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Abstract—In this paper, Due to the increasing popularity of multimedia streaming applications and services in 

recent years, the issue of trusted video delivery to prevent undesirable content-leakage has, indeed, become critical. 

While preserving user privacy, conventional systems have addressed this issue by proposing methods based on the 

observation of streamed traffic throughout the network. These conventional systems maintain a high detection 

accuracy while coping with some of the traffic variation in the network (e.g., network delay and packet loss), 

however, their detection performance substantially degrades owing to the significant variation of video lengths. In 

this paper, we focus on overcoming this issue by proposing a novel content-leakage detection scheme that is robust 

to the variation of the video length. By comparing videos of different lengths, we determine a relation between the 

length of videos to be compared and the similarity between the compared videos.. We finally analyze the different 

approaches presented using both analytical evaluation of the overheads and simulations to guide the decision makers 

to which approach to use. 

 
Index Terms—Streaming content, leakage detection, traffic pattern, degree of similarity 

 
 
 
1 Introduction 

  
Cloud computing has recently emerged as a computing 

paradigm  in  which  storage  and  computation  can  be 

outsourced from organizations to next generation data centres 

hosted by companies such as Amazon, Google, Yahoo, and 

Microsoft. Such companies help free organizations from 

requiring expensive infrastructure and expertise in-house, and 

instead make use of the cloud providers to maintain, support, 

and broker access to high-end resources. From an economic 

perspective, cloud consumers can save huge IT capital 

investments and be charged on the basis of a pay-only-for-

what you-use pricing model.  
One of the most appealing aspects of cloud computing is its 

elasticity, which provides an illusion of infinite, on-demand 

resources making it an attractive environment for highly-

scalable, multi-tiered applications. However, this can create 

additional challenges for back-end, transactional database 

systems, which were designed without elasticity in mind. 

Despite the e orts of key-value stores like Amazon’s Sampled, 

Dynamo, and Google’s Big table to provide scal-able access 

to huge amounts of data, transactional guarantees remain a 

bottleneck.  
To provide scalability and elasticity, cloud services often 

make heavy use of replication to ensure consistent 

performance and availability. As a result, many cloud services 

rely on the notion of eventual consistency when propagating 

data throughout the system. This consistency model is a 

variant of weak consistency that allows data to be inconsistent 

among some replicas during the update process, but ensures 

that updates will eventually be propagated to all replicas. This 



 
 

 
Makes it di cult to strictly maintain the ACID guarantees, as 

the ’C’ (consistency) part of ACID is sacrificed to provide 

reasonable availability.  
In systems that host sensitive resources, accesses are 

protected via authorization policies that describe the 

conditions under which users should be permitted access to 

resources. These policies describe relationships between the 

system principals, as well as the certified credentials that users 

must provide to attest to their attributes. In a transactional 

database system that is deployed in a highly distributed and 

elastic sys-tem such as the cloud, policies would typically be 

replicated very much like data among multiple sites, often 

following the same weak or eventual consistency model. It 

therefore becomes possible for a policy-based authorization 

system to make unsafe decisions using stale policies.  
Interesting consistency problems can arise as transactional 

database systems are deployed in cloud environments and use 

policy-based authorization systems to protect sensitive 

resources. In addition to handling consistency issues amongst 

database replicas, we must also handle two types of security 

inconsistency conditions. First, the system may suffer from 

policy inconsistencies during policy updates due to the relaxed 

consistency model underlying most cloud services. For 

example, it is possible for several versions of the policy to be 

observed at multiple sites within a single transaction, leading 

to inconsistent (and likely unsafe) access decisions during the 

transaction. Second, it is possible for external factors to cause 

user credential inconsistencies over the lifetime of a 

transaction. For instance, a user’s login credentials could be 

invalidated or revoked after collection by the authorization 



 

 
Server, but before the completion of the transaction. In this 

paper, we address this confluence of data, policy, and 

credential inconsistency problems that can emerge as 

transactional database systems are deployed to the cloud. In 

doing so we make the following contributions: 
 

We formalize the concept of trusted transactions. Trusted 

transactions are those transactions that do not violate 

credential or policy inconsistencies over the lifetime of 

the transaction. We then present a more general term, 

safe transactions, that identifies transactions that are both 

trusted and conform to the ACID properties of distributed 

database systems (Sec. 2).  
We define several different levels of policy consistency 

constraints and corresponding enforcement approaches 

that guarantee the trustworthiness of transactions being 

executed on cloud servers (Sec. 3).  
We propose a Two-Phase Validation Commit (2PVC) 

protocol that ensures that a transaction is safe by 

checking policy, credential, and data consistency during 

transaction execution (Sec. 4).  
We carry out an experimental evaluation of our proposed 

approaches (Sec. 5), and present a trade-o discussion to 

guide decision makers as to which approach is most 

suitable in various situations (Sec 6). 
 

Finally, Sec. 7 describes previous related work, while Sec. 

8 presents our conclusions. 

 
2 System Assumptions and Problem Definition 
 
2.1 System Model 
 
Fig. 1 illustrates the interaction among the components in our 

system. We assume a cloud infrastructure consisting of a set 

of S servers, where each server is responsible for hosting a 

subset D of all data items D belonging to a specific 

application domain (D D). Users interact with the system by 

submitting queries or update requests encapsulated in ACID 

transactions. A transaction is submitted to a Transaction 

Manager (TM) that coordinates its execution. Multiple TMs 

could be invoked as the system workload increases for load 

balancing, but each transaction is handled by only one TM.  
We denote each transaction as T = q1; q2; : : : ; qn, where 

qi 2 Q is a single query/update belonging to the set of all 

queries Q. The start time of each transaction is denoted by (T 

), and the time at which the transaction finishes execution and 

is ready to commit is denoted by !(T ). We assume that queries 

belonging to a transaction execute sequentially, and that a 

transaction does not fork sub-transactions. These assumptions 

simplify our presentation, but do not a ect the correctness or 

the validity of our consistency definitions.  
Let P denote the set of all authorization policies, and let Psi 

(D) denote the policy that server si uses to protect data item D. 

We represent a policy P as a mapping P : S 2
D

 ! 2R
 A N that 

associates a server and a set of data items with 
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Fig. 1. Interaction among the system components 
 
a set of inference rules from the set R, a policy administrator 

from the set A, and a version number. We denote by C the set 

of all credentials, which are issued by the Certificate 

Authorities (CAs) within the system. We assume that each CA 

o ers an online method that allows any server to check the 

current status of credentials that it has issued [5]. Given a 

credential ck 2 C, (ck ) and !(ck ) denote issue and expiration 

times of ck , respectively. Given a function m : Q ! 2D
 that 

identifies the data items accessed by a particular query, a proof 
of authorization for query qi  evaluated at server s j  at time 

tk is a tuple hqi; s j; Ps j (m(qi)); tk ; Ci, where C  is the set  of 

credentials presented by the querier to satisfy Ps j (m(qi)). In 

this paper, we use the function eval : F T S ! B to denote 

whether a proof f 2 F is valid at time t 2 T S .  
To enhance the general applicability of the consistency 

models developed in this paper, the above formalism is in-

emotionally opaque with respect to the policy and credential 

formats used to implement the system. For instance, this 

formalism could easily be used to model the use of XACML 

policies [6] as the set of inference rules R, and traditional 

(e.g., X.509 [7]) credentials for the set C. On the other hand, it 

can also model the use of more advanced trust management 

policies (e.g., [8], [9]) for the inference rules R, and the use of 

privacy-friendly credentials (e.g., [10], [11]) for the set C. 
 
2.2 Problem Definition 
 
Since transactions are executed over time, the state information 

of the credentials and the policies enforced by different servers 

are subject to changes at any instance of time, therefore it 

becomes important to introduce precise definitions for the 

different consistency levels that could be achieved within a 

transactions lifetime. These consistency models strengthen the 

trusted transaction definition by defining the environment in 

which policy versions are consistent relative to the rest of the 

system. Before we do that, we define a transaction’s view in 

terms of the different proofs of authorization evaluated during the 

lifetime of a particular transaction. 
 

Definition 1:  (View)  A  transaction’s  view  V
T

   is  the  set 



 

 
of proofs of authorization observed during the lifetime of a 

transaction  [  (T ); !(T )]  and  defined  as V
T

   = f fsi    j fsi    = 

hqi; si; Psi (m(qi)); ti; Ci ^ qi 2 T g. _  
Following from Def. 1, a transaction’s view is built 

incrementally as more proofs of authorization are being 

evaluated by servers during the transaction execution. We 

now present two increasingly more powerful definitions of 

consistencies within transactions. 
 

Definition 2:  (View Consistency) A view  
V

T
 = fhqi; si; Psi (m(qi)); ti; Ci; : : : ; hqn; sn; Psn (m(qn)); tn; 

Cig is view consistent, or -consistent, if V
T
 satisfies a predicate  

-consistent that places constraints on the versioning of the 

policies such that -consistent (V
T

 ) $ 8i; j : ver(Psi ) = ver(Ps j 

) for all policies belonging to the same administrator A, where 

function ver is defined as ver : P ! N. _  
With a view consistency model, the policy versions should 

be internally consistent across all servers executing the trans-

action. The view consistency model is weak in that the policy 

version agreed upon by the subset of servers within the 

transaction may not be the latest policy version v. It may be 

the case that a server outside of the S servers has a policy that 

belongs to the same administrative domain and with a version 

v
0

 > v. A more strict consistency model is the global 

consistency and is defined as follows. 
 

Definition 3:  (Global Consistency) A view  
V

T
 = fhqi; si; Psi (m(qi)); ti; Ci; : : : ; hqn; sn; Psn (m(qn)); tn; 

Cig is global consistent, or -consistent, if V
T
 satisfies a predicate  

-consistent that places constraints on the versioning of the 

policies such that -consistent (V
T

 ) $ 8i : ver(Psi ) = ver(P) for 

all policies belonging to the same administrator A, and 

function ver follows the same aforementioned definition, 

while ver(P) refers to the latest policy version. _  
With a global consistency model, policies used to evaluate 

the proofs of authorization during a transaction execution 

among S servers should match the latest policy version among 

the entire policy set P, for all policies enforced by the same 

administrator A. 
 

Given the above definitions, we now have a precise 

vocabulary for defining the conditions necessary for a 

transaction to be asserted as “trusted”. 
 

Definition 4: (Trusted Transaction) Given a transaction T = 

fq1; q2; : : : ; qng and its corresponding view V 
T
 , T is trusted 

i 8fsi 2VT : eval( fsi ; t), at some time instance t : (T ) t !(T ) ^ ( 

-consistent(V
T ) _ -consistent(V

T )) _  
Finally, we say that a transaction is safe if it is a trusted 

transaction that also satisfies all data integrity constraints im-

posed by the database management system. A safe transaction 

is allowed to commit, while an unsafe transaction is forced to 

rollback. 

 

 

3 Trusted Transaction Enforcement 
 
In this section, we present several increasingly stringent 

approaches for enforcing trusted transactions. We show that 

each approach   guarantees during the course of a transaction. 

Fig. 2 is a graphical depiction of how these approaches could 

be applied to a transaction running across three server, and 

will be referenced throughout this section. In this figure, dots 

represent the arrival time of a query to some server, stars 

indicate the times at which a server validates a proof of 

authorization, and dashed lines represent view- or globally-

consistency policy synchronization among servers. 

 
3.1 Deferred Proofs of Authorization 
 

Definition 5: (Deferred Proofs of Authorization) Given a 

transaction T and its corresponding view V
T
 , T is trusted under 

the Deferred proofs of authorization approach, i at commit 

time !(T ), 8fsi 2VT   : eval( fsi ; !(T )) ^ (  -consistent(V
T

 ) _ - 

consistent(V
T

 )) _  
Deferred proofs present an optimistic approach with 

relatively weak authorization guarantees. The proofs of 

authorization are evaluated simultaneously only at commit 

time (using either view or global consistency from Defs. 2 and 

3) to decide whether the transaction is trusted. 

 
3.2 Punctual Proofs of Authorization 
 

Definition 6: (Punctual Proofs of Authorization) Given a 

transaction T and its corresponding view V
T

 , T is trusted 

under the Punctual proofs of authorization approach, i at  
any time instance ti : (T ) ti !(T ) 8fsi 2VT : eval( fsi ; ti) ^ eval( 

fsi ; !(T )) ^ ( -consistent(V
T

 ) _ -consistent(V
T

 )) _  
Punctual proofs present a more proactive approach in which 

the proofs of authorization are evaluated instantaneously 

whenever a query is being handled by a server. This facilitates 

early detections of unsafe transactions which can save the 

system from going into expensive undo operations. All the 

proofs of authorization are then re-evaluated at commit time 

to ensure that policies were not updated during the transaction 

in a way that would invalidate a previous proof, and that 

credentials were not invalidated.  
Punctual proofs do not impose any restrictions on the 

freshness of the policies used by the servers during the trans-

action execution. Consequently, servers might falsely deny or 

allow access to data. Thus, we propose two more restrictive 

approaches that enforce some degree of consistency among 

the participating servers each time a proof is evaluated. 

 
3.3 Incremental Punctual Proofs of Authorization 
 
Before we define the Incremental Punctual proofs of 

authorization approach, we define a view instance, which is a 

view snapshot at a specific instance of time. 
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Fig. 2. Different variants of proofs of authorization 
 
 

For view consistency, no consistency check at commit time 

is required, since all participating servers will be view 

consistent by commit time. On the other hand, the global 

consistency condition necessitates another consistency check 

at commit time to confirm that the policies used have not 

become stale during the window of execution between the last 

proofs of authorization and commit time. 
 
3.4 Continuous Proofs of Authorization 
 
We now present the least permissive approach which we call 

Continuous proofs of authorization. 
 

For the global consistency case (Def. 3), the TM retrieves the 

latest policy version from a master policies server (Step 2) and 

uses it to compare against the version numbers of each participant 

(Step 3). This master version may be retrieved only once or each 

time Step 3 is invoked. For the former case, collection may only 

be executed twice as in the case of view consistency. Once the 

TM receives the replies from all the participants, it moves on to 

the validation phase. If all polices are consistent, then the 

protocol honors the truth value where any FALSE causes an 

ABORT decision and all TRUE cause a CONTINUE decision. In 

the latter case, if the TM retrieves the latest version every round, 

global consistency may execute the collection many times. This 

is the case if the policy is updated during the round. While the 

number of rounds is theoretically infinite, in a practical setting, 

this should occur infrequently. 

 
 

 
 

In Continuous proofs, whenever a proof is evaluated, all 

previous proofs have to be re-evaluated if a newer version of 

the policy is found at any of the participating servers. At 

commit time, Continuous proofs behave similarly to 

Incremental Punctual proofs. In contrast with the Incremental 

Punctual proofs, if later executing servers are using newer 

policy versions (T) all previous (T) servers must (i) update (T) 

their policies to be consistent with the newest one, and (ii) re-

evaluate their proofs of authorization using the newer policies. 

In the case of global consistency, all servers will be forced to 

use the latest policy version at all times. Therefore, we 

consider this variant of our approaches to be the strictest 

approach of all giving the best privacy and consistency 

guarantees. 

 

The decision of which approach to adopt is likely to be a 

strategic choice made independently by each application. As 

withω(T ) any tradeα(T)-o , the stronger the securityω(T) and 

accuracy given by an approach, the more the system has to 

pay in terms of implementation and messages exchange 

overheads. Further discussion of these trade-o s will be 

presented in Sec. 6. 

 

4 Implementing Safe Transactions 
 
A safe transaction is a transaction that is both trusted (i.e., 

satisfies the correctness properties of proofs of authorization) 

and database correct (i.e., satisfies the data integrity 

constraints). We first describe an algorithm that enforces 

trusted transactions, and then expand this algorithm to enforce 

safe transactions. Finally, we show how these algorithms can 

be used to implement the approaches discussed in Sec. 3. 



 

 
4.1 Two-Phase Validation Algorithm 
 
A common characteristic of most of our proposed approaches 

to achieve trusted transactions is the need for policy consis-

tency validation at the end of a transaction. That is, in order 

for a trusted transaction to commit, its TM has to enforce 

either view or global consistency among the servers 

participating in the transaction. Toward this, we propose a 

new algorithm called Two-Phase Validation (2PV).  
As the name implies, 2PV operates in two phases: collection 

and validation. During collection, the TM first sends a Prepare-

to-Validate message to each participant server. In response to this 

message, each participant (1) evaluates the proofs for each query 

of the transaction using the latest policies it has available and (2) 

sends a reply back to the TM containing the truth value 

(TRUE/FALSE) of those proofs along with the version number 

and policy identifier for each policy used. Further, each 

participant keeps track of its reply (i.e., the state of each query) 

which includes the id of the TM (TMid ), the id of the transaction 

(Tid ) to which the query belongs, and a set of policy versions 

used in the query’s authorization (vi; pi).  
Once the TM receives the replies from all the participants, it 

moves on to the validation phase. If all polices are consistent, 

then the protocol honors the truth value where any FALSE causes 

an ABORT decision and all TRUE cause a CONTINUE decision. 

In the case of inconsistent policies, the TM identifies the latest 

policy and sends an Update message to each out-of-date 

participant with a policy identifier and returns to the collection 

phase. In this case, the participants (1) update their policies, (2) 

re-evaluate the proofs and (3) send a new reply to the TM. 

Algorithm 1 shows the process for the TM.  
In the case of view consistency (Def. 2), there will be at 

most two rounds of the collection phase. A participant may 

only be asked to re-evaluate a query using a newer policy by 

an Update message from the TM after one collection phase.  
For the global consistency case (Def. 3), the TM retrieves the 

latest policy version from a master policies server (Step 2) and 

uses it to compare against the version numbers of each participant 

(Step 3). This master version may be retrieved only once or each 

time Step 3 is invoked. For the former case, collection may only 

be executed twice as in the case of view consistency. In the latter 

case, if the TM retrieves the latest version every round, global 

consistency may execute the collection many times. This is the 

case if the policy is updated during the round. While the number 

of rounds are theoretically infinite, in a practical setting, this 

should occur infrequently. 
 
4.2 Two-Phase Validate Commit Algorithm 
 
The 2PV protocol enforces trusted transactions, but does not 

enforce not safe transactions because it does not validate any 

integrity constraints. Since the Two-Phase Commit atomic 

protocol (2PC) commonly used to enforce integrity constraints 

has similar structure as 2PV, we propose integrating these pro-

tocols into a Two-Phase Validation Commit (2PVC) protocol. 

 
 
 

Algorithm 1: Two-Phase Validation - 2PV(TM) 
 

1 Send “Prepare-to-Validate” to all participants  

2 Wait for all replies (a True/False, and a set of policy 

versions for each unique policy)  

3 Identify the largest version for all unique policies  

4 If all participants utilize the largest version for each 

unique policy  

5 If any responded False  

6 ABORT  

7 Otherwise  

8 CONTINUE  

9 Otherwise, for all participants with old versions of policies  

10 Send “Update” with the largest version number of each 

policy  

11 Goto 2 

 
 
 
2PVC can be used to ensure the data and policy consistency 

requirements of safe transactions.  
Specifically, 2PVC will evaluate the policies and authoriza-

tions within the first, voting phase. That is, when the TM 

sends out a Prepare-to-Commit message for a transaction, the 

participant server has three values to report: (1) the YES or 

NO reply for the satisfaction of integrity constraints as in 2PC,  
(2) the TRUE or FALSE reply for the satisfaction of the 
proofs of authorization as in 2PV, and (3) the version number 

of the policies used to build the proofs (vi; pi) as in 2PV.  
The process given in Algorithm 2 is for the TM under view 

consistency. It is similar to that of 2PV with the exception of 

handling the YES or NO reply for integrity constraint 

validation and having a decision of COMMIT rather than 

CONTINUE. The TM enforces the same behavior as 2PV in 

identifying policies inconsistencies and sending the Update 

messages. The same changes to 2PV can be made here to 

provide global consistency by consulting the master policies 

server for the latest policy version (Step 5).  
The resilience of 2PVC to system and communication 

failures can be achieved in the same manner as 2PC by 

recording the progress of the protocol in the logs of the TM 

and participants. In the case of 2PVC, a participant must 

forcibly log the set of (vi; pi) tuples along with its vote and 

truth value. Similarly to 2PC, the cost of 2PVC can be 

measured in terms of log complexity (i.e., the number of times 

the protocol forcibly logs for recovery) and message 

complexity (i.e., the number of messages sent). The log 

complexity of 2PVC is no di erent than basic 2PC and can be 

improved by using any of log-based optimizations of 2PC 

such as Presumed-Abort (PrA) and Presumed-Commit (PrC) 

[12]. The message complexity of 2PVC was analyzed. 

 
4.3 Using 2PV & 2PVC in Safe Transactions 
 
2PV and 2PVC can be used to enforce each of the consistency 

levels defined in Sec. 3. Deferred and Punctual (Defs. 5 and 6) 

proofs are roughly the same. The only difference is that 



 

 
Algorithm 2: Two-Phase Validation Commit - 

2PVC (TM) 
 

1 Send “Prepare-to-Commit” to all participants  

2 Wait for all replies (Yes/No, True/False, and a set of 

policy versions for each unique policy)  

3 If any participant replied No for integrity check  

4 ABORT  

5 Identify the largest version for all unique policies  

6 If all participants utilize the largest version for each 

unique policy  

7 If any responded False  

8 ABORT  

9 Otherwise  

10 COMMIT  

11 Otherwise, for participants with old policies  

12 Send “Update” with the largest version  
number of each policy  

13 Wait for all replies  

14 Goto 5 

 
 
 

 
Punctual will return proof evaluations upon executing each 

query. Yet this is done on a single server, and therefore does 

not need 2PVC or 2PV to distribute the decision. To provide 

for trusted transactions, both require a commit-time evaluation 

at all participants using 2PVC. 
 

Incremental Punctual (Def. 8) proofs are slightly different. 

As queries are executed, the TM must also check for 

consistency within the participating servers. Hence, a variant 

of the basic 2PV protocol is used during the transaction 

execution. For view consistency, the TM needs to check the 

version number it receives from each server with that of the 

very first participating server. If they are di erent, the 

transaction aborts due to a consistency violation. At commit 

time, all the proofs will have been generated with consistent 

policies and only 2PC is invoked. In the global consistency 

case, the TM needs to validate the policy versions used 

against the latest policy version known by the master policies 

server to decide whether to abort or not. At commit time, 

2PVC is invoked by the TM to check the data integrity 

constraints and verify that the master policies server has not 

received any newer policy versions. 
 

Finally, Continuous proofs (Def. 9) are the most involved. 

Unlike the case of Incremental Punctual in a view consistency, 

Continuous proofs invoke 2PV at the execution of each query 

which will update the older policies with the new policy and re-

evaluate. When a query is requested, its TM will (1) execute 2PV 

to validate authorizations of all queries up to this point, and (2) 

upon CONTINUE being the decision of 2PV, submit the next 

query to be executed at the appropriate server, otherwise the 

transaction aborts. The same actions occur under global 

consistency with the exception that the latest policy version is 

used as identified by the master policy server. 

 

 

5 Evaluations 
 
5.1 Environment and Setup 
 
We used Java to implement each proof approach described in 

Sec. 3 with support for both view and global consistency. 

Although the approaches were implemented in their entirety, 

the underlying database and policy enforcement systems were 

simulated with parameters chosen according to Table 1. To 

understand the performance implications of the di erent ap-

proaches, we varied the (i) protocol used, (ii) level of con-

sistency desired, (iii) frequency of master policy updates, (iv) 

transaction length, and (v) number of servers available.  
Our experimentation framework consists of three main 

com-ponents: a randomized transaction generator, a master 

policy server that controls the propagation of policy updates, 

and an array of transaction processing servers.  
Our experiments were run within a research lab consisting 

of 38 Apple Mac Mini computers. These machines were 

running OS X 10.6.8 and had 1.83 GHz Intel Core Duo 

processors coupled with 2GB of RAM. All machines were 

connected to a gigabit ethernet LAN with average round trip 

times of 0.35 ms. All WAN experiments were also conducted 

within this testbed by artificially delaying packet transmission 

by an additional 75 ms.  
For each simulation and each possible combination of 

parameters, 1000 transactions were run to gather average 

statistics on transaction processing delays induced by the 

particular protocol and system parameter choices. The 

randomized transactions were randomly composed of 

database reads and writes with equal probability. To simulate 

policy updates at di erent servers, the master policy server 

picks a random participating server to receive the updates.  
Given that our interest in this article lies in exploring the 

average performance of each of the di erent approaches, we 

made few assumptions to simplify the experimentations and 

help limit the influence of other factors on transaction 

execution time. Specifically, we assumed the existence of a 

single master policy server that has to be consulted for the 

latest policy version belonging to a specific policy 

administrator. This simplifies the 2PV protocol and reduces 

the number of exchanged messages to realize the latest 

version among 

 
TABLE 1  

Simulation Parameters  
Parameter Value(s) 
Times of policies update once during operations, once per 

 participant join, or once at com- 
 mit time 
  

Disk read latency 1-3 ms 
Disk write latency 12-20 ms 
Authorization check delay 1-3 ms 
Data integrity constraint verification 1-3 ms 
Transaction size Short: 8-15 operations, Medium: 

 16-30 operations, or Long: 31-50 
 operations 
  



We now investigate two cloud-based applications that are 

representative of larger classes of interesting applications to show 

how requirements can impact the choice of consistency 

enforcement scheme. In particular, we consider three orthog-onal 

axes of requirements: code complexity (which is directly related 

to trusted computing base size), transaction mix (i.e., write-only, 

read/write with internal reads, and read/write with materialized 

reads), and policy/credential update frequency.  
Application: Event Scheduling. Consider an Event Mon-

itoring Service (EMS) used by a multi-campus university to 

track events within the university and to allow sta , faculty 

members, and student organizations to make online event 

registrations. The university is using a cloud infrastructure to 

host the various EMS databases and execute the di erent 

transactions. Users have varying access privileges that are 

governed by authorization policies and credentials issued by a 

university-wide credentialing system. In this system, read 

requests must be externalized to users during the transaction 

execution so that intermediate decisions can be made. Further-

more, the university system in general has infrequent policy 

and credentials updates, and requires lower code complexity 

to minimize code verification overheads. 
 

Recommendation: In this case, the use of Punctual proofs 

makes the most sense. Note that this approach has low code 

complexity, performs fast, and is suitable for systems with 

infrequent updates. Read externalization is also permissible, as 

policies are checked prior to each operation in the transaction. 
 

Application: Sales Database This example is derived from 

the travelling salesperson example in. According to company 

requirements, a customer’s data should only be read by the 

representatives in the operations region of that customer, 

while any other data should not be materialized until commit 

time. The company also experiences very frequent policy and 

credential updates, as representatives are frequently assigned 

to different operational regions. The company considers 

security to be very important as to avoid incorrect 

authorization decisions that might leak customer information. 

Finally, the company has enough resources to manage 

complex code, but still requires reasonable execution latency. 
 

Recommendation: This Company should use the Continuous 

global approach for the highest accuracy to avoid any information 

leakage at runtime, or Continuous view for slightly lower 

accuracy. This provides a good balance between accuracy and 

performance, at the cost of higher code complexity. 

7 Related Work 
 
Relaxed Consistency Models for the Cloud. Many database 

solutions have been written for use within the cloud 

environment. For instance, Amazon’s Dynamo database; 

Google’s Big Table storage system; Face book’s Cassandra; 

and Yahoo!’s PNUTS. The common thread between each of 

these custom data models is BASE with a relaxed notion of 

consistency provided in order to support massively parallel 

environments.  
Such a relaxed consistency model adds a new dimension to the 

complexity of the design of large scale applications and 

introduces a new set of consistency problems.  In, the authors 

presented a model that allows queriers to express consistency and 

concurrency constraints on their queries that can be enforced by 

the DBMS at runtime. On the other hand, introduces a dynamic 

consistency rationing mechanism which automatically adapts the 

level of consistency at run-time. Both of these works focus on 

data consistency, while our work focuses on attaining both data 

and policy consistency.  
Reliable Outsourcing. Security is considered one of the 

major obstacles to a wider adoption of cloud computing. 

Particular attention has been given to client security as it 

relates to the proper handling of outsourced data. For 

example, proofs of data possession have been proposed as a 

means for clients to ensure that service providers actually 

maintain copies of the data that they are contracted to host. In 

other works, data replication has been combined with proofs 

of irretrievability to provide users with integrity and 

consistency guarantees when using cloud storage.  
To protect user access patterns from a cloud data store, 

introduces a mechanism by which cloud storage users can 

issue encrypted reads, writes and inserts. Further, pro-poses a 

mechanism that enables entrusted service providers to support 

transaction serialization, backup, and recovery with full data 

confidentiality and correctness. This work is orthogonal to the 

problem that we focus on in this article, namely consistency 

problems in policy-based database transactions.  
Distributed Transactions. Cloud TPS provides full ACID 

properties with a scalable transaction manager designed for a 

NoSQL environment. However, Cloud TPS is primarily 

concerned with providing consistency and isolation upon data 

without regard to considerations of authorization policies.  
There has also been recent work that focuses on providing 

some level of guarantee about the relationship between data  
and policies. This work proactively ensures that data stored at 

a particular site conforms to the policy stored at that site. If 

the policy is updated, the server will scan the data items and 

throw out any that would be denied based on the revised 

policy. It is obvious that this will lead to an eventually 

consistent state where data and policy conform, but this work 

only concerns itself with local consistency of a single node, 

not with transactions that span multiple nodes.  
Distributed Authorization. The consistency of distributed 

proofs of authorization has previously been studied, though not in 

a dynamic cloud environment (e.g., ). This work highlights the 

inconsistency issues that can arise in the case where authorization 

policies are static, but the credentials used to satisfy these policies 

may be revoked or altered. The authors develop protocols that 

enable various consistency guarantees to be enforced during the 

proof construction process to minimize these types of security 

issues. These consistency guarantees are similar to our notions of 

safe transactions. However, our work also addresses the case in 

which policies in addition to credentials—may be altered or 

modified during a transaction.



8 Conclusions 
 
Despite the popularity of cloud services and their wide 

adoption by enterprises and governments, cloud providers still 

lack services that guarantee both data and access control 

policy consistency across multiple data centers. In this article, 

we identified several consistency problems that can arise 

during cloud-hosted transaction processing using weak 

consistency models, particularly if policy-based authorization 

systems are used to enforce access controls. To this end, we 

developed a variety of light-weight proof enforcement and 

consistency models—i.e., Deferred, Punctual, Incremental, 

and Continuous proofs, with view or global consistency—that 

can enforce increasingly strong protections with minimal 

runtime overheads.  
We used simulated workloads to experimentally evaluate 

implementations of our proposed consistency models 

relative to three core metrics: transaction processing 

performance, accuracy (i.e., global vs. view consistency 

and regency of policies used), and precision (level of 

agreement among trans-action participants). We found that 

high performance comes at a cost: Deferred and Punctual 

proofs had minimal overheads, but failed to detect certain 

types of consistency problems. On the other hand, high 

accuracy models (i.e., Incremental and Continuous) 

required higher code complexity to implement correctly, 

and had only moderate performance when compared to the 

lower accuracy schemes. To better explore the differences 

between these approaches, we also carried out a trade 

analysis of our schemes to illustrate how application-

centric requirements influence the applicability of the eight 

protocol variants explored in this article. 
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