2

(2, –0.25)
Abs max

59. There is a local minimum at (0, 1).

61. Maximum value is at minimum value is at 

63. The minimum value is 2 at 

65. The minimum value is at 

67. The maximum value is at an absolute minimum value

is 0 at and 

69.

71.

73.

75.

77. (a) No
(b) The derivative is defined and nonzero for Also,

and for all 
(c) No, because is not a closed interval.
(d) The answers are the same as parts (a) and (b) with 2

replaced by a.
79. Yes 81. g assumes a local maximum at 
83. (a) Maximum value is 144 at 

(b) The largest volume of the box is 144 cubic units, and it oc-
curs when 

85.

87. Maximum value is 11 at minimum value is 5 on the in-
terval local maximum at 

89. Maximum value is 5 on the interval minimum value is
on the interval 

Section 4.2, pp. 236–238

1. 3. 1 5.

7.

9. Does not; ƒ is not differentiable at the interior domain point

11. Does 13. Does not; ƒ is not differentiable at x = -1.
x = 0.

1
3

 A1 + 27 B L 1.22, 
1
3

 A1 - 27 B L -0.549

;A1 -

4
p2 L ;0.7711> 2

s - q , -2] .-5
[3, q d ;

s -5, 9d .[-3, 2] ;
x = 5;

y0 
2

2g
+ s0

x = 2.

x = 2.
-c .

s - q , q d
x Z 2.ƒsxd 7 0ƒs2d = 0

x Z 2.

x = -1.x = 1

x = 0;
p

2

x =

1
e .-

1
e

x = 0.

x = -1.-

1
2

x = 1;
1
2

A-18 Chapter 4: Answers to Odd-Numbered Exercises

25. Absolute maximum: 
absolute minimum: -4

-0.25; 27. Absolute maximum: 2;
absolute minimum: -1

29. Absolute maximum: 2;
absolute minimum: 0

31. Absolute maximum: 1;
absolute minimum: -1

33. Absolute maximum: 
absolute minimum: 1

2>23; 35. Absolute maximum: 2;
absolute minimum: -1

Critical point
Derivative Extremum Value

0 Maximum 5
Undefined Local min 1

0 Maximum 5x = 3
x = 1
x = -1

or endpoint

Critical point
Derivative Extremum Value

0 Local max

Undefined Local min 0x = 0

12
25

 101>3
L 1.034x = -

4
5

Critical point
Derivative Extremum Value

Undefined Local max 0
0 Minimum
0 Maximum 2

Undefined Local min 0x = 2
x = 12

-2x = -12
x = -2

Critical point
Derivative Extremum Value

Undefined Minimum 2x = 1

or endpoint

or endpoint

or endpoint
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17. (a)
i)

ii)

iii)

iv)

29. Yes 31. (a) 4 (b) 3 (c) 3

33. (a) (b) (c)

35. (a) (b) (c)

37. (a) (b)

(c)

39. 41.

43. 45.

47. 49.

51. If T(t) is the temperature of the thermometer at time t, then
and From the Mean Value 

Theorem, there exists a such that 

the rate at which the temperature was
changing at as measured by the rising mercury on the
thermometer.

53. Because its average speed was approximately 7.667 knots, and
by the Mean Value Theorem, it must have been going that speed
at least once during the trip.

57. The conclusion of the Mean Value Theorem yields

61. ƒ(x) must be zero at least once between a and b by the Interme-
diate Value Theorem. Now suppose that ƒ(x) is zero twice be-
tween a and b. Then, by the Mean Value Theorem, would
have to be zero at least once between the two zeros of ƒ(x), but
this can’t be true since we are given that on this inter-
val. Therefore, ƒ(x) is zero once and only once between a and b.

71.

Section 4.3, pp. 241–243
1. (a) 0, 1

(b) Increasing on and decreasing on (0, 1)
(c) Local maximum at local minimum at 

3. (a)
(b) Increasing on and decreasing on 
(c) No local maximum; local minimum at 

5. (a) Critical point at 
(b) Decreasing on , increasing on 
(c) Local (and absolute) minimum at 

7. (a)
(b) Increasing on and decreasing on 

and (0, 1)
(c) Local minimum at x = 1

s -2, 0ds1, q d;s - q , -2d
0, 1

x = 1
(1, q )(- q , 1)

x = 1
x = -2

s - q , -2ds1, q d;s -2, 1d
-2, 1

x = 1x = 0;
s1, q d;s - q , 0d

1.09999 … ƒs0.1d … 1.1

ƒ¿sxd Z 0

ƒ¿sxd

1
b

-

1
a

b - a
= -

1
c2 Q c2 aa - b

ab
b = a - b Q c = 1ab .

t = t0

8.5 °C>sec = T ¿st0d ,

Ts14d - Ts0d
14 - 0

 =0 6 t0 6 14

Ts14d = 100 °C.Ts0d = -19 °C

s = sin s2td - 3s = et
+ 19t + 4

s =

1 - cos sptd
ps = 4.9t2

+ 5t + 10

ƒ(x) = 1 +

e2x

2
ƒsxd = x2

- x

-

1
2

 cos 2t + 2 sin 
t
2

+ C

2 sin 
t
2

+ C-

1
2

 cos 2t + C

5x -

1
x + Cx +

1
x + C

1
x + C

x4

4
+ C

x3

3
+ C

x2

2
+ C

0 4 9 18 24
x

x
–1 0 2

x
–5 –4 –3

x
–2 20

9. (a)
(b) Increasing on and decreasing on 

and (0, 2) 
(c) Local maximum at local minimum at 

11. (a)
(b) Increasing on and decreasing on

(c) Local maximum at local minimum at 

13. (a)

(b) Increasing on decreasing on 

and 

(c) Local maximum at and ; local minimum at

and 

15. (a) Increasing on and (2, 4); decreasing on 
and (0, 2) 

(b) Absolute maximum at local maximum at (0, 1) and
absolute minimum at local minimum at

17. (a) Increasing on and (2, 4); decreasing on

(b) Absolute maximum at (4, 3); local maximum at and
(2, 1); no absolute minimum; local minimum at 
and 

19. (a) Increasing on decreasing on 
(b) Local maximum: 5.25 at ; absolute maximum: 5.25

at 
21. (a) Decreasing on increasing on decreasing

on 

(b) Local minimum at local maximum at

; no absolute extrema
23. (a) Decreasing on increasing on decreasing

on 
(b) Local minimum at local maximum at

; no absolute extrema
25. (a) Increasing on never decreasing

(b) No local extrema; no absolute extrema
27. (a) Increasing on and decreasing on 

and (0, 2)
(b) Local maximum: 16 at local minimum: 0 at ;

no absolute maximum; absolute minimum: 0 at 
29. (a) Increasing on decreasing on increasing

on (0, 1); decreasing on 
(b) Local maximum: 0.5 at local minimum: 0 at ;

absolute maximum: at no absolute minimum
31. (a) Increasing on decreasing on (1, 10) 

(b) Local maximum: 1 at local minimum: at ;
absolute minimum: at 

33. (a) Decreasing on increasing on 

decreasing on 
(b) Local minima: local maxima:

; absolute maximum: 4 at 
absolute minimum: at x = -2-4

x = 2;gs -222d = 0, gs2d = 4
gs -2d = -4, gs222d = 0;

s2, 222d
s -2, 2d;s -222, -2d;

x = 10-8
x = 10-8x = 1;

(10, q);
x = ;1;1>2

x = 0x = ;1;
s1, q d

s -1, 0d;s - q , -1d;
x = ;2

x = ;2x = 0;

s - q , -2ds2, q d;s -2, 0d

s - q , q d;
u = 1>2 s1>2, 1>4d

u = 0 s0, 0d;
s1>2, q d

(0, 1>2);s - q , 0d;
x = 4>3 s4>3, 32>27d

x = 0 s0, 0d;
s4>3, q d

(0, 4>3);s - q , 0d;
t = -1.5

t = -1.5
s -1.5, q ds - q , -1.5d;

(1>2, -1)
(-4, -1)
(-1, 2)

(-1, 1>2)

(-4, -1), (1>2, 2),

s -2, 0d
(2, -3);(4, -1);

(-4, 2);

(-4, -2)s -2, 0d

x = 2px =

2p
3

x =

4p
3

x = 0

a4p
3

, 2pb
ap

2
, 

2p
3
b ,a0, 

p

2
b ,a2p

3
, 

4p
3
b ;

p

2
, 

2p
3

, 
4p
3

x = 0x = -2;
s -2, 0d

s0, q d;s - q , -2d
-2, 0

x = 2x = -2;

s -2, 0d(2, q );(- q , -2)
-2, 2
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35. (a) Increasing on decreasing when 
decreasing when discontinuous at 
increasing on 

(b) Local minimum at local maximum at
; no absolute extrema

37. (a) Increasing on and decreasing on 

(b) Local minimum: at ; no absolute maximum;

absolute minimum: at 

39. (a) Increasing on and decreasing

on and 

(b) Local maximum: at local

minimum: at ; no

absolute extrema

41. (a) Increasing on decreasing on

(b) Local minimum is at no local 

maximum; absolute minimum is at 

no absolute maximum

43. (a) Increasing on decreasing on 
(b) A local minimum is at no local maximum;

absolute minimum is at no absolute 
maximum

45. (a) Local maximum: 1 at local minimum: 0 at 
(b) Absolute maximum: 1 at no absolute minimum

47. (a) Local maximum: 1 at local minimum: 0 at 
(b) No absolute maximum; absolute minimum: 0 at 

49. (a) Local maxima: at and 16 at 
local minimum: at 

(b) Absolute maximum: 16 at no absolute minimum
51. (a) Local minimum: 0 at 

(b) No absolute maximum; absolute minimum: 0 at 
53. (a) Local maximum: 5 at ;

local minimum: 0 at and 
(b) Absolute maximum: 5 at ;

absolute minimum: 0 at and 
55. (a) Local maximum: 2 at ;

local minimum: at 

(b) No absolute maximum; an absolute minimum at

57. (a) Local maximum: 1 at ;

local maximum: 0 at ;

local minimum: 0 at ;

local minimum: at 
59. Local maximum: 2 at 

local maximum: at ;
local minimum: at ;
local minimum: at 

61. (a) Local minimum: at 
local maximum: 0 at 
local maximum: at 

63. (a) Local minimum: 0 at x = p> 4x = 2pp

x = 0;
x = 2p> 3;sp>3d - 23

x = 023
x = 7p>6-2

x = 2p23
x = p>6;
x = 3p>4-1

x = 0

x = p

x = p>4
x = 2 - 23

x = 2 - 23
23

423 - 6

x = 0
x = 5x = -5

x = 0
x = 5x = -5

x = 0
x = 0

x = 0
t = 2;

t = -2-16
t = 2;t = -3-9

x = 2
x = 2x = 1;

x = 1;
x = 2x = 1;

x = e-1,-e-1
x = e-1,-e-1

(0, e-1)(e-1,q ),

x = (1>3) ln (1>2);
3

22>3

x = (1>3) ln (1>2);
3

22>3

(- q , (1>3) ln (1>2))
((1>3) ln (1>2), q ),

x = 2>27-2423 2>77>6
L -3.12

x = -2>27;2423 2>77>6
L 3.12

(0, 2>27)(-2>27, 0)

(2>27, q );(- q , -2>27)

x = -2-623 2

x = -2-623 2

s - q , -2ds0, q d;s -2, 0d
x = 1 s1, 2d

x = 3 s3, 6d;
s3, q d

x = 2;2 6 x 6 3;
1 6 x 6 2,s - q , 1d; 65. Local maximum: 3 at 

local minimum: at 
67.

69. (a) (b)

73.
75. (a) Absolute minimum occurs at with 

and the absolute maximum occurs at with 
(b) Absolute minimum occurs at and with

and the absolute maximum 
occurs at with 

77. Minimum of at maximum of 
1 at 

79. Absolute maximum value of assumed at 

83. Increasing; 

85. Decreasing; 

Section 4.4, pp. 251–254
1. Local maximum: at local minimum: at 

point of inflection at rising on and
falling on concave up on concave

down on 
3. Local maximum: 3 4 at local minimum: 0 at 

points of inflection at and 

rising on and falling on and (0, 1);

concave up on and concave down on

5. Local maxima: at at

; local minima: at 

at ; points of inflection at (0, 0), and
rising on falling on 

and concave up on and 
concave down on and 

7. Local maxima: 1 at and 0 at and
local minima: at and 

0 at points of inflection at and rising on
and falling on
, and concave up on

and concave down on and s0, pds -p, 0dsp, 2pd;s -2p, -pd
sp>2, 3p>2d;s -2p, -3p> 2d, s -p> 2, 0d

s3p>2, 2pd;s -3p>2, -p>2d, s0, p>2d,
sp, 0d;s -p, 0dx = 0;
x = 3p> 2,x = -3p> 2-1x = 2p;

x = -2px = p>2,x = -p> 2 s0, p> 2ds -2p> 3, -p> 2d
sp>2, 2p>3d;s -p> 2, 0dsp>3, 2p>3d,

s -2p> 3, -p> 3ds -p>3, p>3d;sp>2, p>2d,
s -p> 2, -p> 2d ,x = 2p> 3

2p
3

-

23
2

x = -p>3,-

p

3
-

23
2

x = p>3
x = -2p>3, 

p

3
+

23
2

-2p
3

+

23
2

s - 23, 23d
s23, q d;s - q , - 23d

s - q , -1ds1, q d;s -1, 0d

a23, 
323 4

4
b ;a- 23, 

323 4
4
b

x = ;1;x = 0;>s - q , 1> 2d
s1>2, q d;s -1, 2d;s2, q d;

s - q , -1ds1>2, -3>4);
x = 2;-3x = -1;3> 2

df -1

dx
= -

1
3

 x-2>3

dƒ-1

dx
=

1
9

 x-2>3
x = 1>2e1>2e

x = 0
x = ln 2;2 - 2 ln 2 L 0.613706

ƒ(1) = 1.x = 1
ƒ(1>2) = ƒ(2) = cos (ln 2),

x = 2x = 1>2
ƒ(0) = 0.x = 0

ƒ(p>3) = - ln 2,x = p>3
a = -2, b = 4

2

0 2

y = g(x)

x

y

2

0 2

y = g(x)

x

y

1

10
x

y

(d)

y = f (x)

1

10
x

y

(c)

y = f (x)
1

10
x

y

(b)

y = f (x)
1

10
x

y

(a)

y = f (x)

u = 2p-3
u = 0;
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9. 11.

13. 15.

17. 19.

21. 23.

25.

27.

1

–1

x

y

�/2�/4 �3�/4(0, 0)
Loc min

Abs max
(�/4, 1/2) Infl

(�/2, 0)
Loc max

(�, 0)

(3�/4, –1/2)
Abs min

y = sin x cos x

10

8

2

4

6

x

y

��/2 2�3�/20

�3�/2, 3√3�/2�

�2�, 2√3� – 2�

��/2, √3�/2�
Inf l

Abs max

(0, –2)
Abs min y = √3x – 2 cos x

�4�/3, 4√3�/3 + 1�
Loc max

�5�/3, 5√3�/3 – 1�
Loc min

Infl

0

Abs min

Infl

y = x + sin x

Abs max

(�, �)

(2�, 2�)

x

y

2�

�

2��

–100

–200

–300

543210–2
x

y

y = x5 – 5x4Loc max
(0, 0)

(3, –162)
Inf l

(4, –256)
Loc min

3

4

9

15

21

27

321

(2, 16)

Abs max
(3, 27)

y = 4x3 – x4

Inf l

Inf l
(0, 0)

x

y

1 2–1–2

1

Abs min
(1, –1)

Loc max
(0, 0)

Abs min
(–1, –1)

–1/√3, –5/9
Infl

⎞⎠⎞⎠ 1/√3, –5/9
Infl

⎞⎠⎞⎠

x

y

y = x4 – 2x2

1

–1

1–1 2 3 4–2

2

3

–2

0

Infl
(2, 1)

y = (x – 2)3 + 1

x

y

1

1–1 2–3

2

x

y

(0, –3)
Loc min y = –2x3 + 6x2 – 3

(2, 5) Loc max

Infl
(1, 1)

1

1–1

4

5

2

Loc
max
(–1, 5)

(1, 1)
Loc min

Infl

y = x3 – 3x + 3

x

y

1

–1
1–1 2 3 4–2–3–4

–2

2

3

4

0

y = x2 – 4x + 3

(2, –1)
Abs min

x

y 29. 31.

33. 35.

37. 39.

41. 43.

45. 47.

1

1–1 2 3 4–2–3–4

2
y = √⏐x⏐

(0, 0)

Cusp
Abs min

x

y

2–2

2

3

Loc max
(0, 1)

y = x2 – 1

(1, 0)
Abs min

(–1, 0)
Abs min

x

y

–1 1 2

1

2

–2

x

y

y =

�–2√3, –√3�
Infl (–2, –2)

Abs min

(2, 2)
Abs max �2√3, √3�

Infl
8x

x2 + 4

(0, 0)
Infl2

2

–2
4 6 8–4–6–8

–4

–6

–8

4

6

8

(3, 6) Loc min

(1, 2) Loc max

x2 – 3
x – 2

y =

x

y

x

y

y = √16 – x2

(0, 4)  Abs max

(4, 0)
Abs min

(–4, 0)
Abs min

1

1–1 2–2

2

3

4

–3

–4

x

y

(0, 0) Inf l

Abs max
(2, 4)

Loc max

  –2√2, 0

2√2, 0
Loc min

y = x√8 – x2

(–2, –4)
Abs min

⎞⎠⎞⎠

⎞⎠⎞⎠

1–1

2

3

4

2 3–2
x

y

Inf l

 –1/2, 3/
3√4

 (1, 3/2) Loc max

y = x2/3  5–
2 – x⎞⎠⎞⎠

(0, 0)
Cusp
Loc min

⎞⎠⎞⎠

–1
1–1 4 5

–5

x

y

Cusp, Loc max 
(0, 0)

y = 2x – 3x2/3

(1, –1)
Loc min

–2

–1

1

1–1 2 3 4–2–3–4

2

(0, 0) 
Infl

x

y

y = x

√x2 + 1

–1

1 2 3–1–2–3

1

2

–2

x

y

y = x1/5

(0, 0)
Inf l

Vert tan
at x = 0
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49. 51.

53. 55.

57. 59.

61. 63.

65.

67. 69.

71.

� = 0
Inf1

4
�� =

Loc min

4
�� = – Loc max

-

p

2
6 u 6

p

2
y– = 2 tan u sec2 u,

Abs max

� = �

0 6 u 6 2p

Inf l

x = 0

y– = -

1
2

 csc2 
u

2
,y– = 2 sec2 x tan x

Loc min
x = 0

Loc max
x = 8/5

Inf l

x = 4

Infl

x = 8 + 2√6
5

x = 8 – 2√6
5

Infl

y– = 4(4 - x)(5x2
- 16x + 8)

Loc max

x = 0

Infl
x = –2

x = –2√3 x = 2√3

Infl x = 2
Abs minAbs minLoc min

Infl

Inf l

x = 3

x = 1

x = 0

y– = 3sx - 2dsx + 2dy– = 3sx - 3dsx - 1d

Loc max

x = 2
Infl

Loc min

x = –1

x = 1
2

–3 –2 1 2 3

–1
–0.5

1

x

y

y � 1
1 � e–x

(0, 0.5) Inflection

y– = 1 - 2x

1
2
3

x

y

–4� –2� 2� 4�

y � ln (cos x)

Loc
max

(–4�, 0)

Loc
max

(–2�, 0)

Loc
max

(2�, 0)

Loc
max
(0, 0)

Loc
max

(4�, 0)

–1.5 –1 –0.5 0.5 1 1.5 2

–2

–1.5

–1

–0.5

0.5

1.

x

y

y � ex � 2e–x � 3x

(0, –1)
Loc max

(ln 2, 1 � 3 ln 2)
Loc min

y �        ln 2,         ln 2

Inflection

⎞⎠⎞⎠⎞⎠
1
2

⎞⎠ ⎞⎠⎞⎠
3
2

–

–3 –2 –1 1 2 3

–3

–2

–1

1

2

x

y

–√3 √3

y � ln (3 � x2)

(0, ln 3)
Loc max

–3 –2 –1 1 2 3 4 5 6

–2

–1

1

2

3

4

x

y

(1, e)
Loc min

y � xe1�x

73.

75. 77.

79. 81.

x = 0

Infl

y– = e -2, x 6 0

2, x 7 0

x = 1
Abs min

Infl
vert tan
x = 0

x = –2
Infl

x = –1
Infl
Vert tan

y– =

1
3

 x-2>3
+

2
3

 x-5>3y– = -

2
3

 sx + 1d-5>3

t = 0
Loc min

Abs max

2
�t =

2
t =

t = �
Infl

3�

Abs min

 Loc max
     t = 2�

y– = -sin t, 0 … t … 2p
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y

Loc min

y'' y'

Inf l

Loc max

P

x

y

83.

85. 87.

89. 91.

–1 1

–2

–1

y

x = –1

y = –1

x = 1

–√2 √2

x2 – 2

x2 – 1
y = –

1

x2 – 1
y =

x

1

–1

x

y

x =  – 1 x =  1

1

x2 – 1
y =

–1 1

–1 1

1

2

x

y

x4 + 1

x2
y =

 1
x2

y =

y = x2

210 3

–2

–1
–1

1

2

4

3

5

x

y

2x2 + x – 1

x2 – 1
y =

1
x – 1

y =

y = 2

x = 1

x

y

y''

y'

Inf lInf l

Loc
min

P y
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93. 95.

97. 99.

101.

103. 105.

107. (a) Towards origin: and ; away from
origin: and 

(b) (c)

(d) Positive: 
negative: 

109.
111. Local minimum at inflection points at and 
115.
119.
121.
123. The zeros of and are extrema and points of

inflection, respectively. Inflection at , local maximum at
, local minimum at .

0 3

–200

4 5

200

–400

x

y

y' = 5x3(x – 4)

y = x5 – 5x4 – 240

y" = 20x2(x – 3)

x = 4x = 0
x = 3

y– = 0y¿ = 0
a = 1, b = 3, c = 9
-1, 2
b = -3

x = 5> 3x = 1x = 2;
L  60 thousand units

0 … t … 5, 7 … t … 13
13 … t … 15;5 … t … 7,

t = 5, t = 7, t = 13t = 2, t = 6, t = 10
10 … t … 152 … t … 6

6 … t … 100 … t 6 2

7

4

1

2 4 60
x

y

(2, 1)

(4, 4)

(6, 7)

0 1

2

x

y

y = 8/(x2 + 4)

–1 1

1

0

–1

x

y

x

x2 – 1x = –1

x = 1

y =

–2–6 –4 41

–16

–12

–8

–4

y

x

9
x + 2

y =

(x – 1)3

x2 + x – 2
y =

y = x – 4

x  = –2

9
2

0

x

y

1
x – 1

y =

x = 1

y = x

x2 – x + 1
x – 1

y =

3

–1

211 2 3–2–3–4

–4

x

y

x2

x + 1
y =

y = x – 1

x = –1

125. The zeros of and are extrema and points of
inflection, respectively. Inflection at local maximum
at local minimum at 

Section 4.5, pp. 261–262
1. 3. 5. 7. 9. 11. 13. 0

15. 17. 19. 21. 2 23. 3 25.

27. 29. 31. ln 2 33. 1 35. 37. ln 2

39. 41. 43. 45. 1 47. 0 49. 2

51. 53. 1 55. 57. 59. 1 61.

63. 0 65. 1 67. 3 69. 1 71. 0 73.

75. (b) is correct. 77. (d) is correct. 79. 81. (b)

83. 87. (a) (b)

89. (a) We should assign the value 1 to to make it
continuous at 

(c) The maximum value of is close to 1 near the point
(see the graph in part (a)).

Section 4.6, pp. 268–274
1. 16 in., 4 in. by 4 in.
3. (a) (b)

(c) square units, 1 by 

5. 7. 400 m by 200 m

9. (a) The optimum dimensions of the tank are 10 ft on the base
edges and 5 ft deep.

(b) Minimizing the surface area of the tank minimizes its weight
for a given wall thickness. The thickness of the steel walls
would likely be determined by other considerations such as
structural requirements.

11. 13. 15. h : r = 8 : p
p

2
9 * 18 in.

80,000 m2 ;
14
3

*

35
3

*

5
3

 in., 
2450
27

 in3

1
2

1
2

Asxd = 2xs1 - xdsx, 1 - xd

x L 1.55
ƒ(x)

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

x

y

y = (sin x)x

x = 0.
ƒ(x) = (sin x)x

y = 0, y =

3
2

y = 1-1

-1
2

c =

27
10

q

e3e1>21>e1>e
-1-1>2- q

1>21
ln 2

ln 3

-11>4-2-16

5>7-23>71>41>25>7-1>4

50

2–3

100

3

–50

–100

y' = 4x(x3 + 8)

y" = 16(x3 + 2)

x

y

y = x5 + 16x2 – 254
5

x = 0.x = -2;
x = - 23 2;

y– = 0y¿ = 0
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P
Q 0
R
S 0
T --

-

-+

+

+-

y–y¿
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17. (a) (b) Domain: (0, 9)

(c) when 
(d) so the critical point is at 

which confirms the result in part (c).
(e) or 

19.
21. (a)

(b)

23. If r is the radius of the hemisphere, h the height of the cylinder,

and V the volume, then and 

25. (b) (c)

27.

29. 1 31. m, triangle, m, circle

33. 35. (a) 16 (b)

37. (a)
(b) 256 ft at 
(c) Velocity when is 

39. 41. (a)

43. (a)
45. (a) when 1.5 sec, 2.5 sec,

3.5 sec; acceleration is 0.
(b) 10 cm from rest position; speed is 0.

47. (a)
(b) 8 knots
(c) No
(e) This limit is the square root of the sums of the

squares of the individual speeds.

49. 51.

53. (a) (b)

57. $288 59. 65. (a)

67. (a) The minimum distance is 
25
2

.

y = -1M =

C
2

4 * 4 * 3 ft,
A

2km
hA

2km
h

c
2

+ 50x =

a
2

, y =

ka2

4

4213.

-12 knots ,
s = ss12 - 12td2

+ 64t2d1>2

s = 0,
t = 0.5 sec ,10p L 31.42 cm> sec ;

423 * 426 in.

6 * 623 in.L  46.87 ft

ys7d = -128 ft>sec.s = 0
t = 3 sec

ys0d = 96 ft>sec

-1
3
2

* 2

b23p

9 + 23p

9b

9 + 23p

Radius = 22 m, height = 1 m, volume =

2p
3

 m3

L L 11 in.x =

51
8

h = a3V
p b

1>3
.r = a3V

8p
b1>3

V

V = 54h2 –

h
5

2000

4000

6000

8000

10000

0
10 20 3015 25 35

(24, 10368)
Abs max

h33
2

h = 24, w = 18
L  2418.40 cm3

x = 5 in.x = 2 in.
x = 7 - 213,

V¿sxd = 24x2
- 336x + 864,

x L 3.39 in.Maximum volume L 1309.95 in3

V

x

1600

1200

800

400

2 4 6 8

Maximum
x = 3.3944487 V = 1309.9547

Vsxd = 2xs24 - 2xds18 - 2xd (b) The minimum distance is from the point (3 2, 0) to the point
(1, 1) on the graph of and this occurs at the value

where D(x), the distance squared, has its minimum
value.

Section 4.7, pp. 277–279

1. 3. 5.

7. x1, and all later approximations will equal 
9.

11. The points of intersection of and or
and have the same x-values as the roots of

part (i) or the solutions of part (iv). 13. 1.165561185
15. (a) Two (b) 0.35003501505249 and 
17. 19.
21. 0.8192 23. 0, 0.53485 25. The root is 1.17951.
27. (a) For or as i gets large.

(b) For or as i gets large.
(c) For or as i gets large.
(d) For or Newton’s method does

not converge. The values of alternate between 
and as i increases.

29. Answers will vary with machine speed.

Section 4.8, pp. 285–289

1. (a) (b) (c)

3. (a) (b) (c)

5. (a) (b) (c)

7. (a) (b) (c)

9. (a) (b) (c)
11. (a) ln x (b) 7 ln x (c)

13. (a) (b) (c) -

1
p cos spxd + cos s3xd-3 cos xcos spxd

x - 5 ln x
x-1>3x1>3x2>3
22x3

3
+ 21x1x2x3

2x +

5
x-

5
x-

1
x

-

1
3

 x-3
+ x2

+ 3x-

1
3

 x-3x-3

x3

3
- x2

+ x
x3

3
x2

221>7 -221>7xi

x0 = 221>7,x0 = -221>7
x0 = 2, xi : 1x0 = 0.8

x0 = 0.25, xi : 0x0 = -0.5
x0 = -0.8, xi : -1x0 = -2

x L 0.45;1.3065629648764, ;0.5411961001462
-1.0261731615301

y = 1y = x3
- 3x

y = 3x + 1y = x3

y

x
h

y =
⎧
⎨
⎩

–h

  √x  , x ≥ 0

√–x, x < 0

x0 .

x2 =

2387
2000

x2 = -

51
31

, 
5763
4945

x2 = -

5
3

, 
13
21

y, D(x) D(x) = x2 – 2x +

x
0.5 1.5 2.51 2

 √5
2

Dmin=

9–
4

y = √x

0.5

1

1.5

2

2.5

x = 1,
y = 1x ,

>
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15. (a) (b) (c)

17. (a) (b) (c)

19. (a) (b) (c)

21. (a) (b) (c)

23. (a) (b) (c)

25. 27. 29.

31. 33.

35. 37.

39. 41. 43.

45. 47. 49.

51. 53.

55. 57.

59. 61.

63. 65. 67.

69.

83. (a) Wrong: 

(b) Wrong: 

(c) Right: 

85. (a) Wrong: 

(b) Wrong: 

(c) Right: 

87. Right 89. (b) 91.

93. 95.

97. 99.

101. 103.

105. 107.

109. 111.

113. 115.

117.

119. (a) (i) 33.2 units, (ii) 33.2 units, (iii) 33.2 units (b) True
121. t = 88>k, k = 16

y = -sin x - cos x - 2

y = x - x4>3
+

1
2

y = 2x3>2
- 50

y = -sin t + cos t + t3
- 1y = x3

- 4x2
+ 5

r =

1
t + 2t - 2y = x2

- x3
+ 4x + 1

y = 3 sec-1 t - py =

1
2

 sec t +

1
2

r = cos sp ud - 1s = t + sin t + 4

y = 9x1>3
+ 4y = -

1
x +

x2

2
-

1
2

y = x2
- 7x + 10

d
dx

 ss2x + 1d3
+ Cd = 6s2x + 1d2

6s2x + 1d2

d
dx

 ss2x + 1d3
+ Cd = 3s2x + 1d2s2d =

2s2x + 1d2

d
dx

 as2x + 1d3

3
+ Cb =

3s2x + 1d2s2d
3

=

cos x = x sin x

d
dx

 s -x cos x + sin x + Cd = -cos x + x sin x +

d
dx

 s -x cos x + Cd = -cos x + x sin x

x sin x +

x2

2
 cos x

d
dx

 ax2

2
 sin x + Cb =

2x
2

 sin x +

x2

2
 cos x =

-cos u + u + C

-cot x - x + Ctan u + C
3x s23 + 1d

23 + 1
+ C

ln ƒ x ƒ - 5 tan-1 x + C
t
2

+

sin 4t
8

+ C

-

1
2

 cos 2x + cot x + C4 sec x - 2 tan x + C

-e-x
+

4x

ln 4
+ C

1
3

 e3x
- 5e-x

+ C

-

1
2

 csc u + C3 cot x + C-21 cos 
u

3
+ C

-2 sin t + C22t -

2

2t
+ Cx2

+

2
x + C

4y2
-

8
3

 y3>4
+ C

2
3

 x3>2
+

3
4

 x4>3
+ C

3
2

 x2>3
+ C-

1
x -

x3

3
-

x
3

+ C

x4

2
-

5x2

2
+ 7x + Ct3

+

t2

4
+ C

x2

2
+ x + C

1
2

 tan-1 2x
1
2

 tan-1 x2 sin-1 x

1
ln (5>3)

 a5
3
b x

-1
ln 2

 2-x1
ln 3

 3x

2ex>2
-e-x1

3
 e3x

2 csc apx
2
b1

5
 csc s5xd-csc x

-

2
3

 tan a3x
2
b2 tan ax

3
btan x

123. (a) (b)
127. (a) (b) (c)

(d) (e) (f)

Practice Exercises, pp. 289–293
1. No 3. No minimum; absolute maximum: critical

points: and 
5. Absolute minimum: no absolute maximum; critical

point 
7. Absolute minimum: at absolute maximum 1

at 
9. Yes, except at 11. No 15. (b) one

17. (b) 0.8555 99677 2 23. Global minimum value of at

25. (a) 6, 12 (b) 9 (c)
(d)

27. 29.

31. 33.

35. 37.

39. 41.

–3 –2 –1 1 2 3

–2

–1

1

2

x

y

�
2

�
2

–

y � sin–1(1�x)

–5 –3 2 5 7

–4
–3
–2
–1

1
2
3
4
5

x

y

ln 3

y � ln(x2 � 4x � 3)

–4 –3 –2 –1 10 2 3 4
1
3
5

9
11

x

y

y � (x � 3)2ex1 � √2,  6 � 4√2 e1�√2⎞⎠ ⎞⎠⎞⎠ ⎞⎠

1 � √2,  6 � 4√2 e1�√2⎞⎠ ⎞⎠⎞⎠ ⎞⎠

(1, 4e)

1

–1

1–1 2 3

2

–2

y = x√3 – x

x

y

9 18 27
–4

–3

y = x – 3x2/3

x

y

(8, –4)

100

–2 4 6 8–1

200

300

400

500

–100
0 2

(4, 256)

(6, 432)
y = x3(8 – x)

x

y

1 2
–1

1

3

3

4

y = –x3 + 6x2 – 9x + 3

x

y

1–1 2 4–2 6

–2

0

1

x

y

15
3

x3

6

8
3

y = x2 –

0 6 t 6 6, 12 6 t 6 14
6 6 t 6 12t = 3,t = 0,

x = 2
1
2

x = 0
x = 1

x = 2;2 - 2 ln 2
x = 0

g(0) = 1;
11>3x = 1

ƒs1d = 16;

-x - 1x + Cx - 1x + C-x + C
1x + Cx + C-1x + C

s = 4t5>2
- 4t3>2y = 10t3>2

- 6t1>2
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43. (a) Local maximum at local minimum at 
inflection point at 

(b)

45. (a) Local maximum at local minima at and
inflection points at 

(b)

47. (a) Local maximum at local minimum at 
inflection points at and 0

(b)

53. 55.

57. 59.

61. 5 63. 0 65. 1 67. 69. 0 71. 1
73. ln 10 75. ln 2 77. 5 79. 81. 1 83.
85. (a) 0, 36 (b) 18, 18 87. 54 square units

89. height = 2, radius = 22

ebk
- q

3>7

–1
1–1 2 3 4–3–4

–2

–3

2

3

4

0

y = 1

x = √3x = –√3

x

y

x2 – 4

x2 – 3
y =

1

–1

1 2 3

–3

2

3

4

0

x3 + 2
2x

x2

2

x2

2

1
x

1
x

y =

y =

y =

= +

x

y

1

–1
1–1 2 3 4–2–3–4

–2

–3

–4

2

3

4

5

–5

x

y

(1, 2)

y = x

(–1, –2)

x2 + 1
xy =

1
x= x +

1

–1

–3

2

5

2 3 4 6
x

y

x + 1
x – 3

4
x – 3

y = = 1 +

Infl

x = 0

Infl
x = 1

Loc min

Loc max

Infl
x = –1x = –√2

x = √2

x = ;1
x = 22,x = -22,

x = –1 x = 2

Loc minLoc min

Infl

Loc max

1 – √7
3

x =
1 + √7

3
x =

Inf l

x = 0

x = (1 ; 27)>3x = 2,
x = -1x = 0,

x = –4

Loc min

x = 0
Infl

Loc max

x = 4

x = 0
x = -4,x = 4, 91.

93. Dimensions: base is 6 in. by 12 in., -

95. 97.

99. 101. 103.

105. 107.

109. 111.

113. 115.

117. 119.

121. 123.

125. Yes, and differ by the constant 

127. units long by units high, 
129. at 

at 
131. are the critical points; is a horizontal asymptote in 

both directions; absolute minimum value of the function is 

at , and absolute maximum value is at .
133. (a) Absolute maximum of 2 e at inflection point

concave up on concave down 

on 
(b) Absolute maximum of 1 at inflection points 

concave up on con-
cave down on 

(c) Absolute maximum of 1 at inflection point (1, 2 e),
concave up on concave down on 

Additional and Advanced Exercises, pp. 293–296
1. The function is constant on the interval.
3. The extreme points will not be at the end of an open interval.
5. (a) A local minimum at points of inflection at 

and (b) A local maximum at and local minima

at and points of inflection at 

9. No 11. 13. Yes
15. Drill the hole at 

17.

19. (a) (b) (c) (d) 0 (e) (f) 1 (g)

(h) 3

21. (a) (b) (c)

(d)

23. m0 = 1 -

1
q, m1 =

1
q

c + b + t
2

b2
- 2bc + c2

+ 4ae
4e

c + b
2

c - b
2e

1
2

-

1
2

1
2

5
3

10
3

r =

RH
2sH - Rd

 for H 7 2R, r = R if H … 2R

y = h>2.
a = 1, b = 0, c = 1

x =

1 ; 27
3

x = 2,x = -1

x = 0x = 2
x = 0x = -1,

s - q , 1ds1, q d ,
>x = 0,

s -1>22, 1>22d
s - q , -1>22d ´ s1>22, q d ,1>2ed ,

s ;1>22,x = 0,
s0, e8>3d

se8>3, q d ,se8>3, s8>3de-4>3d ,
x = e2 ,>

x = 1e22>2x = -1

e-22>2
y = 1x = ;1

x = 0.5
-0.5absolute minimum =x = e>2,Absolute maximum = 0

A = 1>22e L 0.43 units21>2e1>22

p>2.-cos-1sxdsin-1sxd

r = 4t5>2
+ 4t3>2

- 8ty = x -

1
x - 1

3
2

 sec-1 ƒ x ƒ + C
u2 -p

2 - p
+ C

1
2

 et
+ e-t

+ C3 ln x -

x2

2
+ C

1
2

 x - sin 
x
2

+ C-

1

22
 csc 22 u + C

10 tan 
s

10
+ C

1
3

 s1 + x4d3>4
+ C

(u2
+ 1d3>2

+ C-

1
r + 5

+ C2t3>2
-

4
t + C

x4

4
+

5
2

 x2
- 7x + Cx5 = 2.1958 23345

mum volume = 144 in.3
maxiheight = 2 in.;

y = 2s5 - 25d hundred L 553 tires

x = 5 - 25 hundred L 276 tires,
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25.

27. (a) (b) 25 ft

29. Yes, 31.

CHAPTER 5

Section 5.1, pp. 304–306
1. (a) 0.125 (b) 0.21875 (c) 0.625 (d) 0.46875
3. (a) 1.066667 (b) 1.283333 (c) 2.666667 (d) 2.083333
5. 0.3125, 0.328125 7. 1.5, 1.574603
9. (a) 87 in. (b) 87 in. 11. (a) 3490 ft (b) 3840 ft

13. (a) 74.65 ft sec (b) 45.28 ft sec (c) 146.59 ft

15. 17. 1

19. (a)
(b)
(c)

21. (a) 2 (b)

(c)

(d) Each area is less than the area of the circle, As n
increases, the polygon area approaches 

Section 5.2, pp. 312–313

1.

3.

5. 7. All of them 9. b

11. 13. 15.

17. (a) (b) 1 (c) 1 (d) (e) 16
19. (a) 55 (b) 385 (c) 3025
21. 23. 25. 240 27. 3376
29. (a) 21 (b) 3500 (c) 2620
31. (a) 4n (b) cn (c)

33. (a) (b)

x

y
(2, 3)

f (x) = x2 – 1,
0 ≤ x ≤ 2
Right-hand

0 c3c1 c4 = 2

3

2

1

–1

c2 = 1
x

y

(2, 3)

f (x) = x2 – 1,
0 ≤ x ≤ 2
Left-hand

c1 = 0 c3 = 1 c4c2 2

3

2

1

–1

(n2
- n)>2

-73-56

-11-15

a

5

k = 1
 s -1dk + 1 

1
ka

4

k = 1
 
1
2ka

6

k = 1
 k

sin p - sin 
p

2
+ sin 

p

3
=

23 - 2
2

coss1dp + coss2dp + coss3dp + coss4dp = 0

6s1d
1 + 1

+

6s2d
2 + 1

= 7

p .
p .

8 sin ap
8
b L 3.061

222 L 2.828

L  31.4 h, L  32.4 h
Upper = 2363 gal, lower = 1693 gal
Upper = 758 gal, lower = 543 gal

31
16

>>

y0 =

222
3

 b3>4y = x + C

k = -38.72

s

t

400

200

0

1000

800

600

1 2 3 65 74

s = soekt

s = 16t2

s = cekt (c)

35. (a) (b)

(c)

37. 1.2 39. 41.

43. 45.

Section 5.3, pp. 321–325

1. 3. 5.

7.

9. (a) 0 (b) (c) (d) 10 (e) (f) 16
11. (a) 5 (b) (c) (d)
13. (a) 4 (b) 15.
17. 19.
21. 23. 25.
27. (a) (b) 29. 31. 33. 7>3
35. 1>24 37. 39. 41. 43.
45. 47. 7 49. 0
51. Using n subintervals of length and right-endpoint

values:

53. Using n subintervals of length and right-endpoint
values:

Area =

L

b

0
2x dx = b2

¢x = b>n
Area =

L

b

0
3x 2 dx = b3

¢x = b>n-7>4
-2-14b>33a2>2

3p2>21>2p2p
b2

- a2b2>4Area = 3 square units
Area = 2.5 square unitsArea = 9p>2 square units

Area = 21 square units-4
-5-5523

-2-12-8
L

0

-p>4 sec x dx

L

3

2
 

1
1 - x

 dx
L

5

-7
sx2

- 3xd dx
L

2

0
x2 dx

1
2

+

1
n +

1
2n2, 1

2
5
6

+

6n + 1
6n2 , 5

6

12 +

27n + 9
2n2 , 12

2
3

-

1
2n

-

1
6n2, 2

3

f (x) = sin x,
–� ≤ x ≤ �
Midpoint 1

–1

x

y

c2c1

c3 c4
–� ��/2

–�/2

f (x) = sin x,
–� ≤ x ≤ �
Right-hand 1

–1

x

y

c3c1–� c4 = �c2 = 0

f (x) = sin x,
–� ≤ x ≤ �
Left-hand 1

–1

x

y

c4c2 �c3 = 0c1 = –�

x

y

(2, 3)

f (x) = x2 – 1,
0 ≤ x ≤ 2
Midpoint

0 c3c1 c4

3

2

1

–1

c2
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55. 57. 59.
61. (a) (b) (c)

63. 65. 67. 9 69.
71. and maximize the integral.
73.

75. For example, 

77. 79.

Section 5.4, pp. 333–336
1. 6 3. 5. 8 7. 1 9. 11. 0

13. 15. 17. 19.

21. 23. 25. 27. 16

29. 31. 33. 35.

37. 39. 41.

43. 45. 47. 49. 0

51. 1 53. 55. 1 57. 28>3 59. 1>2 61.

63. 65. d, since and 

67. b, since and 

69. 71. 73. $9.00

75. a.

b.
77. 79.
81. (a) True. Since ƒ is continuous, g is differentiable by Part 1 of

the Fundamental Theorem of Calculus.
(b) True: g is continuous because it is differentiable.
(c) True, since 
(d) False, since 
(e) True, since and 
(f) False: so never changes sign.
(g) True, since and is an in-

creasing function of x (because ).

83. (a)

(b) is negative since the slope of the tangent line at
is negative.

(c) since the integral is the 

area of the triangle formed by the x-axis, and

(d) since after to the region lies below the 
x-axis.

(e) At and since there are horizontal tangents
there.

t = 7,t = 4

t = 9,t = 6t = 6
x = 3.

y = ƒsxd ,

s =

L

3

0
ƒsxd dx =

1
2

 s3ds3d =

9
2

 m

t = 5
a = df>dt

y =

ds
dt

=

d
dtL

t

0
ƒsxd dx = ƒstd Q ys5d = ƒs5d = 2 m>sec

ƒ¿sxd 7 0
g¿sxd = ƒsxdg¿s1d = ƒs1d = 0

g–g–sxd = ƒ¿sxd 7 0,
g–s1d = ƒ¿s1d 7 0.g¿s1d = 0

g–s1d = ƒ¿s1d 7 0.
g¿s1d = ƒs1d = 0.

-3x + 52x - 2
av(T ) = 75°F
T(25) = 85°F
T(0) = 70°F, T(16) = 76°F

2
3

 bhy =

L

x

2
sec t dt + 3

ys0d =

L

0

0
sec t dt + 4 = 4y¿ = sec x

yspd =

L

p

p

 
1
t  dt - 3 = -3y¿ =

1
x

22p
2

p2xe (1>2)x2

-

1
2

 x-1>2 sin x21 + x23x2e-x3

4t5scos1xd a 1
21x

b226 - 25

1
2

 (e - 1)
1
p (4p - 2p)2p>37>3

-122 -
428 + 1-3>4

-8>32 - 12
4

1 -

p

4
-p>4

223-10>3

Upper bound = 1>2
L

b

a
ƒsxd dx Ú

L

b

a
0 dx = 0

L

1

0
 sin sx 2d dx …

L

1

0
 dx = 1

Upper bound = 1, lower bound = 1>2b = 1a = 0
b4>4 - a4>4b3>3 - a3>3c (b - a)

avsgd = 1>4avsgd = 1avsgd = -1>2 avsƒd = 1avsƒd = -2avsƒd = 0 (f) Toward the origin between and since the
velocity is negative on this interval. Away from the origin
between and since the velocity is positive there.

(g) Right or positive side, because the integral of ƒ from 0 to 9
is positive, there being more area above the x-axis than
below.

Section 5.5, pp. 342–344

1. 3.

5. 7.

9. 11.

13.

15. (a) (b)

17. 19.

21. 23.

25. 27.

29. 31.

33. 35.

37. 39.

41.

43.

45.

47. 49.

51. 53. 55.

57. 59.

61. 63. 65.

67. (a) (b)

(c)

69. 71.

73.

75. 77. 6 ms = sin a2t -

p

2
b + 100t + 1

s = 4t - 2 sin a2t +

p

6
b + 9

s =

1
2

 s3t 2
- 1d4

- 5
1
6

 sin 23s2r - 1d2
+ 6 + C

-

6
2 + tan3 x

+ C

-

6
2 + tan3 x

+ C-

6
2 + tan3 x

+ C

ln ƒ tan-1 y ƒ + C
1
3

 ssin-1 xd3
+ Cesin-1 x

+ C

5
6

 tan-1 a2r
3
b + Cz - ln (1 + ez ) + C

ln ƒ ln x ƒ + C2 tan Ae2x
+ 1 B + Cesin x

+ C

-1
4 (x2

- 4)2 + C
1
5

 sx2
+ 1d5>2

-

1
3

 sx2
+ 1d3>2

+ C

-

1
8

 (1 - x)8
+

4
7

 (1 - x)7
-

2
3

 (1 - x)6
+ C

1
12

 (x - 1)12
+

1
11

 (x - 1)11
+ C

2
27

 a1 -

3
x3 b

3>2
+ C

2
3

 a2 -

1
x b

3>2
+ C

1
16

 s1 + t4d4
+ C

-

sin2 s1>ud
2

+ C-sin a1t - 1b + C

1
2 cos s2t + 1d

+ C-

2
3

 cos sx3>2
+ 1d + C

a r3

18
- 1b6

+ C
1
2

 sin6 ax
3
b + C

1
3

 tan s3x + 2d + Cs -2>s1 + 1xdd + C

-

2
5

 s1 - u2d5>4
+ C-

1
3

 s3 - 2sd3>2
+ C

-

1
4

 scsc2 2ud + C-

1
4

 scot2 2ud + C

1
3

 sx3>2
- 1d -

1
6

 sin s2x3>2
- 2d + C

-6s1 - r3d1>2
+ C

1
2

 sec 2t + C

-

1
3

 cos 3x + C
1

10
 (3x2

+ 4x)5
+ C

-  

1
3

 (x2
+ 5)-3

+ C
1
6

 (2x + 4)6
+ C

t = 6t = 0

t = 9t = 6
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Section 5.6, pp. 350–354
1. (a) 14>3 (b) 2>3 3. (a) 1>2 (b)
5. (a) 15>16 (b) 0 7. (a) 0 (b) 1>8 9. (a) 4 (b) 0
11. (a) 1>6 (b) 1>2 13. (a) 0 (b) 0 15.
17. 3>4 19. 21. 3 23. 25. e

27. ln 3 29. 31. 33. ln 2 35. ln 27 37.

39. 41. 43. 45.
47. 16>3 49. 51. 53. 128>15 55. 4>3
57. 5>6 59. 38>3 61. 49>6 63. 32>3 65. 48>5
67. 8>3 69. 8 71. 5>3 (There are three intersection points.)
73. 18 75. 243>8 77. 8>3 79. 2 81. 104>15

83. 56>15 85. 4 87. 89. 91. 2 93. 1>2
95. 1 97. ln 16 99. 2 101. 2 ln 5

103. (a) (b) (c)
105. 11>3 107. 3>4 109. Neither 111.
113. (a) (b) 3 115.

Practice Exercises, pp. 354–357
1. (a) about 680 ft (b)

3. (a) (b) 31 (c) 13 (d) 0

5. 7.

9. (a) 4 (b) 2 (c) (d) (e) 8>5
11. 8>3 13. 62 15. 1 17. 1>6 19. 18 21. 9>8
23. 25. 4 27.

29. Min: max: 0, area: 27>4 31. 6>5 33. 1

37. 39.

41. 43.

45. 47.

49. 51. 53.

55. 57. ln (9 25) 59.

61. 63.

65. 67.

69. 71. 73. 16

75. 2 77. 1 79. 8 81. 83.

85 87. 89. 91. 2 93. 1

95. 97. 99. 1 6 101. 9 14

103. 105. 107. 109.

111. 113. (a) b (b) bp>12

sec-1 ƒ 2y ƒ + Cp>23p
9 ln 2

4

>>e - 115>16 + ln 2

-1623 - 2p23

p>22723>160

22tan- 1 y + Cesin-1 2x
+ C

1
4

 sec-1 ` 2x - 1
2
` + C

22
2

 tan-1 ax - 1

22
b + C

3
2

 sin-1 2sr - 1d + C
1

2 ln 3
 A3x2 B + C

-

1
2

 sln xd-2
+ C>- ln 7

3

etan x
+ Ctan sex

- 7d + C-

1
3

 cos s2t3>2d + C

t3

3
+

4
t + Cu2

+ u + sin s2u + 1d + C

-4scos xd1>2
+ Cy = sec-1 x +

2p
3

, x 7 1

y = sin-1 xy =

L

x

5
asin t

t b  dt - 3

-4,

822 - 7
6

p2

32
+

22
2

- 1

-2p-2
L

0

-p

cos 
x
2

 dx = 2
L

5

1
s2x - 1d-1>2 dx = 2

-1>2
100

0 2 4 6 8

200
300
400
500
600
700

t (sec)

h (feet)

I = a>2-3
Fs6d - Fs2d

c = 42>3c = 42>3(;2c, c)

p>24
3

-

4
p

p>225>2 -p>1223 - 12p>3p>12

p
1

ln 4
sln 2d2

p>335>2
- 1

223

-1>2 117. (a)

(b)

119. 25°F 121. 123.

125. 127.

129. Yes 131.
133. using a lower sum estimate

Additional and Advanced Exercises, pp. 358–361
1. (a) Yes (b) No 5. (a) 1>4 (b)

7. 9.

11. 36>5 13.

15. 13>3

17. 1>2 19. 21. 23. 1>6 25.

27. (b)
29. (a) 0 (b) (c) (d)

(e) (f) (g)

31. 2>x 33. 35.

37. 39. 41. 43. 2 17

CHAPTER 6

Section 6.1, pp. 371–374
1. 16 3. 5. (a) (b) 8 7. (a) 60 (b) 36

9. 11. 10 13. (a) (b) 15.

17. 19. 21. 23. 25.

27. 29. 31. 33.

35. 37. 39. 41.

43. 45. 47. 49.
7p
6

8p
4p
3

psp - 2d

117p
5

2p
3

p2
- 2p4p ln 4

2p2pp ap
2

+ 222 -

11
3
bp

2
 ln 4

p

2
 a1 -

1
e2 bp36p

32p
5

4 - p

2p
3

s2hs2h8p

22316>3

>1
ln 2

,  
1

2 ln 2
,  2 : 1x = 1ssin xd>x

2x ln ƒ x ƒ - x ln 
ƒ x ƒ

22

sin 4y

1y
-

sin y

21y

[-2p, 0]x = -1, x = 2y = 2x + 2 - p

x = 1-p-1
pr2

L

1

0
ƒsxd dxln 2p>2

y = 2

y = 1 y = 1 – x2

x

y

–2 –1 1 2

2

t

y

y � sin �t

y � t
1

1 20

–1

y = –4

y = x2 ⁄ 3

–8 –4 3

4

2

–4

0
x

y

1
2

-

2
p

y = x 3
+ 2x - 4ƒsxd =

x

2x 2
+ 1

23 12

Cost L $10,899
-21 + x2

dy

dx
=

1

21 - x2 21 - 2 (sin-1 x)2

dy

dx
=

-2
x  ecos (2 ln x)

-6
3 + x422 + cos3 x

1
e - 1

d
dx

 sx ln x - x + Cd = x # 1
x + ln x - 1 + 0 = ln x
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51. (a) (b) (c) (d)

53. (a) (b) (c) 55.

57. (a) (b)

61. 63.

Section 6.2, pp. 379–381
1. 3. 5. 7. 9.

11. 13. (b) 15.

17. 19. 21.

23. (a) (b) (c)
(d) (e) (f)

25. (a) (b) (c) (d)

27. (a) (b) (c) (d)

29. (a) About the x-axis: about the y-axis: 

(b) About the x-axis: about the y-axis: 

31. (a) (b) (c) (d)

33. (a) (b)

35. (a) (b)

37. (a) (b)

39. Disk: 2 integrals; washer: 2 integrals; shell: 1 integral

41. (a) (b) 47.

Section 6.3, pp. 386–387

1. 12 3. 5. 7. 9. 2

11. (a) (c)

13. (a) (c)

15. (a) (c)

17. (a) (c)

19. (a) from (1, 1) to (4, 2)
(b) Only one. We know the derivative of the function and the

value of the function at one value of x.
21. 1 27. Yes, where C is any real number.

31.
2

27
 (103>2

- 1)

ƒ(x) = ;x + C

y = 1x

L  0.55
L

p>6
0

 sec x dx

L  9.29
L

3

-1
21 + s y + 1d2 dy

L  3.82
L

p

0
21 + cos2 y dy

L  6.13
L

2

-1
21 + 4x2 dx

99
8

123
32

53
6

p a1 -

1
e b244p

3
256p

3

9p
16

9p
16

48p
5

24p
5

7p
30

4p
15

2p
3

2p
4p
3

5p
3

V =

p

6
V =

2p
15

;

V =

p

6
V =

2p
15

;

2p2p
4p
5

6p
5

108p
5

72p
5

27p
2

27p
2

48p60p24p
28p32p16p

16p
3

4p
3

8p
3

16p
15

 (322 + 5)4p
7p
15

5p>68p14p>32p6p

4 - b + a
2

V = 3308 cm3

1
120p

  m>secV =

ph2(3a - h)

3

V = 2a2bp264p
15

56p
15

16p
15

224p
15

8p
3

32p
5

8p Section 6.4, pp. 391–393

1. (a) (c) S 

(b)

3. (a) (c) S 

(b)

5. (a) (c) S

(b)

7. (a) (c) S

(b)

9. 11. 13. 15.

17. 19. 21.

23. 27. Order 226.2 liters of each color.253p>20

p a15
16

+ ln 2b35p25>3p(28 - 1)>9
2p98p>813p254p25

0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

y

x

x = tan t dt
y

L0

L  2.082p
L

p>3
0
a
L

y

0
 tan t dtb  sec y dy

1 2 3 4
1

2

3

4

y

x1/2 + y1/2 = 3

x

L  63.372p
L

4

1
s3 - x1>2d221 + s1 - 3x-1>2d2 dx

0.5 0.6 0.7 0.8 0.9 1

1.2

1

1.4

1.6

1.8

2

xy = 1

x

y

L  5.022p
L

2

1
 
1
y  21 + y -4 dy

0.2 0.4 0.6 0.8

0.2

0

0.4

0.6

0.8

1

x

y

y = tan x

L  3.842p
L

p>4
0

 (tan x) 21 + sec4 x dx
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Section 6.5, pp. 398–402
1. 3. 4 cm, 0.08 J
5. (a) 7238 lb in. (b) 905 in.-lb, 2714 in.-lb
7. 780 J 9. 72,900 ft-lb 11. 160 ft-lb

13. (a) 1,497,600 ft-lb (b) 1 hr, 40 min
(d) At a) 1,494,240 ft-lb   b) 1 hr, 40 min

At a) 1,502,160 ft-lb   b) 1 hr, 40.1 min
15. 37,306 ft-lb 17. 7,238,299.47 ft-lb
19. 2446.25 ft-lb 21. 15,073,099.75 J
25. 85.1 ft-lb 27. 98.35 ft-lb 29. 91.32 in.-oz
31. 33. 1684.8 lb
35. (a) 6364.8 lb (b) 5990.4 lb 37. 1164.8 lb 39. 1309 lb
41. (a) 12,480 lb (b) 8580 lb (c) 9722.3 lb

43. (a) 93.33 lb (b) 3 ft 45.

47. No. The tank will overflow because the movable end will have
moved only ft by the time the tank is full.

Section 6.6, pp. 411–413
1. 3.
5. 7.
9.

11. 13.

15.

17. (a) (b)

(c)

21. 23. 25.

27.

29. 31.

35.

37. 39. 41.

43. 45.

Practice Exercises, pp. 413–415

1. 3. 5.

7. (a) (b) (c) (d)
9. (a) (b) (c)

11. 13.

15. ft3 17. 19. 3 +

1
8

 ln 2
10
3

28p
3

pp(323 - p)>3
512p>151088p>158p

26p>512p>5p2p

72p
35

p29p
280

x =

a
3

, y =

b
3

22pa3s4 + 3pd>6
x = 0, y =

4b
3p

x = 0, y =

2a
p4p2

V = 32p, S = 3222p

x = 6>5, y = 8>7x = 1>2, y = 4

x = 0, y =

ap
4

13d>6x = a>3, y = b>3x = y = 1>3

(2, 0)
x

y

y =
√x

4

y = –
√x

4

4

–4

0 1 4

x = 2, y = 0
224p

3

x = 3>2, y = 1>2
x = 7, y =

ln 16
12

x =

ln 4
p , y = 0

x L 1.44, y L 0.36
x = 0, y = p>8x = 16>105, y = 8>15

x = 1, y = -3>5x = 0, y = 12>5

3 
1
3

wb
2

5.144 * 1010 J

62.59 lb>ft3:
62.26 lb>ft3:

>400 N>m
21. 23. 25. 4640 J
27. 10 ft-lb, 30 ft-lb 29. 418,208.81 ft-lb
31. 33.
35. 37.
39. 332.8 lb 41. 2196.48 lb

Additional and Advanced Exercises, pp. 415–416

1. 3.

5. 7. 28 3 9.

11.

15. (a)

(b)

17. lb

CHAPTER 7

Section 7.1, pp. 425–427

1. 3. 5.

7. 9. 1 11. 13. 2

15. 17. 19.

21. 23. 1 25. 27.

29. 31. 33. 32760 35.

37. 39. 41. 43. ln 10

45. 47.

49. 51. 53.
55. 57. (b) 0.00469
69. (a) 1.89279 (b) (c) 0.94575 (d)

(e) 5.29595 (f) 0.97041 (g) (h)

Section 7.2, pp. 433–435

9. 11.

13. 15.

17. 19.

21.

23. (a) (b) 10,536 years (c) 82%
25. 54.88 g 27. 59.8 ft 29.
31. (a) 8 years (b) 32.02 years
33. 15.28 years 35. 56,562 years
39. (a) 17.5 min (b) 13.26 min
41. 43. About 6658 years 45. 54.44%

Section 7.3, pp. 441–444
1.

sech x = 4>5, csch x = -4>3
cosh x = 5>4, tanh x = -3>5, coth x = -5>3,

-3°C

2.8147498 * 1014
-0.00001

4 ln (1y + 2) = ex2

+ C

1
3

 ln ƒ y3
- 2 ƒ = x3

+ Cy = sin sx2
+ Cd

e-y
+ 2e2x

= C-x + 2 tan 2y = C

ey
- ex

= C
2
3

 y3>2
- x1>2

= C

-1.61181-1.03972
-2.80735-0.35621

6 + ln 2
p ln 16y = x + ln ƒ x ƒ + 2y = 2se-x

+ xd - 1

y = 1 - cos set
- 2dsln 10d ln ƒ ln x ƒ + C

3 ln 2
2

2sln 2d21
ln 10

 asln xd2

2
b + C

322+ 16
ln 7

1
ln 2

1
2 ln 2

ln s1 + erd + C
1
p esec pt

+ C

-e1>x
+ C-e-t2

+ C2e2r
+ C

2(ln 2)4ln s1 + 2xd + C

ln ƒ 6 + 3 tan t ƒ + Cln ƒ y2
- 25 ƒ + Cln a2

3
b

L2329.6

s2a>p, 2a>pd
x = y = 4sa2

+ ab + b2d>s3psa + bdd

x = 0, y =

n
2n + 1

, s0, 1>2d

4h23mh
3

>p

30 12

ƒsxd = 2C2
- 1 x + a, where C Ú 1ƒsxd = A

2x - a
p

x = 9>5, y = 11>10x = 3>2, y = 12>5 x = 0, y = 8>522,500p ft-lb, 257 sec

4p28p22>3
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3.

5. 7. 9. 13.

15. 17. coth z

19. 21. 23. 2

25. 27.

29. 31. 33.

35. 41.

43. 45.

47. 49. 51.

53. 55. 57. 3 4 59.

61. ln (2 3) 63. 65. ln 3

67. (a) (b)

69. (a) (b)

71. (a)

(b)

73. (a) 0 (b) 0

77. (b) (c) 79. 81.

Section 7.4, pp. 448–449
1. (a) Slower (b) Slower (c) Slower (d) Faster

(e) Slower (f) Slower (g) Same (h) Slower
3. (a) Same (b) Faster (c) Same (d) Same (e) Slower

(f) Faster (g) Slower (h) Same
5. (a) Same (b) Same (c) Same (d) Faster (e) Faster

(f) Same (g) Slower (h) Faster
7. d, a, c, b
9. (a) False (b) False (c) True (d) True (e) True

(f) True (g) False (h) True
13. When the degree of ƒ is less than or equal to the degree of g.
15. 1, 1
21. (b)

(c)
(d) They cross at 

23. (a) The algorithm that takes O stepssn log2 nd
x L 3.4306311 * 1015.

x L 3.4306311 * 1015
e17

L 24,154,952.75=

000,000 6 se17 * 106

d1>106

ln se17000000d = 17,

6
5

2p8025 L 178.89 ft>sec
A

mg

k

= - ln a3
2
b + ln s2d = ln s4>3d

- ln a1 + 21 - s12>13d2

s12>13d
b + ln a1 + 21 - s4>5d2

s4>5d
b

-sech-1 a12
13
b + sech-1 a4

5
b
a1

2
b  ln a1

3
bcoth-1s2d - coth-1s5>4d

ln s23 + 2dsinh-1s23d

- ln 3
2

>
3
8

+ ln22>e - e-13
32

+ ln 2

ln 
5
2

-2 sech2t + Ctanh ax -

1
2
b + C

7 ln ƒ ex>7
+ e-x>7

ƒ + C12 sinh ax
2

- ln 3b + C

cosh 2x
2

+ Cƒ sec x ƒ

ln 2

B
1 + a1

2
b2u

-sech-1 x
1

22t
- coth-12t

1
1 + u

- tanh-1 u
1

22xs1 + xd

tanh3 ysln sech udssech u tanh ud

sech22t +

tanh2t

2t

2 cosh 
x
3

e4xe5xx +

1
x

csch x = 15>8
sinh x = 8>15, tanh x = 8>17, coth x = 17>8, sech x = 15>17, (b)

25. It could take one million for a sequential search; at most 20 steps
for a binary search.

Practice Exercises, pp. 450–451

1. 3. ln 8 5. 7.

9. 3 ln 7 11. 13.

15. 17.

19. (a) Same rate (b) Same rate (c) Faster (d) Faster
(e) Same rate (f) Same rate

21. (a) True (b) False (c) False (d) True (e) True
(f) True

23. 1 3 25. 1 e m sec 27.

29. 1 2 31.

33.
35. 37.
39. 18,935 years

Additional and Advanced Exercises, p.p 451–452
1. (a) 1 (b) (c)

3. is a constant and the constant is for

it is for 

7.

CHAPTER 8

Section 8.1, pp. 459–461
1.

3. 5.

7. 9. - sx2
+ 2x + 2d e-x

+ Cxex
- ex

+ C

ln 4 -

3
4

t2 sin t + 2t cos t - 2 sin t + C

-2x cos sx>2d + 4 sin sx>2d + C

x =

ln 4
p ,  y = 0

–4 –2 2 4

–2

–1

2

1

x

y

y = –
2
�

y = 
2
�

y = tan–1 x  + tan–1
x
1⎛

⎝
⎛
⎝

x 6 0.-  

p

2
x 7 0;

p

2
tan-1x + tan-1 A1x B

pp>2

y = 4x - 42x + 1y = -2 + ln s2 - e-xd
y2

= sin-1 s2 tan x + Cd

y = atan-1 ax + C
2
b b2>

ln 5x - ln 3x = ln s5>3d>>>

y =

1
1 - exy = ln x - ln 3

y =

ln 2
ln s3>2d

2(22 - 1)

1
2

 (ln (x - 5))2
+ C2 ln 2-cos ex

+ C

20 40 60 80 100

500

1000

1500

2000

2500

n

y

y = n3/2

y = n(log2 n)2

y = nlog2 n
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Chapter 8: Answers to Odd-Numbered Exercises A-33

11.
13.

15.
17.
19.

21.

23.

25.

27.

29.

31.

33.

35. 37.

39.

41.

43. 45.

47. 49.

51. (a) (b) (c) (d)

53. 55. (a) (b)

57. (a) 1 (b) (c)

(d)

59. 61.

63. 67.

69. 71. Yes

73. (a)

(b)

Section 8.2, pp. 466–467

1. 3. 5.

7. 9.

11. 13.

15. 16 35 17.

19.

21. 23. 4 25. 2

27. 29. 31. 22
4
5

 a3
2
b5>2

-

18
35

-

2
7

 a3
2
b7>2

B
3
2

-

2
3

-cos4 2u + C

-4 sin x cos3 x + 2 cos x sin x + 2x + C

3p>
1
2

 x +

1
4

 sin 2x + C
1
4

 sin4 x -

1
6

 sin6 x + C

sin x -

1
3

 sin3 x + C-cos x +

2
3

 cos3 x -

1
5

 cos5 x + C

1
3

 cos3 x - cos x + C-

1
4

 cos4 x + C
1
2

 sin 2x + C

x sinh-1 x - s1 + x2d1>2
+ C

x sinh-1 x - cosh ssinh-1 xd + C

x sec-1 x - ln ƒ x + 2x2
- 1 ƒ + C

x sin-1 x + cos ssin-1 xd + Cu = xn, dy = eax dx

u = xn, dy = cos x dx
1

2p
 s1 - e-2pd

x =

1
4

 (e2
+ 1), y =

1
2

 (e - 2)

p

2
 (e2

+ 9)(e - 2)p

2ppsp - 2d2ps1 - ln 2d
s2n + 1dp5p3pp

5p - 323
9

p2
- 4
8

22x sin2x + 2 cos 2x + C-cos ex
+ C

-

2
5

 sin 3x sin 2x -

3
5

 cos 3x cos 2x + C

1
3

 x2 (x2
+ 1)3>2

-

2
15

 (x2
+ 1)5>2

+ C

1
4

 ex4

+ C-

1
x  ln x -

1
x + C

1
2

 x2 (ln x)2
-

1
2

 x2 ln x +

1
4

 x2
+ C

1
2

 ln ƒ sec x2
+ tan x2

ƒ + C

1
2

 [-x cos sln xd + x sin sln xd] + C

p23
3

- ln s2d -

p2

18

2
3

 A23s + 9 e23s + 9
- e23s + 9 B + C

e2x

13
 s3 sin 3x + 2 cos 3xd + C

1
2

 s -eu cos u + eu sin ud + C

sx5
- 5x4

+ 20x3
- 60x2

+ 120x - 120dex
+ C

sx2
- 7x + 7dex

+ C
sx3

- 3x2
+ 6x - 6dex

+ C

x tan x + ln ƒ cos x ƒ + C
y tan-1 s yd - ln21 + y2

+ C 33. 35. 37.

39. 41.

43. 4 3 45.

47.

49. 51. 53.

55.

57.

59. 61.

63. 65.

67. 69.

71. 73.

Section 8.3, pp. 470–471
1. 3. 5.

7.

9.

11. 13.

15. 17.

19. 21.

23. 25.

27. 29.

31. 33.

35. 37. 39.

41. 43.

45.

47.

49.

51. 53. 3p>4y =

3
2

 tan-1 ax
2
b -

3p
8

y = 2B2x2
- 4

2
- sec-1 ax

2
b R

1
4

 sin-1 2x -

1
4

 2x 21 - x (1 - 2x) + C

4 sin-1 
1x
2

+ 2x 24 - x + C

1
2

 ln ƒ21 + x4
+ x2

ƒ + C2x2
- 1 + C

sec-1
ƒ x ƒ + Cp>6ln 9 - ln s1 + 210d

1
3

 a y

21 - y2
b3

+ C
1
2

 x2
+

1
2

 ln ƒ x2
- 1 ƒ + C

2 tan-1 2x +

4x

s4x2
+ 1d

+ C-

1
5

 a21 - x2

x b5

+ C

-

x

2x2
- 1

+ C423 -

4p
3

10
3

 tan-1 
5x
6

+ C
-224 - w2

w + C

1
3

 sx2
+ 4d3>2

- 42x2
+ 4 + C-29 - x2

+ C

2x2
- 1

x + C7B2y2
- 49

7
- sec-1 ay

7
b R + C

1
2

 ln ` 2x
7

+

24x2
- 49

7
` + C

25
2

 sin-1 a t
5
b +

t225 - t2

2
+ C

p>6p>4ln ƒ29 + x2
+ x ƒ + C

x =

4p
3

, y =

8p2
+ 3

12p
p2>2

ln s1 + 22d1
4

 x2
-

1
4

 x sin 2x -

1
8

 cos 2x + C

cos x + sec x + Csec x - ln ƒ csc x + cot x ƒ + C

1
4

  cos u -

1
20

 cos 5u + C-  

2
5

  cos5 u + C

1
6

 sin 3u -

1
4

 sin u -

1
20

 sin 5u + C

1
2

 sin x +

1
14

 sin 7x + C

p-

1
10

 cos 5x -

1
2

 cos x + C
4
3

- ln23

1
4

 tan4 x -

1
2

 tan2 x + ln ƒ sec x ƒ + C

2 tan2 x - 2 ln s1 + tan2 xd + C>
2
3

 tan u +

1
3

 sec2 u tan u + C223 + ln s2 + 23 d

1
3

 tan3 x + C
1
3

 sec3 x + C
1
2

 tan2 x + C
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55. (a)

(b)

57. (a)

(b)

(c)

Section 8.4, pp. 479–480

1. 3.

5. 7.

9.

11. 13.

15. 17.

19. 21.

23.

25.

27.

29.

31.

33.

35.

37. 39.

41.

43.

45. 47.

49.

51. 53.

55. 57. 1.10 59. (a) (b) 1.55 daysx =

1000e4t

499 + e4t
3p ln 25

x =

6t
t + 2

- 1x = ln ƒ t - 2 ƒ - ln ƒ t - 1 ƒ + ln 2

1
4

 ln ` x4

x4
+ 1
` + C

221 + x + ln ` 1x + 1 - 1

1x + 1 + 1
` + Cln ` 1x - 1

1x + 1
` + C

stan-1 2xd2

4
- 3 ln ƒ x - 2 ƒ +

6
x - 2

+ C

1
5

 ln ` sin y - 2

sin y + 3
` + C

ln aet
+ 1

et
+ 2
b + C

y2

2
- ln ƒ y ƒ +

1
2

 ln s1 + y2d + C

9x + 2 ln ƒ x ƒ +

1
x + 7 ln ƒ x - 1 ƒ + C

x2
+ ln ` x - 1

x ` + C

-1
u2

+ 2u + 2
+ ln (u2

+ 2u + 2) - tan-1 su + 1d + C

1
4

 ln ` x - 1
x + 1

` +

1
2

 tan-1 x + C

2
3

 ln ƒ x - 1 ƒ +

1
6

 ln ƒ x2
+ x + 1 ƒ - 23 tan-1 a2x + 1

23
b + C

- ss - 1d-2
+ ss - 1d-1

+ tan-1 s + C

tan-1 y -

1
y2

+ 1
+ C

sp + 2 ln 2d>81
4

 ln ` x + 1
x - 1

` -

x

2sx2
- 1d

+ C

3 ln 2 - 2-

1
2

 ln ƒ t ƒ +

1
6

 ln ƒ t + 2 ƒ +

1
3

 ln ƒ t - 1 ƒ + C

sln 15d>21
7

 ln ƒ sx + 6d2sx - 1d5
ƒ + C

1
2

 [ln ƒ 1 + x ƒ - ln ƒ 1 - x ƒ ] + C

1 +

17
t - 3

+

-12
t - 2

-2
z +

-1
z2 +

2
z - 1

1
x + 1

+

3
sx + 1d2

2
x - 3

+

3
x - 2

1
5

 (1 - x2)5>2
-

1
3

 (1 - x2)3>2
+ C

-  

1
3

 (1 - x2)3>2
+

1
5

 (1 - x2)5>2
+ C

-

1
3

 x2 (1 - x2)3>2
-

2
15

 (1 - x2)5>2
+ C

x =

323 - p

4(p + 623 - 12)
,  y =

p2
+ 1223p - 72

12(p + 623 - 12)

1
12

 (p + 623 - 12) Section 8.5, pp. 485–486

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

21. 23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49.

51.

53. 55.

57.

59. 61. 7.62 63. 67. p>4p>8x = 4>3,  y = ln22

2p23 + p22 ln s22 + 23d

p>322 + ln A22 + 1 B
+ tan set

- 1d ƒ ] +  Cln ƒ sec set
- 1d

1
2

 [sec set
- 1d tan set

- 1d +

-csc3 x cot x
4

-

3 csc x cot x
8

-

3
8

 ln ƒ csc x + cot x ƒ + C

ssec pxdstan pxd
p +

1
p ln ƒ sec px + tan px ƒ + C

tan2 2x - 2 ln ƒ sec 2x ƒ + C

sin3 2u cos2 2u
10

+

sin3 2u
15

+ C

-

sin4 2x cos 2x
10

-

2 sin2 2x cos 2x
15

-

4 cos 2x
15

+ C

x + 2
2

 25 - 4x - x2
+

9
2

  sin-1 ax + 2
3
b + C

ln ƒ x + 1 + 2x2
+ 2x + 5 ƒ + C

ln ƒ ln y + 23 + sln yd2 ƒ + C

21 - sin2 t - ln ` 1 + 21 - sin2 t
sin t

` + C

sin-12x - 2x - x2
+ C

ax -

1
2
b  sin-12x +

1
2
2x - x2

+ C

1
2

 ln (x2
+ 1) +

x

2s1 + x2d
+

1
2

 tan-1 x + C

6 sin su>12d +

6
7

 sin s7u>12d + C

8 csin s7t>2d
7

-

sin s9t>2d
9

d + C-

cos 5x
10

-

cos x
2

+ C

x3

3
 tan-1 x -

x2

6
+

1
6

 ln s1 + x2d + C

x2

2
 cos-1 x +

1
4

 sin-1 x -

1
4

 x21 - x2
+ C

e2t

13
 s2 cos 3t + 3 sin 3td + C

24 - x2
- 2 ln ` 2 + 24 - x2

x ` + C

-

1

27
 ln ` 27 + 27 + x2

x ` + C

sx + 2ds2x - 6d24x - x2

6
+ 4 sin-1 ax - 2

2
b + C

-29 - 4x
x -

2
3

 ln ` 29 - 4x - 3

29 - 4x + 3
` + C

s2x - 3d3>2sx + 1d
5

+ C

2x - 2 a2sx - 2d
3

+ 4b + C

2

23
 atan-1A

x - 3
3
b + C
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Chapter 8: Answers to Odd-Numbered Exercises A-35

Section 8.6, pp. 493–495
1. I: (a) 1.5, 0 (b) 1.5, 0 (c) 0%

II: (a) 1.5, 0 (b) 1.5, 0 (c) 0%
3. I: (a) 2.75, 0.08 (b) 2.67, 0.08 (c)

II: (a) 2.67, 0 (b) 2.67, 0 (c) 0%
5. I: (a) 6.25, 0.5 (b) 6, 0.25 (c)

II: (a) 6, 0 (b) 6, 0 (c) 0%
7. I: (a) 0.509, 0.03125 (b) 0.5, 0.009 (c)

II: (a) 0.5, 0.002604 (b) 0.5, 0.0004 (c) 0%
9. I: (a) 1.8961, 0.161 (b) 2, 0.1039 (c)

II: (a) 2.0045, 0.0066 (b) 2, 0.00454 (c) 0.2%
11. (a) 1 (b) 2 13. (a) 116 (b) 2
15. (a) 283 (b) 2 17. (a) 71 (b) 10
19. (a) 76 (b) 12 21. (a) 82 (b) 8
23. 25.
27. (a) (b) (c)
31. (a) (b)
33. 21.07 in. 35. 14.4

Section 8.7, pp. 505–507
1. 3. 2 5. 6 7. 9. ln 3 11. ln 4 13. 0

15. 17. 19. 21. 23. 1

25. 27. 29. 31. 6 33. ln 2
35. Diverges 37. Converges 39. Converges 41. Converges
43. Diverges 45. Converges 47. Converges 49. Diverges
51. Converges 53. Converges 55. Diverges 57. Converges
59. Diverges 61. Converges 63. Converges
65. (a) Converges when (b) Converges when 
67. 1 69. 71. ln 2 73. (b)
75. (a)

(b)
77. (a)

(b)

Practice Exercises, pp. 507–509
1.

3.

5. sx + 1d2ex
- 2sx + 1dex

+ 2ex
+ C

x tan-1 s3xd -

1
6

 ln s1 + 9x2d + C

sx + 1dsln sx + 1dd - sx + 1d + C

L0.683, L0.954, L0.997

–3 –2 –1 1 2 3

0.1

0

0.2

0.3

0.4

x

y

p>2

5 10 15 20 25

–0.2

0.2

0

0.4

0.6

0.8

1

t

y

y = sin t
t

5 10 15 20 250
x

y

Si(x) = sin t
t

dt

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

L0

L0.886212p
p 7 1p 6 1

p>3p>2-1/4

-1ln a1 +

p

2
bp23

p>2p>2

ƒ ET ƒ … 0.0032L5.870
L0.015%L1.37079L0.00021

L10.63 ft15,990 ft3

0.052 L 5%

0.018 L 2%

0.0417 L 4%

0.0312 L 3%

7.

9.

11.

13.

15.

17.

19.

21.

23.

25. 27.

29. 31.

33. 35.

37. 39.

41. 43.

45. At least 16 47. 49. 25°F
51. (a) (b)
53. 55. 6 57. ln 3 59. 2 61.
63. Diverges 65. Diverges 67. Converges

69.

71.

73.

75.

77. 79.

81. 83.

85.

87. 89. 91.

93. 95.

97.

99.
1
2

 x2
-

1
2

 ln (x2
+ 1) + C

22r - 2 ln s1 + 2rd + C

-

1
5

 tan-1 (cos 5t) + C
2
3

x3>2
+ C

1>4ln aet
+ 1

et
+ 2
b + C-

1
4
29 - 4t2

+ C

1
4

 ln ƒ z ƒ -

1
4z

-

1
4

 c1
2

 ln (z2
+ 4) +

1
2

 tan-1 Qz2R d + C

tan-1 (y - 1) + C2£ A22 - x B3
3

- 222 - x≥ + C

1
4

 sec2 u + C
u sin (2u + 1)

2
+

cos (2u + 1)

4
+ C

1
12

 ln ` 3 + y

3 - y
` +

1
6

 tan-1 
y

3
+ C

-2 cot x - ln ƒ csc x + cot x ƒ + csc x + C

ln ` 2x

2x2
+ 1
` -

1
2

 a x

2x2
+ 1
b2

+ C

2x3>2
3

- x + 22x - 2 ln A2x + 1 B + C

p>6p>2 L24.83 mi>galL2.42 gal
T = p, S = p

421 - cos st>2d + C
cos u

2
-

cos 11u
22

+ C

tan5 x
5

+ C-

cos5 x
5

+

cos7 x
7

+ C

1
6

 ln ` x + 3
x - 3

` + Cln 
1

29 - x2
+ C

-

1
2

 ln ƒ 4 - x2
ƒ + C- 216 - y2

+ C

ln ƒ 1 - e-s
ƒ + C

1
3

 ln ` 2x + 1 - 1

2x + 1 + 1
` + C

x2

2
-

9
2

 ln ƒ x + 3 ƒ +

3
2

 ln ƒ x + 1 ƒ + C

x2

2
+

4
3

 ln ƒ x + 2 ƒ +

2
3

 ln ƒ x - 1 ƒ + C

1
2

 tan-1 t -

23
6

 tan-1 
t

23
+ C

1
16

 ln ` sy - 2d5sy + 2d
y6 ` + C

4 ln ƒ x ƒ -

1
2

 ln sx2
+ 1d + 4 tan-1 x + C

-

1
3

 ln ` cos u - 1
cos u + 2

` + C

ln ƒ x ƒ - ln ƒ x + 1 ƒ +

1
x + 1

+ C

2 ln ƒ x - 2 ƒ - ln ƒ x - 1 ƒ + C

2ex sin 2x
5

+

ex cos 2x
5

+ C
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101.

103.

105.

107.

109. 111.

113. (b) 115.

Additional and Advanced Exercises, pp. 510–512
1.

3.

5.

7. 0 9. 11. 1 13. 15.

17. (a) (b)

19. (b) 21.

23.

25. 27. 29.

33.

35.

37. 39.

41. 43. 1 45.

47.

49.

CHAPTER 9

Section 9.1, pp. 520–522
1. (d) 3. (a)
5.

x

y

ln ` 1 + tan su>2d
1 - tan su>2d

` + C

1

22
 ln ` tan st>2d + 1 - 22

tan st>2d + 1 + 22
` + C

23p
9

2
1 - tan sx>2d

+ C

x ln saxd - x + C
eax

a2
+ b2 sa sin bx - b cos bxd + C

cos x sin 3x - 3 sin x cos 3x
8

+ C

e2x

13
 s3 sin 3x + 2 cos 3xd + C

1
2

6 p … 1a =

1
2

, -
ln 2
4

12p
5

21 + e2
- ln a21 + e2

e +

1
e b - 22 + ln A1 + 22 B

ae2
+ 1
4

, 
e - 2

2
bp a8sln 2d2

3
-

16sln 2d
9

+

16
27
b

ps2e - 5dp

2p32p>35ln s4d - 1

1
2

 aln A t - 21 - t2 B - sin-1 tb + C

x2 sin-1 x
2

+

x21 - x2
- sin-1 x

4
+ C

xssin-1 xd2
+ 2ssin-1 xd21 - x2

- 2x + C

x -

1
12

 tan-1 A22 tan x B + C
p

4

1
2

 ln ` 1 - 21 - x4

x2 ` + C
1
2

 x ln x
+ C

ln x - ln ƒ 1 +  ln x ƒ + C

2 ln ƒ2x + 21 + x ƒ + C

4
7

 A1 + 2x B7>2 -

8
5

 A1 + 2x B5>2 +

4
3

 A1 + 2x B3>2 + C

tan-1 a2x - 1
13

b + C
1
13

2
3

 ln ƒ x + 1 ƒ +

1
6

 ln ƒ x2
- x + 1 ƒ +

7. 9.

11.

13.

15.

17. exact value is e.

19. exact value is .

23.

25. 27.

35. Euler’s method gives the exact solution is
.

37. exact value is 1.5275.

Section 9.2, pp. 526–528

1. 3.

5. 7.

9.

11.

13.

15. 17.

19. 21.

23. (b) is correct, but (a) is not. 25.

27. (a) (b) 86%

29. 31.

Section 9.3, pp. 533–534
1. (a) 168.5 m (b) 41.13 sec

3. sstd = 4.91 A1 - e-s22.36>39.92dt B

y3
= 1 + Cx-3y =

1
1 + Ce-x

i =

V
R

-

V
R

 e-3
=

V
R

 s1 - e-3d L 0.95 
V
R

 amp

t =

L
R

 ln 2 sec

y = y0 ek ty = 6ex 2

-

ex 2

x + 1

y = -

1
u

 cos u +

p

2u
y =

3
2

-

1
2

 e-2t

r = scsc udsln ƒ sec u ƒ + Cd, 0 6 u 6 p>2
s =

t3

3st - 1d4 -

t

st - 1d4 +

C

st - 1d4

y = xsln xd2
+ Cx

y =

1
2

 xe x>2
+ Ce x>2y =

1
2

-

1
x +

C

x2 , x 7 0

y =

C - cos x

x3 , x 7 0y =

ex
+ C
x , x 7 0

y L 1.5000;
y = 1 + e L 3.71828

y L 3.45835;

–4 –3 –2 –1 1 2 3 4

–4

–3

–2

–1

1

2

3

4

x

y

–4 –3 –2 –1 1 2 3 4

–4

–3

–2

–1

1

2

3

4

x

y

1> A1 - 225 B L -0.2880y L -0.2272,

y L 2.48832,

ysexactd = ex2

+ 1,  y1 = 2.0,  y2 = 2.0202,  y3 = 2.0618

ysexactd = 3exsx + 2d,  y1 = 4.2,  y2 = 6.216,  y3 = 9.697

ysexactd =

x
2

-

4
x ,  y1 = -0.25,  y2 = 0.3,  y3 = 0.75

y¿ = - (1 + y) sin x; y(0) = 2y¿ = x - y; y(1) = -1
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Chapter 9: Answers to Odd-Numbered Exercises A-37

5. 7.

9.

13. (a) 10 lb min (b) (c)

(d)

(e)

15.

Section 9.4, pp. 540–541
1.

(a) is a stable equilibrium value and is an unsta-
ble equilibrium.

(b)

(c) y

2

4

x

–2

–0.5 0.5 1 1.5

y' > 0, y'' > 0 

y' < 0, y'' < 0 

y' < 0, y''  > 0 

y' > 0, y'' < 0 

 

y = 1/2

y
–4 –2 420

y' < 0 y' > 0 y' > 0 

y'' < 0y'' < 0 y'' > 0y'' > 0

0.5

y– = 2s y + 2d ay -

1
2
b s y - 3d

y = 3y = -2
y¿ = s y + 2ds y - 3d

ys27.8d L 14.8 lb, t L 27.8 min

Concentration =

y s25d
amt. brine in tank

=

188.6
125

L 1.5 lb>gal

y = 2s100 + td -

150

a1 +

t
100
b4

dy

dt
= 10 -

4y

100 + t
 , ys0d = 50,

4 a y

100 + t
b  lb>mins100 + td gal>

x

y

y = ;22x + C

x

y

kx 2 + y 2 = 1

x

y

ln ƒ y ƒ -

1
2

y2
=

1
2

x2
+ Cx2

+ y2
= C 3.

(a) and are unstable equilibria and is a
stable equilibrium.

(b)

(c)

5.
(a) There are no equilibrium values.

(b)

(c)

7.
(a) and are unstable equilibria and is a sta-

ble equilibrium.
(b)

6 – ��
3

≈ 1.42

y
0 4

y' < 0 y' < 0 y' > 0 y' > 0 

y'' > 0y'' < 0 y'' < 0 y'' < 0y'' > 0 y'' > 0

3 6 + ��
3

≈ 2.58
3

1 2 3

3s y - 1d ay -

6 - 23
3

b s y - 2d ay -

6 + 23
3

b s y - 3d

y– = s3y2
- 12y + 11ds y - 1ds y - 2ds y - 3d =

y = 2y = 3y = 1
y¿ = s y - 1ds y - 2ds y - 3d

y

2.5
5

7.5

12.5

17.5

10

15

x
2 4 6–2 8

y' > 0
y'' > 0

0 1 2 3 4

y' > 0 

y'' > 0

y

y– =

1
2

y¿ = 2y, y 7 0

x

y

–1.5

–0.5

–0.5 0.5 1 1.5 2 2.5

0.5

1.5

y' > 0, y'' > 0

y' < 0, y'' < 0

y' < 0, y'' > 0

y' > 0, y'' < 0

y' > 0, y'' > 0

y' < 0, y'' < 0

y
–1.5 1.50.5–0.5

y' < 0 y' < 0 y' > 0 y' > 0 

y'' < 0y'' < 0 y'' < 0 y'' > 0y'' > 0 y'' > 0

– 1

√3

1

√3

–1 0

s y - 1d= 3s y + 1d A  y + 1>23 By A  y - 1>23 B
y– = s3y2

- 1dy¿

y = 0y = 1y = -1
y¿ = y3

- y = s y + 1dys y - 1d
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(c)

9. has a stable equilibrium at 

11. has a stable equilibrium at and an un-

stable equilibrium at 

.

13. Before the catastrophe, the population exhibits logistic growth
and P(t) increases toward the stable equilibrium. After 
the catastrophe, the population declines logistically and P(t) 
decreases toward the new stable equilibrium.

15. and 

Equilibrium: 
dy
dt

= g -

k
m y2

= 0 Q y = A
mg

k

ystd Ú 0
dy
dt

= g -

k
m y2, g, k, m 7 0

P

t

P

t

M1

Pc

M0

tcatastrophe tcatastrophe

Before Catastrophe After Catastrophe

M1 ,

M0 ,

p

t

4

3

2

1

–1

–2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

P' > 0, P''  > 0 

P' < 0, P''  < 0 

P' < 0, P''  > 0 

P' > 0, P''  < 0 

P
–1 43210 3.52.50.5–0.5

P' < 0 P' > 0 P' > 0 

P'' < 0P'' < 0 P'' > 0P'' > 0
1.5

4Ps2P - 3dsP - 3d

P = 3; 
d2P

dt2 = 2s2P - 3d 
dP
dt

=

P = 0
dP
dt

= 2PsP - 3d

P

t

–0.5

0.5

1.5

1

0.5 10.25 0.75 1.25 1.751.5

P' > 0, P''  < 0 

P' < 0, P''  > 0 

d 2P

dt 2 = -2 
dP
dt

= -2s1 - 2Pd .

P =

1
2

;
dP
dt

= 1 - 2P

y

x
1 2 3–1

0.5
1

1.5

2.5

3.5

2

3

4

y' > 0, y'' > 0

y' < 0, y'' < 0

y' < 0, y'' > 0

y' > 0, y'' < 0

y' > 0, y'' > 0

y' < 0, y'' < 0

Concavity: 

(a) (b)

(c)

17. The

maximum velocity occurs when or 

19. Phase line:

If the switch is closed at then and the graph of
the solution looks like this:

As 

Section 9.5, pp. 545–547
1. Seasonal variations, nonconformity of the environments, effects

of other interactions, unexpected disasters, etc.
3. This model assumes that the number of interactions is propor-

tional to the product of x and y:

Rest points are (0, 0), unstable, and (0, M ), stable.
5. (a) Logistic growth occurs in the absence of the competitor, and

involves a simple interaction between the species: growth
dominates the competition when either population is small,
so it is difficult to drive either species to extinction.

(b) a: per capita growth rate for trout
m: per capita growth rate for bass
b: intensity of competition to the trout
n: intensity of competition to the bass

environmental carrying capacity for the trout
environmental carrying capacity for the bass

growth versus competition or net growth of trout

relative survival of bass
m
n :

a
b

:

k2:
k1:

dy

dt
= m a1 -

y

M
by - nxy = y am -

m
M

 y - nxb .

dx
dt

= (a - by)x,  a 6 0,

t : q , istd : isteady state =

V
R

.

i

t

V
R

is0d = 0,t = 0,

di
dt

> 0
di
dt

V
R

< 0

d2i

dt2
< 0

d2i

dt2
> 0

i

ieq =

0

y = 10 ft>sec .
dy
dt

= 0

F = Fp - Fr; ma = 50 - 5 ƒ y ƒ ; 
dy
dt

=

1
m s50 - 5 ƒ y ƒ d .

yterminal = A
160

0.005
= 178.9 ft>sec = 122 mph

y

t

mg
k√

dy
dt

> 0
dy
dt

mg
k

< 0

d2y

dt2
< 0

d2y

dt2
> 0

y

yeq √=

0

d2y

dt2 = -2 a k
m yb  

dy
dt

= -2 a k
m yb ag -

k
m y2b
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Chapter 10: Answers to Odd-Numbered Exercises A-39

(c) when or

when or

By picking and , we insure that an equilib-
rium point exists inside the first quadrant.

Practice Exercises, pp. 547–548

1.

3. 5.

7. 9.

11. 13. 15.

17. 19.

21.

23.

25.
27.

(a)

(b) Note that we choose a small interval of x-values because the
y-values decrease very rapidly and our calculator cannot
handle the calculations for (This occurs because
the analytic solution is which has
an asymptote at Obviously, the Euler
approximations are misleading for ) 

29. exact value is .

31. exact value is

-e3>2
L -4.4817.

ysexactd = -e sx2
- 1d>2; y(2) L -3.4192;

1
2

ysexactd =

1
2

 x2 -  
3
2

; y(2) L 0.4 ;

[–1, 0.2] by [–10, 2]

x … -0.7 .
x = - ln 2 L -0.69 .

y = -2 + lns2 - e-xd ,
x … -1.

[–0.2, 4.5] by [–2.5, 0.5]

y(3) L 0.8981

y = e-x s3x3
- 3x2d

y =

1
3

 s1 - 4e-x3

dy =

2x3
+ 3x2

+ 6
6sx + 1d2

xy + y3
= Cy =

e-x
+ C

1 + exy =

x2
- 2x + C

2x2

y =

x2

4
 ex>2

+ Cex>2y = C 
x - 1

x

s y + 1de-y
= - ln ƒ x ƒ + Ctan y = -x sin x - cos x + C

y = - ln aC -

2
5

 sx - 2d5>2
-

4
3

 sx - 2d3>2b

m>n 7 k1a>b 7 k2

y = k2 -

k2n
m x.y = 0

dy

dt
= 0

y =

a
b

-

a
bk1

x,x = 0
dx
dt

= 0
33. (a) is stable and is unstable.

(b)

(c)

Additional and Advanced Exercises, pp. 548–549
1. (a)

(b) Steady-state solution: 
5.

7.

9.

CHAPTER 10

Section 10.1, pp. 559–562
1.
3.
5.

7.

9.

11. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 13.

15. 17.

19. 21.

23. 25.

27. Converges, 2 29. Converges, 31. Converges, 
33. Diverges 35. Diverges 37. Converges, 1 2
39. Converges, 0 41. Converges, 43. Converges, 1
45. Converges, 0 47. Converges, 0 49. Converges, 0
51. Converges, 1 53. Converges, 55. Converges, 1
57. Converges, 1 59. Diverges 61. Converges, 4
63. Converges, 0 65. Diverges 67. Converges, 
69. Converges, 71. Converges, 
73. Converges, 0 75. Converges, 1 77. Converges, 1 2
79. Converges, 1 81. Converges, 83. Converges, 0
85. Converges, 0 87. Converges, 1 2 89. Converges, 0

91. 8 93. 4 95. 5 97. 99. xn = 2n - 21 + 22

>p>2
>x sx 7 0de2>3 e-1

e7

22
> -5-1

an =

1 + s -1dn + 1

2
, n Ú 1an =

3n + 2
n!

, n Ú 1

an = 4n - 3, n Ú 1an = n2
- 1, n Ú 1

an =

2n - 1

3(n + 2)
, n Ú 1an = s -1dn + 1snd2, n Ú 1

an = s -1dn + 1, n Ú 1

2, 1, -
1
2

, -
1
4

, 
1
8

, 
1

16
, -

1
32

, -
1

64
, 

1
128

, 
1

256

1, 
3
2

, 
7
4

, 
15
8

, 
31
16

, 
63
32

, 
127
64

, 
255
128

, 
511
256

, 
1023
512

a1 = 1>2, a2 = 1>2, a3 = 1>2, a4 = 1>2
a1 = 1, a2 = -1>3, a3 = 1>5, a4 = -1>7
a1 = 0, a2 = -1>4, a3 = -2>9, a4 = -3>16

ln ƒ x ƒ - ln ƒ sec (y>x - 1) + tan (y>x - 1) ƒ = C

ln ƒ x ƒ + e-y>x
= C

x2
 sx2

+ 2y2d = C
yq = c

y = c + s y0 - cde-k sA>V dt

y

2  

1

x
1

0
0.5 1.5 2.52

–1

–2

dy
dx

> 0
dy
dx

< 0
dydy
dx

< 0
dx

> 0

dx2
> 0

d2y

dx2
> 0

d2y d2y

dx2
< 0

d2y

dx2
< 0

y

y = 1

y = 0

y = –1

d2y

dx2 = 2y 
dy

dx
= 2ysy2

- 1d

y = 1y = -1

x y

0 0
0.1 0.1000
0.2 0.2095
0.3 0.3285
0.4 0.4568
0.5 0.5946
0.6 0.7418
0.7 0.8986
0.8 1.0649
0.9 1.2411
1.0 1.4273

x y

1.1 1.6241
1.2 1.8319
1.3 2.0513
1.4 2.2832
1.5 2.5285
1.6 2.7884
1.7 3.0643
1.8 3.3579
1.9 3.6709
2.0 4.0057
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101. (a)
(b)
(c) diverges

103. (b) 1 111. Nondecreasing, bounded
113. Not nondecreasing, bounded
115. Converges, nondecreasing sequence theorem
117. Converges, nondecreasing sequence theorem
119. Diverges, definition of divergence 121. Converges
123. Converges 133. (b)

Section 10.2, pp. 569–570

1. 3.

5. 7.

9.

11.

13.

15. Converges, 17. Converges, 19. 21.
23. 25. 27. Diverges
29. Inconclusive 31. Diverges 33. Diverges

35. converges, 1 37. diverges

39. converges, 

41. 1 43. 5 45. 1 47. 49. Converges, 

51. Converges, 1 53. Diverges 55. Converges, 

57. Converges, 2 9 59. Converges, 3 2 61. Diverges

63. Converges, 4 65. Diverges 67. Converges, 

69. converges to for 

71. converges to for x in 

73. 75.

77. k an integer; 

79. (a) (b)

(c)

89. (a) (b)

91. 93.

Section 10.3, pp. 575–576
1. Converges 3. Converges 5. Converges 7. Diverges

9. Converges 11. Converges; geometric series, 

13. Diverges; 15. Diverges; p-series, p 6 1lim
n: q

 
n

n + 1
= 1 Z 0

r =

1
10

6 1

8 m2
ƒ r ƒ 6 1, 

1 + 2r
1 - r2

r = -3>10r = 3>5
a

q

n = 5
 

1
sn - 3dsn - 2d

a

q

n = 0
 

1
sn + 2dsn + 3da

q

n = -2
 

1
sn + 4dsn + 5d

1
1 - sin x

x Z s2k + 1d 
p

2
,

-2 6 x 6 0, 
1

2 + xƒ x ƒ 6

1
2

, 
1

1 - 2x

s -1, 3d6>s3 - xda = 3, r = sx - 1d>2;
ƒ x ƒ 6 11>s1 + xda = 1, r = -x ;

p
p - e

>>
e2

e2
- 1

2 + 22-

1
ln 2

-  

p

6
sn =

p

3
- cos-1 a 1

n + 2
b ;

sn = ln 2n + 1;sn = 1 -

1
n + 1

;

41333>333001>15
7>923>991>75>3

s1 + 1d + a1
2

-

1
5
b + a1

4
+

1
25
b + a1

8
-

1
125
b +

Á, 
17
6

s5 + 1d + a5
2

+

1
3
b + a5

4
+

1
9
b + a5

8
+

1
27
b +

Á, 
23
2

7
4

+

7
16

+

7
64

+
Á, 

7
3

1 -

1
4

+

1
16

-

1
64

+
Á, 

4
5

sn =

1
2

-

1
n + 2

, 
1
2

sn =

1 - s -1>2dn

1 - s -1>2d
, 2>3sn =

2s1 - s1>3dnd
1 - s1>3d

, 3

23

ƒsxd = ex ,
ƒsxd = tan sxd - 1, 0.7853981635 L p>4ƒsxd = x2

- 2, 1.414213562 L 22 17. Converges; geometric series, 

19. Diverges; Integral Test
21. Converges; geometric series, 

23. Diverges; Integral Test 25. Diverges; 

27. Diverges;

29. Diverges; geometric series, 

31. Converges; Integral Test 33. Diverges; nth-Term Test
35. Converges; Integral Test 37. Converges; Integral Test
39. Converges; Integral Test 41.
43. (a)

(b)
45. True 47. (b)

49. 51.

59. (a) (b)

Section 10.4, pp. 580–581
1. Converges; compare with 

3. Diverges; compare with 

5. Converges; compare with 

7. Converges; compare with 

9. Converges 11. Diverges; limit comparison with 

13. Diverges; limit comparison with 15. Diverges

17. Diverges; limit comparison with 

19. Converges; compare with 

21. Diverges; nth-Term Test
23. Converges; compare with 

25. Converges; 

27. Diverges; direct comparison with 
29. Diverges; limit comparison with 
31. Diverges; limit comparison with 
33. Converges; compare with g s1>n3>2d

g s1>nd
g s1>nd
g s1>nd

a n
3n + 1

bn

6 a n
3n
bn

= a1
3
bn

g  (1>n2)

g s1>2nd
g A1>2n B
g A1>2n B

g  (1>n)

g  B
n + 4n

n4
+ 0

= 25 g  
1

n3>2

g  (1>n3>2)
g  A1>2n B
g  (1>n2)

S L 1.2021, error 6 0.00051.20166 … S … 1.20253

1060s8 = a

8

n = 1
 
1
n3 L 1.195

n Ú 251,415
L  41.55

1

1
1/2 1/n

0 2 3 nn – 1

n

1

1

< 1 + dx1 +      + … +

x

y

1
x

y =

1
x

1
n

1
2

⌠
⎮
⌡

1

1
1/2 1/n

0 2 3 n n + 1

n + 1

1

1

dx < 1 +      + … +

x

y

1
x

y =

1
x

1
n

1
2

⌠
⎮
⌡

a = 1

r =

1
ln 2

7 1

limn:q A2n>ln n B Z 0

lim
n: q

 
2n

n + 1
Z 0

r = 2>3 6 1

r =

1
8

6 1
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Chapter 10: Answers to Odd-Numbered Exercises A-41

35. Converges; 37. Converges; 

39. Converges; comparison with 

41. Diverges; comparison with 

43. Converges; comparison with 

or limit comparison with 
45. Diverges; limit comparison with 

47. Converges; 

49. Converges; compare with 
51. Diverges; limit comparison with 

53. Converges; limit comparison with 
63. Converges 65. Converges 67. Converges

Section 10.5, pp. 585–586
1. Converges 3. Diverges 5. Converges 7. Converges
9. Converges 11. Diverges 13. Converges 15. Converges

17. Converges; Ratio Test 19. Diverges; Ratio Test
21. Converges; Ratio Test
23. Converges; compare with 

25. Diverges; 

27. Converges; compare with 
29. Diverges; compare with 
31. Diverges; compare with 33. Converges; Ratio Test
35. Converges; Ratio Test 37. Converges; Ratio Test
39. Converges; Root Test 41. Converges; compare with 
43. Converges; Ratio Test 45. Converges; Ratio Test
47. Diverges; Ratio Test 49. Converges; Ratio Test

51. Converges; Ratio Test 53. Diverges; 

55. Converges; Ratio Test 57. Diverges; Root Test
59. Converges; Root Test 61. Converges; Ratio Test 65. Yes

Section 10.6, pp. 591–592
1. Converges by Theorem 16
3. Converges; Alternating Series Test
5. Converges; Alternating Series Test
7. Diverges; 
9. Diverges; 

11. Converges; Alternating Series Test
13. Converges by Theorem 16
15. Converges absolutely. Series of absolute values is a convergent

geometric series.

17. Converges conditionally; but diverges.

19. Converges absolutely; compare with 

21. Converges conditionally; but 

diverges (compare with ).

23. Diverges; 
3 + n
5 + n

: 1

g
q

n=1s1>nd

g
q

n=1 
1

n + 3
1>sn + 3d : 0

g
q

n=1s1>n2d .

g
q

n=1 
1

2n
1>2n : 0

an :>  0
an :>  0

an = a1
3
b s1>n!d

: 1

g s1>n2d

g s1>nd
g s1>s2ndd
g s1>n2d

lim
n: q

a1 -

3
n b

n

= e-3
Z 0

g s3>s1.25dnd

g s1>n2d
g s1>nd

g s1>n2d

tan-1 n

n1.1 6

p>2
n1.1

g s1>nd
g  (1>n2)

g  
1

n(n - 1)

g  (1>n)

g  (1>5n2)

1
3n - 1

+ 1
6

1
3n - 1

1
n2n …

1
2n 25. Converges conditionally; but 

27. Converges absolutely; Ratio Test
29. Converges absolutely by Integral Test 31. Diverges; 
33. Converges absolutely by Ratio Test

35. Converges absolutely since 

(convergent p-series)

37. Converges absolutely by Root Test 39. Diverges; 

41. Converges conditionally; 

but series of absolute values

diverges (compare with .
43. Diverges, 

45. Converges absolutely; sech 

a term from a convergent geometric series.

47. Converges conditionally; converges by Alter-

nating Series Test; diverges by limit comparison 

with 
49. 51.
53. 55. 57. 0.54030
59. (a) (b)

Section 10.7, pp. 600–602
1. (a) (b) (c) none
3. (a) (b) (c) none
5. (a) (b) (c) none
7. (a) (b) (c) none
9. (a) 3, (b) (c) none

11. (a) for all x (b) for all x (c) none
13. (a) (b)

(c)
15. (a) (b) (c)
17. (a) (b) (c) none
19. (a) (b) (c) none
21. (a) 1, (b) (c) none
23. (a) (b) (c) none
25. (a) (b) (c) none
27. (a) (b) (c)
29. (a) (b) (c) none
31. (a) (b) (c) none
33. (a) for all x (b) for all x (c) none
35. (a) (b) (c)
37. 3 39. 8 41.
43.
45.

47.
49.

51. (a)

converges for all x

(b) Same answer as part (c)

(c) 2x -

23x3

3!
+

25x5

5!
-

27x7

7!
+

29x9

9!
-

211x11

11!
+

Á

x8

8!
-

x10

10!
+

Á ;cos x = 1 -

x2

2!
+

x4

4!
-

x6

6!
+

1 6 x 6 5,  2>sx - 1d, 1 6 x 6 5,  -2>sx - 1d2
-22 6 x 6 22,  3>s2 - x2d

0 6 x 6 16,  2> A4 - 2x B-1 6 x 6 3,  4>s3 + 2x - x2d
-1>3 6 x 6 1>3, 1>(1 - 3x)

-1-1 6 x 6 11, -1 … x 6 1

q ,
1 … x … 3>21>4, 1 … x … 3>2 -1 … x … 11, -1 … x … 1

x = 0-4 6 x 6 02, -4 6 x … 0
x = 00, x = 0

-1 6 x 6 11, -1 6 x 6 1
-2 6 x 6 0-2 6 x 6 0
-3 6 x 6 33, -3 6 x 6 3
-8 6 x 6 25, -8 6 x 6 2

x = -1-1 6 x 6 11, -1 … x 6 1
-1>2

-1>2 6 x 6 1>21>2, -1>2 … x 6 1>2
q ,

-3 … x … 3-3 … x … 3
-1 6 x 6 11, -1 6 x 6 1

-8 6 x 6 1210, -8 6 x 6 12
-1>2 6 x 6 01>4, -1>2 6 x 6 0

-1 6 x 6 11, -1 6 x 6 1

-1>2an Ú an + 1

n Ú 4n Ú 31
ƒ Error ƒ 6 2 * 10-11

ƒ Error ƒ 6 0.2
g  (1>n).

g  
1

2(n + 1)

g  (-1) 
1

2(n + 1)

2en

e2n
=

2
en ,

n =

2
en

+ e-n =

2en

e2n
+ 1

6

an : 1>2 Z 0
dg s1>2nd

1>s2n + 2n + 1d : 0,

2n + 1 - 2n =

an : q

` cos np

n2n
` = ` s -1dn + 1

n3>2 ` =

1

n3>2

an :>  0

s1 + nd>n2
7 1>na 1

n2 +

1
n b : 0
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53. (a)

(b)

Section 10.8, pp. 606–607
1. ,

3.

5.

7.

9.

11.

13.

15. 17. 19.

21.
23.
25.

27. 29.

31.

33.

35.

41. 43.
45.

Section 10.9, pp. 613–614

1. a

q

n = 0
 
s -5xdn

n!
= 1 - 5x +

52x2

2!
-

53x3

3!
+

Á

Lsxd = x, Qsxd = x
Lsxd = 1, Qsxd = 1 + x2>2Lsxd = 0, Qsxd = -x2>2

x2
-

1
2

 x3
+

1
6

 x4
+

Á , -1 6 x 6 1

-1 - 2x -

5
2

 x2
-

Á , -1 6 x 6 1

a

q

n = 0
s -1dn + 1 

22n

(2n)!
 ax -

p

4
b2n

a

q

n = 0
 
e2

n!
 sx - 2dn

a

q

n = 0
s -1dnsn + 1dsx - 1dn

21 - 36sx + 2d + 25sx + 2d2
- 8sx + 2d3

+ sx + 2d4
8 + 10sx - 2d + 6sx - 2d2

+ sx - 2d3
x4

- 2x3
- 5x + 4

a

q

n = 0
 

x2n

s2nd!
7a

q

n = 0
 
s -1dnx2n

s2nd!a

q

n = 0
 
s -1dn32n + 1x2n + 1

s2n + 1d!

a

q

n = 0
s -1dnxn

= 1 - x + x2
- x3

+
Á

a

q

n = 0
 
s -xdn

n!
= 1 - x +

x2

2!
-

x3

3!
+

x4

4!
-

Á

P3sxd = 2 +

1
4

 sx - 4d -

1
64

 sx - 4d2
+

1
512

 sx - 4d3

P2sxd = 2 +

1
4

 sx - 4d -

1
64

 sx - 4d2 ,

P0sxd = 2, P1sxd = 2 +

1
4

 sx - 4d ,

-

22
12

 ax -

p

4
b3

P3sxd =

22
2

+

22
2

 ax -

p

4
b -

22
4

 ax -

p

4
b2

P2sxd =

22
2

+

22
2

 ax -

p

4
b -

22
4

 ax -

p

4
b2

,

P0sxd =

22
2

, P1 sxd =

22
2

+

22
2

 ax -

p

4
b ,

P3sxd =

1
2

-

1
4

 sx - 2d +

1
8

 sx - 2d2
-

1
16

 sx - 2d3

P2sxd =

1
2

-

1
4

 sx - 2d +

1
8

 sx - 2d2 ,

P0sxd =

1
2

, P1sxd =

1
2

-

1
4

 sx - 2d ,

P3sxd = sx - 1d -

1
2

 sx - 1d2
+

1
3

 sx - 1d3

P0sxd = 0, P1sxd = x - 1, P2sxd = sx - 1d -

1
2

 sx - 1d2 ,

P3sxd = 1 + 2x + 2x2
+

4
3

 x3

P0sxd = 1, P1sxd = 1 + 2x, P2sxd = 1 + 2x + 2x2

1 + x2
+

2x4

3
+

17x6

45
+

62x8

315
+

Á,  -
p

2
6 x 6

p

2

x2

2
+

x4

12
+

x6

45
+

17x8

2520
+

31x10

14175
,  -
p

2
6 x 6

p

2 3.

5.

7.

9.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

49. (a) (b)

Section 10.10, pp. 620–622

1. 3.

5. 7.

9.

11.
13.
15. 0.00267 17. 0.10000 19. 0.09994 21. 0.10000

23. 25.
x3

3
-

x7

7 # 3!
+

x11

11 # 5!
1

13 # 6!
L 0.00011

s1 - 2xd3
= 1 - 6x + 12x2

- 8x3
s1 + xd4

= 1 + 4x + 6x2
+ 4x3

+ x4

1 +

1
2x

-

1
8x2 +

1
16x3

1 -

x3

2
+

3x6

8
-

5x9

16
1 - x +

3x2

4
-

x3

2

1 +

1
2

 x +

3
8

 x2
+

5
16

 x3
+

Á1 +

x
2

-

x2

8
+

x3

16

0 … x 6 100-1>3Q(x) = 1 + kx +

k(k - 1)

2
 x2

ƒ Error ƒ 6 s30.1ds0.1d3>6 6 1.87 * 10-4
ƒ Error ƒ 6 s10-3d3>6 6 1.67 * 10-10, -10-3

6 x 6 0
ƒ x ƒ 6 s0.06d1>5

6 0.56968

ƒ Error ƒ …

1
104 # 4!

6 4.2 * 10-6

1 + x +

1
2

 x2
-

1
8

 x4
+

Á

x2
-

2
3

 x4
+

23
45

 x6
-

44
105

 x8
+

Á

x + x2
+

 x3

3
 -

 x5

30
+

Á

a

q

n = 1
 
(-1)n - 1x2n + 1

3n
=

 x3

3
-

 x5

6
+

 x7

9
-

Á

a

q

n = 0
 a 1

n!
+ s -1dnb  

xn
= 2 +

3
2

 x2
-

5
6

 x3
+

25
24

 x4
-

Á

a

q

n = 1
 s -1dn + 1 

x4n - 1

2n - 1
= x3

-

 x7

3
+

 x11

5
-

x15

7
+

Á

a

q

n = 1
nxn - 1

= 1 + 2x + 3x2
+ 4x3

+
Á

x2
a

q

n = 0
s2xdn

= x2
+ 2x3

+ 4x4
+

Á

-

s2xd6

2 # 6!
+

s2xd8

2 # 8!
-

Á1 -

s2xd2

2 # 2!
+

s2xd4

2 # 4!

1 + a

q

n = 1
 
s -1dns2xd2n

2 # s2nd!
=

x -

p2x3

2!
+

p4x5

4!
-

p6x7

6!
+

Á
= a

q

n = 0
 
s -1dnp2nx2n + 1

s2nd!

a

q

n = 2
 
s -1dnx2n

s2nd!
=

x4

4!
-

x6

6!
+

x8

8!
-

x10

10!
+

Á

a

q

n = 0
 
xn + 1

n!
= x + x2

+

x3

2!
+

x4

3!
+

x5

4!
+

Á

a

q

n = 0
  s -1dn a3

4
bn

 x3n
= 1 -

3
4

 x3
+

32

42 x6
-

33

43 x9
+

Á

a

q

n = 1
  s -1dn + 1 

x2n

n = x2
-  

x4

2
+

x6

3
-

x8

4
+

Á

a

q

n = 0
 
s -1dn(5x2)2n

s2nd!
= 1 -

25x4

2!
+

625x8

4!
-

Á

5x3

3!
-

5x5

5!
+

5x7

7!
+

Á
=  -5x +

a

q

n = 0
 
5s -1dns -xd2n + 1

s2n + 1d!
= a

q

n = 0
 
5s -1dn + 1x2n + 1

s2n + 1d!
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Chapter 11: Answers to Odd-Numbered Exercises A-43

27. (a)

(b)

29. 31. 33. 35. 37. 2

39. 41. e 43. 45. 47.

49. 51. 55. 500 terms 57. 4 terms

59. (a) , radius of convergence

(b)

61.

67. (a) (b) (c)

71. for all x

Practice Exercises, pp. 623–625
1. Converges to 1 3. Converges to 5. Diverges
7. Converges to 0 9. Converges to 1 11. Converges to 

13. Converges to 3 15. Converges to ln 2 17. Diverges
19. 1 6 21. 3 2 23. 25. Diverges
27. Converges conditionally 29. Converges conditionally
31. Converges absolutely 33. Converges absolutely
35. Converges absolutely 37. Converges absolutely
39. Converges absolutely
41. (a) (b) (c)
43. (a) (b) (c) None
45. (a) for all x (b) For all x (c) None

47. (a) (b)
(c) None

49. (a) e, (b) (c) Empty set

51. 53. 55. ln 2, 2 57.

59. 61. 63.

65.

67.

69. 0.4849171431 71. 73. 7 2 75. 1 12

77. 79. 81. 2 3

83. the series converges to 

85. (a) (b) 87. It converges.

Additional and Advanced Exercises, pp. 625–627
1. Converges; Comparison Test 3. Diverges; nth-Term Test
5. Converges; Comparison Test 7. Diverges; nth-Term Test

9. With 

11. With a = 0,  ex
= 1 + x +

x2

2!
+

x3

3!
+

Á

+

23
12

 sx - p>3d3
+

Á

a = p>3, cos x =

1
2

-

23
2

 sx - p>3d -

1
4

 sx - p>3d2

a = 1, b = 0q

ln a1
2
b .ln an + 1

2n
b ;

>r = -3, s = 9>2-2

>>0.4872223583

1
4

-

1
42 sx - 3d +

1
43 sx - 3d2

-

1
44 sx - 3d3

2 -

sx + 1d
2 # 1!

+

3sx + 1d2

23 # 2!
+

9sx + 1d3

25 # 3!
+

Á

a

q

n = 0
 
sspxd>2dn

n!a

q

n = 0
 
s -1dnx10n>3

s2nd!a

q

n = 0
 
s -1dnp2n + 1x2n + 1

s2n + 1d!

a

q

n = 0
2nxnex ,sin x, p, 0

1
1 + x

, 
1
4

, 
4
5

-e 6 x 6 e-e 6 x 6 e

-23 6 x 6 2323, -23 6 x 6 23

q ,
0 … x … 2>31>3, 0 … x … 2>3 x = -7-7 6 x 6 -13, -7 … x 6 -1

e>se - 1d>>
e-5

-1

x + x2
+

1
3

 x3
-

1
30

 x5
+

Á,

- iA1>22 B (1 + i)-1

1 - 2x + 3x2
- 4x3

+
Á

p

2
- x -

x3

6
-

3x5

40
-

5x7

112

= 1x +

x3

6
+

3x5

40
+

5x7

112

-1
(1 + x)2

x3

1 + x2

x3

1 - x
23>2cos 

3
4

3>2
-11>3-1>241>2

x2

2
-

x4

3 # 4
+

x6

5 # 6
-

x8

7 # 8
+

Á
+ s -1d15 

x32

31 # 32

x2

2
-

x4

12
13. With 

15. Converges, 17. 21.

23. 27. (b) Yes

31. (a) (b) 6 (c) 1 q

33. (a)

(b)

(c) 7

CHAPTER 11

Section 11.1, pp. 634–636
1. 3.

5. 7.

9. 11.

x

y

2

(0, 0)

changes
direction
at t = 0

t < 0

y = x2 (x  – 2)

x

y

–1

–1

1

1

�
2

t =�
2

t =  –

y = 1 – 2x2

x

y

0 4

2

t = 0, 2�

y2

4
x2

16
= 1+

x

y

–2 –1 10 2

–1

1

2

–2

t = 0t =

t = �

x2 + y2 = 1

2
�

–1
–1

–2

–3

–4

1 2 3 4

1

4

x

y

t =

y = 2x  + 3

2
5

t =
4
7

x

y

t > 0t < 0

0 1

1

y = x2

R L 0.58198; 0 6 (R - R10)>R 6 0.0001
R10 = Rs1 - e-10d L R(0.9999546) L 0.58195;
R1 = 1>e L 0.368,
R = C0se-kt0d>s1 - e-kt0d = C0>sekt0

- 1d
Rn = C0e

-kt0s1 - e-nkt0d>s1 - e-kt0d,

>a

q

n = 1
nxn - 1

a = 2, L = -7>6
b = ;

1
5

p>2limit = b

-

1
6!

 sx - 22pd6
+

Á

1
4!

 sx - 22pd4a = 22p,  cos x = 1 -

1
2

 sx - 22pd2
+
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13. 15.

17.

19. (a)
(b)
(c)
(d)

21. Possible answer:
23. Possible answer:
25. Possible answer:
27. Possible answer:

29. Possible answer:

31. Possible answer:

and if 

33. Possible answer:

35.

37. 39. (1, 1)

Section 11.2, pp. 643–645

1.

3.

5. 7.

9.

11. y = 13x -

p13
3

+ 2, 
d2y

dx2 = -4

y = x - 4, 
d2y

dx2 =

1
2

y = 2x - 13, 
d2y

dx2 = -313y = x +

1
4

, 
d2y

dx2 = -2

y = -  

1
2

 x + 212, 
d2y

dx2 = -  

12
4

y = -x + 212, 
d2 y

dx2 = -12

x = a sin2 t tan t, y = a  sin2 t, 0 … t 6 p>2
x = 2 cot t, y = 2 sin2 t, 0 6 t 6 p

x = 2 - cos t, y = sin t, 0 … t … 2p

u = p>2x = 0, y = 20 … u 6 p>2
x =

4
1 + 2 tan u

, y =

4 tan u

1 + 2 tan u
,

- q 6 t 6 q

x =

-at

21 + t2
, y =

a

21 + t2
,

x = 2 cos t, y = 2 ƒ sin t ƒ , 0 … t … 4p
x = 2 - 3t, y = 3 - 4t, t Ú 0
x = t2

+ 1, y = t, t … 0
x = -1 + 5t, y = -3 + 4t, 0 … t … 1

x = a cos t, y = a sin t, 0 … t … 4p
x = a cos t, y = -a sin t, 0 … t … 4p
x = a cos t, y = a sin t, 0 … t … 2p
x = a cos t, y = -a sin t, 0 … t … 2p

x

y

–1 0

t = 0

x2 – y2 = 1

x

y

–2 –1 1 2 3 4

–1

1

2

3

–2

–3

t = 0

0 ≤ t ≤

≤ t < 0

x = y2

�
2

–

�
2

x

y

0–1 1

t = 0

t = –1

y = √1 – x2

13. 15. 17.

19. 1 21. 23. 25. 4 27. 12

29. 31. 33. 35.

37.

39. 41. (a) (b)

43. (a) (b)

(c)

45. at at 

47. (a) 8a (b)

Section 11.3, pp. 648–649
1. a, e; b, g; c, h; d, f 3.

(a) and an integer

(b) and an integer

(c) and 

n an integer
(d) and an integer

5. (a) (3, 0) (b) (c) (d)

(e) (3, 0) (f ) (g) (h)

7. (a) (b)

(c) (d)

9. (a) (b)

(c) (d)

11. 13.

x

y

0 1

r � 1

x

y

0

2

2

r = 2

a-5, p - tan-1 
3
4
ba-2, 

5p
3
b

(-1, 0)a-312, 
5p
4
b

a5, p - tan-1 
4
3
ba2, 

11p
6
b

(3, p)a12, 
p

4
b

A -1, 23 B(-3, 0)A1, 23 B
A1, 23 BA -1, 23 B(-3, 0)

(-2, 2np), n(2, (2n + 1)p)

a-2, 
3p
2

+ (2n + 1)pb ,a2, 
3p
2

+ 2npb
(-2, (2n + 1)p), n(2, 2np)

a-2, 
p

2
+ (2n + 1)pb , na2, 

p

2
+ 2npb

x

y

2, 
�
2

–2, 
�
2

(2, 0)(–2, 0)

64p
3

t = py = -2xt = 0,a12
2

, 1b , y = 2x

x =

13 - 1
2

, y =

3 - 13
2

, 
dy

dx
=

213 - 1

13 - 2

x = 0, y = 3, 
dy

dx
= 0x = 1, y = 0, 

dy

dx
=

1
2

pp(x, y) = a1
3

, p -

4
3
b

(x, y) = a12
p -

24
p2,  

24
p2 - 2b

3p15
52p

3
8p2p2

abp3a2p

-6-  

3
16

y = 9x - 1, 
d2y

dx2 = 108

A-44 Chapter 11: Answers to Odd-Numbered Exercises

7001_ThomasET_OddAnsCh8-app.qxd  11/3/09  3:01 PM  Page 44



Chapter 11: Answers to Odd-Numbered Exercises A-45

15. 17.

19. 21.

23. 25.

27. vertical line through (2, 0) 29. the x-axis
31. horizontal line through (0, 4)
33. line, 

35. circle, C(0, 0), radius 1
37. line, 

39. parabola, vertex (0, 0), opens right
41. graph of natural exponential function
43. two straight lines of slope y-intercepts 

45. circle, radius 2

47. circle, C(0, 4), radius 4

49. circle, C(1, 1), radius 

51. 53. 55.

57. or 59.

61. 63.

65. 67. where is any angle

Section 11.4, pp. 652–653
1. x-axis 3. y-axis 

x

y

0

–2

1–1

r = 1 – sin �

x

y

1

2

–1

r = 1 + cos �

u(0, u) ,r2
= 6r cos u - 2r sin u - 6

r = 4 sin ur sin2 u = 4 cos u

4r2 cos2 u + 9r2 sin2 u = 36r = -2r = 2

u = p>4r cos u = 723y + x = 4

22(x - 1)2
+ (y - 1)2

= 2,

x2
+ (y - 4)2

= 16,

C(-2, 0) ,(x + 2)2
+ y2

= 4,

b = ;1-1,x + y = ;1,
y = ex ,
y2

= x ,

m = 2, b = 5y - 2x = 5,
x2

+ y2
= 1,

m = -1, b = 1x + y = 1,
y = 4,

y = 0,x = 2,

x

y

0 1 2

1

2

–1

–2

�

2
�

2
� � �

1 � r � 2

–

x

y

0

1

�

4
3�

4
� � �

0 � r � 1

x

y

0 1

r = 1
0 � � � �

x

y

O

� =
2
�

r � 0

x

y

0–1

–1

3

2

� = 

–1 � r � 3

�
3

�
3

x

y

0

0 � � � 
r � 0

�
6

5. y-axis 7. x-axis, y-axis, origin 

9. x-axis, y-axis, origin 11. y-axis, x-axis, origin

13. x-axis, y-axis, origin 15. Origin
17. The slope at is at is 1.

19. The slope at is at is 1, at 
is 1, at is 

21. (a) (b)

x

y

1
2

1
2

–

1
2

r =    + sin �

3
2

x

y

1
2

1
2

–

1
2

1
2

3
2

r =    + cos �

x

y

r = sin 2�

⎞⎠⎞⎠–1, – 
�

4

⎞⎠⎞⎠1, –
3�

4

⎞⎠⎞⎠1, 
�

4

⎞⎠⎞⎠–1,
3�

4

-1.(1, -3p>4)
(-1, 3p>4)(-1, -p>4)-1,(1, p>4)

x

y

r = –1 + cos �

⎞⎠⎞⎠–1, – 
�

2

⎞⎠⎞⎠–1,
�

2

2

(-1, -p>2)-1,(-1, p>2)

x

y

1

–1

r2 = –sin �

x

y

–1 1

r2 = cos �

x

y

–1 1

√2
2

√2
2

–

r = sin (�/2)

x

y

0

1

2

3

–1

–1 1 2–2

r = 2 + sin �
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23. (a) (b)

25. 27.

29. (a)

Section 11.5, pp. 656–657

1. 3. 5. 7. 2 9. 11.

13. 15. 17.

19. (a) 21. 19 3 23. 8

25. 27.

Section 11.6, pp. 663–666
1. directrix: 

3. directrix: 

5.

asymptotes: 

7.

9. 11.

x

y

0

2

2

y = 2

x2 = –8y

F(0, –2)

x

y

0

3

–3 F(3, 0)

x = –3
y2 = 12x

x2

2
+ y2

= 1, Fs ;1, 0d, V A ;22, 0 B
y = ;

3
2

 x

x2

4
-

y2

9
= 1, F A ;213, 0 B , Vs ;2, 0d ,

y = 3>2x2
= -6y, Fs0, -3>2d ,

x = -2y2
= 8x, Fs2, 0d ,

p

8
+

3
8

3 A22 + ln A1 + 22 B B
>3

2
-

p

4

8p
3

+ 23
p

3
+

23
2

323 - p

5p - 8
p

2
- 1

p

8
18p

1
6

 p3

x

y

–4 0

–2

2

0 � r � 2 – 2 cos �

x

y

r = –1

r = 2

x

y

1
2

5
2

r =    – sin �

3
2

3
2

–

3
2

–

x

y

0 5
2

1
2

–

3
2

r =    + cos �

3
2

3
2

–

13. 15.

17. 19.

21. 23.

25.

27. Asymptotes: 29. Asymptotes: 

31. Asymptotes: 33. Asymptotes: 

x

y

F2

F1√10

√2

–√10

x2

2

y2

8
–       = 1

x

y

F2F1

√10

√2

–√10

x2

2

y2

8
–       = 1

y = ;x>2y = ;2x

x

y

F2

F1

2√2

x2

8

y2

8
–       = 1

4

–4

x

y

F2F1

√2–√2

x2 – y2 = 1

y = ;xy = ;x

x2

4
+

y2

2
= 1

x

y

0 3

F2F1

√3–√3

√6
x2

9

y2

6
+       = 1

x

y

0

–1

1 F1

F2

√2

√3 x2

2

y2

3
+       = 1

x

y

0 1

1

–1

F1

F2

√2 y2

2
x2 +       = 1

x

y

0

4

–4

3 5–3–5

x2

25

y2

16
+       = 1

F1 F2

x

y

x = –3y2

0 1
12

1
12

x =
1
6

1
6

–

1
12

F       , 0
⎛
⎝

⎛
⎝

–

x

y

0 1/4

1
4

y = 4x2

1
16

F  0,
⎛
⎝

⎛
⎝

directrix y = – 1
16
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Chapter 11: Answers to Odd-Numbered Exercises A-47

35. 37.

39. (a) Vertex: focus: directrix: 
(b)

41. (a) Foci: vertices: (8, 3) and (0, 3); center: (4, 3)
(b)

43. (a) Center: (2, 0); foci: (7, 0) and vertices: (6, 0) and

asymptotes: 

(b)

45.
directrix: 

47.

49.

51. and 

C(2, 3)

53. and 

and 

55.

and and 
asymptotes (y + 1) = ; (x + 1)

V(-1, -2);F A -1, -22 - 1 B , V(-1, 0)

(y + 1)2
- (x + 1)2

= 1, C(-1, -1), F A -1, 22 - 1 B
V(0, 2); asymptotes: (y - 2) = ;

25
2

 (x - 2)V(4, 2)

F(-1, 2),
(x - 2)2

4
-

(y - 2)2

5
= 1, C(2, 2), F(5, 2)

V A ;23 + 2, 3 B ,
F(1, 3),

(x - 2)2

3
+

(y - 3)2

2
= 1, F(3, 3)

C(-2, -1)V(-2, ;3 - 1),

(x + 2)2

6
+

(y + 1)2

9
= 1, F A -2, ;23 - 1 B ,

directrix: y = -9
(x - 1)2

= 8(y + 7), V(1, -7), F(1, -5),
x = -3

(y + 3)2
= 4(x + 2), V(-2, -3), F(-1, -3) ,

x

y

(7, 0)(–3, 0)

(–2, 0) (6, 0)
20

(x – 2)2

16

y2

9
–        = 1

y =    (x – 2)
3
4

y = –   (x – 2)
3
4

y = ;

3
4

 (x - 2)(-2, 0) ;

(-3, 0) ;

x

y

0

(0, 3) (8, 3)

6

4 8

F1(4 – √7, 3)

F2(4 + √7, 3)

C(4, 3)

(x – 4)2

16

(y – 3)2

9
+               = 1

A4 ; 27, 3 B ;

x

y

0 1 2 3

2

–2

–4

F(3, –2)

V(1, –2)

(y + 2)2 = 8(x – 1)

x = -1(3, -2) ;(1, -2) ;

x2

9
-

y2

16
= 1y2

- x2
= 1

57. 59.

61. Ellipse: and

and 

63. Ellipse: and

and 

65. Hyperbola: 

and and

67. Hyperbola: and

and 

or 

69. (b) 1:1 73. 75.
77.

79.

Section 11.7, pp. 671–672

1. 3.

.

5. 7.

directrices are 

9. 11.

13. 15.
x2

64
+

y2

48
= 1

x2

9
+

y2

4
= 1

x2

4851
+

y2

4900
= 1

x2

27
+

y2

36
= 1

x

y

F1 F2

y2

6
x2

9
= 1+

3–3

√6

–√6

–√3 √3
x

y

F1

F2

y2

3
x2

2
= 1+

–1

1

√3

–√3

–√2 √2

x = ;323.directrices are y = ;3.

e =

13
3

; F A ;23, 0 B ;e =

1
13

; F(0, ;1);

x

y

F1

F2

y2

2
x2 + = 1

–1

–1 1

1

–√2

√2

x

y

F1 F2

y2

16
x2

25
= 1+

3 5

–4

–3–5

4

directrices are y = ;2.directrices are x = ;

25
3

e =

1
12

; F(0, ;1);e =

3
5

, F(;3, 0);

x = 0, y =

16
3p

x = 4, y = 0: y = 2x - 8
x = 0, y = 0: y = -2x; x = 0, y = 2: y = 2x + 2;

24pLength = 222, width = 22, area = 4

y = -22x + 3asymptotes: y = 22x + 3

V A0, -26 + 3 B ; F(0, 0), V A0, 26 + 3 B
(y - 3)2

6
-

x2

3
= 1, C(0, 3), F(0, 6)

V(0, 2); asymptotes: ( y - 2) = ; (x - 1)
F A1 - 22, 2 B , V(2, 2)F A1 + 22, 2 B

(x - 1)2
- (y - 2)2

= 1, C(1, 2),

V A -22 + 1, 1 BF(0, 1), V A22 + 1, 1 B
(x - 1)2

2
+ (y - 1)2

= 1, C(1, 1), F(2, 1)

V A -25 - 2, 0 BF(-4, 0), V A25 - 2, 0 B
(x + 2)2

5
+ y2

= 1, C(-2, 0), F(0, 0)

V(-1, 1), F(-1, 0)C(-2, 0), a = 4
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17. 19.

21. 23.

.

25. 27. 29.

31. 33. 35.

37. 39.

41. 43.

x

y

8
2 – 2 sin �

r =

–2 2

y = –4

0

2, ⎛
⎝

⎛
⎝ 2

3�x

y

400
16 + 8 sin �

r =

y = 50

0

,
3
50

2
� ⎛

⎝
⎛
⎝

,
3
50 ⎛

⎝
⎛
⎝

50,
2

3�
2

3�

⎛
⎝

⎛
⎝

x

y

25
10 – 5 cos �

r =

–5

x = –5

0

, 0
3
5 ⎛

⎝
⎛
⎝

, �
3
5 ⎛

⎝
⎛
⎝

(5, 0)

x

y

1
1 + cos �

r =

–1 1

–1

1

2

–2

–2

x = 1

0

, 0
2
1 ⎛

⎝
⎛
⎝

r =

10
5 - sin u

r =

1
2 + cos u

r =

30
1 - 5 sin u

r =

2
1 + cos u

x2
-

y2

8
= 1y2

-

x2

8
= 1

x

y

F1

F2

x2

8
y2

2
= 1–

–4 –2 2 4

–2

–1

1

2

–√10

√10

–√2

√2
x

y

F1
F2

–2 2 4–4 –√10 √10

–10

–5

5

10

y2

8
x2

2
= 1–

–√2 √2

directrices are y = ;

2
110

directrices are x = ;

2
110

.

e = 25; F A0, ; 210 B ;e = 25; F A ; 210, 0 B ;

x

y

F1

F2

x2

8
y2

8
= 1–

–2

–4

–4 2 4

4

6

–6

–√8

√8

–2

2

x

y

F1 F2

–1

1

2

3

–2

–2

–3

–1 1 2 3–3

–√2 √2

x2 – y2 = 1

directrices are y = ;2.directrices are x = ;  

1
12

 .

e = 22; F(0, ;4);e = 22; F A ; 22, 0 B ;
45. 47.

49. 51.

53. 55.

57. 59.

61. 63.

65. 67.

x

y

r = 4 sin �4

x

y

6

2√3

r = 3 sec  � – �

3
⎛
⎝

⎛
⎝

x

y

0, –    

r =  – sin �

2
1

x2 +  y +      2 =
2
1

4
1⎛

⎝
⎛
⎝

⎛
⎝

⎛
⎝

x

y

(–1, 0)

(x + 1)2 + y2 = 1
r = –2 cos �

r = -sin ur = -2 cos u

x

y

(0, 5)

r = 10 sin �
x2 + (y – 5)2 = 25

x

y

(6, 0)

(x – 6)2 + y2 = 36
r = 12 cos �

r = 10 sin ur = 12 cos u

x

y

(1, �)
r = –2 cos �

Radius = 1
–2

x

y

(2, 0)

r = 4 cos �

Radius = 2

r cos au +

p

2
b = 5r cos au -

p

4
b = 3

x

y

y = x + 2√3

–6
2

4
3

√3

2

2
x  + y = 2

x

y

y =

23
3

 x + 223y = 2 - x
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Chapter 11: Answers to Odd-Numbered Exercises A-49

69. 71.

73.

75. (b)

Practice Exercises, pp.673–675
1. 3.

5.

7.

9. y =

13
2

 x +

1
4

, 
1
4

x = 3 cos t, y = 4 sin t, 0 … t … 2p

x

y

–1 0 1

1

y = x2

t = 0 t = �

x

y

1

1

0

t = 0
2
1

4y2 – 4x2 = 1

1

0
x

y

t = 0

–
2
1

y = 2x + 1

Planet Perihelion Aphelion

Mercury 0.3075 AU 0.4667 AU
Venus 0.7184 AU 0.7282 AU
Earth 0.9833 AU 1.0167 AU
Mars 1.3817 AU 1.6663 AU
Jupiter 4.9512 AU 5.4548 AU
Saturn 9.0210 AU 10.0570 AU
Uranus 18.2977 AU 20.0623 AU
Neptune 29.8135 AU 30.3065 AU

x

y

–1 1

1
1 + 2 sin �

r =

11
3

x

y

–1 1

1
1 – sin �

r =x

y

–1–2 1

–1

1

8
4 + cos �

r =

11. (a) (b)

13. 15. 17. 10 19. 21.

23. 25.

27. 29.

31. 33.

35. 37.

39. d 41. l 43. k 45. i 47. 49.

51. 8 53. p - 3

2 +

p

4
9
2

 p

x

y

0 ≤ r ≤ 6 cos �

0 6
x

y

r = 3 cos �

x –      2 + y2 =
2
3

4
9⎛

⎝
⎛
⎝

, 0    
2
3 ⎛

⎝
⎛
⎝

r = 3 cos u

x

y

0, –    

r =  –5 sin �

2
5

x2 +  y +      2 =
2
5

4
25⎛

⎝
⎛
⎝

⎛
⎝

⎛
⎝

x

y

r =  2√2 cos �

+ y2 = 2
2⎛
⎝

⎛
⎝x – √2

⎛
⎝

⎛
⎝√2 , 0

r = -5 sin uAx - 22 B2 + y2
= 2

x

y

(0, –2)

r =  –4 sin � x2 + (y + 2)2 = 4x

y

–
2
3

–
2
3

y =

x2
+ ( y + 2)2

= 4y = -

3
2

x

y

2

x = 2

x

y

–4

y = 4√3x – √3

4√3

x = 2y =

13
3

 x - 4

76p
3

9p
2

285
8

10
3

y =

; 21 - x2

xy =

; ƒ x ƒ
3>2

8
- 1
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55. Focus is 57. Focus is 

directrix is directrix is 

59. e =

3
4

y

x

–2

23
4

x =  –

y2 = 3x

0

4
3 ⎛

⎝
⎛
⎝ , 0

y

x

1

–2 20

y = 1

x2 = –4y

x = -  

3
4

.y = 1.

a3
4

, 0b ,(0, -1), 81. 83.

85. (a) (b)

Additional and Advanced Exercises, pp. 675–676

1.

3. 5.

7. (a) (b)

11. 13.

15.

17. (a) (b)

19. 21.

23. ,

27.
p

2

y = (a + b) sinu - bsin aa + b
b
ub

x = (a + b)cosu - bcos aa + b
b
ub

r =

2
2 + sin u

r =

4
1 + 2 cos u

25
2

 (e4p
- 1)r = e2u

y

x
0 2

3
4x2 + 9y2 = 16 

9x2 + 4y2 – 36 = 0 

y

x
0 3

4y2

16
x2

9
≤ 1+

y

x

x2 + 4y2 – 4 = 0 x2 – y2 – 1 = 0 

x2 + y2 – 25 = 0 

210

5

1

ay +

3
4
b2

a25
16
b

-

x2

a75
2
b

= 1
(y - 1)2

16
-

x2

48
= 1

F(0, ;1)3x2
+ 3y2

- 8y + 4 = 0

y

x
1 30 F(4, 0) 

y2

2
7
2

x – =

x -

7
2

=

y2

2

16p24p

r =

2
2 + sin u

r =

4
1 + 2 cos u

A-50 Chapter 11: Answers to Odd-Numbered Exercises

1 2–1–2

y

x

y = √3x

x2 –       = 1
3
y2

y = –√3x

63.

65. and

and 

67.

and the asymptotes

are and .

69. Hyperbola: and , the foci are 

and the asymptotes are 

71. Parabola: and the directrix is 

73. Ellipse: and 

75. Circle: and radius
77. 79. and 

0

y

x

6
1 – 2 cos �

r =

–3

3

(6, �)

(2, �)

x

y

2
1 + cos �

r =

–2

2

0 (1, 0)

V(6, p)V(2, p)V(1, 0)
= 12C(1, 1)

V(-7, 2)C(-3, 2), F A -3 ; 17, 2 B , V(1, 2)

x = 1.V(-3, 1), F(-7, 1)

y = ;  

x - 2
2

.0 BF A2 ; 25,

V(4, 0)C(2, 0), V(0, 0)

y = -2x + 4 + 222y = 2x - 4 + 222

V(2, 0),V A2, 422 BF A2, 222 ; 210 B ,
Ay - 222 B2

8
-

(x - 2)2

2
= 1, C A2, 222 B ,

V(-3, 0).F(-3, -9), V(-3, -10)

(x + 3)2

9
+

( y + 5)2

25
= 1, C(-3, -5), F(-3, -1)

(x - 2)2
= -12( y - 3), V(2, 3), F(2, 0), directrix is y = 6.

61. the asymptotes

are y = ;23 x.

e = 2;

x

y

–4

–3

4

3

0 √7

y2

16
x2

7
= 1+
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Chapter 12: Answers to Odd-Numbered Exercises A-51

CHAPTER 12

Section 12.1, pp. 681–682
1. The line through the point (2, 3, 0) parallel to the z-axis
3. The x-axis 5. The circle in the xy-plane
7. The circle in the xz-plane
9. The circle in the yz-plane

11. The circle in the xy-plane
13. The ellipse formed by the intersection of the cylinder

and the plane 
15. The parabola in the xy-plane
17. (a) The first quadrant of the xy-plane

(b) The fourth quadrant of the xy-plane
19. (a) The ball of radius 1 centered at the origin

(b) All points more than 1 unit from the origin
21. (a) The ball of radius 2 centered at the origin with the interior of

the ball of radius 1 centered at the origin removed
(b) The solid upper hemisphere of radius 1 centered at the origin

23. (a) The region on or inside the parabola in the xy-plane
and all points above this region

(b) The region on or to the left of the parabola in the xy-
plane and all points above it that are 2 units or less away from
the xy-plane

25. (a) (b) (c)
27. (a) (b) (c)
29. (a)

(b) (c)
31. (a) (b) (c)

33. 35. 37.

39. (a)

(b)

41. 3 43. 7 45. 47.

49.

51.

53.

55. 57.

59. (a) (b) (c)

61. 63.
65. (a) (b)

Section 12.2, pp. 690–692
1. (a) (b) 3. (a) (b)

5. (a) (b) 7. (a) (b)

9. 11. 13.

15. 17. 19.

21. 3i + 5j - 8k

-3i + 16j-3i + 2j - kh-

23
2

, -
1
2
i

h-

1
2

, 
23
2
i8-2, -3981, -49

2197
5

h 1
5

, 
14
5
i2505812, -199
21081, 39321389, -69

(0, 5, -5)(0, 3, -3)
y = 1217 + 233 + 6

2x2
+ y22x2

+ z22y2
+ z2

C a- 1
4

, -
1
4

, -
1
4
b , a =

523
4

Cs -2, 0, 2d, a = 28

sx + 1d2
+ ay -

1
2
b2

+ az +

2
3
b2

=

16
81

sx - 1d2
+ s y - 2d2

+ sz - 3d2
= 14

C A22, 22, -22 B , a = 22

Cs -2, 0, 2d, a = 222223

sx - 1d2
+ s y - 1d2

+ sz - 1d2
7 1

sx - 1d2
+ s y - 1d2

+ sz - 1d2
6 1

z … 00 … z … 1x2
+ y2

+ z2
= 25, z = 3

x = 1, y = 3x = 1, z = -1y = 3, z = -1
x2

+ z2
= 4, y = 2s y - 2d2

+ z2
= 4, x = 0

x2
+ s y - 2d2

= 4, z = 0
y = -1x = 3z = 1

z = -2y = -1x = 3

x = y2

y = x2

y = x2
z = yx2

+ y2
= 4

x2
+ y2

= 16

y2
+ z2

= 1
x2

+ z2
= 4

x2
+ y2

= 4

23. The vector v is horizontal and 1 in. long. The vectors u and w

are long. w is vertical and u makes a 45° angle with the 

horizontal. All vectors must be drawn to scale.

(a) (b)

(c) (d)

25. 27. 5(k)

29.

31. (a) 2i (b) (c) (d)

33.

35. (a) (b) (1 2, 3, 5 2)

37. (a) (b)

39. 41.

43.

45.

47.

49. (a)

(b)

51. (a) (b) (c) (2, 2, 1)

Section 12.3, pp. 698–700
1. (a) (b) (c) (d)

3. (a) 25, 15, 5 (b) (c) (d)

5. (a) (b) (c)

(d)
1

17
 s5j - 3kd

2

234

2

23234
2, 234, 23

1
9

 s10i + 11j - 2kd5
3

1
3

-2i + 4j - 25k-5-1-25, 5, 5

i + j - 2k
3
2

 i +

3
2

 j - 3k

523 - 1022
2

ba5 + 1022
2

,

s5 cos 60° + 10 cos 315°, 5 sin 60° + 10 sin 315°d =

s5 cos 60°, 5 sin 60°d = a5
2

, 
523

2
b

ƒ F1 ƒ =

w cos 35°
sin 75°

L 106.933 N

w =

100 sin 75°
cos 40°

L 126.093 N,

ƒ F2 ƒ sin 45°9 L 863.397, 63.3979F2 = 8 ƒ F2 ƒ cos 45°,
ƒ F1 ƒ sin 30°9 L 8-63.397, 36.6039,F1 = 8- ƒ F1 ƒ cos 30°,

ƒ F2 ƒ =

100 cos 30°
sin 75°

L 89.658 N,

ƒ F1 ƒ =

100 cos 45°
sin 75°

L 73.205 N,

L8-338.095, 725.0469
a =

3
2

, b =

1
2

As4, -3, 5d

a5
2

, 
7
2

, 
9
2
b-

1

23
 i -

1

23
 j -

1

23
 k

>>3

5 22
 i +

4

5 22
 j -

1

22
 k

7
13

 s12i - 5kd

6i - 2j + 3k
3

10
 j +

2
5

 k-23k

A
1
2

 a 1

23
 i -

1

23
 j -

1

23
 kb

3 a2
3

 i +

1
3

 j -

2
3

 kb

u

u – w

–wu
u – v

–v

v

w

u

u + v + w

v

u u + v

11
16

 in .
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7. (a) (b)

(c) (d)

9. 0.75 rad 11. 1.77 rad

13. Angle at angle at 

angle at

23. Horizontal component: vertical component:

25. (a) Since we have 

(b) We have equality precisely when or when one or
both of u and v are 0. In the case of nonzero vectors, we
have equality when or that is, when the vectors are
parallel.

27. a
33. 35.

37. 39.

41. 5 J 43. 3464 J 45. 47. 49. 0.14

Section 12.4, pp. 704–706

1. direction is 

direction is 

3. no direction; no direction
5. direction is direction is k

7. direction is 

direction is -
1

25
 i +

2

25
 k

1

25
 i -

2

25
 k; ƒ v * u ƒ = 625,ƒ u * v ƒ = 625,

-k; ƒ v * u ƒ = 6,ƒ u * v ƒ = 6,
ƒ v * u ƒ = 0,ƒ u * v ƒ = 0,

-

2
3

 i -

1
3

 j -

2
3

 k

2
3

 i +

1
3

 j +

2
3

 k; ƒ v * u ƒ = 3,ƒ u * v ƒ = 3,

p

6
p

4

–i  –  2j

P(1, 2)

2x – y = 0

x

y

1

–2 1

–1 i – j

P(–2, 1)

x + y = –1

x

y

2x - y = 0x + y = -1

–3

–2

–2i + j

–2x + y = –3

0

1

3
2

x

y

2

1

i + 2j

0 4
x

y

x + 2y = 4

-2x + y = -3x + 2y = 4

p ,u = 0

ƒ cos u ƒ = 1
ƒ u ƒ ƒ v ƒ s1d = ƒ u ƒ ƒ v ƒ .

ƒ u # v ƒ = ƒ u ƒ ƒ v ƒ ƒ cos u ƒ …ƒ cos u ƒ … 1,
L  167 ft>sec

L  1188 ft>sec ,

C = cos-1 a 1

25
b L 63.435 degrees .

B = cos-1 a3
5
b L 53.130 degrees ,

A = cos-1 a 1

25
b L 63.435 degrees ,

10 + 217
26

 s5i + jd10 + 217

226

10 + 217

2546
10 + 217, 226, 221

9. 11.

13.

15. (a) (b)

17. (a) (b)

19. 8 21. 7 23. (a) None (b) u and w 25.
27. (a) True (b) Not always true (c) True (d) True

(e) Not always true (f) True (g) True (h) True

29. (a) (b) (c)

(d) (e) (f)

31. (a) Yes (b) No (c) Yes (d) No
33. No, v need not equal w. For example, but

and

35. 2 37. 13 39. 41. 43.

45. 47.

49. If and then

and the triangle’s area is

The applicable sign is if the acute angle from A to B runs
counterclockwise in the xy-plane, and if it runs clockwise.

Section 12.5, pp. 712–714
1.
3.
5.
7.
9.

11. x = t, y = 0, z = 0
x = t, y = -7 + 2t, z = 2t
x = 1, y = 1, z = 1 + t
x = 0, y = 2t, z = t
x = -2 + 5t, y = 5t, z = 3 - 5t
x = 3 + t, y = -4 + t, z = -1 + t

s - d
s + d

1
2
`A * B ` = ;

1
2

 ` a1 a2

b1 b2
` .

A * B = 3 i j k

a1 a2 0

b1 b2 0

3 = 3 a1 a2

b1 b2

3 k
B = b1 i + b2 j ,A = a1 i + a2 j

221
2

3
2

25
2

11
2

2129

i * s - i + jd = - i * i + i * j = 0 + k = k .
i * si + jd = i * i + i * j = 0 + k = k

i + j Z - i + j ,

ƒ u ƒ 
v

ƒ v ƒ

su * vd * su * wdƒ su * vd # w ƒ

;  su * vd * w;  u * vprojv u =

u # v
v # v  v

1023 ft-lb

;  
1

22
 si - jd22

2

;  
1

26
 s2i + j + kd226

z

x

y

–2k

i – j
i + j

y

z

x

i – j + k

i – k

j + k

y

z

x

i

i � j = k

j
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Chapter 12: Answers to Odd-Numbered Exercises A-53

13. 15.

17. 19.

21. 23.
25. 27.

29. 31. 33. 35. 0

37. 39. 3 41. 19 5 43. 5 3 45.

47. 49. 1.38 rad 51. 0.82 rad 53.

55. (1, 1, 0) 57.
59.
61. L1 intersects L2; L2 is parallel to L3; L1 and L3 are skew.
63.

65.

69. Many possible answers. One possibility: and

71. describes all planes except those
through the origin or parallel to a coordinate axis.

Section 12.6, pp. 718–719
1. (d), ellipsoid 3. (a), cylinder 5. (l), hyperbolic paraboloid
7. (b), cylinder 9. (k), hyperbolic paraboloid 11. (h), cone

13. 15.

4

2
x2 + 4z2 = 16 

z

x y

z

x

y

–2

2

x2 + y2 = 4

sx>ad + sy>bd + sz>cd = 1
2y + z = 7.

x + y = 3

a0, -
1
2

, -
3
2
b , s -1, 0, -3d, s1, -1, 0d

y = -2 + s1>2dt, z = 1 - s3>2dt
x = 2 + 2t, y = -4 - t, z = 7 + 3t; x = -2 - t,

x = 4, y = 3 + 6t, z = 1 + 3t
x = 1 - t, y = 1 + t, z = -1

a3
2

, -
3
2

, 
1
2
bp>4

9>241>>9242
7

2230x - y + z = 0y + z = 3

s1, 2, 3d, -20x + 12y + z = 7x + 3y + 4z = 34
7x - 5y - 4z = 63x - 2y - z = -3

y

z

x

(0, 2, 0)

(2, 0, 2)

y

z

x

(0, –1, 1) (0, 1, 1)

z = 2 - 2t, 0 … t … 1z = 1, 0 … t … 1
x = 2 - 2t, y = 2t,x = 0, y = 1 - 2t,

y

z

x

(1, 0, 0)
(1, 1, 0)

x

z

x

(0, 0, 0)

1, 1, 3
2

z = 0, -1 … t … 00 … t … 1

x = 1, y = 1 + t,x = t, y = t, z =

3
2

 t,
17. 19.

21. 23.

25. 27.

29. 31.

33. 35. z

x

y

y = –(x2 + z2)z
z2 = 1 + y2 – x2

x

y

z

x

y2 – x2 = z

y

z2 – x2 – y2 = 1

z

x y

2

1

√3√3

z

x

y

x2 + y2 – z2 = 1

–1
–1

1
1

z

x

y

x2 + y2 = z2

z

x

y

4

2

1

x = 4 – 4y2 – z2

z

x

y

z = x2 + 4y2

4
1

2

4x2 + 9y2 + 4z2 = 36

–3

–3

3

3

–2

2

z

x

y

9x2 + y2 + z2 = 9
3

3

–3

–3 –1

1

z

x

y
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37. 39.

41. 43.

45. (a) (b) (c)

Practice Exercises, pp. 720–721
1. (a) (b)
3. (a) (b) 10

5. [assuming counterclockwise]

7.

9.

11.

13.

15.

17.

19.

21.

z

x

y

i + j

i � (i + j) = k

i

u * v = k

4
3

 s2i + j - kd

ƒ u ƒ cos u =

3

22
, projv u =

3
2

 si + jd

u * v = 2i - 2j + k, ƒ v * u ƒ = 3, u = cos-1 a 1

22
b =

p

4
,

ƒ v ƒ = 22, ƒ u ƒ = 3, v # u = u # v = 3, v * u = -2i + 2j - k ,

8

233
 i -

2

233
 j +

8

233
 k

Length = 7, direction is 
2
7

 i -

3
7

 j +

6
7

 k .

v (p>2) = 2(- i)

Length = 2, direction is 
1

22
 i +

1

22
 j .

h 8

217
, -

2

217
i

h-

23
2

, -
1
2
i

86, -89 213138-17, 329

4pabc
3

8p
2ps9 - c2d

9

z

x

y

4y2 + z2 – 4x2 = 4

z

x

y

z = –(x2 + y2)

z

x2 + z2 = 1

x
y

1

1

z

x

y

x2 + y2 – z2 = 4 23. 25. (a) (b) 1 29.
31. 33.
35.
37.

39. 41.

43.
45. (b)
47. Yes; v is parallel to the plane.
49. 3 51.

53.

55.

57.
59.
61. (a) No (b) No (c) No (d) No (e) Yes
63.

65. 67.

69. 71.

73. 75.

Additional and Advanced Exercises, pp. 722–724
1. 3.

5. (a)

b = tan-1 
3
4

a = tan-1 
4
3

,F2 = 848, 369,
F1 = 8-48, 649,ƒ F2 ƒ = 60 lb,ƒ F1 ƒ = 80 lb,

ƒ F ƒ = 20 lbs26, 23, -1>3d

√10

z

x

y2 – x2 – z2 = 1

y

3

–3

–1
3

3

z

x

x2 + y2 – z2 = 4

y

√5

–2

–2

2

2

3
3

z

x

x2 + y2 = z2

y

z

x

y

z = –(x2 + y2)

z

x

4x2 + 4y2 + z2 = 4

y

–1

11

–2

2

z

x

x2 + y2 + z2 = 4

y2

2

–2

–2

2

11>2107

2x + 7y + 2z + 10 = 0
s1, -2, -1d; x = 1 - 5t, y = -2 + 3t, z = -1 + 4t

a11
9

, 
26
9

, -
7
9
b

2

235
 a5i - j - 3kb

-3j + 3k

x = -12t, y = 19>12 + 15t, z = 1>6 + 6t
x = -5 + 5t, y = 3 - t, z = -3t

p>3a0, -
1
2

, -
3
2
b , s -1, 0, -3d, s1, -1, 0d

-9x + y + 7z = 4
2x + y + z = 5

22x = 1 - 3t, y = 2, z = 3 + 7t
278>3214227

A-54 Chapter 12: Answers to Odd-Numbered Exercises

7001_ThomasET_OddAnsCh8-app.qxd  11/3/09  3:02 PM  Page 54



Chapter 13: Answers to Odd-Numbered Exercises A-55

(b)

,

9. (a) (b)

13. (b) (c)

(d) and 

15.

17. (a) 0, 0 (b)
(c)
(d)

19. The formula is always true.

CHAPTER 13

Section 13.1, pp. 731–733
1.

3.

5.

7.

9.

11.

vsp>2d = 225 C A -1>25 B i + A2>25 Bk D
direction: A -1>25 B i + A2>25 Bk;

a = s -2 cos tdi - s3 sin tdj; speed: 225;

v = s -2 sin tdi + s3 cos tdj + 4k;

vs1d = 3 a1
3

 i +

2
3

 j +

2
3

 kb2
3

 k;

direction: 
1
3

 i +

2
3

 j +v = i + 2tj + 2k; a = 2j; speed: 3;

x

y

2

1

0 � 2�

⎞⎠⎞⎠
3�
2

a
⎞⎠⎞⎠

3�
2

3�
2

v

t =

t = �
v(�)

a(�)

r = (t – sin t)i + (1 – cos t)j

t = p: v = 2i, a = - j; t =

3p
2

: v = i - j, a = � i

x

y

0 ⎞⎠⎞⎠
�
2

a
⎞⎠⎞⎠

�
2

v

⎞⎠⎞⎠
�
4

v
⎞⎠⎞⎠

�
4

a

1

t = p>2: v = - j, a = - i

t =

p

4
: v =

22
2

 i -

22
2

 j, a =

-22
2

 i -

22
2

 j ;

y =

2
9

 x2, v = 3i + 4j, a = 3i + 8j

y = x2
- 2x, v = i + 2j, a = 2j

-10i - 10k, -12i - 4j - 8k
-4i - 6j + 2k, i - 2j - 4k

-10i - 2j + 6k, -9i - 2j + 7k

32
41

 i +

23
41

 j -

13
41

 k

x - 2y + z = 3 - 526x - 2y + z = 3 + 526

2x - y + 2x = 8
6

214

u = tan-1 222 L 70.53°u = tan-1 22 L 54.74°

b = tan-1 
5
12

a = tan-1 
12
5

,

F2 = h 12,000
169

, 
5000
169
i L 871.006, 29.5869

F1 = h -12,000
169

, 
28,800

169
i L 8-71.006, 170.4149,

ƒ F2 ƒ =

1000
13

L 76.923 lb,ƒ F1 ƒ =

2400
13

L 184.615 lb, 13.

15. 17.

19. 21.

23. (a) (i): It has constant speed 1 (ii): Yes
(iii): Counterclockwise (iv): Yes

(b) (i): It has constant speed 2 (ii): Yes
(iii): Counterclockwise (iv): Yes

(c) (i): It has constant speed 1 (ii): Yes
(iii): Counterclockwise
(iv): It starts at instead of (1, 0)

(d) (i): It has constant speed 1 (ii): Yes
(iii): Clockwise (iv): Yes

(e) (i): It has variable speed (ii): No
(iii): Counterclockwise (iv): Yes

25.

Section 13.2, pp. 738–742

1. 3.

5.

7.

9.

11.

13.

15.

17.

19. 50 sec
21. (a) 72.2 sec; 25,510 m (b) 4020 m (c) 6378 m
23. (a) (b)
25. 39.3° or 50.7°
31. (b) would bisect 
33. (a) (Assuming that “x” is zero at the point of impact)

where and

(b) At it reaches its maximum height of about
7.945 ft.

(c) Range flight time
(d) At and when it is and

from where it will land
(e) Yes. It changes things because the ball won’t clear the net.

35. 4.00 ft, 7.80 ft sec>
L  14.396 ft

L  29.554t L 0.740 sec,t L 0.254
L 1.201 secL 37.45 ft;

t L 0.497 sec ,
ystd = 4 + s35 sin 27°dt - 16t2 .

xstd = s35 cos 27°dtrstd = sxstddi + s ystddj,

∠AOR.v0

a L 18.4° or 71.6°y0 L 9.9 m>sec

+ si + 2j + 3kd

¢1
2

 t 2
+

2t

211
≤s3i - j + kd+ ¢1

2
 t2

+

2

211
 t + 3≤k =

¢3
2

 t2
+

6

211
 t + 1≤ i - ¢1

2
 t2

+

2

211
 t - 2≤jrstd =

rstd = 8t i + 8t j + s -16t2
+ 100dk

rstd = sst + 1d3>2
- 1di + s -e-t

+ 1dj + slnst + 1d + 1dk

rstd = a- t2

2
+ 1b i + a- t2

2
+ 2b j + a- t2

2
+ 3bk

i - j +

p

4
 k

e - 1
2

 i +

e - 1
e  j + k

sln 4di + sln 4dj + sln 2dk

¢p + 222
2

≤j + 2ks1>4di + 7j + s3>2dk

v = 225i + 25j

s0, -1d

x = t, y =

1
3

 t, z = tx = t, y = -1, z = 1 + t

p>2p>2
vs1d = 26¢ 1

26
 i +

2

26
 j +

1

26
 k≤

speed: 26; direction: 
1

26
 i +

2

26
 j +

1

26
 k;

v = a 2
t + 1

b i + 2tj + tk; a = a -2
st + 1d2 b i + 2j + k;
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43. (a) where 

and 

(b) At it reaches a maximum height of about
41.893 feet.

(c) Range flight time
(d) At and when it is about and

from home plate
(e) No

Section 13.3, pp. 745–746

1.

3.

5.

7.

9. 11.

13. 15.

17. (a) Cylinder is plane is 
(b) and (c)

(d) (e)

Section 13.4, pp. 751–752
1.

3.

5. (b) cos x

7. (b)

(c) N = -

1
2

 A24 - t2 i + t j B
N =

-2e2t

21 + 4e4t
 i +

1

21 + 4e4t
 j

k =

1

2 A21 + t 2 B3
1

21 + t 2
 j,

N =

- t

21 + t 2
 i -T =

1

21 + t 2
 i -

t

21 + t 2
 j,

T = scos tdi - ssin tdj, N = s -sin tdi - scos tdj, k = cos t

L L 7.64L =

L

2p

0
21 + sin2 t dt

z

x y

(0, –1, 1)
(–1, 0, 2)

(0, 1, 1)(1, 0, 0)

x + z = 1.x2
+ y2

= 1,

22 + ln A1 + 22 Bsstd = 23et
- 23, L =

323
4

sstd = 5t, L =

5p
2

s0, 5, 24pd

+ a22t1>2
t + 1

bk, 
p2

2
+ p

jT = acos t - t sin t
t + 1

b i + asin t + t cos t
t + 1

b
T = -cos t j + sin tk, 

3
2

T =

1

21 + t
 i +

2t

21 + t
 k, 

52
3

T = a- 2
3

 sin tb i + a2
3

 cos tb j +

25
3

 k, 3p

251.530 ft
106.0282.190 sec,t L 0.877

L 3.181 secL 351.734 ft;

t L 1.527 sec

s1 - 0.08t - e-0.08td+ a 32
0.082 b

ssin 20°ds1 - e-0.08tdystd = 3 + a 152
0.08
b

xstd = a 1
0.08
b s1 - e-0.08tds152 cos 20° - 17.6d

rstd = sxstddi + s ystddj; 9.

11.

13.

15.

19. 1 (2b) 21.

23. 25.

Section 13.5, pp. 756–757

1. 3. 5.

7.

osculating plane:

normal plane: rectifying plane:

9.

11. 13. 15.
17. Yes. If the car is moving on a curved path then

and 

23.

29. Components of v: 0.7089, 1.0000
Components of a: 0
Speed: 2.2361; Components of T: 0.3170, 0.4472
Components of N: 
Components of B: 0.3590, 0.8839; Curvature: 0.5060
Torsion: 0.2813; Tangential component of acceleration: 0.7746
Normal component of acceleration: 2.5298

31. Components of v: 2.0000, 0, 0.1629
Components of a: 0, 0.0086; Speed: 2.0066
Components of T: 0.9967, 0, 0.0812
Components of N: 0.0086
Components of B: 0.0812, 
Curvature: 0.2484
Torsion: Tangential component of
acceleration: 0.0007
Normal component of acceleration: 1.0000

0.0411;

0.0086, 0.9967;-

--0.0007, -1.0000,
-

--1.0000,
-

-0.2998,
-0.4143, -0.8998, -0.1369

-0.8364,
-1.6960, -2.0307,
-1.8701,

k =

1
t , r = t

a Z 0.aN = k ƒ v ƒ
2

Z 0
sk Z 0d ,

B = k, t = 0B = -k, t = 0B = k, t = 0

B = a4
5

 cos tb i - a4
5

 sin tb j -

3
5

 k, t = -

4
25

x + y = 22

-x + y = 0;z = -1;

N ap
4
b = -

22
2

 i -

22
2

 j, B ap
4
b = k;

r ap
4
b =

22
2

 i +

22
2

 j - k, T ap
4
b = -

22
2

 i +

22
2

 j ,

as0d = 2Nas1d =

4
3

 T +

225
3

 Na = ƒ a ƒN

ksxd = ƒ sin x ƒ >s1 + cos2 xd3>2ksxd = 2>s1 + 4x2d3>2
ax -

p

2
b2

+ y2
= 1>

k =

1
a sech2 

t
a

N = a- tanh 
t
a b i + asech 

t
a b j ,

T = asech 
t
a b i + atanh 

t
a b j ,

k =

1

tst 2
+ 1d3>2

N =

i

2t 2
+ 1

-

tj

2t 2
+ 1

,T =

t

2t 2
+ 1

 i +

1

2t 2
+ 1

 j,

k =

1

et22

N = ¢ -cos t - sin t

22
≤ i + ¢ -sin t + cos t

22
≤j ,

T = acos t - sin t

22
≤ i + ¢ cos t + sin t

22
≤j ,

k =

3
25

N = s -sin tdi - scos tdj,T =

3 cos t
5

 i -

3 sin t
5

 j +

4
5

 k,
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Chapter 14: Answers to Odd-Numbered Exercises A-57

Section 13.6, p. 760
1.

3.

5.

Practice Exercises, pp. 761–762

1.

At 

At 

3. 5. 7. clockwise
11. Shot put is on the ground, about 66 ft 3 in. from the stopboard.

15.

17.

19.

21.

23.

25. 27. 31.

Additional and Advanced Exercises, pp. 763–764

1. (a)

(b) u =

gbt2

2sa2
+ b2d

, z =

gb2t2

2sa2
+ b2d

du
dt
`
u= 2p

= 2A
pgb

a2
+ b2

k = 1>ax = 1 + t, y = t, z = - tp>3
 B =

1

22
 i -

1

22
 k; k =

1

22
; t = 0

 N = ¢-

1

22
 sin t≤ i - scos tdj - ¢ 1

22
 sin t≤k;

T = ¢ 1

22
 cos t≤ i - ssin tdj + ¢ 1

22
 cos t≤k;

as0d = 10T + 6N

Bsln 2d = k; k =

8

17217
; t = 0

Tsln 2d =

1

217
 i +

4

217
 j; Nsln 2d = -

4

217
 i +

1

217
 j;

Bs0d = -

1

322
 i +

1

322
 j +

4

322
 k; k =

22
3

; t =

1
6

Ts0d =

2
3

 i -

2
3

 j +

1
3

 k; Ns0d =

1

22
 i +

1

22
 j;

Length =

p

4B1 +

p2

16
+ ln ¢p

4
+ B1 +

p2

16
≤

dy>dt = -x ;k = 1>5ƒ v ƒ max = 1

t =

p

4
: aT =

7
3

, aN =

422
3

, k =

422
27

t = 0: aT = 0, aN = 4, k = 2;

x

y

0

–1

1

2

4–4

√2 (2√2, 1)

⎞⎠⎞⎠
�
4

v

⎞⎠⎞⎠
�
4

a

a(0)

v(0)

x2

16
+

y2

2
= 1

a = (-40 cos 4t)ur - (32 sin 4t)uu
v = (-8 sin 4t)ur + (4 cos 4t)uu
a = 4eau(a2

- 1)ur + 8aeauuu

v = 2aeauur + 2eauuu
a = 9a(2 cos u - 1)ur + (18a sin u)uu
v = (3a sin u)ur + 3a(1 - cos u)uu

(c)

There is no component in the direction of B.

5. (a)

(b)

7. (a) (b) 6.5 in.
9. (c)

CHAPTER 14

Section 14.1, pp. 771–773
1. (a) 0 (b) 0 (c) 58 (d) 33
3. (a) (b) (c) 3 (d) 0
5. Domain: all points (x, y) on 7. Domain: all points (x, y)

or above line not lying on the graph of 
or 

9. Domain: all points (x, y) satisfying 

11. Domain: all points (x, y) for which 

3

–3

y

–2 2
x

y = –3

x = –2 x = 2

y = 3

(x - 2)(x + 2)(y - 3)(y + 3) Ú 0

–1

1

x

y y = x2 + 1

y = x2 – 1

x2
- 1 … y … x2

+ 1

(1, 1)

(–1, –1)

y

x

y = x

y = x3

x

y

y = x + 2

y = x3y = x
y = x + 2

8>54>5

sru
$

+ 2r
#
u
#

duu + z
$k

v = r
# ur + ru

#

uu + z
# k, a = sr

$
- ru

# 2dur +

as1d = -9ur - 6uu, vs1d = -ur + 3uu

dr
dt

= x
#
 cos u + y

#
 sin u, r 

du
dt

= -x
#
 sin u + y

#
 cos u

dx
dt

= r
#
 cos u - ru

#

 sin u, 
dy

dt
= r

#
 sin u + ru

#

 cos u

a a bgt

a2
+ b2 b

2

N 
d2r
dt2 =

bg

2a2
+ b2

 T +

vstd =

gbt

2a2
+ b2

 T;
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13. 15.

17. (a) All points in the xy-plane (b) All reals
(c) The lines (d) No boundary points
(e) Both open and closed (f) Unbounded

19. (a) All points in the xy-plane (b)
(c) For the origin; for ellipses with the

center (0, 0), and major and minor axes along the x- and 
y-axes respectively

(d) No boundary points (e) Both open and closed
(f) Unbounded

21. (a) All points in the xy-plane (b) All reals
(c) For the x- and y-axes; for hyperbo-

las with the x- and y-axes as asymptotes
(d) No boundary points (e) Both open and closed
(f) Unbounded

23. (a) All (x, y) satisfying (b)
(c) Circles centered at the origin with radii 
(d) Boundary is the circle 
(e) Open (f) Bounded

25. (a) (b) All reals
(c) The circles with center (0, 0) and radii 
(d) Boundary is the single point (0, 0)
(e) Open (f) Unbounded

27. (a) All (x, y) satisfying 
(b)
(c) Straight lines of the form where 
(d) Boundary is two straight lines and 
(e) Closed (f) Unbounded

29. (a) Domain: all points (x, y) outside the circle 
(b) Range: all reals
(c) Circles centered at the origin with radii 
(d) Boundary: 
(e) Open (f ) Unbounded

31. (f) 33. (a) 35. (d)
37. (a) (b)

z = 4
z = 1

z = 1
z = 4

z = 0
x

y

z = y2

z

x

y

x2
+ y2

= 1
r 7 1

x2
+ y2

= 1

y = -1 + xy = 1 + x
-1 … c … 1y - x = c

-p>2 … z … p>2
-1 … y - x … 1

r 7 0
sx, yd Z s0, 0d

x2
+ y2

= 16
r 6 4

z Ú 1>4x2
+ y2

6 16

ƒsx, yd Z 0,ƒsx, yd = 0,

ƒsx, yd Z 0,ƒsx, yd = 0,
z Ú 0

y - x = c

y

x

xy = c

c = 9
c = 4

c = –1 c = 1
c = –4

c = –9

0 = c
1 = c

4 = c
9 = c

–1 = c

–4 = c

–9 = c

2

–2

4

42–2

y

x

x + y – 1 = c

c:

–3
–2
–1
0
1
2
3

39. (a) (b)

41. (a) (b)

43. (a) (b)

45. (a) (b)

47. (a) (b)
y

x

1

3

4

2

–3 –2 –1

–1

–2

–3

–4

1 42 3–4

z = 2

z = 13√
z = 8√

z = 5√

z = 20√

z

2

y

x

z = x2 + y2 + 4√

z = 1
1

0

z = 0

z = –1
2

z = 0

z = –1
–1

–2

x

yz = 1 – ⏐y⏐

(0, 0, 1)

1

z

x

y

4

1

2

2

z = 0

z = 16

z = 4

x

y
z = 4x2 + y2

2
4

16

2
4

1

0

z

x

y

1

0

–1

3

2

–2

–3

y

x

z = –3

z = –2

z = –1

z = 0

z = 1

z = 2

z = 3

z

z = x2 – y

y

x

z = 4

z = 1

1 2

z = 0

–1–2
x

y
z = x2 + y2

z

x

y
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Chapter 14: Answers to Odd-Numbered Exercises A-59

49. 51.

53. 55.

57. 59.

61. 63.
65. Domain: all points (x, y) 67. Domain: all points (x, y) 

satisfying satisfying and

level curve: level curve:

Section 14.2, pp. 779–782
1. 5 2 3. 5. 1 7. 1 2 9. 1 11. 13. 0

15. 17. 2 19. 1 4 21. 1 23. 3 25.
27. 2 29. 3 31. (a) All (x, y) (b) All (x, y) except (0, 0)
33. (a) All (x, y) except where or (b) All (x, y)
35. (a) All (x, y, z) (b) All (x, y, z) except the interior of the

cylinder x2
+ y2

= 1

y = 0x = 0

19>12>-1
1>4>226>

sin-1 y - sin-1 x =

p

2

y = 2x

y

x

1

–1

1–1

y = x

y = –x

y

x

-1 … y … 1
-1 … x … 1ƒ x ƒ 6 ƒ y ƒ

x2
+ y2

+ z2
= 42x - y - ln z = 2

f(x, y, z) = z – x2 – y2 = 1
or z = x2 + y2 + 1 

2

1
1

1

5

2

z

x y

1 1

f (x, y, z) = x2 + y2 = 1

z

x

y

f (x, y, z) = x + z = 1

1

1

z

x

y

f(x, y, z) = x2 + y2 + z2 = 1

1
1

1

z

x

y

2

–2

y

4
x

y

x

10√

10√10–√

10–√

x + y2
= 4x2

+ y2
= 10 37. (a) All (x, y, z) with (b) All (x, y, z) with 

39. (a) All points (x, y) satisfying 
41. Consider paths along and along .
43. Consider the paths k a constant.
45. Consider the paths m a constant, .
47. Consider the paths k a constant, .
49. Consider the paths and 
51. (a) 1 (b) 0 (c) Does not exist
55. The limit is 1. 57. The limit is 0.
59. (a) where 61. 0
63. Does not exist 65. 67.
69. 71. 73.
75. 77.

Section 14.3, pp. 790–793

1. 3.

5.

7.

9.

11.

13. 15.

17.

19. 21.

23.
25.

27.

29.

31.

33.

35.

37.

39.

 WgsP, V, d, y, gd = -

Vdy2

2g2

 WdsP, V, d, y, gd =

Vy2

2g
, WysP, V, d, y, gd =

Vdy
g ,

 WPsP, V, d, y, gd = V, WV sP, V, d, y, gd = P +

dy2

2g
,

0h
0r

= sin f cos u, 
0h
0f

= r cos f cos u,  
0h
0u

= -r sin f sin u

0ƒ
0t = -2p sin s2pt - ad,  

0ƒ
0a

= sin s2pt - ad

ƒz = 3 sech2sx + 2y + 3zd
ƒx = sech2sx + 2y + 3zd, ƒy = 2 sech2sx + 2y + 3zd,

ƒx = -2xe-sx2
+ y2

+ z2d, ƒy = -2ye-sx 2
+ y2

+ z2d, ƒz = -2ze-sx2
+ y2

+ z2d

ƒx =

1
x + 2y + 3z

, ƒy =

2
x + 2y + 3z

, ƒz =

3
x + 2y + 3z

ƒx =

yz

21 - x2y2z2
, ƒy =

xz

21 - x2y2z2
, ƒz =

xy

21 - x2y2z2

ƒx = 1, ƒy = -ysy2
+ z2d-1>2, ƒz = -zsy2

+ z2d-1>2
ƒx = y2, ƒy = 2xy, ƒz = -4z

0ƒ
0x = -gsxd, 

0ƒ
0y = gsyd

0ƒ
0x = yxy - 1, 

0ƒ
0y = xy ln x

-6 sin sx - 3yd cos sx - 3yd
0ƒ
0y =

0ƒ
0x = 2 sin sx - 3yd cos sx - 3yd, 

0ƒ
0x =

1
x + y , 

0ƒ
0y =

1
x + y

0ƒ
0x = ex + y + 1, 

0ƒ
0y = ex + y + 1

0ƒ
0x =

-y2
- 1

sxy - 1d2 , 
0ƒ
0y =

-x2
- 1

sxy - 1d2

0ƒ
0x =

-1
sx + yd2 , 

0ƒ
0y =

-1
sx + yd2

0ƒ
0x =

x

2x2
+ y2

 , 
0ƒ
0y =

y

2x2
+ y2

0ƒ
0x = 2ysxy - 1d, 

0ƒ
0y = 2xsxy - 1d

0ƒ
0x = 2xsy + 2d, 

0ƒ
0y = x2

- 1
0ƒ
0x = 4x, 

0ƒ
0y = -3

d = 0.005d = 20.015
d = 0.04d = 0.005d = 0.1
ƒs0, 0d = ln 3p>2 tan u = mƒsx, yd ƒ y = mx = sin 2u

y = x.x = 1
k Z 0y = kx2,
m Z -1y = mx,

y = kx2,
y = x, x 6 0y = x, x 7 0,

z 7 x2
+ y2

+ 1
x2

+ z2
Z 1z Z 0

7001_ThomasET_OddAnsCh8-app.qxd  11/3/09  3:02 PM  Page 59



41.

43.

45.

47.

49.

51.

53.

55. (a) x first (b) y first (c) x first
(d) x first (e) y first (f) y first

57.
59. 61. (a) 3 (b) 2

63. 12 65. 67.

69.

71. for all points (x, y),

for all points (x, y)
89. Yes

Section 14.4, pp. 800–801

1. (a) (b)

3. (a) (b)
dw
dt

 s3d = 1
dw
dt

= 1,

dw
dt

 spd = 0
dw
dt

= 0,

ƒxy (x, y) = ƒyx (x, y) = 0

ƒy (x, y) = e 3y2, y Ú 0

-2y, y 6 0
 ,

ƒx (x, y) = 0

yx =

ln y

sln udsln yd - 1

0A
0a =

a
bc sin A

, 
0A
0b

=

c cos A - b
bc sin A

-2

ƒx (-2, 3) = 1>2, ƒy (-2, 3) = 3>4
ƒxs1, 2d = -13, ƒys1, 2d = -2

 
0

2w
0y 0x =

0
2w

0x 0y = 2y + 6xy2
+ 12x2y3

 
0w
0x = y2

+ 2xy3
+ 3x2y4, 

0w
0y = 2xy + 3x2y2

+ 4x3y3,

0w
0x =

2
2x + 3y

, 
0w
0y =

3
2x + 3y

, 
0

2w
0y 0x =

0
2w

0x 0y =

-6
s2x + 3yd2

0
2w

0y2 = -x5 sin (x2y)

0
2w

0x2 = 6xy cos (x2y) - 4x3y2 sin (x2y)

0
2w

0y 0x =

0
2w

0x 0y = 3x2 cos (x2y) - 2x4y sin (x2y)

0w
0y = x3 cos (x2y),

0w
0x = sin (x2y) + 2x2y cos (x2y),

0
2w

0y2 = 2x4 sec2 (xy) tan (xy)

0
2w

0x2 = 4xy sec2 (xy) + 2x2y2 sec2 (xy) tan (xy) + 2 tan (xy)

0
2w

0y 0x =

0
2w

0x 0y = 2x3y sec2 (xy) tan (xy) + 3x2 sec2 (xy)

0w
0y = x3 sec2 (xy),

0w
0x = x2y sec2 (xy) + 2x tan (xy),

 
0

2r
0y 0x =

0
2r

0x 0y =

-1
sx + yd2

 
0r
0x =

1
x + y, 

0r
0y =

1
x + y, 

0
2r

0x2 =

-1
sx + yd2, 

0
2r

0y2 =

-1
sx + yd2,

0
2g

0y 0x =

0
2g

0x 0y = 2x + cos x

 
0

2g

0y2 = -cos y,
0

2g

0x2 = 2y - y sin x,

 
0g
0x = 2xy + y cos x, 

0g
0y = x2

- sin y + sin x,

0
2ƒ

0y 0x =

0
2ƒ

0x 0y = 1

0ƒ
0x = 1 + y, 

0ƒ
0y = 1 + x, 

0
2ƒ

0x2 = 0, 
0

2ƒ

0y2 = 0, 5. (a) (b)

7. (a)

(b)

9. (a)

(b)

11. (a)

(b)

13.

15.

17. .

19.

yx

z

t

yx

z

s

�x
�z

�y
�z

�t
�x

�t
�y

�x
�z

�y
�z

�s
�x

�s
�y

0z
0t =

0z
0x 

0x
0t +

0z
0y 

0y
0t , 

0z
0s =

0z
0x 

0x
0s +

0z
0y 

0y
0s

yx

w

u

yx

w

y

�x
�w

�y
�w

�u
�x

�u
�y

�x
�w

�y
�w

�y
�x

�y
�y

0w
0u =

0w
0x  

0x
0u +

0w
0y  

0y
0u, 

0w
0y

=

0w
0x  

0x
0y

+

0w
0y  

0y
0y

zx

w

y

y
 

zx

w

u

 

y

�x
�w

�z
�w

�u
�x

�u
�z�u

�y

�y
�w �x

�w
�z
�w

�y
�x

�y
�z�y

�y

�y
�w

0w
0y

=

0w
0x  

0x
0y

+

0w
0y  

0y
0y

+

0w
0z  

0z
0y

0w
0u =

0w
0x  

0x
0u +

0w
0y  

0y
0u +

0w
0z  

0z
0u,

yx

z

t

dt
dx

dt
dy

�x
�z

�y
�z

dz
dt

=

0z
0x 

dx
dt

+

0z
0y 

dy

dt

0u
0x = 0, 

0u
0y = 1, 

0u
0z = -2

0u
0x = 0, 

0u
0y =

z
sz - yd2, 

0u
0z =

-y

sz - yd2

0w
0u = 3, 

0w
0y

= -

3
2

0w
0u = 2u + 4uy, 

0w
0y

= -2y + 2u2

0z
0u = 22 sln 2 + 2d, 0z

0y
= -222 sln 2 - 2d

0z
0y

= -4u sin y ln su sin yd +

4u cos2 y

sin y

0z
0u = 4 cos y ln su sin yd + 4 cos y,

dw
dt

 s1d = p + 1
dw
dt

= 4t tan-1 t + 1,
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Chapter 14: Answers to Odd-Numbered Exercises A-61

21.

23.

25. 4 3 27. 29.

31. 33. 12 35.

37.

39.

41.

47.

49. (a) Maximum at and minimum

at and 

(b)

51.

Section 14.5, pp. 808–809
1. 3.

5.

4 = 2x + 3y

(–1, 2)

x

y

1
2

f = i + 3
4

j

4
3

Δ

2

y

(2, –1)
x

2

y2
x =

f = i – 4j

Δ

(2, 1)

2

y – x = –1

1

1

2

0
–1

Δ

f = – i + j 

x

y

2x2x8
+ x3

+

L

x2

0
 

3x2

22t4
+ x3

 dt

Max = 6, min = 2

¢-

22
2

, -
22
2
≤¢22

2
, 
22
2
≤

¢22
2

, -
22
2
≤ ;¢-

22
2

, 
22
2
≤scos 1, sin 1, 1d and scoss -2d, sins -2d, -2d

-0.00005 amps>sec

0w
0s = 3s2 es3

+ t20w
0t = 2t es3

+ t2,

0z
0u = 2, 

0z
0y

= 1

-7
0z
0x = -1, 

0z
0y = -1

0z
0x =

1
4

, 
0z
0y = -

3
4

-4>5>

yx

w

r

yx

w

s

�r
�x

�r
�y

�x
�w

�x
�w

�y
�w

�y
�w

= 0
�s
�x

�s
�y

= 0

 
0w
0s =

0w
0x  

dx
ds

+

0w
0y  

dy

ds
=

0w
0y  

dy

ds
 since 

dx
ds

= 0

 
0w
0r =

0w
0x  

dx
dr

+

0w
0y  

dy

dr
=

0w
0x  

dx
dr

 since 
dy

dr
= 0,

w

u

s

w

u

t

du
dw

du
dw

�s
�u

�t
�u

0w
0s =

dw
du

 
0u
0s , 

0w
0t =

dw
du

 
0u
0t

7. 9.

11. 13. 21 13 15. 3 17. 2

19.

21.

23.

25. 27.

29. (a)

(b)

(c)

(d)

(e)

31.

33. No, the maximum rate of change is 
35.

Section 14.6, pp. 817–820
1. (a)

(b)
3. (a) (b)
5. (a)

(b)
7. (a) (b)
9. 11.

13.

15.

17.

19. 21.

23. (a)

(b)
25. (a) (b)
27. (a) (b) Lsx, yd = 3x - 4y + 5Lsx, yd = 3x - 4y + 5

Lsx, yd = 2x + 2y - 1Lsx, yd = 1
23 sin 23 - cos 23 L 1.87°C>sec

23
2

 sin 23 -

1
2

 cos 23 L 0.935°C>ft
dg = 0dƒ =

9
11,830

L 0.0008

x = 1 + 90t, y = 1 - 90t, z = 3

x = 1 - 2t, y = 1, z =

1
2

+ 2t

x = 1, y = 1 + 2t, z = 1 - 2t
x - y + 2z - 1 = 02x - z - 2 = 0

x = t, y = 1 + t, z = tx + y + z - 1 = 0
x = 2t, y = 1 + 2t, z = 2 + t
2x + 2y + z - 4 = 0

x = 2 - 4t, y = 0, z = 2 + 2t2x - z - 2 = 0
x = 1 + 2t, y = 1 + 2t, z = 1 + 2t
x + y + z = 3

-7>25
2185 6 14.

u =

7

253
 i -

2

253
 j, -u = -

7

253
 i +

2

253
 j

u = - i, u =

7
25

 i +

24
25

 j

u = - j, u =

24
25

 i -

7
25

 j

u =

4
5

 i +

3
5

 j, u = -

4
5

 i -

3
5

 j

u = -

3
5

 i +

4
5

 j, Du ƒ(1, -1) = -5

u =

3
5

 i -

4
5

 j, Du ƒ(1, -1) = 5

y = x – 4
xy = –4

2

–2
(2, –2)

Δ x

y

f = –2i + 2j

x2 + y2 = 4

2

2

Δ

f � 2√2i � 2√2j

(√2, √2)

y = –x + 2√2

x

y

sD-uƒdP0 = -223-u = -

1

23
 si + j + kd,

u =

1

23
 si + j + kd, sDuƒdP0 = 223;

-u = -

1

323
 i +

5

323
 j +

1

323
 k, sD-uƒdP0 = -323

u =

1

323
 i -

5

323
 j -

1

323
 k, sDuƒdP0 = 323;

 sD�uƒdP0 = -22

u = -

1

22
 i +

1

22
 j, sDuƒdP0 = 22; -u =

1

22
 i -

1

22
 j,

>-4

§ƒ = -

26
27

 i +

23
54

 j -

23
54

 k§ƒ = 3i + 2j - 4k
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29. (a) (b)

31. (a)

(b) ,

(c)
(d) i)

ii)
iii)

33. 35.
37.
39. (a) (b)

(c)

41. (a) (b)

(c)

43. (a)

(b)

(c)

45.
47.
49. Maximum error (estimate) in magnitude
51. (a) (b)
53.
55. Pay more attention to the smaller of the two dimensions. It will

generate the larger partial derivative.
57. (a) 0.3%
59. ƒ is most sensitive to a change in d.
61. Q is most sensitive to a change in h.

65. At at 0, 0; at 

Section 14.7, pp. 826–829
1. local minimum 3. saddle point

5. local maximum

7. local minimum 9. ƒ(1, 2), saddle point

11. local maximum

13. ƒ(0, 0), saddle point; local maximum

15. local minimum; , saddle point
17. , saddle points; local maximum;

local minimum
19. ƒ(0, 0), saddle point; local maxima
21. local maximum
23. saddle points, for every integer n
25. local minimum
27. local minimum; ƒ(0, 2), saddle point

29. local maximum

31. Absolute maximum: 1 at (0, 0); absolute minimum: at (1, 2)
33. Absolute maximum: 4 at (0, 2); absolute minimum: 0 at (0, 0)

-5

ƒ a1
2

, 1b = ln a1
4
b - 3,

ƒ(0, 0) = 0,
ƒ(2, 0) = e-4,
ƒ(np, 0),
ƒ(0, 0) = -1,

ƒ(1, 1) = 2, ƒ(-1, -1) = 2,
ƒ(2, 1) = -30,

ƒ(-2, -1) = 30,ƒ(0, ;25)
ƒ(1, -1)ƒ(0, 0) = 0,

ƒ a-

2
3

, 
2
3
b =

170
27

,

ƒ a16
7

, 0b = -

16
7

,

ƒ(2, -1) = -6,

ƒ a3, 
3
2
b =

17
2

,

ƒ(-2, 1),ƒ(-3, 3) = -5,

p

4
, 
p

222
-

p

4
, -

p

222
;

L  ;4.83%
;7%;5%

… 0.31
Lsx, y, zd = x + y - z - 1, 0.00135
Lsx, y, zd = 2x - 6y - 2z + 6, 0.0024

Lsx, y, zd = x - y - z +

p

2
+ 1

Lsx, y, zd = x - y - z +

p

2
+ 1

Lsx, y, zd = 2 + x

Lsx, y, zd =

1
3

 x +

2
3

 y +

2
3

 z

Lsx, y, zd =

1

22
 x +

1

22
 yLsx, y, zd = x

Lsx, y, zd = 0
Lsx, y, zd = y + zLsx, y, zd = 2x + 2y + 2z - 3

Lsx, yd = 1 + x; 0.0222
Lsx, yd = x + y + 1; 0.08Lsx, yd = 7 + x - 6y; 0.06

L(5, -10) L -30.2°F
L(27, 2) L -22.1°F

L(24, 6) L -15.7°F
L(y, T) L -0.36 (y - 25) + 1.337(T - 5) - 17.4088
W(60, 30) L 10.2°F

W(50, -40) L -88°F,W(10, -40) L -65.5°F
W(15, 15) = 0°F
W(20, 25) = 11°F, W(30, -10) = -39°F,

Lsx, yd = -y +

p

2
Lsx, yd = 1 + x 35. Absolute maximum: 11 at absolute minimum: at

37. Absolute maximum: 4 at (2, 0); absolute minimum: at

and 

39.

41. Hottest is at and ; coldest is

at 

43. (a) ƒ(0, 0), saddle point (b) ƒ(1, 2), local minimum
(c) local minimum; saddle point

49. 51. 53. 3, 3, 3 55. 12

57. 59.

61. (a) On the semicircle, max at 
at On the quarter circle, at 

at 
(b) On the semicircle, at at

On the quarter circle, at 
at 

(c) On the semicircle, at at
On the quarter circle, at 
at 

63. i) at no max ii) at
at iii) at

at 

67.

Section 14.8, pp. 836–838

1. 3. 39 5.

7. (a) 8 (b) 64
9. 11.

13. is minimum, is maximum.
15.

17. 19. 1 21. (0, 0, 2), 

23. is maximum, is
minimum.

25. 3, 3, 3 27.

29. 31.

33. 35. (2, 4, 4)

37. Maximum is at minimum is

at 

39. Maximum is 4 at minimum is 2 at 

Section 14.9, p. 842
1. Quadratic: cubic: 

3. Quadratic: xy; cubic: xy

x + xy +

1
2

 xy2x + xy;

A ;22, ;22, 0 B .s0, 0, ;2d,

A ;26, -23, 1 B .1 - 623

A ;26, 23, 1 B ,1 + 623

ƒs2>3, 4>3, -4>3d =

4
3

Us8, 14d = $128s ;4>3, -4>3, -4>3d

2

23
 by 

2

23
 by 

2

23
 units

ƒs -1, 2, -5d = -30ƒs1, -2, 5d = 30

s0, 0, -2da3
2

, 2, 
5
2
b

Lowest = 0°, highest = 125°
ƒs2, 4d = 20ƒs0, 0d = 0

Length = 422, width = 322r = 2 cm, h = 4 cm

A3, ;322 B¢ ;

1

22
, 

1
2
≤ , ¢ ;

1

22
, -

1
2
≤

y = -

20
13

 x +

9
13

, y ƒ x = 4 = -

71
13

t = 0t = 1; min ƒ = 0
max ƒ = 4t = -1>2t = -1, 0; min ƒ = -1>2 max ƒ = 0t = -1>2;min ƒ = -1>2t = p>2.min h = 4
t = 0,max h = 8t = p>2.

t = 0, p; min h = 4max h = 8
t = 0, p>2.min g = 0

t = p>4,max g = 2t = 3p>4.
t = p>4, min g = -2max g = 2

t = 0, p>2.min ƒ = 2
t = p>4,max ƒ = 222t = p .

t = p>4, min ƒ = -2ƒ = 222

2 ft * 2 ft * 1 ft
4

23
*

4

23
*

4

23

a9
7

, 
6
7

, 
3
7
ba1

6
, 

1
3

, 
355
36
b

ƒs -1, -2d,ƒs1, -2d,

a1
2

, 0b .-

1
4

°

a-

1
2

, -
23
2
ba-

1
2

, 
23
2
b2 

1
4

°

a = -3, b = 2

a1, 
p

4
ba3, -

p

4
b , a3, 

p

4
b , a1, -

p

4
b ,

322
2

s4, -2d
-10s0, -3d;
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Chapter 14: Answers to Odd-Numbered Exercises A-63

5. Quadratic: 

cubic: 

7. Quadratic: cubic: 

9. Quadratic: 
cubic: 

11. Quadratic: 

Section 14.10, p. 846
1. (a) 0 (b) (c)

3. (a) (b)

5. (a) 5 (b) 5

7.

Practice Exercises, pp. 847–850
1. Domain: all points in the xy-plane; range: Level curves

are ellipses with major axis along the y-axis and minor axis
along the x-axis.

3. Domain: all (x, y) such that and range: 
Level curves are hyperbolas with the x- and y-axes as asymptotes.

5. Domain: all points in xyz-space; range: all real numbers. Level
surfaces are paraboloids of revolution with the z-axis as axis.

7. Domain: all (x, y, z) such that range: posi-
tive real numbers. Level surfaces are spheres with center (0, 0, 0)
and radius r 7 0.

sx, y, zd Z s0, 0, 0d;

1

f(x, y, z) = x2 + y2 – z = –1
or
z = x2 + y2 + 1

z

x

y

z = 1

x

y

z Z 0.y Z 0;x Z 0

1–1

–3

3

z = 9

x

y

z Ú 0.

 a0r
0x b y

=

x

2x2
+ y2

 a0x
0r bu = cos u

0U
0P

 anR
V
b +

0U
0T

0U
0P

+

0U
0T

 a V
nR
b

1 + 2z1 + 2z

1 -

1
2

 x2
-

1
2

 y2; Esx, yd … 0.00134

1 + sx + yd + sx + yd2
+ sx + yd3

1 + sx + yd + sx + yd2;

x2
+ y21

2
 s2x2

+ 2y2d = x2
+ y2;

y +

1
2

 s2xy - y2d +

1
6

 s3x2y - 3xy2
+ 2y3d

y +

1
2

 s2xy - y2d;

9. 11. 1 2 13. 1 15. Let 
17. No; does not exist.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37. Increases most rapidly in the direction 

decreases most rapidly in the direction 

where 

39. Increases most rapidly in the direction 

decreases most rapidly in the direction 

where 

41.
43. (a) (b) 14 5

45.
x2 + y + z2 = 0

∇

∇

∇
1

–1

z

x

y

f⏐(0, 0, 0) = j

f⏐(0, –1, –1) = j – 2k

f⏐(0, –1, 1) = j + 2k

>ƒxs1, 2d = ƒys1, 2d = 2
p>22

u1 =

v
ƒ v ƒ

Du ƒ = 7; D-u ƒ = -7; Du1 ƒ = 7

-u = -

2
7

 i -

3
7

 j -

6
7

 k;

u =

2
7

 i +

3
7

 j +

6
7

 k;

u1 =

v
ƒ v ƒ

Du1 ƒ = -

7
10

Duƒ =

22
2

; D-uƒ = -

22
2

;

-u =

22
2

 i +

22
2

 j;

u = -

22
2

 i -

22
2

 j;

dy

dx
`
sx, yd = s0,1d

= -1

- 2ssin 1 + cos 1dssin 2d

- ssin 1 + cos 2dssin 1d + scos 1 + cos 2dscos 1d
dƒ

dt
`
t = 1

=

0w
0r ` sr, sd = sp, 0d

= 2, 
0w
0s ` sr, sd = sp, 0d

= 2 - p

dw
dt
`
t = 0

= -1

0
2ƒ

0x2 = -30x +

2 - 2x2

sx2
+ 1d2, 

0
2ƒ

0y2 = 0, 
0

2ƒ
0y 0x =

0
2ƒ

0x 0y = 1

0
2g

0x2 = 0, 
0

2g

0y2 =

2x

y3, 
0

2g
0y 0x =

0
2g

0x 0y = -

1
y2

0P
0n =

RT
V

, 
0P
0R

=

nT
V

, 
0P
0T

=

nR
V

, 
0P
0V

= -

nRT

V 2

0ƒ
0R1

= -

1
R1

2, 
0ƒ
0R2

= -

1
R2

2, 
0ƒ
0R3

= -

1
R3

2

0g
0r = cos u + sin u, 

0g

0u
= -r sin u + r cos u

limsx,yd:s0,0d ƒsx, yd
y = kx2, k Z 1>-2

1 1

h(x, y, z) =                   = 1
or
x2 + y2 + z2 = 1

1

1
x2 + y2 + z2z

x y
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47. Tangent: normal line:

49.
51. Tangent: normal line: 

53.
55. Answers will depend on the upper bound used for

With With

57.
59. Be more careful with the diameter.
61. % change in more sensitive to voltage

change
63. (a) 5% 65. Local minimum of at 
67. Saddle point at local maximum of 1 4 at

69. Saddle point at local minimum of at
(0, 2); local maximum of 4 at saddle point at 

71. Absolute maximum: 28 at (0, 4); absolute minimum: at
(3 2, 0)

73. Absolute maximum: 18 at absolute minimum: at

75. Absolute maximum: 8 at absolute minimum: at (1, 0)
77. Absolute maximum: 4 at (1, 0); absolute minimum: at 
79. Absolute maximum: 1 at and (1, 0); absolute minimum:

at 
81. Maximum: 5 at (0, 1); minimum: at 

83. Maximum: at minimum: at

85.

87. Maximum: at and 

minimum: at and 

89. (a) (b)

(c)

91.

97. a real number

Additional and Advanced Exercises, pp. 851–852
1.

7. (c) 13. V =

23abc
2

r2

2
=

1
2

 sx2
+ y2

+ z2d

ƒxys0, 0d = -1, ƒyxs0, 0d = 1

st, - t ; 4, td, t

0w
0x = cos u 

0w
0r -

sin u
r  

0w
0u

, 
0w
0y = sin u 

0w
0r +

cos u
r  

0w
0u

s1 + x2ydeyz

x2eyz ay -

z
2y
bs2y + x2zdeyz

¢ 1

22
, -

1

22
, 22≤¢-

1

22
, 

1

22
, -22≤1

2

¢-

1

22
, -

1

22
, -22≤ ;¢ 1

22
, 

1

22
, 22≤3

2

Width = ¢ c2V
ab
≤1>3

, depth = ¢b2V
ac ≤1>3

, height = ¢a2V
bc
≤1>3

¢-

1

23
, 

1

23
, -

1

23
≤

-23¢ 1

23
, -

1

23
, 

1

23
≤ ;23

s0, -1>3d-1>3s -1, 0d-1
s0, ;1d

s0, -1d-4
-1s -2, 0d;

s -2, 1>2d
-17>4s2, -2d;

>
-9>4

ƒs -2, 2d = 0
s -2, 2d,s -2, 0d;
-4s0, 0d, ƒs0, 0d = 0;

s -1>2, -1>2d
>s0, 0d, ƒs0, 0d = 0;

s -2, -2d-8

I = 15.83%,dI = 0.038,

Lsx, y, zd = y - 3z, Lsx, y, zd = x + y - z - 1
M = 1, ƒ E ƒ … 0.02.

M = 22>2, ƒ E ƒ … 0.0142.ƒ ƒxx ƒ, ƒƒxy ƒ, ƒ ƒyy ƒ.

x = 1 - 2t, y = 1, z = 1>2 + 2t

2

2

y = –x + � + 1

y = x – � + 1

y = 1 + sin x

0

1

1 �
x

y

y = x - p + 1x + y = p + 1;
2y - z - 2 = 0
x = 2 + 4t, y = -1 - t, z = 1 - 5t

4x - y - 5z = 4;
17.

19.

21. (a) (b)

23.

CHAPTER 15

Section 15.1, pp. 858–859
1. 24 3. 1 5. 16 7. 2 ln 2 � 1 9. 11.

13. 14 15. 0 17. 19. 2 ln 2 21. 23.
25. 1 27.

Section 15.2, pp. 865–868
1. 3.

5. 7.

9. (a)
(b)

11. (a)

(b)

13. (a)
(b)

15. (a)

(b)

17. (a)

(b)

19. 21.

1

ln ln 8

(ln ln 8, ln 8)

x = ln y

0

ln 8

x

y

0
x

y

�

�

(�, �)

8 ln 8 - 16 + e
p2

2
+ 2

0 … y … 1, 0 … x … y ´  1 … y … 3, 0 … x …

3 - y

2

0 … x … 1, x … y … 3 - 2x

1
3

… y … 1, - ln y … x … ln 3

0 … x … ln 3, e-x
… y … 1

0 … y … 3, y2
… x … 9

0 … x … 9, 0 … y … 2x

0 … y … 9, 
y

3
… x … 2y

0 … x … 3, x2
… y … 3x

0 … y … 8, 0 … x … y1>3
0 … x … 2, x3

… y … 8

1

y

x = sin–1y

�
2

x
1

y

y = ex

y = e

e

x

2

–2

y

4
x

x = y2y = 2x

3

6

y

x

22
8>3(ln 2)21>2 3>2(3>2) (5 - e)

w = e-c2p2t sin px

-1

229,097
 s98i - 127j + 58kd1

253
 s2i + 7jd

y = 2 ln ƒ sin x ƒ + ln 2

ƒsx, yd =

y

2
+ 4, gsx, yd =

x
2

+

9
2
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Chapter 15: Answers to Odd-Numbered Exercises A-65

23.

25. 27.

29. 8 31.

33. 35.

37. 39.

41. 43.

45. 47. 2 

y = x

0

(�, �)�

�
x

yy

x = eyx = 1

3

e31
x

L

e3

1 L

3

ln x
 (x + y) dy dx

1

y

y = ln x

e
x

x2 + y2 = 1

1–1

1

0
x

y

L

1

0
 
L

e

ey
 xy dx dy

L

1

-1L

21 - x2

0
3y dy dx

y = 9 – 4x2

9

0
x

y

3
2

1

1

(1, 1)

y = ex

0

e (1, e)

x

y

L

9

0 L

A29 - y B>2
0

16x dx dy
L

e

1 L

1

ln y
 dx dy

1

1

(1, 1)

y = x

y = x2

0
x

y

2

4

1

y = 4 – 2x

0

(1, 2)

x

y

L

1

0 L

x

x2
 dy dx

L

4

2 L

s4 - yd>2
0

 dx dy

2

1

(�/3, 2)(–�/3, 2)
u = sec t

t

u

�
3

�
3

–
(2, –2)

y = p

2–2

–2(–2, –2)

y = –p

p

y

2p

-1>10
3
2

 ln 2

1

1

(1, 1)

x = y2

0
x

y
e - 2

49. 51. 2 

53. 55.

57. 4 3 59. 625 12 61. 16 63. 20 65.
67.

69. 1 71. 73. 75.

77.

79. R is the set of points (x, y) such that .
81. No, by Fubini’s Theorem, the two orders of integration must give

the same result.
85. 0.603 87. 0.233

x2
+ 2y2

6 4

y =
 x

y = 2 – x 

1

2

1
x

y

L

1

0 L

2 - x

x
sx2

+ y2d dy dx =

4
3

2023
9

-

3
32

p2

1

z

2

3

y

x

z = 1 – x –1
3

y1
2

3

2

y

x

2s1 + ln 2d>>

x + y = 1–x + y = 1

–x – y = 1 x – y = 1

1

1

–1

–1
x

y

0.0625

0

y = x4

0.5

(0.5, 0.0625)

x

y

-2>31>s80pd

y = 2x

0 √ln 3 

2√ln 3 (√ln 3, 2√ln 3)

x

y

0

(1, 1)1

1

x = y

x

y

e - 2
2
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Section 15.3, p. 870

1. 3.

5. 7.

9.

11. or

y = 2x  or x = y1
2

or  x = 2yy = x1
2

y

x

y = 3 – x  or  x = 3 – y

1

2

3

1 2 3

L

1

0 L

2y

y>2  1 dx dy +

L

2

1 L

3 - y

y>2  1 dx dy =

3
2

L

1

0 L

2x

x>2  1 dy dx +

L

2

1 L

3 - x

x>2  1 dy dx =

3
2

y = x

y = 2

2 6

2

y

x

y = x1
3

L

2

0 L

x

x>3 1 dy dx +

L

6

2 L

2

x>3  1 dy dx = 4

L

2

0 L

3y

y
 1 dx dy = 4  or

1

1

(1, 1)

x = 2y – y2

x = y2

0
x

y

1

ln 2

(ln 2, 2)
y = e x

0
x

y

L

1

0 L

2y - y2

y2
 dx dy =

1
3L

ln 2

0 L

ex

0
 dy dx = 1

y = 2 – x 

2

20
x

y

1

0

(–4, –2)

y = x + 2

–2–4

–2

(–1, 1)

x = –y2

x

y

L

2

0 L

2 - y

0
 dx dy = 2

L

1

-2L

-y2

y - 2
 dx dy =

9
2L

2

0 L

2 - x

0
 dy dx = 2  or

13. 12 15.

17.

19. (a) 0 (b) 21. 8 3
23.

Section 15.4, pp. 875–877

1. 3.

5.

7. 9.

11. 13. 36 15. 17.

19. 21.

23.

25.

27. 29. 31. 33. 35.
2a
3

2a
3

s3p>8d + 112p2sp - 1d

L

2

0 L

x

0
 y2 (x2

+ y2) dy dx  or  
L

2

0 L

2

y
 y2 sx2

+ y2d dx dy

2

2

y

x

y = x

x = 2

L

1

0 L

21 - x2

0
 xy dy dx  or  

L

1

0 L

21 - y2

0
 xy dx dy

1

1

y

x

y = 1 – x2√ or  x = 1 – y2√

2 (1 + 22)

3
(2 ln 2 - 1) (p>2)

(1 - ln 2) p2 - 232p

p

2
-

p

2
… u …

p

2
, 0 … r … 2 cos u

p

6
… u …

p

2
, 1 … r … 2 csc u

0 … u …

p

6
, 1 … r … 223 sec u;

p

4
… u …

3p
4

, 0 … r … csc u
p

2
… u … 2p, 0 … r … 9

40,000s1 - e-2dln s7>2d L 43,329
>4>p2

y = –2x
y = 1 – x

(–1, 2)

(2, –1)

y = –

2

2

(0, 0)

x
2

x

y

3
2

y = sin x

y = cos x

(�/4, √2/2)

0

2
√2

�
4

x

y

12

6

0

(12, 6)y2 = 3x

y = 

NOT TO SCALE

x
2

x

y

22 - 1
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Chapter 15: Answers to Odd-Numbered Exercises A-67

37. 39. 41. (a) (b) 1

43. no 45.

Section 15.5, pp. 883–886
1. 1 6

3.

The value of all six integrals is 1.

5.

The value of all six integrals is 

7. 1 9. 6 11. 13. 18

15. 7 6 17. 0 19.

21. (a) (b)

(c) (d)

(e)

23. 2 3 25. 20 3 27. 1 29. 16 3 31.

33. 2 35. 37. 31 3 39. 1 41. 2 sin 4 43. 4
45. or 
47. The domain is the set of all points (x, y, z) such that

Section 15.6, pp. 891–893
1. 3.
5. 7.
9. 11. Ix = 64>105x = -1, y = 1>4 Ix = Iy = 4p, I0 = 8px = y = 4a>s3pd

x = 64>35, y = 5>7x = 5>14, y = 38>35

4x2
+ 4y2

+ z2
… 4.

a = 13>3a = 3
>4p

8p -

32
3

>>>
L

1

0 L

2y

-2yL

1 - y

0
 dz dx dy

L

1

0 L

1 - y

0 L

2y

-2y
 dx dz dy

L

1

0 L

1 - z

0 L

2y

-2y
 dx dy dz

L

1

0 L

21 - z

-21 - zL

1 - z

x2
 dy dx dz

L

1

-1L

1 - x2

0 L

1 - z

x2
 dy dz dx

1
2

-

p

8
>

5 (2 - 23)

4

16p.

L

8

4 L

28 - z

-28 - zL

28 - z - x 2

-28 - z - x 2
1 dy dx dz +

L

4

0 L

1z

-1zL

2z - x 2

-2z - x 2
1 dy dx dz.

L

2

-2L

8 - x 2

4 L

28 - z - x 2

-28 - z - x 2
1 dy dz dx +

L

2

-2L

4

x 2 L

2z - x 2

-2z - x 2
1 dy dz dx,

L

8

4 L

28 - z

-28 - zL

28 - z - y 2

-28 - z - y 2
1 dx dy dz +

L

4

0 L

1z

-1zL

2z - y 2

-2z - y 2
1 dx dy dz,

L

2

-2L

8 - y 2

4 L

28 - z - y 2

-28 - z - y 2
1 dx dz dy +

L

2

-2L

4

y 2L

2z - y 2

-2z - y 2
1 dx dz dy,

L

2

-2L

24 - y 2

-24 - y 2L

8 - x 2
- y 2

x 2
+ y 2

1 dz  dx  dy,
L

2

-2L

24 - x 2

-24 - x 2L

8 - x 2
- y 2

x 2
+ y 2

1 dz dx dy,

L

3

0 L

2 - 2z>3
0 L

1 - y>2 - z>3
0

 dx dy dz.

L

2

0 L

3 - 3y>2
0 L

1 - y>2 - z>3
0

 dx dz dy,

L

1

0 L

3 - 3x

0 L

2 - 2x - 2z>3
0

 dy dz dx,  
L

3

0 L

1 - z>3
0 L

2 - 2x - 2z>3
0

 dy dx dz,

L

1

0 L

2 - 2x

0 L

3 - 3x - 3y>2
0

 dz dy dx,  
L

2

0 L

1 - y>2
0 L

3 - 3x - 3y>2
0

 dz dx dy,

>

1
2

 sa2
+ 2h2dp ln 4,

2p
2

4
3

+

5p
8

2p A2 - 2e B 13.
15.
17.
19.

21.

23.

I

25. (a) (b)

27.

29. (a) 4 3 (b)
31. (a) 5 2 (b) (c)

33. 3

37. (a)

(b)

Section 15.7, pp. 901–904

1. 3. 5. 7.

9.

11. (a)

(b)

(c)

13.

15.

17.

19. 21. 23.

25. 27. 29.

31. (a)

(b)

33.
L

2p

0 L

p>2
0 L

2

cos f
 r

2 sin f dr df du =

31p
6

L

2p

0 L

1

0 L

p>2
p>6 r

2 sin f df dr du

L

2p

0 L

2

0 L

p>6
0
r2 sin f df dr du +

L

2p

0 L

2

1 L

sin-1s1>rd
p>6 r2 sin f df dr du +

L

2p

0 L

p>2
p>6 L

csc f

0
r2 sin f dr df du

L

2p

0 L

p>6
0 L

2

0
r2 sin f dr df du +

a8 - 522
2

bp2p5p

p>3p2

L

p>4
0 L

sec u

0 L

2 - r sin u

0
 ƒsr, u, zd dz r dr du

L

p>2
-p>2

 
L

1 + cos u

1 L

4

0
 ƒsr, u, zd dz r dr du

L

p

0 L

2 sin u

0 L

4 - r sin u

0
 ƒsr, u, zd dz r dr du

L

p>2
-p>2 
L

cos u

0 L

3r2

0
 ƒsr, u, zd dz r dr du

L

1

0 L

24 - r2

0 L

2p

0
 r du dz dr

L

2p

0 L

23

0 L

1

0
 r dr dz du +

L

2p

0 L

2

23L

24 - z2

0
 r dr dz du

L

2p

0 L

1

0 L

24 - r2

0
 r dz dr du

p>3
3p
10

p A622 - 8 B17p
5

4p A22 - 1 B
3

IL =

abcsa2
+ 7b2d

3
, RL =

B
a2

+ 7b2

3

Ic.m. =

abcsa2
+ b2d

12
, Rc.m. =

B
a2

+ b2

12

Ix = Iy = Iz = 11>6x = y = z = 8>15> x = 4>5, y = z = 2>5>
IL = 1386

c = 222x = y = 0, z = 8>3
z = 256>45 L 5.69Iy = 4832>63 L 76.70,

Ix = 7904>105 L 75.28,x = y = 0, z = 12>5,

Ix =

M
3

 sb2
+ c2d, Iy =

M
3

 sa2
+ c2d, Iz =

M
3

 sa2
+ b2d

x = 0, y = 7>10; Ix = 9>10, Iy = 3>10, I0 = 6>5x = 0, y = 13>31, Iy = 7>5x = 11>3, y = 14>27, Iy = 432
x = 3>8, y = 17>16
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35.

37.

39. (a)

(b)

(c)

41. (a)

(b)

(c) (d)

43. 45. 9 4 47. 49. 51.

53. 55. 57. 59.

61. 63. 2 3 65. 3 4

67. 69.

71. 73. 75.

77. (a)

(b)

81.

85. The surface’s equation tells us that the point 
will lie on the surface for all In particu-

lar, lies on the surface whenever lies
on the surface, so the surface is symmetric with respect to the z-
axis.

Section 15.8, pp. 912–914

1. (a)

(b) Triangular region with boundaries and
u + y = 3

u = 0, y = 0,

x =

u + y

3
, y =

y - 2u
3

; 
1
3

( f (z), �, z)

f(z)
f(z)

z
( f(z), � + �, z)

z

x y

� + �

�

sƒszd, u, zdsƒszd, u + p, zd
u.sƒszd, u, zdsr, u, zd =

r = ƒszd

3M

pR3

sx, y, zd = a0, 0, 
5
6
b , Iz =

p

14

sx, y, zd = a0, 0, 
4
5
b , Iz =

p

12

a4 hp
10

Ix = p>4x = y = 0, z = 5>6
sx, y, zd = s0, 0, 3>8dx = y = 0, z = 3>8

>>4p A8 - 323 B
3

5p>216p
4 A222 - 1 Bp

3
p>2

5p>32pa3

3
3p - 4

18
>8p>3

5p>3
L

23

-23
 
L

23 - x 2

-23 - x 2
 
L

24 - x 2
- y 2

1
 dz dy dx

L

2p

0 L

23

0 L

24 - r 2

1
 r dz dr du

L

2p

0 L

p>3
0 L

2

sec f
 r

2 sin f dr df du

8
L

2

0 L

24 - x 2

0 L

24 - x 2
- y 2

0
 dz dy dx

8
L

p>2
0 L

2

0 L

24 - r 2

0
 r dz dr du

8
L

p>2
0 L

p>2
0 L

2

0
r2 sin f dr df du

L

2p

0 L

p>2
p>4 L

2 cos f

0
r2 sin f dr df du =

p

3

L

2p

0 L

p

0 L

1 - cos f

0
r2 sin f dr df du =

8p
3

3. (a)

(b) Triangular region with boundaries and

7. 64 5 9.

11. 13. 15.

17. (a)

(b)

21. 12 23.

Practice Exercises, pp. 914–916
1. 3. 9 2 

5. 7.

9. sin 4 11. 13. 4 3 15. 4 3 17. 1 4 19.

21. 23. 0 25. 8 35 27. 29.

31. (a)

(b) (c)

33.

35.

37. (a) (b)
8p A422 - 5 B

3

8p A422 - 5 B
3

L

23 - x 2

0 L

24 - x 2
- y 2

1
 z2 xy dz dy dx+

L

23

1

L

1

0 L

23 - x 2

21 - x 2 L

24 - x 2
- y 2

1
 z2 xy dz dy dx

L

2p

0 L

p>4
0 L

sec f

0
r2 sin f dr df du =

p

3

2p A8 - 422 B
L

2p

0 L

p>4
0 L

2

0
3 r2 sin f dr df du

L

22

-22L

22 - y 2

-22 - y 2L

24 - x 2
- y 2

2x 2
+ y 2

3 dz dx dy

2s31 - 35>2d
3

p>2>p - 2
4

p>>>ln 17
4

x2 + 4y2 = 9

–3 30
x

y

3
2

–2

4 y = 2x + 4

x = –√4 – y

x

y

L

3

-3L

s1>2d29 - x2

0
 y dy dx =

9
2L

0

-2L

4 - x2

2x + 4
 dy dx =

4
3

s2 + 4t2 = 9

–3 3 
s

t

3
2

10

1

(1, 1)

NOT TO SCALE

(1/10, 10)

1

y =

0
x

y

1
x

>9e - 9

a2b2c2

6

` sin y u cos y

cos y -u sin y
` = -u sin2 y - u cos2 y = -u

` cos y -u sin y

sin y u cos y
` = u cos2 y + u sin2 y = u

225
16

1
3

 a1 +

3
e2 b L 0.4687

pabsa2
+ b2d

4

L

2

1 L

3

1
su + yd 

2u
y  du dy = 8 +

52
3

 ln 2>
3u + y = 10

3y = u, y = 2u,

x =

1
5

 s2u - yd, y =

1
10

 s3y - ud; 1
10
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Chapter 16: Answers to Odd-Numbered Exercises A-69

39.

41. 43. 45.

47. 49.

51. (a)

(b)

Additional and Advanced Exercises, pp. 916–918

1. (a) (b)

(c) 125 4

3. 5. 7. (a) Hole sphere 

(b) 9. 11. 15.

17.

19. 21. (b) 1 (c) 0

25. 27.

CHAPTER 16

Section 16.1, pp. 923–925
1. Graph (c) 3. Graph (g) 5. Graph (d) 7. Graph (f)

9. 11. 13. 15.

17. 19. (a) (b)

21. 23.

25. 27. 29. 8

31. 33.

35. (a) (b) 37.

39. (a) (b) 41. Ix = 2p - 2Iz = 4p22dIz = 2p22d

Iz = 2pda322 + ln A1 + 22 B422 - 2

222 - 1
1
6

 s173>2
- 1)

1025 - 2
3

1
6

 s53>2
+ 722 - 1d

1
27

 s403>2
- 133>2d15

32
 se16

- e64d

1
12

 (173>2
- 1)42523 ln aba b

1
6

 A525 + 9 B3214
13
2

22

2p c1
3

- a1
3
b  
22
2
dh = 220 in., h = 260 in.

1
ab

 sea2b2

- 1d

I0 =

a4

2
 cos-1 aba b -

b3

2
2a2

- b2
-

b3

6
 sa2

- b2d3>2

Mass = a2 cos-1 aba b - b2a2
- b2,

1> 423ln aba bp>4423p

radius = 2radius = 1,3p>22p

>
L

2

-3L

6 - x2

x L

x2

0
 dz dy dx

L

2

-3L

6 - x2

x
 x2 dy dx

1

r = 1 + cos �

2≈ 1.18

–1

c.m.

1

r = 1

x

y

x =

15p + 32
6p + 48

, y = 0

x =

323
p , y = 0M = 4, Mx = 0, My = 0

Ix = 2dI0 = 104x = y =

1
2 - ln 4

Iz =

8pdsb5
- a5d

15

Section 16.2, pp. 935–938
1.

3.

5.

7. (a) 9 2 (b) 13 3 (c) 9 2
9. (a) 1 3 (b) (c) 0

11. (a) 2 (b) 3 2 (c) 1 2
13. 15. 36 17. (a) (b) 0 (c)
19. 1 2 21. 23. 69 4 25. 27. 25 6
29. (a)

(b)
31. 33.

35. (a) (b) 0 (c) 1 37. (a) 32 (b) 32 (c) 32
39.

41. (a) (b)

43. 47. 48 49. 51. 0 53.

Section 16.3, pp. 947–949
1. Conservative 3. Not conservative 5. Not conservative

7.

9.

11.

13. 49 15. 17. 1 19. 9 ln 2 21. 0 23.

27. 29. (a) 1 (b) 1 (c) 1

31. (a) 2 (b) 2 33. (a) (b)
35. It does not matter what path you use. The work will be the same

on any path because the field is conservative.
37. The force F is conservative because all partial derivatives of M,

N, and P are zero. 
and Therefore, 

Section 16.4, pp. 958–960
1. 3.
5. 7.
9. 11.

13. 15.
17. 0 19. 2 33 21. 0 23. 25. 27.
29. (a) 0 if C is traversed counterclockwise

(b) 39. (a) 0sh - kdsarea of the regiond

3p>8pa2
-16p>
Flux = 1>5, circ = -1>12Flux = 1>2, circ = 1>2 Flux = 64>9, circ = 0Flux = -11>60, circ = -7>60

Flux = -9, circ = 9Flux = 2, circ = 0
Flux = -pa2, circ = 0Flux = 0, circ = 2pa2

F # AB
1

.
asxb - xad + bs yb - yad + cszb - zad =ƒsBd - ƒsAd =

1F # dr =B = sxb, yb, zb).sxa, ya, zad
ƒsx, y, zd = ax + by + cz + C; A =

c = b = 2c = b = 2a

F = § ax2
- 1
y b

-3-16

ƒsx, y, zd = x ln x - x + tan sx + yd +

1
2

 ln s y2
+ z2d + C

ƒsx, y, zd = xey + 2z
+ C

ƒsx, y, zd = x2
+

3y2

2
+ 2z2

+ C

1
2

pF = -

xi + yj

2x2
+ y2

G = 2x2
+ y2 FG = -yi + xj

x2 + y2 = 4

2

2

0
x

y

-

p

2

Circ = a2p, flux = 0Circ = 0, flux = a2p

Circ1 = 0, circ2 = 8p, flux1 = 8p, flux2 = 0
Circ1 = 0, circ2 = 2p, flux1 = 2p, flux2 = 0

>-39>2>-p> -7>12-5>6-15>2
>>-1>5> >>>

F = -

kx

sx2
+ y2d3>2 i -

ky

sx2
+ y2d3>2 j, any k 7 0

§g = - a 2x

x2
+ y2 b i - a 2y

x2
+ y2 b j + ezk

§ƒ = - sxi + yj + zkdsx2
+ y2

+ z2d-3>2
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Section 16.5, pp. 967–969
1.

3.

5.
Also: 

7.

9.
11.

13. (a)

(b)

15.
another way: 

17.

19. 21.

23.

25.

27. 29.

33. (b)

35. 37. 39. 4 41.

43. 45. 47.

49. 51. 53.

Section 16.6, pp. 978–980

1.
6

S

 x ds =

L

3

0
 
L

2

0
 u24u2

+ 1 du dy =

17217 - 1
4

2
3

 A525 - 1 B5p22
p

6
 A13213 - 1 B

3 + 2 ln 2
p

6
 A17217 - 525 Bp2c2

+ 1

626 - 22213p>3x0 x + y0 y = 25

a2c2 cos4 f sin2 u]1>2 df du

A =

L

2p

0
 
L

p

0
[a2b2 sin2 f cos2 f + b2c2 cos4 f cos2 u +

 √3x + y = 9

6

x2 + (y – 3)2 = 9

, 9/2, 0
2

z

x

y
3√3

(√2, √2, 2) x + y – √2z = 0

z = √x2 + y2
z

x y

L

2p

0
 
L

p

p>42 sin f df du = A4 + 222 Bp
L

2p

0
 
L

1

0
 u24u2

+ 1 du dy =

A525 - 1 B
6

 p

L

2p

0
 
L

4

1
 1 du dy = 6p

L

2p

0
 
L

3

1
 r25 dr du = 8p25

L

2p

0
 
L

1

0

25
2

 r dr du =

p25
2

0 … y … 2p+ uj + s2 sin ydk, 0 … u … 3,
rsu, yd = s2 + 2 cos ydi- sp>2d … y … sp>2d;

rsu, yd = s4 cos2 ydi + uj + s4 cos y sin ydk, 0 … u … 3,
0 … y … 2p 0 … u … 3,su sin ydk,

rsu, yd = s1 - u cos y - u sin ydi + su cos ydj +

0 … u … 2p0 … r … 3,s1 - r cos u - r sin udk,
rsr, ud = sr cos udi + sr sin udj +

0 … y … 2p
yd = ui + s3 cos ydj + s3 sin ydk, 0 … u … 3,rsu,

rsx, yd = xi + yj + s4 - y2dk, 0 … x … 2, -2 … y … 2

0 … u … 2p p>3 … f … 2p>3,A23 cos f Bk,

rsf, ud = A23 sin f cos u B i + A23 sin f sin u B j +

0 … u … 2p
s3 cos fdk, 0 … f … p>4,s3 sin f sin udj +s3 sin f cos udi +

ud =rsf,0 … u … 2p;0 … r … 322>2,
rsr, ud = sr cos udi + sr sin udj + 29 - r2 k,

0 … u … p>2rsr, ud = sr cos udi + sr sin udj + sr>2dk, 0 … r … 6,
0 … u … 2p
rsr, ud = sr cos udi + sr sin udj + r2k, 0 … r … 2,

3.

5.

(for )

7.

9. 11. 13. 2

15. 17.

19. 21. 23. 25.

27. 29. 18 31. 33.

35. 37. 39. 41.

43. 45.

47. (a) (b)

Section 16.7, pp. 988–990
1. 3. 5. 0 7. 9. 13.

15. 17. 25.

Section 16.8, pp. 999–1001
1. 0 3. 0 5. 7. 9. 11.

13. 15.
21. The integral’s value never exceeds the surface area of S.

Practice Exercises, pp. 1001–1004
1. Path 1: path 2: 3. 5. 0

7. 9. 0 11. 13.

15. 17. 50

19.

21.

23.

25. 27. 29. Conservative
31. Not conservative 33.

35. Path 1: 2; path 2: 8 3 37. (a) (b)

39. 0 41. (a) (b)

43.

45. 47. sx, y, zd = s0, 0, 49>12d, Iz = 640pz =

3
2

, Iz =

723
3

Iz =

56
9

Ix =

232
45

, Iy =

64
15

,sx, y, zd = a1, 
16
15

, 
2
3
b ;

22 + ln A1 + 22 B422 - 2

1 - e - 2p1 - e - 2p>
ƒsx, y, zd = y2

+ yz + 2x + z
p C22 + ln A1 + 22 B D26

0 … y … p

su sin ydk, 0 … u … 1,rsu, yd = su cos ydi + 2u2j +

0 … u … 2p
ud = sr cos udi + sr sin udj + s1 + rdk, 0 … r … 2,rsr,

0 … u … 2p
p

6
… f …

2p
3

,

rsf, ud = s6 sin f cos udi + s6 sin f sin udj + s6 cos fdk,

abc
2

 A
1
a2 +

1
b2 +

1
c2

2p a1 -

1

22
bp238p sin s1d

4a21 + 322223 ;

12p A422 - 1 B45p
-40>33p-8p-16

16Iy + 16Ix-15p-p>4 12p2pa2
-6p-5>64p

20p
3

 a4d
8p
3

 a4d

sx, y, zd = a0, 0, 
14
9
b , Iz =

15p22
2

 daa
2

, 
a
2

, 
a
2
b

3a4
-4-32

pa3

2

pa2

4
pa3

6
-73p>6

2p>313a4>6pa3

6
-32

26>30
1

30
 A22 + 626 B

abc
4

 sab + ac + bcd9a3

L

1

0
 
L

2p

0
 u3s4u2

+ 1d cos2 y dy du =

11p
12

u24u2
+ 1 dy du =

6
S

 x225 - 4z ds =

L

1

0
 
L

2p

0
 u2 cos2 y # 24u2

+ 1 #

x = u, y = y

6
S

 z ds =

L

1

0
 
L

1

0
 s4 - u - yd23 dy du = 323

6
S

 x2 ds =

L

2p

0
 
L

p

0
 sin3 f cos2 u df du =

4p
3
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Appendices: Answers to Odd-Numbered Exercises A-71

49. Flux: 3 2; circ: 53. 3 55.

57. 0 59.

Additional and Advanced Exercises, pp. 1004–1006
1. 3. 2 3
5. (a) (b)

(c)

7. 9. The minimum flux is 

11. (b)

(c)

13. (c) 19. False if 

APPENDICES

Appendix 1, p. AP-6
1. or 1

3. 5.

7. 9.

11. 13.

15. 17.

19. 21. (0, 1) 23.
27. The graph of is the interior and boundary of the 

“diamond-shaped” region.

Appendix 3, pp. AP-16–AP-18
1. 3. Unit circle

5.

y

x

Slope = 3

y = 3x + 5
A(–1, 2)

B(–2, –1) –1

–1 0–2

1

2

m⊥ = -

1
3

2, -4; 225

–1 1

–1

1

x

y

�x� � �y� � 1

ƒ x ƒ + ƒ y ƒ … 1
(- q , 1]s -3, -2d ´ s2, 3d

r
–3 1

s
–2 2

s - q , -3] ´ [1, q ds - q , -2] ´ [2, q d

0 10
z

–2 4
t

0 … z … 10-2 … t … 4

7>6, 25>63, -3

x
–1/3–2

x

x … -

1
3

x 6 -2

0.1, 0.2, 0.3, 0.8, 0.9

F = yi + xj
4
3

 pw

Work = a
LC

 gxy dsb  y = g
LC

 xy2 ds =

16
3

 g

16
3

 g

-4.a = 2, b = 1.
16pR3

3

Fsx, y, zd = zi
Fsx, y, zd = zi + ykFsx, y, zd = zi + xj + yk

>6p

p

2p
3

 A7 - 822 B-1>2> 7. (a) (b) 9.

11. 13. 15.

17.

19.
21. 23.

25. 27.

29.

31. Exterior points of a circle of radius centered at the origin
33. The washer between the circles and 

(points with distance from the origin between 1 and 2)
35.

37.

39.

41. (a) degrees inch (b) degrees inch
(c) degrees inch 43. 5.97 atm>L -8.3

>L -16.1>L -2.5

a- 1

23
, -

1
3
b , a 1

23
, -

1
3
b

a 1

25
, 

2

25
b , a- 1

25
, -

2

25
b

sx + 2d2
+ s y - 1d2

6 6

x 2
+ y 2

= 4x 2
+ y 2

= 1
27,

0–3

4

–6

(–5, 0)

(–1, 0)

A
xi

s:
 x

 =
 –

3

y = –x2 – 6x – 5
V(–3, 4)

(–6, –5) (0, –5)

x

y

10 2

A
xi

s:
 x

 =
 1

V(1, –4)

(0, –3)

(–1, 0)
y = x2 – 2x – 3

(3, 0)
x

y

1

–1

1

2

3
4

2 3 4–1–2

–2

C(0, 3/2)

(2, 0)

(0, 4)

(–2, 0)

x2 + (y – 3/2)2 = 25/4

(0, –1)

x

y

x 2
+ s y - 3>2d2

= 25>4

C –√3, –2

–√3, 0

⎛             ⎞⎝             ⎠

⎛             ⎞⎝             ⎠

–4

–4

(0, –1)

(0, –3)

x

y

(0, 0)

C(0 , 2)

(0, 4)

–2 –1 1 2
x

y

Ax + 23 B2 + s y + 2d2
= 4x 2

+ s y - 2d2
= 4

s3, -3d

0 1 2

–1

–2

√2 x – √3y = √6

x

y

x-intercept = 23, y-intercept = -22

y = -

x
2

+ 12y = 4x + 4y = -

5
4

 x + 6

y = -xy = 4>3x = -1

7001_ThomasET_OddAnsCh8-app.qxd  11/3/09  3:02 PM  Page 71



45. Yes: 

51.

Appendix 7, pp. AP-34–AP-35
1. (a) (14, 8) (b) (c) s0, -5ds -1, 8d

k = -8, k = 1>2

–40 32

–40

C = F

C =     (F – 32)5
9

(–40, –40)

F

C

C = F = -40° 3. (a) By reflecting z across the real axis
(b) By reflecting z across the imaginary axis
(c) By reflecting z in the real axis and then multiplying the

length of the vector by 
5. (a) Points on the circle 

(b) Points inside the circle 
(c) Points outside the circle 

7. Points on a circle of radius 1, center 

9. Points on the line 11. 13.

15. 17.

19. 21.

23. 1 ; 23i, -1 ; 23i

26
2

;

22
2

 i, -
26
2

;

22
2

 i2i, -23 - i, 23 - i

1, -
1
2

;

23
2

 icos4 u - 6 cos2 u sin2 u + sin4 u

1e2pi>34e2pi>3y = -x

s -1, 0d
x2

+ y2
= 4

x2
+ y2

= 4
x2

+ y2
= 4

1> ƒ z ƒ
2
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23.

25.
27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49.
51.

53.

55.

57.

59.

Section 17.3, pp. 17-21 to 17-23
1.

3.

5.
7. 0.0864 ft (above equilibrium)

9.

(in feet), or 

(in inches).

11. 0.308 sec 13. 8.334 lb 15. 24.4949 ft sec
17. ft sec2 (acceleration upward)
19.

21.

23. (above equilibrium)

25. q(t) =

1
5

+ ¢491199
995

 sin 
1199

2
 t +

49
5

 cos 
1199

2
 t≤e-t>2

y(p) = -2 m

y(t) = 1 + 2e-t
-

1
3

e-2t
-

2
3

e-8t

lim
t:q

q(t) = 0q(t) = -8e-3t
+ 10e-2t,

>-1.56
>

y0

0.1398
 sin (7.1552t)

y = 3.5 cos (7.1552t) +

y(t) = 0.2917 cos (7.1552t) +

y0

85.8623
 sin (7.1552t)

q¿(0) = 3q(0) = 2,2q– + 4q¿ + 10q = 20 cos t,

y¿(0) =

y0

12
y(0) =

5
12

,
25
32

 y– + 40y = 0,

y¿(0) = 2y(0) = 2,my– + y¿ + y = 0,

yp =

1
4

x2

y = (1 - x + x2)ex

y = 2(ex
- e-x) cos x - 3e-x sin x

y = -e - x
+ 1 +

1
2

x2
- x

y = 2 cos x + sin x - 1 + sin x ln (sec x + tan x)
y = ce3x

+ 5xe3x

y = ce3x
-

1
2

ex

= c1 cos x + c2¿ sin x + x cos x - (sin x) ln (cos x)
y = c1 cos x + c2 sin x + (x - tan x) cos x - sin x ln (cos x)

y = c1 + c2e
-2x

-

1
3

ex
+ x3>6 - x2>4 + x>4

y = c1 + c2e
x

- x4>4 - x3
- 3x2

- 6x

y = c1 + c2e
8x

+

1
8

xe8x

y = c1 cos x + c2 sin x - (sin x)[ln (csc x + cot x)]

y = c1e
5x

+ c2e
-x

-

1
8

ex
-

4
5

y = c1 + c2e
x

+

1
2

e-x
+ xex

y = c1 cos x + c2 sin x -

1
2

x cos x + x sin x

y = c1 + c2e
5x

+

1
10

x2e5x
-

1
25

xe5x

y = A cos x + B sin x + x sin x + cos x ln (cos x)
y = e-2x(c1 cos x + c2 sin x) + 2

y = c1e
x

+ c2e
-x

+

1
2

xex

CHAPTER 17

Section 17.1, p. 17-7
1. 3.

5. 7.

9. 11.

13. 15.

17.

19.

21. 23.

25. 27.

29. 31.

33.

35.

37. 39.

41. 43.

45. 47.

49. 51.

53. 55.

57. 59.

Section 17.2, p. 17-16

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

21. y = (c1 + c2x)e-x
+

1
2

x2e-x 

y = c1 cos x + c2 sin x -

1
2

x cos x

y = c1 + c2e
-x

+

1
2

x2
- x

y = c1 + c2e
3x

+ 2x2
+

4
3

x +

1
3

xe3x

y = c1 + c2e
-5x

+ x3
+

3
5

x2
-

6
25

x

y = c1e
3x

+ c2e
-2x

-

1
4

 e-x
+

49
50

 cos x +

7
50

 sin x

y = c1e
x

+ c2e
-x

- x2
- 2 +

1
2

xex

y = c1e
2x

+ c2e
- x

- 6 cos x - 2 sin x

y = c1 cos x + c2 sin x -

1
8

 cos 3x

y = c1 + c2e
x

+

1
2

 cos x -

1
2

 sin x

y = c1e
5x

+ c2e
-2x

+

3
10

y =

15
13

e-7x>3
+

11
13

e2xy = (1 + 2x)e-x

y = c1e
-x>2

+ c2e4x>3y = c1e
-4x>3

+ c2 xe-4x>3
y = c1e

3x>4
+ c2 xe3x>4y = e-x>2(c1 cos x + c2 sin x)

y = c1e
-x>5

+ c2 xe-x>5y = c1 cos 25x + c2 sin 25x

y = c1e
-x>2

+ c2 xe-x>2y = c1e
-x

+ c2e
3x

y = 2(1 + 2x)e-3x>2y = (1 - 2x)e2x

y = -cos 222x +

1

22
 sin 222x

y =

1

223
 sin 223x

y = -

3
4

 e-5x
+

3
4

 e-xy = c1e
-x>3

+ c2 xe-x>3
y = c1e

-x>2
+ c2 xe-x>2y = c1e

-3x
+ c2 xe-3x

y = c1e
-2x

+ c2 xe-2xy = c1 + c2 x

y = e-2x Ac1 cos 25x + c2 sin 25x B
y = e-x Ac1 cos 23x + c2 sin 23x B

y = ex(c1 cos 2x + c2 sin 2x)y = c1 cos 5x + c2 sin 5x

y = c1 cos 3x + c2 sin 3xy = c1e
-x>4

+ c2e
3x>2

y = c1e
-x

+ c2e
3x>2y = c1e

-2x
+ c2e

2x

y = c1e
-4x

+ c2e
xy = c1e

-3x
+ c2e

4x
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3.

5.

7.

9.

11.

13.

15.

17. y = c0 a1 -

3
2

x2
+

1
8

x4
+

Á b + c1 ax -

1
3

x3b
y = c0 a1 -

3
2

x2
+

Á b + c1 ax -

1
2

x3
+

Á b
+ c1 ax + x3

+

3
5

x5
+

Á b
y = c0 a1 + x2

+

2
3

x4
+

Á b
y = c0(1 - 3x2

+
Á ) + c1(x - x3)

y = c0 a1 - x2
+

5
12

x4
-

Á b + c1x

y = c0 a1 +

1
2

x2
-

1
6

x3
+

Á b + c1 ax +

1
6

x3
+

Á b
y = c1x + c2x

2

= c0 cos 2x + c1 sin 2x

y = c0(1 - 2x2
+

Á ) + c1 ax -

2
3

x3
+

Á b

A-2 Chapter 17: Answers to Odd-Numbered Exercises

Section 17.4, p. 17-25

1. 3.

5. 7.
9.

11.

13.

15.

17. 19.

21. 23.

25. 27.

29.

Section 17.5, p. 17-31

1.

= c0 -

c1

2
e-2x

y = c0 + c1 ax - x2
+

2
3

x3
-

Á b

y = x[-cos (ln x) + 2 sin (ln x)]

y = xy =

1
2x3 +

x
2

y = x - 5>4 (c1 + c2 ln x)y =

1

13 x
(c1 + c2 ln x)

y = c1 + c2 ln xy =

1
x(c1 + c2 ln x)

y =

1
1x

[c1 cos (ln x) + c2 sin (ln x)]

y =

1
x[c1 cos (3 ln x) + c2 sin (3 ln x)]

y = x[c1 cos (2 ln x) + c2 sin (2 ln x)]
y = x(c1 + c2 ln x)

y = c1x
- 1>3

+ c2y = c1x
2

+ c2 x4

y =

c1

x2 + c2 x3y =

c1

x2 + c2 x
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CHAPTER 17  SECOND-ORDER DIFFERENTIAL EQUATIONS

17.1  SECOND-ORDER LINEAR EQUATIONS

 1. y y 12y 0 r r 12 0 r 4 r 3 0 r 4 or r 3 y c e c eww w �� � œ Ê � � œ Ê � � œ Ê œ œ � Ê œ �2 4x 3x
1 2� �� �

 3. y 3y 4y 0 r 3r 4 0 r 4 r 1 0 r 4 or r 1 y c e c eww w �� � œ Ê � � œ Ê � � œ Ê œ � œ Ê œ �2 4x x
1 2� �� �

 5. y 4y 0 r 4 0 r 2 r 2 0 r 2 or r 2 y c e c eww �� œ Ê � œ Ê � � œ Ê œ œ � Ê œ �2 2x 2x
1 2� �� �

 7. 2y y 3y 0 2r r 3 0 2r 3 r 1 0 r  or r 1 y c e c eww w �� � œ Ê � � œ Ê � � œ Ê œ œ � Ê œ �2 x x3
2 1 2� �� � 3

2

 9. 8y 10y 3y 0 8r 10r 3 0 4r 1 2r 3 0 r  or r y c e c eww w �� � œ Ê � � œ Ê � � œ Ê œ � œ Ê œ �2 x x1 3
4 2 1 2� �� � 1 3

4 2

11. y 9y 0 r 9 0 r 3i y e c cos 3x c sin 3x y c cos 3x c sin 3xww †� œ Ê � œ Ê œ ! „ Ê œ � Ê œ �2 0 x
1 2 1 2� �

13. y 25y 0 r 25 0 r 5i y e c cos 5x c sin 5x y c cos 5x c sin 5xww †� œ Ê � œ Ê œ ! „ Ê œ � Ê œ �2 0 x
1 2 1 2� �

15. y 2y 5y 0 r 2r 5 0 r 1 2i y e c cos 2x c sin 2xww w � � „ � �
� � œ Ê � � œ Ê œ œ „ Ê œ �2 x2 2 4 1 5

2 1 1 2
� � � � � �� �É

� �
2 � �

17. y 2y 4y 0 r 2r 0 r 1 3 i y e c cos 3 x c sin 3 xww w �� „ � %
� � œ Ê � � % œ Ê œ œ � „ Ê œ �2 x2 2 4 1

2 1 1 2
È � �� �� �

2 È È ÈŠ ‹

19. y 4y 9y 0 r 4r 9 0 r 2 5 i y e c cos 5 x c sin 5 xww w �� „ �
� � œ Ê � � œ Ê œ œ � „ Ê œ �2 2x4 4 4 1 9

2 1 1 2
È � �� �� �

2 È È ÈŠ ‹

21. y 0 r 0 r , repeated twice y c e c x e y c c xww † †œ Ê œ Ê œ ! Ê œ � Ê œ �2 0 x 0 x
1 2 1 2

23. 4 4y 0 r 4r 4 0 r 2 0 r 2, repeated twice y c e c x ed y dy
dx dx

2 2x 2x2
1 2

2

2 � � œ Ê � � œ Ê � œ Ê œ � Ê œ �� � � �

25. 6 9y 0 r 6r 9 0 r 3 0 r 3, repeated twice y c e c x ed y dy
dx dx

2 3x 3x2
1 2

2

2 � � œ Ê � � œ Ê � œ Ê œ � Ê œ �� � � �

27. 4 4 y 0 4r 4r 1 0 2r 1 0 r , repeated twice y c e c x ed y dy
dx dx 2

2 x x2 1
1 2

2

2

1 1
2 2� � œ Ê � � œ Ê � œ Ê œ � Ê œ �� � � �

29. 9 6 y 0 9r 6r 1 0 3r 1 0 r , repeated twice y c e c x ed y dy
dx dx 3

2 x x2 1
1 2

2

2

1 1
3 3� � œ Ê � � œ Ê � œ Ê œ � Ê œ �� � � �

31. y 6y 5y 0, y 0 0, y 0 3 r 6r 5 0 r 5 r 1 0 r 5 or r 1ww w w� � œ œ œ Ê � � œ Ê � � œ Ê œ � œ �� � � � � �� �2

 y c e c e y 5c e c e ; y 0 0 c c 0, and y 0 3 5c c 3Ê œ � Ê œ � � œ Ê � œ œ Ê � � œ1 2 1 2 1 2 1 2
5x x 5x x� � w � � w� � � �

 c  and c y e eÊ œ � œ Ê œ � �1 2
3 3 3 3
4 4 4 4

5x x� �

33. y 12y 0, y 0 0, y 0 1 r 12 0 r 0 2 3 i y c cos 2 3 x c sin 2 3 xww w� œ œ œ Ê � œ Ê œ „ Ê œ �� � � � È È È2
1 2

 y 2 3 c sin 2 3 x 2 3 c cos 2 3 x; y 0 c 0, and y 0 1 2 3 c 1Ê œ � � œ ! Ê œ œ Ê œw wÈ È È È È� � � �1 2 1 2

 c 0 and c y sin 2 3 xÊ œ œ Ê œ1 2
1 1

2 3 2 3È È È
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35. y 8y 0, y 0 1, y 0 2 r 8 0 r 0 2 2 i y c cos 2 2 x c sin 2 2 xww w� œ œ � œ Ê � œ Ê œ „ Ê œ �� � � � È È È2
1 2

 y 2 2 c sin 2 2 x 2 2 c cos 2 2 x; y 0 1 c 1, and y 0 2 2 2 c 2Ê œ � � œ � Ê œ � œ Ê œw wÈ È È È È� � � �1 2 1 2

 c 1 and c y cos 2 2 x sin 2 2 xÊ œ � œ Ê œ � �1 2
1 1

2 2È ÈÈ È

37. y 4y 4y 0, y 0 1, y 0 0 r 4r 4 0 r 2 0 r 2 repeated twiceww w w� � œ œ œ Ê � � œ Ê � œ Ê œ� � � � � �2 2

 y c e c x e y 2c e c e 2c x e ; y 0 1 c 1, and y 0 0 2c c 0Ê œ � Ê œ � � œ Ê œ œ Ê � œ1 2 1 2 2 1 1 2
2x 2x 2x 2x 2xw w� � � �

 c 1 and c 2 y e 2x eÊ œ œ � Ê œ �1 2
2x 2x

39. 4 12 9y 0, y 0 2, 0 1 4r 12r 9 0 2r 3 0 r  repeated twiced y dy dy
dx dx dx 2

2 2 32

2 � � œ œ œ Ê � � œ Ê � œ Ê œ �� � � � � �
 y c e c x e c e c e c x e ; y 0 2 c 2,  and 0 1Ê œ � Ê œ � � � œ Ê œ œ1 2 1 2 2 1

x x x x xdy dy
dx 2 2 dx

3 3� � � � �3 3 3 3 3
2 2 2 2 2 � � � �

 c c 1 c 2 and c 4 y 2e 4x eÊ � � œ Ê œ œ Ê œ �3
2 1 2 1 2

x x� �3 3
2 2

41. y 2y 3y 0 r 2r 3 0 r 3 r 1 0 r 3 or r 1 y c e c eww w �� � œ Ê � � œ Ê � � œ Ê œ œ � Ê œ �2 3x x
1 2� �� �

43. 4y 4y y 0 4r 4r 1 0 2r 1 0 r  repeated twice y c e c x eww w � �� � œ Ê � � œ Ê � œ Ê œ � Ê œ �2 x x2 1
2 1 2� � 1 1

2 2

45. 4y 20y 0 4r 20 0 r 5i y e c cos 5 x c sin 5 x y c cos 5 x c sin 5 xww †� œ Ê � œ Ê œ ! „ Ê œ � Ê œ �2 0 x
1 2 1 2Š ‹È È È È

47. 25y 10y y 0 25r 10r 1 0 5r 1 0 r  repeated twice y c e c x eww w � �� � œ Ê � � œ Ê � œ Ê œ � Ê œ �2 x x2 1
5 1 2� � 1 1

5 5

49. 4y 4y 5y 0 4r 4r 5 0 r i y e c cos x c sin xww w �� „ �
� � œ Ê � � œ Ê œ œ � „ Ê œ �2 x4 4 4 4 5

2 4 2
1

1 2
É� � � �� �� �

2
1
2 � �

51. 16y 24y 9y 0 16r 24r 9 0 4r 3 0 r  repeated twice y c e c x eww w� � œ Ê � � œ Ê � œ Ê œ Ê œ �2 x x2 3
4 1 2� � 3 3

4 4

53. 9y 24y 16y 0 9r 24r 16 0 3r 4 0 r  repeated twice y c e c x eww w � �� � œ Ê � � œ Ê � œ Ê œ � Ê œ �2 x x2 4
3 1 2� � 4 4

3 3

55. 6y 5y 4y 0 6r 5r 4 0 3r 4 2r 1 0 r  or r y c e c eww w �� � œ Ê � � œ Ê � � œ Ê œ œ � Ê œ �2 x x4 1
3 2 1 2� �� � 4 1

3 2

57. y 2y y 0, y 0 1, y 0 1 r 2r 1 0 r 1 0 r 1, repeated twiceww w w� � œ œ œ Ê � � œ Ê � œ Ê œ �� � � � � �2 2

 y c e c x e y c e c x e c e ; y 0 1 c 1, and y 0 1 c c 1Ê œ � Ê œ � � � œ Ê œ œ Ê � � œ1 2 1 2 2 1 1 2
x x x x x� � w � � � w� � � �

 c 1 and c 2 y e 2x eÊ œ œ Ê œ �1 2
x x� �

59. 3y y 14y 0, y 0 2, y 0 1 3r r 14 0 3r 7 r 2 0 r  or r 2ww w w� � œ œ œ � Ê � � œ Ê � � œ Ê œ � œ� � � � � �� �2 7
3

 y c e c e y c e 2c e ; y 0 2 c c 2, and y 0 1 c 2c 1Ê œ � Ê œ � � œ Ê � œ œ � Ê � � œ �1 2 1 2 1 2 1 2
x 2x x 2x7 7

3 3
� w � w7 7

3 3 � � � �
 c  and c y e eÊ œ œ Ê œ �1 2

15 11 15 11
13 13 13 13

7 3 x 2x� Î� �

61. Let r  and r  be real roots with r r . If e  and e  are linearly independent, then e  is not a constant multiple of e1 2 1 2
r x r x r xÁ 1 2 1 r x2

 (and vice versa). Assume that e  is a constant multiple of e , then for some nonzero constant c,  e c e cr x r x r x r x e
e

1 2 1 2
r x1
r x2œ Ê œ

 e c e c. Since r r , c is not a constant, which is a contridiction. Thus e  and e  are linearlyÊ œ Ê œ Ár x r x r r x r x r x
1 2

1 2 1 2 1 2� �� �
 independent.
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63. Let r i  and r i  be complex roots. If e cos x and e sin x are linearly independent, then e cos x1 2
x x xœ � œ �α " α " " " "α α α

 is not a constant multiple of e sin x (and vice versa). Assume that e cos x is a constant multiple of e sin x, thenα α αx x x" " "

 for some nonzero constant c, e cos x c e sin x e cos x c e sin x 0 e cos x c sin x 0α α α α αx x x x x" " " " " "œ Ê � œ Ê � œ� �
 e 0 or cos x c sin x 0. Since e 0 c cot x, thus c is not a constant, which is a contridiction.Ê œ � œ Á Ê œα αx x" " "

 Thus e cos x and e sin x are linearly independent.α αx x" "

65. (a) y 4y 0, y 0 0, y 1 r 4 0 r 2i y e c cos 2x c sin 2xww †� œ œ œ Ê � œ Ê œ ! „ Ê œ �� � � � � �1 2 0 x
1 2

 y c cos 2x c sin 2x; y 0 0 c 0, and y 1 c 1 no solutionÊ œ � œ Ê œ œ Ê œ Ê1 2 1 1� � � �1
 (b) y 4y 0, y 0 0, y 0 r 4 0 r 2i y e c cos 2x c sin 2xww †� œ œ œ Ê � œ Ê œ ! „ Ê œ �� � � � � �1 2 0 x

1 2

 y c cos 2x c sin 2x; y 0 0 c 0, and y 0 c 0 c 0, c  can be any real numberÊ œ � œ Ê œ œ Ê œ Ê œ1 2 1 1 1 2� � � �1
 y c sin 2xÊ œ 2

17.2  NONHOMOGENEOUS LINEAR EQUATIONS

 1. y 3y 10y 3 r 3r 10 0 r 5 r 2 0 r 5 or r 2 y c e c e ;  y Aww w �� � œ � Ê � � œ Ê � � œ Ê œ œ � Ê œ � œ2 5x 2x
c 1 2 p� �� �

 y 0 y 0 0 3 0 10A 3 A y c e c eÊ œ Ê œ Ê � � œ � Ê œ Ê œ � �w ww �
p p

3 3
10 101 2

5x 2x� �
 3. y y sin x r r 0 r r 1 0 r 0 or r 1 y c e c e c c e ;ww w # †� œ Ê � œ Ê � œ Ê œ œ Ê œ � œ �� � c 1 2 1 2

0 x x x

 y A sin x B cos x y A cos x B sin x y A sin x B cos xp p pœ � Ê œ � Ê œ � �w ww

 A sin x B cos x A cos x B sin x sin x A B sin x A B cos x sin xÊ � � � � œ Ê � � � � � œ� � � � � �
 A B 1, A B 0 A , B y c c e sin x cos xÊ � � œ � � œ Ê œ � œ Ê œ � � �1 1 1 1

2 2 2 21 2
x

 5. y y cos 3x r 1 0 r 0 i y e c cos x c sin x c cos x c sin x;ww # †� œ Ê � œ Ê œ „ Ê œ � œ �c 1 2 1 2
0 x� �

 y A sin 3x B cos 3x y 3A cos 3x 3B sin 3x y 9A sin 3x 9B cos 3xp p pœ � Ê œ � Ê œ � �w ww

 9A sin 3x 9B cos 3x A sin 3x B cos 3x cos 3x 8A sin x 8B cos x cos 3xÊ � � � � œ Ê � � œ� �
 8A 0, 8B 1 A 0, B y c cos x c sin x cos 3xÊ � œ � œ Ê œ œ � Ê œ � �1 1

8 1 2 )

 7. y y 2y 20cos x r r 2 0 r 2 r 1 0 r 2 or r 1 y c e c e ;ww w �� � œ Ê � � œ Ê � � œ Ê œ œ � Ê œ �2 2x x
c 1 2� �� �

 y A sin x B cos x y A cos x B sin x y A sin x B cos xp p pœ � Ê œ � Ê œ � �w ww

 A sin x B cos x A cos x B sin x 2 A sin x B cos x 20cos xÊ � � � � � � œ� � � �
 3A B sin x A 3B cos x 20cos x 3A B 0, A 3B 20 A 2, BÊ � � � � � œ Ê � � œ � � œ Ê œ � œ �'� � � �
 y c e c e 2 sin x 6 cos xÊ œ � � �1 2

2x x�

 9. y y e x r 1 0 r 1 r 1 0 r 1 or r 1 y c e c e ;ww # �� œ � Ê � œ Ê � � œ Ê œ œ � Ê œ �x 2 x x
c 1 2� �� �

 y Axe Bx Cx D y Ae Axe 2Bx C y 2Ae Axe 2Bp
x x x x x

p pœ � � � Ê œ � � � Ê œ � �# w ww

 2Ae Axe 2B Axe Bx Cx D e x 2Ae Bx Cx 2B D e xÊ � � � � � � œ � Ê � � � � œ �� � � � � �x x x x x x# # # #

 2A 1, B 1, C 0, 2B D 0 A , B 1, C 0, D 2Ê œ � œ � œ � œ Ê œ œ � œ œ �1
2

 y c e c e xe x 2Ê œ � � � �1 2
x x x1

2
� #

11. y y 6y e 7cos x r r 6 0 r 3 r 2 0 r 3 or r 2 y c e c e ;ww w � �� � œ � Ê � � œ Ê � � œ Ê œ œ � Ê œ �x 2 3x 2x
c 1 2� �� �

 y Ae B sin x C cos x y Ae B cos x C sin x y Ae B sin x C cos xp
x x x

p pœ � � Ê œ � � � Ê œ � �� w � ww �

 Ae B sin x C cos x Ae B cos x C sin x 6 Ae B sin x C cos x e 7cos xÊ � � � � � � � � � œ �� � � �x x x x� � � �
 4Ae 7B C sin x B 7C cos x e 7cos x 4A 1, 7B C 0, B 7C 7Ê � � � � � � � œ � Ê � œ � � œ � � œ �� �x x� � � �
 A , B , C y c e c e e sin x cos xÊ œ � œ œ Ê œ � � � �1 7 49 1 7 49

4 50 50 4 50 501 2
3x 2x x� �
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13. 5 15x r 5r 0 r r 5 0 r 0 or r 5 y c e c e c c e ;d y dy
dx dx

2 0 x 5x 5x
c 1 2 1 2

2

2 � œ Ê � œ Ê � œ Ê œ œ � Ê œ � œ �# † � �� �
 y Ax Bx Cx y 3Ax 2Bx C y 6Ax 2B 6Ax 2B 5 3Ax 2Bx C 15xp p pœ � � Ê œ � � Ê œ � Ê � � � � œ$ # w # ww # #� �
 15Ax 6A 10B x 2B 5C 15x 15A 15, 6A 10B 0, 2B 5C 0 A 1, B , CÊ � � � � œ Ê œ � œ � œ Ê œ œ � œ# #� � � � 3 6

5 25

 y c c e x x xÊ œ � � � �1 2
5x 3 6

5 25
� $ #

15. 3 e 12x r 3r 0 r r 3 0 r 0 or r 3 y c e c e c c e ;d y dy
dx dx

3x 2 0 x 3x 3x
c 1 2 1 2

2

2 � œ � Ê � œ Ê � œ Ê œ œ Ê œ � œ �� � †

 y Ax e Bx Cx y Ae 3Ax e 2Bx C y 6Ae 9Axe 2Bp
3x 3x 3x 3x 3x

p pœ � � Ê œ � � � Ê œ � �# w ww

 6Ae 9Axe 2B 3 Ae 3Ax e 2Bx C e 12x 3Ae 6Bx 2B 3C e 12xÊ � � � � � � œ � Ê � � � œ �3x 3x 3x 3x 3x 3x 3x� � � �
 3A 1, 6B 12, 2B 3C 0 A , B 2, C  y c c e x e 2x xÊ œ � œ � œ Ê œ œ œ Ê œ � � � �1 4 1 4

3 3 3 31 2
3x 3x #

17. y y x, r r 0 r r 1 0 r 0 or r 1 y c e c e c c e y 1, y eww w † � � �� œ Ê � œ Ê � œ Ê œ œ � Ê œ � œ � Ê œ œ2 0 x x x x
c 1 2 1 2 1 2� �

 v x and v x e v x dx x  andÊ œ œ œ œ œ œ � Ê œ œw w #�

� �

�
� �1 2

0 e 1 0
x e 0 x
1 e 1 e
0 e 0 e

x e x 1
e e 2

x
1

º º º º
º º º º

�

�

� �

� �

�

� �

x

x

x x

x x

x

x x
'

 v x e dx x e e y x 1 x e e e x x 1 y c c e x x2 p 1 2
x x x x x x x1 1 1

2 2 2œ � œ � � Ê œ � � � œ � � Ê œ � � �' # � # � #� � � �
19. y y sin x r 1 0 r 0 i y c cos x c sin x y cos x, y sin xww � œ Ê � œ Ê œ „ Ê œ � Ê œ œ2

c 1 2 1 2

 v sin x and v sin x cos xÊ œ œ œ � œ œ œw # w

� �

� �
1 2

0 sin x cos x 0
sin x cos x sin x sin x
cos x sin x cos x sin x
sin x cos x sin x cos x

sin x sin x cos x
1 1

º º º º
º º º º

#

 v sin x dx dx sin 2x x, and  v sin x cos x dx sin xÊ œ � œ œ � œ œ1 2
cos 2x 1 1 1

2 4 2 2
' ' '# #�"

 y sin 2x x cos x sin x sin x sin x cos x x cos x sin x sin x cos xÊ œ � � œ � � �p
1 1 1 1 1 1 1
4 2 2 2 2 2 2

ˆ ‰ ˆ ‰� � � �# # #

 x cos x sin x y c cos x c sin x x cos xœ � � Ê œ � �1 1 1
2 2 21 2

21. y 2y y e  r 2r 1 0 r 1 0 r 1, repeated twice y c e c x eww w � � �#
� � œ Ê � � œ Ê � œ Ê œ � Ê œ �x 2 x x

c 1 2� �
 y e , y x eÊ œ œ1 2

x x� �

 v x and v 1 v x dx xÊ œ œ œ � œ œ œ Ê œ � œ �w w #� �

� � � �

�
1 2

0 x e e 0
e e xe e e
e x e e x e
e e xe e e xe

x e e 1
e e 21

º º º º
º º º º

� �

� � � � �

� � � �

� � � � � �

�# �#

�# �#

x x

x x x x x

x x x x

x x x x x x

x x

x x
'

 and v 1dx x y x e x x e x e y c e c x e x e2 p 1 2
1 1 1
2 2 2

x x x x x xœ œ Ê œ � � œ Ê œ � �' ˆ ‰� � � �� �# � � # � � � # �

23. y y e  r 1 0 r 1 r 1 0 r 1 or r 1 y c e c e y e , y eww � �� œ Ê � œ Ê � � œ Ê œ œ � Ê œ � Ê œ œx 2 x x x x
c 1 2 1 2� �� �

 v  and v e v dx x and v e dx eÊ œ œ œ œ œ œ � Ê œ œ œ � œ �w w�

� �

�
� �1 2

0 e e 0
e e e e
e e e e
e e e e

1 1 e 1 1 1 1 1
2 2 2 2 2 2 2 4

2x 2x 2x
1 2

º º º º
º º º º

�

�

� �

� �

x x

x x x x

x x x x

x x x x

2x ' '

 y x e e e x e e y c e c e x eÊ œ � � œ � Ê œ � �p 1 2
1 1 1 1 1
2 4 2 4 2

x 2x x x x x x xˆ ‰ ˆ ‰ � �

25. y 4y 5y 10 r 4r 5 0 r 2 i y e c cos x c sin xww w �� „ �
� � œ Ê � � œ Ê œ œ � „ Ê œ �2 2x4 4 4 1 5

2 1 1 2
È � �� �� �

2 � �
 y e cos x, y e sin x vÊ œ œ Ê œ œ1 2

2x 2x
1

0 e sin x
10 e cos x 2e sin x

e cos x e sin x
e sin x e cos x e cos x 2e sin x

10e sin� � w �

� �# �

�
º º

º º
�

� �

� �

� � � �

�

2x

2x 2x

2x 2x

2x 2x 2x 2x

2x x
e

2x
�4x œ �10e sin x

 and v 10e cos xw � �#

� �# �

2

e cos x 0
e sin x e cos x 10

e cos x e sin x
e sin x e cos x e cos x 2e sin x

10e cos x
e

2xœ œ œ
º º

º º
�

� �

� �

� � � �

�

�

2x

2x 2x

2x 2x

2x 2x 2x 2x

2x

4x

 v 10e sin x dx 2e cos x 4e sin x and v 10e cos x dx 2e sin x 4e cos xÊ œ � œ � œ œ �1 2
2x x x 2x x x' '# # # #

 y 2e cos x 4e sin x e cos x 2e sin x 4e cos x e sin x 2 y e c cos x c sin x 2Ê œ � � � œ Ê œ � �p 1 2
x x 2x x x 2x 2x� �� � � �� � � �# # � # # � �
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27. y sec x, x r 1 0 r 0 i y c cos x c sin x y cos x, y sin xd y
dx 2 2

2
c 1 2 1 2

2

2 � œ � � � Ê � œ Ê œ „ Ê œ � Ê œ œ1 1

 v tan x and v sin x v tan x dxÊ œ œ œ � œ œ œ Ê œ �w w

� �

� �
1 2

0 sin x cos x 0
sec x cos x sin x sec x
cos x sin x cos x sin x
sin x cos x sin x cos x

sin x sec x 1
1 1 1

º º º º
º º º º

'

 dx ln cos x  and v 1 dx x y ln cos x cos x x sin x cos x ln cos x x sin xœ � œ œ œ Ê œ � œ �' 'sin x
cos x 2 pk k � �� � � �� � k kk k

 y c cos x c sin x cos x ln cos x x sin xÊ œ � � �1 2 k k
29. y 5y x e , y Ax e Bx e y 5Ax e 2Ax e 5Bx e B eww w # w #� œ œ � Ê œ � � �5x 5x 5x 5x 5x 5x 5x

p p

 y 25Ax e 20Ax e 2Ae 25Bx e 10B eÊ œ � � � �ww #
p

5x 5x 5x 5x 5x

 25Ax e 20Ax e 2Ae 25Bx e 10B e 5 5Ax e 2Ax e 5Bx e B e x eÊ � � � � � � � � œ� � � �# #5x 5x 5x 5x 5x 5x 5x 5x 5x 5x

 10Ax e 2A 5B e x e 10A 1, 2A 5B 0 A , B y x e x e ;Ê � � œ Ê œ � œ Ê œ œ � Ê œ �5x 5x 5x 5x 5x1 1 1 1
10 25 10 25p� � #

 r 5r 0 r r 5 0 r 0 or r 5 y c e c e c c e2 0 x 5x 5x
c 1 2 1 2� œ Ê � œ Ê œ œ Ê œ � œ �� � †

 y c c e x e x eÊ œ � � �1 2
5x 5x 5x1 1

10 25
#

31. y y 2cos x sin x, y Ax sin x Bx cos x y Ax cos x A sin x Bx sin x B cos xww w� œ � œ � Ê œ � � �p p

 y Ax sin x 2A cos x Bx cos x 2B sin xÊ œ � � � �ww
p

 Ax sin x 2A cos x Bx cos x 2B sin x Ax sin x Bx cos x cos x sin xÊ � � � � � � œ �� � � �
 2B sin x 2A cos x cos x sin x 2B 1, 2A 2 A 1, B y x sin x x cos x;Ê � � œ # � Ê � œ œ Ê œ œ � Ê œ �1 1

2 2p

 r 1 0 r 0 i y c cos x c sin x y c cos x c sin x x sin x x cos x2
c 1 2 1 2

1
2� œ Ê œ „ Ê œ � Ê œ � � �

33. e e r r 0 r r 1 0 r 0 or r 1 y c e c e c c ed y dy
dx dx

x x 2 0 x x x
c 1 2 1 2

2

2 � œ � Ê � œ Ê � œ Ê œ œ Ê œ � œ �� †� �
 (a) y 1, y e v e e  and v 1 e1 2

x x x 2x
1 2

0 e 1 0
e e e 0 e e

1 e 1 e
0 e 0 e

e 1 e e
e eœ œ Ê œ œ œ � � œ œ œ �w � w �� �� � �

º º º º
º º º º

x

x x x x x

x x

x x

2x x x

x x

� �

�

 v e e dx e e  and v 1 e dx x eÊ œ � � œ � � œ � œ �1 2
x x x x 2x 2x1

2
' '� � � �� � � �

 y e e 1 x e e e x e e y c c e x e eÊ œ � � � � œ � � � Ê œ � �p 1 2
x x 2x x x x x x x x1 1 1

2 2 2� �� � � �ˆ ‰� � � �

 (b) y Ax e B e y Ax e A e B e y Ax e 2A e B ep
x x x x x x x x

p pœ � Ê œ � � Ê œ � �� w � ww �

 Ax e 2A e B e Ax e A e B e e e A e 2B e e eÊ � � � � � œ � Ê � œ �� � � �x x x x x x x x x x x x� � � � �

 A 1, 2B 1 A 1, B y c c e x e eÊ œ œ Ê œ œ Ê œ � � �1 1
2 21 2

x x x�

35. 4 5y e 4 r 4r 5 0 r 5 r 1 0 r 5 or r 1 y c e c ed y dy
dx dx

x 2 5x x
c 1 2

2

2 � � œ � Ê � � œ Ê � � œ Ê œ œ � Ê œ �� �� � �

 (a) y e , y e v e e  and v1 2
5x x 4x 5x

1 2

0 e e 0
e 4 e
e e e e

5e e 5e e

1 e 1 2 e 4e
6e 6 3

5e e 4
œ œ Ê œ œ œ � œ œ� w � � w� �

� �

� �% �
�

�
º º º º
º º º º

�

�

� �

� �

�

x 5x

x x

5x x 5x x

5x x 5x x

x 6x 5

4x

5x x x

4x�6e 6 3
1 22x xœ � �e e

 v e e dx e e  and  v e e dx e eÊ œ � œ � � œ � � œ � �1 2
1 2 1 2 1 2 1 2
6 3 24 15 6 3 12 3

4x 5x 4x 5x 2x x 2x x' 'ˆ ‰ ˆ ‰� � � �

 y e e e e e e e y c e c e eÊ œ � � � � � œ � � Ê œ � � �p 1 2
1 2 1 2 1 4 1 4

24 15 12 3 8 5 8 5
4x 5x 5x 2x x x x 5x x xˆ ‰ ˆ ‰� � � �� � � �

 (b) y Ae B y Ae y Ae Ae 4Ae 5 Ae B e 4 8A e 5B e 4p
x x x x x x x x x

p pœ � Ê œ Ê œ Ê � � � � œ � Ê � � œ �w ww � �
 8A 1, 5B 4 A , B y c e c e eÊ � œ � œ Ê œ � œ � Ê œ � � �1 4 1 4

8 5 8 51 2
5x x x�

37. y y cot x, 0 x r 1 0 r 0 i y c cos x c sin x y cos x, y sin xww � œ � � Ê � œ Ê œ „ Ê œ � Ê œ œ1 2
c 1 2 1 2

 v sin x cos x and v coÊ œ œ œ � œ � œ œ œw w

� �

� �
1 2

0 sin x cos x 0
cot x cos x sin x cot x
cos x sin x cos x sin x
sin x cos x sin x cos x

sin x cot x cos x cos x cot x
1 sin x 1

º º º º
º º º º s x † œcos x cos x

sin x sin x

#

 v cos x dx sin x and v dx dx dx csc x sin x dxÊ œ � œ œ œ œ � œ �1 2
cos x 1 sin x 1 sin x
sin x sin x sin x sin x

' ' ' ' '� � � �# # #�
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 ln csc x cot x sin x y sin x cos x ln csc x cot x sin x sin x sin x ln csc x cot xœ � � Ê œ � � � œ � �k k � �� � � �� � � � k kk kp

 y c cos x c sin x sin x ln csc x cot xÊ œ � � �1 2 � � k k
39. y 8y e r 8r 0 r r 8 0 r 0 or r 8 y c e c e c c e ;ww w †� œ Ê � œ Ê � œ Ê œ œ Ê œ � œ �8x 2 0 x 8x 8x

c 1 2 1 2� �
 y Ax e y Ae 8Ax e y 16Ae 64Ax e 16Ae 64Ax e 8 Ae 8Ax e ep

8x 8x 8x 8x x 8x x 8x 8x 8x
p pœ Ê œ � Ê œ � Ê � � � œw ww � � � �

 8Ae e 8A 1 A y c c e x eÊ œ Ê œ Ê œ Ê œ � �8x 8x 8x 8x1 1
8 81 2

41. y y x r r 0 r r 1 0 r 0 or r 1 y c e c e c c e ;ww w †� œ Ê � œ Ê � œ Ê œ œ Ê œ � œ �3 2 0 x x x
c 1 2 1 2� �

 y Ax Bx Cx Dx y 4Ax 3Bx 2Cx D y 12Ax 6Bx 2Cp p pœ � � � Ê œ � � � Ê œ � �% $ # w $ # ww #

 12Ax 6Bx 2C 4Ax 3Bx 2Cx D xÊ � � � � � � œ� � � �# $ # 3

 4Ax 12A 3B x 6B 2C x 2C D x 4A 1, 12A 3B 0, 6B 2C 0, 2C D 0Ê � � � � � � � œ Ê � œ � œ � œ � œ$ #� � � � � � 3

 A , B 1, C 3, D y c c e x x 3x 6xÊ œ � œ � œ � œ �' Ê œ � � � � �1 1
4 41 2

x % $ #

43. y 2y x e r 2r 0 r r 2 0 r 0 or r 2 y c e c e c c e ;ww w # † � �� œ � Ê � œ Ê � œ Ê œ œ � Ê œ � œ �x 2 0 x 2x 2x
c 1 2 1 2� �

 y Ax Bx Cx De y 3Ax 2Bx C De y 6Ax 2B Dep
x x x

p pœ � � � Ê œ � � � Ê œ � �$ # w # ww

 6Ax 2B De 2 3Ax 2Bx C De x e 6Ax 6A 4B x 2B 2C 3De x eÊ � � � � � � œ � Ê � � � � � œ �� � � � � � � �x x x x x# # # #

 6A 1, 6A 4B 0, 2B 2C 0, 3D 1 A , B , C , DÊ œ � œ � œ œ � Ê œ œ � œ œ �1 1 1 1
6 4 8 3

 y c c e x x x eÊ œ � � � � �1 2
2x x1 1 1 1

6 4 8 3
� $ #

45. y sec x tan x, x r 1 0 r 0 i y c cos x c sin x y cos x, y sin xd y
dx 2 2

2
c 1 2 1 2

2

2 � œ � � � Ê � œ Ê œ „ Ê œ � Ê œ œ1 1

 v tan x and vÊ œ œ œ � œ œw # w

� �

� �
1 2

0 sin x cos x 0
sec x tan x cos x sin x sec x tan x

cos x sin x cos x sin x
sin x cos x sin x cos x

sin x sec x tan x cos x sec x tan x
1 1

º º º º
º º º º œ tan x

 v tan x dx 1 sec x dx x tan x and v tan x dx dx ln cos xÊ œ � œ � œ � œ œ œ �1 2
sin x
cos x

' ' ' '# #� � k k
 y x tan x cos x ln cos x sin x x cos x sin x sin x ln cos xÊ œ � � � œ � �p � �� � � �� � � � k kk k
 y c cos x c sin x x cos x sin x ln cos xÊ œ � � �1 2 � � k k
47. y 3y e r 3 0 r 3 y c e ; y Ae y Ae Ae 3Ae e 2A e ew w� œ Ê � œ Ê œ Ê œ œ Ê œ Ê � œ Ê � œx 3x x x x x x x x

c 1 p p

 2A 1 A y c e eÊ � œ Ê œ � Ê œ �1 1
2 21

3x x

49. y 3y 5e r 3 0 r 3 y c e ; y Ax e y 3Ax e A ew w� œ Ê � œ Ê œ Ê œ œ Ê œ �3x 3x 3x 3x 3x
c 1 p p

 3Ax e A e 3Ax e 5e A e 5e A 5 y c e 5x eÊ � � œ Ê œ Ê œ Ê œ �� �3x 3x 3x 3x 3x 3x 3x 3x
1

51. y sec x, x y 0 y 0 1 r 1 0 r 0 i y c cos x c sin xd y
dx 2 2

2
c 1 2

2

2 � œ � � � ß œ œ Ê � œ Ê œ „ Ê œ �# w1 1 � � � �
 y cos x, y sin xÊ œ œ1 2

 v sec x tan x and v sec xÊ œ œ œ � œ œ œw w

� �

� �
1 2

0 sin x cos x 0
sec x cos x sin x sec x
cos x sin x cos x sin x
sin x cos x sin x cos x

sin x sec x cos x sec x
1 1

º º º º
º º º º

# ## #

 v sec x tan x dx sec x and v sec x dx ln sec x tan xÊ œ � œ � œ œ �1 2' ' k k
 y sec x cos x ln sec x tan x sin x 1 sin x ln sec x tan xÊ œ � � � œ � � �p � �� � � �� � � � k kk k
 y c cos x c sin x 1 sin x ln sec x tan x ; y 0 1 1 c 1 c 2;Ê œ � � � � œ Ê œ � Ê œ1 2 1 1� � k k � �
 c sin x c cos x cos x ln sec x tan x sin x sec x, y 0 1 1 cdy

dx 1 2 2œ � � � � � œ Ê œ� � k k � � � �w

 y 2cos x sin x 1 sin x ln sec x tan xÊ œ � � � �� � k k
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53. y y x, y x, y 0 0, y 0 0; y x y x y 1 y y 1 x xww w w w ww ww w� œ œ � œ œ œ � Ê œ � " Ê œ Ê � œ � � " œp p
x x
2 2 p p
# #� � � �

 x x y  satisfies the differential equation. y y 0 r r 0 r r 1 0 r 0 or r 1Ê œ Ê � œ Ê � œ Ê � œ Ê œ œ �p
2ww w � �

 y c e c e c c e y c c e x y c e x 1;Ê œ � œ � Ê œ � � � Ê œ � � �c 1 2 1 2 1 2 2
0 x x x x xx

2
† � � � w �#

 y 0 0 0 c c y 0 0 c 1 0 c 1, c 1 y 1 e x� � � �œ Ê œ � ß œ Ê � � œ Ê œ œ � Ê œ � � �1 2 2 1 2
x x

2
w � #

55. y y y 4e cos x sin x , y 2e cos x , y 0 0, y 0 1; y 2e cos x y 2e cos x 2e sin x1
2

x x x x x
p p p

ww w w w� � œ � œ œ œ œ Ê œ �� � � � � �
 y 4e sin x y y y 4e sin x 2e cos x 2e sin x 2e cos x 4e cos x 4e sin xÊ œ � Ê � � œ � � � � œ �ww ww w

p
x x x x x x x1 1

2 2 � � � �
 4e cos x 4e sin x 4e cos x sin x y  satisfies the differential equation. y y y 0 r r 1 0Ê � œ � Ê � � œ Ê � � œx x x

p
1 1
2 2� � ww w #

 r 1 i y e c cos x c sin x y e c cos x c sin x 2e cos xÊ œ œ � „ Ê œ � Ê œ � �
� „ �

� �
1 1 4 1

2 c 1 2 1 2
x x xÉ ˆ ‰� �

ˆ ‰
2 1

2
1
2

� � � �
 y e c cos x c sin x e c sin x c cos x 2e cos x 2e sin x; y 0 0 c 2 0 c 2;Ê œ � � � � � � � œ Ê � œ Ê œ �w � �x x x x

1 2 1 2 1 1� � � � � �
 y 0 1 c c 2 1 c 3 y e 2cos x 3sin x 2e cos x 2 e e cos x 3e sin xw � � �� � � � � �œ Ê � � � œ Ê œ � Ê œ � � � œ � �1 2 2

x x x x x

57. y 2y y 2e , y x e , y 0 1, y 0 0; y x e y x e 2x e y x e 4x e 2 eww w # w # w # ww #� � œ œ œ œ œ Ê œ � Ê œ � �x x x x x x x x
p p p p� � � �

 y 2y y x e 4x e 2 e 2 x e 2x e x e x e x e x e y  satisfies the differentialÊ � � œ � � � � � œ Ê œ Êww w # # # # # #� � � �x x x x x x x x x
p

 equation  y 2y y 0 r 2r 1 0 r 1 0 r 1, repeated twice y c e c xeÞ � � œ Ê � � œ Ê � œ Ê œ Ê œ �ww w # #� � c 1 2
x x

 y c e c xe x e y c e c xe c e x e 2x e ; y 0 1 c 1; y 0 0 c c 0Ê œ � � Ê œ � � � � œ Ê œ œ Ê � œ1 2 1 2 2 1 1 2
x x x x x x x x# w # w� � � �

 c 1 y e xe x eÊ œ � Ê œ � �2
x x x#

59. x y 2xy 2y x y x , y x# ww w # �#� � œ ß œ œ1 2

 v x  and vÊ œ œ œ � œ œ œw w

� �

� �

1 2

0 x

1

x x x x
2x 1 2x 1

x 1 x 1
3x 3 3x 3

3

x 0

2x» » » »
º º º º

x
x

3 3

3 x
x

#

#

�# �#

� �

�# �#

�#

�
#

# �#

 v x dx x and v dx x y x x x x xÊ œ � œ � œ œ Ê œ � � œ1 2 p
1 1 1 1 1 1 1
3 12 3 3 12 3 4

3 4 4 2' ' ˆ ‰ ˆ ‰� � � ��#

17.3  APPLICATIONS

 1. mg 16 m ; k 1; 1 1 1y y , y 2, y 2œ Ê œ œ œ Ê � � œ ! Ê � � œ ! ! œ ! œ16 16 1
32 32 dt dt 2 dt dt

d y dy d y dy
$

2 2

2 2 � � � �w

 3. 20 k k 40; w 25 lb m ; 0 0 40y . If w 25 lb, it stretches theœ † Ê œ œ Ê œ œ Ê � † � œ ! œ1 25 25
2 32 32 dt dt

d y dy
$

2

2

 spring 25 40x x  ft spring is now stretched  ft below equilibrium y 0 ; initial velocityœ Ê œ Ê � œ Ê œ5 6 5 5 7 7
8 12 8 24 24

� � �
 is v   y . Thus we have 40y , y 0 , y!

w win ft 25 7
sec 12 sec 12 32 dt 24 12

v v vd yœ Ê ! œ � œ ! œ ! œ! ! !� � � � � �2

2

 5. E t 20cos t; R 4 ; q 10q; L 2 2 4 10q 20cos t q 0 2, q 0 3� � � � � �œ œ œ œ Ê � � œ ß œ œdq dq d q d q dq
dt dt C dt dt dt dt

1 di # #

# #

w

 7. mg 16 m ; k 1; resistance velocity 1 1 1y , y 2, y 2œ Ê œ œ œ Ê œ Ê � � œ ! ! œ ! œ16 1
32 2 dt dt

d y dy
$

2

2 � � � �w

 r r 1 r 2r 2 0 r 1 i y e c cos t c sin t ,Ê � � œ ! Ê � � œ Ê œ œ � „ Ê œ �1
2 2 1

2 2 t2 2 4 1 2
1 2

� „ � �È � �� �� �
2 � �

 y e c sin t c cos t e c cos t c sin t ; y 2 c 2; y 2 c c 2 c 4Ê œ � � � � ! œ Ê œ ! œ Ê � œ Ê œw � � wt t
1 2 1 2 1 2 1 2� � � � � � � �

 y t e 2 cos t 4 sin t . At t , y e 2 cos 4sin 2e 0.0864  0.0864 ft aboveÊ œ � œ œ � œ � ¸ � Ê� � � � � �� � �t 1 1 11 1

 equilibrium.

 9. 20 k k 40; w 25 lb m ; 0 0 40y . If w 25 lb, it stretches the springœ † Ê œ œ Ê œ œ Ê � † � œ ! œ1 25 25
2 32 32 dt dt

d y dy
$

2

2

 25 40x x  ft spring is now stretched  ft below equilibrium y 0 ; initial velocity isœ Ê œ Ê � œ Ê œ5 6 5 5 7 7
8 12 8 24 24

� � �
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 v   y . Thus we have 40y , y 0 , y r 40 r!
w w # #in ft 25 7 25 256

sec 12 sec 12 32 dt 24 12 32 5
v v vd yœ Ê ! œ � œ ! œ ! œ Ê � œ ! Ê � œ !! ! !� � � � � �2

2

 r 0 i y e c cos t c sin t c cos t c sin t , y 0 c ;Ê œ „ Ê œ � œ � œ Ê œ16 16 16 16 16 7 7
5 5 5 5 5

0 t
1 2 1 2 124 24È È È È È† Š ‹ Š ‹ Š ‹Š ‹ Š ‹ � �

 y c sin t c cos t , y c cw wœ � � ! œ Ê œ Ê œ16 16 16 16 16
5 5 5 5 51 2 2 2

v v
12 12 192

v 5È È È È È ÈŠ ‹ Š ‹ � � ! ! !

 y t cos t sin t  (in feet) or y t cos t sin t  (in inches)Ê œ � œ �� � � �Š ‹ Š ‹ Š ‹ Š ‹7 16 16 7 16 16
24 192 2 165 5 5 5

v 5 v 5È È È ÈÈ È
! !

11. mg 10 m ; 10 k k 60; 5 2  5 2 60y , y 0 , y 0œ Ê œ œ † Ê œ œ œ Ê � � œ ! œ ! œ5 1 40 5 1
16 6 16 dt dt 432

d y dy
$ È È È � � � �2

2
w

  r 5 2 r 60 r 16 2r 192 0 r 8 2 8iÊ � � œ ! Ê � � œ Ê œ œ � „5
16 2 1

2 2
16 2 16 2 4 1 192È È È� „ �È ÈÊŠ ‹ � �� �

� �
2

 y e c cos 8t c sin 8t y e 8 2 c 8c cos 8t 8c 8 2 c sin 8t ;Ê œ � Ê œ � � � � �� w �8 2 t 8 2 t
1 2 1 2 1 2

È È� � Š ‹Š ‹ Š ‹È È
 y 0 c , y 0 8 2 c 8c 0 c , c y e cos 8t sin 8t� � � � È Š ‹œ Ê œ ! œ Ê � � œ Ê œ œ Ê œ �1 1 1 1

4 4 4 4 4 41 1 2 1 2
2 28 2 tw �È ÈÈ

 Solve y t 0 e cos 8t sin 8t 0 cos 8t sin 8t 0 tan 8t t 0.3157 sec� � Š ‹œ Ê � œ Ê � œ Ê œ � Ê ¸�8 2 t 1 1 1
4 4 4 4

2 2
2

È È È È

13. First weight: w 10 lb m ; 10 k k 12 ; 0 0 12y , y 0 , yœ Ê œ œ † Ê œ œ Ê � † � œ ! œ ! œ �5 5 lb 5 1 1
16 6 ft 16 dt dt 6 3

d y dyˆ ‰ � � � �$
2

2
w

 r 12 5r 192 0 r 0 i y e c cos t c sin tÊ � œ ! Ê � œ Ê œ „ Ê œ �5
16 5 5 5

2 2 0 t8 15 8 15 8 15
1 2

È È È† Š ‹
 c cos t c sin t y c sin t c cos t; y 0 c , yœ � Ê œ � � œ Ê œ ! œ �1 2 1 2 1

8 15 8 15 8 15 8 15 8 15 8 15
5 5 5 5 5 5 6 6 3

1 1 1È È È È È Èw w� � � �
 c c , c y cos t sin t. The amplitude is CÊ œ � Ê œ œ � Ê œ � œ � �

8 15 15 8 15 15 8 15 15
5 3 6 72 6 5 72 5 6 722 1 2

1 1 1 1È È È È È ÈÊˆ ‰ Š ‹# #

 .œ
È159

72

 Second weight: x c cos t c sin t, x 0 , x 0 2 x c sin t c cos t; x 0œ � œ œ Ê œ � � œ3 4 3 4
159 159

72 72= = = = = =� � � � � �È Èw w

 c , x 0 2 c 2 c , c x cos t sin t. Since amplitude of secondÊ œ œ Ê œ Ê œ œ Ê œ �3 4 3 4
159 159 159

72 72 72
2 2È È Èw� � = = =
= =

 spring 2C 2 m mg 32œ Ê œ � Ê œ Ê œ œ Ê œ Ê œŠ ‹ Š ‹Ê ˆ ‰ ˆ ‰É ÉÈ È È È159 159
72 72 m m 192 192

2 48 48 k 12 53 53
53 53

# #

=
=

 8.8333 lbsœ

15. mg 16 m ; 16 k 4 k 4; 0 0 4y , y 0 5, y 0 r 4œ Ê œ œ † Ê œ œ Ê � † � œ ! œ ! œ Ê � œ !1 1 1
2 2 dt dt 2

d y dy 2$
2

2 � � � �w

 r 8 0 r 0 2 2i y e c cos 2 2 t c sin 2 2 t c cos 2 2 t c sin 2 2 tÊ � œ Ê œ „ Ê œ � œ �2 0 t
1 2 1 2

È È È È ÈŠ ‹†

 y 2 2 c sin 2 2 t 2 2 c cos 2 2 t; y 0 5 c 5 y 0 2 2 c 0 c 5, c 0Ê œ � � œ Ê œ ß ! œ Ê œ Ê œ œw wÈ È È È È� � � �1 2 1 2 1 2

 y t 5 cos 2 2 t. The amplitude is C 5 0 5Ê œ œ � œ� � È È # #

 y c cos 2 2 t c sin 2 2 t, y 0 5, y 0 v y 2 2 c sin 2 2 t 2 2 c cos 2 2 t; y 0 5 c 5œ � œ œ Ê œ � � œ Ê œ3 4 0 3 4 3
È È È È È È� � � � � �w w

 y 0 v 2 2 c v c 5, c y t 5 cos 2 2 t  sin 2 2 t, and the new amplitude is 2 5w� � � �È È Èœ Ê œ Ê œ œ Ê œ � †0 4 0 3 4
v v

2 2 2 2
0 0È È

 10 5 v 10 6 24.4949 Ê œ � Ê œ ¸Ê Š ‹ È#
#

v
2 2 0

ft
sec

0È

17.  decreases by 90% in 10 sec 10% remains e b ln 2b m$ $Ê Ê œ Ê œ � œ Ê œ Ê œ�10b 1 1 1 ln 10 ln 10
10 10 10 10 m 5

ˆ ‰ $

 period 2 sec 2 4 bœ Ê œ Ê œ Ê œ � œ � œ Ê œ2 4 ln 10 k
b b 10 100 m 100

100 ln 10 100 ln 101 1

= =

1 1È � � � �
# #

#

# #

# ## #

� �
# # # # # � �

= 1 1 ˆ ‰
 k m m m m y . When y  and y 2, thenœ Ê � � œ ! œ œ �

100 ln 10 100 ln 10
100 dt 5 dt 100 4

d y dyln 10 11 1
# ## #� � w� � � �2

2 ˆ ‰ Š ‹
 m m 2 m 1.5596 d y d y

dt 5 100 4 dt 5 400 sec
ln 10 1 2 ln 10 ft100 ln 10 100 ln 102 2

2 2� � � œ ! Ê œ � ¸ �ˆ ‰ ˆ ‰� � Š ‹1 1
# ## #

#

� �� � � �
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19. L , R 1, C , E t 0 1 q 0 q 0 2, q 0 4 r r 0œ œ œ œ Ê � † � œ ß œ œ Ê � � œ1 5 1 6 1 6
5 6 5 dt dt 5 5 5

d q dq� � � � � �#

#

w #

 r 5r 6 0 r 3 r 2 0 r 3 or r 2 q t c e c e q 3c e 2c eÊ � � œ Ê � � œ Ê œ � œ � Ê œ � Ê œ � �# � � w � �� �� � � � 1 2 1 2
3t 2t 3t 2t

 q 0 2 c c 2; q 0 4 3c 2c 4 c 8, c 10 q 8e 10e� � � �œ Ê � œ œ Ê � � œ Ê œ � œ Ê œ � �1 2 1 2 1 2
3t 2tw � �

 q 8e 10e 0lim lim
t t

3t 2t
Ä∞ Ä∞

� �œ � � œ� �

21. mg 16 m ; 16 k 4 k 4; 4.5; f t 4 e 4.5 4y 4 e , y 2, y 4œ Ê œ œ † Ê œ œ œ � Ê � � œ � ! œ ! œ16 1
32 2 dt dt

2t 2td y dy
$ � � � � � �� � w

2

2

 r 4.5r 4 0 r 9r 8 0 r 8 r 1 0 r 8 or r 1 y c e c e ;Ê � � œ Ê � � œ Ê � � œ Ê œ � œ � Ê œ �1
2 c 1 2

8t t# # � �� �� �
 y A Be y 2Be y 4Be 4Be 4.5 2Be 4 A Be 4 ep

2t 2t 2t 2t 2t 2t 2t
p p

1
2œ � Ê œ � Ê œ Ê � � � � œ �� w � ww � � � � �� � � � � �

 4A 3Be 4 e 4A 4, 3B 1 A 1, B y t c e c e 1 eÊ � œ � Ê œ � œ Ê œ œ � Ê œ � � �� � � � �2t 2t 8t t 2t1 1
3 31 2� �

 y 8c e c e e ; y 2 c c 2 c c , y 4 8c c 4Ê œ � � � ! œ Ê � � œ Ê � œ ! œ Ê � � � œw � � � w
1 2 1 2 1 2 1 2

8t t 2t2 2 4 2
3 3 3 3� � � �

 8c c c , c 2 y t e 2e 1 eÊ � � œ Ê œ � œ Ê œ � � � �1 2 1 2
10 2 2 1
3 3 3 3

8t t 2t� � � � �

23. m 2 mg 2 9.8 19.6; 19.6 k 1.96 k 10; 4; f t 20cos t 2 4 10y 20cos t,œ Ê œ œ œ † Ê œ œ œ Ê � � œ� � � �$
d y dy
dt dt

2

2

 y 2, y 3 2r 4r 10 0 r 1 2i y e c cos 2t c sin 2t� � � � � �! œ ! œ Ê � � œ Ê œ œ � „ Ê œ �w # �� „ �4 4 4 2 10
2 2 c 1 2

tÈ � �� �� �
2

 y Asin t Bcos t y Acos t Bsin t y Asin t Bcos tp p pœ � Ê œ � Ê œ � �w ww

 2 Asin t Bcos t 4 Acos t Bsin t 10 Asin t Bcos t 20cos tÊ � � � � � � œ� � � � � �
 8A 4B sin t 4A 8B cos t 20cos t 8A 4B 0, 4A 8B 20 A 1, B 2Ê � � � œ Ê � œ � œ Ê œ œ� � � �
 y t e c cos 2t c sin 2t sin t 2cos t y e c 2c cos 2t 2c c sin 2t cos t 2sin t;Ê œ � � � Ê œ � � � � � � �� � � � � �� � � �� w �t t

1 2 1 2 1 2

 y 2 c 2 2, y 3 c 2c 1 3 c 0, c 2c 2 c 0, c 1� � � �! œ Ê � œ ! œ Ê � � � œ Ê œ � � œ Ê œ œ1 1 2 1 1 2 1 2
w

 y t e sin 2t sin t 2cos t; y 2 2 m above equilibriumÊ œ � � œ � Ê� � � ��t 1

25. L 10, R 10, C , E t 100 10 10 500q 100 q 0 10, q 0 0 10r 10r 500 0œ œ œ œ Ê � � œ ß œ œ Ê � � œ1
500 dt dt

d q dq� � � � � �#

#

w #

 r r 50 0 r i q e c cos t c sin tÊ � � œ Ê œ œ � „ Ê œ �# �� „ �1 1 4 1 50
2 1 2 2 2 2

1 199 199 199
c 1 2

tÈ È È È� �� �� �
2 1

2 Š ‹
 q A q 0 q 0 10 0 10 0 500A 100 500A 100 Ap p p

1
5œ Ê œ Ê œ Ê � � œ Ê œ Ê œw ww � � � �

 q t e c cos t c sin t q e c c cos t c c sin tÊ œ � � Ê œ � � � � �� � Š ‹ ’ “Š ‹ Š ‹� w �1 1
2 2t t

1 2 1 2 1 2
199 199 199 199 199 199
2 2 5 2 2 2 2 2 2

1 1 1È È È È È È

 q 0 10 c 10 c , q 0 0 c c 0 c , c� � � �œ Ê � œ Ê œ œ Ê � � œ Ê œ œ1 1 1 2 1 2
1 49 1 49
5 5 2 2 5 995

199 49 199w È È
 q t e cos t sin tÊ œ � �� � Š ‹� 1

2 t 49 1
5 2 995 2 5

199 49 199 199È È È

17.4  EULER EQUATIONS

 1. x y 2x y 2y 0 r 2 1 r 2 0 r r 2 0 r 1 r 2 0 r 1 or r 2# ww w� � œ Ê � � � œ Ê � � œ Ê � � œ Ê œ œ �2 2� � � �� �
 y c e c e c e c e y c xÊ œ � œ � Ê œ �1 2 1 2 1

z 2z ln x 2ln x c
x

� � 2
#

 3. x y 6y 0 r 0 1 r 6 0 r r 6 0 r 3 r 2 0 r 3 or r 2# ww � œ Ê � � � œ Ê � � œ Ê � � œ Ê œ œ �2 2� � � �� �
 y c e c e c e c e y c xÊ œ � œ � Ê œ �1 2 1 2 1

3z 2z 3ln x 2ln x 3 c
x

� � 2
#

 5. x y 5x y 8y 0 r 5 1 r 8 0 r 6r 8 0 r 4 r 2 0 r 4 or r 2# ww w� � œ Ê � � � � œ Ê � � œ Ê � � œ Ê œ œ2 2� � � �� �
 y c e c e c e c e y c x c xÊ œ � œ � Ê œ �1 2 1 2 1 2

4z 2z 4ln x 2ln x % #

 7. 3x y 4x y 0 3r 4 3 r 0 3r r 0 r 3r 1 0 r 0 or r y c e c e# ww w † �� œ Ê � � œ Ê � œ Ê � œ Ê œ œ � Ê œ �2 2 0 z z1
3 1 2� � � � 1

3

 c e c e y cœ � Ê œ �1 2 1
0 ln x ln x c

x
† � 1

3 2
3È
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 9. x y x y y 0 r 1 1 r 1 0 r 2r 1 0 r 1 0 r 1, repeated twice# ww w #
� � œ Ê � � � � œ Ê � � œ Ê � œ Ê œ2 2� � � �

 y c e c z e c e c ln x e y c x c x ln xÊ œ � œ � Ê œ �1 2 1 2 1 2
z z ln x ln x

11. x y x y 5y 0 r 1 1 r 5 0 r 2r 5 0 r 1 2i# ww w � � „ � �
� � œ Ê � � � � œ Ê � � œ Ê œ œ „2 2 2 2 4 1 5

2 1� � � � � � � �� �É
� �

2

 y e c cos 2z c sin 2z e c cos 2 ln x c sin 2 ln x y x c cos 2 ln x c sin 2 ln xÊ œ � œ � Ê œ �z ln x
1 2 1 2 1 2� � � � � �� � � � � � � �

13. x y 3x y 10y 0 r 3 1 r 10 0 r 2r 10 0 r 1 3i# ww w � „ �
� � œ Ê � � � œ Ê � � œ Ê œ œ � „2 2 2 2 4 1 10

2 1� � É� � � �� �� �
2

 y e c cos 3z c sin 3z e c cos 3 ln x c sin 3 ln x y c cos 3 ln x c sin 3 ln xÊ œ � œ � Ê œ �� �z ln x
1 2 1 2 1 2

1
x� � � � � �� � � � � � � �

15. 4x y 8x y 5y 0 r 8 4 r 5 0 4r 4r 5 0 r i# ww w � „ �
� � œ Ê � � � œ Ê � � œ Ê œ œ � „2 2 4 4 4 4 5

2 4 2
1� � É� � � �� �� �

2

 y e c cos z c sin z e c cos ln x c sin ln x y c cos ln x c sin ln xÊ œ � œ � Ê œ �� �" "

# #
z ln x

1 2 1 2 1 2
1

x
� � � � � �� � � � � � � �È

17. x y 3x y y 0 r 3 1 r 1 0 r 2r 1 0 r 1 0 r 1, repeated twice# ww w #
� � œ Ê � � � œ Ê � � œ Ê � œ Ê œ �2 2� � � �

 y c e c z e c e c ln x e yÊ œ � œ � Ê œ �1 2 1 2
z z ln x ln x c c ln x

x x
� � � � 1 2

19. x y x y 0 r 1 r 0 r 0 r 0, repeated twice y c e c z e c e c ln x e# ww w † † † †� œ Ê � " � œ Ê œ Ê œ Ê œ � œ �2 2 0 z 0 z 0 ln x 0 ln x
1 2 1 2� �

 y c c ln xÊ œ �1 2

21. 9x y 15x y y 0 9r 15 9 r 1 0 9r 6r 1 0 3r 1 0 r , repeated twice# ww w #
� � œ Ê � � � œ Ê � � œ Ê � œ Ê œ �2 2 1

3� � � �
 y c e c z e c e c ln x e yÊ œ � œ � Ê œ �1 2 1 2

z z ln x ln x c c ln x
x x

� � � �1 1 1 1
3 3 3 3 1 2

3 3È È

23. 16x y 56x y 25y 0 16r 56 16 r 25 0 16r 40r 25 0 4r 5 0 r ,# ww w #
� � œ Ê � � � œ Ê � � œ Ê � œ Ê œ �2 2 5

4� � � �
 repeated twice y c e c z e c e c ln x e yÊ œ � œ � Ê œ �1 2 1 2

z z ln x ln x c c ln x
x x

� � � �5 5 5 5
4 4 4 4 1 2

5 4 5 4Î Î

25. x y 3x y 3y 0, y 1 1, y 1 1 r 3 1 r 3 0 r 2r 3 0 r 1 r 3 0# ww w w� � œ œ œ � Ê � � � œ Ê � � œ Ê � � œ� � � � � � � �� �2 2

 r 1 or r 3 y c e c e c e c e y c x y c ;Ê œ œ � Ê œ � œ � Ê œ � Ê œ �1 2 1 2 1 1
z 3z ln x 3ln x c 3c

x x
� � w2 2

4$

 y 1 1 c c 1; y 1 1 c 3c 1 c ,  c y x� � � �œ Ê � œ œ � Ê � œ � Ê œ œ Ê œ �1 2 1 2 1 2
1 1 1 1
2 2 2 2x

w
$

27. x y x y y 0, y 1 1, y 1 1 r 1 1 r 1 0 r 2r 1 0 r 1 0 r 1,# ww w w #
� � œ œ œ Ê � � � � œ Ê � � œ Ê � œ Ê œ� � � � � � � �2 2

 repeated twice y c e c z e c e c ln x e y c x c x ln x y c c ln x c ;Ê œ � œ � Ê œ � Ê œ � �1 2 1 2 1 2 1 2 2
z z ln x ln x w

 y 1 1 c 1; y 1 1 c c 1 c 1,  c 0 y x� � � �œ Ê œ œ Ê � œ Ê œ œ Ê œ1 1 2 1 2
w

29. x y x y 2y 0, y 1 1, y 1 1 r 1 1 r 2 0 r 2r 2 0 r# ww w w � � „ � �
� � œ œ � œ Ê � � � � œ Ê � � œ Ê œ� � � � � �2 2 2 2 4 1 2

2 1

� � � � � �� �É
� �

2

 1 i y e c cos z c sin z e c cos ln x c sin ln x y x c cos ln x c sin ln xœ „ Ê œ � œ � Ê œ �z ln x
1 2 1 2 1 2� � � � � �� � � � � � � �

 y c c cos ln x c c sin ln x ; y 1 1 c 1; y 1 1 c c 1 c 1, c 2Ê œ � � � œ � Ê œ � œ Ê � œ Ê œ � œw w� � � � � � � � � � � �1 2 2 1 1 1 2 1 2

 y x cos ln x 2 sin ln xÊ œ � �� �� � � �



 Section 17.5 Power-Series Soutions 503

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.

17.5  POWER-SERIES SOLUTIONS

 1. y 2 y 0 n n 1 c x 2 n c x 0 n n 1 c x 2n c x 0ww w � � � �

œ œ œ œ

∞ ∞ ∞ ∞

� œ Ê � � œ Ê � � œ� � � �� � � �
n 2 n 1 n 2 n 1

n n n n
n 2 n 1 n 2 n 1

  
x 2 1 c 2 1 c 0 c c
x 3 2 c 2 2 c 0 c c c

x 4 3 c 2 3 c 0 c c c

x 5 4 c

power of x coefficient equation
0

2 1 2 1
1

3 2 3 2 1
2 2
3 3

2
4 3 4 3 1

1 1
2 3

3
5

� � � �
� � � �
� � � �
� �

� œ Ê œ �

� œ Ê œ � œ

� œ Ê œ � œ �

� 2 4 c 0 c c c

x 6 5 c 2 5 c 0 c c c

x n 2 n 1 c 2 n 1 c 0 c c

� �
� � � �

� �� � � �

4 5 4 1
2 2
5 15

4
6 5 6 5 1

1 2
3 45

n
n 2 n 1 n 2 n 1

2
n 2

œ Ê œ � œ

� œ Ê œ � œ �

ã ã ã

� � � � œ Ê œ �� � � ��

 or c c c c c , n 2. Thusn n 1 n 2 n 3 1
2 2 2 2 2 2
n n n n n n 2 n

2
œ � œ � � œ � � � œ  � � ��" �" � x

�ˆ ‰ˆ ‰ ˆ ‰ˆ ‰ˆ ‰ � �n 1�

 y c c x c x c x c x c x c x c c x x x x x xœ � � � � � � �á œ � � � � � � �á0 1 1 1 1 1 1 0 1
2 3 4 5 6 2 3 4 5 62 1 2 2 2 1 2 2

3 3 15 45 3 3 15 45
ˆ ‰

 or y c 2xœ � � � � � � � � �á0
c c c c c c c c
2 2 2 2 2 2 3 2 4 2 5 2 6

2x 2x 2x 2x 2x1 1 1 1 1 1 1 1
2 3 4 5 6� � � � � � � � � � � �

x x x x x

 y c 1 2x cœ � � � � � � � � �á œ � �ˆ ‰ ˆ ‰Š ‹� � �0 0
c c c c
2 2 2 3 4 5 6 2 2 n

2x 2x 2x 2x 2x 2x

n 0

1 1 1 1
2 3 4 5 6 n� � � � � � � � � � � �

x x x x x x
œ

∞
�

 c e a be , where a c  and bœ � � œ � œ � œ �ˆ ‰0 0
c c c c
2 2 2 2

2x 2x1 1 1 1� �

 3. y 4y 0 n n 1 c x 4 c x 0 n n 1 c x 4c x 0ww � �

œ œ œ œ

∞ ∞ ∞ ∞

� œ Ê � � œ Ê � � œ� � � �� � � �
n 2 n 0 n 2 n 0

n n n n
n 2 n n 2 n

  
x 2 1 c 4c 0 c 2c
x 3 2 c 4c 0 c c

x 4 3 c 4c 0 c c c

x 5 4 c 4c 0 c c

power of x coefficient equation
0

2 0 2 0
1

3 1 3 1
2
3

2
4 2 4 2 0

1 2
3 3

3
5 3 5 3

1
5

� �
� �
� �
� �

� œ Ê œ �

� œ Ê œ �

� œ Ê œ � œ

� œ Ê œ � œ

� œ Ê œ � œ �

ã ã ã

� � � œ Ê œ �

2
15 1

4
6 4 6 4 0

2 4
15 45

n
n 2 n n 2 n

4
n 2 n 1

c

x 6 5 c 4c 0 c c c

x n 2 n 1 c 4c 0 c c

� �
� �� � � � � �� �� �

 y c c x 2c x c x c x c x c xœ � � � � � � �á0 1 0 1 0 1 0
2 3 4 5 62 2 2 4

3 3 15 45

 c 2c x c x c x c x c x c xœ � � � �á � � � �á0 0 0 0 1 1 1
2 4 6 3 52 4 2 2

3 45 3 15

 c 1 2x c 2x 2xœ � � � �á � � � �á œ �0 0
2x 2x 2x 2x 2x 1 2n 1 2n 1
2 4 6 2 3 5 2n 2 2n 1

c c

n 0 n 0
Š ‹ Š ‹ � �� � � �� � � � � � � � � � � � � �� � � �

2 4 6 3 5 n n
1 1

x x x x x x � x
œ œ

∞ ∞
� � �

 c cos 2x sin 2x a cos 2x b sin 2x, where a c  and bœ � œ � œ œ0 0
c c
2 2
1 1

 5. x y 2xy 2y 0 x n n 1 c x 2x n c x 2 c x 0# ww w # � �

œ œ œ

∞ ∞ ∞

� � œ Ê � � � œ� � �� �
n 2 n 1 n 0

n n n
n 2 n 1 n

 n n 1 c x 2n c x 2c x 0Ê � � � œ� � �� �
n 2 n 1 n 0

n n n
n n n

œ œ œ

∞ ∞ ∞

  
x 2c 0 c 0
x 2 1 c 2c 0 0 0
x 2 1 c 2 2 c 2c 0 0 0
x 3 2 c 2 3 c 2c 0 c 0
x 4 3 c 2 4 c

power of x coefficient equation
0

0 0
1

1 1
2

2 2 2
3

3 3 3 3
4

4

œ Ê œ

� � œ Ê œ

� � œ Ê œ

� � œ Ê œ

�

� �
� � � �
� � � �
� � � � 4 4 4

n
n n n n

� œ Ê œ

ã ã ã

� � � œ Ê œ  

2c 0 c 0

x n n 1 c 2n c 2c 0 c 0, n 3� �
 y c x c xœ �1 2

2
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 7. 1 x y y 0 1 x n n 1 c x c x 0� � � � � �� �� � œ Ê � � � œww �

œ œ

∞ ∞

n 2 n 0
n n

n 2 n

 n n 1 c x n n 1 c x c x 0Ê � � � � œ� � �� � � �
n 2 n 2 n 0

n n n
n 2 n 1 n

œ œ œ

∞ ∞ ∞
� �

  
x 2 1 c c 0 c c

x 3 2 c 2 1 c c 0 c c c c c

x 4 3 c 3 2 c c 0 c c

power of x coefficient equation
0

2 0 2 0
1
2

1
3 2 1 3 2 1 1 0

1 1 1 1
3 6 6 6

2
4 3 2 4 3

1 1
2

� �
� � � �
� � � �

� œ Ê œ

� � œ Ê œ � � œ �

� � œ Ê œ � � 12 12 82 1 0
1 1

3
5 4 3 5 4 3 1 0

3 1 7 1
5 12 120 12

4
6 5 4 6 5 4 1 0

2 1 1 43
3 30 24 720

n

c c c

x 5 4 c 4 3 c c 0 c c c c c

x 6 5 c 5 4 c c 0 c c c c c

x n 2 n

œ � �

� � œ Ê œ � � œ �

� � œ Ê œ � � œ � �

ã ã ã

� �

� � � �
� � � �

� �� �1 c n n 1 c c 0 c c cn 2 n 1 n n 2 n 1 n
n 1

n 2 n 2 n 1� � � �� � �� � � œ Ê œ � �� � � � � �� �
 y c c x c x c c x c c x c c x c c xœ � � � � � � � � � � � � �á0 1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 7 1 1 43
2 6 6 12 8 120 12 24 720

2 3 4 5 6ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰
 c 1 x x x x x c x x x x xœ � � � � � �á � � � � � �á0 1

1 1 1 1 43 1 1 7 1
2 6 8 12 720 6 12 120 24

2 3 4 5 6 3 4 5 6ˆ ‰ ˆ ‰

 9. x 1 y 2xy 2y 0 x 1 n n 1 c x 2x n c x 2 c x 0� � � � � �� � �# ww w # � �

œ œ œ

∞ ∞ ∞

� � � œ Ê � � � � œ
n 2 n 1 n 0

n n n
n 2 n 1 n

 n n 1 c x n n 1 c x 2n c x 2c x 0Ê � � � � � œ� � � �� � � �
n 2 n 2 n 1 n 0

n n n n
n n 2 n n

œ œ œ œ

∞ ∞ ∞ ∞
�

  
x 2 1 c 2c 0 c c
x 3 2 c 2 1 c 2c 0 c
x 2 1 c 4 3 c 2 2 c 2c 0 c c c

x 3

power of x coefficient equation
0

2 0 2 0
1

3 1 1 3
2

2 4 2 2 4 2 0
1 1
3 3

3

� � œ Ê œ �

� � � œ Ê œ !

� � � œ Ê œ œ �

� �
� � � �

� � � � � �
� �2 c 5 4 c 2 3 c 2c 0 c c

x 4 3 c 6 5 c 2 4 c 2c 0 c c c

x n n 1 c n 2 n 1 c 2nc 2c 0 c

3 5 3 3 5 3
1
2

4
4 6 4 4 6 4 0

3 1
5 5

n
n n 2 n n n 2

n 1
n 1

� � � œ Ê œ œ !

� � � œ Ê œ œ �

ã ã ã

� � � � � � œ Ê œ

� � � �
� � � � � �

� � � �� � � �
�
�� �cn

 y c c x c x c x c x c 1 x x x c xœ � � � � �á œ � � � �á �0 1 0 0 0 0 1
2 4 6 2 4 61 1 1 1

3 5 3 5
ˆ ‰

11. x 1 y 6y 0 x 1 n n 1 c x 6 c x 0� � � � � �� �# ww # �

œ œ

∞ ∞

� � œ Ê � � � œ
n 2 n 0

n n
n 2 n

 n n 1 c x n n 1 c x 6c x 0Ê � � � � œ� � �� � � �
n 2 n 2 n 0

n n n
n n 2 n

œ œ œ

∞ ∞ ∞
�

  
x 2 1 c 6c 0 c 3c
x 3 2 c 6c 0 c c
x 2 1 c 4 3 c c 0 c c c
x 3 2 c 5 4 c c

power of x coefficient equation
0

2 0 2 0
1

3 1 3 1
2

2 4 2 4 2 0
1
3

3
3 5

� � œ Ê œ �

� � œ Ê œ �

� � ' œ Ê œ � œ

� � '

� �
� �

� � � �
� � � � 3 5

4
4 6 4 6 4 0

1 1
5 5

n
n n 2 n n 2 n

n 3
n 1

œ Ê œ !

� � ' œ Ê œ � œ �

ã ã ã

� � � � � œ Ê œ �

0 c
x 4 3 c 6 5 c c 0 c c c

x n n 1 c n 2 n 1 c 6c 0 c c

� � � �
� � � �� � � �

�
�� �

 y c c x 3c x c x c x c x c 1 3x x x c x xœ � � � � � �á œ � � � �á � �0 1 0 1 0 0 0 1
2 3 4 6 2 4 61 1

5 5
ˆ ‰ � �$
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13. x 1 y 4xy 2y 0 x 1 n n 1 c x 4x n c x 2 c x 0� � � � � �� � �# ww w # � �

œ œ œ

∞ ∞ ∞

� � � œ Ê � � � � œ
n 2 n 1 n 0

n n n
n 2 n 1 n

 n n 1 c x n n 1 c x 4n c x 2c x 0Ê � � � � � œ� � � �� � � �
n 2 n 2 n 1 n 0

n n n n
n n 2 n n

œ œ œ œ

∞ ∞ ∞ ∞
�

  
x 2 1 c 2c 0 c c
x 3 2 c 4 1 c 2c 0 c c
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a, logarithms with base, 424
Abscissa, AP-10
Absolute change, 208
Absolute convergence, 588
Absolute Convergence Test, 589
Absolute extrema, finding, 226–227
Absolute (global) maximum, 222–224, 824–826
Absolute (global) minimum, 222–224, 824–826
Absolute value, AP-4–AP-6, AP-30

properties of, AP-5
Absolute value function, derivative of, 166

as piecewise-defined function, 5
Acceleration, 147, 149

derivative of (jerk), 147, 148
as derivative of velocity, 147, 148–149
free fall and, 148
normal component of, 752–756
in polar coordinates, 757–760
in space, 729
tangential component of, 752–756
velocity and position from, 234

Addition, of functions, 14–15
of vectors, 685–686

Addition formulas, trigonometric, 26
Additivity, 921

double integrals and, 864
Additivity Rule, for definite integrals, 317
Albert of Saxony, 577
Algebra, Fundamental Theorem of, 

AP-33–AP-34
Algebra operations, vector, 685–687
Algebra rules, for finite sums, 308–309

for gradients, 807
for natural logarithm, 44

Algebra systems, computer. See Computer
algebra systems (CAS)

Algebraic functions, 10
Alternating series, 586

harmonic, 586–587
Alternating Series Estimation Theorem, 588,

611
Alternating Series Test, 586
Angle convention, 23
Angle of elevation, 736
Angle of inclination, AP-11
Angles, 22–23

between planes, 712

I-1

INDEX

direction, 698
in standard position, 23
between vectors, 692–694

Angular velocity of rotation, 985
Antiderivative linearity rules, 281
Antiderivatives, 279–285

definition of, 279
and indefinite integrals, 284
motion and, 282–283
of vector function, 733

Antidifferentiation, 279
Applied optimization, 263–268

of area of rectangle, 265
examples from economics, 267–268
examples from mathematics and physics,

265–267
using least material, 264–265
volume of box, 264

Approximations, center of, 202
differential, error in, 206–207
by differentials, 202
error analysis of, 490–493
linear, error formula for, 814, 839–840
Newton’s Method for roots, 275
for roots and powers, 204
by Simpson’s Rule, 490–493
standard linear, 202, 813
tangent line, 202, 813
by Taylor polynomials, 604
trapezoidal, 487–488
by Trapezoidal Rule, 492, 493
using parabolas, 488–490

Arbitrary constant, 280
Arc length, 382–386

along curve in space, 742–744
differential formula for, 385–386
of a function, 385, 744
and line integrals, 919–920

Arc length differential, 641–642
Arc length formula, 384–385, 639, 742
Arc length parameter, 743
Arccosine function, 47–49

identities involving, 49–50
Arcsecant, 186
Arcsine function, 47–49

identities involving, 49–50
Arctangent, 186–187, 617–618

Area, 297–299
of bounded regions in plane, 868–869
cross-sectional, 363, 364
under curve or graph, 319
between curves, 347–349

substitution and, 344–350
as definite integral, 297
definition of, 320
by double integration, 868–870
enclosed by astroid, 637
estimation of, lower sum and, 299

upper sum and, 298
finite approximations for, 299
under graph of nonnegative function, 304
by Green’s Theorem, 958
infinite, 497
optimizing, of rectangles, 216–217
of parallelogram, 963

vector cross product as, 701
in polar coordinates, 873
of smooth surface, 963–964
surfaces and, 389, 642–643, 961–971
of surfaces of revolution, 388–391, 642–643
total, 298, 331–333

Area differential, 654
Argand diagrams, AP-29–AP-30
Argument, AP-30
Arrow diagram for a function, 2, 845–846
Associative laws, AP-23
Astroid, 638

length of, 640
Asymptotes, 9

of graphs, 103–114
horizontal, 103, 105–108, 112
of hyperbolas, 661–662
oblique or slant, 108
vertical, 103, 111–112

definition of, 111
finding equation for, 111–112
integrands with, 499–500

Average rates of change, 60, 62
Average speed, 58–60

over short time intervals, 59
Average value, 869–870

of continuous functions, 320–321
nonnegative, 303–304

of multivariable functions, 869–870, 882–883
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Average velocity, 146
, definition of, 36, 423
derivative of, 138, 179–181, 424
inverse equations for, 424
integral of, 424
laws of exponents, 423

Axis(es), coordinate, AP-10
moments of inertia about, 922, 976

of ellipse, 659
slicing and rotation about, volumes by,

363–370
spin around, 952–954

Base, a, logarithms with, 180–181, 424
of cylinder, 363
of exponential function, 37–38, 139, 423

Bernoulli, Daniel, 223
Bernoulli, Johann, 165, 254
Binary search, 447–448
Binomial series, 614–616
Binormal vector, 756
Birkhoff, George David, 339
Bolzano, Bernard, 147
Boundary points, 824–825, 826, AP-3

for regions in plane, 767
for regions in space, 769

Bounded intervals, 6
Bounded regions, 767

absolute maxima and minima on, 824–826
areas of, in plane, 868–870

Bounded sequences, 557–558
Box product, 702–704
Brachistochrones, 632–634
Branch diagram(s), for multivariable Chain

rules, 794, 795, 796, 797, 798

Cable, hanging, 11, 443
Calculators, to estimate limits, 70–72

graphing with, 30–34
Carbon-14 decay, 431–432
Cardioid, graphing of, 654

length of, 655–656
in polar coordinates, area enclosed by, 654

Carrying capacity, 539
Cartesian coordinate systems, 678–681
Cartesian coordinates, conversion to/from polar

coordinates, 873–875
in plane, AP-10
related to cylindrical and spherical coordi-

nates, 897
related to cylindrical coordinates, 894
related to polar coordinates, 641–648
three-dimensional. See Three-dimensional

coordinate systems
triple integrals in, 877–883

Cartesian integrals, changing into polar inte-
grals, 873–875

CAS. See Computer algebra systems
CAST rule, 24
Catenary, 11, 443
Cauchy, Augustin-Louis, 259
Cauchy’s Mean Value Theorem, 259–260
Cavalieri, Bonaventura, 365
Cavalieri’s principle, 365
Center of linear approximation, 202
Center of curvature, for plane curves, 749

ax
Center of mass, 403

centroid, 408–409
coordinates of, 404, 922, 976
moments and, 402–411, 886–891
of solid, 887
of thin flat plate, 404–407
of thin shell, 977–978
of wire or spring, 922

Centroids, 408–409, 887–888
fluid forces and, 409
Pappus’s Theorems and, 410

Chain Rule, 162–167, 178, 180, 181, 188, 189,
193, 194, 338, 422, 424, 440, 637, 748,
757, 793–799, 804, 838, 846, 966

derivative of composite function, 162–167
for functions of three variables, 796–797
for functions of two variables, 793–795
for implicit differentiation, 666
intuitive “proof ” of, 163–164
“outside-inside” rule and, 164
with powers of function, 165–167
proof of, 207–208
repeated use of, 165
Substitution Rule and, 336–341
for two independent variables and three inter-

mediate variables, 796–797
for vector functions, 730, 731

Change, of base in a logarithm, 180, 424
estimating, in special direction, 812
exponential, 387–388
rates of, 58–63, 123–124, 145–151
sensitivity to, 151, 208–209

Charge, electrical, 996
Circle of curvature, for plane curves, 749–750
Circle, AP-14
Circles, length of, 640

osculating, 749
in plane, AP-13–AP-15
polar equation for, 670–671
standard equation for, 18, AP-14

Circulation, flux versus, 934
Circulation density, 952–954
Circulation for velocity fields, 932–933
Clairaut, Alexis, 788
Clairaut’s Theorem, 788
Closed curve, 933
Closed region, 767, 769
Coefficients, binomial, 615

determination for partial fractions, 478–479
of polynomial, 8–9
of power series, 593
undetermined, 472

Combining functions, 14–22
Combining series, 567–568
Common functions, 7–11
Common logarithm function, 44
Commutativity laws, AP-23
Comparison tests, for convergence of improper

integrals, 502–503
for convergence of series, 576–579

Competitive-hunter model, 542–544
Complete ordered field, AP-23–AP-24
Completeness property of real numbers, 36,

AP-23
Completing the square, AP-14–AP-15
Complex conjugate, AP-29

Complex numbers, AP-25–AP-34
imaginary part of, AP-28
real part of, AP-28

Component equation, for plane, 709
Component form of vectors, 683–685
Component functions, 725, 926
Component (scalar) of u in direction of v, 696
Component test, for conservative fields, 943, 945

for exact differential form, 946
Composite functions, 15–16

continuity of, 96, 779
definition of, 15
derivative of, 162–167
limit of, 78

Compressing a graph, 16
Compression of a gas, uniform, 952
Computational formulas, for torsion, 755
Computer algebra systems (CAS), in evaluation

of improper integrals, 500–501
integral tables and, 481–482
integrate command, 483
integration with, 483–484

Computer graphing, 30–34
of functions of two variables, 770

Computers, to estimate limits, 70–72
Concave down graph, 243
Concave up graph, 243, 244
Concavity, 243–244

second derivative test for, 244
Conditional convergence, 588–589
Cones, elliptical, 715, 717

parametrization of, 961
surface area of, 964

Conics, eccentricity of, 666–668
in polar coordinates, 657, 666–671
polar equations of, 668–670

Connected region, 939
Connectedness, 100
Conservative fields, component test for, 943, 945

finding potentials for, 943–946
as gradient fields, 941
line integrals in, 945
loop property of, 942
potentials for, 943–946
and Stokes’ theorem, 988

Constant, arbitrary, 280
nonzero, 281
rate, 428
spring, 394

Constant-depth surface, fluid force on, 397
Constant force, 393

work done by, 697
Constant Function Rule, 730
Constant functions, definition of, 7

derivative of, 135
limit of, 67

Constant Multiple Rules, for antiderivatives,
281, 282, 284–285

for derivatives, 136–137
and divergent series, 567
for finite sums, 308
for gradients, 807
for integrals, 317, 864
for limits, 68
for limits of functions of two variables, 775
for limits of sequences, 554

I-2 Index
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for series, 567
Constrained maximum, 829–832
Constrained minimum, 829–832
Constrained variables, 842–846
Construction of reals, AP-24–AP-25
Continuity, 58–121 See also Discontinuity

on an interval, 95
of composites, 779
differentiability and, 131, 790
of function at a point, 93–95
at interior point, 93
of inverse functions, 96
at left endpoint, 93
for multivariable functions, 777–779
partial derivatives and, 787
of vector functions, 726–727

Continuity equation of hydrodynamics, 996–997
Continuity Test, 94
Continuous extension, 98–99
Continuous function theorem for sequences, 554
Continuous functions, 95–96

absolute extrema of, 226–227, 779
average value of, 320–321, 869, 882
composite of, 97
definition of, 95, 727
differentiability and, 131
extreme values of, on closed bounded sets,

223, 779
integrability of, 315
Intermediate Value Theorem for, 99–101,

266–267
limits of, 92
nonnegative, average value of, 303–304
at point, 777
properties of, 95

Continuous vector field, 926
Contour curve, 768
Convergence, 315

absolute, 588
conditional, 588–589
of improper integrals, 496, 498–499
interval of, 597
of power series, 596–597
radius of, 596–597
of Riemann sums, 315
of sequence, 551–553
of series, 572

geometric, 564
power, 593–597

of Taylor Series, 607–613
tests for, 501–503, 590–591

Convergence Theorem for Power Series, 596
Coordinate axes, AP-10

moments of inertia about, 922, 976
Coordinate conversion formulas, 901
Coordinate frame, left-handed, 678

right-handed, 678
Coordinate pair, AP-10
Coordinate planes, 678

first moments about, 922, 976
Coordinate systems, three-dimensional. See

Three-dimensional coordinate systems
Coordinates, of center of mass, 404, 922, 966

polar, integrals in, 871–872
xyz, line integrals and, 929–930

Coplanar vectors, 687

Corner, 130
Cosecant, 23
Cosecant function, integral of, 421

inverse of, 186, 190
Cosine(s), 23

integrals of products of, 465–466
integrals of products of powers of, 462–464
law of, 26–27, 693

Cosine function, derivative of, 155–157
graph of, 10
integral of, 281
inverse of, 48, 190

Costs, fixed, 150
marginal, 150, 267
variable, 150

Cotangent function, 23
inverse of, 48, 186–187
integral of, 421

Courant, Richard, 136
Critical point, 226, 248, 822, 826
Cross product, with determinants, 701–703

proof of distributive law for, AP-35–AP-36
properties of, 700–701
right-hand rule for, 700
of two vectors in space, 700–701

Cross Product Rule for derivatives of vector
functions, 730–731

Cross-sections, 363–370
horizontal, limits of integration and, 863–864
vertical, limits of integration and, 863

Cube, integral over surface of, 973
Cube root function, 8
Cubic functions, 9
Curl, k-component of, 952–954
Curl vector, 980–981
Curvature, calculation of, 747, 756

center of, 749
of plane curves, 746–751
radius of, 749
in space, 750

Curved patch element, 963
Curves, area between, 347–349

substitution and, 344–350
area under, 319, 497
assumptions for vector integral calculus,

939–940
closed, 933
contour, 768
generating for cylinder surface, 714
graphing of, 347–348
initial point of, 628
level, 806–807
negatively oriented, 954
parametric, 628–629
parametrically defined, length of, 638–640
parametrized, 629, 642–643
piecewise smooth, 728
plane, curvature of, 746–751

flux across, 933–935
lengths of, 382–386, 639–642
parametizations of, 628–634, 725

plates bounded by two, 407–408
points of inflection of, 244–246, 249
polar, graphing of, 642

length of, 655–656
positively oriented, 954

secant to, 60
sigmoid shape, 540
sketching, 243–251
slope of, definition of, 60–62, 122

finding, 61, 123, 650
smooth, 3–4, 382–383, 638–639

curvature of, 746–747
length of, 742
speed on, 744
torsion of, 755

in space, 725–731
arc length along, 742–744
binormals to, 752
formulas for, 756
normals to, 748
parametric equations for, 725
vector equations for. See Vector functions

tangent line to, 122
tangents to, 58–63, 744, 806–807
terminal point of, 628
work done by force over, 930–932

, length of, 383
Cusp, 130
Cycloids, 632
Cylinder(s), 714–715

base of, 363
parabolic, flux through, 975
parametrization of, 962
slicing with, 374–376
volume of, 363

Cylindrical coordinates, definition of, 893
integration of, 895–897
motion in, 757–758
parametrization by, 962
to rectangular coordinates, 894, 901
from spherical coordinates, 901
triple integrals in, 893–897
volume differential in, 894

Cylindrical shells, 374–375
volumes using, 374–379

Cylindrical solid, volume of, 363–364
Cylindrical surface, 388

De Moivre’s Theorem, AP-32
Decay, exponential, 38–39, 428
Decay rate, radioactive, 39, 428
Decreasing function, 6, 238–239
Dedekind, Richard, 348, 568, AP-25
Definite integrals, 313–321

applications of, 363–413
definition of, 297, 313–315, 336
evaluation of, by parts, 458
existence of, 313–315
Mean Value Theorem for, 325–328
notation for, 314
properties of, 316–318
substitution in, 344–346
of symmetric functions, 346–347
of vector function, 734

Definite integration by parts, 458
Definite integration by substitution, 344
Degree, of polynomial, 9
Del , 804, 984–986
Density, 404

circulation, 952–954
flux, 951

(�)

y = f (x)

Index I-3
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Dependent variable of function, 1, 765, 842–843
Derivative product rule, 140–141, 538
Derivative quotient rule, 141–142, 158–159, 587
Derivative rule for inverses, 177
Derivative sum rule, 137–138, AP-8
Derivative tests, for local extreme values,

224–225, 653–656, 821
Derivatives, of absolute value function, 166

alternate formula for, 127
applications of, 222–285
calculation from definition, 127
of composite function, 162–167, 730
of constant function, 135
constant multiple rule for, 136–137
of cosine function, 155–157
Cross Product Rule, 730
definition of, 126
difference rule for, 137–138
directional. See Directional derivatives
Dot Product Rule, 730
in economics, 150–151
of exponential functions, 138–139, 422–423
as function, 122, 126–131
functions from, graphical behavior of,

250–251
General Power Rule for, 136, 182
graphing of, 128–129
higher-order, 142–143, 172
of hyperbolic functions, 437
of integral, 331
of inverse functions, 176–184
of inverse hyperbolic functions, 439–441
of inverse trigonometric functions, 46–47, 190
involving log , 181, 425, AP-27
left-handed, 129–130
Leibniz’s Rule, 360
of logarithms, 176–184
notations for, 128
nth, 143
one-sided, 129–130
partial. See Partial derivatives
at point, 122–124, 130–131
of power series, 598
as rate of change, 145–151
of reciprocal function, 127
right-handed, 129–130
second-order, 142–143
of sine function, 155–156
of square root function, 128
symbols for, 143
of tangent vector, 748
third, 143
of trigonometric functions, 155–159
of vector function, 727–729
as velocity, 146, 729
of , 419
of , 188–189
of , 187–188
of , 188

Descartes, René, AP-10
Determinant(s), calculating the cross product,

704
Jacobian, 905, 907, 908, 910

Difference quotient, 123, 127
forms for, 127
limit of, 124

y = tan-1 u
y = sin-1 u
y = sec-1 u
y = ln x

a x

Difference Rules, 135–143, 284
for combining series, 567
for derivatives, 137–138
for gradient, 807
for integrals, 317
for limits, 68
for limits of functions with two variables, 775
for limits of sequences, 554, 566
for vector functions, 730

Difference rules, for antiderivatives, 232,
235–236

Differentiability, 129–131, 782, 787, 789–790
Differentiable functions, 127, 636, 782, 790

constant multiple rule of, 136
continuous, 131, 638
graph of, 205
on interval, 129–130
rules for, 136–143, 163, 730
Taylor’s formula for, 604

Differential approximation, error in, 206–207
Differential equations, autonomous, 535

first-order, 514–549
applications of, 528–533
solutions, 429, 514–516

initial value problems and, 282
separable, 428–430
system(s) of, 541–544

trajectory of, 542
Differential forms, 946–947
Differential formula, short form of arc length,

385–386
Differentials, 201, 204–205, 814–816

definition of, 204
estimating with, 205–206
surface area, for parametrized surface, 964
total, 815, 816

Differentiation, 122–221
of function, 127–128
implicit, 170–174, 797–799
and integration, as inverse processes, 331
logarithmic, 181–184
term-by-term for power series, 598
of vector functions, rules for, 729–732

Differentiation rules, 135–143
Direct Comparison Test, 501, 502
Directed line segments, 683
Direction, along a path, 628–629, 919–920

estimating change in, 812
of vectors, 686

Direction cosines, 698
Directional derivatives, 802–808

calculation of, 804–806
defined, 803
as dot product, 804
estimating change with, 812
and gradients, 804
interpretation of, 803–804
in plane, 802–803
properties of, 805

Directrix (directrices), of ellipse, 667
of hyperbola, 667
of parabola, 667, 669

Dirichlet, Lejeune, 497
Discontinuity, 130

in , 384–385
infinite, 94

dy>dx

jump, 94
oscillating, 94
point of, 93
removable, 94

Discriminant (Hessian) of function, 823
Disk method, 366–368
Displacement, 146

definition of, 302
versus distance traveled, 302–303, 330

Display window, 30–33
Distance, in plane, AP-13–AP-15

and spheres in space, 680–681
in three-dimensional Cartesian coordinates,

point to line, 708
point to plane, 709–710, 711–712
point to point, 680

Distance formula, 680, AP-14
Distance traveled, 299–301

versus displacement, 302–303, 330
estimating with finite sums, 301
total, 302, 330

Distributive Law, AP-23
proof of, AP-35–AP-36
for vector cross products, 700

Divergence, of improper integrals, 496, 
498–499

nth-term test for, 566
of sequence, 551–553

to infinity, 553
to negative infinity, 553

of series, 563, 566
tests for, 501–503, 590–591
of vector field, 949–952, 990

Divergence Theorem, 992
for other regions, 994–995
for special regions, 993–994

Divergent sequence, 552
Divergent series, 563, 566
Domain, connected, 939

of function, 1–3, 765, 766
natural, 2
of vector field, 926, 939

connected, 939
simply connected, 939

Dominant terms, 112–113
Domination, double integrals and, 864
Domination Rule for definite integrals, 

317
Dot product, 692–697

definition of, 693
directional derivative as, 804
of orthogonal vectors, 535
properties of, 695–697

Dot Product Rule for vector functions, 730
Double-angle formulas, trigonometric, 26
Double integrals, Fubini’s theorem for

calculating, 856–858
over bounded nonrectangular regions,

859–860
over rectangles, 854–858
in polar form, 871–875
properties of, 864–865
substitutions in, 905–909
as volumes, 855, 856

Double integration, area by, 868–870
Dummy variable in integrals, 315
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e, definition of number, 139, 418
as limit, 183
natural exponential and, 37, 139, 421–422
as series, 608–609

Eccentricity, 666–671
of ellipse, 666–667
of hyperbola, 666
of parabola, 666
polar equation for conic with, 668

Economics, derivatives in, 150–151
examples of applied optimization from,

267–268
Einstein, Albert, 209
Electric field, 938
Electromagnetic theory (Gauss’ Law), 996
Elements of set, AP-2
Ellipse Law (Kepler’s First Law), 759
Ellipses, center of, 19, 659

center-to-focus distance of, 660
definition of, 506
eccentricity of, 666–667
focal axis of, 659
graphs of, 18–19
major axis of, 37, 660
minor axis of, 37, 660
polar equations of, 669–670
standard equation of, 19
vertices of, 659

Ellipsoids, 715–716, 717
of revolution, 716

Elliptical cones, 715, 717
Elliptical paraboloids, 717
Empty set, AP-2
Endpoint extreme values, 188
Endpoint values of function, 93, 226
Energy, conversion of mass to, 209–210
Equal Area Law (Kepler’s Second Law), 759
Equations, autonomous, graphical solutions of,

534–540
differential. See Differential equations
for ellipses, 661, 670
Euler’s identity, 619–620
focus–directrix, 667
for hyperbolas, 662
ideal projectile motion and, 736
inverse, 424
linear, AP-13
parametric. See Parametric equations
for plane in space, 709–710
point-slope, AP-12
polar for circles, 670
polar for lines, 670
pressure-depth, 396
related rates, 193
relating polar and Cartesian coordinates, 647
relating rectangular and cylindrical coordi-

nates, 894
relating spherical coordinates to Cartesian

and cylindrical coordinates, 897
Equilibria, stable and unstable, 537
Equilibrium values, 535, 542–543
Error analysis, for linear approximation, 816

for numerical integration, 490–493
in standard linear approximation, 206–207,

814
Error estimation, for integral test, 573–574

Error formula, for linear approximations,
206–207, 814, 839–840

Error term, in Taylor’s formula, 608
Euler, Leonhard, 518, AP-36
Euler’s formula, AP-30
Euler’s identity, 619–620
Euler’s method, for differential equations,

517–520
Evaluation Theorem (Fundamental Theorem,

Part 2), 328–330
Even functions, 6–7

, derivative of, 139, 422
integral of, 281, 422
, inverse equation for, 421–422
laws of exponents for, 235, 423

Exact differential forms, 946–947
Expansion, uniform, for a gas, 952
Exponential change (growth or decay), 427–428
Exponential functions, 34–39, 421–424

with base a, 35, 45, 423
behavior of, 35–37, 423
derivatives of, 138–139, 179–180, 422–423
description of, 10
general , 36–37, 45, 423
integral of, 281, 422
natural , 37–38, 422

Exponential growth, 38, 428
Exponential population growth model, 529–530
Exponents, Laws of, 235, 423

rules for, 37
Extrema, finding of, 225–227

global (absolute), 222–224, 226
local (relative), 224, 239–241, 246–250, 821

Extreme Value Theorem, 223–224, 779, AP-24
Extreme values, constrained, by Lagrange multi-

pliers, 832
at endpoints, 225–226
of functions, 222–227, 821–822
local (relative), derivative tests, 225, 239–240

for several variables, 821, 823
for single variable functions, 224–225

Factorial notation, 557
Falling body, encountering resistance, 538–539
Fan-shaped region in polar coordinates, area of,

654
Fermat, Pierre de, 61
Fermat’s principle in optics, 266
Fibonacci numbers, 557
Fields, conservative, 938, 940–946, 988

electric, 938
gradient, 941
gravitational, 938
number, AP-23
ordered, AP-23
vector, 928

Finite (bounded) intervals, 6, AP-3
Finite limits, 103–114
Finite sums, algebra rules for, 308–309

estimating with, 297–304
limits of, 309–310
and sigma notation, 307–309

Firing angle, 736
First Derivative Test, 238–241, 821, 830–831
First derivative theorem for local extreme

values, 225–226, 240

ex

ax

ex

ex

First moments, 403, 886–887
about coordinate axes, 403–404, 887
about coordinate planes, 887, 976

Flat plate, center of mass of, 404–407, 887
vertical, fluid force and, 398

Flight time, 737
Flow integrals, 932–933
Fluid, weight-density of, 396
Fluid flow rates, 950
Fluid forces, and centroids, 409

on constant-depth surface, 397
integral for, against vertical flat plate, 398
work and, 393–398, 931

Fluid pressures and forces, 396–398
Flux, across plane curve, 933–935

across rectangle boundary, 950–951
calculation of, 954, 975–976
versus circulation, 934
definition of, 934, 974
surface integral for, 974–976

Flux density (divergence), of vector field, 951,
990

Foci, 657–659
Forces, addition of, 685–686

constant, 393–395
field of, 930
fluid pressures and, 396–398
variable along line, 393–394
work done by, over curve in space, 930–932

through displacement, 697
Free fall, Gallileo’s law for, 58, 147–148
Frenet, Jean-Frédéric, 752
Frenet frame, 752

computational formulas, 755
torsion in, 754–755

Fubini, Guido, 857
Fubini’s theorem for double integrals, 856–858,

861–863, 872, 878
Functions, 1–57

absolute value, 5
addition of, 14–15
algebraic, 10
arcsine and arccosine, 48
arrow diagram of, 2, 766
combining of, 14–22
common, 7–11
component, 725
composite. See Composite functions
constant, 7, 67, 135, 303
continuity of, 93, 727, 777
continuous. See Continuous functions
continuous at endpoint, 93
continuous at point, 98, 727, 777
continuous extension of, 98
continuous on interval, 95
continuously differentiable, 382, 390, 638–639
cosine, 23, 155, 156–157
critical point of, 226, 822
cube root, 8
cubic, 9
decreasing, 6
defined by formulas, 14
defined on surfaces, 795–797
definition of, 1
dependent variable of, 1, 765
derivative as, 122, 126–131
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Functions (continued )
derivative of, 123, 127, 130–131, 728
from derivatives, graphical behavior of,

250–251
differentiable. See Differentiable functions
discontinuity of, 93–94, 777
domain of, 1–3, 14, 765, 766
even, 6–7
exponential. See Exponential functions
extreme values of, 222–227, 821–826, 832, 835
general sine, AP-7
gradient of, 804
graphs of, 3–4, 21–22, 768

scaling of, 16–18
greatest integer, 5
growth rates of, 444–446
Hessian of function of two variables, 823
hyperbolic. See Hyperbolic functions
identity, 25, 66, 987
implicitly defined, 170–172, 797
increasing, 6, 227
independent variable of, 1, 765
input variable of, 1, 765
integer ceiling, 5
integer floor, 5
integrable, 315–318, 734, 855, 877
inverse. See Inverse functions
least integer, 5
left-continuous, 93
limit of, 65–73, 774
linear, 7
linearization of, 201–204, 812–814
logarithmic. See Logarithmic functions
machine diagram of, 2
of many variables, 799
marginal cost, 150
maximum and minimum values of, 222,

224–225, 241, 824–825
monotonic, 238–241
of more than two variables, 779, 786–787,

816–817
multiplication of, 14
natural exponential, definition of, 37, 422
natural logarithm, 43, 178–181, 417–418
nondifferentiable, 129, 130
nonintegrable, 315
nonnegative, area under graph of, 319–320

continuous, 303–304
numerical representation of, 4
odd, 6
one-to-one, 40–41
output variable of, 1, 765
piecewise-continuous, 315
piecewise-defined, 5
piecewise-smooth, 939
polynomial, 8
position, 5
positive, area under graph of, 304
potential, 939
power, 7–8, 182
quadratic, 9
range of, 1–3, 765, 766
rational. See Rational functions
real-valued, 2, 726, 765
reciprocal, derivative of, 127
representation as power series, 602

right-continuous, 93
scalar, 726
scatterplot of, 4
of several variables, 765–770
shift formulas for, 16
sine, 23, 156
in space, average value of, 882–883
square root, 8

derivative of, 128
symmetric, 6–7, 346–347, 649
of three variables, 768–770, 795, 807–808
total area under graph of, 332
total cost, 150
transcendental, 11, 422, 428
trigonometric. See Trigonometric functions
of two variables, 766–767, 770, 789

Chain Rule(s) for, 793–795
Increment Theorem of, 789
limits for, 773–777
linearization of, 812–814
partial derivatives of, 765–770, 782–784
Taylor’s formula for, 838–841

unit step, 68
value of, 2
vector. See Vector functions
velocity, 302, 729
vertical line test for, 4–5

Fundamental Theorem of Algebra, AP-33
Fundamental Theorem of Calculus, 325–336,

417, 419, 453, 641, 939, 955, 999
for line integrals, 920
Part 1 (derivative of integral), 327–328

proof of, 328
Part 2 (Evaluation Theorem), 328–330

Net Change Theorem, 330
proof of, 328–329

Fundamental Theorem of Line Integrals, 940

Galileo Galilei, 58
free-fall formula, 58, 147–148
law of, 58

Gauss, Carl Friedrich, 309, 695
Gauss’s Law, 996
General linear equation, AP-13
General Power Rule for derivatives, 381
General sine function, 27
General solution of differential equation, 282,

428–429
Genetic data, and sensitivity to change, 151
Geometric series, 564–566

convergence of, 564
Gibbs, Josiah Willard, 744
Global (absolute) maximum, 222, 824–826
Global (absolute) minimum, 222, 824–826
Gradient Theorem, Orthogonal, for constrained

extrema, 832
Gradient vector fields, 927–928

conservative fields as, 941
Gradient vectors, 802–805

algebra rules for, 807
curl of, 987
definition of, 804
to level curves, 806–807

Graphical solutions, of autonomous equations,
534–540

Graphing, with calculators and computers, 30–34

Graphing windows, 30–33
Graphs, asymptotes of, 103–113

of common functions, 7–11
connectedness and, 100
of derivatives, 128–129
of equation, AP-10
of functions, 3–4, 14–22
of functions with several variables, 765–770
of functions with three variables, 768–769
of functions with two variables, 767–768
of parametric equations, 652
in polar coordinates, 646, 649–652

symmetry tests for, 649
technique for, 652

of polar curves, 652
of sequence, 551
surface area of, 968
symmetric about origin, 6, 649
symmetric about x-axis, 6, 649
symmetric about y-axis, 6, 649
trigonometric, transformations of, 27
of trigonometric functions, 25, 32–34
of , strategy for, 248–250

Grassmann, Hermann, 687
Gravitation, Newton’s Law of, 758
Gravitational constant, 758
Gravitational field, 938

vectors in, 926
Greatest integer function, 5

as piecewise-defined function, 5
Green’s Theorem, area by, 958

circulation curl or tangential form, 955, 957,
982, 998

comparison with Divergence Theorem, 990,
998

comparison with Stokes’ Theorem, 981, 998
divergence or normal form of, 954, 990, 998
to evaluate line integrals, 956–957
forms for, 954–956
generalization in three dimensions, 998
and the Net Change Theorem, 955
in plane, 949–958
proof of, for special regions, 957–958

Growth, exponential, 428
logistic, 539, 540

Growth rates, of functions, 428, 444–446
relative, 444–448, 529–530

Half-angle formulas, trigonometric, 26
Half-life, 39, 46, 431–432
Halley, Edmund, 240
Harmonic motion, simple, 157–159
Harmonic series, 551, 571

alternating, 586–587
Heat equation, 793
Heat transfer, 432–433
Heaviside, Oliver, 476
Heaviside “cover-up” method, for linear factors,

476–478
Height, maximum in projectile motion, 737
Helix, 726
Hessian of function, 823
Higher-order derivatives, 142–143, 172, 789
Hooke’s law of springs, 394–395
Horizontal asymptotes, 103, 105–108, 112
Horizontal scaling and reflecting formulas, 17

y = f (x)
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Horizontal shift of function, 16
Horizontal strips, 405–406
Huygens, Christian, 631, 632
Hydrodynamics, continuity equation of, 996–997
Hyperbolas, 661–663

branches of, 658
center of, 661
definition of, 661
directrices, 667
eccentricity of, 666, 667
equation of, in Cartesian coordinates, 667–668
focal axis of, 661
foci of, 661
polar equation of, 668
standard-form equations for, 662–663
vertices of, 661

Hyperbolic functions, 436–441
definitions of, 436–437
derivatives of, 437–438, 439–441
graphs of, 439
identities for, 436–437, 439
integrals of, 437–438
inverse, 438, 439
six basic, 436

Hyperbolic paraboloid, 716, 717
Hyperboloids, 715, 717

i-component of vector, 687
Ideal gas law, 842
Identity function, 7, 67, 987
Image, 905
Implicit differentiation, 170–174, 797–799

formula for, 798
Implicit Function Theorem, 799, 966
Implicit surfaces, 966–968
Implicitly defined functions, 170–172
Improper integrals, 496–504

approximations to, 503
of Type I, 496, 504
of Type II, 499, 504

Increasing function, 6, 227
Increment Theorem for Functions of Two Vari-

ables, 789, AP-38–AP-40
Increments, AP-10–AP-13
Indefinite integrals, 284–285. See also Anti-

derivatives
definition of, 284, 336
evaluation with substitution rule, 336–342

Independent variable of function, 1, 765, 842–843
Indeterminate form 0 0, 254–258
Indeterminate forms of limits, 254–260, 618–619
Indeterminate powers, 258–259
Index of sequence, 550
Index of summation, 307, 568
Induction, mathematical, AP-6–AP-9
Inequalities, rules for, AP-1

solving of, AP-3–AP-4
Inertia, moments of, 888–891
Infinite discontinuities, 94
Infinite limits, 108–110

definition of, precise, 110–111
of integration, 496–498

Infinite sequence, 550–551. See also Sequences
Infinite series, 562–568
Infinite (unbounded) intervals, 6, AP-3
Infinitesimals, AP-19

>

Infinity, divergence of sequence to, 553
limits at, 103–114

of rational functions, 105
Inflection, point of, 226, 244–246, 249
Initial point, of curve, 628

of vector, 683
Initial ray in polar coordinates, 645
Initial speed in projectile motion, 736
Initial value problems, 282, 430, 515

and differential equations, 282
Inner products. See Dot product
Input variable of function, 1, 765
Instantaneous rates of change, 62–63

derivative as, 145–146
Instantaneous speed, 58–60
Instantaneous velocity, 146–147
Integer ceiling function (Least integer function),

5
Integer floor function (Greatest integer

function), 5
Integers, AP-26

positive, power rule for, 135–136
starting, AP-8

Integrable functions, 315–318, 855, 877
Integral form, product rule in, 454–457
Integral sign, 284
Integral tables, 481–482, T-1–T-6
Integral test, 571–574

error estimation, 573–574
remainder in, 573–574

Integral theorems, for vector fields, 998–999
Integrals, approximation of, by lower sums, 299

by midpoint rule, 299, 487
by Riemann sum, 310–311
by Simpson’s Rule, 488–490
by Trapezoidal Rule, 487–488
by upper sums, 298

Brief Table of, 453, T-2–T-6
definite. See Definite integrals
double. See Double integrals
evaluated with inverse trigonometric func-

tions, 411–412
, 420

for fluid force against vertical flat plate, 
398

of hyperbolic functions, 437–438
improper, 496–504

approximations to, 503
of Type I, 496, 504
of Type II, 499, 504

indefinite, 284–285, 336–342
involving log , 425
iterated, 856
line. See Line integrals
logarithm defined as, 417
multiple, 854–855

substitution in, 905–912
nonelementary, 484, 616–617
polar, changing Cartesian integrals into,

873–875
in polar coordinates, 871–872
of powers of tan x and sec x, 464–465
of rate, 330–331
repeated, 856
of sin and cos , 341–342
surface, 971–978, 983

2 x2 x

a x

f (1>u) du

table of, 481–482, T-1–T-6
of tan x, cot x, sec x, and csc x, 420–421
trigonometric, 462–466
triple. See Triple integrals
of vector fields, 928
of vector functions, 733–735
work, 393–394, 745–746, 930–932

Integrands, 284
with vertical asymptotes, 499–500

Integrate command (CAS), 483
Integrating factor, 523–525
Integration, 297–362

basic formulas, 453
with CAS, 483–484
in cylindrical coordinates, 893–897
and differentiation, relationship between, 

331
limits of. See Limits, of integration
numerical, 486–493
by parts, 454–459
by parts formula, 454–455
of rational functions by partial fractions,

471–479
with respect to y, area between curves,

349–350
in spherical coordinates, 899–901
tabular, 458–459
techniques of, 453–513
term-by-term for power series, 599
by trigonometric substitution, 467–470
variable of, 284, 314
in vector fields, 919–999
of vector function, 734–735

Interest, compounded continuously, 38
Interior point, 824, AP-3

continuity at, 93
for regions in plane, 767
for regions in space, 769

Intermediate Value Property, 99
Intermediate Value Theorem, 238, 418, AP-24

for continuous functions, 99–101, 266–267
Intermediate variable, 794–795
Intersection, lines of, 710–711
Intersection of sets, AP-2
Interval of convergence, 597
Intervals, AP-3

differentiable on, 129–130
parameter, 628–629
types of, AP-3

Inverse equations, 424
Inverse function–inverse cofunction identities,

190
Inverse functions, 11, 41–42

derivative rule for, 177
and derivatives, 176–184
finding, 177–178
hyperbolic, 438, 439
and logarithms, 40–50
one-to-one, 41
trigonometric. See Inverse trigonometric

functions
Inverse trigonometric functions, 46–47,

186–190
cofunction identities, 190
definition of, 47, 186, 190
derivatives of, 190
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Inverses, defining of, 41
finding of, 42–43
integration and differentiation operations, 331
of ln x and number e, 421–422
of tan x, cot x, sec x, and csc x, 186–190

Irrational numbers, AP-2
as exponents, 36

Irreducible quadratic polynomial, 472–473
Iterated integral, 856

j-component of vector, 687
Jacobi, Carl Gustav Jacob, 905
Jacobian determinant, 905, 907, 908, 910
Jerk, 147, 148
Joule, James Prescott, 393
Joules, 393
Jump discontinuity, 94

k-component of curl, 952–954
k-component of vector, 687
Kepler, Johannes, 759
Kepler’s First Law (Ellipse Law), 759
Kepler’s Second Law (Equal Area Law), 759
Kepler’s Third Law (Time–Distance Law),

759–760
Kinetic energy, 209–210
Kovalevsky, Sonya, 440, 844
kth subinterval of partition, 310, 314, 311

Lagrange, Joseph-Louis, 231, 829
Lagrange multipliers, 825, 829–836

method of, 832–834
with two constraints, 835–836

Laplace, Pierre-Simon, 788
Laplace equation, 792
Launch angle, 736
Law of cooling, Newton’s, 432–433, 537
Law of cosines, 26–27, 693
Law of Exponential Change, 529
Law of refraction, 267
Laws of exponents, 235, 423
Laws of logarithms, 44, 419

proofs of, 234–235
Least integer function, 5
Least upper bound, 557, AP-23–AP-24
Left-continuous functions, 93
Left-hand derivatives, 129–130
Left-hand limits, 86

definition of, informal, 85–86
precise, 76–82, 87

proof of, AP-21
Left-handed coordinate frame, 678
Legendre, Adrien Marie, 524
Leibniz, Gottfried, 337, AP-25
Leibniz’s formula, 618
Leibniz’s notation, 128, 163, 167, 201, 314, 639
Leibniz’s Rule, 360
Leibniz’s test, 586
Leibniz’s Theorem, 586
Length, along curve in space, 742–743

constant, vector functions of, 731
of curves, 382–383, 639–642
of parametrically defined curve, 638–640
of polar coordinate curve, 655–656
of vector (magnitude), 683, 685–686

Lenses, light entering, 173
Level curves, of functions of two variables, 768

Level surface, of functions of three variables, 768
L’Hôpital, Guillaume de, 254
L’Hôpital’s Rule, 255

finding limits of sequences by, 255–256
proof of, 259–260

Limit circle, 544
Limit Comparison Test, 501, 502, 578–579
Limit Laws, 65–73, 775

theorem, 68, 104
Limit Power Rule, 68
Limit Product Rule, proof of, AP-18–AP-19
Limit Quotient Rule, proof of, AP-19–AP-20
Limit Root Rule, 68
Limit theorems, proofs of, AP-18–AP-21
Limiting population, 539
Limits, 58–121

commonly occurring, 556–557, AP-21–AP-22
of continuous functions, 97
for cylindrical coordinates, 895–896
definition of, informal, 65–66

precise, 76–82
proving theorems with, 81–82
testing of, 77–79

deltas, finding algebraically, 79–81
of difference quotient, 124
e (the number) as, 183–184
estimation of, calculators and computers for,

70–72
finite, 103–114
of finite sums, 309–310
of function values, 65–73
for functions of two variables, 773–777
indeterminate forms of, 254–260
infinite, 108–110

precise definitions of, 110–111
at infinity, 103–114
of integration, for cylindrical coordinates,

895–897
for definite integrals, 344–345
finding of, for multiple integrals,

863–864, 872–873, 878–880,
895–896, 899–900

infinite, 496–498, 504
for polar coordinates, 872–873
for rectangular coordinates, 877,

878–882
for spherical coordinates, 899–900

left-hand. See Left-hand limits
nonexistence of, two-path test for functions of

two variables, 778
one-sided. See One-sided limits
of polynomials, 69
power rule for, 68
of rational functions, 69, 105
of Riemann sums, 313–315
right-hand. See Right-hand limits
root rule for, 68
Sandwich Theorem, 72–73
of sequences, 552, 554
of (sin , 88–90
two-sided, 85
of vector-valued functions, 726–727

Line integrals, 919–923
additivity and, 921
definition of, 919
evaluation of, 920, 929

by Green’s Theorem, 956–957

u)>u

fundamental theorem of, 940
interpretation of, 923
mass and moment calculations and, 921–923
in plane, 923
vector fields and, 925–935
xyz coordinates and, 929–930

Line segments, directed, 683
midpoint of, finding with vectors, 688
in space, 706–712

Linear approximations, error formula for, 814,
839–840

standard, 202, 813–814
Linear equations, AP-13

first-order differential, 522–526
standard form, 522–523

solving of, 523–525
Linear factors, Heaviside “cover-up” method

for, 476–478
Linear functions, 7
Linear transformations, 906–907
Linearization, 201–204, 813

of functions of two variables, 812–814, 816
Lines, of intersection, for planes, 710–711

masses along, 402–403
motion along, 146–150
normal, 173

tangent planes and, 809–811
parallel, AP-13
parametric equations for, 706–707
perpendicular, AP-13
and planes, in space, 706–712
polar equation for, 670
secant, 60
straight line equations, 706, AP-28–AP-31
tangent, 62–63, 122
vector equations for, 706–708
vertical, shell formula for revolution about,

377
work done by variable force along, 393–394

Liquids, incompressible, 952
pumping from containers, 395–396

ln bx, 44, 234–235
ln x, and change of base, 45, 419–420

derivative of, 178–179, 419
graph and range of, 44, 419–420
integral of, 455
inverse equation for, 44, 422, AP-24
inverse of, and number e, 421–422, AP-23
and number e, 44, 421–422
properties of, 44, 418

ln , 44, 235
Local extrema, 239–241, 246–250

first derivative test for, 239–241
first derivative theorem for, 225
second derivative test for, 246–250

Local extreme values, defined, 224, 821
derivative tests for, 225–226, 821–822, 823
first derivative theorem for, 225–226, 821

Local (relative) maximum, 224, 821, 826
Local (relative) minimum, 224, 821, 826
Logarithmic differentiation, 181–184
Logarithmic functions, 43–44, 417–418

with base a, 43–44, 424
change of base formula and, 45
common, 44
description of, 11
natural, 44, 417–418

xr
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Logarithms, algebraic properties of, 44, 425
applications of, 45–46
with base a, 43, 424
defined as integral, 417–425
derivatives of, 176–184
integral of, 455
inverse functions and, 40–50, 421
inverse properties of, 45, 424
laws of, proofs of, 44, 234–235
natural, 44, 417–418
properties of, 44–45

log , derivative of, 179–181, 425
log , derivatives and integrals involving, 425

inverse equations for, 45, 424
Logistic population growth, 539–540
Loop, 933
Lower bound, 318
Lower sums, 299

Machine diagram of function, 2
Maclaurin, Colin, 603
Maclaurin series, 603–604, 605
Magnitude (length) of vector, 683, 685–686
Marginal cost, 150, 267
Marginal profit, 267
Marginal revenue, 267
Marginals, 150
Mass. See also Center of mass

along line, 402–403
conversion to energy, 209–210
distributed over plane region, 403–404
formulas for, 404, 407, 887, 922
by line integral, 922
measurement of, 529
and moment calculations, line integrals and,

921–923
multiple integrals and, 887, 890

moments of, 404
of thin shells, 976–978
value of, 209
of wire or thin rod, 921–922

Mathematical induction, AP-6–AP-9
Max-Min Inequality Rule for definite integrals,

317, 325–326
Max-Min Tests, 239–240, 246, 821, 823, 826
Maximum, absolute (global), 222, 824–826

constrained, 829–832
local (relative), 224, 821, 826

Mean value. See Average value
Mean Value Theorems, 230–235, 238, 280, 639,

AP-36–AP-40
Cauchy’s, 259–260
corollary 1, 233
corollary 2, 233–234
corollary 3, 238
for derivatives, 231
for definite integrals, 325–328
interpretation of, 232, 325
mathematical consequences of, 233–234

Mendel, Gregor Johann, 151
Mesh size, 487
Midpoint of line segment in space, finding with

vectors, 688
Midpoint rule, 299, 300
Minimum, absolute (global), 222, 824–826

constrained, 829–832
local (relative), 224, 821, 826

a x
a u

Mixed Derivative Theorem, 788, AP-36
Mixture problems, 531–533
Möbius band, 974
Moments, and centers of mass, 402–411,

886–891, 922, 976
first, 886–888, 976
of inertia, 888–891, 976
and mass calculations, line integrals and,

921–923
of solids and plates, 890
of system about origin, 403
of thin shells, 976–978
of wires or thin rods, 921–922

Monotonic functions, 238–241
Monotonic Sequence Theorem, 558–559, 571
Monotonic sequences, 557–559
Motion, along curve in space, 727–728, 752

along line, 146–150
antiderivatives and, 282–283
direction of, 729
Newton’s second law of, 209, 528, 538
in polar and cylindrical coordinates, 757–758
with resistance proportional to velocity,

528–529
simple harmonic, 157–159
vector functions and, 725, 727–729

Multiple integrals. See Double integrals; triple
integrals

Multiplication, of functions, 14
of power series, 598
scalar, of vectors, 685–686

Multiplier (Lagrange), 825, 829–836

Napier, John, 44
Natural domain of function, 2
Natural exponential function, 37, 422

definition of, 37, 422
derivative of, 139, 422
graph of, 37, 139, 421
power series for, 604, 608

Natural logarithm function, algebraic properties
of, 44, 419

definition of, 43–44, 417–418
derivative of, 178–181, 419
power series for, 600, 618

Natural logarithms, 44, 417–418
Natural numbers, AP-2
Negative rule, for antiderivatives, 281
Net Change Theorem, 330

and Green’s Theorem, 955
Newton, Sir Isaac, 325, AP-25
Newton-Raphson method, 274–277
Newton’s law of cooling, 432–433, 437–538
Newton’s law of gravitation, 758
Newton’s method, 274–277

applying, 275–276
convergence of approximations, 277
procedure for, 274–275

Newton’s second law of motion, 209, 528, 538
Nondecreasing partial sums, 563
Nondecreasing sequences, 558
Nondifferentiable function, 129, 130
Nonelementary integrals, 484, 616–617
Nonintegrable functions, 315–318
Norm of partition, 312, 855, 894
Normal component of acceleration, 752–756
Normal line, 173, 810

Normal plane, 755
Normal vector, 750–751
Notations, for derivative, 128, 783–784
nth partial sum, 562–563
nth-term test for divergence, 566
Numerical integration, 486–493
Numerical method, 517
Numerical representation of functions, 4
Numerical solution, 517

Oblique (slant) asymptote, 108
Octants, 678
Odd functions, 6–7
Oh-notation, 446–447
One-sided derivatives, 129–130
One-sided limits, 85–90, 129. See also Left-

hand limits; Right-hand limits
definition of, informal, 85

precise, 87
One-to-one functions, 40–41

definition of, 40
Open region, 767, 769
Optics, Fermat’s principle in, 266

Snell’s Law of, 267
Optimization, applied. See Applied optimization
Orbital period, 759
Order, comparison of functions, 446–447
Order of Integration Rule, 317
Ordered field, AP-23–AP-24
Oresme, Nicole, 552
Orientable surface, 974
Origin, of coordinate system, AP-10

moment of system about, 403
in polar coordinates, 645

Orthogonal gradient theorem, 832
Orthogonal trajectories, 530–531
Orthogonal vectors, 694–695
Oscillating discontinuities, 94
Osculating circle, 749
Osculating plane, 755
Output variable of function, 765
Outside-Inside interpretation of chain rule, 

164

-limits of integration, finding of, 899
p-series, 573
Paddle wheel, 984–986
Pappus (Greek, 3rd century), 409
Pappus’s theorem for surface area, 411
Pappus’s theorem of volumes, 410
Parabola(s), 629, AP-15–AP-16

approximations by, 488–490
axis of, 658, AP-15
definition of, 657
directrix of, 657, 659, 669
eccentricity of, 666, 667
focal length of, 658
focus of, 657, 659
parametrization of, 629–630
semicubical, 175
slope of, 42
vertex of, 658, AP-15

Paraboloids, 715
elliptical, 717
hyperbolic, 716, 717
volume of region enclosed by, 880–881

Parallel lines, 710, AP-13

f
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Parallel planes, 710
slicing by, 364–365

Parallel vectors, cross product of, 700
Parallelogram, area of, 701

law of addition, 685–686, 693
Parameter domain, 628, 961
Parameter interval, 628–629
Parameters, 628, 961
Parametric curve, 629, 630

arc length of, 638–640, 742–743
calculus with, 636–643
differentiable, 636
graphing of, 652

Parametric equations, 628–631
of circle, 629, 640
for curves in space, 725
of cycloid, 632
of hyperbola, 631, 637
of lines, 707–708
for projectile motion, 735–737

Parametric formulas, for derivatives, 637
Parametrization, of cone, 961

of curves, 628–634, 725
of cylinder, 962
of line, 706–707
of sphere, 961–962
and surface area, 962–966
of surfaces, 961–966

Partial derivatives, 765–853
calculations of, 784–786
with constrained variables, 842–846
and continuity, 787
continuous, identity for function with, 987
definitions of, 783
equivalent notations for, 783
of function of several variables, 765–770
of function of two variables, 782–784
higher-order, 789
second-order, 787–788

Partial fractions, definition of, 472
integration of rational functions by, 471–479
method of, 472–476

Partial sums, nondecreasing, 571
nth of series, 562–563
sequence of, 563

Particular solution, of differential equation, 233
Partitions, 854

kth subinterval of, 311
norm of, 312, 855
for Riemann sums, 312

Parts, integration by, 454–459
Pascal, Blaise, 563
Path independence, 938–939
Path integrals. See Line integrals
Path of particle, 725
Peak voltage, 341
Pendulum clock, 632
Percentage change, 208
Periodicity, of trigonometric functions, 25
Perpendicular lines, AP-13
Perpendicular (orthogonal) vectors, 694–695
Phase lines, 535
Phase-plane analysis, 541

limitations of, 544
Phase planes, 542
Physics, examples of applied optimization from,

265

Piecewise-continuous functions, 315, 358–359
Piecewise-defined functions, 5
Piecewise-smooth curves, 728, 939
Piecewise-smooth surface, 972, 981
Pinching Theorem. See Sandwich Theorem
Plane areas for polar coordinates, 653–655
Plane curves, circle of curvature for, 749–750

lengths of, 382–386
parametrizations of, 628–634

Plane regions, interior point, 767
masses distributed over, 403–404

Plane tangent to surface, 810, 811
Planes, angles between, 712

Cartesian coordinates in, AP-10
directional derivatives in, 802–803
distance and circles in, AP-13–AP-15
equation for, 709
Green’s Theorem in, 949–958
horizontal tangent to surface, 821
line integrals in, 923
lines of intersection for, 710–711
motion of planets in, 758–759
normal, 755
osculating, 755
parallel, 710
rectifying, 755
in space, 706–712

Planetary motion, Kepler’s First Law (Ellipse
Law) of, 759

Kepler’s Second Law (Equal Area Law) of, 759
Kepler’s Third Law (Time–Distance Law) of,

759–760
as planar, 758–759

Plate(s), bounded by two curves, 407–408
thin flat, center of mass of, 404–407
two-dimensional, 887, 890
vertical flat, fluid force against, 398

Point-slope equation, AP-12
Points, boundary, 769

of discontinuity, definition of, 93
of inflection, 226, 244–246
interior, 769
in three-dimensional Cartesian coordinate

system, distance to plane, 711–712
Poiseuille, Jean, 208
Poisson, Siméon-Denis, 820
Polar coordinate pair, 645
Polar coordinates, 645–648

area in, 873
area of polar region, 654
conics in, 657, 666–671
definition of, 645
graphing in, 646, 649–652

symmetry tests for, 649
initial ray of, 645
integrals in, 871–872
length of polar curve, 655
motion in, 757–758
pole in, 645
related to Cartesian coordinates, 646–648
slope of polar curve, 650–651
velocity and acceleration in, 757–760

Polar equations, of circles, 670–671
of conic sections, 668–670
graphing of, 646
of lines, 670

Polyhedral surfaces, 986–987

Polynomial functions, definition of, 8
Polynomials, coefficients of, 8–9

degree of, 9
derivative of, 138
limits of, 69
quadratic irreducible, 472–473
Taylor, 604–606, 611, 612

Population growth, logistic, 539–540
unlimited, 430–431

Population growth model, exponential, 529–530
Position, of particle in space over time, 725
Position function, acceleration and, 234
Position vector, 683
Positive integers, AP-26

power rule for, 135–136
Potential function, 939
Potentials, for conservative fields, 943–946
Power Chain Rule, 165–166, 171
Power functions, 7–8, 182
Power Rule, for derivatives, general version of,

136, 182–183
for limits, 68
for limits of functions of two variables, 775
natural logarithms, 44, 419
for positive integers, 135–136
proof of, 182

Power series, 593–600
convergence of, 593–596

radius of, 596
testing of, 596

multiplication of, 597, 598
reciprocal, 593–594
term-by-term differentiation of, 598
term-by-term integration of, 599

Powers, AP-32
binomial series for, 615–616
indeterminate, 258–259
of sines and cosines, products of, 462–464

Preimage, 905
Pressure-depth equation, 396
Pressures, fluid, and forces, 396–398
Principal unit normal vector, 750, 756
Product Rule, for derivatives, 140–141

for gradient, 807
in integral form, integration by parts,

454–457
for limits, 68

of functions with two variables, 775
proof of, 140

for natural logarithms, 44, 419
for power series, 598
for sequences, 553

Products, of complex numbers, AP-30–AP-31
of powers of sines and cosines, 462–464
and quotients, derivatives of, 140–142
of sines and cosines, 465–466

Profit, marginal, 267
Projectile motion, vector and parametric equa-

tions for, 735–737
with wind gusts, 737–738

Projection, of vectors, 695–697
Proportionality relationship, 7
Proxima Centauri, 424–425
Pumping liquids from containers, 395–396
Pyramid, volume of, 364–365
Pythagorean theorem, 25, 27, 28, AP-13, 

AP-26
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Quadrants, of coordinate system, AP-10
Quadratic approximations, 604
Quadratic polynomial, irreducible, 472–473
Quadric surfaces, 715–717
Quotient Rule, for derivatives, 141–142, 158–159

for gradient, 807
for limits, 68

of functions with two variables, 775
proof of, AP-19–AP-20

for natural logarithms, 44, 419
for sequences, 553

Quotients, AP-31
products and, derivatives of, 140–142

-limits of integration, finding of, 899–900
r-limits of integration, 872, 896
Radian measure and derivatives, 167
Radians, 22–23, 24
Radioactive decay, 39, 431
Radioactive elements, half-life of, 46, 431–432
Radioactivity, 431
Radius, of circle, AP-14

of convergence, 597
of power series, 596–597

of curvature, for plane curves, 749–750
Radius units, 22
Range, of function, 19–21, 765, 766

in projectile motion, 737, 738
Rate constant, exponential change, 428
Rate(s), average, 60

of change, 58–63
instantaneous, derivative as, 62–63
integral of, 330–331

Ratio, in geometric series, 564
Ratio Test, 581–583, 594–595, 597, 615
Rational exponents, 36
Rational functions, definition of, 9

domain of, 9
integration of, by partial fractions, 471–479
limits of, 69

at infinity, 105
Rational numbers, AP-2, AP-26
Real numbers, construction of reals and, 

AP-24–AP-25
development of, AP-26–AP-27
properties of, algebraic, AP-1, AP-23

completeness, 36, AP-1, AP-23
order, AP-1, AP-23

and real line, AP-1
theory of, AP-23–AP-25

Real-valued functions, 2, 564, 765
Reals, construction of, AP-24–AP-25
Rearrangement theorem, for absolutely conver-

gent series, 590
Reciprocal function, derivative of, 127
Reciprocal Rule for natural logarithms, 44
Rectangles, approximating area of, 297–299

defining Riemann sums, 311–312
double integrals over, 854–858
optimizing area of, inside circle, 265–266

Rectangular coordinates. See Cartesian
coordinates

Rectifying plane, 755
Recursion formula, 557
Recursive definitions, 557
Reduction formula, 457, 482
Reflection of graph, 16–18

r

Refraction, Law of, 267
Regions, bounded, 767

closed, 767, 769
connected, 939
general, double integrals over, 859–865
open, 767, 769, 988
plane, interior point, 767

masses distributed over, 402
simply connected, 939
solid, volume of, 860–863
in space, interior point, 769

volume of, 878
special, divergence theorem for, 993–994

Green’s Theorem for, 957–958
unbounded, 767

Reindexing infinite series, 568
Related rates, 192–197
Relative change, 208
Relative growth rate, 529–530
Relative (local) extrema, 224, 821
Remainder, estimating of, in Taylor’s Theorem,

608, 609–610
in integral test, 573–574
of order n, definition for Taylor’s formula, 608

Remainder Estimation Theorem, 609, 611
Removable discontinuities, 94
Representation of function, power series, 602–603
Resistance, falling body encountering, 538–539

proportional to velocity, motion with,
528–529

Rest mass, 209
Rest points, 535, 542–543

unstable, 544
Resultant vector, 685–686
Revenue, marginal, 267
Revolution, about y-axis, 390–391

areas of surfaces of, 388–391, 642–643
ellipsoid of, 716
Shell formula for, 377
solids of, disk method, 366–368

washer method, 369–370
surface of, 388

Riemann, Georg Friedrich Bernhard, 310
Riemann sums, 310–312, 314, 315, 316, 331,

364, 375, 377, 394, 397, 404, 894, 898,
919, 971

convergence of, 315
limits of, 313–315

Right-continuous functions, 93
Right-hand limits, 86

definition of, 87
proof of, AP-20

Right-handed coordinate frame, 678
Right-handed derivatives, 129–130
Rise, AP-11
RL circuits, 526
Rolle, Michel, 230
Rolle’s Theorem, 230–231
Root finding, 100
Root mean square (rms), 342
Root rule, for limits, 68

for limits of functions of two variables, 775
Root Test, 583–584, 597
Roots, AP-32–AP-33

binomial series for, 615–616
finding by Newton’s Method, 275–276
and Intermediate Value Theorem, 99–100

Rotation, 366–369
uniform, 952

Run, AP-11

Saddle points, 716, 822, 823, 824, 826
Sandwich Theorem, 72, 88, 89, 107

proof of, AP-20
for sequences, 554

Savings account growth, 35
Scalar functions, 726
Scalar Multiple Rules for vector functions, 730
Scalar multiplication of vectors, 685–686
Scalar products. See Dot product
Scalars, definition of, 685
Scaling, of function graph, 16–18
Scatterplot, 4
Sec x, integrals of powers of, 421, 464–465

inverse of, 186–187
Secant, trigonometric function, 23
Secant lines, 60
Secant slope, 61
Second derivative test, 244, 246–250, 826

derivation of, two-variable function, 838–839
Second moments, 888–890, 976
Second-order differential equation topics 

covered online
applications of second-order equations
auxiliary equation
boundary-value problems
complementary equation
damped vibrations

critical damping
overdamping
underdamping

Euler equation
Euler’s method
existence of second-order solutions
form of second-order solutions
forced vibrations
general solution for linear equations
homogeneous equations
linear combination
linearly independent solutions
linearity
method of undetermined coefficients
nonhomogeneous equations
power series solutions
uniqueness of second-order solutions
second-order differential equations
second-order initial value problems
second-order linear equations
second-order series solutions
simple harmonic motion
solution of constant-coefficient second-order

linear equations
superposition principle
theorem on general solution form
variation of parameters

Second-order partial derivatives, 787–788
Separable differential equations, 428–430
Sequences, 550–559

bounded, 557–558
calculation of, 553–556
convergence of, 551–553
divergence of, 551–553

to infinity, 553
to negative infinity, 553
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Sequences (continued )
index of, 550
infinite, 550–551
limits of, 552, 554554

by Continuous Function Theorem, 554
by l’Hôpital’s Rule, 555–556
by Sandwich Theorem, 554

monotonic, 558
of partial sums, 563

nondecreasing, 558
recursively defined, 557

Sequential search, 447–448
Series, absolutely convergent, 588

adding or deleting terms, 568
alternating, 586–588

harmonic, 586–587
binomial, 614–616
combining, 567–568
conditionally convergent, 588
convergence of, comparison tests for,

576–578
convergent, 563
divergent, 563, 566
geometric, 564–566
harmonic, 551, 571
infinite, 562–568
integral test, 572

error estimation, 574
Maclaurin, 603–604
p-, 573
partial sum of, 562–563
power, 593–600
rearrangement of, 590
reindexing, 568
representations, of functions of power,

602–603
sum of, 562–563
Taylor, 603–604, 607, 610–611
tests, for absolute convergence, 589

alternating, 586
comparison, 577
convergence, 576–578
integral, 571–573
limit comparison, 578–579
ratio, 581–583
root, 583–584
summary of, 590–591

Set, AP-2
Shearing flow, 952
Shell formula for revolution, 377
Shell method, 376–379
Shells, thin, masses and moments of, 976–978
Shift formulas for functions, 16
Shifting, of function graph, 16
Short differential formula, arc length, 385–386
SI units, 393
Sigma notation, 307–312
Simple harmonic motion, 157–159
Simply connected region, 939
Simpson, Thomas, 489
Simpson’s Rule, approximations by, 488–490

error analysis and, 490–493
Sine(s), 23, 24

integrals of products of, 465–466
integrals of products of powers of, 462–464

Sine function, derivative of, 155–156, 157
graph of, 10

integral of, 462
inverse of, 48, 188

Sinusoid formula, 27
Slant (oblique) asymptote, 108
Slicing, with cylinders, 374–376

by parallel planes, 364–365
volume by, 363–369

Slope, of curve, 60–62, 122–123
of nonvertical line, AP-11
of parametrized curves, 630–631
of polar coordinate curve, 650–651

Slope fields, 516, 517
Slugs, 529
Smooth curves, 3–4, 382–383, 728
Smooth surface, 962–963, 966
Snell van Royen, Willebrord, 266
Snell’s Law, 267
Solids, Cavalieri’s principle of, 365

cross-section of, 363
three-dimensional, masses and moments, 887,

890
volume of, calculation of, 364

by disk method, 366–368
by double integrals, 855, 856, 860–863
by method of slicing, 363–370
by triple integrals, 877–878
by washer method, 369–370

Solids of revolution, by disk method, 366–368
by washer method, 369–370

Solution, of differential equation, 429
general, 514–516
particular, 515–516

Solution curves, 516
Space, curve in, work done by force over,

930–932
Speed, 147, 195

along smooth curve, 744
average, 58–60

over short time intervals, 59
instantaneous, 58–60
of particle in space, 729

Spheres, concentric, in vector field, 994–995
parametrization of, 961–962
in space, distance and, 680–681
standard equation for, 680
surface area of, 964–965

Spherical coordinates, definition of, 897
triple integrals in, 897–901

Spin around axis, 952–954
Spring constant, 394, 395
Springs, Hooke’s law for, 394–395

mass of, 921–922
work to stretch, 395

Square root function, 8
derivative of, 128

Square roots, elimination of, in integrals, 464
Squeeze Theorem. See Sandwich Theorem
St. Vincent, Gregory, 641
Standard linear approximation, 202, 813
Standard unit vectors, 687
Steady-state value, 526
Step size, 487
Stokes’ Theorem, 943, 980–988, 998, 999

comparison with Green’s Theorem, 980, 981,
982

conservative fields and, 988
for polyhedral surfaces, 986–987

surface integral in, 983
for surfaces with holes, 987

Stretching a graph, 17
Substitution, 336–341

and area between curves, 344–350
in double integrals, 905–909

rectangular to polar coordinates, 872
in multiple integrals, 905–912
trigonometric, 467–470
in triple integrals, 909–912

rectangular to cylindrical coordinates,
894

rectangular to spherical coordinates, 898
Substitution formula for definite integrals, 344–346
Substitution Rule, 338, 344

evaluation of indefinite integrals with, 336–342
Subtraction, of vectors, 686
Sum Rule, for antiderivatives, 281, 284

for combining series, 567
for definite integrals, 317
derivative, 137–138
of geometric series, 564
for gradients, 807
for limits, 68, 81

of functions of two variables, 775
of sequences, 552

for vector functions, 730
Sums, and difference, of double integrals, 864

finite, 590
estimation with, 297–304

limits of, 309–310
lower, 299
partial, sequence of, 563
Riemann, 259–261
upper, 298

Surface area, defining of, 388–390, 963
differential for parametrized surface, 964
of explicit surface, 972
of graph, 968
of implicit surface, 967–968, 972
Pappus’s theorem for, 411
parametrization of, 962–966
for revolution about y-axis, 390–391
for sphere, 965

Surface integrals, 971–978, 983
computation of, 973–974
for flux, 974–976
formulas for, 972

Surface of revolution, 388
Surfaces, and area, 642–643, 961–971

constant depth, fluid force on planar, 397
functions defined on, 795–797
with holes, 987
implicit, 966–968
implicitly defined, 966
level, 768
orientable, 974
parametrization of, 961–966
piecewise smooth, 972, 981
plane tangent to, 810–811
quadric, 715–717
smooth, 962–963, 966
two-sided, 974
of two-variable functions, 768

Symmetric functions, 6
definite integrals of, 346
graphs of, 6–7
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Symmetry tests, for graphs in polar coordinates,
649

System torque, systems of masses, 402–403

-limits of integration, finding of, 872–873, 
900

Table of integrals, 453, 481–482, T-1–T-6
Tabular integration, 458–459
Tan x and cot x, derivatives of, 158

integrals of, 421
inverses of, 186–187
sec x, and csc x, integrals of, 420–421

Tan x and sec x, 420
derivatives of, 158
integrals of, powers of, 464–465

Tangent(s), to curves, 19, 58–63
of curves in space, 725–731
to graph of function, 122–123
to level curves, 806–807
and normals, 173–174
at point, 122–124
slope of, 60
values of, 24
vertical, 130

Tangent line approximation, 202, 813
Tangent lines, 62–63

to curve, 122
Tangent plane approximation, 813
Tangent planes, horizontal, 821–822

and normal lines, 809–811
to a parametric surface, 963

Tangent vector, 728
Tangential component of acceleration, 

752–756
Tautochrones, 632–633
Taylor, Brook, 603
Taylor polynomials, 604–606, 611, 612
Taylor series, 603–604

applying of, 610–611, 616–620
convergence of, 607–613
frequently used, 620
as representations of functions, 603

Taylor’s Formula, 607, 608
for functions of two variables, 838–841

Taylor’s Theorem, 607
proof of, 612–613

Term-by-term differentiation, 598
Term-by-term integration, 599
Term of a sequence, 550
Term of a series, 563
Terminal point, of curve, 628

of vector, 683
Terminal velocity, 539
Theorem, Absolute Convergence Test, 589

Algebraic Properties of Natural Logarithm,
44, 419

Alternating Series Estimation, 588, 611
angle between two vectors, 692
Cauchy’s Mean Value, 259–260
Chain Rule, 163

for functions of three variables, 795
for functions of two variables, 793
for two independent variables and three

intermediate variables, 796
Comparison Test, 577
conservative fields are gradient fields, 941
Continuous function for sequences, 554

u

Convergence, for Power Series, 596
curl related to loop property, 988
De Moivre’s, AP-32
Derivative Rule for Inverses, 177
Differentiability implies continuity, 111, 790
Direct Comparison Test, 578
Divergence, 992
Evaluation, 328–330
Exactness of differential forms, 946
Extreme Value, 223–224, AP-24
First derivative test for local extreme values,

225–226, 821
Formula for Implicit Differentiation, 798
Fubini’s, 857, 861–863
Fundamental, 325–336

of Algebra, AP-33–AP-34
of calculus, part 1, 327–328

part 2, 328–330
of Line Integrals, 940

Green’s, 955
Implicit Function, 799, 966
Increment, for Functions of Two Variables,

789, AP-38–AP-40
integrability of continuous functions, 315
Integral Test, 572
Intermediate Value, 99, 100, 230–231, 238,

266–267, AP-24
Laws of Exponents for , 423
Leibniz’s, 586
l’Hôpital’s Rule, 255–260, 555–556
Limit, proofs of, AP-18–AP-21
Limit Comparison Test, 578
Limit Laws, 68, 104
Loop property of conservative fields, 942
Mean Value, 639, AP-36–AP-40, 231–232,

238, 280, 382–383
corollary 1, 233
corollary 2, 233
for definite integrals, 325–328

Mixed Derivative, 788, AP-36
Monotonic Sequence, 558–559, 571
Multiplication of power series, 598
Net Change, 330
Nondecreasing Sequence, 558
number e as limit, 183
Orthogonal gradient, 832
of Pappus, 410–411
Properties of continuous functions, 95
Properties of limits of functions of two vari-

ables, 775
Ratio Test, 581
Rearrangement, for Absolutely Convergent

Series, 590
Remainder Estimation, 609, 611
Rolle’s, 230–231
Root Test, 583–584
Sandwich, 72, 88, 89, 107, 554, AP-20
Second derivative test for local extrema, 246,

823
Stokes’, 981
Substitution in definite integrals, 344
Substitution Rule, 338
Taylor’s, 607, 612–613
Term-by-Term Differentiation, 598
Term-by-Term Integration, 599

Thickness variable, 377
Thin shells, moments and masses of, 976–978

ex

F = 0
Three-dimensional coordinate systems, 678–681

Cartesian, 678
coordinate planes, 678
cylindrical, 895–897
right- and left-handed, 678
spherical, 899–900

Three-dimensional solid, 887, 890
Three-dimensional vectors, component form of,

684
Time–Distance Law (Kepler’s Third Law),

759–760
TNB frame, 752
Torque, 402–403, 703
Torsion, 754–755, 756
Torus, 969
Total differential, 815, 816
Transcendental functions, 11, 422
Transcendental numbers, 422
Transformations, Jacobian of, 907, 908

linear, 906–907
of trigonometric graphs, 27

Transitivity law for real numbers, AP-23
Trapezoid, area of, 320
Trapezoidal Rule, 486–488

error analysis and, 490–493
Triangle inequality, AP-5
Trigonometric functions, 10

angles, 22–23
derivatives of, 155–159
graphs of, 25, 32–34

transformations of, 27, 48
integrals of, 462–466
inverse, 46–47, 186–190
periodicity of, 25
six basic, 23–24

Trigonometric identities, 25
Trigonometric substitutions, 467–470
Triple integrals, in cylindrical coordinates,

893–897
properties of, 877–878, 883
in rectangular coordinates, 877–883
in spherical coordinates, 897–901
substitutions in, 909–912

Triple scalar product (box product), 703–704
Tuning fork data, 4
Two-dimensional vectors, component form of, 684
Two-path test for nonexistence of limit, 778
Two-sided limits, 85

proof of, AP-21
Two-sided surface, 974

Unbounded intervals, 6
Unbounded region, 767
Unbounded sequence, 557
Undetermined coefficients, 472
Unified theory, 998
Union of set, AP-2
Unit binormal vector, 752
Unit circle, AP-14
Unit normal vector, 748
Unit step functions, limits and, 68
Unit tangent vector, 744–745, 756
Unit vectors, definition of, 687

writing vectors in terms of, 687–688
Universal gravitational constant, 758
Upper bound, 318, AP-23
Upper sums, 298

Index I-13
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Value(s), absolute, AP-4–AP-6, AP-30
average, 320–321
extreme, 222–226, 820–826
of function, 2–3, 882–883
of improper integral, 496, 499
local maximum, 224, 821
local minimum, 224, 821

Variable force, along curve, 930–931
along line, 393–394

Variable of integration, 284, 315
Variables, constrained, partial derivatives with,

842–846
dependent, 1, 842–843
dummy, 315
functions of several, 765–770, 779, 786–787,

799
independent, 1, 793, 795, 842–843
input, 765
intermediate, 794–795
output, 765
proportional, 7
thickness, 377–378
three, functions of, 768–770, 807–808

Chain Rule for, 795
two, functions of, 766–767, 770, 789

Chain Rule for, 793–795
independent, and three intermediate, 

796
limits for, 773–777
linearization of, 812–814, 816
partial derivatives of, 782–784
Taylor’s formula for, 838–841

Vector equations, for curves in space, 725
for lines, 706, 707–708
of plane, 709
for projectile motion, 735–737

Vector fields, 926–927
conservative, 938, 942–943
continuous, 926
curl of, 980
differentiable, 926
divergence of, 951–952
electric, 938
flux density of, 951
gradient, 927–928, 940–941
gravitational, 938
integration in, 919–999
and line integrals, 925–935
line integrals of, definition of, 928
potential function for, 939

Vector functions, 725–731
antiderivatives of, 733
of constant length, 731
continuity of, 726–727
definite integral of, 734–735
derivatives of, definition of, 728
differentiable, 728
differentiation rules for, 729–732
indefinite integral of, 733–734
integrals of, 733–738
limits of, 726–727

Vector product. See Cross product
Vector-valued functions. See Vector functions
Vectors, 683–690

acceleration, 729, 752
addition of, 685–686, 693

algebra operations with, 685–687
angle between, 692–694
applications of, 689–690
binormal, of curve, 752
component form of, 683–685
coplanar, 687
cross product, as area of parallelogram, 701

in component form, 701–703
definition of, 700
as determinant, 701–703
right-hand rule for, 700
of two vectors in space, 700–701

curl, 980–981
definition of, 683
direction of, 687
dot product, definition of, 692
equality of, 683
and geometry in space, 678–717
gradient, 804
in gravitational field, 926
i-component of, 687
initial point of, 683
j-component of, 687
k-component of, 687
length (magnitude) of, 683, 685–686
in navigation, 689
normal, of curve, 750–751
notation for, 683
parallel, 700
perpendicular (orthogonal), 694–695
in physics and engineering, 689–690
position, standard, 683–684
principal unit normal, 748–749, 756
projection of, 695–697
resultant, 685–686
scalar multiplication of, 685–686
standard position, for a point, 683–684
standard unit, 687
subtraction (difference) of, 686
tangent, of curve, 728
terminal point of, 683
three-dimensional, 684
torque, 703
Triple scalar product of, 703–704
two-dimensional, 684, 694
unit, definition of, 687–688

derivative in direction of, 803
writing vectors in terms of, 687–688

unit binormal, 752
unit normal, 750
unit tangent, 744–745
velocity, 683, 729
zero vector, 684

Velocity, 146
along space curve, 729
angular, of rotation, 985
average, 146
free fall and, 148
instantaneous, 146–147
in polar coordinates, 757–760
and position, from acceleration, 234
resistance proportional to, motion with,

528–529
terminal, 539

Velocity fields, circulation for, 932–933
flow integral, 932–933

Velocity function, 302, 729
acceleration and, 234, 729

Vertical asymptotes, 103, 111–112. See also
Asymptotes

definition of, 111
Vertical flat plate, integral for fluid force on, 398
Vertical line test, 4–5
Vertical scaling and reflecting formulas, 17
Vertical shift of function, 16
Vertical strip, 374, 405
Vertical tangents, 130
Viewing windows, 30–33
Voltage, peak, 341
Volume, of cylinder, 363

differential, in cylindrical coordinates, 894
in spherical coordinates, 898

by disks for rotation about axis, 366
double integrals as, 855, 856
by iterated integrals, 860–861
Pappus’s Theorem for, 410
of pyramid, 364–365
of region in space, 878
by slicing, 363–369
of solid region, 860–863
of solid with known cross-section, 364
triple integrals as, 878
using cross-sections, 363–370
using cylindrical shells, 374–379
by washers for rotation about axis, 369

Washer method, 369–370, 379
Wave equation, 792
Weierstrass, Karl, 502
Weight-density, of fluid, 396–397
Whirlpool effect, 952
Windows, graphing, 30–33
Work, by constant force, 393

and fluid forces, 393–398
by force over curve in space, 930–932
by force through displacement, 697
and kinetic energy, 400
in pumping liquids, 396
by variable force along curve, 931
by variable force along line, 393–394

x-coordinate, AP-10
x-intercept, AP-13
x-limits of integration, 880, 882
xy-plane, 542, 678

solution curves in, 536
xz-plane, 678

y, integration with respect to, 349–350
, graphing of, 248–250

length of, 382–384, 641
y-axis, revolution about, 390–391
y-coordinate, AP-10
y-intercept, AP-13
y-limits of integration, 879, 881
yz-plane, 678

z-limits of integration, 879, 880, 881, 895
Zero denominators, algebraical elimination of,

70
Zero vector, 684
Zero Width Interval Rule, 317, 418

y = f (x)

I-14 Index
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Basic Forms

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

Forms Involving 

21.

22.

23. 24.

25. 26.

27. 28.
L

2ax + b
x   dx = 22ax + b + b

L

dx

x2ax + bL
A2ax + b Bn dx =

2
a 
A2ax + b Bn + 2

n + 2
+ C, n Z -2

L

dx
xsax + bd

=
1
b

 ln ` x
ax + b

` + C
L

xsax + bd-2 dx =
1
a2 c ln ƒ ax + b ƒ +

b
ax + b

d + C

L
xsax + bd-1 dx =

x
a -

b
a2  ln ƒ ax + b ƒ + C

L
sax + bd-1 dx =

1
a ln ƒ ax + b ƒ + C

L
xsax + bdn dx =

sax + bdn + 1

a2  cax + b
n + 2

-
b

n + 1
d + C, n Z -1, -2

L
sax + bdn dx =

sax + bdn + 1

asn + 1d
+ C, n Z -1

ax � b

L
 

dx

2x2
- a2

= cosh-1 
x
a + C  sx 7 a 7 0d

L
 

dx

2a2
+ x2

= sinh-1 
x
a + C  sa 7 0d

L
 

dx

x2x2
- a2

=
1
a sec-1 `  xa ` + C

L
 

dx
a2

+ x2 =
1
a tan-1 

x
a + C

L
 

dx

2a2
- x2

= sin-1 
x
a + C

L
 cosh x dx = sinh x + C

L
 sinh x dx = cosh x + C 

L
 cot x dx = ln ƒ sin x ƒ + C

 
L

 tan x dx = ln ƒ sec x ƒ + C
L

 csc x cot x dx = -csc x + C

L
 sec x tan x dx = sec x + C

L
 csc2 x dx = -cot x + C

L
 sec2 x dx = tan x + C

L
 cos x dx = sin x + C

L
 sin x dx = -cos x + C

L
ax dx =

ax

ln a
+ C  sa 7 0, a Z 1d

L
ex dx = ex

+ C
L

 
dx
x = ln ƒ x ƒ + C

L
 xn dx =

xn + 1

n + 1
+ C  sn Z -1d

L
k dx = kx + C sany number kd

T-1

A BRIEF TABLE OF INTEGRALS
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29. (a) (b)

30. 31.

Forms Involving 

32. 33.

34.

35.

36.

37.

38.

39.

40. 41.

Forms Involving 

42. 43.

44. 45.

46.

47. 48.

49. 50.

51.

Forms Involving 

52.

53.
L
2x2

- a2  dx =
x
2
2x2

- a2
-

a2

2
 ln ƒx + 2x2

- a2
ƒ + C

2x2
- a2

ƒ + C= ln ƒx +

L
 

dx

2x2
- a2

x2 � a2

L
 

dx

x22a2
- x2

= -

2a2
- x2

a2x
+ C

L
 

dx

x2a2
- x2

= -
1
a ln ` a + 2a2

- x2

x ` + C
L

 
x2

2a2
- x2

  dx =
a2

2
 sin-1 

x
a -

1
2

 x2a2
- x2

+ C

L
 
2a2

- x2

x2   dx = -sin-1 
x
a -

2a2
- x2

x + C
L

 
2a2

- x2

x   dx = 2a2
- x2

- a ln ` a + 2a2
- x2

x ` + C

L
x22a2

- x2  dx =
a4

8
 sin-1 

x
a -

1
8

 x2a2
- x2 sa2

- 2x2d + C

L
2a2

- x2  dx =
x
2
2a2

- x2
+

a2

2
 sin-1 

x
a + C

L
 

dx

2a2
- x2

= sin-1 
x
a + C

L
 

dx
sa2

- x2d2 =
x

2a2sa2
- x2d

+
1

4a3 ln ` x + a
x - a ` + C

L
 

dx
a2

- x2 =
1

2a
 ln ` x + a

x - a ` + C

a2 � x2

L
 

dx

x22a2
+ x2

= -

2a2
+ x2

a2x
+ C

L
 

dx

x2a2
+ x2

= -
1
a ln ` a + 2a2

+ x2

x ` + C

L
 

x2

2a2
+ x2

  dx = -
a2

2
 ln Ax + 2a2

+ x2 B +

x2a2
+ x2

2
+ C

 -

2a2
+ x2

x + C
L

 
2a2

+ x2

x2   dx = ln Ax + 2a2
+ x2 B

L
 
2a2

+ x2

x   dx = 2a2
+ x2

- a ln ` a + 2a2
+ x2

x ` + C

L
x22a2

+ x2 dx =
x
8

 sa2
+ 2x2d2a2

+ x2
-

a4

8
  ln Ax + 2a2

+ x2 B + C

+  
a2

2
 ln Ax + 2a2

+ x2 B + C
L
2a2

+ x2 dx =
x
2
2a2

+ x2

L
 

dx

2a2
+ x2

= sinh-1 
x
a + C =  ln Ax + 2a2

+ x2 B + C

L
 

dx
sa2

+ x2d2 =
x

2a2sa2
+ x2d

+
1

2a3 tan-1 
x
a + C

L
 

dx
a2

+ x2 =
1
a tan-1 

x
a + C

a2 � x2

L

dx

x22ax + b
= -

2ax + b
bx

-
a
2bL

dx

x2ax + b
+ C

L

2ax + b

x2   dx = -

2ax + b
x +

a
2L

dx

x2ax + b
+ C

L

dx

x2ax - b
=

2

2b
 tan-1A

ax - b
b

+ C
L

dx

x2ax + b
=

1

2b
 ln ` 2ax + b - 2b

2ax + b + 2b
` + C

T-2 A Brief Table of Integrals

7001_ThomasET_BTIpT1-T6.qxd  11/3/09  12:17 PM  Page 2



54.

55.

56.

57.

58.

59.

60.

61. 62.

Trigonometric Forms

63. 64.

65. 66.

67.

68.

69. (a)

(b)

(c)

70. 71.

72. 73.

74.

75.

76.
m - 1
m + n 

L
 sinn ax cosm - 2 ax dx, m Z -n sreduces cosm axd

L
 sinn ax cosm ax dx =

sinn + 1 ax cosm - 1 ax
asm + nd

+

 n Z -m sreduces sinn axd
L

 sinn ax cosm ax dx = -
sinn - 1 ax cosm + 1 ax

asm + nd
+

n - 1
m + n 

L
 sinn - 2 ax cosm ax dx,

L
 
sin ax
cos ax dx = -

1
a ln ƒ cos ax ƒ + C

L
 cosn ax sin ax dx = -

cosn + 1 ax
sn + 1da

+ C, n Z -1
L

 
cos ax
sin ax

 dx =
1
a ln ƒ sin ax ƒ + C

L
 sinn ax cos ax dx =

sinn + 1 ax
sn + 1da

+ C, n Z -1
L

sin ax cos ax dx = -
cos 2ax

4a
+ C

L
cos ax cos bx dx =

sinsa - bdx
2sa - bd

+

sinsa + bdx
2sa + bd

+ C, a2
Z b2

L
sin ax sin bx dx =

sinsa - bdx
2sa - bd

-

sinsa + bdx
2sa + bd

+ C, a2
Z b2

L
sin ax cos bx dx = -

cossa + bdx
2sa + bd

-

cossa - bdx
2sa - bd

+ C, a2
Z b2

L
 cosn ax dx =

cosn - 1 ax sin ax
na +

n - 1
n
L

 cosn - 2 ax dx

L
 sinn ax dx = -

sinn - 1 ax cos ax
na +

n - 1
n
L

 sinn - 2 ax dx

L
 cos2 ax dx =

x
2

+
sin 2ax

4a
+ C

L
 sin2 ax dx =

x
2

-
sin 2ax

4a
+ C

L
cos ax dx =

1
a sin ax + C

L
sin ax dx = -

1
a cos ax + C

L
 

dx

x22x2
- a2

=

2x2
- a2

a2x
+ C

L
 

dx

x2x2
- a2

=
1
a sec-1 ` xa ` + C =

1
a cos-1 ` ax ` + C

L
 

x2

2x2
- a2

  dx =
a2

2
 ln ƒx + 2x2

- a2
ƒ +

x
2
2x2

- a2
+ C

L
 
2x2

- a2

x2   dx = ln ƒx + 2x2
- a2

ƒ -

2x2
- a2

x + C

L
 
2x2

- a2

x   dx = 2x2
- a2

- a sec-1 ` xa ` + C

L
x22x2

- a2  dx =
x
8

 s2x2
- a2d2x2

- a2
-

a4

8
 ln ƒx + 2x2

- a2
ƒ + C

L
x A2x2

- a2 Bn  dx =

A2x2
- a2 Bn + 2

n + 2
+ C, n Z -2

L
 

dx

A2x2
- a2 Bn =

x A2x2
- a2 B2 - n

s2 - nda2 -
n - 3

sn - 2da2
L

 
dx

A2x2
- a2 Bn - 2, n Z 2

L
A2x2

- a2 Bn  dx =

x A2x2
- a2 Bn

n + 1
-

na2

n + 1L
A2x2

- a2 Bn - 2
 dx, n Z -1

A Brief Table of Integrals T-3
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77.

78.

79. 80.

81.

82.

83. 84.

85. 86.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

97. 98.

99.

100.

101. 102.

Inverse Trigonometric Forms

103. 104.

105.

106.

107.

108.
L

xn tan-1 ax dx =
xn + 1

n + 1
 tan-1 ax -

a
n + 1

 
L

 
xn + 1 dx

1 + a2x2, n Z -1

L
xn cos-1 ax dx =

xn + 1

n + 1
 cos-1 ax +

a
n + 1

 
L

 
xn + 1 dx

21 - a2x2
, n Z -1

L
xn sin-1 ax dx =

xn + 1

n + 1
 sin-1 ax -

a
n + 1

 
L

 
xn + 1 dx

21 - a2x2
, n Z -1

L
 tan-1 ax dx = x tan-1 ax -

1
2a

 ln s1 + a2x2d + C

L
 cos-1 ax dx = x cos-1 ax -

1
a21 - a2x2

+ C
L

 sin-1 ax dx = x sin-1 ax +
1
a21 - a2x2

+ C

L
 cscn ax cot ax dx = -

cscn ax
na + C, n Z 0

L
 secn ax tan ax dx =

secn ax
na + C, n Z 0

L
 cscn ax dx = -

cscn - 2 ax cot ax
asn - 1d

+
n - 2
n - 1L

 cscn - 2 ax dx, n Z 1

L
 secn ax dx =

secn - 2 ax tan ax
asn - 1d

+
n - 2
n - 1L

 secn - 2 ax dx, n Z 1

L
 csc2 ax dx = -

1
a cot ax + C

L
 sec2 ax dx =

1
a tan ax + C

L
csc ax dx = -

1
a ln ƒ csc ax + cot ax ƒ + C

L
sec ax dx =

1
a ln ƒ sec ax + tan ax ƒ + C

L
 cotn ax dx = -

cotn - 1 ax
asn - 1d

-

L
 cotn - 2 ax dx, n Z 1

L
 tann ax dx =

tann - 1 ax
asn - 1d

-

L
 tann - 2 ax dx, n Z 1

L
 cot2 ax dx = -

1
a cot ax - x + C

L
 tan2 ax dx =

1
a tan ax - x + C

L
cot ax dx =

1
a ln ƒ sin ax ƒ + C

L
tan ax dx =

1
a ln ƒ sec ax ƒ + C

L
xn cos ax dx =

xn

a  sin ax -
n
a
L

xn - 1 sin ax dx
L

xn sin ax dx = -
xn

a  cos ax +
n
a
L

xn - 1 cos ax dx

L
x cos ax dx =

1
a2 cos ax +

x
a sin ax + C

L
x sin ax dx =

1
a2 sin ax -

x
a cos ax + C

L
 

dx
1 - cos ax

= -
1
a cot 

ax
2

+ C
L

 
dx

1 + cos ax
=

1
a tan 

ax
2

+ C

 b2
6 c2

L
 

dx
b + c cos ax

=
1

a2c2
- b2

 ln ` c + b cos ax + 2c2
- b2 sin ax

b + c cos ax
` + C,

L
 

dx
b + c cos ax

=
2

a2b2
- c2

 tan-1 cA
b - c
b + c

 tan 
ax
2
d + C, b2

7 c2

L
 

dx
1 - sin ax

=
1
a tan ap

4
+

ax
2
b + C

L
 

dx
1 + sin ax

= -
1
a tan ap

4
-

ax
2
b + C

 b2
6 c2

L
 

dx
b + c sin ax

=
-1

a2c2
- b2

 ln ` c + b sin ax + 2c2
- b2 cos ax

b + c sin ax
` + C,

L
 

dx
b + c sin ax

=
-2

a2b2
- c2

 tan-1 cA
b - c
b + c

 tan ap
4

-
ax
2
b d + C, b2

7 c2

T-4 A Brief Table of Integrals
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Exponential and Logarithmic Forms

109. 110.

111. 112.

113.

114.

115. 116.

117.

118. 119.

Forms Involving 

120.

121.

122.

123.

124.

125.

126.

127. 128.

Hyperbolic Forms

129. 130.

131. 132.

133.
L

 sinhn ax dx =
sinhn - 1 ax cosh ax

na -
n - 1

n
L

 sinhn - 2 ax dx, n Z 0

L
 cosh2 ax dx =

sinh 2ax
4a

+
x
2

+ C
L

 sinh2 ax dx =
sinh 2ax

4a
-

x
2

+ C

L
cosh ax dx =

1
a sinh ax + C

L
sinh ax dx =

1
a cosh ax + C

L
 

dx

x22ax - x2
= -

1
a A

2a - x
x + C

L
 

x dx

22ax - x2
= a sin-1 ax - a

a b - 22ax - x2
+ C

L
 
22ax - x2

x2  dx = -2 A
2a - x

x - sin-1 ax - a
a b + C

L
 
22ax - x2

x   dx = 22ax - x2
+ a sin-1 ax - a

a b + C

L
x22ax - x2  dx =

sx + ads2x - 3ad22ax - x2

6
+

a3

2
 sin-1 ax - a

a b + C

L
 

dx

A22ax - x2 Bn =

sx - ad A22ax - x2 B2 - n

sn - 2da2 +
n - 3

sn - 2da2
L

 
dx

A22ax - x2 Bn - 2

L
A22ax - x2 Bn  dx =

sx - ad A22ax - x2 Bn
n + 1

+
na2

n + 1L
A22ax - x2 Bn - 2

 dx

L
22ax - x2  dx =

x - a
2
22ax - x2

+
a2

2
 sin-1 ax - a

a b + C

L
 

dx

22ax - x2
= sin-1 ax - a

a b + C

22ax � x2, a>0

L
 

dx
x ln ax

=  ln ƒ ln ax ƒ + C
L

x-1sln axdm dx =

sln axdm + 1

m + 1
+ C, m Z -1

L
xnsln axdm dx =

xn + 1sln axdm

n + 1
-

m
n + 1

 
L

xnsln axdm - 1 dx, n Z -1

L
ln ax dx = x ln ax - x + C

L
eax cos bx dx =

eax

a2
+ b2 sa cos bx + b sin bxd + C

L
eax sin bx dx =

eax

a2
+ b2 sa sin bx - b cos bxd + C

L
xnbax dx =

xnbax

a ln b
-

n
a ln b

 
L

xn - 1bax dx, b 7 0, b Z 1

L
xneax dx =

1
a xneax

-
n
a
L

xn - 1eax dx
L

xeax dx =
eax

a2  sax - 1d + C

L
bax dx =

1
a 

bax

ln b
+ C, b 7 0, b Z 1

L
eax dx =

1
a eax

+ C

A Brief Table of Integrals T-5
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134.

135. 136.

137. 138.

139. 140.

141. 142.

143.

144.

145. 146.

147. 148.

149.

150.

151. 152.

153.

154.

Some Definite Integrals

155. 156.

157.
L

p>2
0

 sinn x dx =

L

p>2
0

 cosn x dx = d 1 # 3 # 5 # Á # sn - 1d
2 # 4 # 6 # Á # n

# p
2

, if n is an even integer Ú2

2 # 4 # 6 # Á # sn - 1d
3 # 5 # 7 # Á # n

, if n is an odd integer Ú3

L

q

0
e-ax2

 dx =
1
2A
p
a , a 7 0

L

q

0
xn - 1e-x dx = ≠snd = sn - 1d!, n 7 0

L
eax cosh bx dx =

eax

2
 c ebx

a + b
+

e-bx

a - b
d + C, a2

Z b2

L
eax sinh bx dx =

eax

2
 c ebx

a + b
-

e-bx

a - b
d + C, a2

Z b2

L
 cschn ax coth ax dx = -

cschn ax
na + C, n Z 0

L
 sechn ax tanh ax dx = -

sechn ax
na + C, n Z 0

L
 cschn ax dx = -

cschn - 2 ax coth ax
sn - 1da

-
n - 2
n - 1

 
L

 cschn - 2 ax dx, n Z 1

L
 sechn ax dx =

sechn - 2 ax tanh ax
sn - 1da

+
n - 2
n - 1

 
L

 sechn - 2 ax dx, n Z 1

L
 csch2 ax dx = -

1
a coth ax + C

L
 sech2 ax dx =

1
a tanh ax + C

L
 csch ax dx =

1
a ln ` tanh 

ax
2
` + C

L
 sech ax dx =

1
a sin-1 stanh axd + C

L
 cothn ax dx = -

cothn - 1 ax
sn - 1da

+

L
 cothn - 2 ax dx, n Z 1

L
 tanhn ax dx = -

tanhn - 1 ax
sn - 1da

+

L
 tanhn - 2 ax dx, n Z 1

L
 coth2 ax dx = x -

1
a coth ax + C

L
 tanh2 ax dx = x -

1
a tanh ax + C

L
coth ax dx =

1
a ln ƒ sinh ax ƒ + C

L
tanh ax dx =

1
a ln scosh axd + C

L
xn cosh ax dx =

xn

a  sinh ax -
n
a
L

xn - 1 sinh ax dx
L

xn sinh ax dx =
xn

a  cosh ax -
n
a
L

xn - 1 cosh ax dx

L
x cosh ax dx =

x
a sinh ax -

1
a2 cosh ax + C

L
x sinh ax dx =

x
a cosh ax -

1
a2 sinh ax + C

L
 coshn ax dx =

coshn - 1 ax sinh ax
na +

n - 1
n
L

 coshn - 2 ax dx, n Z 0

T-6 A Brief Table of Integrals
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Trigonometry Formulas

1. Definitions and Fundamental Identities

Sine:

Cosine:

Tangent:

2. Identities

 cos sA - Bd = cos A cos B + sin A sin B

 cos sA + Bd = cos A cos B - sin A sin B

 sin sA - Bd = sin A cos B - cos A sin B

 sin sA + Bd = sin A cos B + cos A sin B

cos2 u =

1 + cos 2u
2

, sin2 u =

1 - cos 2u
2

sin 2u = 2 sin u cos u, cos 2u = cos2 u - sin2 u

sin2 u + cos2 u = 1, sec2 u = 1 + tan2 u, csc2 u = 1 + cot2 u

sin s -ud = -sin u, cos s -ud = cos u

tan u =

y
x =

1
cot u

cos u =
x
r =

1
sec u

sin u =

y
r =

1
csc u r

0 x

y
�

P(x, y)

y

x

 cos A - cos B = -2 sin 
1
2

 sA + Bd sin 
1
2

 sA - Bd

 cos A + cos B = 2 cos 
1
2

 sA + Bd cos 
1
2

 sA - Bd

 sin A - sin B = 2 cos 
1
2

 sA + Bd sin 
1
2

 sA - Bd

 sin A + sin B = 2 sin 
1
2

 sA + Bd cos 
1
2

 sA - Bd

 sin A cos B =
1
2

 sin sA - Bd +
1
2

 sin sA + Bd

 cos A cos B =
1
2

 cos sA - Bd +
1
2

 cos sA + Bd

 sin A sin B =
1
2

 cos sA - Bd -
1
2

 cos sA + Bd

 sin aA +
p
2
b = cos A,  cos aA +

p
2
b = -sin A

 sin aA -
p
2
b = -cos A,  cos aA -

p
2
b = sin A

 tan sA - Bd =
tan A - tan B

1 + tan A tan B

 tan sA + Bd =
tan A + tan B

1 - tan A tan B

Trigonometric Functions

Radian Measure

s

r

1
θ

Circle of radius r

Unit circle

180° = p radians .

s
r =

u

1
= u   or   u =

s
r,

�2

45

45 90
1

1

1

1 1

1

�
2

�
4

�
3

�
2

�
6

�
4

2 2

30

9060

Degrees Radians

�2

�3�3

The angles of two common triangles, in
degrees and radians.

x

y

y � cos x

Domain: (–�, �)
Range:    [–1, 1]

0–� � 2�–�
2

�
2

3�
2

y � sin x

x

y

0–� � 2�–�
2

�
2

3�
2

y � sin x

Domain: (–�, �)
Range:    [–1, 1]

y

x

y � tan x

3�
2

– –� –�
2

0 �
2

� 3�
2

Domain: All real numbers except odd
               integer multiples of �/2 

Domain: All real numbers except odd
               integer multiples of �/2 

Range:    (–�, �)

x

y
y � csc x

0

1

–� � 2�–�
2

�
2

3�
2

Domain: x � 0, ��, �2�, . . .
Range:    (–�, –1] h [1, �)

y

x

y � cot x

0

1

–� � 2�–�
2

�
2

3�
2

Domain: x � 0, ��, �2�, . . .
Range:    (–�, �)

x

y
y � sec x

3�
2

– –� –�
2

0

1

�
2

� 3�
2

Range:    (–�, –1] h [1, �)
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Taylor Series

Binomial Series

where

 am
k
b =

msm - 1d Á sm - k + 1d
k!

  for k Ú 3.am
1
b = m, am

2
b =

msm - 1d
2!

 ,

 = 1 + a

q

k = 1
am

k
bxk, ƒ x ƒ 6 1,

+

msm - 1dsm - 2d Á sm - k + 1dxk

k!
+

Á s1 + xdm
= 1 + mx +

msm - 1dx2

2!
+

msm - 1dsm - 2dx3

3!
+

Á

 ƒ x ƒ … 1tan-1 x = x -
x3

3
+

x5

5
-

Á
+ s -1dn 

x2n + 1

2n + 1
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

2n + 1
 ,

= 2a

q

n = 0
 

x2n + 1

2n + 1
 , ƒ x ƒ 6 1ln  

1 + x
1 - x

= 2 tanh-1 x = 2 ax +
x3

3
+

x5

5 +
Á

+
x2n + 1

2n + 1
+

Á b

-1 6 x … 1ln s1 + xd = x -
x2

2
+

x3

3
-

Á
+ s -1dn - 1 

xn

n +
Á

= a

q

n = 1
 
s -1dn - 1xn

n  ,

cos x = 1 -
x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
+

Á
= a

q

n = 0
 
s -1dnx2n

s2nd!
 , ƒ x ƒ 6 q

 ƒ x ƒ 6 qsin x = x -
x3

3!
+

x5

5!
-

Á
+ s -1dn 

x2n + 1

s2n + 1d!
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

s2n + 1d!
 ,

ex
= 1 + x +

x2

2!
+

Á
+

xn

n!
+

Á
= a

q

n = 0
 
xn

n!
 , ƒ x ƒ 6 q

1
1 + x

= 1 - x + x2
-

Á
+ s -xdn

+
Á

= a

q

n = 0
s -1dnxn, ƒ x ƒ 6 1

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á

= a

q

n = 0
 x

n, ƒ x ƒ 6 1

SERIES

Tests for Convergence of Infinite Series

1. The nth-Term Test: Unless the series diverges.

2. Geometric series: converges if otherwise it
diverges.

3. p-series: converges if otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test, Ratio
Test, or Root Test. Try comparing to a known series with the
Comparison Test or the Limit Comparison Test.

5. Series with some negative terms: Does converge? If
yes, so does since absolute convergence implies con-
vergence.

6. Alternating series: converges if the series satisfies the
conditions of the Alternating Series Test.

gan

gan

g ƒ an ƒ

p 7 1;g1>np

ƒ r ƒ 6 1;garn

an : 0,
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Vector Triple Products

u * sv * wd = su # wdv - su # vdw

su * vd # w = sv * wd # u = sw * ud # v

Formulas for Grad, Div, Curl, and the Laplacian
The Fundamental Theorem of Line Integrals

1. Let be a vector field whose components are
continuous throughout an open connected region D in space. Then
there exists a differentiable function ƒ such that

if and only if for all points A and B in D the value of is inde-
pendent of the path joining A to B in D.

2. If the integral is independent of the path from A to B, its value is

L

B

A
F # dr = ƒsBd - ƒsAd .

1
B

A  F
# dr

F = §ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k

F = M i + N j + Pk

Green’s Theorem and Its Generalization to Three Dimensions

Normal form of Green’s Theorem:

Divergence Theorem:

Tangential form of Green’s Theorem:

Stokes’ Theorem:
F
C

 
F # dr =

6
S

 § * F # n ds

F
C

 
F # dr =

6
R

 § * F # k dA

6
S

F # n ds =

9
D

§
# F dV

F
C

 
F # n ds =

6
R 

§
# F dA

Gradient

Divergence

Curl

Laplacian §
2ƒ =

0
2ƒ

0x2 +

0
2ƒ

0y2 +

0
2ƒ

0z2

§ * F = 4 i j k

0

0x
0

0y
0

0z

M N P

4
§

# F =

0M
0x +

0N
0y +

0P
0z

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k

Cartesian (x, y, z)

i, j, and k are unit vectors

in the directions of

increasing x, y, and z.

and are the

scalar components of

F(x, y, z) in these

directions.

PM, N,

F1 * s§ * F2d + F2 * s§ * F1d
§sF1

# F2d = sF1
#
§dF2 + sF2

#
§dF1 +

§ * saF1 + bF2d = a§ * F1 + b§ * F2

§
# saF1 + bF2d = a§

# F1 + b§
# F2

§ * sgFd = g§ * F + §g * F

§
# sgFd = g§

# F + §g # F

§sƒgd = ƒ§g + g§ƒ

§ * s§ƒd = 0

s§ * Fd * F = sF #
§dF -

1
2

§sF # Fd

§ * s§ * Fd = §s§
# Fd - s§

#
§dF = §s§

# Fd - §
2F

s§
# F2dF1 - s§

# F1dF2

§ * sF1 * F2d = sF2
#
§dF1 - sF1

#
§dF2 +

§
# sF1 * F2d = F2

#
§ * F1 - F1

#
§ * F2

Vector Identities

In the identities here, ƒ and g are differentiable scalar functions, F, and are differentiable vector fields, and a and b are real
constants.

F2F1 ,

VECTOR OPERATOR FORMULAS (CARTESIAN FORM)
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BASIC ALGEBRA FORMULAS

Arithmetic Operations

Laws of Signs

Zero Division by zero is not defined.

If 

For any number a:

Laws of Exponents

If 

The Binomial Theorem For any positive integer n,

For instance,

Factoring the Difference of Like Integer Powers, 

For instance,

Completing the Square If 

The Quadratic Formula If and then

x =

-b ; 2b2
- 4ac

2a
.

ax2
+ bx + c = 0,a Z 0

ax2
+ bx + c = au 2

+ C au = x + sb>2ad, C = c -
b2

4a
b

a Z 0,

 a4
- b4

= sa - bdsa3
+ a2b + ab2

+ b3d .

 a3
- b3

= sa - bdsa2
+ ab + b2d, 

 a2
- b2

= sa - bdsa + bd, 

an
- bn

= sa - bdsan - 1
+ an - 2b + an - 3b2

+
Á

+ abn - 2
+ bn - 1d

n>1

 sa + bd3
= a3

+ 3a2b + 3ab2
+ b3, sa - bd3

= a3
- 3a2b + 3ab2

- b3.

 sa + bd2
= a2

+ 2ab + b2,         sa - bd2
= a2

- 2ab + b2

 +

nsn - 1dsn - 2d
1 # 2 # 3

 an - 3b3
+

Á
+ nabn - 1

+ bn .

 sa + bdn
= an

+ nan - 1b +

nsn - 1d
1 # 2

 an - 2b2

am

an = am - n,   a0
= 1,   a-m

=
1

am .

a Z 0,

 am>n
= 2n am

= A2n a Bmaman
= am + n,    sabdm

= ambm,    samdn
= amn,

a # 0 = 0 # a = 0

0
a = 0, a0

= 1, 0a
= 0a Z 0:

- s -ad = a, -a
b

= -
a
b

=
a

-b

a
b

+
c
d

=
ad + bc

bd
,   

a>b
c>d =

a
b

# d
c

asb + cd = ab + ac, a
b

# c
d

=
ac
bd
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GEOMETRY FORMULAS

Triangle Similar Triangles Pythagorean Theorem

Parallelogram Trapezoid Circle

Any Cylinder or Prism with Parallel Bases Right Circular Cylinder

Any Cone or Pyramid Right Circular Cone Sphere

V �    �r3, S � 4�r24
3

h

s

r

V �    �r2h1
3

S � �rs � Area of side

h
h

V �    Bh1
3

B
B

V � �r2h
S � 2�rh � Area of side

h

r

h
h

V � BhB
B

A � �r2,
C � 2�r

r

a

b

h

A �    (a � b)h1
2

h

b

A � bh

a

b
c

a2 � b2 � c2

b

c c' a'

b'

a

a'
a �

b'
b �

c'
c

b

h

A �    bh1
2

V = volume
S = lateral area or surface area,circumference,B = area of base, C =A = area,
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LIMITS

General Laws

If L, M, c, and k are real numbers and

Sum Rule:

Difference Rule:

Product Rule:

Constant Multiple Rule:

Quotient Rule:

The Sandwich Theorem

If in an open interval containing c, except
possibly at and if

then 

Inequalities

If in an open interval containing c, except possibly
at and both limits exist, then

Continuity

If g is continuous at L and then

lim
x:c

 g(ƒsxdd =  gsLd .

limx:c ƒsxd = L ,

lim
x:c

 ƒsxd … lim
x:c

 gsxd .

x = c ,
ƒsxd … gsxd

limx:c ƒsxd = L .

lim
x:c

 gsxd = lim
x:c

 hsxd = L ,

x = c ,
gsxd … ƒsxd … hsxd

lim
x:c

 
ƒsxd
gsxd

=
L
M

, M Z 0

lim
x:c

sk # ƒsxdd = k # L

lim
x:c

sƒsxd # gsxdd = L # M

lim
x:c

sƒsxd - gsxdd = L - M

lim
x:c

sƒsxd + gsxdd = L + M

lim
x:c

 ƒsxd = L    and    lim
x:c

 gsxd = M, then

Specific Formulas

If then

If P(x) and Q(x) are polynomials and then

If ƒ(x) is continuous at then

L’Hôpital’s Rule

If both and exist in an open interval I
containing a, and on I if then

assuming the limit on the right side exists.

lim
x:a

  
ƒsxd
gsxd

= lim
x:a

  
ƒ¿sxd
g¿sxd

,

x Z a ,g¿sxd Z 0
g¿ƒ¿ƒsad = gsad = 0,

lim
x:0

 
sin x

x = 1    and    lim
x:0

 
1 - cos x

x = 0

lim
x:c

 ƒsxd = ƒscd .

x = c ,

lim
x:c

 
Psxd
Qsxd

=

Pscd
Qscd

.

Qscd Z 0,

lim
x:c

 Psxd = Pscd = an cn
+ an - 1 cn - 1

+
Á

+ a0 .

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a0 ,
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DIFFERENTIATION RULES

General Formulas

Assume u and y are differentiable functions of x.

Trigonometric Functions

Exponential and Logarithmic Functions

 
d
dx

 ax
= ax ln a       

d
dx

 sloga xd =
1

x ln a

d
dx

 ex
= ex   

d
dx

 ln x =
1
x

 
d
dx

 scot xd = -csc2 x  
d
dx

 scsc xd = -csc x cot x

 
d
dx

 stan xd = sec2 x  
d
dx

 ssec xd = sec x tan x

 
d
dx

 ssin xd = cos x  
d
dx

 scos xd = -sin x

d
dx

 sƒsgsxdd = ƒ¿sgsxdd # g¿sxdChain Rule: 
d
dx

 xn
= nxn - 1Power: 

d
dx

 auy b =

y 
du
dx

- u 
dy
dx

y2Quotient: 
d
dx

 suyd = u 
dy
dx

+ y 
du
dx

Product: 
d
dx

 scud = c 
du
dx

Constant Multiple: 
d
dx

 su - yd =
du
dx

-
dy
dx

Difference:  

d
dx

 su + yd =
du
dx

+
dy
dx

Sum:  

d
dx

 scd = 0Constant: 
Inverse Trigonometric Functions

Hyperbolic Functions

Inverse Hyperbolic Functions

Parametric Equations

If and are differentiable, then

.y¿ =

dy
dx

=

dy>dt

dx>dt
 and d2y

dx2 =

dy¿>dt

dx>dt

y = gstdx = ƒstd

 
d
dx

 scoth-1 xd =
1

1 - x2  
d
dx

 scsch-1 xd = -
1

ƒ x ƒ21 + x2

 
d
dx

 stanh-1 xd =
1

1 - x2  
d
dx

 ssech-1 xd = -
1

x21 - x2

 
d
dx

 ssinh-1 xd =
1

21 + x2
   d

dx
 scosh-1 xd =

1

2x2
- 1

 
d
dx

 scoth xd = -csch2 x  
d
dx

 scsch xd = -csch x coth x

 
d
dx

 stanh xd = sech2 x  
d
dx

 ssech xd = -sech x tanh x

 
d
dx

 ssinh xd = cosh x  
d
dx

 scosh xd = sinh x

 
d
dx

 scot-1 xd = -
1

1 + x2  
d
dx

 scsc-1 xd = -
1

ƒ x ƒ2x2
- 1

 
d
dx

 stan-1 xd =
1

1 + x2  
d
dx

 ssec-1 xd =
1

ƒ x ƒ2x2
- 1

 
d
dx

 ssin-1 xd =
1

21 - x2
  

d
dx

 scos-1 xd = -
1

21 - x2
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The Fundamental Theorem of Calculus

Part 1 If ƒ is continuous on [a, b], then is continuous on
[a, b] and differentiable on (a, b) and its derivative is ƒ(x);

Part 2 If ƒ is continuous at every point of [a, b] and F is any antiderivative of ƒ
on [a, b], then

L

b

a
ƒsxd dx = Fsbd - Fsad.

F¿(x) =
d
dxL

x

a
ƒstd dt = ƒsxd.

Fsxd = 1
x

a ƒstd dt

General Formulas

Zero:

Order of Integration:

Constant Multiples:

Sums and Differences:

Additivity:

Max-Min Inequality: If max ƒ and min ƒ are the maximum and minimum values of ƒ on [a, b], then

Domination:

ƒsxd Ú 0 on [a, b] implies 
L

b

a
ƒsxd dx Ú 0

ƒsxd Ú gsxd on [a, b] implies 
L

b

a
ƒsxd dx Ú

L

b

a
gsxd dx

min ƒ # sb - ad …

L

b

a
ƒsxd dx …  max ƒ # sb - ad .

L

b

a
ƒsxd dx +

L

c

b
ƒsxd dx =

L

c

a
ƒsxd dx

L

b

a
sƒsxd ; gsxdd dx =

L

b

a
ƒsxd dx ;

L

b

a
gsxd dx

L

b

a
-ƒsxd dx = -

L

b

a
ƒsxd dx sk = -1d

L

b

a
kƒsxd dx = k

L

b

a
ƒsxd dx sAny number kd

L

a

b
ƒsxd dx = -

L

b

a
ƒsxd dx

L

a

a
ƒsxd dx = 0

Substitution in Definite Integrals

L

b

a
ƒsgsxdd # g¿sxd dx =

L

gsbd

gsad
ƒsud du

Integration by Parts

L

b

a
ƒsxdg¿sxd dx = ƒsxdgsxd Dab -

L

b

a
ƒ¿sxdgsxd dx

INTEGRATION RULES
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