Compiler

Shaymaa Taha Ahmed

Lec Two

Difference between compiler and interpreter

Differences between compiler and interpreter

. No Compiler

Interpreter

1 Scans the entire program and
translates it as a whole into
machine code.

Translates program one statoment at a time.

2 Execution is faster.

Execution is slower,

3 | Memory Requirement : More (Since
Object Code is Generated)

Memory Requirement is Less

4 | Program need not be compiled
every time

Every time higher level program is converted
into lower level program

5 | Errors are displayed aftor ontire
program is checked

Errors are displayed for every instruction
interpreted (if any)

6 | Large than intesproter due to
contain six phasos

Interpreter 1s smaller than compiler

7 | Programming languages like C, C++
uses compilers.

Programming languages like Python, BASIC
uses interpreters.

** Difference between Low-Level & High-Level Language

H.L.L L.L.I

1. Learning High-level languages are Low-level languages

alzill | €3Sy to learn. are difficult to learn.
aleill Al alxill Linin

2.Understanding High-level languages are Low-level languages

agdll | near to human languages. are far from human
Q¥ dad (e 4y 8 | languages.

OV Azl e dm

Compiler

Shaymaa Taha Ahmed

3. Execution
Naasil)

I

Programs in high-level
languages are slow in
execution.

c«‘_;Lu PRI @U),\S\

Programs in low-level
languages are fast in
execution.

4. Modification

Programs in high-level

Programs in low-level

¢uaadl) | languages are easy to languages are difficult
modify. to modify.
Capanil) Jgus galiyall Caaaill Cazaa zali)
5. Facility at High-level languages do not | Low-level languages
hardware level provide much facility at provide facility to

A sl

hardware level.
ziad Y Al (5 ghusall ld il
488 Al g

write programs at
hardware level.
488 A pgn il

6. Knowledge of
hardware Deep
Baxa e 4d 2

Knowledge of hardware is
not required to write
programs

AUS) Gaac 48 pre allai Y
bl

Deep knowledge of
hardware is required to
write programs.

il

7. Uses plaaiuy)

These languages are
normally used to write
application programs.
S Lm0 il o3
Ayl laphail)

These languages are
normally used to write
hardware programs.
\:u::..da em Cilall) o2

Zaalall el Jull A

(Lexical Analyzer)

The Role of the Lexical Analyzer

Lexical Analyzer is the interface between the source program and
the compiler. The main task of lexical Analyzer is to read the input
characters and produce a sequence of tokens that the parser uses for

syntax analysis.

Jaall Lo I gl &) el g galind) Jrme o Al ennall Jlaal
Sl Aludi g Z58 5 Token JI e 4l JS5 e adiiy sell 1S G canaall
syntax analysis o s salll crall Jaaivg Al

Compiler Shaymaa Taha Ahmed

lexical token
source [= parser ----------- >
program analyser |+
get next
\ token /
symbol
table

Upon receiving a "get next token" command from the parser, the
Lexical Analyzer reads input characters until it can identify the next
token.

The Secondary Tasks of Lexical Analyzer:

1. Removal of white space and the comments. White space
(blanks, tabs, and new line characters).

2. Correlating error messages from the compiler with the
source program. For example, the lexical analyzer may keep
track of the number of newline characters seen, so that a line

number can be associated with an error message.

Input Buffering:

The lexical analyzer scans the characters of the source program one
at a time to discover tokens; it is desirable for the lexical analyzer to

read its input from an input buffer.

We have two pointers one marks to the beginning of the token begin
discovered. A look-ahead pointer scans a head of the beginning

point, until the token is discovered.

Compiler Shaymaa Taha Ahmed

Example: if we have the statement For i:=1 To 10 Do then the
buffer will be

FIO|R| |i]|:|=]21] |[T/O| |10] |[D|O

Example: Let the following segment of source program is input to

lexical analysis:

If A>=100 Then

Begin
X = yl+5.6;
Count := A*4,
End;
Tokens Table
Token Type Index
If Keyword
A Identifier 1
>= Relation operator
100 Constant 1
Then Keyword
Begin Keyword

Compiler

Shaymaa Taha Ahmed

X Identifier
= Assignment operator
yl Identifier
+ Operation operator
5.6 Constant
; Punctuation
Count Identifier
= Assignment operator
A Identifier
* Operation operator
4 Constant
; Punctuation
End Keyword
; Punctuation
Constant
Index Value
1 100
2 5.6

Compiler Shaymaa Taha Ahmed

3 4
Identifier
Index Name
1 A
2 X
3 yl
4 Count

Note: These tables in above are saving in storage structure which

called Symbol Table.

Tokens, Patterns, Lexemes

When talking about lexical analysis, we use the terms "Tokens",
Patterns", and "Lexemes" with specific meanings. Examples of their

use are shown in figure below:

Token | Sample lexemes | Informal Description of Pattern

const const const
if if if
relation | <,<=,=,<>>>= | <0r <=0r =0r <>0r >0r >=

Compiler Shaymaa Taha Ahmed
id pi, count, d2 letter followed by letters or digit
num 3.14,0, 45,-7.5 any numeric constant
literal "computer" | any characters between "and" except"
Example:

If A>=100 Then

Begin
X :=yl+5.6;
Count := A*4:
End:;

A lexeme is a sequence of characters in the source program that is

matched by the pattern for a token.

For example, the pattern for the Relation Operator (RELOP) token

contains six lexemes (=, < >, <, < =, >, >=) so the lexical analyzer

should return a RELOP token to parser whenever it sees any one of

the six.

Compiler Shaymaa Taha Ahmed

Pattern is a rule describing the set of lexemes that can represent a

particular token in source programs.

By using Reqular Expressions, we can specify patterns to lexical

that allow it to scan and match strings in the input. For example, the

pattern for the Pascal Identifier token "Id" is:

letter (letter | digit)*

Example: In Pascal statement
Const Pi=3.1416;
The substring Pi is a lexeme for the token "ldentifier",

Strings and Languages

String: is a finite sequence of symbols taken from that alphabet. The
terms sentence and word are often used as synonyms for term

"string".
|S|: is the Length of the string S.

Example: |banana| =6

Empty String (<): special string of length zero.

Exponentiation of Strings

$2=S8S $3=SSS S* = SSSS
S'is the string S repeated i times.

By definition S is an empty string.
8

Compiler

Languages

Shaymaa Taha Ahmed

A language is any set of string formed some fixed alphabet.

Operations on Languages

There are several important operations that can be applied to
languages. For lexical Analysis the operations are:

Union.
Concatenation.
Closure.

Operation

Definition

UnionLand M
writtenL M

L M={s|sisinLorsinMj}

Concatenation
of Land M
written LM

LM={st | sisin Land tisin M}

Kleene closure
of L written L”

*

L=

L" denotes "zero or more concatenations of" L.

Positive
closure of L
written L*

L=

L* denotes "one or more concatenations of" L.

Example: Let L and M be two languages where L = {a, b, c} and

D= {0, 1} then

« Union: LUD ={a, b, c, 0,1}

« Concatenation: LD = {a0,al, b0, b1, c0,c1}

Compiler Shaymaa Taha Ahmed

« Expontentiation: L2 =LL

« By definition: L° ={<}

Homeworlk

= ¥={a b, .. z}

e 4= {good, bad}
s B = {bov, girl}

s AUEB=_.
s Bud=_,

s do0B=_.
e Bod=._.

=
. A®*=_,

. e B*=_.

10

