

Traffic Pattern-Based Content Leakage

Detection for Trusted Content

Delivery Networks

Shaymaa Taha Ahmed

Department of Computer Science

University of Diyala / College of Basic Education

Abstract—In this paper, Due to the increasing popularity of multimedia streaming applications and services in

recent years, the issue of trusted video delivery to prevent undesirable content-leakage has, indeed, become critical.

While preserving user privacy, conventional systems have addressed this issue by proposing methods based on the

observation of streamed traffic throughout the network. These conventional systems maintain a high detection

accuracy while coping with some of the traffic variation in the network (e.g., network delay and packet loss),

however, their detection performance substantially degrades owing to the significant variation of video lengths. In

this paper, we focus on overcoming this issue by proposing a novel content-leakage detection scheme that is robust

to the variation of the video length. By comparing videos of different lengths, we determine a relation between the

length of videos to be compared and the similarity between the compared videos.. We finally analyze the different

approaches presented using both analytical evaluation of the overheads and simulations to guide the decision makers

to which approach to use.

Index Terms—Streaming content, leakage detection, traffic pattern, degree of similarity

1 Introduction

Cloud computing has recently emerged as a computing

paradigm in which storage and computation can be

outsourced from organizations to next generation data centres

hosted by companies such as Amazon, Google, Yahoo, and

Microsoft. Such companies help free organizations from

requiring expensive infrastructure and expertise in-house, and

instead make use of the cloud providers to maintain, support,

and broker access to high-end resources. From an economic

perspective, cloud consumers can save huge IT capital

investments and be charged on the basis of a pay-only-for-

what you-use pricing model.
One of the most appealing aspects of cloud computing is its

elasticity, which provides an illusion of infinite, on-demand

resources making it an attractive environment for highly-

scalable, multi-tiered applications. However, this can create

additional challenges for back-end, transactional database

systems, which were designed without elasticity in mind.

Despite the e orts of key-value stores like Amazon’s Sampled,

Dynamo, and Google’s Big table to provide scal-able access

to huge amounts of data, transactional guarantees remain a

bottleneck.
To provide scalability and elasticity, cloud services often

make heavy use of replication to ensure consistent

performance and availability. As a result, many cloud services

rely on the notion of eventual consistency when propagating

data throughout the system. This consistency model is a

variant of weak consistency that allows data to be inconsistent

among some replicas during the update process, but ensures

that updates will eventually be propagated to all replicas. This

Makes it di cult to strictly maintain the ACID guarantees, as

the ’C’ (consistency) part of ACID is sacrificed to provide

reasonable availability.
In systems that host sensitive resources, accesses are

protected via authorization policies that describe the

conditions under which users should be permitted access to

resources. These policies describe relationships between the

system principals, as well as the certified credentials that users

must provide to attest to their attributes. In a transactional

database system that is deployed in a highly distributed and

elastic sys-tem such as the cloud, policies would typically be

replicated very much like data among multiple sites, often

following the same weak or eventual consistency model. It

therefore becomes possible for a policy-based authorization

system to make unsafe decisions using stale policies.
Interesting consistency problems can arise as transactional

database systems are deployed in cloud environments and use

policy-based authorization systems to protect sensitive

resources. In addition to handling consistency issues amongst

database replicas, we must also handle two types of security

inconsistency conditions. First, the system may suffer from

policy inconsistencies during policy updates due to the relaxed

consistency model underlying most cloud services. For

example, it is possible for several versions of the policy to be

observed at multiple sites within a single transaction, leading

to inconsistent (and likely unsafe) access decisions during the

transaction. Second, it is possible for external factors to cause

user credential inconsistencies over the lifetime of a

transaction. For instance, a user’s login credentials could be

invalidated or revoked after collection by the authorization

Server, but before the completion of the transaction. In this

paper, we address this confluence of data, policy, and

credential inconsistency problems that can emerge as

transactional database systems are deployed to the cloud. In

doing so we make the following contributions:

We formalize the concept of trusted transactions. Trusted

transactions are those transactions that do not violate

credential or policy inconsistencies over the lifetime of

the transaction. We then present a more general term,

safe transactions, that identifies transactions that are both

trusted and conform to the ACID properties of distributed

database systems (Sec. 2).
We define several different levels of policy consistency

constraints and corresponding enforcement approaches

that guarantee the trustworthiness of transactions being

executed on cloud servers (Sec. 3).
We propose a Two-Phase Validation Commit (2PVC)

protocol that ensures that a transaction is safe by

checking policy, credential, and data consistency during

transaction execution (Sec. 4).
We carry out an experimental evaluation of our proposed

approaches (Sec. 5), and present a trade-o discussion to

guide decision makers as to which approach is most

suitable in various situations (Sec 6).

Finally, Sec. 7 describes previous related work, while Sec.

8 presents our conclusions.

2 System Assumptions and Problem Definition

2.1 System Model

Fig. 1 illustrates the interaction among the components in our

system. We assume a cloud infrastructure consisting of a set

of S servers, where each server is responsible for hosting a

subset D of all data items D belonging to a specific

application domain (D D). Users interact with the system by

submitting queries or update requests encapsulated in ACID

transactions. A transaction is submitted to a Transaction

Manager (TM) that coordinates its execution. Multiple TMs

could be invoked as the system workload increases for load

balancing, but each transaction is handled by only one TM.
We denote each transaction as T = q1; q2; : : : ; qn, where

qi 2 Q is a single query/update belonging to the set of all

queries Q. The start time of each transaction is denoted by (T

), and the time at which the transaction finishes execution and

is ready to commit is denoted by !(T). We assume that queries

belonging to a transaction execute sequentially, and that a

transaction does not fork sub-transactions. These assumptions

simplify our presentation, but do not a ect the correctness or

the validity of our consistency definitions.
Let P denote the set of all authorization policies, and let Psi

(D) denote the policy that server si uses to protect data item D.

We represent a policy P as a mapping P : S 2
D

 ! 2R
 A N that

associates a server and a set of data items with

Transactions

Transaction
Managers

(TMs)

DBs and Policies

DBs and Policies DBs and Policies

Verifiable Trusted Third
Parties (CAs)

Fig. 1. Interaction among the system components

a set of inference rules from the set R, a policy administrator

from the set A, and a version number. We denote by C the set

of all credentials, which are issued by the Certificate

Authorities (CAs) within the system. We assume that each CA

o ers an online method that allows any server to check the

current status of credentials that it has issued [5]. Given a

credential ck 2 C, (ck) and !(ck) denote issue and expiration

times of ck , respectively. Given a function m : Q ! 2D
 that

identifies the data items accessed by a particular query, a proof
of authorization for query qi evaluated at server s j at time

tk is a tuple hqi; s j; Ps j (m(qi)); tk ; Ci, where C is the set of

credentials presented by the querier to satisfy Ps j (m(qi)). In

this paper, we use the function eval : F T S ! B to denote

whether a proof f 2 F is valid at time t 2 T S .
To enhance the general applicability of the consistency

models developed in this paper, the above formalism is in-

emotionally opaque with respect to the policy and credential

formats used to implement the system. For instance, this

formalism could easily be used to model the use of XACML

policies [6] as the set of inference rules R, and traditional

(e.g., X.509 [7]) credentials for the set C. On the other hand, it

can also model the use of more advanced trust management

policies (e.g., [8], [9]) for the inference rules R, and the use of

privacy-friendly credentials (e.g., [10], [11]) for the set C.

2.2 Problem Definition

Since transactions are executed over time, the state information

of the credentials and the policies enforced by different servers

are subject to changes at any instance of time, therefore it

becomes important to introduce precise definitions for the

different consistency levels that could be achieved within a

transactions lifetime. These consistency models strengthen the

trusted transaction definition by defining the environment in

which policy versions are consistent relative to the rest of the

system. Before we do that, we define a transaction’s view in

terms of the different proofs of authorization evaluated during the

lifetime of a particular transaction.

Definition 1: (View) A transaction’s view V
T

 is the set

of proofs of authorization observed during the lifetime of a

transaction [(T); !(T)] and defined as V
T

 = f fsi j fsi =

hqi; si; Psi (m(qi)); ti; Ci ^ qi 2 T g. _
Following from Def. 1, a transaction’s view is built

incrementally as more proofs of authorization are being

evaluated by servers during the transaction execution. We

now present two increasingly more powerful definitions of

consistencies within transactions.

Definition 2: (View Consistency) A view
V

T
 = fhqi; si; Psi (m(qi)); ti; Ci; : : : ; hqn; sn; Psn (m(qn)); tn;

Cig is view consistent, or -consistent, if V
T
 satisfies a predicate

-consistent that places constraints on the versioning of the

policies such that -consistent (V
T

) $ 8i; j : ver(Psi) = ver(Ps j

) for all policies belonging to the same administrator A, where

function ver is defined as ver : P ! N. _
With a view consistency model, the policy versions should

be internally consistent across all servers executing the trans-

action. The view consistency model is weak in that the policy

version agreed upon by the subset of servers within the

transaction may not be the latest policy version v. It may be

the case that a server outside of the S servers has a policy that

belongs to the same administrative domain and with a version

v
0

 > v. A more strict consistency model is the global

consistency and is defined as follows.

Definition 3: (Global Consistency) A view
V

T
 = fhqi; si; Psi (m(qi)); ti; Ci; : : : ; hqn; sn; Psn (m(qn)); tn;

Cig is global consistent, or -consistent, if V
T
 satisfies a predicate

-consistent that places constraints on the versioning of the

policies such that -consistent (V
T

) $ 8i : ver(Psi) = ver(P) for

all policies belonging to the same administrator A, and

function ver follows the same aforementioned definition,

while ver(P) refers to the latest policy version. _
With a global consistency model, policies used to evaluate

the proofs of authorization during a transaction execution

among S servers should match the latest policy version among

the entire policy set P, for all policies enforced by the same

administrator A.

Given the above definitions, we now have a precise

vocabulary for defining the conditions necessary for a

transaction to be asserted as “trusted”.

Definition 4: (Trusted Transaction) Given a transaction T =

fq1; q2; : : : ; qng and its corresponding view V
T
 , T is trusted

i 8fsi 2VT : eval(fsi ; t), at some time instance t : (T) t !(T) ^ (

-consistent(V
T) _ -consistent(V

T)) _
Finally, we say that a transaction is safe if it is a trusted

transaction that also satisfies all data integrity constraints im-

posed by the database management system. A safe transaction

is allowed to commit, while an unsafe transaction is forced to

rollback.

3 Trusted Transaction Enforcement

In this section, we present several increasingly stringent

approaches for enforcing trusted transactions. We show that

each approach guarantees during the course of a transaction.

Fig. 2 is a graphical depiction of how these approaches could

be applied to a transaction running across three server, and

will be referenced throughout this section. In this figure, dots

represent the arrival time of a query to some server, stars

indicate the times at which a server validates a proof of

authorization, and dashed lines represent view- or globally-

consistency policy synchronization among servers.

3.1 Deferred Proofs of Authorization

Definition 5: (Deferred Proofs of Authorization) Given a

transaction T and its corresponding view V
T
 , T is trusted under

the Deferred proofs of authorization approach, i at commit

time !(T), 8fsi 2VT : eval(fsi ; !(T)) ^ (-consistent(V
T

) _ -

consistent(V
T

)) _
Deferred proofs present an optimistic approach with

relatively weak authorization guarantees. The proofs of

authorization are evaluated simultaneously only at commit

time (using either view or global consistency from Defs. 2 and

3) to decide whether the transaction is trusted.

3.2 Punctual Proofs of Authorization

Definition 6: (Punctual Proofs of Authorization) Given a

transaction T and its corresponding view V
T

 , T is trusted

under the Punctual proofs of authorization approach, i at
any time instance ti : (T) ti !(T) 8fsi 2VT : eval(fsi ; ti) ^ eval(

fsi ; !(T)) ^ (-consistent(V
T

) _ -consistent(V
T

)) _
Punctual proofs present a more proactive approach in which

the proofs of authorization are evaluated instantaneously

whenever a query is being handled by a server. This facilitates

early detections of unsafe transactions which can save the

system from going into expensive undo operations. All the

proofs of authorization are then re-evaluated at commit time

to ensure that policies were not updated during the transaction

in a way that would invalidate a previous proof, and that

credentials were not invalidated.
Punctual proofs do not impose any restrictions on the

freshness of the policies used by the servers during the trans-

action execution. Consequently, servers might falsely deny or

allow access to data. Thus, we propose two more restrictive

approaches that enforce some degree of consistency among

the participating servers each time a proof is evaluated.

3.3 Incremental Punctual Proofs of Authorization

Before we define the Incremental Punctual proofs of

authorization approach, we define a view instance, which is a

view snapshot at a specific instance of time.

 : query start time : query start time : query start time

 *: proof of authorization *: proof of authorization *: proof of authorization

s1
s1 *

s1 *

 * *

s2 s2 * s2 *

 * *

s
3 s

3 * s
3 *

 * *

 time time time

 (a) Deferred (b) Punctual (c) View Incremental Punc-

 tual

 : query start time : query start time : query start time

 *: proof of authorization *: proof of authorization *: proof of authorization

s1

s2

s
3

* *

* *

* *

s1

s2

s
3

* * *
* *

 *

s1

s2

s
3

* * * *

* * *

 * *

time time time

(d) Global Incremental (e) View Continuous (f) Global Continuous
Punctual

Fig. 2. Different variants of proofs of authorization

For view consistency, no consistency check at commit time

is required, since all participating servers will be view

consistent by commit time. On the other hand, the global

consistency condition necessitates another consistency check

at commit time to confirm that the policies used have not

become stale during the window of execution between the last

proofs of authorization and commit time.

3.4 Continuous Proofs of Authorization

We now present the least permissive approach which we call

Continuous proofs of authorization.

For the global consistency case (Def. 3), the TM retrieves the

latest policy version from a master policies server (Step 2) and

uses it to compare against the version numbers of each participant

(Step 3). This master version may be retrieved only once or each

time Step 3 is invoked. For the former case, collection may only

be executed twice as in the case of view consistency. Once the

TM receives the replies from all the participants, it moves on to

the validation phase. If all polices are consistent, then the

protocol honors the truth value where any FALSE causes an

ABORT decision and all TRUE cause a CONTINUE decision. In

the latter case, if the TM retrieves the latest version every round,

global consistency may execute the collection many times. This

is the case if the policy is updated during the round. While the

number of rounds is theoretically infinite, in a practical setting,

this should occur infrequently.

In Continuous proofs, whenever a proof is evaluated, all

previous proofs have to be re-evaluated if a newer version of

the policy is found at any of the participating servers. At

commit time, Continuous proofs behave similarly to

Incremental Punctual proofs. In contrast with the Incremental

Punctual proofs, if later executing servers are using newer

policy versions (T) all previous (T) servers must (i) update (T)

their policies to be consistent with the newest one, and (ii) re-

evaluate their proofs of authorization using the newer policies.

In the case of global consistency, all servers will be forced to

use the latest policy version at all times. Therefore, we

consider this variant of our approaches to be the strictest

approach of all giving the best privacy and consistency

guarantees.

The decision of which approach to adopt is likely to be a

strategic choice made independently by each application. As

withω(T) any tradeα(T)-o , the stronger the securityω(T) and

accuracy given by an approach, the more the system has to

pay in terms of implementation and messages exchange

overheads. Further discussion of these trade-o s will be

presented in Sec. 6.

4 Implementing Safe Transactions

A safe transaction is a transaction that is both trusted (i.e.,

satisfies the correctness properties of proofs of authorization)

and database correct (i.e., satisfies the data integrity

constraints). We first describe an algorithm that enforces

trusted transactions, and then expand this algorithm to enforce

safe transactions. Finally, we show how these algorithms can

be used to implement the approaches discussed in Sec. 3.

4.1 Two-Phase Validation Algorithm

A common characteristic of most of our proposed approaches

to achieve trusted transactions is the need for policy consis-

tency validation at the end of a transaction. That is, in order

for a trusted transaction to commit, its TM has to enforce

either view or global consistency among the servers

participating in the transaction. Toward this, we propose a

new algorithm called Two-Phase Validation (2PV).
As the name implies, 2PV operates in two phases: collection

and validation. During collection, the TM first sends a Prepare-

to-Validate message to each participant server. In response to this

message, each participant (1) evaluates the proofs for each query

of the transaction using the latest policies it has available and (2)

sends a reply back to the TM containing the truth value

(TRUE/FALSE) of those proofs along with the version number

and policy identifier for each policy used. Further, each

participant keeps track of its reply (i.e., the state of each query)

which includes the id of the TM (TMid), the id of the transaction

(Tid) to which the query belongs, and a set of policy versions

used in the query’s authorization (vi; pi).
Once the TM receives the replies from all the participants, it

moves on to the validation phase. If all polices are consistent,

then the protocol honors the truth value where any FALSE causes

an ABORT decision and all TRUE cause a CONTINUE decision.

In the case of inconsistent policies, the TM identifies the latest

policy and sends an Update message to each out-of-date

participant with a policy identifier and returns to the collection

phase. In this case, the participants (1) update their policies, (2)

re-evaluate the proofs and (3) send a new reply to the TM.

Algorithm 1 shows the process for the TM.
In the case of view consistency (Def. 2), there will be at

most two rounds of the collection phase. A participant may

only be asked to re-evaluate a query using a newer policy by

an Update message from the TM after one collection phase.
For the global consistency case (Def. 3), the TM retrieves the

latest policy version from a master policies server (Step 2) and

uses it to compare against the version numbers of each participant

(Step 3). This master version may be retrieved only once or each

time Step 3 is invoked. For the former case, collection may only

be executed twice as in the case of view consistency. In the latter

case, if the TM retrieves the latest version every round, global

consistency may execute the collection many times. This is the

case if the policy is updated during the round. While the number

of rounds are theoretically infinite, in a practical setting, this

should occur infrequently.

4.2 Two-Phase Validate Commit Algorithm

The 2PV protocol enforces trusted transactions, but does not

enforce not safe transactions because it does not validate any

integrity constraints. Since the Two-Phase Commit atomic

protocol (2PC) commonly used to enforce integrity constraints

has similar structure as 2PV, we propose integrating these pro-

tocols into a Two-Phase Validation Commit (2PVC) protocol.

Algorithm 1: Two-Phase Validation - 2PV(TM)

1 Send “Prepare-to-Validate” to all participants

2 Wait for all replies (a True/False, and a set of policy

versions for each unique policy)

3 Identify the largest version for all unique policies

4 If all participants utilize the largest version for each

unique policy

5 If any responded False

6 ABORT

7 Otherwise

8 CONTINUE

9 Otherwise, for all participants with old versions of policies

10 Send “Update” with the largest version number of each

policy

11 Goto 2

2PVC can be used to ensure the data and policy consistency

requirements of safe transactions.
Specifically, 2PVC will evaluate the policies and authoriza-

tions within the first, voting phase. That is, when the TM

sends out a Prepare-to-Commit message for a transaction, the

participant server has three values to report: (1) the YES or

NO reply for the satisfaction of integrity constraints as in 2PC,
(2) the TRUE or FALSE reply for the satisfaction of the
proofs of authorization as in 2PV, and (3) the version number

of the policies used to build the proofs (vi; pi) as in 2PV.
The process given in Algorithm 2 is for the TM under view

consistency. It is similar to that of 2PV with the exception of

handling the YES or NO reply for integrity constraint

validation and having a decision of COMMIT rather than

CONTINUE. The TM enforces the same behavior as 2PV in

identifying policies inconsistencies and sending the Update

messages. The same changes to 2PV can be made here to

provide global consistency by consulting the master policies

server for the latest policy version (Step 5).
The resilience of 2PVC to system and communication

failures can be achieved in the same manner as 2PC by

recording the progress of the protocol in the logs of the TM

and participants. In the case of 2PVC, a participant must

forcibly log the set of (vi; pi) tuples along with its vote and

truth value. Similarly to 2PC, the cost of 2PVC can be

measured in terms of log complexity (i.e., the number of times

the protocol forcibly logs for recovery) and message

complexity (i.e., the number of messages sent). The log

complexity of 2PVC is no di erent than basic 2PC and can be

improved by using any of log-based optimizations of 2PC

such as Presumed-Abort (PrA) and Presumed-Commit (PrC)

[12]. The message complexity of 2PVC was analyzed.

4.3 Using 2PV & 2PVC in Safe Transactions

2PV and 2PVC can be used to enforce each of the consistency

levels defined in Sec. 3. Deferred and Punctual (Defs. 5 and 6)

proofs are roughly the same. The only difference is that

Algorithm 2: Two-Phase Validation Commit -

2PVC (TM)

1 Send “Prepare-to-Commit” to all participants

2 Wait for all replies (Yes/No, True/False, and a set of

policy versions for each unique policy)

3 If any participant replied No for integrity check

4 ABORT

5 Identify the largest version for all unique policies

6 If all participants utilize the largest version for each

unique policy

7 If any responded False

8 ABORT

9 Otherwise

10 COMMIT

11 Otherwise, for participants with old policies

12 Send “Update” with the largest version
number of each policy

13 Wait for all replies

14 Goto 5

Punctual will return proof evaluations upon executing each

query. Yet this is done on a single server, and therefore does

not need 2PVC or 2PV to distribute the decision. To provide

for trusted transactions, both require a commit-time evaluation

at all participants using 2PVC.

Incremental Punctual (Def. 8) proofs are slightly different.

As queries are executed, the TM must also check for

consistency within the participating servers. Hence, a variant

of the basic 2PV protocol is used during the transaction

execution. For view consistency, the TM needs to check the

version number it receives from each server with that of the

very first participating server. If they are di erent, the

transaction aborts due to a consistency violation. At commit

time, all the proofs will have been generated with consistent

policies and only 2PC is invoked. In the global consistency

case, the TM needs to validate the policy versions used

against the latest policy version known by the master policies

server to decide whether to abort or not. At commit time,

2PVC is invoked by the TM to check the data integrity

constraints and verify that the master policies server has not

received any newer policy versions.

Finally, Continuous proofs (Def. 9) are the most involved.

Unlike the case of Incremental Punctual in a view consistency,

Continuous proofs invoke 2PV at the execution of each query

which will update the older policies with the new policy and re-

evaluate. When a query is requested, its TM will (1) execute 2PV

to validate authorizations of all queries up to this point, and (2)

upon CONTINUE being the decision of 2PV, submit the next

query to be executed at the appropriate server, otherwise the

transaction aborts. The same actions occur under global

consistency with the exception that the latest policy version is

used as identified by the master policy server.

5 Evaluations

5.1 Environment and Setup

We used Java to implement each proof approach described in

Sec. 3 with support for both view and global consistency.

Although the approaches were implemented in their entirety,

the underlying database and policy enforcement systems were

simulated with parameters chosen according to Table 1. To

understand the performance implications of the di erent ap-

proaches, we varied the (i) protocol used, (ii) level of con-

sistency desired, (iii) frequency of master policy updates, (iv)

transaction length, and (v) number of servers available.
Our experimentation framework consists of three main

com-ponents: a randomized transaction generator, a master

policy server that controls the propagation of policy updates,

and an array of transaction processing servers.
Our experiments were run within a research lab consisting

of 38 Apple Mac Mini computers. These machines were

running OS X 10.6.8 and had 1.83 GHz Intel Core Duo

processors coupled with 2GB of RAM. All machines were

connected to a gigabit ethernet LAN with average round trip

times of 0.35 ms. All WAN experiments were also conducted

within this testbed by artificially delaying packet transmission

by an additional 75 ms.
For each simulation and each possible combination of

parameters, 1000 transactions were run to gather average

statistics on transaction processing delays induced by the

particular protocol and system parameter choices. The

randomized transactions were randomly composed of

database reads and writes with equal probability. To simulate

policy updates at di erent servers, the master policy server

picks a random participating server to receive the updates.
Given that our interest in this article lies in exploring the

average performance of each of the di erent approaches, we

made few assumptions to simplify the experimentations and

help limit the influence of other factors on transaction

execution time. Specifically, we assumed the existence of a

single master policy server that has to be consulted for the

latest policy version belonging to a specific policy

administrator. This simplifies the 2PV protocol and reduces

the number of exchanged messages to realize the latest

version among

TABLE 1

Simulation Parameters
Parameter Value(s)
Times of policies update once during operations, once per

 participant join, or once at com-
 mit time

Disk read latency 1-3 ms
Disk write latency 12-20 ms
Authorization check delay 1-3 ms
Data integrity constraint verification 1-3 ms
Transaction size Short: 8-15 operations, Medium:

 16-30 operations, or Long: 31-50
 operations

We now investigate two cloud-based applications that are

representative of larger classes of interesting applications to show

how requirements can impact the choice of consistency

enforcement scheme. In particular, we consider three orthog-onal

axes of requirements: code complexity (which is directly related

to trusted computing base size), transaction mix (i.e., write-only,

read/write with internal reads, and read/write with materialized

reads), and policy/credential update frequency.
Application: Event Scheduling. Consider an Event Mon-

itoring Service (EMS) used by a multi-campus university to

track events within the university and to allow sta , faculty

members, and student organizations to make online event

registrations. The university is using a cloud infrastructure to

host the various EMS databases and execute the di erent

transactions. Users have varying access privileges that are

governed by authorization policies and credentials issued by a

university-wide credentialing system. In this system, read

requests must be externalized to users during the transaction

execution so that intermediate decisions can be made. Further-

more, the university system in general has infrequent policy

and credentials updates, and requires lower code complexity

to minimize code verification overheads.

Recommendation: In this case, the use of Punctual proofs

makes the most sense. Note that this approach has low code

complexity, performs fast, and is suitable for systems with

infrequent updates. Read externalization is also permissible, as

policies are checked prior to each operation in the transaction.

Application: Sales Database This example is derived from

the travelling salesperson example in. According to company

requirements, a customer’s data should only be read by the

representatives in the operations region of that customer,

while any other data should not be materialized until commit

time. The company also experiences very frequent policy and

credential updates, as representatives are frequently assigned

to different operational regions. The company considers

security to be very important as to avoid incorrect

authorization decisions that might leak customer information.

Finally, the company has enough resources to manage

complex code, but still requires reasonable execution latency.

Recommendation: This Company should use the Continuous

global approach for the highest accuracy to avoid any information

leakage at runtime, or Continuous view for slightly lower

accuracy. This provides a good balance between accuracy and

performance, at the cost of higher code complexity.

7 Related Work

Relaxed Consistency Models for the Cloud. Many database

solutions have been written for use within the cloud

environment. For instance, Amazon’s Dynamo database;

Google’s Big Table storage system; Face book’s Cassandra;

and Yahoo!’s PNUTS. The common thread between each of

these custom data models is BASE with a relaxed notion of

consistency provided in order to support massively parallel

environments.
Such a relaxed consistency model adds a new dimension to the

complexity of the design of large scale applications and

introduces a new set of consistency problems. In, the authors

presented a model that allows queriers to express consistency and

concurrency constraints on their queries that can be enforced by

the DBMS at runtime. On the other hand, introduces a dynamic

consistency rationing mechanism which automatically adapts the

level of consistency at run-time. Both of these works focus on

data consistency, while our work focuses on attaining both data

and policy consistency.
Reliable Outsourcing. Security is considered one of the

major obstacles to a wider adoption of cloud computing.

Particular attention has been given to client security as it

relates to the proper handling of outsourced data. For

example, proofs of data possession have been proposed as a

means for clients to ensure that service providers actually

maintain copies of the data that they are contracted to host. In

other works, data replication has been combined with proofs

of irretrievability to provide users with integrity and

consistency guarantees when using cloud storage.
To protect user access patterns from a cloud data store,

introduces a mechanism by which cloud storage users can

issue encrypted reads, writes and inserts. Further, pro-poses a

mechanism that enables entrusted service providers to support

transaction serialization, backup, and recovery with full data

confidentiality and correctness. This work is orthogonal to the

problem that we focus on in this article, namely consistency

problems in policy-based database transactions.
Distributed Transactions. Cloud TPS provides full ACID

properties with a scalable transaction manager designed for a

NoSQL environment. However, Cloud TPS is primarily

concerned with providing consistency and isolation upon data

without regard to considerations of authorization policies.
There has also been recent work that focuses on providing

some level of guarantee about the relationship between data
and policies. This work proactively ensures that data stored at

a particular site conforms to the policy stored at that site. If

the policy is updated, the server will scan the data items and

throw out any that would be denied based on the revised

policy. It is obvious that this will lead to an eventually

consistent state where data and policy conform, but this work

only concerns itself with local consistency of a single node,

not with transactions that span multiple nodes.
Distributed Authorization. The consistency of distributed

proofs of authorization has previously been studied, though not in

a dynamic cloud environment (e.g.,). This work highlights the

inconsistency issues that can arise in the case where authorization

policies are static, but the credentials used to satisfy these policies

may be revoked or altered. The authors develop protocols that

enable various consistency guarantees to be enforced during the

proof construction process to minimize these types of security

issues. These consistency guarantees are similar to our notions of

safe transactions. However, our work also addresses the case in

which policies in addition to credentials—may be altered or

modified during a transaction.

8 Conclusions

Despite the popularity of cloud services and their wide

adoption by enterprises and governments, cloud providers still

lack services that guarantee both data and access control

policy consistency across multiple data centers. In this article,

we identified several consistency problems that can arise

during cloud-hosted transaction processing using weak

consistency models, particularly if policy-based authorization

systems are used to enforce access controls. To this end, we

developed a variety of light-weight proof enforcement and

consistency models—i.e., Deferred, Punctual, Incremental,

and Continuous proofs, with view or global consistency—that

can enforce increasingly strong protections with minimal

runtime overheads.
We used simulated workloads to experimentally evaluate

implementations of our proposed consistency models

relative to three core metrics: transaction processing

performance, accuracy (i.e., global vs. view consistency

and regency of policies used), and precision (level of

agreement among trans-action participants). We found that

high performance comes at a cost: Deferred and Punctual

proofs had minimal overheads, but failed to detect certain

types of consistency problems. On the other hand, high

accuracy models (i.e., Incremental and Continuous)

required higher code complexity to implement correctly,

and had only moderate performance when compared to the

lower accuracy schemes. To better explore the differences

between these approaches, we also carried out a trade

analysis of our schemes to illustrate how application-

centric requirements influence the applicability of the eight

protocol variants explored in this article.

Acknowledgments. This work was supported in part by

the National Science Foundation under awards CCF–

0916015,
CNS–0964295, CNS–1017229 and IIS–1050301.

References

[1] M. Armbrust et al., “Above the clouds: A berkeley view of cloud

computing,” University of California, Berkeley, Tech. Rep., Feb.

2009.
[2] S. Das, D. Agrawal, and A. El Abbadi, “Elastras: an elastic

transactional data store in the cloud,” in USENIX HotCloud, 2009.
[3] D. J. Abadi, “Data management in the cloud: Limitations and

opportu-nities,” IEEE Data Engineering Bulletin, Mar. 2009.
[4] A. J. Lee and M. Winslett, “Safety and consistency in policy-based

authorization systems,” in ACM CCS, 2006.
[5] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams,

“X.509 internet public key infrastructure online certificate status

protocol - ocsp,” RFC 2560, Jun. 1999, http:

//tools.ietf.org/html/rfc5280.
[6] E. Rissanen, “extensible access control markup language (xacml)

version 3.0,” Jan. 2013, http: //docs.oasis-open.org/xacml/3.0/xacml-

3.0-core-spec-os-en.html.
[7] D. Cooper et al., “Internet x.509 public key infrastructure

certificate and certificate revocation list (crl) profile,” RFC 5280,

May 2008, http://tools.ietf.org/html/rfc5280.

[8] J. Li, N. Li, and W. H. Winsborough, “Automated trust negotiation

using cryptographic credentials,” in ACM CCS, Nov. 2005.
[9] L. Bauer et al., “Distributed proving in access-control systems,” in

Proc. of the IEEE Symposium on Security and Privacy, May 2005.
[10] J. Li and N. Li, “OACerts: Oblivious attribute based certificates,”

IEEE TDSC, Oct. 2006.

[11] J. Camenisch and A. Lysyanskaya, “An e cient system for
non-transferable anonymous credentials with optional anonymity
revocation,” in EUROCRYPT, 2001.

