
                     International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:12 No:05                                32 

 

                                                                                                                   121405-9696-IJECS-IJENS © October 2012 IJENS                                                                    
I J E N S 

 

Abstract—  In general, writing concurrent programs is 

extremely difficult because the multiplicity of possible 

interleaving of operations among threads means that program 

execution is non-deterministic. For this reason, program bugs 

may be difficult to reproduce. Furthermore, the complexity 

introduced by multiple threads and their potential interactions 

makes programs much more difficult to analyze and reason 

about. Fortunately, many concurrent programs including most 

GUI applications follow stylized design patterns that control the 

underlying complexity. 
  There are many features related to concurrent programming 

used in Windows operating system. This paper will illustrate the 

main features that used in Window Vista specifically. Concurrent 

programming concepts in Windows Vista differs from that used 

in the earliest releases of Windows operating system, this paper 

will explain these differences.    

Index Term—  Concurrent programming, Operating Systems, 

Threads, Windows Vista, Windows 7. 

I. INTRODUCTION 

In software implementations, concurrent execution is 

simulated by running multiple threads of execution within an 

operating system (OS) process. The rules that govern time 

multiplexing between threads of execution are called threading 

semantics. e mandates that threading is non-preemptive: the 

running thread can yield control, but control cannot be taken 

away. Threads in e yield control when they become blocked. 

Threads can block when they wait on, or synchronize to, a 

temporal expression (TE); attempt to perform a port operation 

that blocks; or attempt to access a shared resource that is 

occupied. The programmer can assume atomic execution for 

sequences of actions not containing these operations. 

Once a thread blocks, the runtime engine selects the next 

thread to run. This is called scheduling. Threads shall be 

scheduled to run as long as they are not blocked. When all 

threads are blocked, simulated time is advanced according to 

the mode of execution in effect. 

 

II. CONCURRENT PROGRAMMING & THREADS 

DEFINITIONS 

 Concurrent Programming: the act of running several 

programs apparently simultaneously, achieved by 

executing small sections from each program in 

turn.[1] 

 Concurrent computing is the concurrent 

(simultaneous) execution of multiple interacting 

computational tasks. These tasks may be 

                                                           
 

implemented as separate programs, or as a set of 

processes or threads created by a single program. 

The tasks may also be executing on a single 

processor, several processors in close proximity, or 

distributed across a network. Concurrent computing 

is related to parallel computing, but focuses more 

on the interactions between tasks. Correct 

sequencing of the interactions or communications 

between different tasks, and the coordination of 

access to resources that are shared between tasks, 

are key concerns during the design of concurrent 

computing systems.[2] 

 A Thread is runnable unless it executes a special 

operation requiring synchronization that waits until 

a particular condition occurs. If more than one 

thread is runnable, all but one thread may starve 

(make no progress because none of its operations 

are being executed) unless the language makes a 

fairness guarantee. A fairness guarantee states that 

the next operation in a runnable thread eventually 

will execute. The Java language specification 

currently makes no fairness guarantees but most 

Java Virtual Machines guarantee fairness.[3] 

 

 

 

 

 

 

 

Concurrent Programming in Windows Vista 

Hadeel Tariq Al-Rayes 
M.Sc. Computer Science 

 Basic Education College-Computer Science Department 

 Diyala University 

hadeelalrayes@yahoo.com  

Fig. 1. Asynchronous resource manager.[2] 

 

http://www.computing-dictionary.com/definition/program.html
http://www.computing-dictionary.com/definition/section.html
http://www.computing-dictionary.com/definition/FROM.html
http://www.computing-dictionary.com/definition/turn.html
mailto:hadeelalrayes@yahoo.com


                     International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:12 No:05                                33 

 

                                                                                                                   121405-9696-IJECS-IJENS © October 2012 IJENS                                                                    
I J E N S 

 

Fig. 2. Execution of Thread[2] 

III.  CONCURRENT ASPECTS OF PROGRAMMING 

  A concurrent program is a collection of processes that 

communicate by reading and writing from a shared memory. 

Processes in a such program often need to synchronize their 

actions. Synchronization between processes is classified as 

either cooperation or contention. A typical example for 

cooperation is the case in which there are two sets of 

processes, called the producers and the consumers, where the 

producers produce data items and then the consumers 

consume. Contention arises when several processes compete 

for exclusive use of shared resources. For example, the 

integrity of the data may be destroyed if two processes update 

a common file at the same time, and as a result, deposits and 

withdrawals could be lost, confirmed reservations might have 

disappeared, etc. In such cases it is sometimes essential to 

allow at most one process to use a given resource at any given 

time. The problem of concurrent program in practice is, how 

to resolve conflicts resulting when several processes are trying 

to use shared resources. Let’s take an example of a concurrent 

program, this program includes two threads, thread T1 sets up 

the balance for two accounts A and B, thread T2 transfers 50$ 

from A to B (Figure 3). Depending on the order of the 

commands in these two threads, the result of the module may 

be different. This is an data race error example appeared in 

concurrent programs.[3] 

 
Fig. 3. A Concurrent Programs 

IV. WHY CONCURRENCY? 

  There are many reasons why concurrency may be interesting 

to you: 

1-  You are programming in an environment where 

concurrency is already pervasive. This is common in 

real-time systems, OS programming, and server-side 

programming. It is the reason, for example, that most 

database programmers must become deeply familiar 

with the notion of a transaction before they can truly be 

effective at their jobs. 

2-  You need to maintain a responsive user interface (UI) 

while performing some compute- or I/O-intensive 

activity in response to some user input. In such cases, 

running this work on the UI thread will lead to poor 

responsiveness and frustrated end users. Instead, 

concurrency can be used to move work elsewhere, 

dramatically improving the responsiveness and user 

experience. 

3-  You'd like to exploit the asynchrony that already exists 

in the relationship between the CPU running your 

program and other hardware devices. (They are, after all, 

separately operating and independent pieces of 

hardware.) Windows and many device drivers cooperate 

to ensure that large I/O latencies do not severely impact 

program performance. Using these capabilities requires 

that you rewrite code to deal with concurrent 

orchestration of events. 

4-  Some problems are more naturally modeled using 

concurrency. Games, AI, and scientific simulations often 

need to model interactions among many agents that 

operate mostly independently of one another, much like 

objects in the real world. These interactions are 

inherently concurrent. Stream processing of real-time 

data feeds, where the data is being generated in the 

physical world, typically requires the use of concurrency. 

Telephony switches are inherently massively concurrent, 

leading to special purpose languages, such as Erlang, that 

deal specifically with concurrency as a first class 

concept. 

5-  You'd like to utilize the processing power made 

available by multiprocessor architectures, such as 

multicore, which requires a form of concurrency called 

parallelism to be used. This requires individual 

operations to be decomposed into independent parts that 

can run on separate processors.[4] 

 

V.  NEW CONCURRENT PROGRAMMING'S FEATURES 

IN WINDOWS VISTA 

 

1- On Windows Vista and Server 2008, a new feature 

called I/O Prioritization has been added. This 

regulates the scheduling of I/Os because contention 



                     International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:12 No:05                                34 

 

                                                                                                                   121405-9696-IJECS-IJENS © October 2012 IJENS                                                                    
I J E N S 

for the disk can artificially boost the priority of lower 

priority processes and threads by allowing them to 

interfere with higher priority ones. Five priorities are 

used: Critical, High, Medium, Low, and Very 

Low.[5] 

2- Assignment of priority to an I/O request is handled 

primarily by the OS and drivers, although you have 

some control over it by assigning thread priorities. By 

default, all 1/ 0 under a priority of Medium, but you 

may pass the value 

PROCESS_MODE_BACKGROUND_BEGIN to 

SetPriorityClass to lower the I/O Priority to Very 

Low, and 

PROCESS_MODE_BACKGROUND_END to revert 

it. Similarly, you can pass 

THREAD_MODE_BACKGROUND_BEGIN to the 

SetThreadPriority function to lower I/O Priority for 

that particular thread, and 

THREAD_MODE_BACKGROUND_END to revert 

this change. This is used by programs such as the 

Windows Search Indexer to prevent it from 

interfering with other interactive applications. 

3- Modifications to the thread scheduler's quantum 

accounting algorithm were made in Windows Vista 

and Server 2008. Two problems existed on previous 

versions of Windows that could lead to unfairness 

and unpredictability in the way that thread execution 

times were measured. The first is that interrupts that 

executed in the context of a thread would count 

towards that thread's quantum. Say that a thread's 

quantum was 15 milliseconds and 5 milliseconds of 

that time were spent executing interrupts; in this case, 

the thread would only be running its code for 10 

milliseconds. 

4- Vista no longer accounts for interrupt time when 

deciding whether to switch out a thread. The second 

problem was that the scheduler didn't account for 

threads being scheduled in the middle of a quantum 

interval. 

5- The OS uses a timer interrupt routine to account for 

execution time. If this timer was set to execute every 

15 milliseconds and some thread was scheduled in 

the middle of such an interval, say after 5 

milliseconds, then when the timer fired next the OS 

would charge the thread for the full 15 milliseconds, 

when in fact it only ran for 10 milliseconds. Vista 

prefers to undercharge threads instead. This same 

thread would run for nearly a full timer interval 

longer than it should-since the granularity of the 

timer routine remains the same-but ensures threads 

are not unfairly starved. 

6- As of Windows Vista, a new multimedia thread 

scheduler has been added to the system, called the 

multimedia class scheduler service (MMCSS). This is 

not really a thread scheduler per se, it's simply a 

service running in svchost.exe at a very high priority 

that monitors the activity of multimedia programs 

that have been registered with the system. It 

cooperates with them to boost priorities to ensure 

smoother multimedia playback. The service boosts 

threads inside of a multimedia program into the real-

time range while it is actively playing media, but 

throttles this boosting periodically to avoid starving 

other processes on the system. 

7- Windows Media Player 11 automatically registers 

itself, but any third party programs can also register 

programs with MMCSS. Programs do so by adding 

an entry to the 

KEY_LOCAL_MACHINE\Software\Microsoft\Win

dows 

NT\CurrentVersion\Multimedia\SystemProfile\Tasks 

registry key.[6] 

  

8- Windows Vista has a new dynamic spin count 

adjustment feature. While this is used inside the as, it 

is an undocumented feature. It's possible that this 

feature will be officially documented and supported 

in an upcoming Windows SDK, but that may not 

happen, so we wouldn't recommend taking a 

dependency on it. If the InitializeCriticalSectionEx 

API is used, passing a Flags value containing the 

RTLJRITICAL_SECTION_DYNAMIC_SPIN value, 

the resulting critical section will use a dynamic 

spinning algorithm. 

9- Keyed Events to the Rescue. As of Windows XP, this 

is no longer an issue.Windows contains a new kernel 

object type, called a keyed event, to handle low-

resource conditions. Keyed events are hidden inside 

the kernel and are not exposed directly, though we'll 

see that they are used heavily in the new Windows 

Vista synchronization primitives (as with condition 

variables and slim reader /writer locks). And they 

used by EnterCriticalSection when memory is not 

available to allocate a true event. Keyed events have 

improved quite a bit in Windows Vista. Instead of 

storing waiters in a linked list, they now use a hash 

table keyed by the key K, trading the possibility of 

hash collisions (and hence, some amount of 

contention unpredictability) in favor of improved 

lookup performance. This improvement led to 

performance good enough that it allows them to be 

used as the sole event mechanism for the new Vista 

slim reader /writer lock, condition variable, and one-

time initialization APIs. None of these new features 

use traditional events-they use keyed events 

exclusively, which is why the new primitives are so 

lightweight, often taking up only a pointer-sized bit 

of data and not requiring any dedicated kernel objects 

whatsoever. The improvement that keyed events offer 

to reliability and the alleviation of HANDLE and non 

pageable pressure is overall very welcome and will 

pave the way for new synchronization OS features in 

the future. They are accessible most directly with the 

condition variable APIs because they internally wrap 

access to the keyed event object. We'll get to those in 

a few more sections. 

10-  Windows Vista now offers a "slim" RWL with these 

precise characteristics. The .NET Framework offers 

two, one of which has been available since the .NET 

Framework 1.1, while the other is new with 3.5. 



                     International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:12 No:05                                35 

 

                                                                                                                   121405-9696-IJECS-IJENS © October 2012 IJENS                                                                    
I J E N S 

That's where the new Windows Vista condition 

variable feature comes in handy. It integrates with 

both critical sections and SRWLs to enable waiting 

and signaling on a logical condition variable related 

to a particular lock. As with critical sections, 

condition variables are local to a process and, as with 

SRWLs, they are extremely lightweight: each one is 

the size of a pointer, and uses keyed events as the 

sole waiting and signaling mechanism, meaning no 

allocation of separate kernel event objects is required. 

11- There is an important distinction between the Vista 

and legacy thread pools that will become apparent 

when we compare the APIs further. With the old 

thread pool, any callbacks that had to perform 

asynchronous I/O needed to get queued to a separate 

set of threads. That's because the pool reserved the 

right to retire ordinary callback threads while 

outstanding asynchronous I/O and APCs were 

running asynchronously with that thread, effectively 

canceling them. All of the threads in the Vista thread 

pool remain alive until asynchronous I/O operations 

and APCs have completed, so you need not worry 

about choosing one or the other. 

12- Before Windows Vista there was no way, other than 

the ERROR_ALREADY_FIBER error, to determine 

whether a thread had already been fiberized. The new 

IsThreadAFiber function allows you to inquire about 

this. If the thread has already been converted to a 

fiber, this function returns TRUE, and otherwise it 

returns FALSE.[7] 

13- Windows Vista Wait Chain Traversal (WCT). 

Windows Vista ships with a new set of Win32 APIs 

that fall under a single common feature, wait chain 

traversal, or WCT for short. WCT is meant to enable 

debuggers to capture wait graphs, much like what 

was shown earlier, in a nonintrusive way. 

Nonintrusive means that the debugged program need 

not be rewritten to support constructing an on 

demand wait graph: the WCT APIs gather and work 

with information already available in user-mode and 

the Windows kernel to produce a wait graph when 

requested to do so.[8] 

14- A new API was added to Windows Vista and Server 

2008 to take advantage of the fact that many I/Os use 

caches of OVERLAPPED data structures. When an 

I/O completes in the Windows kernel, it needs to lock 

the virtual memory pages containing the 

OVERLAPPEDs to guarantee they don't get paged 

out while devices are copying data to them. But all of 

this locking adds overhead to each I/O completion. 

The SetFileloOverlappedRange function tells the 

kernel to lock the memory associated with a 

particular file's OVERLAPPED structures, so that it 

can avoid this overhead on subsequent I/Os.[9] 

VI. RELATED WORKS 

1- "Concurrent Programming Method for Digital Signal 

Processing" 

    The task of programming concurrent systems is 

substantially more difficult than the task of programming 

sequential systems with respect to both correctness and 

efficiency. The tendency in development of embedded, DSP 

systems and processors are shifting to multi core and 

multiprocessor setups as well. The problem of easy 

concurrency and algorithm development is an important for 

embedded and DSP systems as well. The goal of this paper is 

to define and present a high level language that allows 

description and development of signal processing algorithms. 

With the usage of a domain specific language, we can create 

compact and easy to understand definition of algorithms. In 

the paper the authors present the advantages granted by DSL 

for DSP applications. The created definitions are hardware 

independent can be executed and functionally verified. 

Efficient code can be generated for various targets without 

porting. The design of the presented DSL allows code 

generation for multi-core targets in case of computing-

intensive algorithms, code generation for multiple streams, 

threads. Code reuse is supported by merging, re-grouping, and 

splitting of algorithms and groups of algorithms. [10]  

 

2- "A Middleware for Concurrent Programming in MPI 

Applications" 

   A wide range of computationally intensive applications such 

as information retrieval, on-line analytical processing and data 

mining inherently require concurrency, because concurrent 

data maintenance, query processing and multi-user operation 

are functional requirements. Therefore, concurrent 

programming is a prerequisite for such systems. However, 

existing tools for parallel programming fail to meet these 

demands for concurrency and the adoption of parallel 

processing for these application domains is thus hindered. In 

this paper, we discuss the use of threads and concurrent 

programming constructs in the state of the art in parallel 

programming tools and environments. 

We find that the necessary functionality is available, but often 

in an inconvenient and unreliable manner. Due to the fact that 

the programmability and maintainability of parallel programs 

is a major concern, we consider the existing solutions 

inadequate or insufficient. We argue that an additional layer of 

middleware for threads and inter-thread communication and 

synchronization is necessary to support the effective 

development of persistently deployed parallel services for our 

targeted application domain and present the MPI Threads 

(MPIT) interface specification. 

We give several real-world examples to demonstrate its use 

and present performance benchmarks to illustrate the cost of 

the additional layer of indirection.[11] 

 

3- "Design of an Empirical Study for Comparing the 

Usability of Concurrent Programming Languages" 

The recent turn towards multicore processing architectures has 

made concurrency an important part of mainstream software 

development. As a result, an increasing number of developers 

have to learn to write concurrent programs, a task that is 

known to be hard even for the expert. 

Language designers are therefore working on languages that 

promise to make concurrent programming “easier”. However, 

the claim that a new language is more usable than another 



                     International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:12 No:05                                36 

 

                                                                                                                   121405-9696-IJECS-IJENS © October 2012 IJENS                                                                    
I J E N S 

cannot be supported by purely theoretical considerations, but 

calls for empirical studies. In this paper, we present the design 

of a study to compare concurrent programming languages with 

respect to comprehending and debugging existing programs 

and writing correct new programs. A critical challenge for 

such a study is avoiding the bias that might be introduced 

during the training phase and when interpreting participants’ 

solutions.  

We address these issues by the use of self-study material and 

an evaluation scheme that exposes any subjective decisions of 

the corrector, or eliminates them altogether.We apply our 

design to a comparison of two object-oriented languages for 

concurrency, multithreaded Java and SCOOP (Simple 

Concurrent Object-Oriented Programming), in an academic 

setting. We obtain results in favor of SCOOP even though the 

study participants had previous training in writing 

multithreaded Java programs.[12] 

 

 

VII. CONCURRENCY IN WINDOWS 7 

Mainly, there are two new features in Windows 7: 

1. Support for more than 64 processors. 

2. User-Mode Scheduled Threads. 

Both of the new features author is going to talk about will be 

supported in the Microsoft Concurrency Runtime, which will 

be delivered as part of Visual Studio 10. 

An important note about each of these features is that they’re 

only supported on the 64-bit Windows 7 platform. 

1) More Than 64 Processors 

The most straightforward of these new features is Windows 

7’s support for more than 64 processors. With earlier 

Windows OS’s, even high end servers could only schedule 

threads among a maximum of 64 processors. Windows 7 will 

allow threads to run on more than 64 processors by allowing 

threads to be affinitized to both a processor group, and a 

processor index within that group. Each group can have up to 

64 processors, and Windows 7 supports a maximum of 4 

processor groups.  

However, unless you actively modify your application to 

affinitize work amongst other processor groups, you’ll still be 

stuck with a maximum of 64 processors. The good news is 

that if you use the Microsoft Concurrency Runtime on 

Windows 7, you don’t need to be concerned at all with these 

gory details. As always, the runtime takes care of everything 

for you, and will automatically determine the total amount of 

available concurrency (e.g., total number of cores), and utilize 

as many as it can during any parallel computation. This is an 

example of what we call a “light-up” scenario. Compile your 

Concurrency Runtime-enabled application once, and you can 

run it on everything, from your Core2-Duo up to your monster 

Win7 256-core server.[13] 

2) User Mode Scheduling 

User Mode Scheduled Threads (UMS Threads) is another 

Windows 7 feature that “lights up” in the Concurrency 

Runtime. 

As the name implies, UMS Threads are threads that are 

scheduled by a user-mode scheduler (like Concurrency 

Runtime’s scheduler), instead of by the kernel. Scheduling 

threads in user mode has a couple of advantages: 

1. A UMS Thread can be scheduled without a kernel 

transition, which can provide a performance boost. 

2. Full use of the OS’s quantum can be achieved if a UMS 

Thread blocks for any reason. 

To illustrate the 2nd point, let’s assume a very simple 

scheduler with a single work queue. In this example, I’ll also 

assume that we have 100 tasks that can be run in parallel on 2 

CPU’s. 

 

Here we’ve started with 100 items in our task queue, and two 

threads have picked up Task 1 and Task 2 and are running 

them in parallel. Unfortunately, Task 2 is going to block on a 

critical section. Obviously, we would like the scheduler (i.e. 

the Concurrency Runtime) to use CPU 2 to run the other 

queued tasks while Task 2 is blocked. Alas, with ordinary 

Win32 threads, the scheduler cannot tell the difference 

between a task that is performing a very long computation and 

a task that is simply blocked in the kernel. The end result is 

that until Task 2 unblocks, the Concurrency Runtime will not 

schedule any more tasks on CPU 2. Our 2-core machine just 

became a 1-core machine, and in the worst case, all 99 

remaining tasks will be executed serially on CPU 1. 

This situation can be improved somewhat by using the 

Concurrency Runtime’s cooperative synchronization 

primitives (critical_section, reader_writer_lock, event) instead 

of Win32’s kernel primitives. These runtime-aware primitives 

will cooperatively block a thread, informing the Concurrency 

Runtime that other work can be run on the CPU. In the above 

example, Task 2 will cooperatively block, but Task 3 can be 

run on another thread on CPU 2. All this involves several trips 

through the kernel to block one thread and unblock another, 

but it’s certainly better than wasting the CPU. 

The situation is improved even further on Windows 7 with 

UMS threads. When Task 2 blocks, the OS gives control back 

to Concurrency Runtime. It can now make a scheduling 

http://blogs.msdn.com/blogfiles/nativeconcurrency/WindowsLiveWriter/ConcurrencyRuntimeandWindows7_10409/ConcRT and Win7 UMS_2.jpg


                     International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:12 No:05                                37 

 

                                                                                                                   121405-9696-IJECS-IJENS © October 2012 IJENS                                                                    
I J E N S 

decision and create a new thread to run Task 3 from the task 

queue. The new thread is scheduled in user-mode by the 

Concurrency Runtime, not by the OS, so the switch is very 

fast. Now both CPU 1 and CPU 2 can now be kept busy with 

the remaining 99 non-blocking tasks in the queue. When Task 

2 gets unblocked, Win7 places its host thread back on a 

runnable list so that the Concurrency Runtime can schedule it 

– again, from user-mode – and Task 2 can be continued on any 

available CPU.  

You might say, “hey my task doesn’t do any kernel blocking, 

so does this still help me?” The answer is yes. First, it’s really 

difficult to know whether your task will block at all. If you 

call “new” or “malloc” you may block on a heap lock. Even if 

you didn’t block, the operation might page-fault. An I/O 

operation will also cause a kernel transition. All these 

occurrences can take significant time and can stall forward 

progress on the core upon which they occur. These are 

opportunities for the scheduler to execute additional work on 

the now-idle CPU. Windows 7 UMS Threads enables these 

opportunities, and the result is greater throughput of tasks and 

more efficient CPU utilization.  

Obviously the above example is highly simplified. A UMS 

Thread scheduler is an extremely complex piece of software to 

write, and managing state when an arbitrary page fault can 

swap you out is challenging to say the least. However, once 

again users of the Concurrency Runtime don’t have to be 

concerned with any of these gory details. Write your programs 

once using PPL or Agents, and your code will run using 

Win32 threads or UMS Threads.[14] 

VIII. CONCLUSIONS 

  Concurrency is a double-edged sword. It can be used to do 

amazing new things and to enable new compute-intensive 

experiences that will only become possible with the amount of 

computing power available in the next generation of 

microprocessor architecture. Concurrent programming is 

complex and hard to achieve. In most cases the parallelization 

of software is not a straightforward and easy task. The realized 

concurrent programs usually have safety and performance 

issues. And in some situations concurrency is unavoidable. 

But it must also be used responsibly so as not to negatively 

impact software robustness and reliability. This paper's aim is 

to help you decide when it is appropriate, in what ways it is 

appropriate, specially, and, once you've answered those 

questions for your situation, to aid you in developing, testing, 

and maintaining concurrent software in Windows Vista. 

The main advantages of Windows 7 in concurrency issues are: 

1. Support for more than 64 processors. 

2. User-Mode Scheduled Threads 

 

 

IX. REFERENCES 

[1] computer-dictionary.com. 
[2] Anita Sabo, Norbert Schramm, "Abstractions for Concurrent 

Programming in Embedded Systems " Polytechnical Engineering 

College, Subotica, Serbia UVA, Subotica, Serbia . (2011)   

[3] M. Ben-Ari. Principles of Concurrent and Distributed Programming, 

Second Edition. Addition Wesley, 2006.      
[4] http://www.cs.rice.edu/~cork/book/node96.html 

[5] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. 

Keutzer,D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, K. A. 
Yelick. The Landscape of Parallel Computing Research: A View from 

Berkeley, EECS. 

[6]  J. Larus. Spending Moore's Dividend. Microsoft Technical Report, 
MSR-TR-2008-69 (May 2008). 

[7] M. Russinovich. Inside the Windows Vista Kernel: Part 1. TechNet 

Magazine,http://www.microsoft.com/technet/technetmag/issues/2007 
/02/VistaKernel (2007). 

[8] R. Saccone, A. Taskov. Concurrency: Synchronization Primitives New 

to Windows Vista. MSDN Magazine (2007). 
[9]  Microsoft. I/O Prioritization in Windows Vista: Recommendations for 

Application, Driver, and Device Developers for Supporting I/O 

Prioritization in Windows Vista. Microsoft.com Whitepaper (2006).  
[10] Anita Sabo, Norbert Schramm, " Concurrent Programming Method for 

Digital Signal Processing " Polytechnical Engineering College, 

Subotica, Serbia, UVA, Subotica, Serbia. (2011) 
[11]  Tobias Berka, Helge Hagenauer, Nikolaos Papaspyrou, ” A Middleware 

for Concurrent Programming in MPI Applications " , Department of 

Computer Sciences, University of Salzburg , Austria. (2011) 

[12]  Sebastian Nanz,  Faraz Torshizi, " Design of an Empirical Study for 

Comparing the Usability of Concurrent Programming Languages", 

(2011) 
[13] http://www.microsoft.com/whdc/system/Sysinternals/MoreThan64proc.

mspx. 

 [14]    Don McCrady, "Concurrency Runtime and Windows 7",Parallel 

Programming in Native Code, PARALLEL PROGRAMMING USING C++ AMP, 
PPL AND AGENTS LIBRARIES.4 FEB 2009  

Author's biography 

Hadeel Tariq Ibrahim Al-Rayes. obtained her Bachelor in 

Computer Science from Baghdad University, College of 

Science and Master’s degrees in Computer 

Science/Information Technology from Iraqi Committee for 

computers and Informatic, Informatic Institute for 

Postgraduate Studies.Iraq,Baghdad. She is currently 

working as a head of Computer Science Dept. in Basic 

Education Col., Diyala University, Iraq now. 
E-Mail: hadeelalrayes@yahoo.com 

Mobile: +964 7902 162334 

 

http://www.cs.rice.edu/~cork/book/node96.html
http://www.microsoft.com/whdc/system/Sysinternals/MoreThan64proc.mspx
http://www.microsoft.com/whdc/system/Sysinternals/MoreThan64proc.mspx
http://blogs.msdn.com/48317/ProfileUrlRedirect.ashx
http://blogs.msdn.com/b/nativeconcurrency/
http://blogs.msdn.com/b/nativeconcurrency/
mailto:hadeelalrayes@yahoo.com

